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Abstract

For many horticultural crops, variation in quality (e.g., shape and size) contribute
significantly to the crop’s market value. Metrics characterizing less subjective harvest
quantities (e.g., yield and total biomass) are routinely monitored. In contrast, metrics
quantifying more subjective crop quality characteristics such as ideal size and shape
remain difficult to characterize objectively at the production-scale due to the lack of
modular technologies for high-throughput sensing and computation. Several
horticultural crops are sent to packing facilities after having been harvested, where they
are sorted into boxes and containers using high-throughput scanners. These scanners
capture images of each fruit or vegetable being sorted and packed, but the images are
typically used solely for sorting purposes and promptly discarded. With further analysis,
these images could offer unparalleled insight on how crop quality metrics vary at the
industrial production-scale and provide further insight into how these characteristics
translate to overall market value. At present, methods for extracting and quantifying
quality characteristics of crops using images generated by existing industrial
infrastructure have not been developed. Furthermore, prior studies that investigated
horticultural crop quality metrics, specifically of size and shape, used a limited number
of samples, did not incorporate deformed or non-marketable samples, and did not use
images captured from high-throughput systems. In this work, using sweetpotato (SP) as
a use case, we introduce a computer vision algorithm for quantifying shape and size
characteristics in a high-throughput manner. This approach generates 3D model of SPs
from two 2D images captured by an industrial sorter 90 degrees apart and extracts 3D
shape features in a few hundred milliseconds. We applied the 3D reconstruction and
feature extraction method to thousands of image samples to demonstrate how variations
in shape features across sweetptoato cultivars can be quantified. We created a
sweetpotato shape dataset containing sweetpotato images, extracted shape features, and
qualitative shape types (U.S. No. 1 or Cull). We used this dataset to develop a neural
network-based shape classifier that was able to predict Cull vs. U.S. No. 1 sweetpotato
with 84.59% accuracy. In addition, using univariate Chi-squared tests and random
forest, we identified the most important features for determining qualitative shape (U.S.
No. 1 or Cull) of the sweetpotatoes. Our study serves as the first step towards enabling
big data analytics for sweetpotato agriculture. The methodological framework is readily
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transferable to other horticultural crops, particularly those that are sorted using
commercial imaging equipment.

Introduction

The market value of a horticultural crop can be heavily dependent on its quality,
particularly on physical characteristics such as size and shape. Consumers prefer
produce that have specific shape properties |[1H3], which are often referred in the
literature as“Ideal,” “Grade A”, or defined by United State Department of Agriculture
as “U.S. No. 17 [2,446]. Despite having the same nutritional value as the ideally
shaped produce, deformed or “Cull” products are often rejected by consumers. As a
result, deformed crops can be a source of food waste [2}[7,/8] and significant financial loss
to growers. This loss can be severe for crops with high shape variability (e.g.,
sweetpotatoes and bell peppers). With recent advancements in optical sorting
technologies in the vegetable and fruit packaging industry and advancements in big data
analytics, the quantification of shape and size characteristics at production scale could
enable the identification of factors (i.e., environmental factors, genotype, and cultural
practices) that contribute to shape deformation in horticultural crops. Through
improved understanding of the underlying drivers of crop shape, growers could revise
their cultural practices to promote crop consistency, leading to increased grower profits
and reduced food waste. A major obstacle, however, to implementing big data analytics
in support of crop quality assessment is the absence of efficient, high-throughput
methods to quantify 3D features associated with crop shape. Many horticultural crops
are regularly analyzed at packing facilities using high-throughput imaging equipment,
but images captured at these facilities are exclusively used to sort fruits and vegetables
into shipping boxes and containers, and the images are not stored or used for further
downstream analyses. To date, no methodological framework exist for analyzing size
and shape quality metrics from images collected from commercial sorting systems,
leaving the images largely unused. Yet, with the proper technology, these images could
be further scrutinized to log the size and shape characteristics of harvested crops at
large production-scales. Though automated morphological feature extraction
approaches have been proposed for several fruits and vegetables [1,41[9H17], these
methods are neither transferable to industrial sorting facilities nor capable of generating
large datasets due to their low throughput. Previously published methods have focused
mostly on 2D morphological features (i.e., height, width, and aspect ratio) and are
unsuitable for quantifying produce with highly irregular shapes (e.g., sweetpotatoes, bell
peppers, cucumbers, and carrots). In addition, previous studies did not incorporate
existing industrial imaging infrastructure, but instead designed or used independent
systems for image acquisition, making the methods unsuitable to couple with existing
industrial machinery [2}4,/17,[18].

