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ABSTRACT:

Glioma intratumoral heterogeneity enables adaptation to challenging microenvironments and
contributes to universal therapeutic resistance. Here, we integrated 914 single-cell DNA
methylomes, 55,284 single-cell transcriptomes, and bulk multi-omic profiles across 11 adult
IDH-mutant or IDH-wild-type gliomas to delineate sources of intratumoral heterogeneity. We
found that local DNA methylation instability, or epimutation burden, was elevated in more
aggressive tumors, reflected intratumoral variability, linked with transcriptional disruption, and
associated with environmental stress response. We show that the activation of cell-state specific
transcription factors is impacted by epimutations and that loosened epigenetic control may
facilitate cellular plasticity. Our analyses support that somatic copy number alterations (SCNASs)
promote epigenetic instability and that SCNAs largely precede epigenetic and transcriptomic
diversification during glioma evolution. We confirmed the link between genetic and epigenetic
instability by analyzing larger cohorts of bulk longitudinally collected and spatially separated
DNA methylation data. Increased DNA methylation instability was associated with accelerated
disease progression, and recurrently selected DNA methylation changes were enriched for
environmental stress response pathways. Our work provides an integrative framework to better
understand glioma evolution and highlights the importance of epigenetic heterogeneity in

shaping therapeutic response.


https://doi.org/10.1101/2020.07.22.215335
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.22.215335; this version posted July 23, 2020. The copyright holder for this preprint (which

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

INTRODUCTION:

Diffuse gliomas are the most common malignant brain tumors in adults and remain
incurable. Extensive molecular characterization of glioma has defined genomic drivers and
clinically relevant subtypes based on the presence of IDH1/2 gene mutations (i.e., IDH-mutant
and IDH-wild-type) (Cancer Genome Atlas Research et al., 2015; Ceccarelli et al., 2016; Louis
et al., 2016). Inter- and intra-tumoral heterogeneity are salient features across glioma subtypes
that contribute to the universal therapeutic resistance. The heterogeneity observed in surgical
resection specimens reflects each tumor’s evolutionary path that is driven by competition
between subpopulations harboring diverse genetic, epigenetic, and transcriptional aberrations
(Barthel et al., 2019; Klughammer et al., 2018; Korber et al., 2019; Mazor et al., 2015; Wang et
al., 2017). Thus, understanding how these different layers of heterogeneity integrate to define
clonal lineages and drive glioma evolution may provide insights into treatment failure.

The study of tumor heterogeneity is complicated by cellular plasticity that enables cancer
cells to reversibly transition between distinct cellular states in response to genetic,
microenvironmental, and therapeutic stimuli (Flavahan et al., 2017). Single-cell RNA sequencing
studies have previously identified such dynamic cellular states in IDH-wild-type gliomas
(Bhaduri et al., 2020; Neftel et al., 2019; Wang et al., 2019; Yuan et al., 2018). Cell states of
IDH-mutant gliomas were found to display a more restricted plasticity along a hierarchical
differentiation axis (Tirosh et al., 2016; Venteicher et al., 2017). Epigenetic modifications, such
as DNA methylation at cytosine followed by guanine dinucleotides (i.e., CpGs), are mitotically
heritable marks and regulate cellular states (Easwaran et al., 2014). For example, the transition
from a differentiated-like state to an undifferentiated, or stem-like, state following chemotherapy
in glioma was accompanied by epigenetic reprogramming (Liau et al., 2017). However, the
epigenetic mechanisms that enable cellular plasticity and regulate glioma cell states remain
poorly understood.

Epimutation is aberrant DNA methylation resulting from errors in the placement or
removal of epigenetic marks. These stochastic errors in DNA methylation replication can
accumulate in cancer cells as passenger events or be evolutionarily selected by destabilizing
gene expression programs. Accordingly, epimutations provide genetically identical tumor cells
with greater plasticity to respond to environmental stressors (Flavahan et al., 2017). Previous
studies of glioma have demonstrated associations between bulk tumor epigenetic heterogeneity
metrics and clinical outcomes (Ceccarelli et al., 2016; Klughammer et al., 2018). Together,

these findings suggest that stochastic DNA methylation alterations contribute to tumor
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heterogeneity and cellular plasticity and may drive clonal evolution of treatment-resistant
phenotypes.

