

1 **Single-cell transcriptome analysis of the immunosuppressive effect of differential
2 expression of tumor PD-L1 on responding TCR-T cells**

3 Renpeng Ding^{1,2,4}, Shang Liu^{1,2,4}, Shanshan Wang^{1,2,4}, Huanyi Chen², Fei Wang^{1,2}, Qumiao Xu²,
4 Linnan Zhu², Xuan Dong², Ying Gu^{2,3}, Cheng-Chi Chao^{2,*}, Qianqian Gao^{2,5*}

5 ¹BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China;

6 ²BGI-Shenzhen, Shenzhen 518083, China;

7 ³Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen
8 518083, China

9 ⁴These authors contributed equally

10 ⁵Lead Contact

11 *Correspondence: Qianqian Gao, gauk_g@163.com; Cheng-Chi Chao,
12 great_scientist@yahoo.com

13 **Abstract**

14 PD-L1 expression levels in tumors do not consistently predict cancer patients' response to
15 PD-(L1) inhibitors. We therefore evaluated how tumor PD-L1 levels affect the anti-PD-(L1)
16 efficacy and T cell function. We used MART-1-specific TCR-T cells (TCR-T_{MART-1}) stimulated
17 with MART-1₂₇₋₃₅ peptide-loaded MEL-526 tumor cells with different proportions of them
18 expressing PD-L1 to perform cellular assays and high-throughput single-cell RNA sequencing.
19 Compared to control T cells, TCR-T_{MART-1} were more sensitive to exhaustion and secreted lower
20 pro-inflammatory but higher anti-inflammatory cytokines with increasing proportions of PD-L1⁺
21 tumor cells. The colocalization of T cells and tumor cells in gene clusters correlated negatively
22 with the proportion of PD-L1⁺ tumor cells and positively with immune cell cytotoxicity. Moreover,
23 elevated proportion of PD-L1⁺ tumor cells increased PD-L1 expression and decreased PD-1
24 expression on T cells and enhanced T cell death. The expression of PD-1 and PD-L1 in T cells and
25 macrophages also correlated positively with COVID-19 severity.

26 **Introduction**

27 Programmed cell death-ligand-1 (PD-L1) is the ligand of programmed death-1 (PD-1), which are
28 encoded by *CD274* and *PDCD1*, respectively. PD-L1 is expressed in many cancer tissues,
29 including melanoma [1], a widely recognized immunogenic neoplasm. Expression of PD-L1 is
30 undetectable in most normal tissues, but can be induced by inflammatory cytokines, especially
31 interferon- γ (IFN- γ) in various cell types [2-4]. As a strategy to evade immune responses, PD-L1
32 is often up-regulated on tumor cells and induces T cell anergy, exhaustion or apoptosis upon
33 engagement with PD-1 expressed on tumor infiltrating lymphocytes (TILs) to impair T cell
34 responses[1, 5]. Expression of PD-L1 is not restricted to tumor cells, PD-L1 is also expressed in
35 TILs and its expression by TILs correlates with aggressive tumors, demonstrating the
36 immunosuppressive role of PD-L1 [6, 7]. Binding of PD-1 and PD-L1 impairs T cell activation by
37 interfering with Ras-Raf-MEK-ERK and PI3K-AKT signaling pathways that promote T cell

38 proliferation and differentiation [8]. In addition to binding PD-1, PD-L1 has been reported to
39 interact with CD80 in *cis* to modulate T cell function and tumor microenvironment [9, 10].
40 The PD-1/PD-L1 signaling pathway plays an important role in tumor evasion from host immune
41 responses [11]. Inhibitors of PD-1 and PD-L1 have been studied in various tumor types and have
42 now been approved for treating many malignancies, including melanoma, non-small-cell lung
43 cancer (NSCLC), and bladder cancer. [12-16] PD-L1 expression on tumor cells and tumor
44 infiltrating antigen presenting cells (APCs) has been approved as a companion biomarker for the
45 treatment with some of these inhibitors [17-22]. Positive correlation between higher level of
46 PD-L1 expression and higher response rate in melanoma has also been demonstrated [23-25].
47 However, some studies showed that PD-L1 expression is insufficient to predict a benefit from
48 immune checkpoint inhibitor (CPI) therapy and PD-L1 expression level alone is a poor predictive
49 biomarker of overall survival [26, 27].
50 The PD-L1 expression level has different predictive values for response to PD-(L)1 blockade in
51 different types of tumors, many tumors that express PD-L1 do not respond to PD-1 or PD-L1
52 inhibitors. The overall low response rates of PD-1 and PD-L1 inhibitors limit their clinical
53 application. Thus, it is important to know how PD-L1 and its expression level on tumor cells
54 affect the efficacy of immunotherapy and T cell function. The role of PD-L1 has been studied for
55 many years [4-6, 22, 28], but only from the bulk T cell level, which is hard to elucidate the exact
56 relationship between PD-L1 expression and T cell function.
57 In this study, we used high-throughput single-cell mRNA sequencing (scRNA-seq), multiplex
58 cytokine secretion assay, and cell cytotoxicity assays to investigate the immunoregulatory effect of
59 tumor PD-L1 on responding TCR-T cells. Our research is the first to dissect at the single-cell level
60 transcriptional features as well as cytokine and cytotoxic signatures of antigen-specific TCR-T
61 cells responding to different tumor PD-L1 ratios. Furthermore, single-cell immune profiling was
62 explored in COVID-19 patients, which is essential for understanding the potential mechanisms
63 underlying COVID-19 pathogenesis.

64 **Results**

65 **Increased tumor PD-L1 expression suppressed cytotoxicity and cytokine secretion of**
66 **TCR-T_{MART-1}**
67 We used cytotoxicity and cytokine secretion assays together with scRNA-seq to interrogate
68 TCR-T cells stimulated by MEL-526 melanoma cells with different proportions of them
69 expressing PD-L1 (Fig. 1A). This approach made it possible to quantitatively dissect the T-cell
70 activation state in relation to their subtypes, gene expression and cell differentiation.
71 HLA-A*0201/Melan-A-specific TCR sequence (designed as TCR_{MART-1}) was attained from T cells
72 stimulated with Melan-A (aa27-35, LAGIGILTV) peptide (data unpublished). Melan-A, also
73 known as MART-1, is a melanocytic marker [29]. Human TCR α and TCR β sequences fused with
74 murine TCR constant region were synthesized and cloned into a lentiviral vector (Fig. S1A). T
75 cells that expressed or did not express TCR_{MART-1} are designated as TCR-T_{MART-1} and T_{null},
76 respectively. T_{total} represents the entire T cell population that includes both TCR-T_{MART-1} and T_{null}.

77 After lentiviral transduction into CD8⁺ T cells, 17.5% of T_{total} was TCR-T_{MART-1}, which reached
78 97.2% after fluorescence-activated cell sorting (FACS) (Fig. S1B). To verify the cytolytic capacity,
79 TCR-T_{MART-1} were stimulated by peptide-loaded MEL-526 cells or a mock control at the
80 effector:target (E:T) ratio of 1:1. Compared to T_{null}, TCR-T_{MART-1} killed MEL-526 cells efficiently
81 when MEL-526 cells were loaded with the MART-1₂₇₋₃₅ peptide (Fig. 1B). TCR-T_{MART-1} similarly
82 killed T2 cells, another target cell line (Fig. S1C).
83 To investigate the immunosuppressive role of tumor PD-L1, PD-L1 was overexpressed (OE) on
84 MEL-526 cells (Fig. S1D). Different percentages of PD-L1 positive tumor cells were obtained by
85 mixing OE with wild-type (WT) MEL-526 cells based on the clinical PD-L1 expression ratio [30].
86 Three tumor cell populations with different percentages of MEL-526 expressing PD-L1 were used
87 in the study: PD-L1^{low} (without exogenous PD-L1, 2.45%), PD-L1^{int} (intermediate, 50.9%), and
88 PD-L1^{high} (high, 100%) (Fig. 1C). The cytolytic activity of TCR-T_{MART-1} was inhibited by
89 increasing percentages of tumor cells expressing PD-L1 (Fig. 1D), demonstrating a
90 dose-dependent suppression of PD-L1 on TCR-T cell cytotoxicity. PD-L1 also dose-dependently
91 suppressed the secretion of Granzymes (Fig. 1E) and pro-inflammatory cytokines, including TNF
92 α (Fig. 1F), IFN γ and IL2 (Fig. 1G), in T_{null} and TCR-T_{MART-1}. Altogether, PD-L1-mediated
93 immune suppression modulated cytotoxicity and cytokine secretion of MART-1-specific TCR-T
94 cells.
95

96 **Single-cell level analysis of T cells responding to peptide-pulsed MEL-526 cells**

97 Single-cell transcriptome profiling was performed using a negative pressure orchestrated DNBelab
98 C4 system [31]. Transcriptome profiling of a total of 20888 cells from four conditions was
99 obtained after filtering out cells with low quality (Fig. 2A). To investigate the intrinsic T cell
100 heterogeneity, unsupervised clustering was performed (Fig. 2B). T and tumor cells were identified
101 by the expression of classic cell type markers, including PTPRC, CD3D, CD3G, CD3E, CD8A,
102 CD8B, TRAC, TRBC1, and TRBC2 for T cells and MAGEA 4 for MEL-526 cells (Fig. 2C). Based
103 on the expression of signature genes, T cells were composed of clusters 1, 3, 5, 6, 7, 9, 10, 11, 12,
104 14, 15, 16, and 19 (Fig. 2B). Exogenous TCR_{MART-1} was detected in cluster 6, 7, 11, 15, 16, and 19,
105 but very little in cluster 10 and 12 (Fig. S1E). Furthermore, differentially expressed genes (DEGs)
106 and known functional markers indicated the clusters of naïve, proliferating, early activated,
107 cytotoxic, and exhausted CD8⁺ T cells (Fig. 2B).
108 DEG analysis further identified tumor cell clusters 0, 2, 4, 8, 13, 17, and 18 that showed high
109 expressions of S100A6, MAGEA 4, and HSPB1 as well as chemokines such as CXCL10 and
110 CXCL11 (Fig. 2D). CXCL10 and CXCL11 recruit T cells and promote antitumor activity [32, 33].
111 For T cell clusters, CXCR4 and early activation marker CD69 were upregulated in cluster 1.
112 Cluster 3 was more similar to cluster 5 and the expression of SELL, IL7R, and TCF7 was
113 upregulated, indicating a naïve phenotype. Expression of classic cytotoxic genes including GZMK,
114 NKG7, CST7, GNLY, and GZMA were increased in cluster 9 and 12 while the expression of cell
115 proliferation gene MKI67 was upregulated in cluster 14. Expression of interleukins IL5, IL2, and
116 IL3 as well as of T cell activation and cytotoxicity genes such as CSF2, XCL2, XCL1, IFNG, and
117 GZMB were upregulated in the remaining T cell clusters (Fig. 2D). According to the above
118 characteristics (Fig. 2D), clusters shared similarities with each other were grouped together (Fig.
119 2B) and their DEGs were showed in Fig. S2A.

120 To understand T cell state transitions, an unsupervised inference method Monocle 2 [34] was
121 applied to construct the potential development trajectories of ten T cell clusters (cluster 14, 19, and
122 16 were excluded due to their distinct expression of *MKI67* or mitochondrial genes). Cells from all
123 clusters aggregated according to expression similarities to form a relative process in pseudotime,
124 which began with cluster 3 and 5 (IL7R+RIPOR2, naïve cells), followed by cluster 9
125 (GNLY+GZMK) and 1 (CD69+GZMA) (Fig. 2E). Cluster 6, 7, 10, 15 (TNFRSF9+GZMB) and
126 19 (MKI67+TNFRSF9) activated and cytotoxic cells were located in the opposite directions with
127 cluster 12 (GNLY+LAG3) in the pseudotime trajectory plot, demonstrating diverse functions of
128 these cells. According to the trajectory analysis, CD8⁺ exhausted T cells were more closely linked
129 to intermediate populations cluster 1 and 9 marked by GZMA and GZMK signatures, respectively
130 than to the effector populations (Fig. 2E), consistent with a previous study [35]. Moreover, two
131 main categories of genes were identified in this pseudotime process, one increased and the other
132 one decreased (Fig. 2F). Upregulated genes included T cell activation and cytotoxicity markers,
133 such as *XCL2*, *XCL1*, *TNFRSF9*, and *NFKB1*, and cell death associated genes, such as *FASLG* and
134 *BCL2L11*. Downregulated genes encompassed naïve marker genes such as *LEF1*, *TCF7*, *IL7R*,
135 and *SELL* (Fig. 2F). Taking together, while T cells differentiated into cytotoxic and exhausted
136 populations, the expression of genes related with T cell activation and cytotoxicity was
137 upregulated and the expression of naïve marker genes was downregulated in this pseudotime axis.
138

139 **Tumor PD-L1 affected T_{null} and TCR-T_{MART-1} differently at the transcriptional level**

140 To reveal the structure of the overall T cell population, T cells were divided into T_{null} and
141 TCR-T_{MART-1} and their cluster compositions were investigated. Cluster composition of the control
142 (Ctrl) group was different from that of groups stimulated by tumor cells (Fig. 3A). After
143 stimulation, cluster 1 (CD69+GZMA), 6&7&10&15 (TNFRSF9+GZMB), 11 (IL2RA+GZMB),
144 12 (GNLY+LAG3), and 16 (REL+MT) were increased compared to those of the Ctrl group (Fig.
145 3A), indicating the percentage of cytotoxic and exhausted T cells were increased upon antigen
146 stimulation. With the increased percentage of tumor cells expressing PD-L1, only cluster 11 was
147 increased in T_{null}, whereas clusters 1, 11, and 12 were increased and clusters 6&7&10&15 were
148 decreased in TCR-T_{MART-1}. (Fig. 3A). These results implied that TCR-T_{MART-1} were more sensitive
149 than T_{null} to increasing levels of tumor PD-L1, which also reduced the percentage of activated and
150 cytotoxic TCR-T_{MART-1}.

151 Results of gene expression (Fig. 3B, S3A) were consistent with the result of cluster composition in
152 each group (Fig. 3A). TCR-T_{MART-1} were affected more than T_{null} by increased tumor PD-L1 (Fig.
153 3B, S3A, 3C), which inhibited the expression of T cell activation and cytotoxicity genes, including
154 *XCL2*, *XCL1*, *IL2RA*, *GZMB*, and *NKG7* in TCR-T_{MART-1} (Fig. 3B). Moreover, there was no
155 significant difference in gene expression between TCR-T_{MART-1} targeting PD-L1^{int} and PD-L1^{high}
156 (Fig. 3C). Enriched signaling pathways were then analyzed. Different signaling were enriched in
157 T_{null} and TCR-T_{MART-1} after encountering tumor cells (Fig. S3B). Compared to TCR-T_{MART-1}
158 targeting PD-L1^{int} and PD-L1^{high}, TCR-T_{MART-1} targeting PD-L1^{low} enriched metabolic and vesicle
159 lumen related signaling (Fig. 3D). However, distinct pathways including membrane region,
160 membrane microdomain and raft were enriched in TCR-T_{MART-1} targeting PD-L1^{int} compared to
161 that targeting PD-L1^{high} (Fig. 3D). In addition, gene set variation analysis (GSVA) revealed that
162 functional subtypes of T_{null} and TCR-T_{MART-1} populations responded to tumor cells differently. T_{null}
163 were enriched with cytotoxic and terminally differentiated cells whereas TCR-T_{MART-1} were

164 enriched with exhausted and anergic cells (Fig. 3E).

