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ABSTRACT

The biological impact of microRNAs (miRNAS) is determined by their targets, and robustly
identifying direct miRNA targets remains challenging. Existing methods suffer from high false-
positive rates and are unable to effectively differentiate direct miRNA targets from downstream
regulatory changes. Here, we present an experimental and computational framework to
deconvolute post-transcriptional and transcriptional changes using a combination of RNA-seq
and PRO-seq. This novel approach allows us to systematically profile the regulatory impact of a
mMiRNA. We refer to this approach as CARP: Combined Analysis of RNA-seq and PRO-seq. We
apply CARP to multiple miRNAs and show that it robustly distinguishes direct targets from
downstream changes, while greatly reducing false positives. We validate our approach using
Argonaute eCL1P-seq and ribosome profiling, demonstrating that CARP defines a
comprehensive repertoire of targets. Using this approach, we identify miRNA-specific activity of
target sites within the open reading frame. Additionally, we show that CARP facilitates the
dissection of complex changes in gene regulatory networks triggered by miRNAs and
identification of transcription factors that mediate downstream regulatory changes. Given the
robustness of the approach, CARP would be particularly suitable for dissecting miRNA

regulatory networks in vivo.
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INTRODUCTION

While transcriptional regulation accounts for much of gene regulation, post-transcriptional
regulation represents an additional and consequential layer of regulation (1,2). MicroRNAS
(miRNAS), aclass of small non-coding RNAS, are one of the mgjor trans-acting factors
responsible for post-transcriptional regulation (3). Together with an Argonaute (AGO) protein,
miRNAs function primarily by binding to target mMRNA transcripts and inducing mRNA decay
and/or trandational repression. In humans and other mammalss, there are many hundreds of
different microRNAs (miRNAS), which collectively regulate the majority of human mRNA
transcripts (4) and likely contributeto all gene regulatory pathways. Accordingly, identifying the
targets of miRNAs is fundamental to understanding their biological functions, and a wide variety
of genomic, biochemical and computational approaches have been devel oped to address this
guestion (5-7). Despite intense efforts, even the most effective approaches suffer from high rates

of false positives and/or negatives (8).

The majority of miRNA target sitesin bilaterian animals are found in 3' untranslated regions
(3'UTRs), and comprise a short sequence with perfect complementarity to the 5" end of the
mMiRNA, or miRNA seed (3). Effective seed-matching target sites are often located within a
region of 3'UTR sequence that contains additional features, such as high local AU-content,
which determine site efficacy (9,10). In addition to these canonical seed-matching sites,
numerous other types of sites have been reported, including sites in coding sequence and
5'UTRs, and sites without perfect seed matches (11-14). The extent to which such non-canonical
sites contribute to the total targeting repertoire of amiRNA isunclear. Moreover, miRNA-
specific parameters influence the targeting properties of certain miRNAs (15,16). The earliest
effective approaches to predicting and identifying mammalian miRNA targets used comparative
genomics, and worked by cataloguing orthologous 3'UTR sequences whose capacity to basepair
perfectly to a miRNA seed sequence is detectably conserved (17-19); such approaches remain an
important component of defining biologically consequential miRNA targets. In addition to
conserved target sites, alarge number of non-conserved sites also respond to their cognate
mMiRNAS (20). Non-conserved sites constitute the majority of total sites; therefore, conservation
alone cannot be used to robustly identify target sites (4). Numerous computational approaches

exist which predict the strength or efficacy of miRNA target sites, with varying degrees of
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effectiveness (6,7). In general, these approaches are built on experimental datain which the
transcriptome or proteome is monitored in response to high and transient exposure to an
exogenous miRNA. The resulting data, aggregated over many experiments, isused to train a
model that captures the response to amiRNA, and the results extrapolated to other miRNAs and
other cell types. Such tools have played an important role in accelerating our understanding of
miRNA biology. Biochemical techniques (including CLIP-based assays) have aso been used to
identify miRNA targets (21-24); however, these assays suffer from high levels of background,
perhaps arising from the transient nature of AGO binding. Indeed, subsequent attempts to verify
non-canonical target sitesidentified from CLIP have shown that such sites are largely ineffective
(16).

Although approaches that identify or predict miRNA targets have continued to evolve and
improve, the vast mgjority of both training and validation datasets rely upon cell culture
experiments in which an exogenous miRNA isintroduced transiently at high concentration (5).
Extending these approachesto in vivo settings, with miRNA knockouts, for example, has
indicated that target prediction remains valuable but imperfect. Deviations between target
prediction and in vivo miRNA-mediated regulation presumably derive from numerous sources.
Biologically consequential miRNASs are enmeshed within complex gene regulatory networks,
and the action of such amiRNA islikely to elicit substantial downstream changes beyond the
direct targets (25). For example, amiRNA may directly repress an mRNA encoding a
transcription factor, thus altering the downstream targets of the transcription factor and
potentially confounding efforts to identify the direct targets of theinitiating miRNA. Indeed, a
large body of literature illustrates intimate mingling of miRNAs and transcription factors within
gene regulatory networks (26); thus, identifying transcription factors that direct downstream
regulatory changes initiated by a miRNA islikely an important step towards understanding
biological functions of miRNAs. This complexity in miRNA regulatory networks alone makes
mMiRNA target prediction in vivo problematic. Three major challenges exist: (i) the relatively
subtle regulation elicited by a miRNA, often less than 2-fold, (ii) the large number of potential
targets, often several hundred, and finally, (iii) for consequential miRNAsS, the extent of

downstream changes.
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A popular and effective approach to identifying miRNA targetsin vivo is to intersect lists of
genes differentially expressed in response to a specific miRNA with lists of predicted targets.
Importantly, both lists often include many hundreds of genes; thus, random overlap alone will
generate a substantial set of intersecting candidate direct miRNA targets. We reasoned that
eliminating genes whose differential expression derives from transcriptional regulation might
enable more robust delineation of the direct targets of amiRNA. Prior to our work, a
conceptually similar approach has been devel oped: EISA (Exon—Intron Split Analysis) exploits
intron-mapping reads in RNA-seq data to indicate levels of preemRNASs and thus serves as a
proxy for transcriptional activity (27). The advantage of EISA isthat it is straightforward to
implement; nevertheless, pree-mRNA levels are not a direct sensor of transcription, potentially

compromising the accuracy of this method.

Here, we use PRO-seq (Precision Run-On sequencing), atool that directly monitors transcription
across the genome (28), in combination with RNA-seq to robustly distinguish between direct
mMiRNA targets and indirect effects arising from downstream regulation. We corroborate the
efficacy of our approach using orthogonal genomic assays to measure AGO-miRNA binding to
targets (AGO eCLIP-seq (29)) and trandational efficiency (ribosome profiling (30)). We use
these data to investigate mechanisms of miRNA-mediated repression; for example, we quantify
the contributions of miRNA-mediated mRNA decay and translational repression using miRNAs
expressed at physiological levels. Additionally, we identify novel, effective miRNA target sites
residing within the open reading frame (ORF); interestingly, such coding sites are only prevalent
for a subset of miRNAS that we examine. Because PRO-seq also profiles activity of DNA
regulatory elements, such as enhancers and promoters (31), we identify candidate transcription
factors associated with regulatory elements exhibiting altered transcriptional activity. We find
that activities of these transcription factors are modulated by specific miRNAS targeting the
cognate transcript, and that such repression contributes to the downstream changesin
transcriptional regulation. Using CARP to deconvolute regulation occurring at the level of
transcription, post-transcription, or both, we demonstrate that the combined analysis of RNA-seq
and PRO-seq is a powerful approach to investigate complex transcriptional and post-

transcriptional gene regulatory networks.
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MATERIAL AND METHODS

Cell culture Flp-In T-REx 293 (HEK293-derived; Invitrogen) and HEK293T (American Type
Culture Collection, ATCC) cells were used for all experiments in this study. Cells were cultured
at 37°C in ahumidified incubator containing 5% CO, and maintained in DMEM (Life
Technologies) containing 10% FBS (Sigma-Aldrich) and 1% penicillin/streptomycin (Life
Technologies); FIp-In T-REx 293 cells were also supplemented with 100 ug/ml Zeocin
(Invitrogen). Cells were passaged every 2-4 days. Cdll lines were not tested for mycoplasma

contamination.

Synthetic miIRNA hair pin constructs Expression cassettes consisting of the doxycycline-
inducible cytomegalovirus (CMV) promoter (derived from the Invitrogen T-REXx system), the
intron-containing EFla 5'UTR, and Aequorea coerulescens GFP were cloned into alentiviral
transfer vector containing a neomycin selective resistance cassette. To clone synthetic miRNA
hairpinsinto theintron, Xbal and Xmal restriction sites were introduced. An artificial hairpin
backbone (“A5” from (32) was used and the sequence of the mature miRNA was replaced with
the sequences of the seven miRNASs used in this study: hsa- miR-1, hsa- miR-122, hsa-
mMiR-133a, hsa- MiR-155, hsa- miR-302a, hsa- miR-372 and hsa- miR-373 (hairpin sequences
included in Supplementary Table S1). To insert the hairpin sequences, pairs of complementary
oligonucleotides were designed containing the sequences with terminal restriction enzyme sites
Xbal and Xmal. The oligos were annealed, extended, digested and ligated into the GFP vector.
The parent GFP vector lacking a miRNA hairpin was used as a negative control for all

experiments.

Generation of stable cell lines expressing specific miRNAS Lentiviruses were generated by
transfecting the lentiviral transfer vectors described above along with packaging (psPAX2,
Addgene plasmid #12260) and envelope (pMD2.G, Addgene plasmid #12259) plasmids with
Lipofectamine 2000 (Invitrogen) in HEK293T cells. The media was replaced 24 hours later with
fresh DMEM containing 30% FBS, and lentiviral supernatants were collected 24 hours later. To
generate stable cell lines expressing miRNA constructs, FIp-In T-REx 293 cells were transduced
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and selected with 1 mg/mL Geneticin (Invitrogen) for six days, after which the Geneticin
concentration was lowered to 0.8 mg/ml. To ensure steady-state miRNA levels, miRNA-GFP
cassettes were induced by adding 1 pg/mL doxycycline every day for seven days.

Biological replicates were transduced and maintained separately for all experiments. Two
biological replicates were generated for experiments employing miR-1 and miR-122, while three
replicates were generated for miR-133, miR-155, miR-302a, miR-372 and miR-373 experiments.

mMiRNA gPCR Primers were designed as described previously (33) (primer sequencesin
Supplementary Table S2). The reverse transcription primer for all mMiRNAsis5'-
CAGGTCCAGTTTTTTTTTTTTTTTVN, whereV isA,CandGandNisA,C,Gand T. The
reverse primer for all MIRNASis5-CAGGTCCAGTTTTTTTTTTTTTTT. For cDNA synthess,
100 ng of total RNA from all samples and 100 amol spike-in RNA (sequence in Supplementary
Table S2) were heat denatured at 65°C for 30s. The reaction mix included 1 ul of 10x poly(A)
polymerase buffer (NEB), 0.1 mM of ATP, 1 uM of RT primer, 0.1 mM of each deoxynucleotide
(dATP, dCTP, dGTP and dTTP), 100 U of RevertAid Reverse Transcriptase (Thermo Scientific)
and 1 unit of poly(A) polymerase (New England Biolabs) and was incubated at 42°C for 1 hour

followed by enzyme inactivation at 95°C for 5 minutes. For quantitative PCR, synthetic
templates used for the standard curve were DNA oligonucleotides complementary to the
miRNAs with areverse primer binding site incorporated into the 5" end (sequencesin
Supplementary Table S2). Synthetic templates were used to generate a standard curve, with
dilutions ranging from 0.5 fM to 50 pM final concentrations with 0.2 ng salmon sperm DNA.
Quantitative PCR of biological replicates was performed in 10 pl total volume with 0.1 pl of
cDNA. Cycling conditions were 95°C for 5 min followed by 40 cycles of 95°C for 10 sec and
60°C 30 sec and 70°C 30 sec. A melting curve analysis (55°C to 95°C) was performed after the
thermal cycling. Quantitative PCR was performed on a LightCycler 480 Instrument Il (Roche).