In this paper, we introduce a novel computer vision approach to extract 3D shape

features from crop images and classify individual fruits and vegetables into grade classes.

We use sweetpotato (SP), a highly variable and irregular crop, as a representative use
case. We used digital images obtained from a commercially available sorter (capable of
capturing 5 sweetpotato images per second per lane) installed at the Sweetpotato
Breeding Program at the Horticulture Crop Research Station (HCRS) in Clinton, NC,
to reconstruct three-dimensional models of sweetpotatoes. We calculated shape features
from the 3D model that could not be extracted directly from 2D images (i.e., curvature,
radii of cross-sections, and tail length). We applied the 3D reconstruction and feature
extraction method to 12,579 image samples collected from a sweetpotato yield trial to
demonstrate how variations in shape features across sweetptoato cultivars can be
quantified. We created a sweetpotato shape dataset containing sweetpotato images,
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extracted shape features, and labeled qualitative shape types (U.S. No. 1 or Cull) for
1,332 of the 12,579 sweetpotatoes. We used this dataset to identify a machine learning
architecture to best classify shape type. We found that a neural network classifier
performed best, predicting Cull vs. U.S. No. 1 sweetpotato with 84.59% accuracy. In
addition, using univariate Chi-squared tests and random forest, we identified curvature,
length-width ratio, cross-sectional roundness, and cross-sectional diameters to be the
most important features for determining qualitative shape (U.S. No. 1 or Cull) of
sweetpotato.

The 3D reconstruction and feature extraction method allows us to capture the
variation in shape features extracted from thousands of sweetpotatoes, paving a way to
apply big data analytics to understand sweetpotato shape variation. Our method makes
use of currently discarded commercial imagery and provides data that could enable
downstream analytics for quantifying and understanding shape variation across
cultivars, and identifying the factors responsible for these variations. Thus, in addition
to supporting research on industrial agricultural production dynamics, our method has
the potential to support plant breeding programs by objectively providing phenotypic
metrics beyond yield that can be incorporated into breeding and selection processes for
the development of high-value cultivars. In addition, we demonstrate that the extracted
features can be used to train and test automated machine learning models for
classifying individual fruits and vegetables by grade. Automatic shape classification has
two benefits. First, it enables researchers to understand what percentage of a particular
cultivar is marketable (qualitatively good). Second, in the context of sweetpotato
specifically, existing industrial sorters do not effectively capture sweetpotato shape
features and fail to accurately sort SPs based on shape in an automated way. Due to
the ability to calculate 3D features in milliseconds, our method can be incorporated into
existing industrial sorters to improve their performance. Industrial deployment of this
method will help packers improve accuracy and efficiency of the existing grading process
(by reducing manual labor), and will also create novel datasets that can be used to
analyze industrial-scale trends in crop quality.

Materials and Methods

We developed a computer vision algorithm for creating 3D sweetpotato models from
images captured by the Exeter Accuvision Sorter (Exeter Engineering, Exeter, CA). We
extracted thirteen 3D shape features from the 3D SP model. We performed validation

experiments to evaluate the accuracy of our 3D modeling and feature extraction method.

We applied our feature extraction method to extract shape features from 12,579 SP
images and quantified the distributions of these features across different cultivars. In
addition, using a labeled dataset of 1,323 SPs and we trained and validated machine
learning classifiers for identifying U.S. No. 1 vs. Cull SPs. Using Chi-squared test and
random forest analysis we identified the influential features that determined SP shape
class. Finally, by evaluating multiple performance metrics, we selected the champion
classification model for SP shape type prediction. Fig [1| represents an overview of the
methodology.

