

1

2

3

Protective mutation A673T as a potential gene therapy for most forms of APP Familial Alzheimer's Disease

6

7 Antoine Guyon^{1*}, Joël Rousseau¹, Gabriel Lamothe¹, Jacques P. Tremblay¹,

8

⁹ ¹Molecular Medicine Department, Laval University and Neuroscience Axis of Centre de
¹⁰ Recherche du Centre Hospitalier Universitaire de Québec.

11

12 *Corresponding author

13 Email : antoine.guyon.1@ulaval.ca

14

15

16 **Abstract**

17 The accumulation of plaque in the brain leads to the onset and development of
18 Alzheimer's disease. The Amyloid precursor protein (APP) is usually cut by α -secretase,
19 however an abnormal cleavage profile by β -secretase (BACE1) leads to the accumulation of
20 A β peptides, which forms these plaques. Numerous APP gene mutations favor plaque
21 accumulation, causing Familial Alzheimer Disease (FAD). However, a variant of the APP gene
22 (A673T) in Icelanders reduces BACE1 cleavage by 40 %. A library of plasmids containing APP
23 genes with 29 FAD mutations with or without the additional A673T mutation was generated
24 and transfected in neuroblastomas to assess the effect of this mutation on A β peptide
25 production. In most cases the production of A β peptides was decreased by the co-dominant
26 A673T mutation. The reduction of A β peptide concentrations for the London mutation (V717I)
27 even reached the same level as A673T carriers. These results suggest that the insertion of
28 A673T in the APP gene of genetically susceptible FAD patients may prevent the onset of, slow
29 down, or stop the progression of the disease.

30

31 **Introduction**

32 The ageing population in the Western world is of grave importance as both a
33 socioeconomic issue and a strain on the medical system (1). More than 5% of the population
34 above 60 years old is affected by dementia; of these, two thirds are the result of Alzheimer's
35 disease (AD) (2-4). After the age of 65, the prevalence of AD doubles every five years. As a
36 result, individuals aged 90 years or older have a prevalence of AD of greater than 25% (4). As
37 baby boomers, one of the most populous generational groups in American history, enter
38 retirement, AD is becoming an increasingly heavy burden on the medical system (1, 5). As
39 such, an increased focus on the diagnostic and treatment of this disease has become critical.

40 AD diagnosis is confirmed by two major histopathologic hallmarks: neurofibrillary
41 tangles and senile plaques. The former are somatic inclusions of the microtubule-associated tau
42 protein while the latter are comprised of extracellular deposits of amyloid β (A β) peptides.
43 These plaques, comprised mostly of β -amyloid peptides, are a central pathological feature of
44 AD (6, 7). The β -amyloid peptides are the result of sequential proteolytic processing of the
45 amyloid- β precursor protein (APP) by β - and γ -secretases (8). APP is a membrane protein
46 expressed in many tissues but mostly in neuron synapses.

47 β -secretase, also known as aspartyl protease β -site APP cleaving enzyme 1 (BACE1),
48 preferentially cleaves APP at the β -site in exon 16 (between Met671 and Asp672) (9, 10).
49 Subsequent cleavage by γ -secretase in exon 17 releases the β -amyloid peptides (40-42 amino
50 acids long). In AD-free individuals, APP is preferentially processed by α -secretase prior to the
51 cleavage by γ -secretase. The α -secretase enzyme targets the α -site located within the β -amyloid
52 peptide sequence (Fig 1) and prevents the formation of the A β peptides thus reducing the
53 formation of insoluble oligomers and protofibrils resulting from the aggregation of these
54 peptides. These oligomers and protofibrils accumulate to form neurotoxic senile and neuritic
55 plaques.

56

57 **Fig 1: APP proteolytic pathways.** α : α -secretase. **sAPP α** : soluble APP α fragment. β : β -
58 secretase. **sAPP β** : soluble APP β fragment. γ : γ -secretase. **AICD**: APP Intracellular domain.

59

60 Initially, many big pharma companies attempted to inhibit BACE1 to decrease A β
61 peptides concentration. However, numerous clinical studies targeting BACE1 failed due to
62 notable side effects (11, 12). Indeed, BACE1 was found to be significantly implicated in several
63 other pathways necessary for synaptic transmission (13-15). The soluble APP β fragment
64 (sAPP β) generated by the cleavage of APP by BACE1 is also involved in axonal generation

65 and neuronal death mediation (16) (Fig 1). This implies that an effective treatment for AD must
66 decrease A β peptide concentrations without eliminating either sAPP β or BACE1. Since
67 eliminating the enzyme responsible for the excessive cleavage is unrealistic as a treatment,
68 targeting the APP gene itself must become the focus of many future gene-based therapies.

69 Many APP mutations cause early-onset Familial Alzheimer's disease (FAD). However,
70 not all mutations are made equal; rather than causing FAD, some APP mutations decrease the
71 incidence of this disease. Indeed, in 2012, Jonsson et al. published a study in which they
72 searched for APP coding variants in a sample of 1,795 Icelanders using whole-genome
73 sequencing (17). Their goal was to find low-frequency variants of the APP gene, which
74 significantly reduced the risk of AD. Ultimately, they found a point mutation in the APP gene
75 wherein the alanine at position 673 was substituted for a threonine (A673T). This mutation
76 protects against AD and is adjacent to the β -site in exon 16 of the APP gene. The amino acid in
77 question is located at position 2 in the ensuing β -amyloid peptide. Due to the proximity of the
78 A673T mutation to the β -site, the authors proposed that A673T specifically impairs the cleavage
79 of the APP protein by β -secretase.

80 In fact, the A673T mutation was shown to reduce the formation of β -amyloid peptides in
81 wildtype APP by about 40% *in vitro* (17). The strong protective effect of the A673T mutation
82 against AD serves as a proof of principle that reducing the β -cleavage of APP may protect
83 against the disease. Moreover, the A673T mutation may also help to prolong the lifespan of its
84 carriers. Indeed, individuals with this mutation were reported to have 1.47 times greater chances
85 of reaching the age of 85 when compared to non-carriers. Jonsson et al. concluded that the
86 A673T mutation confers a strong protection against AD (17). Later, Kero et al. found the A673T
87 variant in an individual who passed away at the age of 104.8 years with little β -amyloid
88 pathology (18). This report supports the hypothesis that A673T protects the brain against β -
89 amyloid accumulation and AD.