165

166 **Tumor PD-L1 expression resulted in various cellular and molecular responses in T cells**

167 To correlate phenotypes other than cluster composition to T cell cytotoxicity (Fig. 1D), the
168 expression of cytokines, chemokines, cytokine and chemokine receptors, and transcription factors
169 was analyzed. With increased tumor PD-L1, expression of activation and cytotoxicity marker
170 genes including *IFNG*, *TNFSF9*, *TNFSF14*, *CSF2*, and *IL2*, were downregulated in T_{total} (Fig. 4A),
171 consistent with results of cytokine secretion assays (Fig. 1F, 1G). In addition, expression of
172 anti-inflammatory cytokines, including *IL10*, *IL13*, and *IL19*, were upregulated in TCR-T_{MART-1}
173 stimulated with PD-L1^{high} (Fig. 4A, S4A). Although the expression of pro-inflammatory cytokines
174 such as *IL12A* and *IL5* was increased in TCR-T_{MART-1} targeting PD-L1^{high} (Fig. 4A), the results
175 overall suggested the domination of anti-inflammatory cytokines over pro-inflammatory cytokines,
176 resulting in the inhibition of T cell function. In line with the cytokine expression pattern, the
177 expression of cytokine receptors related with T cell activation, including *TNFRSF9*, *IFNGR1*, and
178 *IL2RA*, was upregulated in TCR-T_{MART-1} stimulated with PD-L1^{low} while the expression of
179 *IL13RA2* and *IL13RA1* was increased in TCR-T_{MART-1} stimulated with PD-L1^{high} (Fig. 4B). Overall,
180 the production of proinflammatory cytokines in TCR-T_{MART-1} was dose-dependently inhibited by
181 the expression of PD-L1 in tumor cells and function of T cell targeting PD-L1^{high} was inhibited by
182 the production of anti-inflammatory cytokines.

183 For chemokines (Fig. 4C), more were expressed in TCR-T_{MART-1} than in T_{null} after antigen
184 stimulation. In Ctrl group, *CCL25* was highly expressed in TCR-T_{MART-1} but the expression of the
185 *CCL25* receptor gene *CCR9* was not detected. When cultured with PD-L1^{low}, *CCL8* was highly
186 expressed in TCR-T_{MART-1} (Fig. 4C) whereas *CCR2*, *CCR3*, *CCR5*, and, especially, *CCR1* that
187 encoded *CCL8* receptors were upregulated in T_{null} (Fig. 4D), indicating that TCR-T_{MART-1} could
188 recruit T_{null} through chemokine secretion. As for PD-L1^{int}, *CCL7* was significantly expressed in
189 TCR-T_{MART-1}, but *CCR1*, *CCR2*, and *CCR3* encoding *CCL7* receptors were almost expressed
190 equally low in both T_{null} and TCR-T_{MART-1}. In PD-L1^{high}, *CXCL2* and *CXCL9* were highly
191 expressed in TCR-T_{MART-1}, but *CXCR2* or *CXCR3* encoding their corresponding receptors were not
192 detected or only weakly expressed (Fig. 4D). In conclusion, TCR-T_{MART-1} stimulated with
193 PD-L1^{low} effectively attracted and activated T_{null} , consistent with its greatest cytotoxicity.

194 Unique expression pattern of transcription factors (TFs) was also discovered in T_{null} and
195 TCR-T_{MART-1} populations. The expression of *ZEB2*, *RBPJ*, *NFKB1*, *GATA3*, *IRF4* and *STAT3*,
196 which are important for TCR signaling production and transduction and T cell activation and
197 differentiation [36] [37], were higher in TCR-T_{MART-1} cultured with PD-L1^{low} (Fig. 4E). Overall,
198 the expression of *IRF4*, *NFKB1*, and *RBPJ* was decreased in TCR-T_{MART-1} (Fig. S4B) whereas the
199 expression of *EOMES* in T_{null} was progressively downregulated (Fig. S4C) with increasing
200 percentages of PD-L1-expressing tumor cells. The results indicated the expression profile of
201 transcription factors in T cells were also affected by tumor PD-L1 expression.

202

203 **Colocalization of tumor and TCR-T_{MART-1} increased immune cell cytotoxicity**

204 Interestingly, some genes expressed by immune cells were detected in tumor cell clusters,
205 including *XCL1*, *XCL2*, *GZMB*, *IL32*, *IL13*, *IL2RA*, *CXCL9*, *CD2*, *CSF2*, and *IL3* that are
206 associated with T cell activation or cytotoxicity (Fig. 4F). This observation indicated that T cells

207 and tumor cells were close enough or in contact when T cells were activated by tumor cells [38],
208 thus were separated in the same droplet for scRNA-seq. To answer if this phenomenon accounted
209 for the difference of T cell cytotoxicity caused by different percentages of PD-L1 expressing
210 tumor cells, the above genes were assessed in tumor populations. Expression of cytotoxic genes
211 *XCL1*, *XCL2*, and *GZMB* was highest in both T_{null} and TCR-T_{MART-1} cultured with PD-L1^{low} (Fig.
212 4G), in line with the highest cytotoxicity of T cells in PD-L1^{low} (Fig. 1D). Moreover, the
213 expression of T cell marker genes including *CD3D*, *CD3E*, *CD3G*, *CD8A*, *CD8B*, *PTPRC*, *TRAC*,
214 *TRBC1*, and *TRBC2* was also detected in tumor populations (Fig. 4H), confirming the presence of
215 T cells in tumor populations.

216 The expression of the tumor cell marker gene *MAGEA4* was also detected in T cell populations,
217 while no *MAGEA4* expression was detected in Ctrl group (Fig. 4I), suggesting the specificity of
218 *MAGEA4* expression in tumor cells. In addition, the expression of *MAGEA4* was higher in
219 TCR-T_{MART-1} than in T_{null} in each group and was the highest in TCR-T_{MART-1} cultured with
220 PD-L1^{low}, consistent with immune cell cytotoxicity (Fig. 1D).

221

222 **Increased expression of tumor PD-L1 enhanced T cell death**

223 To detect the impact of PD-L1 expression on tumor and immune cell death, gene sets of cell death
224 pathways, including apoptosis, necrosis, autophagy, pyroptosis, and ferroptosis, were used for
225 GSVA analysis. We first analyzed tumor cells after they were cocultured with T cells for 24 h. Cell
226 death pathways, especially necrosis and autophagy, were most enriched in PD-L1^{int} (Fig. 5A),
227 suggesting a non-linear correlation between PD-L1 expression and tumor cell death at the
228 transcriptional level. When tumor populations were separated into PD-L1-expressing or
229 PD-L1-non-expressing (nonPD-L1) subsets, cell death pathways were most enriched in
230 PD-L1-expressing cells of PD-L1^{int} (Fig. 5B). The expression of the key members of these cell
231 death pathways was further analyzed (Fig. 5C). Apoptotic genes, including *TRADD*, *BID*, *FAS*,
232 *FASL*, autophagy gene *BECN1*, and ferroptosis genes *GLS2*, *VDAC3*, *CARS*, *GPX4*, *HSPB1*,
233 *NFE2L2*, were upregulated in PD-L1-expressing tumor cells of PD-L1^{low} (Fig. 5C, S5A, S5B),
234 providing a possible reason for the strongest cytotoxicity observed in PD-L1^{low} (Fig. 1D).

235 To further assess the difference between tumor populations of each group, GO analysis were
236 performed in tumor cells. PD-L1-expressing populations in each group had similar enriched
237 signaling pathways, including protein localization or targeting to endoplasmic reticulum (ER) and
238 antigen processing and presentation pathways (Fig. 5D). In contrast, pathways enriched in
239 nonPD-L1 populations varied from each other and from PD-L1-expressing subsets (Fig. 5D).

240 To gain insight into whether immune cell death would be affected by tumor PD-L1, cell death
241 pathways (Fig. 5E) and gene expression (Fig. S5C) were analyzed in T_{null} and TCR-T_{MART-1}. Cell
242 death pathways were more enriched in TCR-T_{MART-1} than in T_{null} in each group and the enrichment
243 of cell death signaling was positively correlated with the level of tumor PD-L1 while negatively
244 correlated with T cell cytotoxicity (Fig. 1D). These results suggested that tumor PD-L1 enhanced
245 T_{null} and TCR-T_{MART-1} cell death, thus inhibited T cell function.

246

247 **Tumor PD-L1 levels correlated positively with PD-L1 expression and negatively with PD-1 248 expression in T cells**

249 PD-L1 has been reported to interact with CD80 in *cis* to selectively suppress the CD80:CTLA4
250 interaction but not the CD80:CD28 interaction [9]. To reveal how the PD-L1 network worked here,

251 the expression of PD-L1, PD-1, CD80, CTLA4, and CD28 was assessed. With the increase of
252 tumor PD-L1 (Fig. 6A, S6A), the proportion of PD-L1⁺ and the level of PD-L1 in T_{null} and,
253 especially, in TCR-T_{MART-1} gradually increased (Fig. 6B, S6B). PD-1 expression was highest in
254 TCR-T_{MART-1} targeting PD-L1^{low} (Fig. 6C, S6C) and decreased with increasing tumor PD-L1. It
255 implied the strongest T cell activation induced highest PD-1 expression with lowest PD-L1
256 expression. Since CD80 expression in tumor cells (Fig. 6D) or T_{total} (Fig. 6E) was much lower
257 than PD-L1 expression (Fig. 6A, 6B), CD80 would entirely bind to PD-L1 in *cis*, rather than to
258 CTLA4 (Fig. 6F) in *trans*. PD-L1:CD80 *cis*-heterodimer could then trigger co-stimulatory
259 receptor CD28 in T_{null} and TCR-T_{MART-1} (Fig. 6G). Considering the dramatic difference in
260 expression levels of PD-L1 and CD80, the dominant signaling was the interaction between PD-L1
261 and PD-1 under the circumstances. Overall, the tumor PD-L1 level positively correlated with
262 PD-L1 expression while negatively correlated with PD-1 expression on T cells, perfectly
263 demonstrating that PD-1 expression is an activation marker for T cells [39].
264 Blockade of PD-1 has been reported to lead to a compensatory upregulation of other checkpoint
265 pathways[40], thus we analyzed whether increased tumor PD-L1 affected other checkpoint
266 molecules. The expression of inhibitory checkpoint molecules (ICMs), including ADORA2A,
267 BTLA, CD160, and PDCD1, was downregulated while the expression of CD276 and IDO1 was
268 upregulated with the increased tumor PD-L1 (Fig. 6H). Simultaneously, the expression of
269 stimulatory checkpoint molecules (SCMs) such as ICOS and TNFRSF9 was highest in
270 TCR-T_{MART-1} targeting PD-L1^{low} (Fig. 6I), consistent with its greatest cytotoxicity. Taking together,
271 PD-L1 expression on tumor cells affected the expression of other inhibitory and stimulatory
272 checkpoint molecules, which together impacted T cell function.
273

274 **Expression of PDCD1 and CD274 correlated with COVID-19 severity**

275 The PD-1/PD-L1 signaling plays an essential role not only in regulating tumor immune responses
276 but also in balancing homeostasis and tolerance in virus infection [41]. The current pandemic
277 coronavirus disease 2019 (COVID-19) is caused by infection of severe acute respiratory syndrome
278 coronavirus 2 (SARS-CoV-2) [42-44], where the role of PD-1/PD-L1 is currently unclear. Thus it
279 is necessary to investigate how PD-1/PD-L1 signaling works during COVID-19 progress in order
280 to deal with it. Publicly available data of bronchoalveolar cells from three moderate (M1-M3) and
281 six severe (S1-S6) COVID-19 patients, and four healthy controls (HC1-HC4) were collected for
282 analysis (66630 cells, Table S1) [45]. 31 clusters were identified by classical signature genes
283 according to the reference (Fig. 7A) [45]. Expression of PD-1 and PD-L1 was first analyzed at the
284 patient group level in different cell subpopulations, four trends of their expression dynamics were
285 observed (Fig. 7B, 7C). PDCD1 expression was gradually elevated in T cell, B cell, myeloid
286 dendritic cells (mDCs), and macrophages from HC to mild cases then to severe patients. In the 2nd
287 trend, PDCD1 expression was specifically increased in plasma cells and epithelial cells in severe
288 patients but not in mild patients (Fig. 7B). For the 3rd trend, PDCD1 expression was upregulated
289 in mild patients but slightly reduced in severe patients in NK and plasmacytoid dendritic cells
290 (pDCs) (Fig. 7B). No expression of PDCD1 was detected in mast cells and neutrophils in the 4th
291 trend (Fig. 7B). The CD274 expression in macrophages, mast cells, pDC, and T cells (1st trend)
292 correlated well with COVID-19 severity and was specifically increased in plasma cells of severe
293 patients (2nd trend) (Fig. 7C). When analyzed at the individual level, expression of PDCD1 and
294 CD274 was also elevated in mild and severe patients (Fig. S7A, S7B). Overall, PDCD1

295 expression in T cells, B cells, mDCs, and macrophages and *CD274* expression in macrophages,
296 mast cells, pDC, and T cells correlated well with COVID-19 severity. Furthermore, *PDCD1* and
297 *CD274* expression was specifically increased in epithelial and plasma cells of severe patients.
298 Inflammatory signaling participates in modulating PD-L1 expression, particularly, *STAT1*, which
299 can be activated by IFN γ or interleukin 6 (IL-6), is a crucial regulator for PD-L1 expression [46,
300 47]. Furthermore, plasma IFN γ level [43] and the IL-6 level in bronchoalveolar lavage fluid
301 (BALF) [45] were reported to be increased in COVID-19 patients. Consistently, *STAT1* was found
302 upregulated in both mild and severe patients (Fig. 7D), suggesting increased *CD274* expression
303 might at least partly resulting from increased *STAT1* level in COVID-19 patients.
304 To further elucidate the immune checkpoint landscape of COVID-19 patients, expression of
305 classical inhibitory and stimulatory checkpoint molecules was assessed. For ICMs, expression of
306 *CD160*, *CD244*, *PD-1*, *BTLA*, *TIGIT*, *LAG3*, *KLRG1*, and *ADORA2A* were increased in mild
307 patients compared to HC and severe patients while expression of *CTLA4*, *HAVCR2*, *IDO1*, and
308 *CD276* were highest in severe patients (Fig. 7E). Regarding SCMs, expression of *TNFRSF9*,
309 *CD28*, *ICOS*, and *CD27* were elevated in mild patients in comparison to HC and severe patients
310 while expression of *TNFRSF18* and *CD40* were highest in severe patients (Fig. 7F). When
311 analyzed at the cell subpopulation level, unique expression patterns of ICMs and SCMs were
312 demonstrated in each cell subpopulation (Fig. S7C, S7D).
313

314 Discussion

315 It has been well documented that the efficacy of CPI in treating tumors is affected by the PD-L1
316 level, and the relative amounts of PD-1 and its interactors in tumors [9]. However, the molecular
317 mechanism by which different levels of PD-L1 on tumors affect the therapeutic efficacy of TCR-T
318 cell therapy remains unclear.
319 There are few studies about the effect of PD-L1 expression levels on TCR-T cell function. Our
320 study provides an insight about TCR-T cell response to different proportions of tumor cells
321 expressing PD-L1 at the single-cell level. The results of cell-based assays revealed that higher
322 proportion of PD-L1 $^+$ tumor cells more strongly inhibited T-cell function (Fig. 1D-1G). Single-cell
323 transcriptome profiling demonstrated the inhibition from different aspects, including cell
324 differentiation (Fig. 3), secretion of cytokines and chemokines (Fig. 4A, 4C), colocalization of
325 tumor and immune cells (Fig. 4F-4I), tumor and immune cell death (Fig. 5), as well as the whole
326 PD-L1 network (Fig. 6A-6G).
327 TCR-T_{MART-1} were more vulnerable than T_{null} when targeting increasing proportion of
328 PD-L1-bearing tumor cells (Fig. 3B-3C). It indicates that TCR-T therapy could be
329 co-administrated with PD-L1/PD-1 interference to obtain better anti-tumor efficacy. Clinical trials
330 with TCR-T cells armed with a PD-1 antagonist are ongoing (NCT04139057, NCT03578406).
331 The result also implies that TCR-T cells will benefit from elimination of their *PDCD1*, such as by
332 using CRISPR-based approaches, to protect themselves against PD-L1-mediated inhibition [48].