Industrial Packing and Imaging of Sweetpotatoes

We obtained 12,579 sweetpotato images captured by an Exeter Accuvision Sorter
installed at the North Carolina Department of Agriculture and Consumer Services
(NCDA&CS) Horticultural Crop Research Station in Clinton, NC. The Exeter
Accuvision Sorter can scan tens of thousands of SPs per hour and captures images of all
SPs processed through it (Fig[l). This equipment is currently used by many packers for
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Fig 1. SP shape feature quantification and shape classifications. SP images
were captured using a single lane sorter developed by Exeter Engineering, installed at
the Horticulture Crop Research Station (HCRS) in Clinton, NC.

-
woo

Exeter Sorter

Shape Feature

sorting different fruits and vegetables (including sweetpotatoes). We used a sorter with
a single lane, whereas industrial packers use the same sorter with multiple lanes. The
Exeter sorter captures Near Infrared (NIR) and Color (RGB) images of sweetpotatoes.
Both images contain SP views from two separate angles that are 90° apart from each
other. We used the NIR images for image processing (Fig ) and 3D reconstruction as
these images are less noisy than the RGB images.

3D Reconstruction

We segmented sweetpotatoes from the NIR images (Fig ) using intensity-based
thresholding. The segmentation provided sweetpotato shape outlines viewed from two
different angles normal (i.e., 90° apart) to each other (front view and side view). We
aligned and rotated the segmented sweetpotato images and calculated centroid axes for
each segmentation mask. We selected N equidistant points across the axes and obtained
sweetpotato radii at these points for both views, giving us N pairs of radii. Next, in a
new 3D coordinate system, we constructed N ellipses on the XY plane along the Z-axis
using the radii pairs. These ellipses were interpolated across the Z-axis to obtain
reconstructed 3D SP shape. We implemented the 3D reconstruction methods and all
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image processing tasks in MATLAB R2020a (MathWorks, Natick, MA). We set the
number of equidistant points N to 20. The number of points can be changed if
necessary (based on the size of fruit or vegetable). However, increasing N will increase
the number of computations needed for the 3D reconstruction.

A B c A
Rl; = 22 |
R2; = DT27 w.\)r.’:::
b
R
Dl D2, R27/ /

Front View Side View

Fig 2. Sweetpotato 3D reconstruction. A) NIR image from the Exeter Accuvision
Sorter, B) Segmented sweetpotato from the NIR images, central axes is obtained for
each view, diameters are obtained across the axial length, C) Ellipsoidal reconstruction
using the radii obtained from segmented sweetpotato image.

Camera Scale Factor Calculation

We designed an experiment to calculate the camera scale factor and assign specific units
to the 3D model. We used a model sweetpotato with known height and width and
scanned it using the Exeter scanner to obtain the model sweetpotato’s NIR images. We
scanned the model SP nine times at different orientations and estimated the 3D shape
for all the scans. Next, we used the known measurements to calculate the camera
calibration factor for each scan. The average calibration factor obtained from these nine
scans was used to calculate measurements for all other scans. Details of how the scale
factor was calculated are provided in

Shape Features

We used the reconstructed 3D model to calculate 13 SP shape features (Fig . Among
these features, two (cross-section diameter, cross-section roundness) were calculated
across 31 cross-sections of sweetpotato, giving us 73 shape variables in total.
Cross-sections were normal to the curved SP axes. We used 31 cross-sections to ensure
we had enough cross-sectional information for all sweetpotatoes in our dataset (adjacent
cross-section centroids were 0.47 inches apart for the longest SP). The number of
cross-sections is an arbitrary parameter and can be changed as needed. Primary shape
features include curved length, straight length, maximum diameter/width, and diameter
across cross-sections of the SP. In addition, we calculated several secondary shape
features using these primary features. We calculated tail length by incorporating

cross-sections from the edges of SP that have a diameter less than or equal to 1.5 inches.