90 Although the A673T mutation is protective for people with an otherwise wild type APP
91 gene, it is not known whether the A673T mutation will reduce the formation of β -amyloid
92 peptides when the APP gene contains a deleterious FAD mutation. We thus aimed to study the
93 interaction between the A673T mutation and various FAD mutations to determine to what
94 extent it can provide a protective effect in patients. If the A673T is protective for FAD, this
95 modification could eventually be introduced in an FAD patient genome with the CRISPR/Cas9
96 derived gene editing technology.

97 We report here that the presence of the Icelandic mutation (A673T), in an APP gene
98 containing most of the FAD mutations, reduces the production of the A β 40 and A β 42 peptides.
99 The introduction of the A673T mutation could thus be an effective treatment for heritable FAD
100 and perhaps even for sporadic AD.

101

102 **Results**

103 **Amyloid- β peptides quantification**

104 We first measured the concentration of A β peptides in the culture medium of
105 neuroblastomas that were transfected with a wild-type APP plasmid or not (Fig 2). The A β 42
106 concentration of cells not transfected with the plasmid was so low that it was below the
107 detection range of the MSD kit. There was, however, a clear increase of A β 40 and A β 42
108 peptide concentrations for the cells transfected with the wild-type APP plasmid.

109

110 **Fig 2: Concentrations of A β 40 and A β 42 in the neuroblastoma supernatant using the**
111 **MSD Elisa test.** The neuroblastoma transfection with a wild APP plasmid increased the
112 concentrations of A β 40 and A β 42 peptides in the cell culture medium. Statistic test: Two-

113 way ANOVA Sidak's multiple comparisons test. P value style **** p<0.0001. n.d: not
114 detectable

115

116 Two plasmid libraries were then tested. One library was comprised of the APP
117 plasmid with a unique FAD mutation in each plasmid. The other was composed of the same
118 APP/FAD plasmids but with the additional A673T mutation. We first analyzed the effect of
119 the different FAD mutations on the A β peptide concentrations in the cell culture medium (Fig
120 3). Nearly all of the FAD mutations increased the A β 40 and A β 42 concentrations. The results
121 obtained were consistent with the literature with some exceptions such as the H677R
122 (English) and D678N (Tottori) mutation, which were reported to only enhance aggregation
123 and not A β peptide accumulation (19).

124

125 **Fig 3: A β peptide concentrations in culture medium.** Neuroblastomas were transfected with
126 plasmids coding for various FAD mutations with or without an additional Icelandic (A673T)
127 mutation. Exon 16 FAD mutations A β 40 concentration (**A**) and A β 42 concentration (**B**). Exon
128 17 FAD mutations A β 40 concentration (**C**) and A β 42 concentration (**D**). Statistic test: Two-way
129 ANOVA Sidak's multiple comparisons test (n=6). P value style * p<0.0332, ** p<0.0021, ***
130 p<0.0002, **** p<0.0001.

131

132 The reduction of A β 40 and A β 42 peptide production by the insertion of the additional
133 A673T Icelandic mutation is clear for the wild-type APP control gene but also for several FAD
134 mutations. It was further shown that the A673T mutation has a greater effect against FAD
135 mutations in exon 17 than exon 16. The addition of the A673T mutation decreased the A β 40
136 concentration for 23 out of 29 FAD plasmids (79%). In addition, A β 42 concentrations were
137 also decreased in 24 out of 29 FAD plasmids (83%). However, the addition of the A673T

138 mutation increased the A β 40 concentrations for 6 FAD plasmids (21%) and the A β 42
139 concentrations for 5 FAD plasmids (17%) FAD mutations. The Sidak's multiple comparisons
140 test confirmed a significant A β 40 reduction for 10 (34%) FAD mutations and a A β 42
141 reduction for 14 (48%) FAD mutation. However, for 48% of the FAD mutations, the
142 concentrations of both A β 40 and A β 42 peptides were reduced by at least 20% (Fig 4) but not
143 to a wild-type APP gene carrier level.

144

145 **Fig 4: Variations of A β 40 and A β 42 peptide concentrations with A673T mutation.**
146 Percentage changes of A β 40 and A β 42 peptide concentrations induced by the addition of the
147 A673T mutation to plasmids containing or not an FAD mutation. * indicates this variation was
148 statistically significant in the two-way ANOVA Sidak's multiple comparisons test.

149

150 **A β 42/A β 40 ratio**

151 The A β 42/A β 40 ratios were calculated for all FAD mutations with and without the
152 additional Icelandic mutation (Fig 5). However, since the Icelandic mutation also decreased
153 the A β 40 concentration, sometimes this ratio was increased by the Icelandic mutation
154 insertion even though both A β peptide concentrations were significantly reduced. This was
155 particularly the case for the London (V717I) mutation (20). We thus ranked the different FAD
156 mutations by their capacity to reduce the concentration of A β 42 in Table 1. Such a ranking
157 will be useful for choosing the right mouse model or patients should one attempt to design an
158 FAD-specific therapy.

159

160 **Fig 5: A β 42/A β 40 ratios.** Culture medium of cells transfected with plasmids coding for various
161 FAD mutations with or without the additional A673T mutation.

162

163 **Table 1: Percentage variations in A β 40 and A β 42 peptide concentrations due to the A673T**

164 **insertion.**

EOAD mutation	A β 42 Concentration (%)	Significance	A β 40 Concentration (%)	Significance	Exon
V717I (London)	-65	****	-81	****	17
V717G	-54	****	-24	*	17
Wild-type	-46	*	-63	*	na
D694N (Iowa)	-44	ns	-53	*	17
A692G (Flemish)	-42	****	-40	****	17
T714I (Austrian)	-42	****	-34	ns	17
V715A (German)	-40	****	-39	****	17
M722K	-37	****	-30	ns	17
V717L	-36	*	-41	ns	17
V715M (French)	-36	****	-26	ns	17
I716F (Iberian)	-36	**	-10	ns	17
T719P	-32	****	-9	ns	17
K687N	-31	**	-26	****	16
V717F	-30	****	-16	ns	17
E682K (Leuven)	-30	****	-32	****	16
E693del (Osaka)	-28	ns	-44	ns	17
I716M	-24	****	-29	****	17
A713T	-21	ns	-27	ns	17
I716V (Florida)	-17	ns	-21	ns	17
T714A (Iranian)	-17	ns	-15	ns	17
E693K (Italian)	-17	ns	-32	***	17
KM670/671NL (Swedish)	-8	ns	1	ns	16
K724N (Belgian)	-3	ns	1	ns	17
D678N (Tottori)	-3	ns	-12	****	16
E693Q (Dutch)	-2	ns	-2	ns	17
E693G (Arctic)	15	ns	-17	ns	17
L723P (Australian)	16	****	4	ns	17
D678H (Taiwanese)	20	****	22	****	16
I716T	44	****	117	*	17
H677R (English)	103	****	110	****	16

165 FAD mutations were ranked from the highest decrease in A β 42 concentration to the highest

166 increase. The significance was determined by a Sidak's ANOVA test. P value style * p<0.0332,

167 ** p<0.0021, *** p<0.0002, **** p<0.0001.

