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Abstract

While genome sequencing and assembly are now routine, we gill do not have a full and precise
picture of polyploid genomes. Phasing these genomes, i.e. deducing haplotypes from genomic data,
remains achallenge. Despite numerous attempts, no existing polyploid phasing method provides
accurate and contiguous haplotype predictions. To address this need, we developed nPhase, a ploidy
agnostic pipeline and algorithm that leverage the accuracy of short reads and the length of long reads
to solve reference alignment-based phasing for samples of unspecified ploidy
(https.//github.com/nPhasePipeline/nPhase). nPhase was validated on virtually constructed polyploid
genomes of the model species Saccharomyces cerevisiae, generated by combining sequencing data of
homozygous isolates. nPhase obtained on average >95% accuracy and a contiguous 1.25 haplotigs per
haplotype to cover >90% of each chromosome (heterozygosity rate 20.5%). This new phasing method
opens the door to explore polyploid genomes through applications such as population genomics and
hybrid studies.
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I ntroduction

Studying genotype-phenotype relations is contingent on having an accurate view of the genetic
variants. To that end, various sequencing strategies and ways to analyze them have been developed.
The ultimate goal is to faithfully determine the precise sequence of the DNA molecules contained
within the cell. In practice this level of precision is rarely necessary and approximations are routinely
used when they can be afforded. Aligning the sequencing data to a reference genome is a good
approximation to identify genetic variants such as Single Nucleotide Polymorphisms (SNPs) but a
poor one to identify Structural Variants (SVs)!. By contrast, the generation of de novo assemblies
using the sequencing data is a good approximation to identify SVs' but, without significant polishing
work?, usually leads to a lower quality sequence. One enduring approximation is the reduction of the
genome to a single sequence, even if the organism does not have a haploid or rigorously homozygous
genome. A diploid or higher ploidy genome can be heterozygous. Identifying the heterozygous
positions, or variants, is known as genotyping. Linking these variants together to establish which
variants co-occur on the same strand of DNA is known as haplotyping or phasing. There isincreasing
interest in phasing genomes for diverse reasons, such as to obtain more accurate reference genomes’,
better study population genomics', improve the accuracy of GWAS studies’, study the effects of
compound heterozygosity®, investigate Allele-Specific Expression patterns’, gain insight into
polyploid evolution®®, better understand the mechanisms of heterosis'® and dissect the origins of
hybrid species™.

Phased genomes can be obtained either by physically separating entire chromosomes? (or
significantly large portions of chromosomes) prior to sequencing®® or by separating them
bioinformatically after sequencing the whole genome™. The length of reads is a significant limiting
factor in the ability to bicinformatically separate reads into their corresponding haplotypes. One very
successful method that overcame that limitation was trio binni nng, which circumvented the
importance of long reads by leveraging information from parental whole genome sequencing. Other
methods have been explored but cannot overcome the short read length limitation particularly well.
One solution has been to resort to imputing haplotypes through reference panels'’. Despite a higher
error rate, diploid phasing of long reads has been solved by existing methods such as WhatsHap™®, an
alignment-based phasing tool and Falcon-Unzip®®, an assembly-based phasing tool. Assembly-based
phasing attempts to generate a de novo assembly for each haplotype directly, without relying on a
reference sequence. Alignment-based phasing uses a reference genome as support to identify
heterozygous positions and then attempts to link positions together based on the co-occurrence of
heterozygous SNPs on overlapping reads. For diploids each variable position can only be one of two
possible bases. Knowing one haplotype alows to deduce the other. This allows diploid phasing
methods to be relatively smple and straight-forward. For polyploids, however, a variable position can
be one of two or up to six possible gtates (all four bases, a deletion or an insertion) and this deduction
is no longer possible, rendering the task of phasing significantly more complex. Some methods
currently exist to phase polyploids but mainly using short read sequencing and leading to a low
accuracy and contiguity phasing?®?+%2,

Here, we developed nPhase to address the lack of a polyploid phasing method that outputs accurate,
contiguous results and does not require prior knowledge of the ploidy of the sequenced genome. The
required inputs are a reference sequence as well as long and short read sequencing data. The pipeline
performs the mapping, variant calling, phasing and outputs the phased variants and a fastQ file for
each predicted phased haplotype, or haplotig. The nPhase algorithm is ploidy agnostic, meaning it
does not require any prior knowledge of ploidy and will not attempt to guess the ploidy of the sample.
Instead it will separate the reads into as few distinct haplotigs as possible. The nPhase agorithm has
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three modifiable parameters, we have evaluated the effects of these parameters on the results and
provide a default set of parameters, which we predict to be appropriate for all cases, along with some
recommendations on how to modify these parameters for genomes that are more difficult to phase, i.e.
low heterozygosity and high ploidy genomes.