PRO-seq Library preparation. Biological duplicates of cells expressing miR-1, miR-122 and
empty vector control were harvested after seven days of induction with doxycycline. For each

sample, cells were scraped from one 10 cm plate in ice-cold PBS. A portion of the cells (20%)
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was set aside for RNA-seq and the remaining 80% was used for PRO-seq following a protocol
adapted from (34). Briefly, nuclel were isolated using a buffer containing 0.05% tween-20, and
incubated with biotin-labelled nucleotides in a nuclear run-on reaction along with sarkosyl. The
total RNA was extracted using Trizol and fragmented using NaOH hydrolysis for 20 minutes on
ice. The biotin-labelled fragments of nascent RNAs were enriched using Streptavidin M280
beads (Invitrogen) followed by ligation of 3' ends with pre-adenylated DNA adapters (App-
GATCGTCGGACTGTAGAACTCTGAAC/3InvdT/) using T4 RNA Ligase 2 truncated K227Q
(NEB) in absence of ATP. Following another round of biotin-enrichment, the 5" ends of the RNA
were modified and ligated with 5' RNA adapter (CCUUGGCACCCGAGAAUUCCA). The
cDNA was generated using SuperScript |11 RTase (Invitrogen). The libraries were PCR
amplified, size selected using PAGE and sequenced on an Illumina NextSeq 500.

For miR-133a, miR-155, miR-302a, miR-372 and miR-373, libraries were prepared in biological
triplicate (along with the empty vector control), as described above, except for the following
modifications, adapted from (35). A 3' RNA adapter
(PNNNNNNXXXXXXNNGAUCGUCGGACUGUAGAACUCUGAAC/3InvdT/) containing
sample barcodes (“X” s) was ligated to the RNA 3’ termini using T4 RNA ligase | (Invitrogen),
allowing usto pool samples post ligation, streamlining subsequent steps in the protocol. We used
unique molecular indexes (UMIs) in both the 3" and 5" RNA adapters (5' adapter:
CCUUGGCACCCGAGAAUUCCANNNNN) to minimize ligation bias and facilitate removal of
PCR duplicates from the sequencing data.

Data processing. For miR-1, miR-122 and the empty vector control, single-end sequencing reads
were trimmed to remove adapter sequences using fastx_clipper tool from FASTX Toolkit
v0.0.13 (-aTGGAATTCTCGGGTGCCAAGG -1 0-Q33) for miR-1 and miR-122, and cutadapt
v1.12 (-aTGGAATTCTCGGGTGCCAAGG -m 0 -f fastg) for miR-133a, miR-155, miR-302a,
miR-372 and miR-373. All trimmed sequences shorter than 15 nucleotides were removed and the
remaining reads were reverse complemented. The reads originating from PhiX or rRNAs were
removed using Bowtie v1.1.2-based alignments (36) to respective reference sequences. The
resulting high-quality reads were aligned to hgl9 genome using Bowtiev1.1.2 (-p7 -v2 -m1 -q),

and the resultant BAM files were used for further analysis.
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For miR-133a, miR-155, miR-302a, miR-372 and miR-373 and the empty vector control, reads
were first demultiplexed using the in-line sample barcode. The UMI sequences were removed
from each read and placed into the read name. Subsequent processing steps were as described for
miR-1 and miR-122 samples, with an additional removal of PCR duplicates, defined as reads

containing identical UMI sequences and mapping locations.

Visualization of PRO-seq data on genome browser. The PRO-seq BAM alignments were
converted to BED format using bamToBed (BEDTools v2.26.0; (37)) and were split into two
files based on the genomic strand they belong to. The read alignments were converted to genome
coverage using genomeCoverageBed (-1 stdin -3 -bg; BEDTools v.2.26.0). The resulting
bedgraph files were normalized by read depth and were converted to bigwig files using
bedGraphToBigWig (38) for visualization on the UCSC genome browser.

Peak calling using dREG. PRO-seq BAM alignments were converted to BED format using
bamToBed (BEDTools Vv.2.26.0) and were split into two files based on the genomic strand they
belong to. The read alignments were converted to genome coverage using genomeCoverageBed
(- stdin -3 -bg; BEDTools v.2.26.0). The resulting bedgraph files were converted to bigwig files
using bedGraphToBigWig (38), without read depth normalization. dREG (v18.11.2016; (39) was
used to call peaks using the bigwig files and default dREG parameters. Transcriptional activity
was estimated by counting the number of reads mapping to the dREG peaks using featureCounts
(-F SAF-s0-Q50 -T 10) of Subread package v1.5.1 (40). Peak centers were identified using
dREG (v6.1.2018; (41)) and default parameters.

Quantification of transcriptional output. To calculate transcriptional output from PRO-seq, we
considered only gene-body reads, removing all reads originating from regulatory elements such
as promoter or enhancer elements. These transcriptional regulatory e ements were predicted
using dREG. BEDTools was used to remove reads mapping to these regulatory elements, and the
remaining gene-body reads were counted using featureCounts (-F SAF -s 1 -Q 50).

RNA-seq Library preparation. Cells scraped from 10 cm platesin PBS were pelleted and
resuspended in 1 ml Trizol (Invitrogen). The total RNA was extracted from Trizol according to

manufacturer’ s instructions, with the addition of a chloroform extraction. Directional RNA-seq
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libraries were prepared from 1000 ng total RNA per sample using the NEBNext Ultra Il
Directional RNA Library Prep Kit for Illumina (New England Biolabs), with initial polyA+

isolation, by the Transcriptional Regulation and Expression Facility at Cornell University.

Data processing. Raw reads were trimmed to remove adapter sequences using fastx_clipper
(parameters: -l 15 -Q33 -a GATCGGAAGAGCACACGTCTGAACTCCAGTC) and were
aligned to the human genome (hg19) using TopHat v2.1.1 (--library-type fr-firststrand; (42)); the
resultant BAM files were used for the further analyses. The featureCounts software was used to
count reads mapping to exons (parameters: -F SAF -s 2 -Q 50) and introns (parameters. -F SAF -
s2-Q50 --fracOverlap 1). The differential expression analysis was performed using edgeR
v3.24.3 (43) and g-values were computed using gvalue v2.14.1 R package (44).

Predicting 3'UTRisoforms. The BAM files across all RNA-seq samples were merged and the
read alignments with mapping quality > 50 were extracted using samtools v1.9 (45). The
resultant read alignments were used to predict the poly(A) cleavage sitesusing GETUTR v2.0.0
(46). The predicted poly(A) cleavage site with the highest score (representing the mgjor 3'UTR
isoform) was used to modify 3'UTR annotations (gencode v19). Specifically, annotated 3'UTRS
were trimmed up to the genomic locations of the highest-scored poly(A) cleavage site.
Annotations were not adjusted for inferred poly(A) cleavage sites downstream of annotated
3'UTRs. The modified annotations were used to exclude genes that |oose predicted miRNA

target sites due to alternative polyadenylation and cleavage.

Statistical significance of post-transcriptional regulation Transcriptional output estimated
using PRO-seq and mRNA abundance quantified using RNA-seq were used for determining
genes that exhibit significant post-transcriptional regulation. Lowly expressed genes (counts per
million < 1 in any sample) were filtered out and the remaining genes were used for a statistical
test using edgeR, based on code provided in (27). The edgeR analysis was performed under
generalized linear modeling framework. Like typical edgeR expression analysis, one factor was
defined based on the experimental conditions, and the second factor represented type of assays
(RNA-seq versus PRO-seq). A model containing these two factors and an interaction term
between the two (full model) was compared with the reduced model, the full model without the

10
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interaction term, using likelihood ratio test (LRT). The g-values were computed using qvalue R

package (44).

Exon-intron split analysis (EI1 SA) The EISA was performed by using exonic read counts and
intronic read counts obtained from RNA-seq experiments (see above). The code provided in (27)

was used for thisanalysis.

small RNA sequencing Library preparation. Cells were lysed in confluent 6-well plates using
500 uL Trizol (Invitrogen). Total RNA was extracted from Trizol according to manufacturer’s
instructions, with the addition of a chloroform extraction. Libraries were prepared from 1000 ng
total RNA using the NEBNext Multiplex Small RNA Library Prep Set for [lumina (New
England Biolabs) by the Transcriptional Regulation and Expression Facility at Cornell
University.

Data processing. The small RNA data were processed using miRDeep2 (47). Briefly, the
adapters were trimmed and duplicate reads were collapsed using mapper.pl (-d -e-h -i -j -k
AGATCGGAAGAGCACACGTCT -l 18 -m -sreads.fa-v). The collapsed reads were aligned to
mMiRNA hairpins and reads originating from mature miRNAs were counted using quantify.pl (-t
hsa-d -W). The miRNA hairpins and mature miRNA sequences used in quantify.pl were
downloaded from miRbase v21 (48). The sequences of synthetic hairpins used in this study were
appended to the miIRNA hairpin file. The miRNA processing efficiency was determined by
calculating the fraction of read ends mapping at each position of the hairpin using the
miRBase.mrd file generated by quantify.pl.

AGO eCLIP Library preparation. Biological duplicates of cells stably integrated with miR-1,
miR-122, or the empty vector control were passaged in the presence of 1 ng/ml doxycycline for
seven (replicate 1) or eight (replicate 2) days. For each sample, two ~70% confluent 10 cm plates
were UV crosslinked on ice at 400 m¥cm?, washed with PBS, lifted from the plates, pooled,
pelleted, snap frozen in liquid nitrogen and stored at -80°C. For preparing eCLIP libraries, cell

11
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pellets were thawed, lysed and prepared with a protocol adapted from (29). Briefly, cell pellets
were thawed and lysed in 1 ml lysis buffer (50 mM Tris-HCI pH 7.4, 100 mM NaCl, 0.5% Igepal
CA-630) supplemented with protease inhibitor cocktail 111 (EMD Millipore), treated with RNase
| (Ambion), Turbo DNase (Invitrogen), and clarified. At all points, RiboLock RNase inhibitor
(Thermo Scientific) was used instead of Murine RNase Inhibitor. For immunoprecipitation, 10
ug Agoz antibody (Anti-AGO2 clone 11A9, MABE253, EMD Millipore) was bound to 100 uL
washed Dynabeads Protein G (Invitrogen). The clarified lysate (950ul) was added to washed
antibody-coupled beads and rotated at 4° C for 4 hours. The IP was washed 2x with high salt
wash buffer (50 mM Tris-HCI pH 7.4, 1 M NaCl, 1 mM EDTA, 0.5% Igepal CA-630), 1x wash
buffer (20 MM Tris-HCI pH 7.4, 10 mM MgCl2, 0.2% Tween-20), and then washed with 1x
FastAP buffer (10 mM TrispH 7.5, 5 mM MgCl,, 100 mM KCI, 0.02% Triton X-100). Beads
were treated with FastAP (Thermo Scientific), Turbo DNase, and T4 PNK (NEB). A 3' RNA
adapter (5' P-TGGAATTCTCGGGTGCCAAGG/3InvdT) was ligated to the RNA on-bead, and
resuspended in LDS sample buffer (Life Technologies). Inputs and 10% IP were run on SDS-
PAGE, transferred to nitrocellulose membrane, and visualized by western blot to verify
pulldown. For preparing eCLIP libraries, 90% of the IP was run on SDS-PAGE and transferred
to nitrocellulose membrane. For each sample, the membrane was cut from ~97kDa up to
~275kDato isolate AGO2-RNA complexes. Membrane slices were treated with proteinase K
and urea, extracted with acid phenol:chloroform and cleaned as described (29). RNA was reverse
transcribed with SuperScript 111 (Invitrogen) with the RT primer 5'
CCTTGGCACCCGAGAATTCCA. cDNA was cleaned up and a 3' DNA adapter (5' P-
NNNNNNNNNNGATCGTCGGACTGTAGAACTCTGAAC/3InvdT) containing a 10
nucleotide unique molecular identifier (UMI) was ligated to the 3’ end of the cDNA, and cleaned
as described (29). Approximately 90% of the cDNA was amplified for 16 cycles using sample-
specific Illumina-compatible primers, ethanol precipitated and run on an 8% PAGE gel. The
library smear from ~160bp to ~400bp was cut from the gel, purified, quantified, pooled, and
sequenced on the Illumina NextSeq500 with the 75bp kit.