168

169 **The most therapeutically relevant mutation**

170 Among all the FAD mutations of the APP gene, the V717I (London mutation)
171 presented very interesting results following the insertion of the A673T mutation. This
172 mutation was able to diminish the A β 42 percentage in the extracellular environment by 63%
173 and A β 40 by 80% (Table 1). The A β 42 and A β 40 peptide concentrations were actually
174 reduced to levels that were similar to those observed in the A673T carrier without an FAD
175 mutation (Fig 6).

176
177 **Fig 6: A β peptide concentrations with wild type or London APP gene with or without**
178 **A673T mutation.** A β 40 (in A) and A β 42 (in B) concentrations for neuroblastomas transfected
179 with plasmids coding either for a wild type APP gene or an APP gene with the London mutation
180 (V717I) with and without the Icelandic (A673T) mutation. Statistic test: Two-way ANOVA
181 Sidak's multiple comparisons test (n=6). P value style * p<0.0332, ** p<0.0021, *** p<0.0002,
182 **** p<0.0001.

183
184

185 **Discussion**

186 The A673T mutation has been theorized to provide protective effects against AD onset
187 and development. However, until now, the effects of this mutation on FAD mutations have
188 never been tested in practice. Until now patients with a family history of Alzheimer's disease
189 have been stuck without an effective treatment to prevent the loss of their mental faculties
190 starting as early as their late 40's (21). Here, we showed that the addition of the A673T mutation
191 to an APP cDNA containing an FAD mutation can decrease the secretion of A β 42 and A β 40
192 peptides for most FAD mutations.

193 One notable observation in this study was that the A673T mutation generally had stronger
194 protective effects against FAD mutations in exon 17 compared to exon 16. This may be because

195 some mutations in exon 16 are located close to the BACE1 cutting site and interfere with the
196 protective effect of the A673T mutation, which reduces cutting of the APP protein. The
197 additional FAD mutation may be favoring a structural conformation of the APP protein which
198 favors cleavage by BACE1, thereby increasing A β 40 and A β 42 peptide accumulation.

199 Another interesting observation of this study was the drastic difference in the presence of
200 A β peptides, especially when different mutations occurred coding for the same amino acid. It
201 was noted that A673T has a strong protective effect on the I716M mutation and correspondingly
202 reduced the formation of both A β 40 and A β 42 peptides. In A716T however, the presence of
203 A673T actually increased the formation of both peptides.

204 Indeed, for some FAD mutations, the addition of the A673T mutation resulted in an
205 increase rather than a decrease in the concentration of A β peptides (Fig 4). Five FAD mutations
206 seemed to increase in severity of A β peptide accumulation. However, an increase of A β 40 may
207 not necessarily accentuate the severity of the Alzheimer's disease since it is the A β 42/ A β 40
208 ratio which determines aggregation and subsequent disease onset/development. However, for
209 the purposes of a treatment, a clear reduction of both A β peptides is likely beneficial.

210 The reduction of A β peptides in the extracellular environment following the introduction
211 of the A673T mutation was especially encouraging in the case of the V717I London mutation.
212 Not only did the percentages of A β 42 and A β 40 demonstrate the greatest reductions with this
213 mutation (Table 1) but the London mutation is also one of the most common FAD mutations in
214 the world (ALZ.org). Our results demonstrate that the addition of the A673T mutation in a
215 London patient has the potential to reduce their A β peptide levels to that of healthy AD-free
216 individuals (Fig 6) and serve as a promising avenue for a gene therapy. It would probably be
217 difficult or even impossible to obtain ethical approval for a Phase I clinical trial for sporadic
218 Alzheimer patients in a preclinical state, i.e., before symptom development. However, the data
219 observed and discussed in this article stands to help validate the launch of Phase I clinical trials

220 for this kind of gene therapy for London patients around the world (around 30 families). It would
221 make the development of a Phase I clinical trial much simpler since we would be able to know
222 the genotype of the patients several years before the symptom apparition. Down the line, these
223 findings may also serve to validate the inception of the same gene therapy for sporadic AD
224 patients. Our results also support the development of other gene therapies that are predicated on
225 the addition of a protective mutation as opposed to the return of the gene to the wildtype.

226 In certain cases, the percentage decrease of A β 40 and A β 42 is insufficient to determine
227 whether an FAD mutation is an optimal candidate for A673T treatment. For example, the Leuven
228 E682K mutation demonstrated a considerable reduction of A β 40 and A β 42 concentrations (Table
229 1). However, this diminution was incapable of bringing the peptide concentrations to acceptable
230 levels. Rather, the peptides were still present in a concentration that was severalfold that of the
231 wildtype APP gene (Fig 3A and 3B). Ultimately, a gene therapy for this FAD mutation using
232 A673T may slow down the progression of the disease as the concentration of the A β peptides is
233 diminished; however, the data does not suggest that this treatment alone has the potential to
234 prevent the onset of and development of AD based on A β peptide secretion.

235 Our report has solely studied the secretion of the A β peptides. It must be remembered that
236 the aggregation of these peptides is also a very important parameter as it plays an essential role
237 in the protective effect of A673T (22). Most FAD mutations are pathogenic due to the changes
238 in the aggregation of the A β peptides as a result of the amino acid modifications. Adding A673T,
239 which is also known to reduce aggregation, may create some competition with the pathogenic
240 mutation and reduce aggregation but the results are hard to predict without direct experimentation
241 (22). It is possible that some FAD mutations showing only a moderate reduction of A β peptide
242 production following the insertion of the A673T mutation may experience a significant reduction
243 in overall aggregation of said peptides.