Using the yeast species Saccharomyces cerevisae as a model, we validated the performance of nPhase
on simulated genomes (2n, 3n and 4n) of varying heterozygosity levels (0.01%, 0.05%, 0.1% and
0.5% of the genome). We found that nPhase performs very well in terms of accuracy and contiguity.
We obtained an average of 93.9% accuracy for all diploids, 92.3% for al triploids, and 94.5% for
tetraploids with a heterozygosity level of at least 0.5%, or 87.3% accuracy when we include the lowest
heterozygosity level tetraploids. All results are very contiguous, with an average of between 2.4 and
4.1 haplotigs per haplotype, bringing us very close to the ideal result of one haplotig per haplotype.
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Results
Phasing pipeline and strategy

We developed the nPhase pipeline, an alignment-based phasing method and associated algorithm that
run using three inputs: highly accurate short reads, informative long reads and a reference sequence.
The pipeline takes the raw inputs and processes them into data usable by the nPhase algorithm. Unlike
other existing methods, our algorithm is designed for ploidy agnostic phasing. It does not require the
user to input a ploidy level and it does not contain any logic that attempts to estimate the ploidy of the
input data. The idea at the core of the algorithm isthat if you iteratively cluster the most similar long
reads and groups of long reads together you will naturally recreate the original haplotypes.

For thefirg step of the pipeline, the long and short reads are aligned to the reference, then the aligned
short reads are variant called to identify heterozygous positions and generate a high quality dataset of
variable positions (Figure 1). Each long read is then reduced to its set of heterozygous SNPs according
to the previously identified variable positions. We aso collect long read coverage information to allow
the level of representation of a haplotype in the datato influence its likelihood of being properly
phased (see Methods).

The reduced long reads and the coverage information are then passed onto the nPhase algorithm, an
iterative clustering method. On the first iteration, nPhase clusterstogether the two most similar long
reads, then it checks that the cluster identities are maintained, i.e. it checksthat merging these two
long reads together does not significantly change the information they each contain individually, and
finally it generates a consensus sequence representative of the group of these two reads. The next
iteration will be exactly the same with N-1 reads. nPhase will run until all remaining clusters are
sufficiently different from each other to fail the cluster identity maintenance check. These remaining
clustersrepresent the different haplotypes within the original dataset.

nPhase, a ploidy agnostic phasing algorithm

Asdescribed earlier, nPhase is an iterative clustering algorithm. It is composed of three main ideas: (i)
clustering, which ensures that similar reads are clustered together, (ii) cluster identity maintenance,
which ensuresthat only similar clusters are merged into larger ones and finally (iii) consensus, a way
to reduce a cluster to a consensus sequence in order to easily compare it to other clusters (Figure 2).

Each step of the clustering algorithm starts by calculating the similarity between every overlapping
pair of reads (Figure 2a). By default, the minimal overlap is 10 heterozygous positions. Similarity is
defined as S = Nenared variants/Nsnared positions: T e pair of reads with the highest similarity is clustered
together. If there is atie, then we cluster together the pair of reads with the most variable positionsin
common. If there is again atie, then we select a pair randomly. By default, the algorithm will not
attempt to merge two sequences with less than 1% similarity.

The pair that was selected now forms a cluster of two reads (Figure 2b). In order to continue this
iterative algorithm, we need to define a way to calculate the similarity between aread and a cluster of
reads, and the similarity between two clusters of reads. We do so by computing a consensus sequence
for each cluster of reads and we use the consensus sequence to calculate the similarity as defined
above. For each position, the consensusis defined as the base which has the most support from the
reads in the cluster. Each read gets a vote equal to the context coverage of the base it supports. If there
isatiethen all tied bases are included in the consensus sequence.
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Asdefined, the clugtering algorithm will continue to iterate, merging clusters together until all
available options are exhausted and output only one cluster per region (Figure 2¢). The solution isto
set regtrictions on which clusters are allowed to be merged in the clustering step. We consider that
each cluster hasits own “identity” defined by the population of readsthat compriseit. If merging two
clusters has a significant effect on the identity of both clusters then the merge is not alowed. We
calculate how much merging of two clusters would change them. The amount of change allowed is
limited by the ID parameter. In order to quantify the amount of change to a cluster’s identity we keep
track of the “demographics’ of each position, i.e. how strongly represented each base is for that
position in that cluster. We differentiate positive identity changes from negative identity changes: (i) if
amerge of two clustersresults in increased support for their consensus sequence bases then that
changeis considered positive, (ii) if the merge results in decreased support for a consensus sequence
base then that change is considered negative and we calculate how many votesthe base log, even if it
remains the consensus base after the merge. The number of votes lost isdivided by the total number of
votesin the region that both clusters have in common to obtain the cluster identity change percentage.
By default, if it is higher than 5% we do not alow the two clusters to merge. Once all remaining
clustersfail thistest, the algorithm stops. The resulting clusters represent the different haplotypes that
nPhase found and are output as different sets of reads, heterozygous SNPs, and consensus sequences.

Validation of the nPhase algorithm by combining reads of non-heter ozygousindividuals

To test and validate the performance of nPhase, we decided to combine sequencing datasets of haploid
and homozygous diploid organisms into virtual polyploid datasets. We selected four natural S
cerevisiae isolates as the basis for our virtual genomes: ACA, a haploid strain, and three homozygous
diploid strains: CCN, BMB and CRL (Supplemental Table 1). These four strains have different
ecological and geographical origins and are sufficiently distinct from each other to allow us to
evaluate the performance of nPhase at heterozygosity levels of up to 1% of the genome®.