Single-cell DNA methylation technologies have recently emerged as tools to further
dissect heterogeneous cell populations (Angermueller et al., 2016; Argelaguet et al., 2019;
Farlik et al., 2016; Zhu et al., 2018b) and define epigenetic states that contribute to tumor
evolution (Bian et al., 2018; Gaiti et al., 2019). Here, we integrated single-cell DNA methylomes,
single-cell transcriptomes, and single-cell copy number profiles with bulk genomic profiles
across a cohort of 11 glioma patient samples to deconstruct the sources of glioma
heterogeneity. These analyses identified the gene regulatory regions most susceptible to
stochastic DNA methylation alterations, the epigenetic modulation of transcriptional networks
involved in glioma cellular identity, and that genetic driver events largely precede DNA
methylation diversification during glioma evolution. We confirmed these single-cell findings
through the association of DNA methylation instability across spatially separated and
longitudinally collected bulk glioma tissue samples. Collectively, our work provides insights into

the sources of intratumoral heterogeneity that fuel glioma evolution.

RESULTS:

Single-cell DNA methylation highlights inter- and intratumoral heterogeneity at gene
regulatory regions.

To investigate glioma heterogeneity we performed single-cell DNA methylation, single-cell gene
expression, and accompanying bulk tumor profiling in 11 adult patients with glioma (Figure 1A).
This cohort was representative of two principal molecular subtypes (IDH-mutant and IDH-wild-
type) and captured distinct clinical time points (i.e., unmatched initial and recurrent tumors,
Table S1 and Figure S1). We mechanically dissected tumor specimens from the same
geographic region dissociating tissue for single-cell protocols and flash freezing tissue for bulk
genomic assays (Figure 1A). We implemented an established single-cell DNA methylation
protocol, reduced representation bisulfite sequencing (scRRBS), and 10X Genomics’ single-cell
gene expression protocol on cells from the same dissociation (Figure S2A) (Guo et al., 2015;
Guo et al., 2013). Viable CD45" (i.e., pan-immune cell marker) cells were plated for scRBBS,
while single-cell transcriptomics was performed on all viable cells deriving a set of 914 single-
cell methylomes and 55,284 single-cell transcriptomes (Methods). On average, ~150,000
unique CpG dinucleotides covering representative chromosomal regions were measured per
cell (Figure S2B-E), and expression was measured on an average of 2,340 genes per cell.

Tumor cells were defined based on the detection of inferred copy number alterations in both
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datasets resulting in a final set of 844 tumor cells for single-cell DNA methylation and 30,831
tumor cells for single-cell transcriptomics (Methods, Figure S3A-I).

Unsupervised clustering and multidimensional scaling of the pairwise distances between
single-cell genome-wide DNA methylation patterns grouped tumor cells by IDH1 mutation status
consistent with IDH-mutant tumors displaying greater genome-wide DNA methylation levels
(Figure 1B and Figure S4A, Wilcoxon p < 2.2e-16). The co-localization of cells from different
patients suggested some shared epigenetic states, while the isolated patient-specific grouping
of 1 of 6 IDH-mutant and 2 out of 5 IDH-wild-type tumors suggested that genetic intertumoral
heterogeneity identified by whole genome sequencing was also observed at the epigenetic level
(Figure S1 and Figure 1B).

We next sought to determine the extent of intratumoral epigenetic heterogeneity by
quantifying stochastic DNA methylation alterations in each single cell. In a non-diseased gene
regulatory context, there is a general DNA methylation congruence in nearby CpGs reflecting
tightly ordered gene regulation (Figure 1C top panel) (Kelsey et al., 2017). Epimutations reflect
local DNA methylation disorder and may disrupt both local and distant gene regulation (Figure
1C bottom panel) (Easwaran et al., 2014). We constructed an epimutation burden metric per cell
measured by the proportion of sequencing reads discordant for DNA methylation status as
previously described (Gaiti et al., 2019; Klughammer et al., 2018; Landau et al., 2014). Cell-to-
cell variation in epimutation burden was tumor dependent (Figure 1D) and was increased in
tumor cells compared with non-tumor cells across IDH-mutant and IDH-wild-type glioma
subtypes (Wilcoxon p < 0.0001, Figure S4B). The mean epimutation burden across a tumor’s
single cells was not associated with the total somatic single nucleotide variant burden inferred
through whole genome sequencing (Spearman correlation rho = 0.26, p = 0.43), independent of
sequence context (Figure S4C). However, there was a positive association between the fraction
of the genome with somatic copy number alterations (SCNA burden) and epimutation burden
(Spearman correlation rho = 0.66, p = 0.03). Mutation burden reflects patient age (Alexandrov et
al., 2020) and mutational processes (Figure S4D), while SCNA burden is associated with
severed cell cycle checkpoints that compromises a cell’s ability to correct mis-segregations (Zhu
et al., 2018a). The stronger relationship with SCNA burden suggested that epimutation burden
increases with advanced disease rather than being elevated in the tumor cell of origin.