244 Our next step will be to test the potential protective effect of A673T *in vitro* and *in vivo* by
245 inserting the A673T mutation directly in cells derived from FAD patients or in mouse models
246 using base editing (23) or PRIME editing (24). This will serve as a proof of concept in the
247 development of a gene therapy based on the A673T Icelandic mutation insertion. We raise the
248 hypothesis that this approach will allow clinicians to eventually treat a large number of persons
249 affected by a sporadic AD. It has already been proven that the A673T mutation protects the
250 natural carrier of this mutation, so we suggest that the artificial insertion of the mutation could
251 help most sporadic AD cases as well. We are proposing that the dominant A673T protective
252 mutation may compensate for most genetic risk factors.

253 This project has demonstrated that the insertion of the A673T mutation is beneficial for
254 patients with most forms of FAD mutations in the APP gene. Our future experiments will attempt
255 to verify whether the A673T mutation in APP is also protective in trans for other genes that have
256 been related to AD such as the PSEN1 or PSEN2.

257

258 **Methods**

259 **Construction of plasmid libraries containing an FAD mutation**

260 The backbone plasmid pcDNA6/V5-His was purchased from Invitrogen Inc. (Carlsbad,
261 CA). The APP695 cDNA (courtesy of Dr. G. Levesque, CHUQ, Quebec) was inserted by
262 ligation between Kpn1 and Xba1 cut sites. The ensuing plasmid was then mutated using the
263 New England Biolabs (NEB, Ipswich, MA) mutagenesis Q5 kit in 29 different reactions. The
264 29 new plasmids each represented a form of FAD and served as a “normal” library version of
265 each FAD. The mutations were located in exons 16 and 17 to better demonstrate the protective
266 effects of A673T. Another “mutated” library was created by adding an additional A673T

267 mutation to each FAD plasmid. Prior to the start of the experiments, the plasmids underwent
268 Sanger sequencing to ensure that the only mutations present were those under study.

269

270 **Transfection in SH-SY5Y of plasmid libraries**

271 The transfection reagent (Lipofectamine 2000TM) and Opti-MEM-1TM culture media
272 were purchased from Life Technologies Inc. (Carlsbad, CA). The day before the transfection,
273 100,000 SH-SY5Y cells were seeded per well in 24 well plates in DMEM/F12 supplemented
274 with 10% Fetal Bovine Serum (FBS) and antibiotics (penicillin/streptomycin 100 µg/mL). The
275 following morning, the culture medium was changed for 500 µl of DMEM/F12 medium
276 supplemented with 10% FBS without antibiotics. The plate was maintained at 37°C for the
277 time required to prepare the transfection solution. For the transfection, solutions A and B were
278 first prepared. Solution A contained 48 µl of Opti-MEM-1TM and 2 µl of LipofectamineTM 2000
279 for a final volume of 50 µl. Solution B was prepared as follows: a volume of DNA solution
280 containing 800 ng of DNA was mixed with a volume of Opti-MEM-1TM to obtain a final
281 volume of 50 µl. Solutions A and B were then mixed together by up and down movements and
282 incubated at room temperature for 20 minutes. 100 µl of the ensuing solution were then added
283 to each well. The plate was left in the CO₂ incubator for a period of 4 to 6 hours. The medium
284 was replaced by 500 µl of DMEM F12 supplemented with 10% FBS and antibiotics. The plate
285 was kept for 72 hours in the CO₂ incubator before extraction of genomic DNA. The culture
286 medium was harvested and protease inhibitors (1 mM PMSF + 1X complete tabs from Roche)
287 were added. The media were then stored at -80°C.

288

289 **Culture medium analysis**

290 The concentrations of A β 40 and A β 42 peptides were measured with Meso Scale
291 Discovery Inc. (MSD, Rockville, MA) Neurodegenerative Disease Assay 6E10 kit. Standards
292 and samples were prepared according to the manufacturer's protocols and tested in triplicate
293 for each experiment.

294

295 **Statistical analysis**

296 All statistic tests and graphs were performed as recommended by GraphPad Prism 7.0.
297 Two-way ANOVA Sidak's multiple comparisons test was used to test significance with three
298 biological replicas (two technical replicas each) for Fig 2, 3 and 6. P value style * p<0.0332, **
299 p<0.0021, *** p<0.0002, **** p<0.0001.

300

301 **Acknowledgment**

302 We would like to thank Dr. G. Levesque (CHUQ, Quebec) for giving us the APP695 cDNA
303 plasmid as well as Dr R. Lapointe (CHUM, Montréal) for allowing us to use the MSD
304 equipment in his laboratory.

305

306 **References**

- 307 1. Organization WH. Dementia 2020 [Available from: <https://www.who.int/news-room/fact-sheets/detail/dementia>].
- 309 2. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global
310 prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112-7.

311 3. Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, et al.
312 Prevalence of dementia in the United States: the aging, demographics, and memory study.
313 Neuroepidemiology. 2007;29(1-2):125-32.
314 4. Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer's disease: occurrence,
315 determinants, and strategies toward intervention. Dialogues in clinical neuroscience.
316 2009;11(2):111-28.
317 5. Mohr NM, Moreno-Walton L, Mills AM, Brunett PH, Promes SB, Society for Academic
318 Emergency Medicine A, et al. Generational influences in academic emergency medicine:
319 teaching and learning, mentoring, and technology (part I). Acad Emerg Med. 2011;18(2):190-
320 9.
321 6. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K. Neuronal
322 origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same
323 protein as the amyloid of plaque cores and blood vessels. The EMBO journal.
324 1985;4(11):2757-63.
325 7. Alonso Vilatela ME, Lopez-Lopez M, Yescas-Gomez P. Genetics of Alzheimer's disease.
326 Archives of medical research. 2012;43(8):622-31.
327 8. Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer's disease.
328 Molecular brain. 2011;4:3.
329 9. Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, et al. Identification
330 of a novel aspartic protease (Asp 2) as beta-secretase. Molecular and cellular neurosciences.
331 1999;14(6):419-27.
332 10. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, et al. Purification and
333 cloning of amyloid precursor protein beta-secretase from human brain. Nature.
334 1999;402(6761):537-40.