333 In addition to pro-inflammatory cytokines, the expression of anti-inflammatory cytokines,
334 including *IL10*, was upregulated in TCR-T_{MART-1} targeting PD-L1^{high} (Fig. 4A, S4A). It was
335 reported that IL-10 levels in serum and in ascites were increased after treatment with PD-1
336 inhibitor, implicating that IL-10 participated in undermining the efficacy of anti-PD-(L)1 therapies
337 [49]. Thus, combined blockade of PD-L1 and IL10 may further enhance T-cell immunity [50, 51].
338 Interestingly, colocalization of T and tumor cells was detected and correlated negatively with the
339 expression of tumor PD-L1 (Fig. 4F-4I). Colocalization of T and tumor cells was supported by the
340 imaged interaction of T cells and APCs [38]. Therefore, tumor PD-L1 may inhibit T cell
341 cytotoxicity through hindering the colocalization and interaction of antigen-specific T cells and
342 tumor cells.
343 Various cell death pathways were involved in tumor and T cell death (Fig. 5, S5) and the
344 enrichment of cell death signaling in T cells correlated positively with tumor PD-L1 expression
345 level. This is consistent with a former study, where CD8⁺ T-cell apoptosis was promoted by PD-1
346 and PD-L1 upregulation [52], implying T cell death caused by PD-L1 signaling is one of the
347 tumor evasion pathways.
348 Furthermore, the elevation of tumor PD-L1 expression dose-dependently increased the expression
349 of PD-L1 in T cells (Fig. 6B, S6B), while PD-1 expression was dose-dependently decreased (Fig.
350 6C, S6C). PD-1 has been reported to induce apoptosis of antigen-specific T cells [53], but here
351 tumor PD-L1 seems to play a dominant role in promoting effector T cell death. Moreover,
352 consistent with that PD-1⁺ CD8⁺ T cells were functional cytotoxic T cells that targeted tumors and
353 experienced exhaustion [54], PD-1 expression in T cells correlated positively with cytotoxicity in
354 our study.
355 Lastly, since COVID-19 is pandemic and threatening thousands of people's life, it is urgent and
356 essential to investigate the molecular mechanism of the immune pathogenesis of the disease.
357 Compared to healthy controls, *PDCD1* expression in T cells, B cells, mDCs, and macrophages
358 (Fig. 7B) and *CD274* expression in macrophages, mast cells, pDCs, and T cells (Fig. 7C) were
359 upregulated in COVID-19 patients, and correlated well with COVID-19 severity. Moreover,
360 expression of *PDCD1* and *CD274* was specifically increased in plasma cells of severe patients
361 (Fig. 7B, 7C), which could serve as a biomarker for prognosing the severity of COVID-19. Many
362 clinical trials for treating COVID-19 are ongoing. Among them, one clinical trial uses PD-1
363 monoclonal antibody to block PD-1 in COVID-19 patients (NCT04268537). Based on our results,
364 *PDCD1* expression was dramatically upregulated in T cells and macrophages especially in severe
365 patients (Fig. 7B) and its blockade would further increase the secretion of multiple
366 pro-inflammatory cytokines (Fig. 4A), which will enhance the cytokine release syndrome reported
367 in COVID-19 patients and possibly associated with disease severity [42, 43], leading to further
368 tissue damage or even more death especially in severe COVID-19 patients [55, 56]. A current
369 study supports that checkpoint inhibitor immunotherapy is risky for severe outcomes in
370 SARS-CoV-2-infected cancer patients, though these patients were treated with immune checkpoint
371 inhibitors (ICI) before SARS-CoV-2 infection [57]. Furthermore, the expression of *IL10* was
372 upregulated with increasing tumor PD-L1 (Fig. 4A), indicating a role of IL-10 in keeping a
373 microenvironmental balance. Thus, the anti-inflammatory cytokine IL-10 might protect
374 COVID-19 patients from T cell hyperactivation, which in turn may cause a dreaded complication
375 characterized by acute respiratory distress syndromes in COVID-19 patients [58]. In addition,
376 lower ratio of IL6 to IL10 serum levels was reported to coincided with the recovery of pneumonia

377 [59].
378 In conclusion, cell-based cytotoxicity and cytokine secretion assays together with scRNA-seq
379 were applied to interrogate MART-1-specific transgenic T cells upon antigen-specific stimulation
380 with different ratios of tumor PD-L1. This study provides the first comprehensive illustration of
381 tumor PD-L1 inhibition on TCR-T cell function at the single-cell level, and reveals some common
382 mechanisms regarding how different subtypes of TCR-T cells respond to PD-L1 inhibition. It
383 provides valuable information about the inhibition by increased tumor PD-L1 expression on
384 TCR-T cells which are being applied in clinical trials, and about COVID-19, whose severity
385 correlated well with the expression of *PDCD1* and *CD274*.

386 Acknowledgments

387 We sincerely thank the support provided by China National GeneBank and Guangdong Provincial
388 Key Laboratory of Genome Read and Write (No. 2017B030301011). This research was funded by
389 Technology and Innovation Commission of Shenzhen Municipality , grant number
390 JCYJ20170817150015170 and JS GG20180508152912700. This manuscript was edited by Life
391 Science Editors.

392 Author contributions

393 Q.G. and R.D. designed the project. Q.G. wrote the manuscript. Q.G. and C.C. revised the
394 manuscript. S.L. performed the bioinformatic analysis. S.W., H.C. and Q.G. conducted the
395 experiments related to single-cell sequencing. Q.X. and R.D. performed FACS analysis. F.W. and
396 L.Z. assisted experiments and manuscript revision. R.D., H.C., and Q.G. performed all the other
397 experiments and data analysis. Q.G., C.C., Y.G., and X.D. supervised the project.

398 Declaration interests

399 The authors declare no competing financial interest.

400 Methods

401 Cell lines and cell culture

402 HEK293T (ATCC, CRL-11268) and T2 (174×CEM.T2, CRL-1992) cell lines were purchased

403 from ATCC, and MEL-526 (BNCC340404) cell line was purchased from BNCC. HEK293T and
404 MEL-526 cells were cultured in DMEM (Gibco, 21063029) supplemented with 10% fetal bovine
405 serum (Hyclone, SH30084.03HI), penicillin (100 IU/mL), and streptomycin (50 μ g/mL). T2 cells
406 were cultured in IMDM (Gibco, 12440053) supplemented with 20% fetal bovine serum (Hyclone,
407 SH30084.03HI), penicillin (100 IU/mL), and streptomycin (50 μ g/mL). CD8 $^{+}$ T cells were
408 cultured in HIPP-T009 (Bioengine, RG0101302) supplemented with 2% fetal bovine serum
409 (Hyclone, SH30084.03HI) containing IL-2 (20 ng/ml), IL-7 (10 ng/ml) and IL-15 (10 ng/ml).

410

411 **Plasmid construction**

412 TCR_{MART-1} sequence was identified from our previous work (data unpublished), and its constant
413 regions were replaced by mouse TCR constant region α and β , respectively to prevent mispairing
414 with endogenous TCR. TCR α chains and β chains were linked by P2A self-cleaving peptide. The
415 recombinant DNA encoding TCR_{MART-1} was synthesized by GeneScript (Nanjing, China) and
416 ligated into pRRLSIN.cPPT.PGK vector (Addgene, 12252).

417 PD-L1 cDNA ORF Clone in Cloning Vector was purchased from Sino Biological (HG10084).

418 PD-L1 cDNA was cloned into pRRLSIN.cPPT.PGK vector (Addgene, 12252) with ClonExpress II
419 One Step Cloning Kit (Vazyme, C112) according to the user manual.

420

421 **Lentivirus production**

422 293T cells were transfected with a mixture of interested plasmid and packaging constructs
423 (PsPAX2 and PMD2G) as previous [60]. The culture supernatants were collected 72 h after
424 transfection and filtered through a 0.45 μ M filter. Subsequently, the supernatants were
425 concentrated by ultracentrifugation at 35,000 rpm for 90 min. The pellet was suspended and stored
426 at -80°C.

427

428

429 **Generation of tumor cells expressing PD-L1**

430 After lentivirus infection of PD-L1 lentivirus into MEL-526 cells for 2 days, PD-L1 $^{+}$ cells were
431 sorted out by FACS. Different portions of PD-L1 $^{+}$ tumor cells were obtained by mixing wildtype
432 and PD-L1 $^{+}$ MEL-526 cells.

433

434 **Generation of MART-1-specific T cells**

435 Human Peripheral Blood Mononuclear Cells (PBMCs) were isolated from the blood of
436 HLA-A*0201-restricted healthy donors with informed consent. CD8 $^{+}$ T cells were purified from
437 PBMC via human CD8 MicroBeads (Miltenyi Biotec, 130-045-201) and activated with T Cell
438 TransAct (Miltenyi Biotec, 130-111-160). After 36-48 h, CD8 $^{+}$ T cells were transduced with
439 TCR_{MART-1} lentivirus at MOI=25 in a 6-well or 12-well plate. Simultaneously, polybrene was
440 added to the culture at a final concentration of 2 μ g/ml to promote infection efficiency. Then the
441 well plate was centrifuge at 800g at room temperature for 30 minutes.

442

443 **Peptide synthesis**

444 MART-1 originated peptide ELAGIGILTV (HLA-A*0201) was synthesized by GenScript
445 (Nanjing, China) with a purity of \geq 99.0%. Peptides were dissolved with 100% dimethyl sulfoxide

446 (DMSO; Sigma-Aldrich, D5879-500ML) at the concentration of 10 mg/ml, and were stored at
447 -20°C.

448

449 **TCR-T cell stimulation with target tumor cell**

450 TCR-T cells and MEL-526 cells (5×10^5 cells/ml concentration, in 200 µl) pulsed with peptide
451 (final concentration 10 µg/mL) or not were incubated for 24 h in a round bottom 96-well plate.
452 Afterwards, the co-culture was subjected to scRNA-seq. Unstimulated TCR-T cells (5×10^5
453 cells/ml) were incubated for 6 h alone before subjected to scRNA-seq.

454

455 **Intracellular staining**

456 Cells were perforated and fixed using Cytofix/Cytoperm kit (BD Pharmingen, 554715). The
457 antibodies used are as followed: Allophycocyanin(APC)-anti-HLA-A2 antibody (eBioscience,
458 17-9876-42), Phycoerythrin (PE)-anti-human CD8a antibody (eBioscience, 12-0086-42),
459 APC-anti-human CD274(PD-L1) antibody (BD Pharmingen, 563741), PE-anti-human
460 CD279(PD-1) antibody (Biolegend, 367404), PE anti-mouse TCR β chain Antibody (Biolegend,
461 109207), APC Anti-human IFN γ (eBioscience, 502512), PE-anti-human Granzyme B (BD
462 Pharmingen, 561142), APC anti-human CD107a (Biolegend, 328620), PE-anti-Ki67 antibody
463 (Abcam, ab270650).

464

465 **Cell killing assays**

466 Target cells were labeled with Carboxyfluorescein succinimidyl ester (CFSE; Invitrogen) and
467 co-cultured with 50% TCR-T cells at E:T ratio of 1:2. After 24 h, cells were collected and stained
468 with PI and subsequently detected by FACS.

469

470 **Cytokine secretion measurement**

471 The secretion of TNF-α, granzyme A, and granzyme B by T cell were evaluated using BDTM
472 cytometric bead array (CBA) system. Tnull or TCR-T_{MART-1} cells were co-cultured with MEL-526
473 cells pulsed with peptide or not and supernatants were collected 24 h later. CBA assay was
474 performed according to the instruction manual.

475

476 **Statistical analysis**

477 Data analyzing was preformed using PRISM 6 (GraphPad Software) and RStudio. *P<0.05,
478 **P<0.005, ***P < 0.001. Values are presented as mean Standard deviation (SD). Error bars
479 represented the SD.

480

481 **ScRNA-seq**

482 Single-cell 3' mRNA transcriptome profiling was performed using a negative pressure
483 orchestrated DNBelab C4 system according to the workflow [31].

484

485 **ScRNA-seq data preprocessing**

486 For all the samples, the iDrop Software Suite (v.1.0.0) was used to perform sample
487 de-multiplexing, barcode processing and single-cell 3' unique molecular identifier (UMI) counting
488 with default parameters. Cleaned reads were then aligned onto the complete UCSC hg38 human

489 genome by splicing-aware aligner STAR with default parameters. Valid cells were automatically
490 identified based on the UMI number distribution of each cell. The filtering criteria were used to
491 obtain high-quality single cell: the number of genes in each cell in the range of 400 to 6000, the
492 ratio of mitochondrial genes less than 0.2, and the number of UMI more than 1000.