Data processing. Following removal of UMI sequences from the read sequence, the reads were
subjected to adapter trimming using cutadapt v1.8.3 ((-a TGGAATTCTCGGGTGCCAAGG -m
18). All reads mapping to ribosomal RNAS using Bowtie2-based alignment (v2.3.5.1; (49)) were
removed and the remaining reads were aligned to the human genome (hg19) using TopHat v2.1.1

12
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(-g 1 -p 2 --library-type fr-secondstrand). The alignments were processed using samtools. PCR
duplicates, as defined by reads containing identical UMI barcodes and mapping locations, were
removed using an in-house Perl script. Peaks were called with CLIPper (50), and reproducible
peaks (IDR < 0.1) were obtained using Irreproducibility discovery rate (IDR) analysis (51). The
reproducible peaks from all samples were pooled and overlapping peaks were merged using
BEDTools to produce a set of consolidated eCLIP peaks, which was used for the further
analyses. Relative AGO density was calculated for each peak by computing a ratio of normalized
read countsin miRNA-expressing cells to those in control cells. Because increased AGO binding
results in reduced mRNA levels due to miRNA repression, this measurement of AGO density is
underestimated.

Ribosome profiling Library preparation. Ribosome profiling libraries were prepared with the
TruSeq Ribo Profile (Mammalian) Kit (Illumina). RNA-seq libraries for normalizing ribosomal
footprints were prepared in parallel according to kit instructions. Biological duplicates of cells
stably integrated with miR-1, miR-122, or the control were induced with 1 ng/ml doxycycline for
seven days. To stall ribosomes, cellsin 10 cm plates were incubated in media supplemented with
100ug/ml cycloheximide for two minutes at 37°C. Cells were washed in ice-cold PBS
supplemented with 100 pg/ml cycloheximide, lifted from the plates, pelleted, and lysed in 750
pL mammalian lysis buffer on ice for 10 min. Lysate was clarified and split into two tubes: (i)
100 pL for preparing total RNA libraries, and (ii) 200 pL for prepare ribosome footprint
libraries. Library preparation was performed according to the protocol. Ribosomes were treated
with 60 U TruSeq Ribo Profile Nuclease to generate ribosome-protected fragments and isolated
via size-exclusion with an Illustra MicroSpin S-400 HR column (GE healthcare). Ribosomal
RNA was depleted from both ribosome-protected fragments and RNA-seq libraries using the
[llumina Ribo-Zero Gold Kit (Human/Mouse/Rat) according to the protocol. Libraries were
segquenced on the I1lumina NextSeq 500 with the 75bp Kit.

Data processing. The raw reads were trimmed to remove adapter sequences using cutadapt
v1.8.3 (-aAGATCGGAAGAGCACACGTC -m 18). Trimmed reads originating from rRNA
were removed using Bowtie2 v2.3.5.1 with default parameters for RNA-seq datasets and with "-
L 20" and other default parameters for Ribo-seq datasets. Remaining reads were mapped to the
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hg19 genome and gencode v19 annotated genes using Tophat v.2.1.1 (--no-novel-juncs --
transcriptome-index <indexFile> -p 3 --library-type fr-firststrand). Reads mapping to coding
region excluding the ends (initial 45nt and ending 15nt) were counted using featureCounts (-F
SAF-s1-Q50-T 10 --fracOverlap 1). The changein trandational efficiency was calculated
using edgeR in the same manner as the calculation for change in post-transcriptional regulation.
Briefly, the first factor represented experimental conditions and the second factor represented the
type of assay (ribosome profiling verses RNA-seq). The models with or without the interaction
term between the two factors were compared using likelihood ratio test in edgeR framework. The

g-values were computed using gvalue R package (44).

Tissue-specificity analysis of miRNA direct targets

This analysis was performed as described previously (52). Briefly, for each gene, 53 different
tissues were ranked based on the expression of that gene in the tissue expression data obtained
from the GTEXx Portal (downloaded on Feb/2020). Using these ranks as expression levels, for
each tissue, the distribution of ranks of miRNA direct targets were compared with that of 5000
randomly selected genes. To test if the expression levels of miRNA direct targets are
significantly lower compared to that of the randomly selected genes, one-sided Wilcoxon rank
sum tests were performed, and the resultant P values were corrected using the Benjamini-
Hochberg method. The genes with zero countsin more than 26 tissues were excluded from the

analysis.

Prediction of 5'UTR and ORF sites

Since TargetScan predictions do not include 5'UTR and ORF sites, the predictions for sites
located in 5'UTR and ORF were performed based on matches with 8mer, 7mer-m8 and 7mer-Al
sites motifs. The conserved ORF sites were obtained from PACCMIT-CDS
(predictions_human_cons.txt) (53) by filtering predictions with P_SH values larger than 0.05.
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Motif enrichment analysisfor transcription factor binding sites The motif enrichment
analysis was performed as described previously (54) with modifications. Putative transcription
factor binding sites (TFBS) were identified in dREG peaks by first obtaining the 3059 motifs
corresponding to binding sites for 1735 distinct transcription factors (TF) CISBP (55). These TF
binding motifs were then searched in a window of 150 bp centered on dREG peak centersto
identify putative TFBS, using FIMO with p-value cut-off of 10e5 (meme_4.12.0; (56)). TFBS
enrichment was computed over different subsets of peaks. Subsets of peaks, denoted by S, that
are significantly (FDR < 0.05) more/less active in miRNA-expressing cells compared to the
control cells were identified using edgeR. Computations were performed to calculate the fraction
of peaksin asubset s, and fraction of peaksin a set of 10,000 randomly selected peaks that
contain at least one binding motif for a TF t, denoted by fs and fr, respectively. Theratio of fg/fr
was used to determine enrichment (ratio > 1) or depletion (ratio < 1) of binding motif for TFt in
asubset s. The significance P value of enrichment or depletion was computed using a binomial
test, where the set of 10,000 randomly selected peaks was used as the null distribution, followed
by FDR correction. Transcription factors depicted in Figure 6C were direct targets of respective
MiRNASs (CARP g-value < 0.05 and presence of predicted target sites) and whose binding motif
was significantly enriched or depleted (FDR < 10°®) in the given subset, s. The heatmapsin
Figure 6C were prepared using an R package, ComplexHeatmap (57).

Comparing two distributions Statistical significance for the difference between two
distributions were calculated using two-sided Wilcoxon rank sum test (wilcox.test function in R)

for al comparisons unless mentioned otherwise.

TargetScan The TargetScan predictions were downloaded from
http://www.targetscan.org/vert_70/. Predictions with Pct value of "NULL" were excluded.

Luciferasereporter assays For verifying miRNA activity of stably-integrated miRNAS
(Supplementary Figure S1F), a sequence containing two miR-1 target sites was excised from
PAG76 (20) using restriction enzymes Sacl and Xbal and inserted into pmirGLO Dual-
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Luciferase vector (Promega) using restriction enzyme sites for Sacl and Xbal (sequence for
miR-1 sitesin Supplementary Table S3). The miR-1 sites were disrupted to generate a negative
control (sequence in Supplementary Table S3). The constructs used in Supplementary
Supplementary Figure S1G contained a perfectly complementary site inserted in pmirGLO

vector at Xbal and Sall restriction sites (sequences in Supplementary Table $4).

For assaying miR-122 ORF target sites, candidate sites were chosen from those genes that
contain exactly one predicted target site in the ORF and none in the 3'UTR, and that exhibited
post-transcriptional repression. A 78nt region (sequences in Supplementary Table S5) centered
on the candidate miR-122 ORF site was cloned with NEB HiFi DNA Assembly Master Mix
(New England Biolabs) into the open reading frame of firefly luciferase in pmirGLO. A short
linker (amino acid sequence GGGSGGGS) was added to firefly luciferase after the last amino
acid, followed by the 26 amino acid sequence taken from the ORF site, followed by a stop
codon. As a control, 2-4 nucleotide synonymous mutations were introduced within the miRNA

seed sequence to disrupt the site, with attempts to maintain similar codon usage frequencies.

For all reporter assays, 1x10° HEK 293 cells were seeded per well in 24-well plate 24 h prior to
transfection. For experiments in Supplementary Figure S1F and G, HEK293 cells expressing
specific mMiRNAs were transfected with 30 ng of pmirGlo reporter plasmids using 0.5 uL of
Lipofectamine 2000 (Invitrogen) and were harvested 24 h after transfection. For the experiments
in Figure 4 and Supplementary Figure $4, cells were transfected with 100 nM miR-122 mimics
or anon-specific miRNA mimic (sequences in Supplementary Table S5) and 6 ng pmirGlo
reporter plasmid and harvested 24 h after transfection. Assays were performed using the dual-
luciferase reporter assay kit (Promega) and a Veritas Microplate Luminometer (Turner
Biosystems). Firefly luciferase values were normalized to Renilla luciferase as a transfection
control. For Figure 4C and Supplementary Figure SAF, luciferase values for cells transfected
with the wild-type or mutant reporters and the miR-122 mimic were also normalized to the
geometric mean of cells co-transfected with the identical reporter plasmids and the non-specific

miRNA mimic.
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Modeling miRNA expression over time The empirical determination of the time required for
mMiRNA levelsto reach steady-state was performed by combining the synthesis (8) and decay (o)

rates of miRNAs in the following exponential function.

B

M(t) = p (1—-e"™)

Where, M(t) represents the level of miRNAs at timet (hours). The synthesis rate f was assumed
to be 1 unit and the decay rate o was calculated using In(2)/h, where h represents half-life of a
mMiRNA in hours. Different half-lives ranging from 6 to 36 hours, comprising the magority of
mMiRNAS (58) were used to calculate levels of miRNAs over 1 to 8 days period. Theresults are
plotted in Supplementary Figure S1A.
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RESULTS
A system for measuring miRNA-mediated post-transcriptional regulation

Given the limitations of conventional methods for identifying direct miRNA targets, we sought
to develop anovel experimental approach to robustly identify genes subject to post-
transcriptional regulation. While direct miRNA targets are regulated exclusively at the post-
transcriptional level, we began this work under the assumption that indirect targets would be
predominantly regulated at the transcriptional level. We used RNA-seq and PRO-seq to measure
steady-state MRNA levels and transcriptional output, respectively, and integrated these datasets
to deconvolute the post-transcriptiona regulation (Figure 1A). To develop this method and to
evaluate its efficacy, we profiled HEK293 cells in the presence and absence of specific miRNAS.
We chose first to study miR-1 and miR-122 because they are well-studied human miRNAS not
expressed in HEK 293 cells. The majority of datasets used to identify miRNA targets and to train
prediction algorithms are generated using cell culture with transiently transfected miRNA, which
are typically introduced at high levels. We elected to stably integrate miRNA hairpins embedded
within the intron of a doxycycline-inducible GFP reporter, to more closely approximate in vivo
expression levels. To ensure accurate processing of the mature miRNAS, we designed miRNA
hairpins based on established sequence and structural features favored by the miRNA biogenesis
machinery (32). In order to approximate steady-state miRNA levels (58), we treated cells with
doxycycline for seven days (Supplementary Figure S1A). We confirmed high physiological
levels and accurate processing of induced miRNAs using small RNA sequencing (small RNA-
seq; Supplementary Figure S1B and C). Because accurate quantification of miRNA levels by
small RNA-seq is compromised by ligation biases during library preparation (59), we also used
guantitative PCR (qPCR) to establish that miR-1 and miR-122 are expressed within the
physiological range of other miRNAs found in HEK293 cells (Supplementary Figure S1D):
compared to miR-10, the most highly detected endogenous miRNA in our small RNA-seq data,
MiR-122 is expressed at about the same level and miR-1 istwo-fold higher. Furthermore, using
small RNA-seq and RNA-seg, we noted that the overall miRNA profile and activity of
endogenous miRNAs (Supplementary Figure S1E), respectively, were unchanged upon induction
of these exogenous miRNAS. Importantly, using reporter assays, we found that the induced

miRNAs are functionally active (Supplementary Figure S1F) and that the anticipated miRNA
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guide strand was chosen selectively for loading onto AGO (Supplementary Figure S1G).
Collectively, these results indicate that our synthetic miRNA expression system mimics
endogenous MiRNA, facilitating the analysis of miRNA targets while approximating normal in

Vivo parameters.