We sequenced these gtrains using an Oxford Nanopore long-read sequencing strategy and obtained
[llumina short-read data from our 1,011 yeast genomes project®®. Since these strains do not have any
heterozygosity, we could map their short reads to the Saccharomyces cerevisiae reference genome and
variant call them to obtain their haplotypes (Figure 1). We then used these haplotypes as atruth set to
assess the performance of nPhase. With this truth set, we tested the influence of dataset characteristics:
coverage, ploidy, heterozygosity level and the inclusion or exclusion of reads that map to distant
regions of the genome, hereafter described as split reads. We also investigated the influence of
parameters that modulate the behavior of the nPhase algorithm: minimum similarity, minimum

overlap and maximum ID change (for a description of them see Available Parameter s in Methods).

To assess the influence of ploidy, we used the three congtructions of the different virtua genomes
previously mentioned. We also randomly sampled 6250, 12500, 62500 and 125000 heterozygous
SNPsfrom each virtual genome to simulate datasets where 0.05%, 0.1%, 0.5% and 1% of the
positionsin the genome are heterozygous. This equatesto three different ploidies and four
heterozygosity levels, or 12 polyploid genomesto tes.

By running atotal of 6000 validation tests on varying ploidy, heterozygosity, and coverage levels
exploring the parameter space, we determined default parameters of nPhase (see Methods). According
to these tests, the parameters that result in optimal resultsin terms of accuracy and contiguity are the
following: 1% minimum similarity, 10% minimum overlap and 5% maximum ID (see | dentifying
optimal parametersin Methods). We then ran nPhase with these default parameters on our
previously described optimal datasets of varying ploidy (2n, 3n and 4n) and heterozygosity levels
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(0.05%, 0.1%, 0.5% and 1%) of 20X long reads per haplotype with split read information
(Supplemental Table 2).

Asan example, we phased the tetraploid genome showing a heterozygosity level of 0.5% using nPhase
(Figure 3). Since we know the ground truth, we can assign each haplotig to the strain whose haplotype
it most closely represents and we can calculate our accuracy metrics.

In order to measure accuracy we distinguish between two forms of errors. standard errors, i.e.
heterozygous SNPs erroneously attributed to the wrong haplotype, and missing errors, i.e.
heterozygous SNPs which we know are present but which were erroneously not represented in the
predictions. The accuracy is the percentage of all SNPs which were correctly attributed to their
haplotype. The error rate is the percentage of all predictions which were incorrect. The missing rate is
the percentage of all heterozygous SNPs which were never attributed to their haplotype. We use the
following formula: accuracy=TP/(TP+FP+FN) with

TP=True Positive; the SNP was attributed to the correct haplotype

FP=False Positive; the SNP does not belong in this haplotype

FN=False Negative; the SNP isnot represented in the results.

The result of thistest was an accuracy of 93.7%, an error rate of 4.0%, and a missing rate of 2.2% with
an average of 2.4 haplotigs per haplotype. Seven of the sixteen chromosomes have an L90 of 1,
meaning that for all four haplotypes, more than 90% of the heterozygous SNPs were assigned to one
haplotig. For the nine remaining chromosomes, seven have at least two chromosome-length haplotigs.
In al cases, the chromosomes are nearly fully covered by haplotigs that represent the four different
haplotypes, as confirmed by the low missing haplotype prediction rate (2.2%). As aploidy agnostic
tool, nPhase was not given any information about the ploidy of this sample and does not attempt to
estimate its ploidy. Despite that, nPhase reached a high accuracy (93.7%) and contiguity (2.4 haplotigs
per haplotype), demonstrating its ability to reliably phase atetraploid of that heterozygosity level. The
same representation is available for the other datasets of different ploidy and heterozygosity levels
(Supplemental figure 1).

Acrossthe 12 phased genomes with variable ploidy and heterozygosity levels, we noted little variation
in terms of contiguity as we obtained between 2.4 and 4.3 haplotigs per haplotype (Figure 4a). At a
heterozygosity level of 0.05%, the least contiguous genomes are observed with around 4 haplotigs per
haplotype (Figure 4a). The triploid genomes decrease to around 3 haplotigs per haplotype for
heterozygosity levels greater than 0.1% (Figure 4a). The tetraploid tests continue the trend of higher
ploidies becoming more stable and contiguous as the heterozygosity level increases, dropping to 3.1
haplotigs per haplotype at the 0.1% heterozygosity level and then stabilizing at 2.4 haplotigs per
haplotype at the 0.5% and 1% heterozygosity levels (Figure 4a). This could be explained by the
availability of more haplotigsto potentially merge with each other as ploidy increases.