We next examined whether stochastic DNA methylation changes might impact levels of
DNA methylation and transcriptional output. First, we determined both the epimutation and DNA
methylation levels per gene, observing significant positive correlations across gene regions

(Spearman correlation p < 2.2e-16, Figure S5A-B). An increase in stochastic DNA methylation
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185  might exert its functional impact by disrupting transcription programs (Gaiti et al., 2019). We
186 leveraged companion single-cell RNAseq data to examine the association between epimutation
187  burden, gene expression, and transcriptional variability. We observed both a reduction in mean
188  expression (Kruskal Wallis p < 2.2e-16, Figure 1E) and an increase in gene dispersion

189  (expression variability normalized for mean expression level) with increasing levels of

190  epimutation burden in both IDH-mutant and IDH-wild-type tumors (Kruskal Wallis p < 2.2e-16,
191  Figure 1F, Figure S5C-D), implying that epimutation contributes to gene expression

192  dysregulation. To understand how aberrant DNA methylation could rewire broader regulatory
193  networks, we performed a Gene Ontology enrichment analysis on genes with high epimutation
194  (i.e., epimutation burden > 0.5) and genes with low epimutation (i.e., epimutation burden 0.0-
195 0.1) (Methods), revealing that high epimutation genes were associated with processes involved
196 in cellular differentiation and low epimutation genes were related with critical metabolic

197  processes (Fisher's Exact test, p < 0.05, Figure S5E-F). The enrichment results were consistent
198  when using epimutation burden groupings from the promoter or gene body (Figure S5G-H).
199 Together, these results suggest that cells may acquire adaptive cell states through the

200  accumulation of epimutations that impair normal transcriptional and differentiation programs.
201 Beyond proximal dysregulation of gene expression, epimutations may impact the binding
202  of key transcription factors, as changes in DNA methylation at DNA-binding motifs can positively
203  or negatively impact transcription factor binding (Yin et al., 2017). To identify regulatory

204  elements more prone to stochastic DNA methylation changes we determined the epimutation
205  burden across the transcription factor binding sites (TFBS) listed in the JASPAR database

206  (Methods, Figure 1G). Consistent with observed subtype-specific differences in methylation
207  disorder, the majority of transcription factor binding sites had increased epimutation burden in
208  IDH-wild-type compared with IDH-mutant cells. In both subtypes, transcription factors shown to
209 be essential for glioma stem cell maintenance (e.g., SOX2, SOX9, etc. (MacLeod et al., 2019))
210 had lower than the median binding site epimutation burden suggesting that selection may act to
211  deplete stochastic DNA methylation at these target regions (Figure 1G). In contrast,

212  transcription factors that displayed high epimutation levels (Methods, Figure S6A) were

213  associated with response to extracellular stimuli (Fisher's Exact test, p < 0.05, Figure S6B).
214  These findings suggest that increased epimutation levels at these environmental stress

215  response regulators may facilitate an adaptive response to stressors such as hypoxia, which is
216  commonly observed in glioma (Jin et al., 2017). To substantiate this association in the bulk
217  glioma tissues, we performed single-sample Gene Set Enrichment Analyses (ssGSEA,

218  Methods) using bulk RNAseq data and demonstrated robust associations between tumor
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219  average epimutation and positive stress response regulation (Spearman correlation rho = 0.9, p
220 < 0.01)or cellular response to hypoxia (Spearman correlation rho = 0.98, p < 0.001

221  respectively), but not randomly selected genes (Spearman correlation rho = -0.05, p > 0.05,
222  Figure 1H). Taken together, these results suggest that intratumoral variability in single-cell DNA
223  methylation disorder may facilitate the adoption of distinct phenotypic states in response to
224  stress stimuli.