To simultaneously measure transcriptional and post-transcriptional changes upon miRNA
induction, we performed PRO-seq and RNA-seq on cells expressing miR-1 or miR-122 and
compared them to control cells lacking amiRNA hairpin. Principal component analysis (PCA) of
the RNA-seq data showed that replicate transcriptomes cluster tightly, indicating high data
reproducibility, and that the transcriptomes of cells expressing miR-1 and miR-122 are distinct
from each other and from the control cells (Figure 1B, left pandl). When we performed PCA of
the PRO-seq data, however, we found that the genome-wide transcriptional profile of control and
miR-122 expressing cells were not well separated (Figure 1B, right panel), perhaps indicating
that miR-122 does not elicit wide-spread changes in transcription. Indeed, transcription of 370
genes were significantly altered (g-value < 0.05) in response to miR-1, whereas only 9 genes
were significantly altered in response to miR-122, supporting this interpretation (Supplementary
Figure S1H).

To investigate the effects of mMIRNA induction on transcriptional and post-transcriptional
regulation, we compared changes in PRO-seq and RNA-seq across individual genes. The rates of
synthesis and degradation together determine steady-state MRNA levels. Therefore, we reasoned
that changes in PRO-seq signal (APRO-seq)), representing changes in transcriptional outputs,
subtracted from changes in RNA-seq (ARNA-seq), representing changes in steady-state RNA
levels, would provide a quantitative readout for post-transcriptional regulation. This combined
analysis of RNA-seq and PRO-seq, referred to as CARP hereafter, identified many genes
subjected to post-transcriptional repression in response to miR-122 or miR-1, asindicated by
repression in RNA-seq profiles without any changes in PRO-seq (Figure 1C). In fact, the 3UTRs
of most of these genes contained target sites predicted to be strongly effective, as defined by
TargetScan ((16); context++ score < -0.2; referred to as predicted strong targets hereafter).
Correlating post-transcriptional repression with predictions of site efficacy, most genes
containing target sites predicted to be weakly effective (as defined by TargetScan context++
score > -0.2; referred to as predicted weak targets hereafter), showed very subtle changes, if any,
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in RNA-seq compared to genes without predicted target sites (Figure 1C; log, fold-change of -
0.02 and -0.03 for miR-122 and miR-1, respectively). Additionally, many genes, including
predicted strong targets, demonstrated concordant changes in both PRO-seq and RNA-seq in
cells expressing miR-1 (Figure 1C, right panel; Pearson correlation, r=0.42), likely representing
genesthat are regulated predominantly at the level of transcription, and not direct targets of
miR-1. However, such concordant changes were minimal in cells expressing miR-122 (Figure
1C, left panel, r=0.19), consistent with the PCA of PRO-seq profiles (Figure 1B, right panel).
Furthermore, the majority of genes were insensitive to induced miRNAS (63% and 79% genesin
miR-1 and miR-122 samples, respectively, with absolute log; fold-change smaller than 0.2 in
both RNA-seq and PRO-seq)), as expected for single miRNA perturbation experiments. These
unchanged genes included 45% and 60% of predicted targets (including strong and weak) of
miR-1 and miR-122, respectively (47% and 55%, if considering conserved target sites predicted
by TargetScan, at a probability of conserved targeting threshold > 0.5), likely representing high
false-positive rates of prediction algorithms, as reported previously (4,8,19,60). Taken together,
CARP robustly deconvolutes and quantifies post-transcriptional and transcriptional regulation,
enabling arobust experimental framework for distinguishing the direct miRNA targets from the

resulting downstream regulatory changes.

Combined analysis of RNA-seq and PRO-seq identifies direct miRNA targets

Direct miRNA targets correspond to transcripts bound by miRNA-loaded AGO at target sites,
resulting in accelerated decay and/or translational repression. To assess the ability of CARP to
detect direct targets, we first performed alikelihood ratio test (LRT) (43) to identify genes that
experience a significant post-transcriptional change — that is, asignificant change in steady-state
MRNA level after accounting for any change in transcription. Consistent with therole of a
mMiRNA as a hegative regulator, most of the genes subject to post-transcriptional regulation (98%
and 75% for miR-122 and miR-1, respectively) exhibited repression upon miRNA induction
(Figure 2A and B). To evaluate further the properties of post-transcriptionally regulated genes,
we assessed the presence of predicted target sites for the cognate induced miRNAS, using
TargetScan v7.0 (16). The 3'UTRs of the mgjority of post-transcriptionally down-regulated genes
contained predicted target sites for miR-122 or miR-1 (90% and 63%, respectively), athough we
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note that many additional predicted targets (567 and 2,573 predicted strong and weak targets,
respectively, for miR-122; and, 742 and 1,969, respectively, for miR-1) were not detectably
repressed. To confirm that the post-transcriptional repression of the predicted targets (potential
direct targets) is dueto direct binding of miRNA-loaded AGO, we performed UV crosslinking
and immunoprecipitation of AGO followed by sequencing (eCLIP-seq; (29)) to identify mRNAS
bound by AGO. We reasoned that if the post-transcriptionally repressed genes containing
predicted target Sites are indeed direct targets, their 3'UTRs should exhibit increased binding of
AGO in célls expressing miR-122 or miR-1 compared to control cells. Following quality
trimming and mapping of eCLIP data, peaks of eCLIP reads, representing regions of the
transcriptome occupied by AGO, were identified usng CLIPper (50). Although AGO binds
predominantly at miRNA target sitesin 3UTRs (21), amagjority (53%) of eCLIP peaks
overlapped with introns, with only 17% peaksin 3'UTR (Supplementary Figure S2A), implying
high levels of background in the eCLIP dataset. Further examination of the peak counts reveal ed
that the replicates exhibited large variations (Supplementary Figure S2B), alimitation associated
even with more mature AGO CLIP protocols. To remove irreproducible peaks, we calculated
irreproducibility discovery rate (IDR; (51)), a method appropriate for eCLIP data (29), and
filtered peaks with lessthan 0.1 IDR, resulting in an average of 5,192 peaks per sample
(Supplementary Figure S2C). A magjority (54%) of our reproducible peaks overlapped with
3'UTRs, with only 7% in introns (Supplementary Figure S2D), suggesting that the intronic peaks
found in our unfiltered data and in previous reports (24) likely correspond to background signal.
To assess the quality of our eCLIP data further, we compared relative AGO density (see
methods) and post-transcriptional repression of predicted targets as a function of predicted target
site efficacy (TargetScan) (16). Asthe predicted site efficacy increased, we observed an increase
in relative AGO density in 3'UTRs concomitant with an increase in post-transcriptional
repression (Supplementary Figure S2E), indicating that our filtered eCLIP data reflect high
quality AGO density profiles.

Using thefiltered high quality AGO eCLIP data, we asked whether our classification of
predicted targets exhibiting significant post-transcriptional repression as direct targetsis
supported by AGO binding. We found that relative AGO density is strongly enhanced in 3'UTRs
of post-transcriptionally down-regulated genes containing predicted target sites, with 85 and 90%
of genes bound by more AGO in cells expressing miR-122 and miR-1, respectively, compared to
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control cells (Figure 2C and D, orange line). Furthermore, consistent with the absence of
significant post-transcriptional repression for alarge number of predicted targets, we observed a
negligible, albeit statistically significant, increase in AGO density in their 3UTRs (Figure 2C
and D, pink line). Collectively, these observations indicate that the intersection of genes
distinguished as post-transcriptionally repressed by CARP with those also containing predicted
target sites represents a set of high confidence set of direct miRNA targets, and that CARP
robustly distinguishes these direct targets from the large numbers of predicted yet ineffective
targets.

The robustness of CARP is dependent on its ability to reliably profile post-transcriptional
regulation. To evaluate the specificity of post-transcriptional changes identified using CARP, we
assessed the overlap between miR-1-specific and miR-122-specific post-transcriptional changes.
Since the seed sequences of these miRNAs differ by only a single nucleotide (miR-122:
GGAGUGU; miR-1: GGAAUGU), they can act as negative controls for each other. We found
that only five genes were in common between the genes repressed post-transcriptionally by miR-
1 and miR-122, al of which contained predicted target sites for both miRNAsin their 3UTRs
(Supplementary Figure S2F). There was no overlap for the post-transcriptionally up-regulated
genes. To further evaluate the reliability of CARP, we sought to investigate whether the targets
we identified in HEK293 cells correspond to targets regulated by these miRNAs in vivo. We
reasoned that the true targets of tissue-specific miRNAs such as miR-122 (liver-specific) and
miR-1 (muscle-specific) would be expressed at lower levels in those specific tissues, a defining
feature of tissue-specific miRNAs (52,61-63). To this end, we compared the expression of miR-
1-specific and miR-122-specific direct targets identified by CARP across 53 different tissues
from Genotype-Tissue Expression (GTEX) Project (BROAD Institute). Consistent with our
hypothesis, only the liver and skeletal muscle tissues exhibited significantly lower expression of
CARP-identified direct targets of miR-122 and miR-1, respectively, compared to the randomly
selected set of genes (Supplementary Figure S2G). Collectively, these results establish that
CARP detects true targets of miRNAs with strong specificity.

CARP relies on mRNA steady-state measurements, and therefore cannot detect miRNA targeting
that results exclusively in trandational repression. Thus, we investigated whether predicted
targets that lacked significant post-transcriptional regulation (detected by CARP) were
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undergoing trandlational repression. To address this possibility, we performed ribosome profiling
(30) to measure changes in translation upon miRNA induction, comparing cells expressing
miR-1 or miR-122 to control cells. Wefirst evaluated the change in trandational efficiency (see
methods) for all genesin miRNA-expressing cells compared to control cells. We found that only
asmall number of predicted targets (including strong and weak) exhibited significant evidence of
trandational repression (Supplementary Figure S2H; 8 and 25 genes for miR-122 and miR-1,
respectively). Of these trandlationally repressed targets, a subset also exhibited accelerated
MRNA decay (2 and 10, for miR-122 and miR-1, respectively), whereas others (6 and 15) were
repressed exclusively viatrandational regulation (Supplementary Figure S2H). We next assessed
the trandational efficiency of CARP-identified direct targets, which revealed that these miRNA
targets experienced significant, albeit subtle, transational repression compared to non-targets
(Figure 2E and F, compare orange lines to black lines). These results indicated that miRNAS
expressed at physiological levels repress targets predominantly via accelerated mRNA decay and
that targets regulated principally by translational regulation are exceedingly rare; thus, CARPis
well suited for identifying direct targets.

Excluding certain specific cdlular contexts (64,65), mMRNA decay is thought to be the major
contributor of miRNA-mediated repression, with translational repression playing only a minor
role (66). To revisit thisimportant question with miRNAs expressed at physiological levels, we
next used our ribosome profiling dataset to quantify contributions from both translational
repression and mMRNA decay in miRNA-mediated repression. We found that the magnitude of
MRNA decay was significantly greater than that of translational repression (6-fold greater for
both miR-122 and miR-1; Figure 2G and H). We found that reduced mRNA levels explain most
of the overall regulation observed (86% and 85%, for miR-122 and miR-1, respectively)
compared to tranglational repression (14% and 15%, Figure 2G and H). These estimates are
consistent with those obtained in previous studies using transiently transfected miRNAs (67),
and in marked contrast with other reports (68-70).