335 11. Merck. Merck Announces EPOCH Study of Verubecestat for the Treatment of People
336 with Mild to Moderate Alzheimer's Disease to Stop for Lack of Efficacy 2017 [Available from:
337 <https://investors.merck.com/news/press-release-details/2017/Merck-Announces-EPOCH-Study-of-Verubecestat-for-the-Treatment-of-People-with-Mild-to-Moderate-Alzheimers-Disease-to-Stop-for-Lack-of-Efficacy/default.aspx>.
339
340 12. Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-
341 dependent Neuregulin-1 signaling. *J Neurochem.* 2016;136(2):234-49.
342 13. Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, et al. BACE1, a major
343 determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is
344 essential for cognitive, emotional, and synaptic functions. *J Neurosci.* 2005;25(50):11693-
345 709.
346 14. Hartmann S, Zheng F, Kyncl MC, Karch S, Voelkl K, Zott B, et al. beta-Secretase BACE1
347 Promotes Surface Expression and Function of Kv3.4 at Hippocampal Mossy Fiber Synapses. *J
348 Neurosci.* 2018;38(14):3480-94.
349 15. Das B, Yan R. Role of BACE1 in Alzheimer's synaptic function. *Transl Neurodegener.*
350 2017;6:23.
351 16. Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM, et al. Increased
352 activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid
353 precursor protein conferred by a C-terminal heparin-binding domain. *J Neurochem.*
354 1996;67(5):1882-96.
355 17. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation
356 in APP protects against Alzheimer's disease and age-related cognitive decline. *Nature.*
357 2012;488(7409):96-9.

358 18. Kero M, Paetau A, Polvikoski T, Tanskanen M, Sulkava R, Jansson L, et al. Amyloid
359 precursor protein (APP) A673T mutation in the elderly Finnish population. *Neurobiology of*
360 *aging*. 2013;34(5):1518 e1-3.

361 19. Hori Y, Hashimoto T, Wakutani Y, Urakami K, Nakashima K, Condron MM, et al. The
362 Tottori (D7N) and English (H6R) familial Alzheimer disease mutations accelerate Abeta fibril
363 formation without increasing protofibril formation. *J Biol Chem*. 2007;282(7):4916-23.

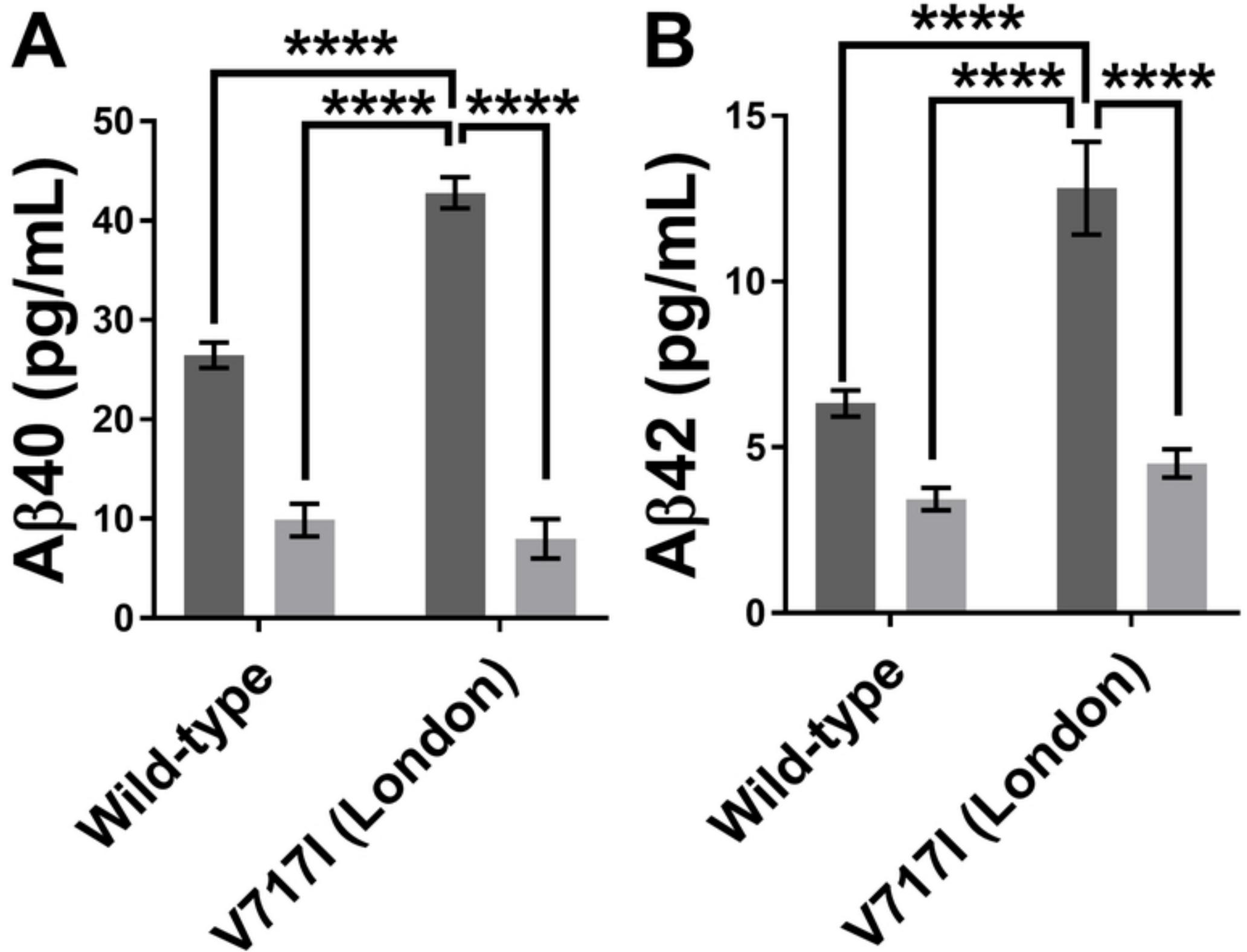
364 20. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al.
365 Segregation of a missense mutation in the amyloid precursor protein gene with familial
366 Alzheimer's disease. *Nature*. 1991;349(6311):704-6.

367 21. Maurer K, Volk S, Gerbaldo H. Auguste D and Alzheimer's disease. *Lancet*.
368 1997;349(9064):1546-9.

369 22. Benilova I, Gallardo R, Ungureanu AA, Castillo Cano V, Snellinx A, Ramakers M, et al.
370 The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic
371 properties of amyloid-beta (Abeta) aggregation. *J Biol Chem*. 2014;289(45):30977-89.