Curvature was calculated by taking the ratio of curved length to straight length. We
calculated the length to width ratio using straight length and maximum diameter. We
also calculated the ratio between tail length and body length. A complete list of
extracted shape features is presented in Table [I} Details of feature calculation are
available in We extracted shape features for all the available SP samples. We
quantified the distributions of different shape features across SP cultivars.
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Table 1. Shape Features. Calculated shape features are listed in the table. *

indicates features calculated at every SP cross-section.

Feature Name

Description

Axial / Curved Length (L¢)

Length across the central axis of SP

Straight length (Lg)

Tip to tip length of sweetpotato

Maximum diameter / width (W)

Estimated maximum diameter or width

Tail length (L1g4)

Tail length estimated by calculating tip
areas with a diameter less than 0.5 inch

Body length (without tail) Lp Lo — Lrgi
Length to width ratio LWS

Curvature Curvature is calculated as the ratio of
curved length to straight length, with ad-
justment for tail length. ?E%LTTO;

Diameters across cross-sections* | Diameter / Width of each cross-section

Tail to axial length ratio %

; ; LTSN
Tail to body length ratio Dre
Volume (V) Volume estimated from L. and cross-

sectional areas

Standard deviation of distances from cross-
section center to perimeter normalized by
diameter of cross-section.

Average Cross-section roundness | Mean of the standard deviations of radii
across cross-sections.

Cross-section roundness*

SP Weight Estimation

Our approach can also be used to estimate individual SP weight from SP density and
estimated volume. We estimated the volume of an individual SP using features
extracted from the 3D model ([S2 Text]). To estimate SP density, we measured weights
of 19 randomly sampled sweetpotatoes of varying shape and size. Then we scanned each
sweetpotato multiple times (16 SPs were scanned 4 times and 3 were scanned 5 times
giving us 79 images) using the Exeter sorter. We estimated the density for each scan by
using the known weight to obtain the mass and dividing the mass by the estimated
volume (density = M) We used the average density value to estimate weights for

. o Volume
individual sweetpotatoes.

Shape Classification

We used a machine learning-based shape classifier to asses the extent to which our
extracted features could be used to discriminate between marketable and unmarketable
SPs. To train a machine learning-based shape classifier that takes extracted shape
features as input and generates predicted shape label as output, we created a database
of 1,332 labeled or classified SP images scanned using the Exeter Accuvision Sorter.
Each image was labeled by a domain expert (researcher from the NC State University
sweetpotato breeding program) as either U.S. No. 1 (a sweetpotato that will have high
market value and meets the U.S. No. 1 standard established by USDA Agricultural
Marketing Service |5]) or Cull (a sweetpotato that will potentially have a lower market
value or will be discarded during harvesting/sorting) based on its visual properties. In
addition, we categorized the Cull sweetpotatoes into four qualitative shape classes:
Tailed, Tapered, Curved, and Other (Fig . We then extracted shape features for all
labeled images. We partitioned the labeled dataset into 80% training and 20% holdout
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(used for evaluating classification performance) set. This gave us 1066 (494 U.S. No. 1
SP and 572 Culls) training samples and 266 (123 U.S. No. 1 and 143 Cull) holdout
samples. Using the extracted features and assigned labels from the training set, we
trained binary classifiers (for classifying U.S. No. 1 and Cull SPs) models using SAS
Viya V03.05 Model Studio (SAS Institute Inc., Cary, NC). Multiple machine learning
models (decision tree [19], neural network [20], random forest |19], logistic

regression [21,22], Bayesian network [22] and gradient boosting [19]) were trained and
tuned (hyperparameter selection) using a 5 fold cross-validation of the training data set
(70% training and 30% validation in each fold). We selected the champion model by
comparing different performance metrics (Accuracy, F1 Score [23], and Area Under
Receiver Operator Characteristics [AUROC] curve [24]) of all the trained classification
models.

Variable Importance Analysis

To understand which shape features played influential roles in determining shape label
(U.S. No. 1 or Cull), we conducted a variable importance analysis. We used the
Chi-squared test [25H27] (using MATLAB’s fscchi2 function) to examine the
dependency between shape class and each shape feature. The random forest

classifier [19] also produced a ranking of important variables based on the change of the
residual sum of squares [28]. Variable rankings from these two methods provided insight
into important features for shape class determination.