Combined analysis of RNA-seq and PRO-seq facilitates discovery of indirect tar gets

In addition to direct targets, we also found a smaller portion (10% and 37%, for miR-122 and
miR-1, respectively) of post-transcriptionally repressed genes that lacked predicted target sites
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(Figure 2 B). This set represents either direct targets containing non-canonical target sites, or
indirect targets of miRNAs for which the regulation is itself post-transcriptional. Notably, the
absence of significantly increased relative AGO density within the 3'UTRs of these genes
(Figure 2C and D; compare green lines to black) indicates that they are indirect targets of
miR-122 and miR-1, which are down-regulated post-transcriptionally. Additionally, we observed
post-transcriptional up-regulation of 129 genes upon miR-1 induction, which likely represent
post-transcriptional indirect targets of miR-1, as miRNAs are repressive molecules (Figure 2B).
Consistent with this interpretation, most (75%) up-regulated genes lacked predicted target sites,
and the up-regulated gene set also lacked an increase in relative AGO density (Figure 2D). Thus,
while weinitially assumed that the indirect targets must be primarily regulated at the level of
transcription, our results indicate that indirect targeting triggered by miR-1 results in both
widespread transcriptional and post-transcriptional regulation. Presumably, this broader indirect
regulation is aresult of miRNA-mediated repression of mMRNA transcripts coding for
transcription factors and regulatory RNA-binding proteins, respectively. Indeed, the direct
targets of miR-1 included many genes coding for transcription factors (55) and RNA binding
proteins (71), whereas miR-122 repressed relatively few (Supplementary Figure S2I). Taken
together, these data indicate that while the regulatory network of miR-122 is comprised primarily
of direct targets in HEK293 cells, miR-1 dlicits more complex responses involving both direct
and indirect targets to regulate gene expression in these cells. In addition, a substantial
proportion of theindirect effects induced by miR-1 occurs via post-transcriptional regulation.
Importantly, however, the lack of predicted target sites within such genes enables reliable
partitioning of post-transcriptionally repressed genes into those that are direct targets and those
that are indirectly regulated by additional miRNA-independent decay pathways. In addition, we
note that, because our approach directly quantifies transcription and mRNA levels, CARPis
well-suited to disentangling these complex transcriptional and post-transcriptional regulatory

changes.

Partitioning modes of regulation elicited by miRNAs

To systematically investigate the utility of CARP, we examined relationships among three
categories of genes: (i) genes exhibiting reduced mRNA abundance in response to either
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miR-122 or miR-1, which we measured using RNA-seq, (ii) genes predicted to be strong
microRNA targets, which we determined using TargetScan (context++ < -0.2) (16), and (iii)
genes that we found to undergo significant post-transcriptional repression in response to
miR-122 or miR-1. We compared these three gene sets, and depicted the results using Venn
Diagrams (Figure 3A). A substantial fraction of predicted targets, for both miR-122 and miR-1
(72 and 57%, respectively), do not exhibit evidence of significant changesin mRNA abundance
or in post-transcriptional levels, consistent with established high rates of false positive
predictions (set ain Figure 3A). Consistent with this interpretation, this set of genes exhibited no
change in CARP, RNA-seq, PRO-seq or ribosome profiling (Figure 3B). Similarly, we found
minimal evidence for increased AGO density in the 3'UTRs of this gene set (Figure 3 C and D,
Supplementary Figure S3A). We note that the mRNA transcripts of the majority (54 and 57% for
miR-122 and miR-1, respectively) of these genes exist as 3'UTR isoforms that contain the
predicted target sites; thus, the absence of regulation cannot be attributed solely to aternative
processing (Supplementary Figure S3B). Taken together, these results indicate that this category
likely corresponds to false-positive predictions and/or targets that are not effectivein this cell

line.

The second subset of genes we considered were those that contain predicted target sites whose
mMRNA abundance is reduced in response to the cognate miRNA, and which we determined were
regulated post-transcriptionally (set b, Figure 3A). Importantly, this gene set exhibited the largest
reduction in mRNA levels in response to the cognate miRNA (Figure 3B). Moreover, post-
transcriptional regulation was the primary (and for many genes, sole) factor responsible for
repression (Figure 3B). Congruently, this set of genes also demonstrate the strongest increasein
relative AGO density in their 3UTRs in response to the induced miRNAs (Figure 3C and D,
Supplementary Figure S3A). Thistarget set corresponds to direct miRNA targets. We note that

trandational repression for these set of targetsis minimal (Figure 3B).

We next considered predicted target genes that were down-regulated in mRNA abundance but
without significant post-transcriptional repression (set ¢, Figure 3A). As a set, such genes exhibit
minimal evidence of either miRNA-induced post-transcriptional repression or translational
repression (Figure 3B). We recognize that a subset of these genes may represent bona fide direct

targets, but with reduced site efficacy, thus reducing the ability to detect experimentally.
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Nevertheless, the average post-transcriptional repression is substantially less (Figure 3B) than
that observed for direct targets defined by CARP (set b). Moreover, although relative AGO
density is significantly increased for these genes, the average magnitude of thisincreaseis
minimal (1.6 and 1.1-fold, compare to 2.2 and 2.5-fold for set b; for miR-122 and miR-1,
respectively; Figure 3C and D, Supplementary Figure S3A). It isimportant to note that in
numerous conventional analyses of miRNA target sets, including our previous work (72), all

genesin set ¢ would have been erroneously declared as direct targets.

An important class of genes are those that have lower steady-state mMRNA levels but do not
contain predicted target sites for miR-122 or miR-1 (set d, Figure 3A). Similar to set c, they
exhibit a negligible magnitude of post-transcriptional regulation (1.17 and 1.14-fold for miR-122
and miR-1, respectively) even though mRNA levels are significantly reduced in response to the
induced miRNAs. Concordantly, in response to miR-1 or miR-122, we did not observe any
significant increase in relative AGO density in 3'UTRs or in ORFs of these genes (Figure 3C-F,
Supplementary Figure S3A and C), nor any evidence of translational repression (Figure 3B),
ruling out the possibility that they are potential direct targets containing non-canonical target
sites. Interestingly, these genes also demonstrated subtle repression in transcriptional output
(Figure 3B, PRO-seq). Perhaps this set represents targets of feed-forward control, which are
repressed minimally at both a transcriptional and post-transcriptional level, to ultimately exhibit
effective repression in MRNA abundance. As a group, however, they exhibit characteristics
indicative of indirect miRNA targets regulated minimally at both transcriptional and post-

transcriptional levels.

We also identified genes that are significantly post-transcriptionally repressed, but which lack
predicted miRNA target sites (set e, Figure 3A). The magnitude of post-transcriptional repression
for this gene set matched set b, the set of confidently identified direct targets of miR-122 and
miR-1. We considered two possibilities to explain the observed post-transcriptional repression
for set e: either they represented indirect targets whose regulation is post-transcriptional, or they
represent direct targets lacking conventional miRNA target sites. We recognize that both
scenarios might apply to different genes within the set. Notably, we did not observe increased
relative AGO density in the 3'UTRs of these genes (Figure 3C and D), consistent with lack of
predicted 3'UTR target sites. Given the absence of increased relative AGO density inthe SUTR,
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we considered whether these genes might be repressed viatarget sites within their ORFs. For
miR-1, we detected only five AGO eCLIP peaksin ORFs of 115 genes of set e and the increase
in relative AGO density at these peaks was very weak (Figure 3F), implying that these genes are
indeed indirect targets of miR-1, which are regulated post-transcriptionally, and independent of
the miRNA pathway. We note that this interpretation is consistent with our observation that
many genes were post-transcriptionally up-regulated in response to miR-1; that is, miR-1 induces
widespread indirect post-transcriptional regulation. In contrast, we observed a strong increasein
relative AGO density in the ORF of miR-122-regulated genes in set e (Figure 3E, Supplementary
Figure S3C), comparable in magnitude to that observed in the 3'UTR of bona fide direct targets
(set b; 2.6 and 2.2-fold increase in ORFs of set e genes and in 3'UTRs of set b genes,
respectively). We note that set e encompasses only few (n=10) genes in response to miR-122.
Nevertheless, these results suggest that miR-122 directly regulates a small group of genesvia
target sitesin the ORF.

In response to miR-1, but not miR-122, we observed a small number of genes that are both
predicted strong targets and significantly repressed post-transcriptionally, but without a
detectable change in mMRNA abundance (Figure 3A and B; set f). We hypothesized that these
genes are direct targets, but also transcriptionally up-regulated, resulting in no net changein
MRNA levels. Consistent with thisidea, we observed a strong increase in relative AGO density,
comparable to that seenin set b, in 3'UTRs for such genes (Figure 3D; average fold changes of
2.51 and 2.45, for sets b and f, respectively). The weaker statistical significance of relative AGO
density is due to the small number of genesin this category. Importantly, we also observed
increased transcription of these genes (Figure 3B), confirming transcriptional up-regulation
triggered by miR-1. This gene set illustrates an interesting class of direct targets that are invisible
to studies reliant on RNA-seq alone.

The final possible class of genes corresponds to those exhibiting post-transcriptional repression
without any significant change in mMRNA abundance and without predicted target sites (Figure
3A and B, set g). We observed this class of genesin response to miR-1 alone. Consistent with
the absence of predicted target sites, we did not observe an increase in relative AGO density in
their 3'UTRs (Figure 3D, Supplementary Figure S3A), nor within ORFs of these genes (Figure
3F, Supplementary Figure S3C), suggesting that these genes are indirect targets that are
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repressed post-transcriptionally reminiscent of the genesin set e. Similar to set f, these genes also
exhibited transcriptional up-regulation, the impact of which is masked by post-transcriptional
repression, resulting in no change in MRNA abundance (Figure 3B). Collectively, this set of
genes represents indirect targets that are regulated at both the transcriptional and post-

transcriptional levels.

It isimportant to acknowledge that partitioning genes into sets and subsets according to RNA-
seg and PRO-seq signals necessitates use of statistical thresholds. Accordingly, we examined
whether our interpretations (relating to Figure 3A) are robust over a range of reasonable
thresholds. Overall, our observations remain consi stent across a series of statistical thresholds
(Supplementary Figure S3A and C). For example, irrespective of the significance threshold, we
observed large numbers of predicted strong targets which did not exhibit evidence of post-
transcriptional repression, consistent with high rates of false-positive predictions. Notably,
consistent with CARP's ability to robustly separate true direct targets (set b) from false targets of
conventional approaches (set c), even when we assessed the most lenient threshold (g-value <
0.1), we found many predicted targets that exhibited reduced mRNA abundance without a
significant change in post-transcriptional regulation (set ). Taken together, our approach
identifies not only the robust direct targets but also discovers a variety of complex regulatory

outcomes elicited by miRNAs.

MicroRNA-specific targeting of siteslocated in open reading frames

The prevalence and efficacy of miRNA target sites within coding sequenceis unclear and
controversial. Whereas certain studies indicate that such sites exert anegligible effect, perhaps
due to ribosome Imediated removal of miRNA-loaded AGO from translating ORFs (73), others
indicate that such sites are often effective in mediating repression (74). Here, we revisited this

important question, using our improved ability to quantify post-transcriptional regulation.