Regarding the accuracy, we observed that for heterozygosity levels greater than 0.5%, the accuracy
appears stable and high across ploidies with a minimum of 93.56% for the diploid (2n) at a0.5%
heterozygosity level, and a maximum of 96.70% accuracy for the triploid (3n) at a 1% heterozygosity
level (Figure 4b). For lower heterozygosity levels (< 0.1%), we have resultsthat are more variable
between ploidies (Figure 4b). Diploid tests retain a high 95.32% accuracy for the 0.1% heterozygosity
level but drop to 90.34% accuracy for the 0.05% heterozygosity level. For triploid genomes, the
results drop to 90.70% accuracy for the 0.1% heterozygosity level, then down to 87.00% at 0.05%
heterozygosity level. Continuing the trend of higher ploidies performing worse with lower
heterozygosity levels, the accuracies for the 0.1% and 0.05% heterozygosity levelsfor the tetraploid
tests output 81.65% and 78.62% accuracy, respectively.
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In addition, we observed that errors are more frequent in all tests than missing calls (Figures 4c and
4d). For higher heterozygosity levels (> 0.5%), these two forms of error are stable and very low. The
error rate is set between aminimum of 2.53% for the 1% heterozygosity level triploid and a maximum
of 4.51% for the 0.5% heterozygosity level diploid. And the missing rate is set between a minimum of
0.31% for the 1% heterozygosity level diploid and a maximum of 2.21% for the 0.5% heterozygosity
level tetraploid. For lower heterozygosity levels (< 0.1%), both the error and missing rates increase
with ploidy, suggesting both types of errors may be linked. If we set aside the 0.1% heterozygosity
level diploid which has an error and missing rates of 3.82% and 0.86%, respectively, the error rates
have a wide range with a minimum error of 6.49% for the 0.1% heterozygosity level triploid and a
maximum error of 12.91% for the 0.05% heterozygosity level tetraploid. Similarly, the missing rates
range from a minimum of 2.97% for the 0.05% heterozygosity level diploid to a maximum of 8.46%
for the 0.05% heterozygosity level tetraploid, again adding to the trend of lower heterozygosity levels
coupled with higher ploidies yielding worse results.

Benchmarking nPhase againgt other polyploid phasing tools

Some methods currently exist to phase polyploids using long read data such as WhatsHap polyphase®,
as well as other methods which were mostly designed to work with short read sequencing data but can
sometimes use long reads as input?*#?. Because nPhase is a phasing tool that leverages the linking
power of long reads to achieve its high accuracy and contiguity metrics, we did not benchmark it
againgt tools that rely exclusively on short reads for phasing, since these are inherently limited by the
size of their reads. We also did not benchmark nPhase against tools that can only phase diploid
genomes as this is not the intended use case for our algorithm. We therefore compare nPhase to the
recently released WhatsHap polyphase, to our knowledge the only other polyploid phasing algorithm
that handles long reads.

We compared the results nPhase (default parameters) with WhatsHap polyphase on the same samples
(Figure5). Since WhatsHap polyphase has a parameter named “ --block-cut-sensitivity” that can be set
to determine the tradeoff between accuracy and contiguity, we tested WhatsHap polyphase using all
possible valuesfor this parameter (integers from O to 5) to compare all possible results to nPhase’s
default results. A value of 0 for this parameter means that WhatsHap polyphase will generate the most
contiguous results possible, and 5 means that it will generate the most accurate results possible.

The performance of WhatsHap polyphase was measured in terms of switch error rate and N50 block
lengths. Instead we will talk about accuracy and average number of haplotigs per haplotype, two
metrics that are more direct representations of the performance of the algorithms and answer two
important questions: “How reliable are the results?’, i.e. what are the proportions of accurate,
erroneous and missing calls? And “How informative are they?’, i.e. by how many haplotigsis each
haplotype represented? nPhase and WhatsHap polyphase were both applied to our 20X test datasets of
different ploidy and heterozygosity levels. nPhase was tested using its default parameters and
WhatsHap polyphase was tested with all six possible values of its adjustable sensitivity parameter. We
report here the average accuracy, error and missing rates, as well asthe average number of haplotigs
obtained for the genome, normalized by the ploidy.

In our tests nPhase has an average accuracy of 91.2%, slightly outperforming WhatsHap polyphase’s
mosgt sensitive setting (5), which yields an average accuracy of 90.1%, and its second most sensitive
setting (4) which yields an average accuracy of 88.9% (Figure 5a). Lower sensitivity levels for
WhatsHap polyphase quickly lose accuracy, with the next lowest setting yielding only 81.1% accuracy
on average, and its least sensitive setting only reaching 59% accuracy.
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In addition to its high accuracy, nPhase is highly contiguous, outputting these accurate results, on
average, in 3.4 haplotigs per chromosome per haplotype (Figure 5b). The highly accurate WhatsHap
polyphase sensitivity levels (5 and 4) output their results in a highly discontiguous 258.7 and 88.9
haplotigs per haplotype, respectively. In order to output results of similar contiguity to nPhase,
WhatsHap polyphase must sacrifice accuracy and drop to a sensitivity level of 1 or 0, which output 2.5
and 0.9 haplotigs per chromosome per haplotype, respectively. This tradeoff between accuracy and
contiguity performed by WhatsHap polyphase does not appear to have a useful middle ground and
nPhase demonstrates that it is not necessary to make a choice given that it simultaneously achieves
both.
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Discussion

We developed nPhase, an agorithm that relies on afew intuitive rulesto process an input dataset of
long reads, reduced to heterozygous positions, outputting as few clusters as possible which we have
shown correspond to the true haplotypes with >90% accuracy. By not specifying the ploidy of the
sample in any step, we allow nPhase to adapt to the particularities of the dataset and do not run the risk
of forcing an incorrect result to fit such an arbitrary algorithmic constraint. We provide nPhase as part
of a pipeline that enables anyone to use their short and long read sequences of the same sample as
inputs and obtain a list of SNPsand afastQ file for each predicted haplotig.