225

226 Integrative single-cell gene expression and DNA methylation analyses nominate

227 epigenetic regulators of glioma cell states and stress response.

228  To further examine the association between DNA methylation, stress response, and cellular
229  states, we defined each tumor’s cellular composition from the single-cell transcriptional profiles.
230  We performed unsupervised clustering analysis of all single cells and annotated clusters using
231 marker genes (Figure 2A, Figure S7A-D) that revealed glial, immune, stromal, and malignant
232  populations previously identified in glioma (Bhaduri et al., 2020; Wang et al., 2019). Malignant
233 cells were broadly distributed over three cell states that all expressed canonical stem cell

234  marker SOX2 (Figure S7B). These pan-glioma states exist across both IDH-mutant and IDH-
235  wild-type tumors, which we labelled as 1. differentiated-like, 2. stem-like, and 3. proliferating
236  stem-like tumor cells, on the basis of marker gene expression (Figure 2A, Figure S7B, Table
237  S2). Enumerating the proportion of pan-glioma malignant states by tumor of origin showed that
238  IDH-mutant gliomas contained high fractions of stem-like cells (median 61%), while IDH-wild-
239 type gliomas were dominated by differentiated-like cells (median 83%) and significantly higher
240 fractions of proliferating stem-like cells (16% IDH-wild-type vs. 2% IDH-mutant, Wilcoxon p =
241  0.01, Figure 2B). Malignant cell state diversity (Shannon diversity index) was not associated
242  with epigenetic (Spearman correlation rho = 0.12, p > 0.05) or genetic burden metrics

243  (Spearman correlation rho = -0.18, p > 0.05, Figure 2B). Previously described malignant

244  signatures of IDH-mutant glioma included Astrocyte-like and Oligodendrocyte-like cell types
245  (Venteicher et al., 2017), which correspond to “differentiated-like” cells here. IDH-wild-type
246  glioma cellular states (Neftel et al., 2019) included the “Astrocyte-like” and “Mesenchymal-like”,
247  which were identified as “differentiated-like” in our clustering (Figure 2B, Figure S7D-F). The
248  “proliferating stem-like” and “stem-like” states in our pan-glioma classification align closely with
249  the “Undifferentiated” cells in IDH-mutant tumors and “Oligodendrocyte progenitor-like” and
250  “Neural progenitor-like” in the IDH-wild-type tumors (Figure S7D-F), thus highlighting

251 consistency of these pan-glioma signatures with previously reported IDH-subtype specific

252  signatures (Neftel et al., 2019; Venteicher et al., 2017).
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We next inferred gene regulatory networks from IDH-mutant and IDH-wild-type single-
cell gene expression data to identify transcription factors (TFs) governing cell states (Methods)
(Aibar et al., 2017). The inferred TF activity demonstrated that the three pan-glioma cell states
are each regulated by a small set of TFs (Figure 2C-D). For example, stem-like tumor cells
demonstrated the highest activity for known stem-cell regulators such as SOX2, SOX8, and
OLIG2 in both the IDH-mutant and IDH-wild-type tumors (Figure 2C-D). In addition to high
activity for these transcription factors, proliferating stem-like cells also had an
overrepresentation of gene regulatory networks involved in chromatin remodeling and DNA
repair such as those directed by EZH2 and BRCA1 (Figure 2C-D). In contrast, differentiated-like
cells had higher transcription factor activities involved in astrocyte differentiation (i.e., SOX9)
and response to stress stimuli (i.e., JUND, PPARA, HIF2A). We then tested whether the
epimutation burden differed between cell state-specific transcription factors and did not find
significant differences (Kolmogorov-Smirnov test p > 0.05 Figure S7G-H). However, several
transcription factors associated with the differentiated-like cell state (e.g., JUND, TFE3, and
SREBF1) were characterized by high epimutation levels, nominating them as regulators of
cellular fithess (Figure 2C-D).