493

494 **Unsupervised clustering**

495 The expression matrix obtained in the above steps was used as input to Seurat v. 3 to perform
496 batch effect correction, standardization, dimensionality reduction, and clustering. First, the
497 "LogNormalize" function was applied to normalize the data. Second, the "vst" method in the
498 "FindVariableFeatures" function was used to detect variable genes, and the top 3000 variable
499 genes were selected for downstream analysis. Third, the "FindIntegrationAnchors" and
500 "IntegrateData" functions were used to correct batch effects. Fourth, the top 3000 variable genes
501 were applied for PCA dimensionality reduction. The UMAP was performed on the top 20
502 principal components for visualizing these cells. At the same time, graph-based clustering was
503 performed on the PCA-reduced data for clustering analysis with Seurat v.3. The resolution was set
504 to 1 to obtain a most representative result.

505

506 **Differential gene expression analysis**

507 We applied the FindMarkers to differential gene expression analysis. For each cluster of T cells
508 and tumor cells, DEGs were generated relative to all of the other cells. A gene was considered
509 significant with adjusted $P < 0.05$ and $\log FC > 0.25$. To compare DEGs across CD8+ T cells and
510 tumor cells under different experimental conditions, the limma method was used with the
511 parameters recommended in the user guide for analysis. Then DEGs were identified when met
512 these criteria: FDR adjusted p value of F test < 0.01 .

513

514 **Developmental trajectory inference**

515 The Monocle (version 2) algorithm with the signature genes of different functional clusters was
516 applied to order CD8+ T cells excluding clusters expressing proliferating or mitochondrial genes in
517 pseudo time. UMI value was first converted into normalized mRNA counts by the "relative2abs"
518 function in monocle and created an object with parameter "expressionFamily = negbinomial.size"
519 according to the Monocle tutorial. Then the CD8+ T cell differentiation trajectory was determined
520 by the default parameters of Monocle.

521

522 **Gene set enrichment analysis**

523 Gene Ontology (GO) enrichment analysis was performed on the differential genes of each cluster,
524 and the results were used for cell type definition. The "enrichGO" function in the "clusterProfiler"
525 package to perform GO analysis using the corresponding default parameters. Pathways with the q
526 value < 0.05 corrected by FDR were used for analysis.

527

528 **GSVA**

529 GSVA was used to identify the molecular phenotype of each cluster with the normalized UMI data.
530 The average normalized expression across T cell clusters was first obtained. Then, GSVA scores of
531 gene sets for different clusters were calculated. GSVA values were plotted as a heatmap using R
532 package "pheatmap".

533

534 **Data availability**

535 The data that support the findings of this study have been deposited into CNGB Sequence Archive
536 (CNSA: <https://db.cngb.org/cnsa/>) of CNGBdb with accession number CNP0001109.

537

538 **Ethics approval and consent to participate**

539 The study was approved by the Institutional Review Board on Bioethics and Biosafety of BGI. A
540 written information consent was regularly obtained from all donors.

541

References

542 1. W Zou, L Chen, *Inhibitory B7-family molecules in the tumour microenvironment*. Nat
543 Rev Immunol, 2008. **8**(6): p. 467-77.

544 2. Abiko K., Matsumura N., Hamanishi J., Horikawa N., Murakami R., Yamaguchi K., et
545 al., *IFN-gamma from lymphocytes induces PD-L1 expression and promotes*
546 *progression of ovarian cancer*. Br J Cancer, 2015. **112**(9): p. 1501-9.

547 3. Mandai M., Hamanishi J., Abiko K., Matsumura N., Baba T., Konishi I., *Dual Faces of*
548 *IFNgamma in Cancer Progression: A Role of PD-L1 Induction in the Determination of*
549 *Pro- and Antitumor Immunity*. Clin Cancer Res, 2016. **22**(10): p. 2329-34.

550 4. X Zhang, Y Zeng, Q Qu, J Zhu, Z Liu, W Ning, et al., *PD-L1 induced by IFN-γ from*
551 *tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways*
552 *promoted progression of lung cancer*. International journal of clinical oncology, 2017.
553 **22**(6): p. 1026-1033.

554 5. H Dong, SE Strome, DR Salomao, H Tamura, F Hirano, DB Flies, et al.,
555 *Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of*
556 *immune evasion*. Nat Med, 2002. **8**(8): p. 793-800.

557 6. Ghebeh H., Mohammed S., Al-Omair A., Qattan A., Lehe C., Al-Qudaihi G., et al., *The*
558 *B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer*
559 *patients with infiltrating ductal carcinoma: correlation with important high-risk*
560 *prognostic factors.* *Neoplasia*, 2006. **8**(3): p. 190-8.

561 7. Thompson R. H., Gillett M. D., Cheville J. C., Lohse C. M., Dong H., Webster W. S., et
562 al., *Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor*
563 *aggressiveness and potential therapeutic target.* *Proc Natl Acad Sci U S A*, 2004.
564 **101**(49): p. 17174-9.

565 8. Patsoukis N., Brown J., Petkova V., Liu F., Li L., Boussiotis V. A., *Selective effects of*
566 *PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and*
567 *inhibit T cell proliferation.* *Sci Signal*, 2012. **5**(230): p. ra46.

568 9. Zhao Y., Lee C. K., Lin C. H., Gassen R. B., Xu X., Huang Z., et al., *PD-L1:CD80*
569 *Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the*
570 *Inhibitory PD-1 and CTLA-4 Pathways.* *Immunity*, 2019. **51**(6): p. 1059-1073 e9.

571 10. Mayoux M., Roller A., Pulko V., Sammicheli S., Chen S., Sum E., et al., *Dendritic cells*
572 *dictate responses to PD-L1 blockade cancer immunotherapy.* *Science Translational*
573 *Medicine*, 2020. **12**: p. 1-11.

574 11. Porter D. L., Levine B. L., Kalos M., Bagg A., June C. H., *Chimeric antigen*
575 *receptor-modified T cells in chronic lymphoid leukemia.* *N Engl J Med*, 2011. **365**(8): p.
576 725-33.

577 12. Hamid O., Robert C., Daud A., Hodi F. S., Hwu W. J., Kefford R., et al., *Safety and*
578 *tumor responses with lambrolizumab (anti-PD-1) in melanoma.* *N Engl J Med*, 2013.

579 13. **369**(2): p. 134-44.

580 13. Motzer R. J., Escudier B., McDermott D. F., George S., Hammers H. J., Srinivas S., et
581 al., *Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma*. N Engl J Med,
582 2015. **373**(19): p. 1803-13.

583 14. Robert C., Long G. V., Brady B., Dutriaux C., Maio M., Mortier L., et al., *Nivolumab in*
584 *previously untreated melanoma without BRAF mutation*. N Engl J Med, 2015. **372**(4):
585 p. 320-30.

586 15. Borghaei H., Paz-Ares L., Horn L., Spigel D. R., Steins M., Ready N. E., et al.,
587 *Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung*
588 *Cancer*. N Engl J Med, 2015. **373**(17): p. 1627-39.

589 16. Ferris Robert L., Blumenschein George, Fayette Jerome, Guigay Joel, Colevas A.
590 Dimitrios, Licitra Lisa, et al., *Nivolumab for Recurrent Squamous-Cell Carcinoma of*
591 *the Head and Neck*. New England Journal of Medicine, 2016. **375**(19): p. 1856-1867.

592 17. Reck M., Rodriguez-Abreu D., Robinson A. G., Hui R., Csoszi T., Fulop A., et al.,
593 *Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung*
594 *Cancer*. N Engl J Med, 2016. **375**(19): p. 1823-1833.

595 18. Topalian S. L., S. Hodi , F., Brahmer J. R., Gettinger S. N., Smith D. C., McDermott D.
596 F., et al., *Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer*. N
597 Engl J Med, 2012. **366**(26): p. 2443-54.

598 19. Herbst R. S., Soria J. C., Kowanetz M., Fine G. D., Hamid O., Gordon M. S., et al.,
599 *Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer*
600 *patients*. Nature, 2014. **515**(7528): p. 563-7.

601 20. Daud Adil I., Wolchok Jedd D., Robert Caroline, Hwu Wen-Jen, Weber Jeffrey S.,
602 Ribas Antoni, et al., *Programmed Death-Ligand 1 Expression and Response to the*
603 *Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma*. *Journal of Clinical*
604 *Oncology*, 2016. **34**(34): p. 4102-4109.

605 21. Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J. J., Cowey C. L., Lao C. D., et al.,
606 *Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma*. *N Engl*
607 *J Med*, 2015. **373**(1): p. 23-34.

608 22. Kluger H. M., Zito C. R., Turcu G., Baine M. K., Zhang H., Adeniran A., et al., *PD-L1*
609 *Studies Across Tumor Types, Its Differential Expression and Predictive Value in*
610 *Patients Treated with Immune Checkpoint Inhibitors*. *Clin Cancer Res*, 2017. **23**(15): p.
611 4270-4279.

612 23. Carlino Matteo S., Long Georgina V., Schadendorf Dirk, Robert Caroline, Ribas Antoni,
613 Richtig Erika, et al., *Outcomes by line of therapy and programmed death ligand 1*
614 *expression in patients with advanced melanoma treated with pembrolizumab or*
615 *ipilimumab in KEYNOTE-006: A randomised clinical trial*. *European Journal of Cancer*,
616 2018. **101**: p. 236-243.

617 24. Tawbi H. A., Forsyth P. A., Algazi A., Hamid O., Hodi F. S., Moschos S. J., et al.,
618 *Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain*. *N Engl J*
619 *Med*, 2018. **379**(8): p. 722-730.

620 25. Garon E. B., Rizvi N. A., Hui R., Leighl N., Balmanoukian A. S., Eder J. P., et al.,
621 *Pembrolizumab for the treatment of non-small-cell lung cancer*. *N Engl J Med*, 2015.
622 **372**(21): p. 2018-28.

623 26. Hodi Frank Stephen, Chiarion-Silni Vanna, Gonzalez Rene, Grob Jean-Jacques,
624 Rutkowski Piotr, Cowey Charles Lance, et al., *Nivolumab plus ipilimumab or*
625 *nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067):*
626 *4-year outcomes of a multicentre, randomised, phase 3 trial.* The Lancet Oncology,
627 2018. **19**(11): p. 1480-1492.

628 27. Carbone D. P., Reck M., Paz-Ares L., Creelan B., Horn L., Steins M., et al., *First-Line*
629 *Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer.* N Engl J Med, 2017.
630 **376**(25): p. 2415-2426.

631 28. Butte M. J., Keir M. E., Phamduy T. B., Freeman G. J., Sharpe A. H., *PD-L1 interacts*
632 *specifically with B7-1 to inhibit T cell proliferation,* in *Immunity.* 2007: *Immunity.* p.
633 111-122.

634 29. Li Y., Liu S., Hernandez J., Vence L., Hwu P., Radvanyi L., *MART-1-specific*
635 *melanoma tumor-infiltrating lymphocytes maintaining CD28 expression have*
636 *improved survival and expansion capability following antigenic restimulation in vitro.* J
637 *Immunol, 2010. **184**(1): p. 452-65.*

638 30. Yi M., Jiao D., Xu H., Liu Q., Zhao W., Han X., et al., *Biomarkers for predicting efficacy*
639 *of PD-1/PD-L1 inhibitors.* Mol Cancer, 2018. **17**(1): p. 129.

640 31. Liu Chuanyu, Wu Tao, Fan Fei, Liu Ya, Wu Liang, Junkin Michael, et al., *A portable*
641 *and cost-effective microfluidic system for massively parallel single-cell transcriptome*
642 *profiling.* bioRxiv preprint, 2019. doi: <https://doi.org/10.1101/818450>

643 32. Dufour J. H., Dziejman M., Liu M. T., Leung J. H., Lane T. E., Luster A. D.,
644 *IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for*

645 *IP-10 in effector T cell generation and trafficking*. J Immunol, 2002. **168**(7): p.

646 3195-204.

647 33. Carr MW Roth SJ, Luther E, Rose SS, Springer TA, *Monocyte chemoattractant protein*
648 *1 acts as a T-lymphocyte chemoattractant*. Proc. Natl. Acad. Sci. USA, 1994. **91**: p.

649 3652-56.

650 34. Trapnell C., Cacchiarelli D., Grimsby J., Pokharel P., Li S., Morse M., et al., *The*
651 *dynamics and regulators of cell fate decisions are revealed by pseudotemporal*
652 *ordering of single cells*. Nat Biotechnol, 2014. **32**(4): p. 381-386.

653 35. Zheng C., Zheng L., Yoo J. K., Guo H., Zhang Y., Guo X., et al., *Landscape of*
654 *Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing*. Cell, 2017.
655 **169**(7): p. 1342-1356 e16.

656 36. Omilusik K. D., Best J. A., Yu B., Goossens S., Weidemann A., Nguyen J. V., et al.,
657 *Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and*
658 *memory T cell populations during infection*. J Exp Med, 2015. **212**(12): p. 2027-39.

659 37. Dufva Olli, Koski Jan, Maliniemi Pilvi, Ianevski Aleksandr, Klievink Jay, Leitner Judith,
660 et al., *Integrated drug profiling and CRISPR screening identify essential pathways for*
661 *CAR T-cell cytotoxicity*. 2020. **135**(9): p. 597-609.

662 38. Xiong W., Chen Y., Kang X., Chen Z., Zheng P., Hsu Y. H., et al., *Immunological*
663 *Synapse Predicts Effectiveness of Chimeric Antigen Receptor Cells*. Mol Ther, 2018.
664 **26**(4): p. 963-975.

665 39. Simon S., Labarriere N., *PD-1 expression on tumor-specific T cells: Friend or foe for*
666 *immunotherapy?* Oncoimmunology, 2017. **7**(1): p. e1364828.

667 40. Huang R. Y., Francois A., McGray A. R., Miliotto A., Odunsi K., *Compensatory*
668 *upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent*
669 *checkpoint blockade in metastatic ovarian cancer*. Oncoimmunology, 2017. **6**(1): p.
670 e1249561.

671 41. Qin Weiting, Hu Lipeng, Zhang Xueli, Jiang Shuheng, Li Jun, Zhang Zhigang, et al.,
672 *The Diverse Function of PD-1/PD-L Pathway Beyond Cancer*. Frontiers in
673 Immunology, 2019. **10**.

674 42. Chen Nanshan, Zhou Min, Dong Xuan, Qu Jieming, Gong Fengyun, Han Yang, et al.,
675 *Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus*
676 *pneumonia in Wuhan, China: a descriptive study*. The Lancet, 2020. **395**(10223): p.
677 507-513.

678 43. Huang Chaolin, Wang Yeming, Li Xingwang, Ren Lili, Zhao Jianping, Hu Yi, et al.,
679 *Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China*.
680 The Lancet, 2020. **395**(10223): p. 497-506.

681 44. Liu Y., Zhang C., Huang F., Yang Y., Wang F., Yuan J., et al., *2019-novel coronavirus*
682 *(2019-nCoV) infections trigger an exaggerated cytokine response aggravating lung*
683 *injury*. ChinaXiv:202002.00018, 2020.