U.S No. 1 Cull

U.S.No.1 Curved Round Tailed Tapered Other
Fig 3. Sweetpotatoes with different shape types. Images captured using Exeter
Accuvision Sorter.

Results

3D Reconstruction of Sweetpotato

Using our 3D reconstruction approach, we generated 3D models for all 12,579 imaged
sweetpotatoes. Fig [] shows reconstructed models for SPs of various shape types. The
MATLAB implementation of our approach produced reconstructed 3D model of a SP

within a few hundred milliseconds (on an Intel Core i7 processor with 16 GB Memory).

In its current implementation, this algorithm can be used to calculate SP shape features
at production-scale with very little delay. The speed of the method can be further
improved by utilizing parallel processing of multiple images. Thus, this method can
potentially be used in a high-throughput industrial sorter to capture SP features at the
time of sorting.

Validation of Extracted Features

We validated the accuracy of extracted shape features (Fig by measuring the length
and maximum diameter (width) of randomly sampled SPs using slide caliper and
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Fig 4. Sweetpotato 3D shapes. Examples of 3D reconstructed models of
sweetpotato using images from Exeter Accuvision Sorter.

SP Image

& @

s 4

=

v

3D Reconstruction

measuring scale. We scanned these SPs using the Exeter sorter and estimated the same
features using the 3D reconstructed model. Fig[6] shows that laboratory measurement
and estimated measures are highly correlated (R? = 0.958 and R? = 0.923 for estimated
straight length and maximum diameter, respectively). These results are strong
indicators of the accuracy of the extracted features.

Curved Length
(along centroid)

k\'\\" 3 Maximum
Straight 200 Diameter (Width)

Length :

Cross-section
roundness

Fig 5. Sweetpotato Shape features. Extraction of different shape features from
the reconstructed 3D model.

Application of Feature Extraction Algorithm

Shape Features Across Cultivars

The feature extraction algorithm enabled us to visualize the distribution of shape
features across different cultivars. Fig[7] shows distributions of SP shape features in a
subset of the data (1,943 sweetpotatoes, restricted to one field and four cultivars). For
SP grown on that field, the Covington cultivar had the highest median width of 2.54
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Fig 6. Scatter plots showing comparison between experimental measures
vs estimated shape features in randomly sampled sweetpotatoes (n=79) (A)
Estimated vs measured straight length (R? = 0.958), (B) Estimated vs maximum
diameter (R? = 0.925).

inches, while the Bellevue had the lowest median width of 1.95 inches. The distribution
of curvature across all cultivars grown on that field was approximately the same with
the Baeuregard cultivar having the smallest interquartile range.

SP Weight Estimation

We estimated the average density of 19 randomly sampled sweetpotatoes as 15.64
grams/in® with a standard deviation of 1.27 grams/in®. Root mean squared error
between the estimated weight and actual weight of the SPs was 27.4173 grams. We
used the average density value to calculate the weights of 1,323 labeled SPs from their
estimated volume. We want to point out that this is just an estimate of the density.
Inaccuracies in this calculation could stem from unclean SPs that still contained soil on
the surface and differences in density in bulk vs. tail parts of the SP. Fig|8| shows a plot
of the variation in SP weight for SPs labeled as US No. 1’s vs SPs labels as Culls. The
median estimated weight of the SPs labeled as U.S. No. 1 was 150.77 grams while the
median estimated weight of the SPs labeled as Cull was 166.78 grams. Among the Cull
SPs we found 6 SPs weighing above 1000 grams, 4 of these SPs belonged to the Other
subclass, 1 belonged to the Round subclass, and 1 belonged to the Curved subclass.
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Fig 7. Box plots showing variation in shape features of sweetpotatoes
sampled from a field trial in Clinton, NC. (A) Distribution of curvature across
different cultivars, (B) Distribution of width across different cultivars.