To define the epigenetic states of stem-like and differentiated-like cells in glioma, we
used the linked inference of genomic experimental relationships (LIGER) method to identify
shared properties between single-cell gene expression and DNA methylation data (Methods,
Figure 2E) (Welch et al., 2019). We found that the distribution of tumor cell states within each
sample was consistent between the two methods, as expected from the same tissue
dissociation (Figure S8). We next investigated whether there were different levels of DNA
methylation and epimutation between the two broad cell state classifications of stem-like
(combining stem-like and proliferating stem-like) and differentiated-like. In IDH-mutant tumors,
stem-like cells had significantly higher levels of both epimutation burden (p = 2.4e-13; Figure 2F
left panel, Figure S9A) and DNA methylation (p = 6.0e-04, Figure 2G left panel, Figure S9B)
likely reflecting elevated DNA methylation at genes responsible for cellular differentiation (Figure
S5H). In IDH-wild-type tumors, which are marked by higher levels of epimutation and lower
levels of DNA methylation compared with IDH-mutants, the differences between differentiated-
like and stem-like cell populations demonstrated greater variability in both epimutation (p = 0.51;
Figure 2F, Figure S9C) and DNA methylation (p = 0.48; Figure 2G and Figure S9D) suggesting
loosened epigenetic control over cell states. To identify changes in DNA methylation between
differentiated-like and stem-like cells in both IDH-wild-type and IDH-mutant glioma, we

compared DNA methylation between cell states using a linear mixed effect model with tumor of
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origin as the random effect (Methods). Regions with increases in DNA methylation in stem-like
cells were enriched for binding sites of SP1 and TFAP2A, two transcription factors that
frequently cooperate in regulation of development associated genes (Figure 2H) (Orso et al.,
2010). In addition, the analysis identified enrichment of increased DNA methylation at binding
sites of the HIF1A/ARNT master transcriptional regulator of hypoxic response, in stem-like cells
(Figure 2H). As increased DNA methylation at binding sites may result in reduced transcription
factor binding efficiency, these results suggest that elevated cell stress transcription factor
activity in differentiated-like cells may occur via dynamic epigenetic remodeling (Figure 2H). We
found only a few regions where there was an increase in DNA methylation in differentiated-like
cells (Figure 2H). Together, these results suggest that perturbing epigenetic control via
epimutation may promote the adaptive cell states necessary to tolerate diverse stressful
microenvironments, including hypoxia (Li et al., 2009) and therapy (Liau et al., 2017; Shaffer et
al., 2017; Sharma et al., 2010).

Somatic copy number alterations are associated with stochastic DNA methylation
changes during disease evolution.

We next investigated whether genetic stimuli could help explain the variability of
epimutation burden across glioma cells. The fraction of genome with SCNAs was associated
with epimutation burden at the bulk level (Spearman correlation rho = 0.66, p = 0.03, Figure 1D)
and we confirmed this broad observation at the single-cell level (Spearman correlation rho =
0.50, p < 2.2e-16 IDH-mutant and rho = 0.72, p < 2.2e-16 IDH-wild-type, Figure 3A). To
determine whether this relationship was driven by greater epimutation burden in copy number
altered regions, we calculated the epimutation burden for each cell in copy number altered and
non-altered regions. We did not observe a consistent relationship between epimutation burden
and the copy number status in single-cell DNA methylation data (paired Wilcoxon p > 0.05,
Figure S10A). Instead, most genomic regions displayed a similar epimutation burden
independent of copy number status (e.g., SM012, Figure S10A) suggesting that aneuploid
regions do not directly account for increases in epigenetic diversity, but that these somatic
events are likely shaped by similar biological processes (e.g., replication errors). Late replicating
regions of the genome tend to accumulate more DNA mutations and structural rearrangements
(Koren et al., 2012), and we discovered that single-cell epimutation burden across both
promoter and gene body regions was positively associated with later replication regions in both

subtypes (Kruskal Wallis p < 1e-04, Figure 3B). Late replicating genomic regions may have
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reduced capacity to correct epimutations leading to their accumulation in a largely stochastic
manner.