684 45. Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., et al., *Single-cell landscape of*
685 *bronchoalveolar immune cells in patients with COVID-19*. Nat Med, 2020.

686 46. Garcia-Diaz A., Shin D. S., Moreno B. H., Saco J., Escuin-Ordinas H., Rodriguez G. A.,
687 et al., *Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2*
688 *Expression*. Cell Rep, 2017. **19**(6): p. 1189-1201.

689 47. Moon J. W., Kong S. K., Kim B. S., Kim H. J., Lim H., Noh K., et al., *IFNgamma*
690 *induces PD-L1 overexpression by JAK2/STAT1/IRF-1 signaling in EBV-positive*
691 *gastric carcinoma*. Sci Rep, 2017. **7**(1): p. 17810.

692 48. Gao Q., Dong X., Xu Q., Zhu L., Wang F., Hou Y., et al., *Therapeutic potential of*
693 *CRISPR/Cas9 gene editing in engineered T-cell therapy*. Cancer Med, 2019. **8**(9): p.
694 4254-4264.

695 49. Lamichhane P., Karyampudi L., Shreeder B., Krempski J., Bahr D., Daum J., et al.,
696 *IL10 Release upon PD-1 Blockade Sustains Immunosuppression in Ovarian Cancer*.
697 Cancer Res, 2017. **77**(23): p. 6667-6678.

698 50. Brooks D. G., Ha S. J., Elsaesser H., Sharpe A. H., Freeman G. J., Oldstone M. B.,
699 *IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during*
700 *persistent viral infection*. Proc Natl Acad Sci U S A, 2008. **105**(51): p. 20428-33.

701 51. Sun Z., Fourcade J., Pagliano O., Chauvin J. M., Sander C., Kirkwood J. M., et al.,
702 *IL10 and PD-1 Cooperate to Limit the Activity of Tumor-Specific CD8+ T Cells*. Cancer
703 Res, 2015. **75**(8): p. 1635-44.

704 52. Shi F., Shi M., Zeng Z., Qi R. Z., Liu Z. W., Zhang J. Y., et al., *PD-1 and PD-L1*
705 *upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in*
706 *hepatocellular carcinoma patients*. Int J Cancer, 2011. **128**(4): p. 887-96.

707 53. Francisco L. M., Sage P. T., Sharpe A. H., *The PD-1 pathway in tolerance and*
708 *autoimmunity*. Immunol Rev, 2010. **236**: p. 219-42.

709 54. Han J., Duan J., Bai H., Wang Y., Wan R., Wang X., et al., *TCR Repertoire Diversity of*
710 *Peripheral PD-1(+)CD8(+) T Cells Predicts Clinical Outcomes after Immunotherapy in*

711 *Patients with Non-Small Cell Lung Cancer.* Cancer Immunol Res, 2020. **8**(1): p.

712 146-154.

713 55. Zhang C., Wu Z., Li J. W., Zhao H., Wang G. Q., *Cytokine release syndrome in severe*
714 *COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce*
715 *mortality.* Int J Antimicrob Agents, 2020. **55**(5): p. 105954.

716 56. Chua Robert Lorenz, Lukassen Soeren, Trump Saskia, Hennig Bianca P., Wendisch
717 Daniel, Pott Fabian, et al., *COVID-19 severity correlates with airway*
718 *epithelium–immune cell interactions identified by single-cell analysis.* Nat Biotechnol,
719 2020.

720 57. Robilotti E. V., Babady N. E., Mead P. A., Rolling T., Perez-Johnston R., Bernardes M.,
721 et al., *Determinants of COVID-19 disease severity in patients with cancer.* Nat Med,
722 2020.

723 58. Xu Z., Wang Y., Zhang J., Huang L., Zhang C., Liu S., et al., *Pathological findings of*
724 *COVID-19 associated with acute respiratory distress syndrome.* Lancet Respir. Med.,
725 2020. **8**: p. 420-22.

726 59. de Brito R. C., Lucena-Silva N., Torres L. C., Luna C. F., Correia J. B., da Silva G. A.,
727 *The balance between the serum levels of IL-6 and IL-10 cytokines discriminates mild*
728 *and severe acute pneumonia.* BMC Pulm Med, 2016. **16**(1): p. 170.

729 60. Gao Q., Ouyang W., Kang B., Han X., Xiong Y., Ding R., et al., *Selective targeting of*
730 *the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor*
731 *regression.* Theranostics, 2020. **10**(11): p. 5137-5153.

732

733

734
735
736
737
738
739

740 **Figure legend**

741 **Fig1. PD-L1 expression on melanoma MEL-526 cells pulsed with MART-1₂₆₋₃₅ peptide**
742 **inhibited cytotoxicity and cytokine secretion of TCR-T_{MART-1}.** (A) Overview of the study
743 design. T_{null}, control T cells; TCR-T_{MART-1}, MART-1 specific TCR-T cells; T_{total}, includes both
744 T_{null} and TCR-T_{MART-1}. (B) TCR-T_{MART-1} cytotoxicity against MEL-526 cells loaded with
745 MART-1₂₆₋₃₅ peptide or not at E:T ratio of 1:1. Error bars represent S.E.M. (*) 0.01<P < 0.05, (**)
746 0.001<P < 0.01, (***) P < 0.001. NS, not significant. (C) Flow cytometric analysis of PD-L1
747 expression on PD-L1^{low}-, PD-L1^{int}- and PD-L1^{high} MEL-526 cells. (D) TCR-T_{MART-1} cytotoxicity
748 was inhibited by tumor PD-L1 in a dose dependent manner. T and TCR-T cells were incubated
749 with different proportions of PD-L1⁺ MEL-526 cells for 24 h. (E) Secretion of Granzme A and
750 Granzyme B by TCR-T_{MART-1} was inhibited by increased tumor PD-L1. T_{null} and TCR-T_{MART-1}
751 were co-cultured with MART-1₂₆₋₃₅ peptide loaded-MEL526 cells with different proportions of
752 PD-L1 expression at E:T ratio of 1:1, and the secretion was detected by Cytometric Bead Array
753 (CBA) system. (F) Secretion of TNF- α by TCR-T_{MART-1} was inhibited by increased proportion of
754 PD-L1 expression among MEL-526 cells. (G) Secretion of IFN- γ and IL-2 by TCR-T_{MART-1} was
755 inhibited by increased percentage of PD-L1 expression among MEL-526 cells.
756
757 **Fig2. Single-cell level analysis of T cells responding to peptide-pulsed MEL-526 cells.** (A) Cell
758 number of T_{null}, TCR-T_{MART-1}, MEL-526 (non PD-L1), and MEL-526 (PD-L1 OE). (B) The
759 UMAP projection of T cells and tumor cells, showing 20 main clusters in different colors. The
760 phenotype description of each cluster is determined by marker gene expression of T cells and
761 tumor cells. (C) Violin plots showing the expression profile of marker genes of T cells and tumor
762 cells in the 20 clusters. (D) Heatmap of the 20 clusters with unique signature genes. (E) The
763 ordering of T cells along pseudotime in a two-dimensional state-space defined by Monocle2. Cell
764 orders were inferred from the expression of most dispersed genes across T cell populations. Each
765 point corresponds to a single cell, and each color represents a T cell cluster. (F) The expression of
766 genes was changed along the cell order.

767
768 **Figure 3. Cluster composition and gene expression analysis of T cells responding to different**
769 **levels of tumor PD-L1.** (A) Cluster composition of T_{null} and TCR-T_{MART-1}. (B) Heatmap showing

770 T_{null} and TCR-T_{MART-1} with unique signature genes. **(C)** Volcano plot showing differentially
771 expressed genes in T_{null} (left) and TCR-T_{MART-1} (right) responding to differential proportion of
772 PD-L1⁺ tumor. The cutoff is $|\log FC| \geq 1$ and $p\text{-value} < 0.01$. **(D)** Bubble plot showing the top 10
773 pathways in T_{null} (left) and TCR-T_{MART-1} (right) compared to the control group, respectively. The
774 color represents pvalue and the size represents gene ratio. **(E)** GSVA analysis of cell
775 differentiation status of T_{null} and TCR-T_{MART-1}.
776

777 **Figure 4. Gene expression of cytokine, chemokine, their receptors, and transcription**
778 **regulators in T_{null} and TCR-T_{MART-1}.** **(A)** The expression file of cytokines in T_{null} and
779 TCR-T_{MART-1}. **(B)** The expression profile of cytokine receptors in T_{null} and TCR-T_{MART-1}. **(C)** The
780 expression file of chemokines in T_{null} and TCR-T_{MART-1}. **(D)** The expression profile of chemokine
781 receptors in T_{null} and TCR-T_{MART-1}. **(E)** The expression profile of transcription factors in T_{null} and
782 TCR-T_{MART-1}. **(F)** UMAP projection of tumor cells, and the relative normalized expression of
783 *XCL1*, *XCL2*, *GZMB*, *IL32*, *IL13*, *IL2RA*, *CXCL9*, *CD2*, *CSF2*, and *IL3*. **(G)** The boxplots
784 showing the expression level of *XCL1*, *XCL2* and *GZMB* in nonPDL1 or PDL1-expressing tumor
785 cells. **(H)** The bubble plot showing the expression of T cell marker genes in onPDL1 or
786 PDL1-expressing tumor cells. **(I)** UMAP projection of T cells and the relative normalized
787 expression of *MAGEA4* (left) and the violin plot showing the expression of *MAGEA4* in T_{null} and
788 TCR-T_{MART-1} (right).
789

790 **Figure 5. Enrichment of cell death pathways in tumor cells and T cells.** **(A)** GSVA analysis of
791 cell death pathways in tumor cells (top) and violin plot showing the expression level of PD-L1 in
792 tumor cells (bottom). **(B)** GSVA analysis of cell death pathways in tumor cells expressing PD-L1
793 or not. **(C)** Heatmap of gene members from different cell death pathways. **(D)** Bubble plot
794 showing the top 10 pathways enriched in different subsets of tumor cells. The color represents p
795 value and the size represents gene ratio. **(E)** GSVA analysis of cell death pathways in different
796 subsets of T cells.
797

798 **Figure 6. PD-L1 network and expression of immune checkpoint molecules in T cells.** **(A)** The
799 percentage (left) and intensity (right) of PD-L1 expression on T cells were assessed by FACS after
800 incubation with MEL-526 cells for 24 h ($n = 3$). **(B)** The percentage (left) and intensity (right) of
801 PD-L1 expression on tumor cells after incubation with MEL-526 cells for 24 h ($n = 3$). **(C)** The
802 percentage (left) and intensity (right) of PD-1 expression on T cells after incubation with
803 MEL-526 cells for 24 h ($n = 3$). **(D)** The percentage (left) and intensity (right) of CD80
804 expression on T cells after incubation with MEL-526 cells for 24 h ($n = 3$). **(E)** The percentage
805 (left) and intensity (right) of CD80 expression on tumor cells after incubation with MEL-526 cells
806 for 24 h ($n = 3$). **(F)** The percentage (left) and intensity (right) of CTLA-4 expression on T cells

807 after incubation with MEL-526 cells for 24 h (n = 3). **(G)** The percentage (left) and intensity
808 (right) of CD28 expression on T cells after incubation with MEL-526 cells for 24 h (n = 3). **(H)**
809 Expression of inhibitory checkpoint molecules in T_{null} and TCR-T_{MART-1} with different ratios of
810 PD-L1⁺ and PD-L1⁻ tumor cells. **(I)** Expression of stimulatory checkpoint molecules in T_{null} and
811 TCR-T_{MART-1}.

812

813 **Figure 7. Single-cell immune profiling in COVID-19 patients.** **(A)** The UMAP projection of
814 BALF immune cells from HC and COVID-19 patients. **(B)** *PDCD1* expression in different cell
815 subsets from HC and COVID-19 patients. **(C)** *CD274* expression in different cell subsets from HC
816 and COVID-19 patients. **(D)** Violin plots showing the expression status of *STAT1* in different cell
817 subsets from HC, Mild, and Severe COVID-19 patients. **(E)** Heatmap of inhibitory checkpoint
818 molecules in HC as well as Mild and Severe COVID-19 patients. **(F)** Heatmap of stimulatory
819 checkpoint molecules in HC as well as Mild and Severe COVID-19 patients.

820

821

822

823

824

825

826

827

828

829

830

831 **Figure S1. TCR_{MART-1} construction.** **(A)** Schematic design of TCR_{MART-1}. **(B)** Expression of
832 TCR_{MART-1} on CD8⁺ T cells transfected by lentivirus before (middle) and after (right) cell sorting.
833 **(C)** Killing of T2 cells by T_{null} and TCR-T_{MART-1} after co-incubation for 6 h at E:T ratio of 1:1. **(D)**
834 PD-L1 was over expressed in MEL-526 cells. **(E)** Violin plot showing the expression of
835 TCR_{MART-1} in different cell clusters.

836

837 **Figure S2. Volcano plot showing differentially expressed genes across T cell clusters.** Each
838 red/blue dot denotes an individual upregulated/downregulated gene ($\log_{10} \text{FC} \geq 1$ and $p \text{ value} <$
839 0.01).

840

841 **Figure S3. Gene expression and signaling pathways in T cells responding to different**
842 **expression of tumor PD-L1.** **(A)** The expression of DEGs in T_{null} targeting PD-L1^{low}-, PD-L1^{int}-,
843 PD-L1^{high}-expressing tumor cells (left) and the expression of DEGs in TCR-T_{MART-1} (right). **(B)**
844 The bubble plot showing the top 5 pathways in TCR-T_{MART-1} targeting PDL1^{low}-, PDL1^{int}-,
845 PDL1^{high} tumor cells.