(72}
e
o

=) 1000 A
5

‘S 800
=
ge;

9 600 A
©
£

LIUJ’ 400 A

200 A

0 -

U.S. No. 1 Cull
Shape

Fig 8. Box plot showing variation in weights among US. No.1 and Cull
sweetpotatoes in our labeled dataset.

Variable Importance 29

We analyzed relative importance of different shape features in determining U.S. No. 1 20
vs. Cull shape classes. The top 30 important features (for U.S. No. 1 vs Cull 231
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determination) identified by Chi-squared test [25H27] and random forest are shown
in Fig[9] We found that curvature and length-width ratio are the two most important
features in determining shape labels and were identified by both methods. The rest of
the common influential features are the roundness of cross-sections (og:) and diameters
across cross-sections (D;). Random forest method also picked curved length, body
length, and straight length as important factors for determining shape label.

A B
Chi-Squared Test

Random Forest

Curvature Curvature
LW Ratio N LW Ratio
OR1s -| Curved Length
Avg. Roundness N Body Length
O'R14 — O'R22
Dg 7] Dio
D10 N Dys
O'R16 — O'R13
D9 7] Dy
oRv7 — D22
0'R22 - 0'R14
D; 7] Diz
O'R18 — O'R12
OR™s - Straight Length
O'R23 — O'R20
U’RS — 0'R16
Ds 7] D16
D6 g oR17
OR2 m D30
D, - el
oR7 . D7
D27 N oRM 0 giCross-section
TR10 — oR18 roundness —
D, - oR1® D; Cross-section
12 N D13 diameter
oR19 - D15 ]
Dos 7 Dy 7]
D26 - R -
D23 — OR2s -
Ig" 7 Dog ! 7
0 0.5 1 0 0.5 1

Relative Variable Importance Relative Varibale Importance

Fig 9. Variable importance calculated using (A) Chi-squared test, (B) Random
forest. The X-axis represents relative variable importance scores. Curvature, length to
width ratio (LW ratio), cross-section diameter (D;), and roundness (og:) are identified
as the most influencing features in determining shape labels by both approaches.
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Binary Shape Classification

Evaluation metrics for all competing classifier models are provided in Table 2] We
obtained the optimum hyperparameters for the classifiers using the genetic search
algorithm in SAS Viya . The neural network model yielded the highest
accuracy and F1 Score on the holdout set. The neural network had 1 hidden layer
with 100 neurons with hyperbolic tangent activation function . The confusion
matrix [29] for the neural network model is given in Table [3] We obtained an accuracy
(Lrue Positive 4 True Negative) o 84 59% F1 score [23] of 0.85, and AUROC [24] of 0.88 for

No. of Samples
the neural network model.

Table 2. Evaluation metrics (on the holdout data) for competing binary
classification models. Neural network yielded highest accuracy and F1 score.

Model Accuracy | F1 Score | AUROC
Neural network | 84.59% | 0.848 0.88
Gradient boosting | 83.08% 0.830 0.857
Logistic regression | 79.32% 0.795 0.889
Random forest 78.20% 0.783 0.827
Decision tree 75.56% 0.754 0.772
Bayesian network | 74.81% 0.741 0.809

Table 3. Confusion matrix for neural network classification, evaluated on
holdout data. TP stands for True Positive and TN stands for True
Negative. The overall accuracy on the holdout set is 84.59%

n=266 Predicted U.S. No. 1 | Predicted Cull

U.S. No. 1

Cull

Multi-class Classification

Our main goal was to identify Cull and U.S. No. 1 sweetpotatoes using the best
performing classification model. However, we also wanted to assess the ability to detect
subclasses of Cull sweetpotatoes using a machine learning model. We performed a
model comparison analysis for the multi-class classification problem (|S5 Table]). The
gradient boosting model did better than the neural network for multi-class
classification. However, the overall accuracy of the gradient boosting multi-class

classifier was only 65% on the holdout set. Gradient boosting model for multi-class
True Positive [TP]
TP+False Negatives [FN]

1 sweetpotatoes and 80.76% sensitivity in predicting Round sweetpotatoes. However,
the sensitivity for other class labels were dramatically lower (52.94% for Curved, 22%
for Tailed, 21% for Tapered, and 0% for Other). The multi-class model predicted
majority of the Tapered and Tailed sweetpotatoes as U.S. No. 1.

classification achieved 91.87% sensitivity ( ) in predicting U.S. No.