To validate the relationship between SCNA and epimutation burden in a larger cohort,
we re-analyzed the bulk RRBS and copy number profiles of initial (n = 255 patients) and
recurrent (n = 152 patients) IDH-wild-type gliomas, including a subset of longitudinally collected
samples (n = 98 patients) (Klughammer et al., 2018). We confirmed our findings by
demonstrating that SCNA burden was positively associated with epimutation burden at both
initial and recurrent timepoints (Spearman correlation rho = 0.43, p = 3.5e-13 initial; rho = 0.36,
p = 6.2e-06 recurrence, Figure 3C). A multivariable linear regression verified that this positive
association between epimutation and SCNA burden was independent of subject age, tumor
timepoint, and cellular proliferation (Figure S10B). To assess the relationship between
longitudinal changes in SCNA burden and epimutation, we restricted our analysis to paired
initial and recurrent samples and observed a positive association between increases in SCNA
burden and epimutation (Spearman’s correlation rho = 0.37, p = 0.0002, Figure 3D).
Furthermore, the highest increases in epimutation burden between initial and the recurrent
tumor were associated with a shorter time to second surgery in both univariate (log-rank test p =
0.02, Figure 3F) and multivariate survival analyses (Cox proportional hazard model, HR = 1.69
95% CI (1.09 — 2.62), p = 0.02, Table S3) supporting that increased epigenetic instability is
associated with accelerated disease progression. SCNA burden or aneuploidy results from mis-
segregation during cell cycle, which can further perpetuate epimutations through aneuploid-
induced metabolic and replication stress (Zhu et al., 2018a). The association between
aneuploidy and epimutation uncovered here implicates that defective cell cycle checkpoints

compromises genomic but also epigenetic integrity.

Clonal evolution analyses highlight early somatic copy nhumber evolution followed by
epigenetic and transcriptomic diversification.

The processes resulting in genetic, epigenetic, and transcriptomic heterogeneity may act
at different times during tumor development. To evaluate somatic alteration timing and delineate
intratumoral heterogeneity in the 11 glioma specimens, we reconstructed each tumor’s
evolutionary history from bulk tumor whole genome sequencing data. Briefly, we determined the
clonality of SCNAs and somatic point mutations assigning each genomic alteration to a tumor
subclone (Methods). One to four genetic subclonal populations were detected per tumor, with
linear and branched evolutionary patterns consistent with those previously observed in glioma

(Kim et al., 2015; Korber et al., 2019). Assessment of the timing of genetic events revealed that
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chromosomal arm-level SCNA events were more likely to be classified as clonal (Fisher’s exact
p = 0.03), while mutations at genes significantly mutated in glioma were more evenly distributed
across subclones (56.1% classified as clonal in non-hypermutant tumors) (Methods, Figure 4A,
Figure S11A-H). To identify any copy number alterations associated with DNA methylation
states we compared phylogenetic and phyloepigenetic trees derived from single-cell DNA
methylation data using an entanglement coefficient where a low value (i.e., 0 entanglement)
indicates complete single cell alignment across the tree structures (Methods, Figure S12). We
did not observe strong alignments between phylogenetic and phyloepigenetic trees (median
value = 0.46, Figure 4B); instead DNA methylation profiles grouped by similar cell states,
showing that, like transcriptomic cell states, epigenetic clones are distributed across genetic
clones. Moreover, these results suggest that many large-scale copy number alterations occur as
early events which propagate broad epigenetic diversification rather than simply affecting
methylation state in proximal regions (Figure 4B, Figure S12A-K).

We next asked whether genetic subclones within a tumor were associated with
transcriptional diversity. We first used single-cell transcriptome inferred copy number profiles
and found that three of eleven tumors (SM001, SM006, and SM012) had at least two distinct
clones with chromosome arm-level alterations (Figure 4C, Figure S3). These tumors
demonstrated significant shifts in cell state distributions across clones suggesting that the
genetic heterogeneity also increases transcriptomic heterogeneity (per sample Fisher's Exact
test, p < 0.05, Figure 4D). Changes in transcriptional states may reflect cellular behaviors
required to adapt to the varied microenvironmental niches, such as hypoxia, within a tumor.