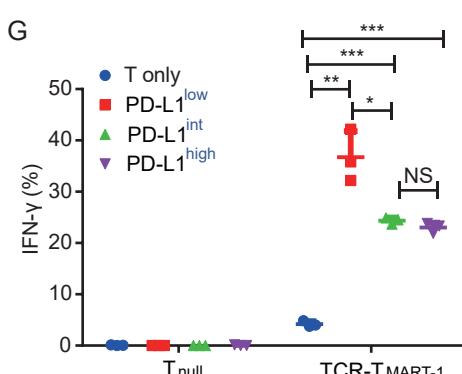
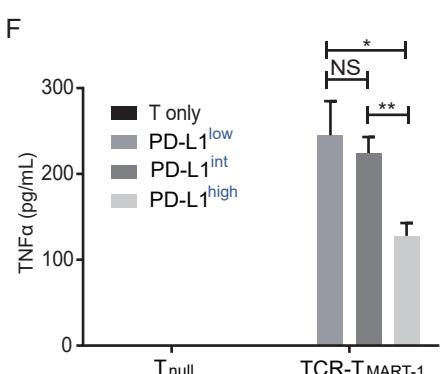
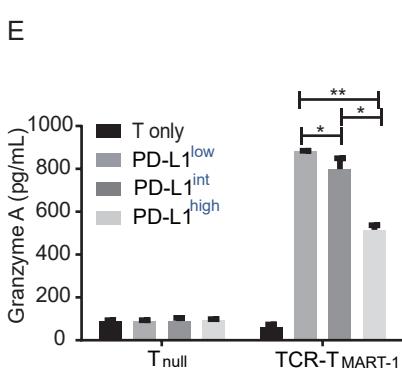
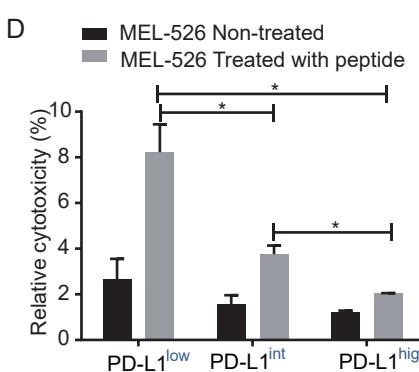
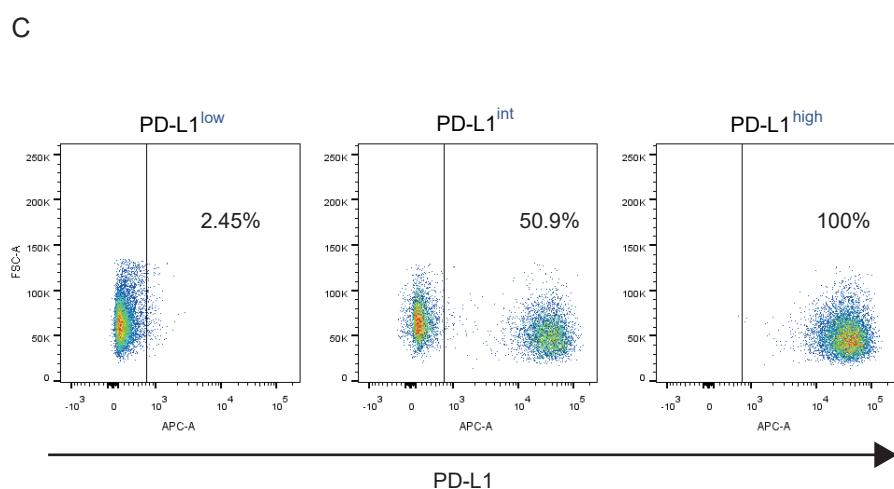
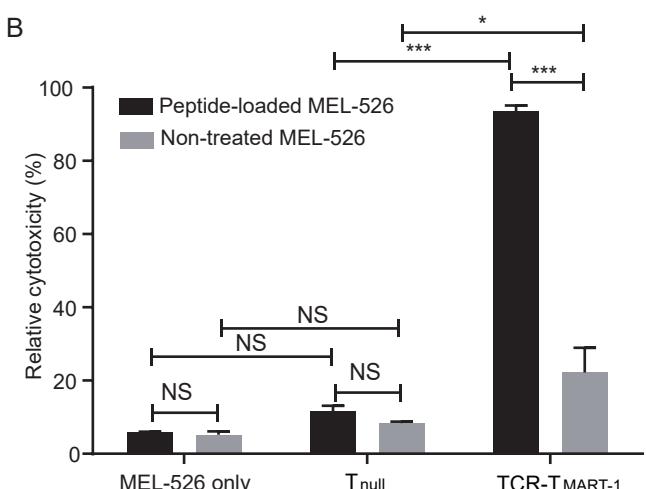
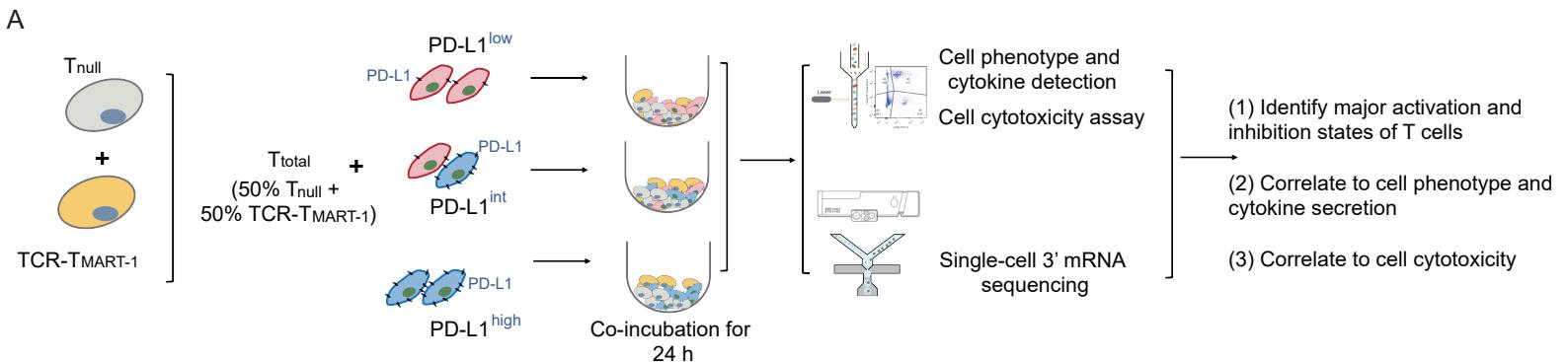
846

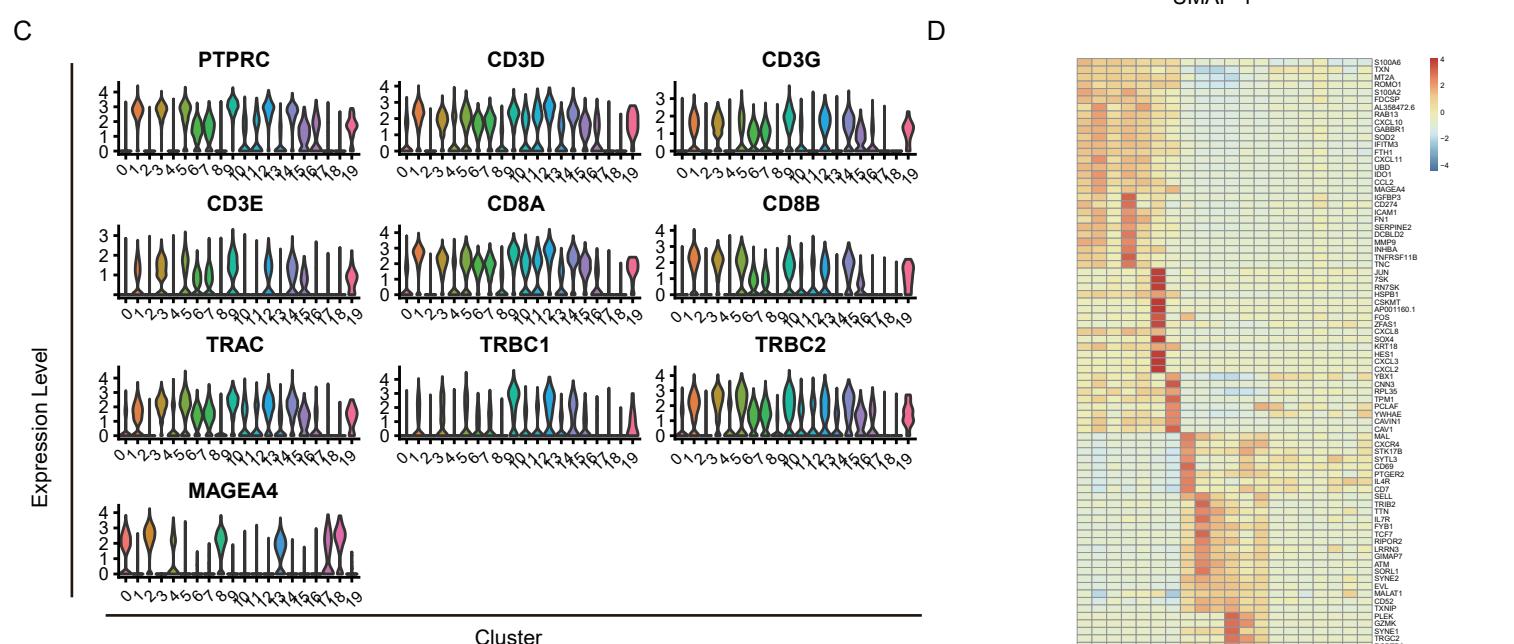
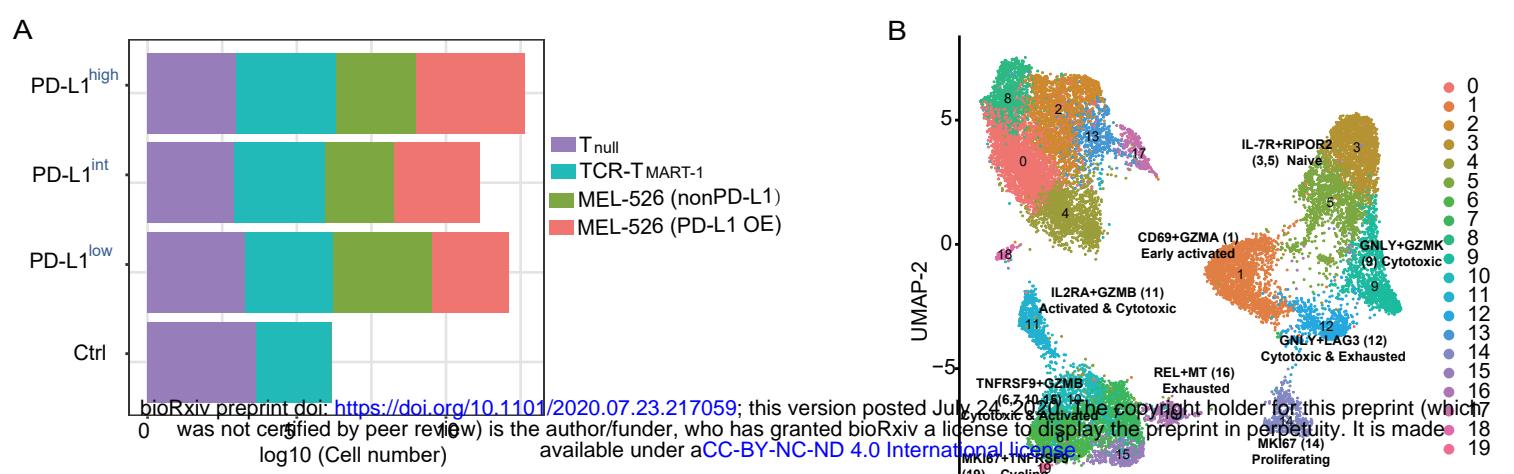
847 **Figure S4. Expression of cytokines and transcription factors in T cells.** **(A)** The bar plot
848 showing the average expression level of *IL10*, *IL13*, and *IL19* in T_{null} and TCR-T_{MART-1}. **(B)** The

849 bar plot showing the average expression level of *IRF4*, *NFKB1*, and *RBPJ* in T_{null} and
850 TCR- $T_{\text{MART-1}}$. **(E)** *EOMES* expression in T_{null} and TCR- $T_{\text{MART-1}}$.

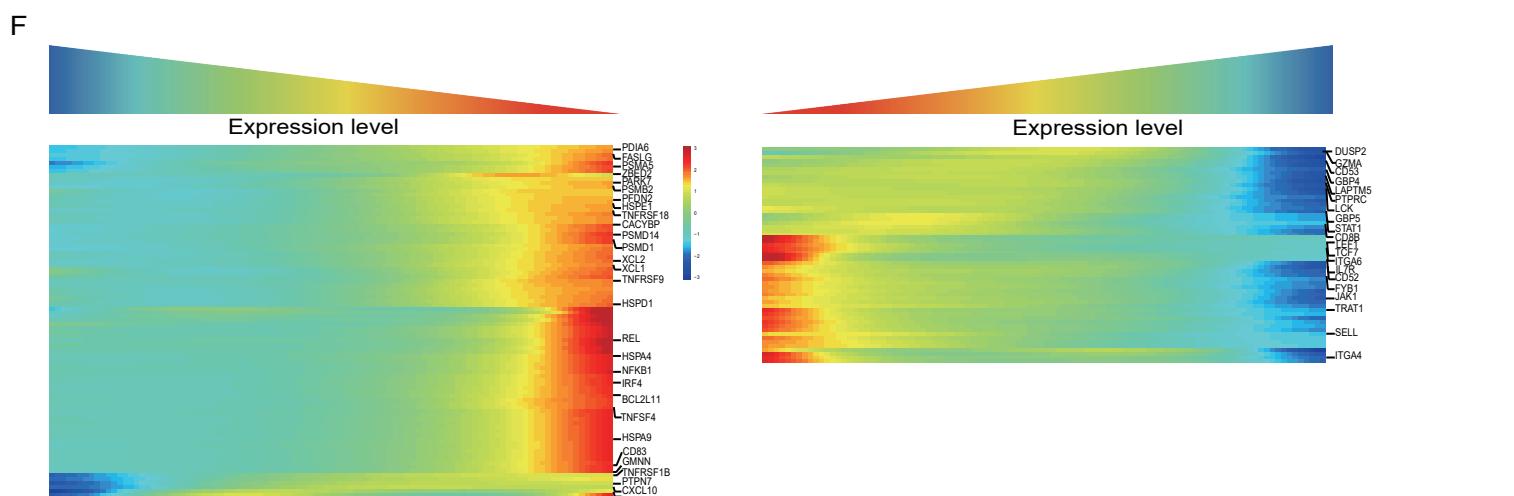
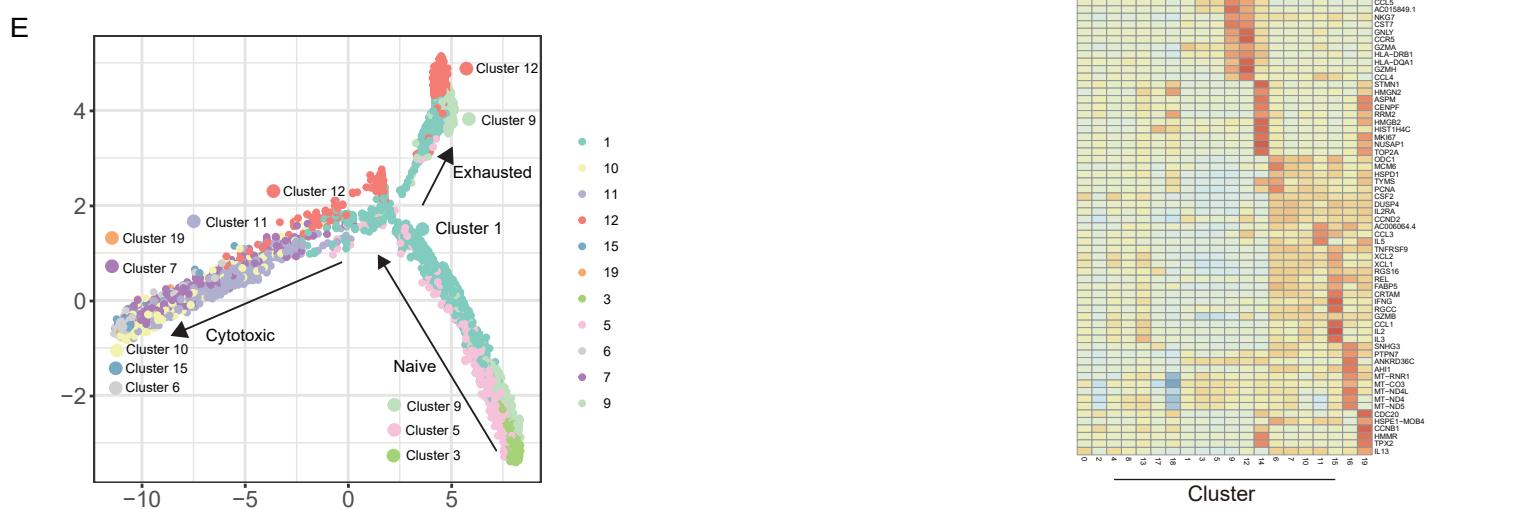
851