Discussion

We developed a method that can accurately capture shape features (Fig @ by
reconstructing the 3D model of a horticultural crop from 2D images acquired by a
high-throughput commercial sorter (Fig[5)). To our knowledge, our method is the first
to utilize existing industrial imaging equipment. It is also able to extract shape features
significantly faster than previously reported shape extraction methods for different fruits
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Table 4. Confusion matrix for gradient boosting algorithm evaluated on
holdout data for multi-class classification. TP stands for True Positive. We
can see that the model performs well in predicting U.S. No. 1 and Round
sweetpotatoes, but fails to distinguish among other Cull types.

Count Prediction

n=266 )

True Class U.S. No. 1 | Curved | Round | Tailed | Tapered | Other
U.S. No. 1 (n=123) 1

Curved (n=51)
Round (n=26)
Tailed (n=27)
Tapered (n=24)
Other (n=15)

and vegetables [2}|13}|16{{18L|30L[31]. Most research investigating size and shape traits of
horticultural crops used lab-scale imaging equipment that are slower and cannot be
adapted to production scale environments [17,/32]. Further, we considered both ideal
and deformed sweetpotatoes making our approach capable of quantifying loss due to
shape deformation, while many prior studies excluded sub-standard produce [4}[18].

By using images acquired from already-used industrial equipment, the algorithm
presented here can be readily implemented in production agriculture to gather and
analyze large scale data. To deploy our method at a production facility, the
requirements would be a desktop computer, MATLAB license, and an interface to image
data. Tt is also possible to port this algorithm into an open-source language (e.g.,
Python, C++), eliminating the need for additional software licensing. A parallel
programming implementation of the algorithm can be done with some modification of
the existing code. This would allow the algorithm to process multiple images
simultaneously and further increase the throughput of our approach. One major
challenge in the industrial deployment of this method will be the management of vast
amounts of shape data that will be produced from processing hundreds of thousands of
SPs per hour. One way to mitigate this challenge is by uploading the data in a cloud
server at regular intervals.

Our method paves the way for investigating underlying factors responsible for shape
variations in different cultivars. As shown in Fig (7] we can quantify shape feature
distributions across cultivars in large datasets, which can assist breeders in evaluating
genotypexenvironmental interaction more effectively and can lead to the identification
of potential new cultivars in less time. Our main goal was to demonstrate that we can
quantify shape features across cultivars using the proposed computer vision approach.
Our results for 1,943 SPs grown on one field (Fig|7)) suggests that on average Covington
SPs have higher curvature and width than those of the Beauregard, Bellevue, and
Burgundy SP varieties. Expanding this approach to statistically assess the entire SP
yield trial containing 12,579 sweetpotato samples from 14 different cultivars and grown
in two different fields would require additional detailed analysis that incorporates the
experimental designs of the SP yield trials.

Through variable importance analysis, we identified several key features that

characterize SP shape by using the Chi-squared test [25H27], and random forest (Fig E[)

Previous studies identified the LW ratio captured from 2D images as the standard
feature for quantifying shape variations in agricultural produce [2[33]. However, LW
ratio alone is inadequate for capturing sweetpotato shape variation [18]. Our results
show that curvature, cross-section roundness, and cross-sectional diameters are
influential factors for determining shape class. Multiple previous studies reported
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volume as important shape features for horticultural produce [3}[18}/34,35]. Interestingly,
we did not find volume and tail length among the top 30 influencing variables. This
result suggests that cross-sectional features (roundness and diameter) capture the
information encoded in volume. We think that the ability to extract features from
arbitrary cross-sections makes our method applicable to other crops with varying shapes
and sizes. One of the most important traits of a sweetpotato is its weight. Fig [§| shows
how our method can be utilized to obtain weight for each SP by shape class. It is
essential to state that our density estimation was not accurate since we did not clean
the SPs before scanning and weighing. In addition, we did not incorporate density
variation among different cultivars. Thus, the actual weights of the SPs may be different
but proportional to our estimates. With an accurate SP density measurement, our
method can quantify weight distribution of SPs across shape class and cultivars, which
will allow growers to better predict yields and pack-out from fields.