372 23. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base
373 in genomic DNA without double-stranded DNA cleavage. *Nature*. 2016;533(7603):420-4.

374 24. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-
375 and-replace genome editing without double-strand breaks or donor DNA. *Nature*. 2019.


376

377 **Supporting information**

378 **S1_data**

379

FAD - Control
A673T Treated

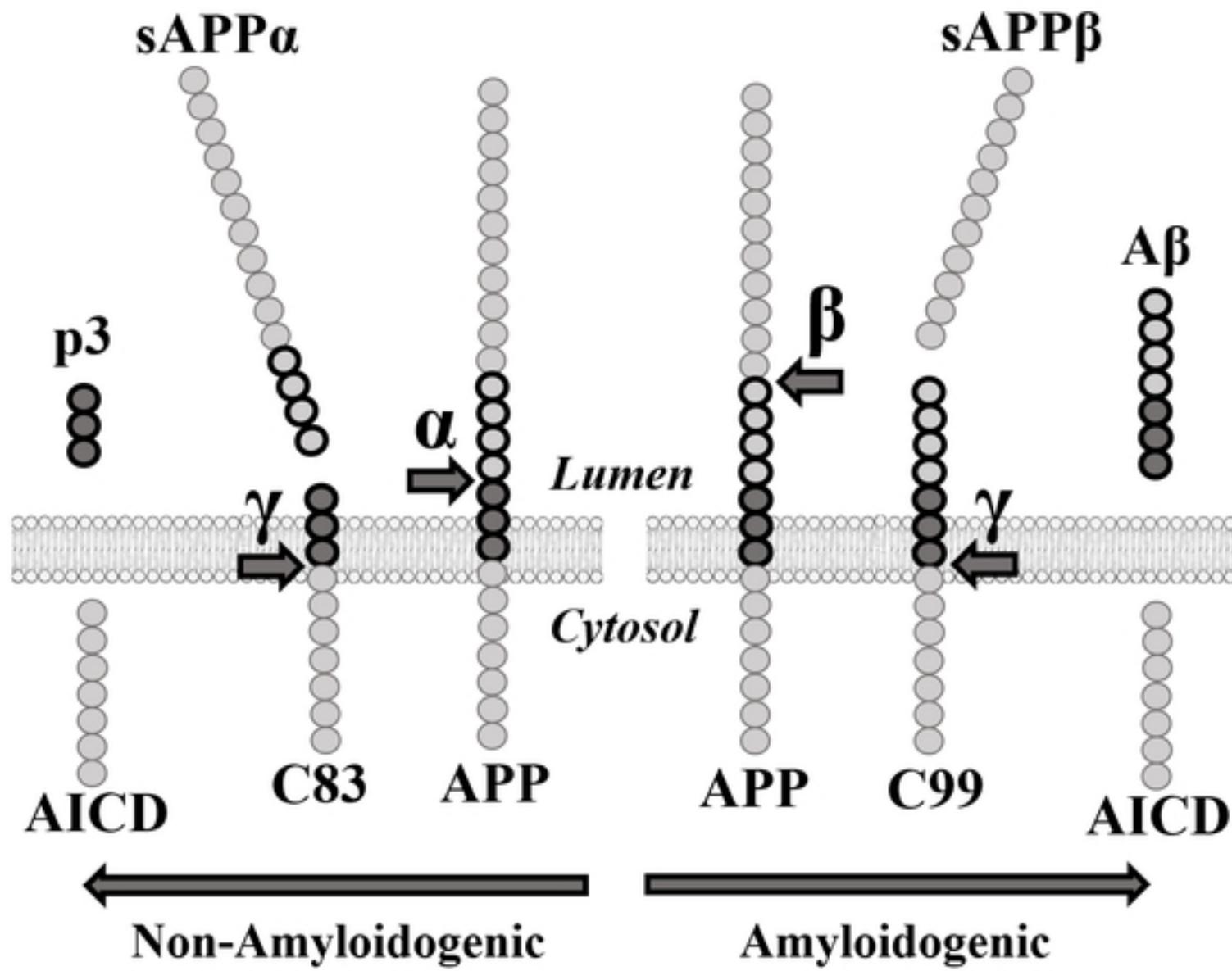
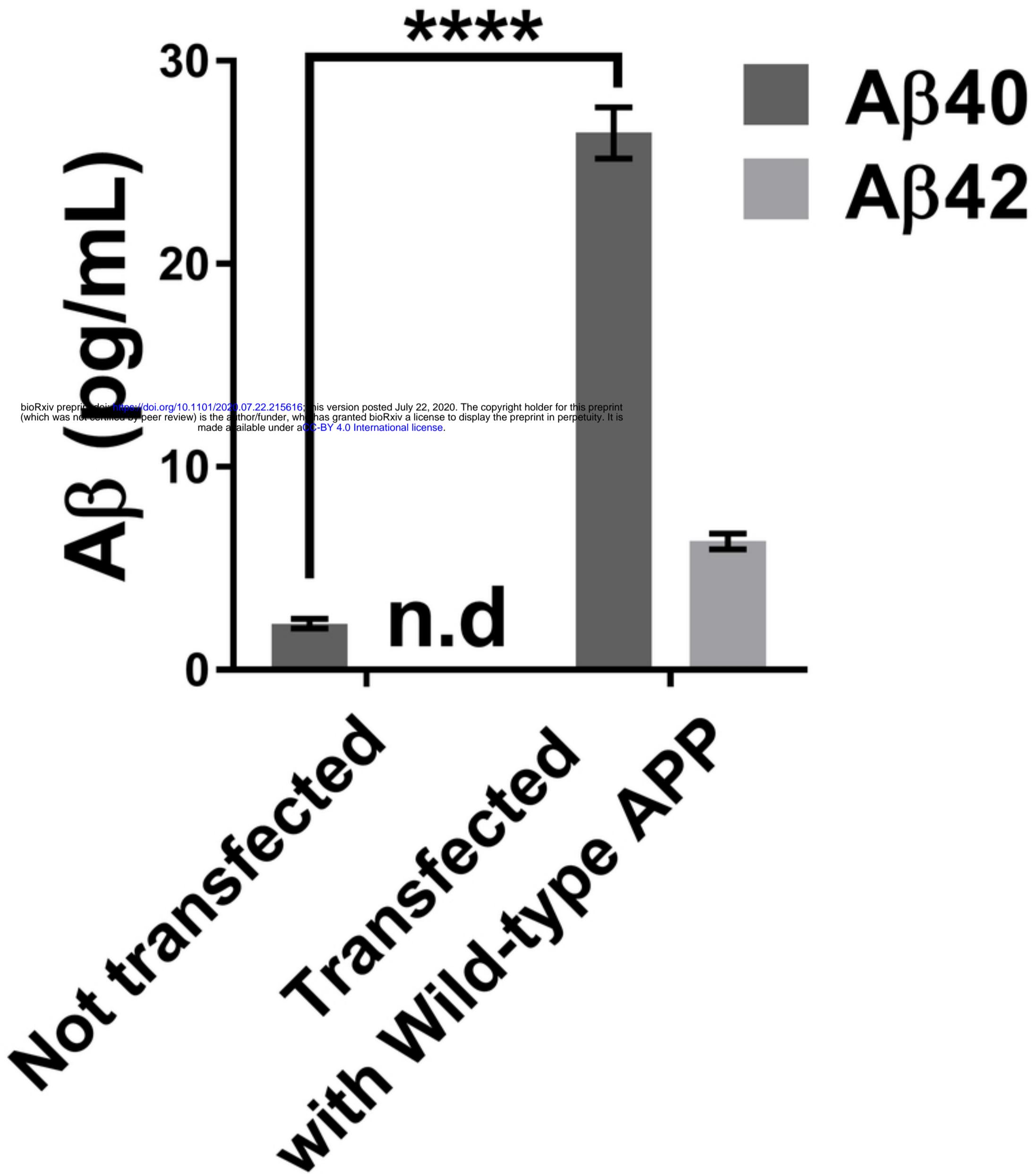