We observed increased relative AGO density within ORFs in response to miR-122 for a small set
of genes (Figure 3E, Supplementary Figure S3C; set €); importantly, this set of genes was devoid
of predicted 3UTR sites, and exhibited no evidence of increased relative AGO density within the
3'UTR (Figure 3C, Supplementary Figure S3A; set €). In addition, this set of genes was
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repressed post-transcriptionally in response to miR-122; thus, it seemed plausible that miR-122
was directly repressing MRNAS of these genes using target sites within the ORFs. To
systematically examine miRNA-mediated regulation of ORF target sites, we grouped genes
based on the location of potential target sites (matches to 8mer, 7mer-m8 and 7mer-Al site
motifs) within the mRNA and compared the degree of post-transcriptional regulation. In
response to miR-122, genes containing predicted miR-122 target sitesin the ORF were
significantly repressed, and the average efficacy of these sites exceeded the efficacy of those
predicted to be weakly effective when located within 3'UTRs (Figure 4A, compare orange line
with purple; P-value < 10°®). For miR-122, we also found that post-transcriptional repression
grows stronger with increasing number of miR-122 target sitesin ORFs (Supplementary Figure
SAA). Consistent with activity of miR-122 ORF sites, we observed increased relative AGO
density in ORFs containing miR-122 target sites (Supplementary Figure $4B). Moreover, we
observed that sequence conservation of predicted miR-122 ORF sites is associated with the site
efficacy, with conserved ORF sites exhibiting 2.7-fold stronger repression compared to all ORF
sites, suggesting biological importance of such sites (Supplementary Figure SAC). We note that
the efficacy of predicted conserved ORF sites is weaker compared to predicted conserved 3'UTR
sites (Supplementary Figure AC). In stark contrast, we found no evidence for effective miR-1
target sites within ORFs (Figure 4A), even when we examined genes harboring multiple miR-1
ORF sites or conserved miR-1 ORF sites (Supplementary Figure SAA and C, respectively),
suggesting that specific miRNAs differ in their ORF targeting propensities. Sites within 5’UTRs
were ineffective for both miRNAs (Figure 4A).

Next, we investigated whether the miR-122 ORF sites share properties associated with functional
J'UTR sites. Canonical 3'UTR sites differ in their average efficacy depending on nucleotide
segquence and pairing potential with the 5’ terminus of the miRNA (referred to as the miRNA
seed (19)); we examined 8mer, 7mer-m8 and 7mer-A1l sites (ordered from stronger to weaker
sites; (9)) located within ORFs. Additionally, we also inspected a set of non-canonical sites,
referred to as G-bulged sites, that are subject to amarginal repression by miR-122(75). We found
aconsistent pattern for predicted miR-122 ORF sites, with highest average repression dlicited by
8mer sites followed by 7mer-m8 and 7mer-A1l sites, with the least repression for G-bulged sites
(Supplementary Figure $4D). Beyond the type of seed match, a major additional determinant of
J'UTR target site efficacy islocal AU content, with higher AU content correlating with increased
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strength of mMIRNA-mediated repression (9). We found that predicted miR-122 ORF sites
embedded in AU-rich regions exhibit increased post-transcriptional repression, with average
repression correlating with local AU content (Figure 4B). No such relationships for site type nor

AU content were observed for miR-1 (Supplementary Figure $4D and E).

To validate the efficacy of predicted miR-122 ORF sites, we generated luciferase reporters
containing translational fusions between luciferase and a short region (encoding 26 amino acids)
of endogenous sequence containing a potential miR-122 site. We also generated negative control
variants of these reporters, which contained two to four synonymous mutations within the target
site, designed to inactivate the Site. Reporter assays using the wild-type and mutant (inactive site)
constructs in the presence of miR-122 or a control miRNA indicated repression of wild-type
reporters in response to miR-122 (Figure 4C). However, only two of the ten sites tested mediated
statistically significant repression (Figure 4C, Supplementary Figure S4F), consistent with the
reduced efficacy of predicted ORF sites compared to predicted 3'UTR sites observed in genome-
wide analyses (Figure 4A and Supplementary Figure S4C). In agreement with the importance of
AU content to miRNA-mediated repression, the observed repression in reporter assays correlated
with local AU content, albeit not significantly, likely due to the limited sample size
(Supplementary Figure S4G). These results provide additional evidence that miR-122 regulates

post-transcriptional expression by targeting ORF sites.

Given the modest impact of ORF sites in post-transcriptional regulation, we wondered whether
such sites might function in concert with 3UTR sites. To answer this question, we evaluated
three groups of genes, (i) genes without predicted 3'UTR sites, (ii) genes with predicted weak
3'UTR sitesand (iii) genes with predicted strong 3'UTR sites, and asked if post-transcriptional
regulation of these three groups changed depending on presence or absence of predicted ORF
sites. Congistent with the efficacy of miR-122 ORF sites, for genes without miR-122 3'UTR
sites, those that contained ORF sites were significantly down-regulated compared to those
without (Figure 4D, left). Interestingly, genes containing predicted weak 3'UTR sites were
significantly more repressed when their ORFs aso contained miR-122 sites. In contrast, the
presence of ORF sitesin genes containing predicted strong 3'UTR sites did not provide
additional benefit, particularly for those genes that already are strongly repressed (genes with

logz(miR/Control) < -0.3). Consistent with our earlier results, we did not see any impact of
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miR-1 ORF sites on post-transcriptional regulation for genes with or without sites within the
3'UTR (Figure 4D, right). Collectively, these observations suggest that miR-122 ORF sites

potentiate miRNA-mediated repression for genes containing marginal sites within their SUTR.

It has been suggested that effective miRNA target sitesin ORFs dlicit trandational repression as
alarger component of total repression, when compared to sites within 3'UTRs (74). Our data,
however, indicate that targeting of ORF sites by miR-122 mediated no significant effect on
trandation (Supplementary Figure S4H). To examine further whether trandation status
influences the degree of mMIRNA-mediated repression of ORF sites, we grouped genes based on
the degree of trandation, approximated using the ratio of ribosome profiling signal and
expression in RNA-seq. We observed, irrespective of the amount of translation, a gradual
increase in post-transcriptional repression with increasing number of predicted miR-122 ORF
sites (Supplementary Figure $4l, left pand). Taken together, these results suggest that regulation
triggered by miRNAs is mechanistically equivalent whether sites are located in the ORF or the
J'UTR, and not detectably altered by the translation status of the transcript.

Utility of CARP

To establish the general efficacy of CARP, we extended our approach to additional miRNAs. We
reanalyzed our miRNA profiling data and selected five more miRNAs (miR-133a, miR-155,
miR-302a, miR-372 and miR-373) whose expression is absent or negligiblein HEK293 cells.
We generated HEK 293 cell lines stably expressing each of these miRNAs. Following induction
of miRNAs for one week, we performed RNA-seq and PRO-seq to quantify the global changes
in mMRNA abundance and transcriptional output upon miRNA induction. Similar to the
observations for miR-1 and miR-122, the predicted strong targets of these miRNAs exhibited
reduced mRNA abundance without any change in transcription, and predicted weak targets
experienced only a subtle change (Supplementary Figure S5A). Using the likelihood ratio test
(43), we identified gene sets demonstrating significant changes in post-transcriptional levels and
compared these genes with sets of predicted targets. The maority of post-transcriptionally down-
regulated genes (63-97%) contained predicted target sites for the cognate miRNA, whereas a
majority of the up-regulated genes lacked predicted target sites (Figure 5A), cons stent with the
suitability of CARP in estimating post-transcriptional regulation. Notably, the PRO-seq data

31


https://doi.org/10.1101/2020.07.23.217117
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.217117; this version posted July 24, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

revealed different degrees of altered transcription, with certain miRNAs diciting widespread
changes in transcription (Supplementary Figure S5B), which can be attributed to variable
degrees of indirect targeting triggered by different miRNAS. These resultsindicate that CARP

effectively deconvolutes post-transcriptional from transcriptional regulation.

Next, we investigated relationships between the three categories of genes, as defined in Figure 3,
for al 7 miRNAs examined in this study; thus, we partitioned genes by whether they were
repressed post-transcriptionally, exhibited reduced mRNA levels, and contained a predicted
strong miRNA target site. Consistent with results we observed for miR-1 and miR-122, a large
number of predicted targets (set a) were not under the control of miRNASs (Figure 5B). Similarly,
attributes of other sets of genes (sets b-g) were consistent with the results observed in Figure 3.
In particular, direct miRNA targets identified by CARP (set b) exhibit strong post-transcriptional
repression without any changes in transcription (Figure 5B, heatmaps for set b). The union of
sets b and ¢ represents hundreds of predicted targets that exhibit reduced mRNA abundancein
response to the cognate miRNA, all of which would be considered as direct targets by
conventional approaches. However, the improved resolution provided by CARP indicates that
only afraction (33%; set b) of those genes exhibit evidence of significant post-transcriptional
repression, as opposed to only subtle changes for set ¢ genes, for which transcriptional regulation
(indirect regulation) is contributing to the observed reduction in transcript abundance (Figure 5B,
heatmaps for set ¢). Congistent with this interpretation, the set ¢ genes were predicted to contain
target sites of somewhat lower efficacy than those in set b (Supplementary Figure S5C).
Nevertheless, the set b genes exhibited far stronger post-transcriptional repression compared to
thosein set ¢ (Figure 5B). Notably, when we sub-sampled set ¢ to match the predicted efficacies
of set b, the post-transcriptional regulation for set b greatly exceeded that of their TargetScan-
score-matched counterparts from set ¢ (Figure 5C). Thus, CARP enables partitioning of
predicted targets with equivalent sites into true miRNA direct targets and likely downstream
indirect targets. These results suggest that CARP offers substantial improvement over existing
approaches. We do not rule out the possibility that some of set ¢ genes could be true direct
targets that CARP is missing because of failing significance threshold resulting from inherent
noise in their measurements. We believe that this type of false-negative would be more prevalent
for those miIRNAs whose dysregulation does not lead to many indirect changes at transcription,

such as miR-122, where incorporating PRO-seq would only contribute more noise to the
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guantification of post-transcriptional changes in the absence of substantial transcriptional
change. Nonetheless, for the majority of miRNAs that we examined, we observed widespread
changes in transcription (Supplementary Figure S5B), and henceit islikely that CARP does not
miss many true direct targets.

In response to most miRNAS, we identified a small cohort of genes (set f) that experienced direct
miRNA-mediated post-transcriptional down-regulation and indirect transcriptional up-regulation,
resulting in minimal or no net change in MRNA abundance (Figure 5B, heatmap for set f). Such

genes cannot be identified using transcriptome profiling alone, and such targets may represent an

important and underappreciated component of miRNA biology.

Because we observed activity of ORF sitesin response to miR-122 but not miR-1 (Figure 4), we
next systematically examined whether this activity extended to other miRNAs. We evaluated the
efficacy of ORF sites for the new set of mMiRNAs and compared them with the efficacy of
predicted 3'UTR and 5'UTR sites. We observed that different miRNASs vary substantially in their
activity of ORF sites: miR-122, miR-133a, miR-155, miR-302a and miR-372 triggered post-
transcriptional down-regulation of genes containing predicted ORF sites, whereas the influence
of miR-1 and miR-373 on messages containing predicted ORF sites was negligible (Figure 5D).
In particular, ORF sites for miR-122, miR-133a, miR-155, miR-302a and miR-372 were of
comparable or greater efficacy to predicted weak 3'UTR sites. Furthermore, although of lower
efficacy compared to conserved 3'UTR sitesfor all miRNAS, the conserved ORF sites for miR-
122, miR-133a, miR-155 and miR-302a mediated stronger repression when compared to all
predicted ORF sites, whereas miR-1, miR-372 and miR-373 lacked such a ditinction
(Supplementary Figure 5D). We did not observe any substantial activity of predicted 5UTR sites
for most miRNAS; the strongest evidence for effective 5UTR sites was for miR-155, although
this class of sites was weaker than sites within the ORF. Taken together, these data indicate
unexpected variability in the efficacy of ORF sites between different miRNAs. Although the
average efficacy of these sites was substantially lower than for predicted strong 3'UTR sites, for

some miRNAS, we observed evidence of extensive miRNA-mediated repression via ORF sites.