Through our validation tests, we determined that there isa set of parameters for nPhase that performs
optimally in nearly all of our test cases and that the algorithm performs well even with very low levels
of genetic distance between haplotypes. We found that as little as 10X coverage can yield satisfying
results. More complex cases, such as when thereis a high ploidy coupled with alow heterozygosity,
should benefit from higher coverage and a more stringent parameter for the minimum overlap (0.25
for example). Further investigation would be needed in order to more adequately define how these
difficult samples should be treated. We also demonstrated with our benchmarking tests that nPhase
outputs far more accurate and contiguous haplotigs than alternative polyploid phasing methods.

Asan alignment-based phasing algorithm, the performance of nPhase is going to be highly dependent
on the quality of the reference genome being mapped against. Consequently, structural variants
between the sample and the reference, or even structural variants within the sample are presently not
explicitly identified and phased by the algorithm. In order to resolve structural variants between the
sample and the reference or even between haplotypes in the sample, we need to rely on the
information in split reads. Here, we used a simple strategy to stitch together some of the haplotigs we
obtain without using all of the information contained within split reads. Leveraging the full potential
of split readsisacrucial next step to improve the contiguity of phased blocks. The main difficulty in
using split reads appears to be that these alignments are significantly less reliable and will need to be
processed differently to account for that.

We made the choice not to base our phased blocks on insertion or deletion information. This
information can still be obtained in the phased blocks by generating a de novo assembly using
nPhase’ s fastQ output for the relevant haplotig and could be integrated in future devel opments.

With the nPhase algorithm we believe that the problem of switch errorsin polyploid phasing islargely
solved, the next important hurdle for polyploid phasing is finding an appropriate way to handle split
reads to solve the remaining problems of contiguity and structural variants both within a sample and
between the sample and the reference we align to. nPhase can still be used as a preprocessing step for
any study of phased polyploid SVsand INDELSs since that information is partially held within its
output of fastQ files of phased reads.

Overall, nPhase provides, for the first time, an accurate and contiguous picture of polyploid genomes
using only areference genome and short and long reads. It pavesthe way for a better understanding of
the origins of hybrid polyploid organisms, the true diversity of polyploid populations with potential
hints on their origins and their relation to other diploid or haploid strains, and provides a clearer
picture to investigate phenotypic effects tied to alleles which were previously inaccessible to us.
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Figure 1. nPhase pipeline and verification process. (a) The nPhase pipeline requiresthree inputs: a
long read dataset, a short read dataset and a reference genome sequence. Both sequencing datasets are
mapped to this reference genome, then the short reads are variant called in order to identify
heterozygous positions. The long reads are reduced to only their heterozygous positions, and this set of
linked heterozygous positions is phased by the nPhase algorithm and outputs phased haplotypes. (b) In
parallel with running the virtual polyploids through the nPhase pipeline, we map the original strainsto
the same reference and variant call them to identify their haplotypes. This generates the true positive
dataset against which we will compare the haplotypes predicted by nPhase in order to assess the
accuracy of our algorithm.
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Figure 2. nPhase algorithm. Here we represent how a triploid's reads could align to a reference
sequence. Each read is one of three colors, one for each haplotype. The clustering, consensus and
cluster identity maintenance steps are iteratively repeated until all remaining clusters are forbidden to
merge. Clustering: Each vertical line represents a SNP; different colors signify different haplotypic
origins. Only two reads are clustered at atime, here we show three clusters, so thisisthe result of the
third step of nPhase's iterative clustering. Consensus: A consensus sequence is generated by allowing
every read in the cluster to vote for a specific base for a given position. Votes are weighted by the pre-
calculated context coverage number to discourage sequencing errors. The consensus sequences that
represent clusters are treated just like aligned long reads and continue to be clustered. Cluster identity
maintenance: When all remaining clusters are very different from each other they are not allowed to
merge, thisisto prevent the algorithm from always outputting only one cluster per region. The
remaining clusters and their consensus sequences should correspond to the haplotypes present in the
original dataset.
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Figure 3. Predicted haplotypesfor the tetraploid genomewith a 0.5% heter ozygosity level. The
result of thistest was an accuracy of 93.7%, an error rate of 4.0%, and a missing rate of 2.2% with an
average of 2.4 haplotigs per haplotype. Each subgraph displays the predicted haplotigs for a different
chromosome, each predicted haplotig is on adifferent row on the Y axis, and the X axis displays the

position along the chromosome. All predicted haplotigs are color coded according to the haplotype