Fig1

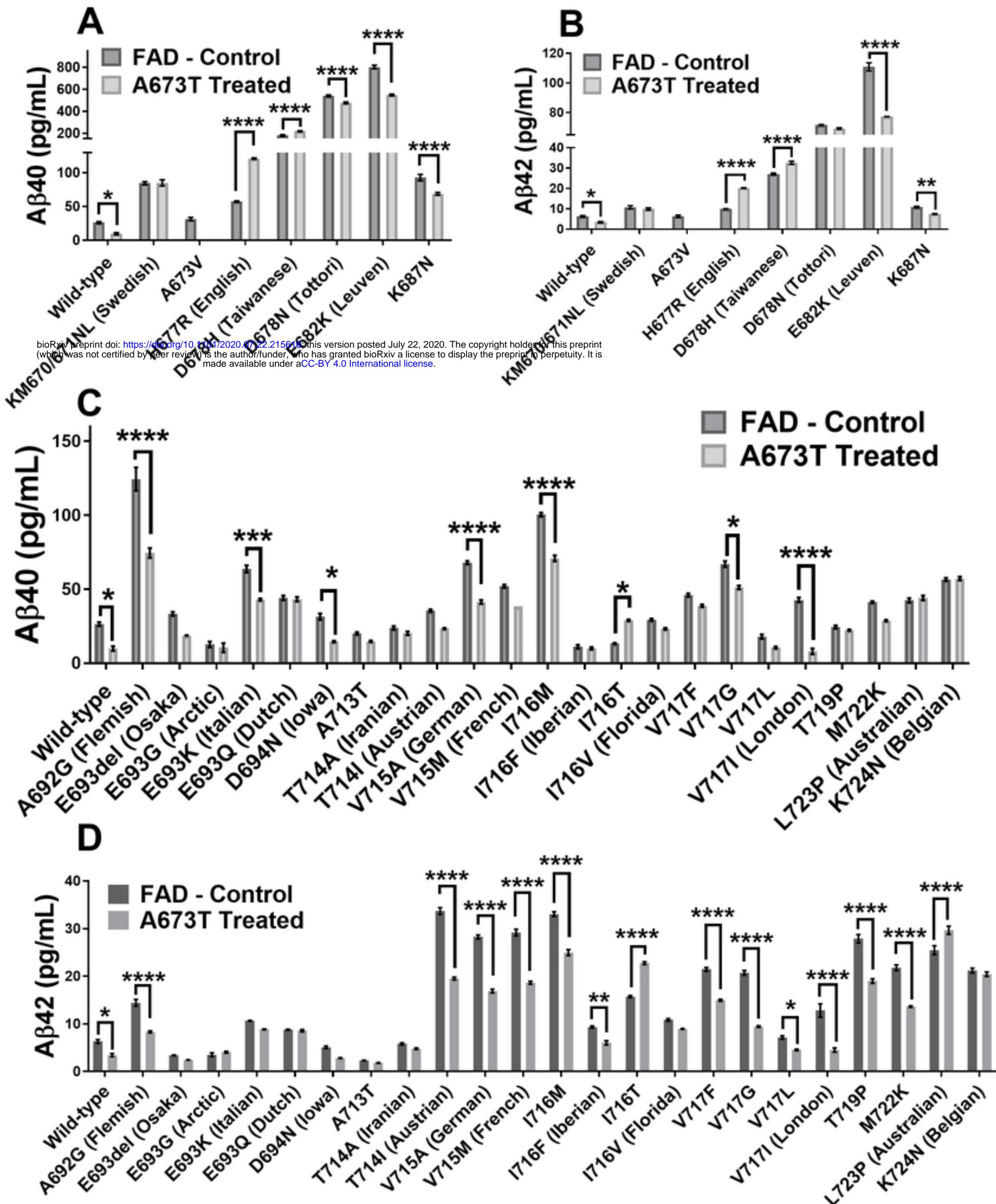


Fig3

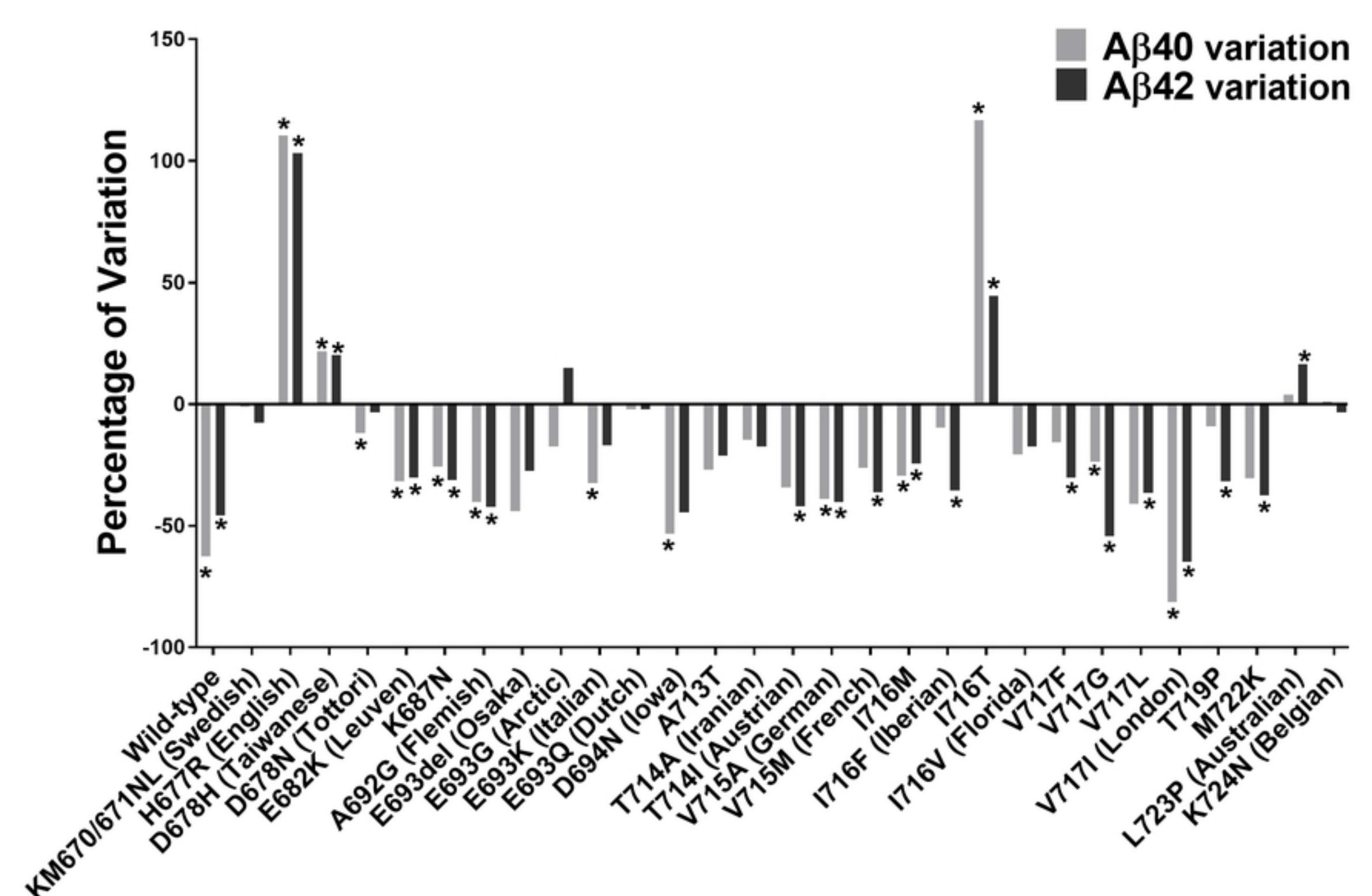