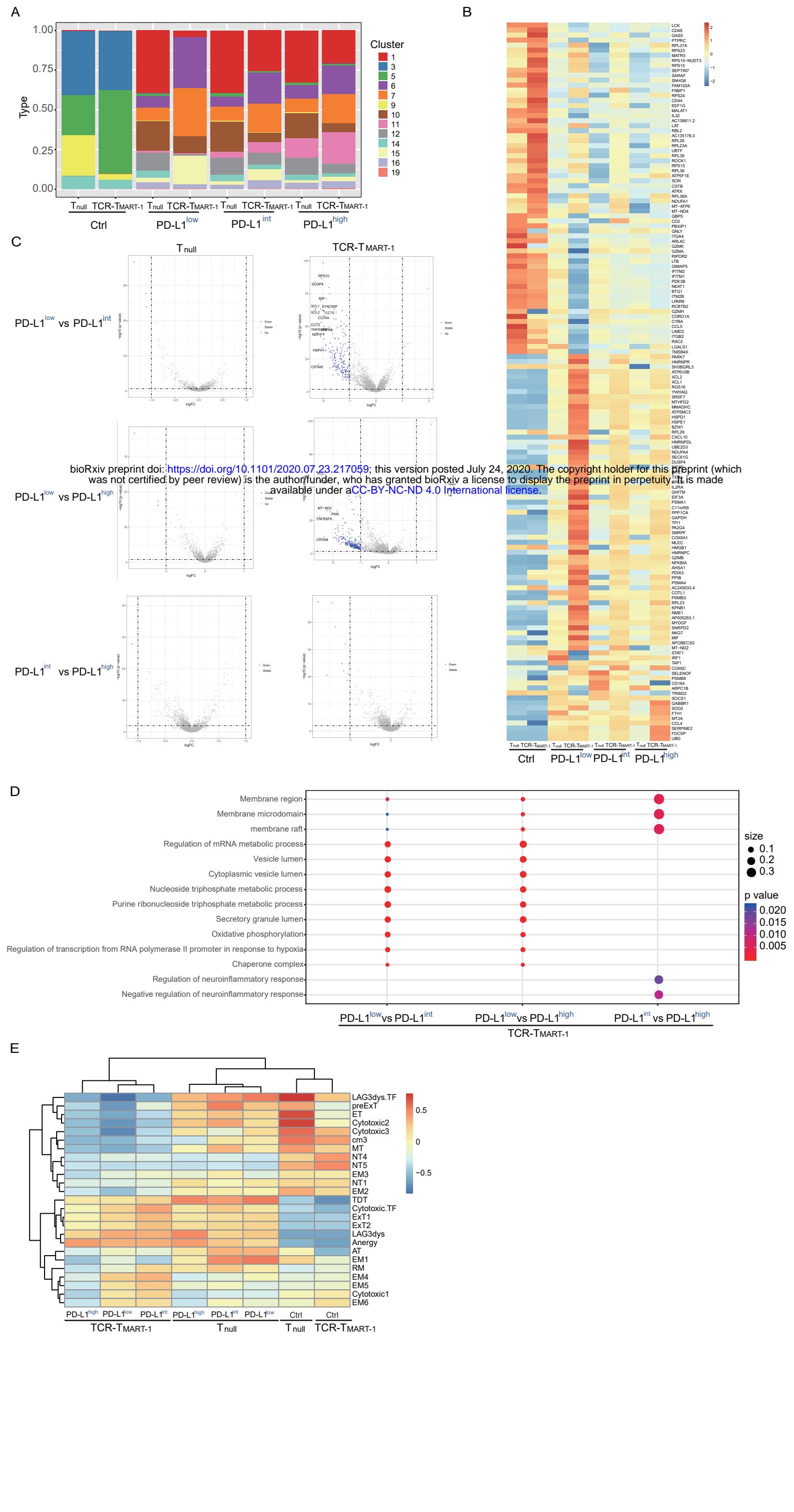
852 **Figure S5. Expression of cell death associated genes.** **(A)** The proportion of cells expressing
853 *TRADD*, *BID*, *FAS*, *FASLG*, and *BECN1* in tumor cells. **(B)** The proportion of cells expressing
854 *GLS2*, *VDAC3*, *CARS*, *GPX4*, *HSPB1*, and *NFE2L2* in tumor cells. **(C)** Heatmap showing the
855 expression of cell death associated genes in T_{null} and TCR- $T_{\text{MART-1}}$.

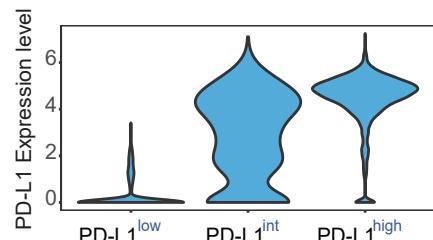
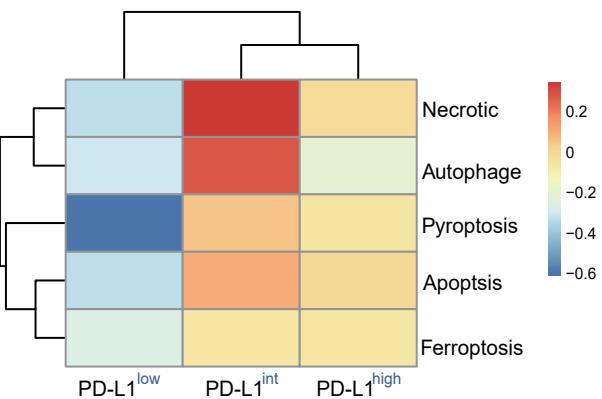







856

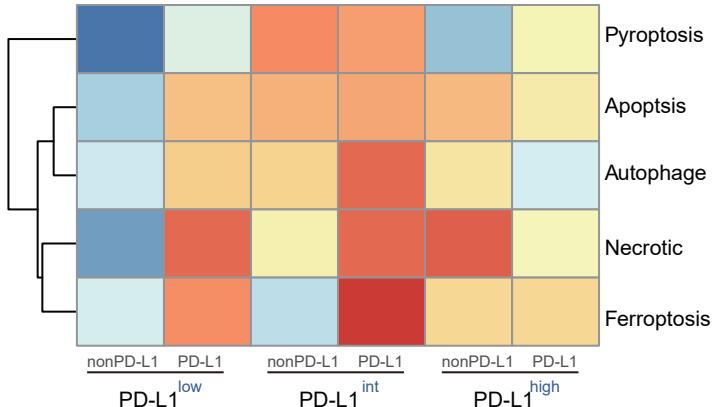


857 **Figure S6. Transcriptional profiles of *CD274* and *PDCD1* in T cells and tumor cells.** **(A)** Bar
858 plot showing the average expression level (left) and percentage (right) of *CD274* in T_{null} and
859 TCR- $T_{\text{MART-1}}$. **(B)** Bar plot showing the average expression level (left) and percentage (right) of
860 *CD274* in MEL-526 cells. **(C)** Bar plot showing the average expression level (left) and percentage
861 (right) of *PDCD1* in T_{null} and TCR- $T_{\text{MART-1}}$. **(D)** Bar plot showing the average expression level
862 (left) and percentage (right) of *PDCD1* in MEL-526 cells.

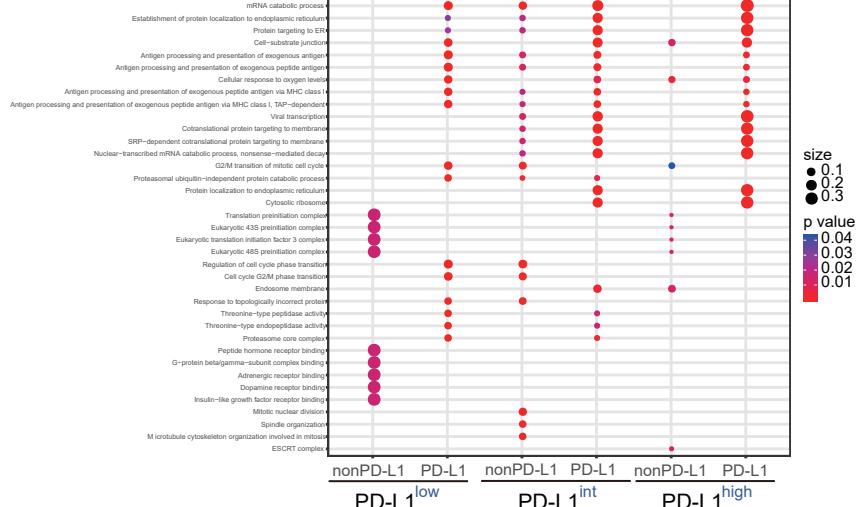
863

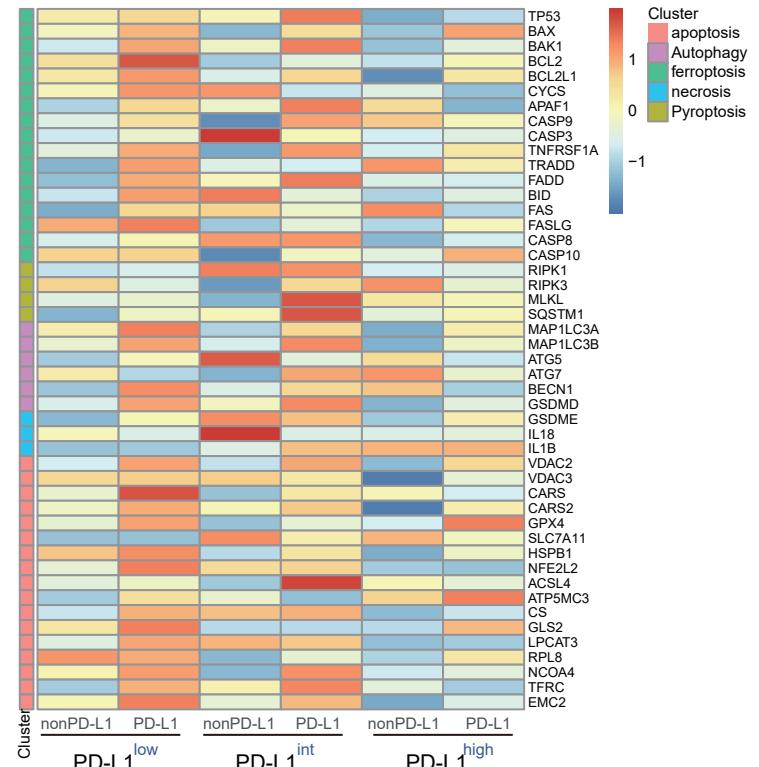


864 **Figure S7. Immune profiling of checkpoint molecules in COVID-19 patients.** **(A)** *PDCD1*
865 expression was upregulated in mild and severe COVID-19 patients compared to HC. Error bars
866 represent \pm standard error. **(B)** *CD274* expression was upregulated in mild and severe COVID-19
867 patients compared to HC. **(C)** Heatmap showing the expression pattern of inhibitory checkpoint
868 molecules in different cell subsets from HC, mild and severe COVID-19 patients. **(D)** Heatmap
869 showing the expression pattern of stimulatory checkpoint molecules in different cell subsets.