Prior to our work, the conceptually equivalent approach exon-intron split analysis (EISA) (27)
used preemRNA levels, approximated by intronic readsin RNA-seq, as a proxy for
transcriptional output. To compare the performance of EISA with CARP, we contrasted changes

33


https://doi.org/10.1101/2020.07.23.217117
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.217117; this version posted July 24, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

in transcriptional output measured using PRO-seq with those inferred using intronic reads from
RNA-seq. We found that changesin intronic reads in response to miR-1 were weakly correlated
with changes in PRO-seq measurements (Pearson’s r between 0.11 and 0.46]; Supplementary
Figure S6A). Because PRO-seq directly measures transcription by capturing transcriptionally
engaged RNA polymerase (28), our results suggest that the level of intronic reads may not be a
particularly accurate measure of transcription. Furthermore, we found fewer genes with
significant post-transcriptional change in EISA compared to CARP for most miRNAS
(Supplementary Figure S6B and C). Collectively, these findings demonstrate that CARP
outperforms EISA in the quantification of post-transcriptional regulation and identification of
MiRNA direct targets. Nevertheless, it is clear that EISA, which requires only RNA-seq

profiling, is easier to implement and is a valuable tool to define miRNA targets.

Here we demonstrate that, for awide variety of miRNAs, CARP is able to confidently exclude a
large number of false-positive predictions and selectively identify false negatives of conventional

target identification approaches, in addition to robust identification of direct targets.

Dissecting miRNA regulatory networ ks with CARP

Distinguishing direct miRNA targets from downstream regulatory changesis critical to gaining a
systems-level understanding of miRNA gene regulatory networks. Additionally, identifying the
specific direct targets (e.g., transcription factors) whose regulation results in these downstream
effectsisan essential component in understanding the biological roles of miRNAs. In addition to
guantifying transcriptional output of genes, PRO-seq also captures and quantifies active DNA
regulatory elements across the genome by measuring transcription at those elements, and has
been used to identify transcription factors contributing to cell state changes by searching for
transcription factor binding motifs within the differentially active elements(39). Thus, we
explored whether our PRO-seq data could be used to identify transcription factors contributing to
the downstream regulatory changes triggered by miRNAs.

In order to identify differential activity of DNA regulatory elementsin response to miRNA
induction, we first identified active e ements using dREG, atool for predicting regulatory
elements using divergent transcription at active elements obtained from PRO-seq data (41). We
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grouped the dREG peaks into two sets: first, proximal peaks, defined as those that are close
(within 1.5kb upstream and 0.5kb downstream of) to annotated transcription start sites,
representing promoters; and second, the remaining, distal, peaks, representing enhancers. We
found a strong correlation between the changes in transcriptional activity at dREG peaks and the
changes in transcriptional output of the nearest gene, with the strongest enrichment for proximal
peaks (Figure 6A and B). These results indicate that we can effectively capture changesin
transcriptional activity at DNA regulatory elements which contribute to the transcriptional

regulation of nearby genes.

The ability to profile differential transcriptional activity of DNA regulatory e ements using PRO-
seq provides a unique opportunity to identify critical transcription factors embedded in the
miRNA regulatory network. We hypothesized that a handful of specific transcription factors
would be targeted by the cognate miRNA, and those transcription factors would be responsible
for the observed downstream differences in transcription. To investigate this hypothesis, we
gathered the subset of dREG peaks exhibiting significantly increased or decreased transcriptional
activity and looked for enrichment of transcription factor binding motifs within these peaks. In
cells expressing miR-1, we found two candidate transcription factors, TAL1 and E2F5, that are
direct targets of miR-1 and whose putative binding sites were enriched in down-regulated peaks,
whereas none were enriched in up-regulated peaks (Figure 6C). To more comprehensively assess
these transcription factors, we evaluated their genome-wide influence on gene expression. We
first examined all dREG peaks containing putative binding sites for a given transcription factor
and compared their activity in cells expressing miRNAs to control cells. We found that the
regulatory effects of these candidate transcription factors are widespread; for example,
transcriptional activity at TAL1 binding sites was down-regulated genome-widein cells
expressing miR-1 (Figure 6D). These results suggest that miR-1 down-regulates the mMRNAS of
these genes directly which in turn reduces the activity of the encoded transcription factors,
leading to widespread downstream transcriptional effects. Consistent with our results, previous
studies have suggested that miR-1 incorporates E2F5 in its regulatory network to control cell
proliferation (76,77). Similarly, we found one transcription factor, SP3, among the direct targets
of miR-133awhose putative binding sites were enriched in down-regulated peaks (Figure 6C).
As expected, we observed genome-wide decrease in transcriptional activity at the putative
binding sites of this transcription factor (Figure 6D). We did not find any candidate transcription
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factorsin cells expressing miR-122, consistent with our observations that there are limited
indirect transcriptional effects for miR-122 (Supplementary Figure S1H). While we also did not
find any candidate transcription factors for miR-155, miR-302a or miR-372, likely because there
were very few dREG peaks with significant change in activity, we found one candidate
transcription factor, ZBTB7A, among the direct targets of miR-373, whose putative binding sites
were enriched in those dREG peaks that exhibited increased transcriptional activity (Figure 6C).
ZBTB7A has been shown to acts as atranscriptional repressor (78), indicating that miR-373-
mediated post-transcriptional repression of ZBTB7A promotes transcriptional up-regulation of
itstarget genes. Consistent with this interpretation, we observed genome-wide activation of
transcriptional activity at the putative binding sitesfor ZBTB7A (Figure 6D). We note that
changesin activity at many dREG peaks was modest (Figure 6D), consistent with miRNAs
acting to fine-tune levels of targets. Taken together, we have shown that PRO-seq not only
measures transcriptional outputs, but also captures differentially active DNA regulatory
elements, allowing us to perform motif enrichment analysis and thereby identify candidate
transcription factors responsible for genome-wide indirect effects of miRNAs. We believe that
this additional benefit of PRO-seq will be of substantial value for gaining a comprehensive
understanding of the impact of miRNAs at a systems-level.
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DISCUSSION

This study was motivated by the assumption that many miRNAs with consequential functions
work, in part, by diciting substantial downstream regulatory changes, and that most such
changes would occur viatranscriptional regulation. That is, miRNAs likely function, to some
extent, by controlling one or more transcription factors. Our data, and many published studies,
corroborate this assumption. Identifying the direct targets of amiRNA and distinguishing these
direct targets from downstream changes (indirect targets) is challenging. These challenges derive
from (i) the subtle nature of MiRNA regulation, (ii) false positives and false negatives in target
prediction, (iii) the large number of potential targets, and (iv) the potential for an extensive
number of downstream indirect targets. Inevitably, some downstream targets will possess
putative target sites, and will often be erroneously considered as direct targets. Our work
highlights the extent of such errors, together with many other aspects of miRNA-controlled
regulatory networks that are difficult to parse without directly measuring transcriptional
regulation that istriggered by a miRNA. The combination of miRNA target prediction and RNA-
seq profiling is routinely applied to the study of miRNAS. This study demonstrates that adding
PRO-seq (or related tools that measure transcription across the genome) provides far more
reliable definition of the target set of a miRNA, with significant added insights into the overall
regulatory network controlled by a miRNA.

An important aspect of thisstudy is the reliance on cell lines that ectopically express miRNAs
within the physiological range, rather than using miRNA transfection, asis common in earlier
work examining the regulatory impact of miRNAs. Indeed, perhaps the extent of false positives
that exist amongst predicted targets derives, in part, from the dependence on training datasets
that used transiently transfected miRNAs that likely exceed physiological levels. Another
important aspect of this study is the use of multiple genomic tools to profile the regulatory
changes mediated by a miRNA — namely, RNA-seq, PRO-seq, ribosome profiling and AGO
eCLIP-seq, generating a comprehensive dataset of orthogonal approaches that encapsul ates
almost all aspects of miRNA-mediated targeting and regulation. Finally, we have provided
combined RNA-seq and PRO-seq data for five additional miRNAS; in total, these data serve as
an ideal resource to aid in our understanding of mMiRNA target sites and in further improvement

of prediction algorithms.
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The precision with which targets are identified by CARP allows us to more reliably examine
non-canonical MiRNA targeting; that is, targeting that extends beyond seed-type sites within
3'UTRs. In particular, we have found that certain miRNAs (e.g., miR-122) have large numbers
of functional target sites within coding sequence, whose efficacy is comparable to many
canonical 3'UTR sites. Importantly, we validated this observation using AGO eCLIP-seg. In
contrast, the suite of target sites for other miRNAs including miR-1 and miR-373, were restricted
to their conventional location within 3'UTRs. We note that other studies have also hinted at
miRNA-specific differences in targeting propensities (15). Although thereis certainly
precedence for miRNA coding sites, we are not aware of compelling evidence that certain
MiRNAS possess large numbers of effective sites within coding sequence, nor studies that
robustly compare the extent of such targeting between a cohort of different miRNAs. Thus, two
important conclusions from this study are that the targeting properties of miRNASs are not
uniform, and that for some miRNAs, a substantial fraction of their regulatory impact is mediated
by target sites within coding sequence. It is also worth noting that for miR-122, sites within the
ORF appear to potentiate repression of genes with predicted weak 3'UTR sites, whereas thereis
no additional repression from ORF sites for genes with predicted strong 3'UTR sites. Future

studies will be needed to decipher the mechanistic bases for these observations.

The relative contributions of tranglational repression and accelerated decay due to miRNA-
mediated regulation is an important question, both because of mechanistic implications, and,
pragmatically, due to the reliance on transcriptome profiling in the vast mgjority of miRNA
studies, including CARP. Here, we have investigated two miRNAs, miR-1 and miR-122, using a
suite of tools that provides an ideal dataset to rigorously quantify the relative contributions of
decay and trandational regulation elicited by miRNAs. We estimate that |ess than 15% of total
regulation occurs viatranglational regulation; moreover, targets that are regulated exclusively via
trandlational repression are exceedingly rare. Therefore, CARP is well-suited for the
identification of true miRNA targets, except for the rare contexts such as the Zebrafish embryo
(64,65) where miRNA direct targets are subjected exclusively to trandational repression without
any change in mRNA stability.

Discovery of indirect targets is equally important for the understanding of miRNA-mediated
regulation as the knowledge of miRNA direct targets. We discovered substantial indirect
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regulation at transcription for many miRNAs; for example, expression of miR-1 triggered
transcriptional up-regulation of 133 genes and transcriptional down-regulation of 237 genes.
Interestingly, not all of the indirect targeting we observed in such cases was transcriptional; we
also found a set of genes that are indirectly regulated at the post-transcriptional level. It is
important to note that direct regulation by miRNAs is unlikely to account for this class of targets,
because we saw no increase in relative AGO density in mRNA of genes subject to post-
transcriptional regulation that lack canonical target sites, and, for miR-1, many of these post-
transcriptionally changing genes were up-regulated. For miR-1, the extent of this regulation was
surprisingly widespread; while we identified 370 genes changing at transcription, we estimate
273 genesto be indirectly post-transcriptionally regulated. Thisindicates that miRNAs are likely
embedded in complex regulatory networks comprised of both transcriptional and post-

transcriptional regulation.

A major advantage of CARP isits ability to simultaneously measure transcriptional and post-
transcriptional changes. One set of genes that illustrates this importance is the set of high
confidence direct targets, across multiple miRNAs, which show little or no change in mRNA
abundance. Our data indicate that these targets are simultaneously directly repressed and
indirectly activated. Identifying such targets previously was challenging. Overall, such targets
constitute 2% of the genes subject to miRNA-mediated post-transcriptional regulation. We argue
that the study of these miRNA targets isimportant in order to understand how miRNASs regulate
a complete gene regulatory network. Although this study was not intended to investigate the
biological roles of any of the miRNAs we used, the frequency with which we found miRNA
targets whose repression is balanced by transcriptional up-regulation suggests that such targets

may also be common in native regulatory pathways involving miRNAs.