Fig4

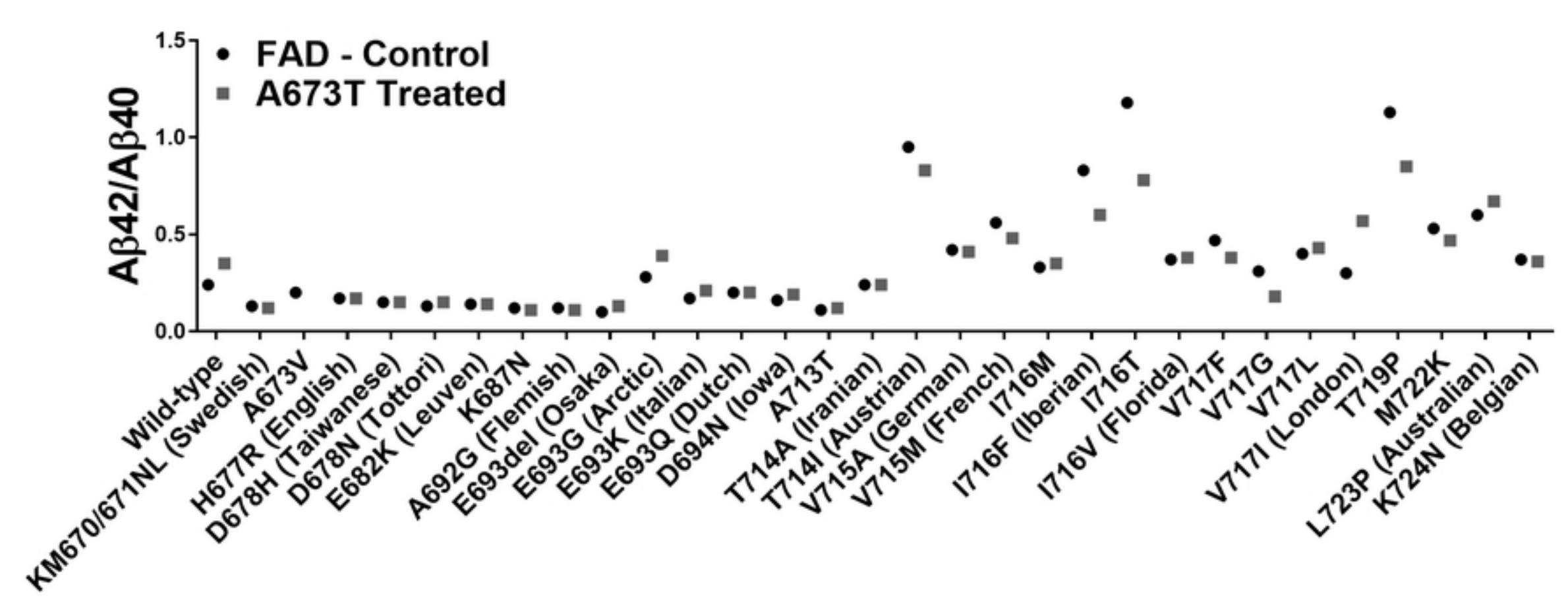


Fig5