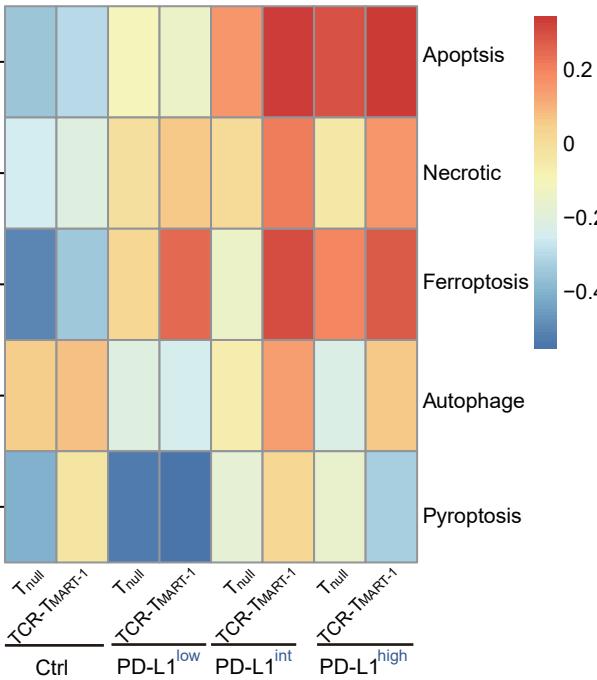

870

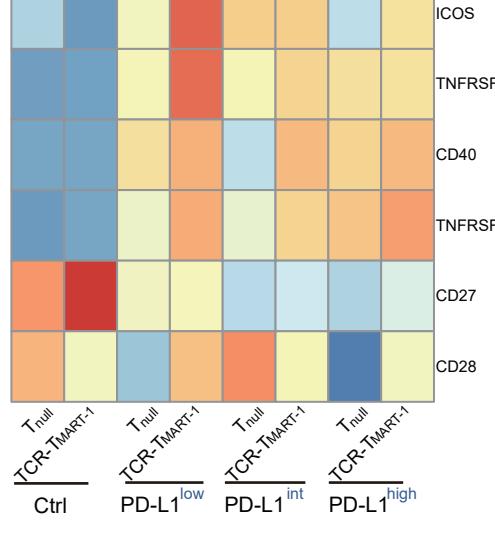
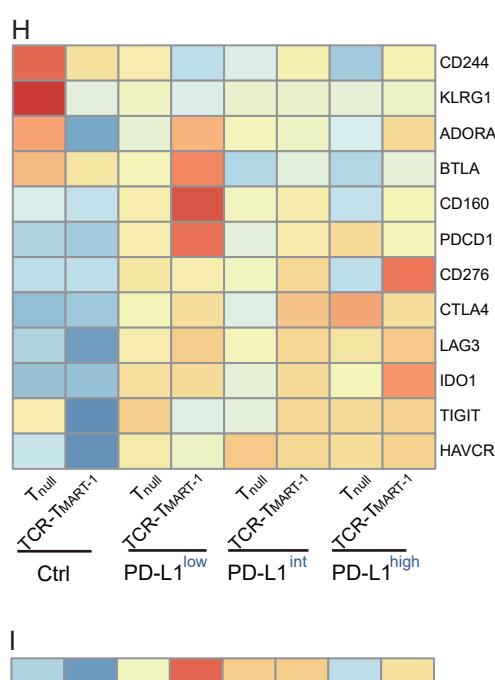
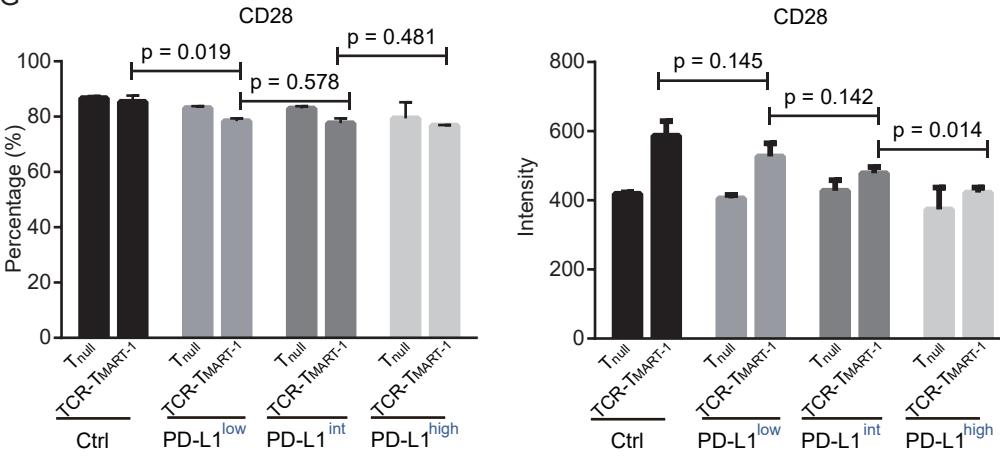
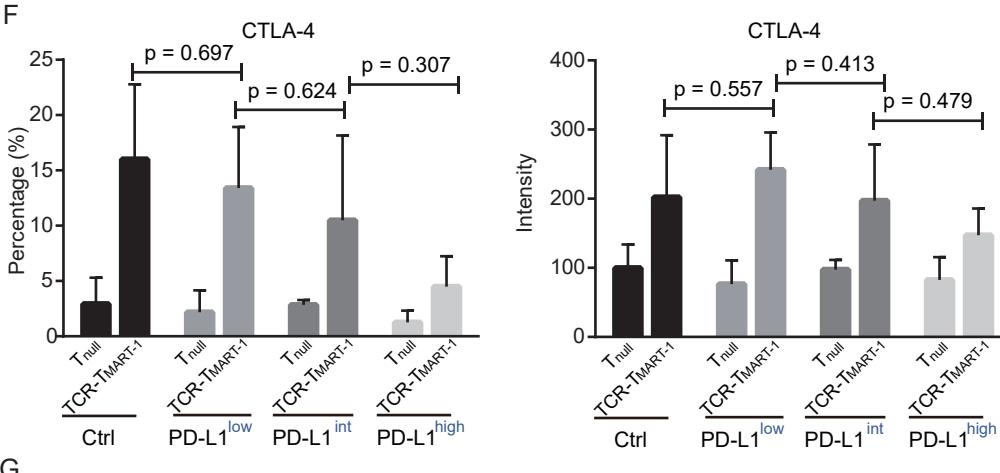
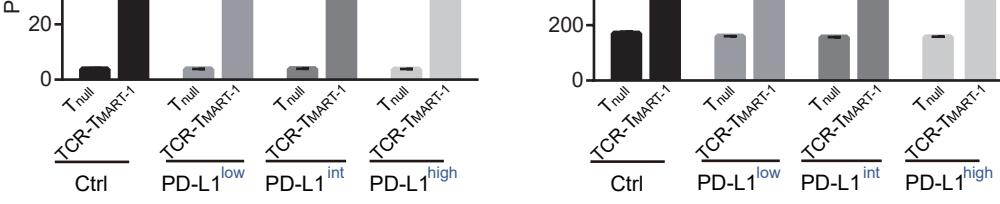
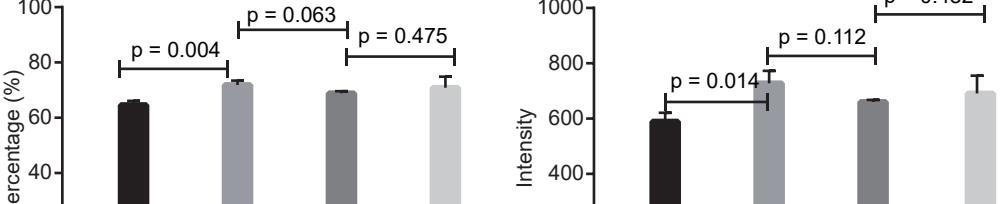
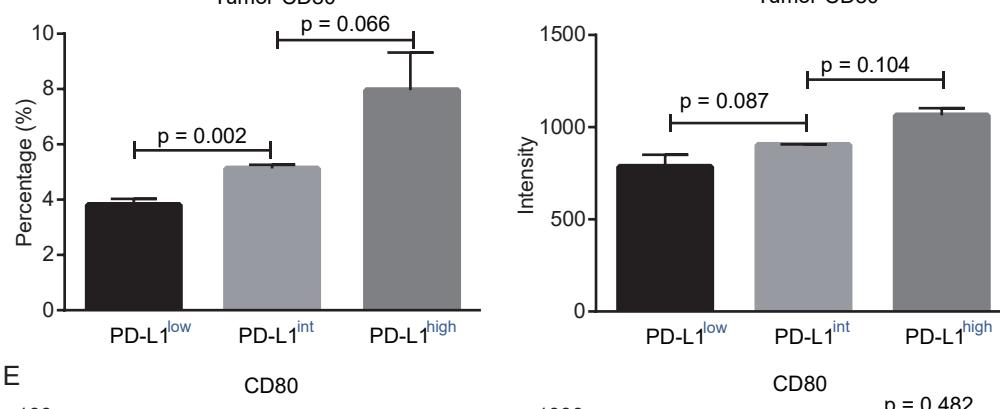
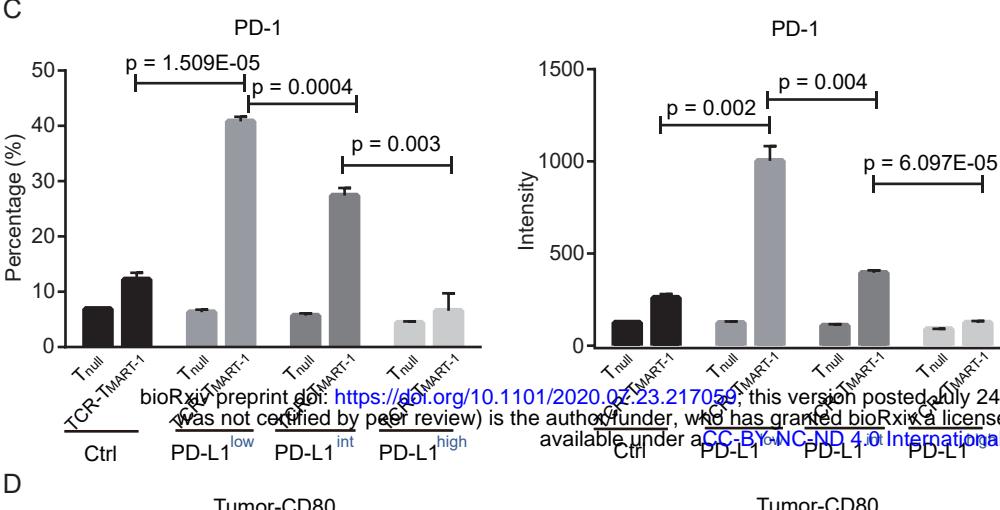
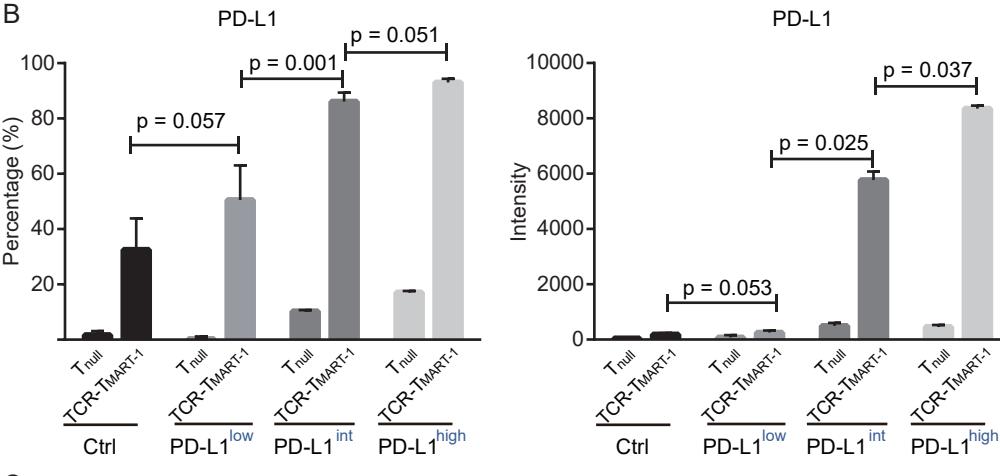
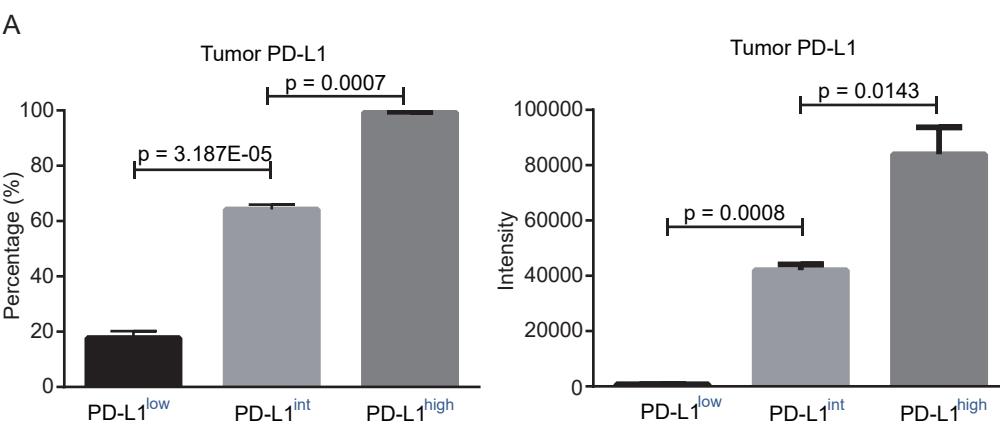


bioRxiv preprint doi: <https://doi.org/10.1101/2020.07.23.217059>; this version posted July 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

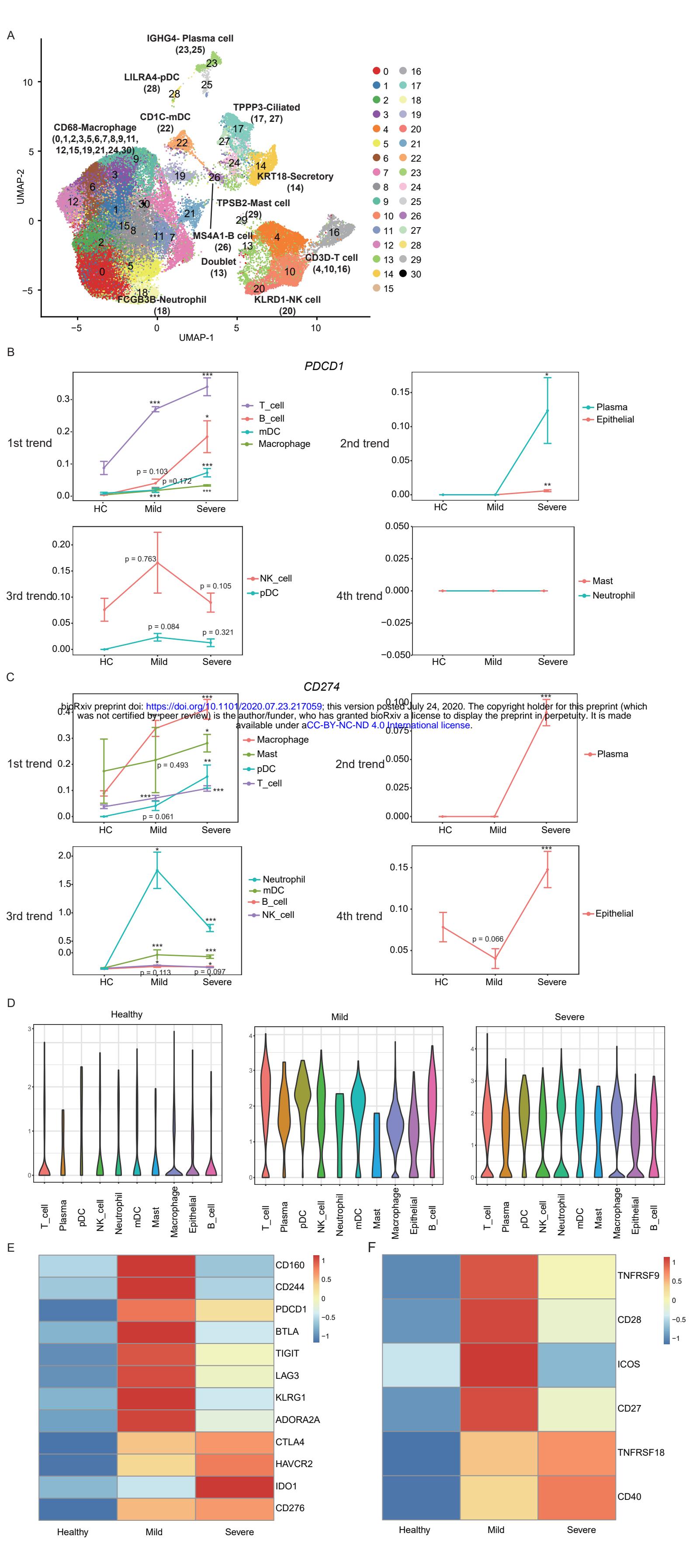



A


B


D


C

E