they are the closest to.
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Figure4. Effectsof ploidy and heterozygosity levels on accuracy and contiguity. Through these
graphs we show the effects of sample properties (heterozygosity level and ploidy) on nPhase's
accuracy metrics when run with default parameters. (a) Each bar displays the contiguity of adifferent
test result. The least contiguous heterozygosity level is 0.05%, likely related to its also yielding the
least accurate results. Overall, we note little absolute variation in the contiguity. Interestingly,
contiguity at higher heterozygosity levels appears to be afunction of ploidy. Higher ploidies seem less
likely to become less contiguous as a result of increasing the heterozygosity level, while the diploid
tests are more affected. We also note that tetraploids of high heterozygosity level are the most
contiguous. (b) Each bar displays the accuracy of a different test result. As ploidy increases, the
accuracy tends to decrease. It also appears to decrease faster for tests on low heterozygosity level
constructions. (¢ and d) Each bar displays our evaluation of the effects of ploidy and heterozygosity
level on the error and missing rates, respectively, for our 12 tests using optimal parameters. Overall,
we see that the error rate is always higher than the missing rate across these conditions. Asthe
heterozygosity level increases, the error and missing rates decrease along with the gap between
ploidies. We aso find that more difficult phasing problems (high ploidy and low heterozygosity level)
yield much higher error and missing rates, and that the low heterozygosity tetraploids seem to be
particularly sensitive to missing calls.
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Figure5. Error typesand number of haplotigsfor nPhase and WhatsHap polyphase. nPhase and
WhatsHap polyphase were both applied to our 20X test datasets of different ploidy and heterozygosity
levels. nPhase was tested using its default parameters and WhatsHap polyphase was tested with all six
possible values of its adjustable sensitivity parameter. This graph compares both tools using the
following metrics: average number of haplotigs obtained for the genome, normalized by the ploidy,
average accuracy, average error rate and average missing rate. (a) Average accuracy, error and

missing ratesfor all tests using nPhase and WhatsHap polyphase on different sensitivity levels. The
error rate for WhatsHap polyphase increases dramatically as the sensitivity level decreases, illustrating
the tool’ s tradeoff between accuracy and contiguity. (b) Average number of haplotigs per chromosome
per haplotype for all tests using nPhase and WhatsHap polyphase on different sensitivity levels. The
very high number of haplotigs per chromosome per haplotype for the highest sensitivity levels (5 and
4) shows that despite being highly accurate, they are not contiguous enough to be informative. Based
on our results, nPhase outperforms WhatsHap polyphase in all of our tests. The tradeoff between
accuracy and contiguity is extreme in WhatsHap polyphase, either the results are very accurate but so
fragmented as to be uninformative, or they are about as contiguous as nPhase but |ess than 60%
accurate.
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M ethods

Total DNA extraction

Single colonies of each natural isolate were isolated by streaking on Y PD media, containing ampicillin
(50 ug/mL). Cellsfrom one colony of each isolate were grown in 60 mL of YPD at 30°C for 24 hours.
We extracted the total DNA of each isolate using the QIAGEN Genomic-tip 100/G kit, according to
manufacturer’ sinstructions.

Library preparation

We used the EXP-NBD104 native barcoding kit (Oxford Nanopore) and the protocol provided by the
manufacturer to barcode the total DNA of each of the isolates. The barcoded DNA was then quantified
with a Qubit®" 1.0 fluorometer (Thermo Fisher) and pooled together with an equal amount of DNA
coming from each isolate. We then used the SQK-LSK 109 ligation sequencing kit (Oxford Nanopore)
to finish the library preparation. Finally, the library was loaded to a R9.3 flow cell for a 72 hour run.

Data pre-processing

The short reads are mapped to a reference genome using bwa? with the command bwa mem -M. We
ran GATK?® MarkDuplicates then variant called with GATK 4.0's HaplotypeCaller --ploidy 2 to
identify heterozygous positions. Long reads are basecalled, adapter trimmed and demultiplexed by
Guppy. They are then mapped to the same reference using NGMLR?’. We keep only primary
alignments and split reads with the samtools® flag 260.

We determine the positions of heterozygous SNPs from the V CF obtained by GATK by looking for
positions where AF=1.00 in the file. We reduced each long read to the set of variable positions it
overlaps (Supplemental Figure 2b). To simplify later computational steps, we remove long reads that
are subsets of other long reads.

nPhase is only capable of phasing SNPsif they are identified by the variant calling step. Thisis not
necessarily always the case, and the accuracy metrics are based on the total number of SNPs identified
in the polyploid sample by the variant calling step. However, unidentified SNPs will ill exist in the
reads, so if the algorithm performs a proper clustering of the reads the information will still be
available and readily extracted by a closer view of the results.

Context cover age

Long reads are error-prone but it isimportant not to perform any form of error correction to ensure
that the heterozygosity is not incorrectly flattened or mis-assigned. The nPhase pipeline works with
raw long reads. In order to minimize the influence of these errors we consider that SNP coverageisa
useful indicator of quality. We count the number of times each heterozygous SNP is present in a
specific context in our dataset. We define context as being the closest flanking heterozygous SNPs
(two heterozygous SNPs upstream and two heterozygous SNPs downstream). The context information
will be used to better inform the nPhase algorithm and allow it to escape the situation where a
sequencing error randomly converts a well-supported SNP to another SNP that iswell-supported in
another haplotype (Supplemental Figure 2b).

Output results
Once nPhase is done running it outputs several files:

(i) A fastQ file for each haplotig containing all of the reads that have been clustered together for this
haplotig, thisfile can then be used with a de novo assembly or alignment tool for further analysis.

(i) A tab separated file listing the consensus base for each heterozygous position contained within
each haplotig. There are three columns. chromosome, position and consensus base. If two different
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bases are equally represented for a given position and equally well supported within the cluster they
will both be represented in thisfile on separate lines. Thisfile is sorted by position.