The primary motivation for this study was to demonstrate the utility of PRO-seq, in combination
with RNA-seq, to robustly identify post-transcriptional regulation, and thereby robustly identify
miRNA targets. However, in addition to genome-wide quantification of transcription, an integral
aspect of PRO-seq data is genome-wide quantification of promoter and enhancer activities. This
additional feature greatly amplifies the utility of PRO-seq in understanding the regulatory impact
of amiRNA. Presumably, many gene regulatory pathways incorporate both miRNAs and
transcription factors, and the combination of RNA-seq with PRO-seq is clearly well justified in
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effectively separating regulatory contributions of miRNAs from those mediated by transcription
factors. This combination identifies genes subject to transcriptional and post-transcriptional
control, and provides a profile of active DNA regulatory elements genome-wide. The ability of
CARP to provide thisinformation makes it an ideal approach for probing complex regulatory
networks. Taken together, we show that CARP provides a framework for simultaneously
measuring regulation occurring at multiple stages of gene expression, which could proveto bea

powerful approach for comprehensively disentangling miRNA gene regulatory networksin vivo.
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FIGURE LEGENDS

Figure 1. Combined analysis of RNA-seq and PRO-seq identifies genes subject to post-
transcriptional regulation. (A) Schematic representation of combined analysis of RNA-seq and
PRO-seq data. Changes in transcriptional output (y-axis; PRO-seq) and mRNA abundance (x-
axis, RNA-seq) are plotted. (B) Principal component analysis of RNA-seq (left) and PRO-seq
(right) data, for cellsinduced with miR-1 or miR-122, and control cell lines without induced
mMiRNASs. (C) Dot plots depicting changes in steady-state MRNA levels (RNA-seq; x-axis) and
transcriptional output (PRO-seq; y-axis) for all expressed genes (dots) upon miR-122 (left) or
miR-1 (right) expression. The grey, blue, and red dots represent genes without predicted target
sites, predicted weak targets and predicted strong targets of cognate miRNAS, respectively. The
gradient of red color indicates predicted efficacy of targets (TargetScan context++ score). A 10g,
fold change of 0.2 in PRO-seq (Atranscription) and CARP (Apost-transcription) isindicated
using horizontal and diagonal dotted lines, respectively. The violin plots on the top and right
illustrate distributions of log, fold-changes in RNA-seq and PRO-seq, respectively, for the

different categories of genes, color-coded as described above.

Figure 2. Identification and analysis of direct miRNA tar gets. (A) Identification of post-
transcriptional changesin cells expressing miR-122 (left) or miR-1 (right). The dot plots are as
described in Figure 1C, except that the filled and open dotsillustrate genes with and without
significant post-transcriptional change (g-value threshold of 0.05), respectively. Filled dots are
color-coded based on g-value. (B) Pie charts depicting the percentages of genes without
predicted target Sites (grey), genes predicted to be weak targets, and genes predicted to be strong
targets for post-transcriptionally down-regulated and up-regulated sets of genesin cells
expressing miR-122 (left) or miR-1 (right). (C and D) Cumulative distribution plots of relative
AGO density at eCLIP peaks within 3UTRs in cells expressing miR-122 (C) or miR-1 (D)
compared to the control cells. Genes were partitioned into four color-coded groups based on
presence or absence of predicted target site (Site), and whether genes are significantly post-
transcriptionally repressed in response to miRNA induction (CARP). Genes without predicted
target sites and not subject to post-transcriptional regulation (Site-/CARP-; black) was used as
the background set and compared to the remaining three groups. P values and number of eCLIP

peaks (in parentheses) are indicated by color (see legend). A bar plot with standard error (error
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bars) is shown within each cumulative distribution plot depicting median log.(miR/Control)
AGO density (y-axis) for each category. (E and F) Cumulative distribution plots of translational
efficiency in miR-122 (E) or miR-1 (F); otherwise as described in panels C and D. P values and
number of genes (in parentheses) are indicated by color. A bar plot is shown within each
cumulative distribution plot depicting median log,(miR/Control) trandational efficiency (y-axis)
for each category. (G and H) Box plots comparing contributions of mRNA degradation (green)
and trandlational inhibition (orange) in miRNA-mediated post-transcriptional repression of
CARP-identified direct targetsin cells expressing miR-122 (G) or miR-1 (H). The plotted log,
fold-changes were normalized by the median regulation observed for the background genes
(geneslacking predicted 3'UTR sites for the cognate miRNA that showed no significant change
in respective measurements). Mean and median log, fold changes are indicated by white point
and horizontal bar, respectively. The medians of log, fold changes were used to quantify relative

contributions of decay and translational repression (see equation above each plot).

Figure 3. CARP enables discovery of different miRNA regulatory mechanisms. (A) Venn
diagram analysis of predicted strong targets of cognate miRNAs (TargetScan; context++ score <
-0.2; red set), genes experiencing reduced transcript levels (RNA-seq; g-value < 0.05 and
logz(miR/Control) < -0.2; green set) and post-transcriptional repression (CARP; g-value < 0.05
and logz(miR/Control) < -0.2; blue set) in response to miR-122 (left) or miR-1 (right). Genes
expressed at low levels (reads per million < 1 in any sample of RNA-seq or PRO-seq datasets)
and the predicted weak targets (context++ score > -0.2) were excluded from this analysis. Gene-
set labels (a-g) and number of genesin each set are displayed. Areas are proportional to numbers
of genesin each set. (B) Boxplots illustrating distributions of log,(miR/Control) for indicated
gene-sets for post-transcriptional regulation (CARP; green), mRNA abundance (RNA-seq;
orange), transcriptional output (PRO-seq; purple) and trandational efficiency (TE; pink) in cells
expressing miR-122 (top) or miR-1 (bottom). The control set (Ctrl) consists of genes that lack
significant change in RNA-seq and CARP (g-value > 0.05) whose 3'UTRs are devoid of
predicted target Sites. Gene-sets a through g correspond to gene-sets depicted in panel A. P
values comparing each gene-set to the Ctrl areindicated as follows: *P < 0.01, **P < 100, ***p
< 10 (C and D) Violin plots depicting distributions of relative AGO density at eCLIP peaks
within 3UTRs of gene-setsa-g (asin pand A) in cells expressing miR-122 (C) or miR-1 (D).
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The control (Ctrl) gene-set is as described in pandl B. The numbers in parentheses (x-axis)
indicate numbers of eCLIP peaks found within 3'UTRs of each gene-set. White dots represent
median values and colored dots represent individual values of the distributions. P values
comparing each set to the Ctrl are indicated. (E and F) Violin plots identical to thosein panels C
and D except depicting AGO density at eCLIP peaks within ORFs.

Figure 4. MicroRNA-specific targeting of siteslocated in open reading frames. (A)
Cumulative distribution plots of post-transcriptional regulation (CARP, x-axis) of genesin
response to miR-122 (left) or miR-1 (right). Distributions for genes containing predicted sites
(matches to 8mer, 7mer-m8 or 7mer-Al site motifs) located in the 3UTR, ORF or 5UTR, or
with no site are plotted. Genes with sites in multiple regions are excluded from this analysis. The
genes containing predicted 3'UTR sites were divided into two groups according to predicted
efficacy of targets (predicted weak targets, context++ > -0.2; predicted strong targets, context++
<-0.2). Each group of genes containing target sites were compared to the control group without
any predicted sites. P values and number of genes (in parentheses) for each category are
indicated by color. (B) Cumulative distribution plot comparing the post-transcriptional regulation
of miR-122 targets partitioned by local AU content (fraction of Asand Usin 30 nucleotides)
around the predicted ORF sites. The range (in percentage) of local AU content for each quartile
are presented in parentheses. The observed regulation for each pair of consecutive quartiles was
compared. (C) Luciferase reporter assay showing miRNA-mediated repression of areporter
containing a candidate miR-122 ORF target site with 78 nucleotides of endogenous coding
sequence cloned in-frame at the C-terminus of firefly luciferase. After normalizing to the
transfection control, each wild-type (wt) and mutant (mut) target site reporter co-transfected with
amiR-122 mimic was normalized to those co-transfected with a non-specific miRNA mimic.
These normalized values are plotted, with error bars representing standard deviation (n=12). (D)
Cumulative distribution plots of post-transcriptional regulation (CARP; x-axis) for genes without
predicted 3UTR sites [(-)3'UTR], predicted weak targets [(+)3'UTR] and predicted strong
targets [(++)3'UTR], with [(+)ORF] or without [(-)ORF] predicted ORF sites. P-values were
calculated for the indicated comparisons. The number of genesin each category are listed in

parentheses.
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Figure5. Utility of CARP. (A) Stacked bar plots of the fractions (x-axis) of genes without
predicted target Sites (grey), predicted weak targets (orange) and predicted strong targets (brown)
in each of the two sets: post-transcriptionally down-regulated (left) and up-regulated (right)
genesin responseto different miRNAs (y-axis). The numbers of genesin each group are
indicted. (B) Venn diagram with areas proportional to the number of genesin each set
aggregated across all seven miRNAS, otherwise as described in Figure 3A. Heatmap depicts the
median of log,(miR/Control) in post-transcriptional regulation (columns C, CARP), mRNA
abundance (R, RNA-seq) and transcriptional output (P, PRO-seq) for each miRNA tested (rows).
Scale bar denotes color code for log,(miR/Control). Heatmaps are shown for each gene-set of the
Venn diagram. (C) Bar chart plotting post-transcriptional regulation (CARP, y-axis) for context-
score matched genesin set b (CARP+) and set ¢ (CARP-). (D) Circular bar plot depicting
median of log,(miR/Control) in post-transcriptional regulation in response to indicated miRNAS
for genes containing predicted target sites as described in panel 4A, in either the 3'UTR, ORF or
5'UTR. Genes containing 3'UTR sites were divided into two groups according to predicted target
site efficacy (strong, context++ score < -0.2; weak, context++ score > -0.2). The plotted median
values were normalized by the median log,(miR/Control) of genes without predicted target sites
(background set) to facilitate comparison between different miRNAS. Error bars represent
standard error. P values comparing each plotted set with the corresponding background set are
indicated asfollows: *P < 0.01, **P < 107, ***P < 10, ****P < 10",

Figure 6. Under standing miRNA regulatory networ ks using CARP. (A) Genome browser
view of PRO-seq signal (counts per million; y-axis) at the locus of the OSMR gene (bottom)
demonstrating repression in promoter activity and transcriptional output in the gene-body in
response to miR-1. The PRO-seq signal on plus and minus strand of the genome are depicted
using red and blue colors, respectively. Divergent transcription is shown at the promoter. (B)
Heatmap illustrating Pearson correlations between changes in transcriptiona activity at proximal
or distal dREG peaks with changes in transcriptional output at the nearest gene or the randomly
selected gene. The correlation P values are indicated as follows: (Dot). P< 0.01, *P < 10, **P
<10, ***p < 10, (C) Enrichment (green) or depletion (purple) of transcription factor
binding motifs in significantly up-regulated (Up) or down-regulated (Down) dREG peaksin

response to respective miRNAs. Transcription factorsthat are direct targets of respective
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MiRNAS (repressed in CARP with g-value < 0.05 and containing predicted 3'UTR sites) and
whose binding motif was significantly enriched or depleted (FDR < 10°®) are depicted. For the
included transcription factors, their logz(miR/Control) in RNA-seq, PRO-seq or CARP are color-
coded using blue (down-regulated) and red (up-regulated) colors. (D) Distributions of relative (z-
scored) transcriptional activity at putative binding sites of respective transcription factors in
control cells and cells expressing miR-1 (top), miR-133a (bottom-left) or miR-373 (bottom-
right). The P values for indicated comparisons and the numbers of dREG peaks containing

putative binding sites (x-axis; parentheses) are mentioned.
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Graphical Abstract - Robust partitioning of microRNA targets from downstream regulatory changes,
enabling the study of complex microRNA regulatory networks
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