We used the extracted features to train a neural network classifier to classify SPs
into Cull and U.S. No. 1 classes with reasonable accuracy (84.59% on holdout data)
(Table . Among previous works, Okayama et al. achieved 95.7% accuracy in
classifying bell peppers into Grade A and Grade B using a neural network classifier.
However, their study used four side views and one top view (total five images) of a bell
paper to extract 2D shape features from individual views, whereas our method uses just
two side views of a SP. With two side views (90° apart) of a bell pepper their study
achieved less than 60% classification accuracy with the 2D features (by applying
statistical thresholds to the features), significantly lower than our results. We believe
that, the capability of extracting 3D features allowed our method to perform better
with just two views. We think that our method is deployable in industrial packing
facilities for improved (i.e., more accurate and faster) automated sorting. This method
can also be used in SP yield studies to quantify the amount of deformed SPs across
cultivars and obtain a better estimate of post-harvest losses.

Though, the binary classifier performed well (Table , the accuracy of the
multi-class classification was low (65% on holdout data). The multi-class classifier
predicted the majority of Tapered and Tailed sweetpotatoes as U.S. No. 1 (Table .
The model struggled to learn multiple cull shape labels with available data. Overall
accuracy on the training set was only 78%. We identified three possible reasons behind
the poor performance of the multi-class classifier: (1) inadequate training data for

different Cull classes, (2) imbalance of the training data (highly skewed towards U.S. No.

1 sweetpotatoes, and (3) similarities among the Tailed, Tapered, and U.S. No. 1 shape
classes.

For calculating shape features, we used NIR images, which do not have any color
information. Color images, which are also captured by the Exeter sorter, may provide
more information with regard to certain shape defects. In future works, it would be
worth investigating possible correlations between shape defects and color (e.g., defective
regions may have a different color pattern than the rest of the crop). These additional
color features may further improve classification accuracy, and also provide novel insight
into crop quality.

Conclusion

The irregular structure of many horticultural crops makes shape feature extraction a
challenging task. We have introduced a method that extracts multiple 3D shape
features from crop images captured by industrial sorters. As a first approach towards
automated shape phenotyping at a large scale, our method shows promising results and
the potential to be used in industrial sorters. The major contributions of our approach
are 1) the capability of capturing shape features for thousands of sweetpotatoes and
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assess their variation across cultivars and shape classes, 2) the identification of 3D shape
features that are important to determining SP shape class, and 3) the downstream use
of these features to create machine learning algorithms for automated sweetpotato shape
class determination. We have provided an example of the application of our method in
quantifying shape variations across SP cultivars. This work opens up possibilities for
creating a large scale SP shape database, which can be coupled with agricultural data
to make inferences about SP shapes based on extrinsic factors (i.e., weather, cultural
practices, and soil type). Importantly, the applicability of our feature extraction method
is not limited to sweetpotato. This approach can be used for analyzing shapes of other
vegetables and fruits (i.e., carrot, strawberry, apple) that are sorted using the Exeter
sorter or a sorter with similar imaging capabilities. Machine learning classifiers for other
crops can also be trained by creating crop-specific labeled datasets. One limitation of
our approach is the dependency on predefined features to classify shapes. Existing deep
learning methods that can extract inherent features from image data may yield higher
classification accuracy. However, training such models will require a significantly large
amount of labeled data to train millions of model parameters. We believe that this
avenue needs to be explored in future work. With the incorporation of additional
labeled images, deep neural network approaches might further increase the classification
accuracy and reduce dependency on engineered features.

Supporting information

S1 Text Camera Scale factor calculation

S2 Text Sweetpotato Shape Features Calculation
S3 Data Sweetpotato Shape Data

S4 Text Hyperparameters for Classification Models

S5 Table Model evaluation results
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