(iii) A plot representing the different haplotigs along the reference genome, similar to the one
displayed in Figure 3 but lacking the haplotype color code since the ground truth is not known in a
typical use case of nPhase.

nPhase parameter description

nPhase has atotal of 4 parameters which can be adjusted to better fit the sample. These parameters are
the following (Supplemental Figure 3):

S, the minimum fraction of similarity between two reads. When two reads overlap with each other
we calculate their similarity by dividing the number of heterozygous SNPs they share by the number
of heterozygous positions they both cover. If that fraction is smaller than the parameter S, then we will
consider that these two reads cannot be part of the same haplotype. This parameter can be set to any
fraction between 0 and 1, by default it is set at 0.01, or 1% similarity.

O, the minimum fraction of overlap between two reads. When two reads overlap with each other
we can count the number of heterozygous positions they both cover. If they both cover more than 100
heterozygous positions, this parameter isignored. If they cover fewer than 100 heterozygous positions
then we calculate the overlap by dividing the number of heterozygous positions the two reads have in
common by the total number of heterozygous positions covered by the smaller of the two reads. In this
case, smaller does not necessarily mean a shorter read, it means aread that covers fewer heterozygous
positions. If this overlap is smaller than the parameter O, then we consider that these two reads do not
overlap enough for usto conclusively determine if they’re part of the same haplotype. This parameter
can be set to any fraction between 0 and 1, by default it is set at 0.1, or 10% overlap.

L, the minimum number of reads supporting a haplotig. Once nPhase has clustered all of the reads
into different haplotigs, the user may want to filter out all haplotigs that are supported by fewer than N
reads.This parameter can be set to any integer N > 0, by default itisset at O. If set to N, it will not
output any cluster supported by fewer than N reads.

ID, the maximum amount of change when mer ging cluster s. When nPhase considers merging two
clusters of readsinto one new cluster it must determine if these two clusters are similar enough to
warrant merging them together or if they should remain unique clusters, representative of unique
haplotypes. Since these are clusters, every heterozygous position is potentially covered multiple times,
sometimes with different reads in the same cluster indicating conflicting bases for the same position.
We can calculate the number of reads voting for each base in a given cluster and determine the
“demographics’ for that position. We can take thisfurther and have an overview of every
heterozygous position in the cluster and how well-supported each base is. The base that hasthe
majority of support is considered to be the “true” base for that cluster. When we merge two clusters
together, we potentially change these “demographics’. These changes either further strengthen the
position of the majority base for a given position, in which case there is no negative change in the
cluster’s“identity” or they weaken the majority base's position and cause a negétive change to the
cluster’s“identity” . When there are negative changes to the cluster’ s “identity” we can calculate the
amount of change that has occurred and if that amount istoo high the clusters are not alowed to
merge. This parameter can be set to any fraction between 0 and 1, by default it is set at 0.05, or a5%
ID changetolerance.

These parameters are set by default, though they can be modified if needed. The nPhase algorithm will
use these parameters as limitations to determine which reads it is allowed to cluster together into
haplotigs and which clusters of reads it can merge together into longer haplotigs. Ideally, only the ID
parameter needs to be modified, keeping all other parameters very low and forcing the algorithm to
merge clusters as aggressively as allowed by the ID parameter.
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I dentifying optimal parameters

In order to determine which parameters nPhase should use by default, it is important to understand
how these parameters affect the results. Ideally, we will find that there is a set of parameters which is
optimal for all possible combinations of ploidy and heterozygosity level, such a set would then

become the default recommended parameters for nPhase. If no such set of parameters appearsto exig,
the next best case isto minimize the impact of as many of the available parameters as possible in order
to reduce the parameter a user would need to explore when using nPhase to phase their dataset.

Through our tests, we find that there is a narrow range in the parameter space that results in the
optimal performance of nPhase. Intuitively, the optimal strategy appearsto be to set the minimum
similarity and minimum overlap parameters down to alow value so that all of the readsin the dataset
are allowed to merge into a cluster, and to only worry about finding an appropriate threshold for the
ID change parameter. Since the ID change parameter controls how dissimilar two clusters need to be
in order to be considered two different haplotypes, it isfitting for this parameter alone to have the
most pronounced impact on the quality of results. If set too low nPhase will consider small sequencing
errors to be evidence of alternate haplotypes, and if set too high it will allow different haplotypesto
merge into chimeric and wrong results.

To demonstrate this, we ran nPhase 125 times on 24 different samples of varying coverage, ploidy and
number of heterozygous SNPs for atotal of 3000 tests. These 125 tests represent every possible
combination of the minimum similarity S, minimum overlap O, and maximum identity change ID
parameters for the following values: 0.01, 0.05, 0.1, 0.15, 0.25.

The L parameter was set to 0 for these tests since it’ s intended for use to clean up results by removing
small, lowly supported haplotigs and we wanted to determine how nPhase performs without throwing
away any of the data.

Wefound that S, the minimum similarity parameter, had no influence on the results at these levels
(Supplemental Figure 4a). O, the minimum overlap parameter, needsto be at least at 0.1 and seemsto
show very minor improvementsin accuracy at higher levels (Supplemental Figure 4b). The ID
parameter has the most influence on the accuracy of the results, with values of 0.05 and 0.1 yielding
the best results (Supplemental Figure 4c).

Wethen looked at the effects of O and ID on the average number of haplotigs per chromosome per
parent. We found that the number of haplotigs dightly increases with O (Supplemental Figure 5a),
while ID has a strong effect on the contiguity of the results (Supplemental Figure 5b). A higher value
for ID leads to a more contiguous assembly, though this comes at the cost of accuracy (Supplemental
Figure 5¢). We again find that values held between 0.05 and 0.1 provide good results. If we separate
our tests by ploidy we can see that, as the ploidy increasesthe optimal choice for the ID parameter
narrows down around 0.05 (Supplemental Figure 6).

Based on our tests, we find that the following set of parametersisthe best adapted to handle any
sample: S=0.01, 0=0.1, L=0, ID=0.05. We use these as our default parameters.

Influence of coverage

We sought to establish the effects of coverage on the quality metrics of nPhase's predictions. To do so
we performed our tests on a 10X per haplotype dataset and a 20X per haplotype dataset. We found that
both accuracy and contiguity are improved by the higher coverage level of 20X per haplotype
(Supplemental Figure 7). Thiseffect is observed across ploidy and heterozygosity levels, though the
accuracy effects are more pronounced for higher ploidy, lower heterozygosity level samples.

A low number of haplotigs per haplotype is not always a good sign of high contiguity as it can be
compatible with a high rate of chimeric haplotigs. Therefore, we looked at the contiguity effects of
coverage for our tests using default parameters, which we have previously determined output accurate
results. Based on these tests we were able to confirm that the 20X dataset is more contiguous than the
10X dataset (Supplemental Figure 7b). We therefore used the 20X datasets as part of our default
analysis.
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Split read stitching step

Some reads align to two or more very distant sequences in the reference genome. These reads can
represent a sructural variation between the sample and the reference being mapped to. We split them
into the different segmentsthat align to the reference and refer to them to as split reads.

Split reads can be very misleading and trusting them blindly would result in chimeric haplotigs. We
developed a simple pre-processing strategy to integrate part of the information contained by these split
reads.

We run nPhase a first time to obtain our initial haplotigs. We expect some of the edges of haplotigsto
correspond to structural variants such as inversions or large INDELSs so we identify the SNPs at the
edges of these clusters. These are the SNPs which we expect to be included in the split reads that can
connect two haplotigs separated by a structural variant, so they are the most trustworthy SNPs in our
split read dataset. We reduce each split read to only the heterozygous SNPs that overlap with these
regions and re-run the nPhase algorithm with these reads included. Clusters are currently not allowed
to combine reads from different reference chromosomes, so split reads can only be used to improve
the contiguity of haplotigs on the same reference chromosome.

Asdescribed, nPhase does not exploit the information contained in split reads to the fullest extent,
only attempting to improve contiguity by stitching together haplotigs on the same chromosome. Once
there are only a few remaining haplotigs, further improving contiguity necessarily means stitching
longer haplotigs together. This presents a very real danger of creating chimeric haplotigs that have
very strong negative effects on accuracy. To validate the usefulness of these steps and this method of
using the split read data we ran 3000 tests of nPhase both with split read information and 3000 tests
without in order to determine the effects of our split read stitching strategy on both contiguity and
accuracy. We found that the contiguity did significantly improve across all of our teststhat included
split read information, compared to those that did not (Supplemental figure 8a). Encouragingly, when
comparing the accuracy digtributions of the two sets of teststhey are virtually identical (Supplemental
figure 8b). The tests that used split reads were very dightly less accurate than their counterparts but
much more contiguous, motivating our decision to integrate the use of split read information in
nPhase.

Performance limits

With default parameters the nPhase algorithm took between 1 minute and nearly 5 hours of runtime on
asingle CPU (the nPhase algorithm has not been parallelized), and between 0.6 GB and 31.8 GB of
memory (Supplemental table 3). The runtime and memory usage are clearly tied to the ploidy and
heterozygosity level. A higher ploidy and higher heterozygosity level translates to a significant
increase in runtime and memory usage. Each diploid test, up to 1% heterozygosity, ran in less than an
hour and ten minutes and used lessthan 8 GB of memory. Triploid tests took a minimum of 3.5
minutes of CPU time and 0.9 GB of memory to run for the 0.05% heterozygosity level example, and a
maximum of three hours and ten minutes of CPU time and 19 GB of memory for the 1%
heterozygosity level test. The tetraploid examples were the most resource intensive, using up a
minimum of 6 minutes of CPU time and 1.25 GB of memory for the 0.05% heterozygosity level, and a
maximum of four hours and fifty minutes of CPU time and 31.8 GB of memory to run. nPhase can
output results in a reasonable time using moderate memory resources. If run on a particularly large
genome in atime-sensitive context, nPhase could be applied to individual chromosomes in parallel.
It's also reasonable to consider down-sampling the number of SNPsto a heterozygosity level of around
0.5% given the results obtained are comparable and run in less than half the time as the 1%
heterozygosity level tests. All of the heterozygous SNPs would still be present in the long reads and
could be recovered from the fastQ files associated to the predicted haplotypes.
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Data Availability

The nPhase algorithm and the nPhase pipeline are both available at
https.//github.com/nPhasePipeline/nPhase

Oxford Nanopore sequencing data is available under the study accession number PRIEB39456

I1lumina short read data istaken from the 1,011 yeast genomes project and their SRA accession
numbers are given in Supplemental Table S1.
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