Previous studies have demonstrated that EGFR-amplifying extrachromosomal DNA
(ecDNA) elements are common in IDH-wild-type gliomas and enable widespread genomic
heterogeneity through both the amplification of oncogenes as well as enhancer elements
(deCarvalho et al., 2018; Morton et al., 2019; Wu et al., 2019). Therefore, we hypothesized that
ecDNA may represent a particularly potent contributor to genomic heterogeneity whose impact
extends to epigenetic and transcriptomic diversity (Verhaak et al., 2019; Wu et al., 2019). We
detected ecDNAs by analyzing whole-genome sequencing data for our cohort and validated the
variable distribution of extrachromosomal EGFR elements within a tumor using fluorescence in
situ hybridization for EGFR (Figure 4E, Figure S13A-D). EGFR ecDNAs, like chromosomal arm
level events (e.g., chr7 amplification in SM001) were able distinguish subsets of tumor cells
(e.g. EGFR ecDNA in SM006) (Figure 4C, Figure S11F-G). We classified both single-cell DNA
methylation and RNA profiles as ecDNA+ or ecDNA- based on EGFR copy number level
(Figure S13E). We observed ecDNA+ cells had increased genome-wide DNA methylation in 3
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of 4 cases (Wilcoxon p < 0.05, Figure S13F) and greater transcriptional diversity using gene
count signatures compared with ecDNA- cells (Wilcoxon p < 0.05, Figure S13G, Methods)
(Gulati et al., 2020). The tumor with the highest number of genetic subclones and epimutation
burden (SM012) contained an EGFR amplifying ecDNA assigned to subclones 3 and 4 which
were marked by differential expression of a receptor tyrosine kinase gene signature. The
ecDNA(-) subclone 2 most closely associated with hypoxia gene expression (Wilcoxon p < 2.2e-
16, Figure 4F), providing an example of how genetic heterogeneity may influence epigenetic
and transcriptional reprogramming.

Taken together, our evolutionary analyses show that genetic evolution largely precedes
epigenomic and transcriptomic diversification, and that intratumoral genetic heterogeneity

influences but does not determine cell states.

Integrated molecular trajectories supports adaptive DNA methylation changes under
microenvironmental and therapeutic pressures.

Our observation that genetic events likely precede epigenetic and transcriptomic diversification
led us to ask whether epigenetic diversity accelerates tumor evolution by promoting cell survival
in resource-deprived tumor environments (e.g., hypoxia or therapeutic exposures). To address
this question and extend the generalizability of our findings, we sought to determine variable
intratumoral DNA methylation levels in large-scale bulk glioma studies (Barthel et al., 2019;
Ceccarelli et al., 2016; Verburg et al., 2020). Since these datasets were generated using DNA
methylation microarrays, we used our single-cell DNA methylation data to define a microarray
metric that quantified the DNA methylation instability of gene regions prone to epimutation
(Figure 1E and Figure 5A). We reasoned that regions most susceptible to DNA methylation
changes would reflect this stochasticity in bulk data by taking on intermediate DNA methylation
values (Figure 5A). We confirmed that this epimutation, or DNA instability metric, approximated
that of single-cell epimutation averages from the same tumor by comparing to microarray-
derived profiles across the 11 tumors in our cohort (Spearman correlation rho = 0.65 p = 0.02,
Figure S14A). We first applied this metric to The Cancer Genome Atlas (TCGA) data and found
that the DNA methylation instability metric demonstrated differences across the TCGA-defined
subtypes (Ceccarelli et al., 2016), with IDH-wild-type tumors displaying the highest levels
(Kruskal Wallis p < 2.2e-16, Figure 5B). Integrating matching DNA methylation and RNAseq
samples from 568 TCGA samples, we found that samples with higher levels of DNA methylation
instability levels showed increased transcriptional activity of oxidative stress response genes,

which corroborated our earlier finding of stronger positive associations between epigenetic
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instability and stress response regulation than randomly selected genes (Spearman rho = 0.47,
p < 2.2e-16, n = 516 IDH-mutant initial tumors, rho = 0.31, p = 0.03, n = 52, IDH-wild-type initial
tumors, Figure S14B-C).

We next applied the DNA methylation instability metric to 119 image-guided stereotactic
biopsies taken from spatially distinct regions across IDH-wild-type (n = 57 biopsies, 6 patients)
and IDH-mutant (n = 62 biopsies, n = 8 patients) tumors (Verburg et al., 2020). This enabled us
to quantify the physical distance between a biopsied sample and specific radiographic features
that delineate the tumor’s center (e.g., magnetic resonance imaging contrast-enhanced region,
Figure S14D). We found an increase in DNA methylation instability closer to the tumor’s center
across IDH-wild-type tumors while adjusting for patient (multivariable linear regression p = 0.02,
Figure 5C), a region frequently characterized by hypoxia. The link between radiographic
features and epigenetic shifts supports the association between cellular fithess and increased
epigenetic plasticity. We did not observe a consistent relationship between tumor location and
DNA methylation instability in IDH-mutant tumors (multivariable linear regression p = 0.31,
Figure 5D) where hypoxia is less common.

The environmental pressures that tumors face may vary over time. To assess DNA
methylation instability dynamics and its relationship with genetic alterations, we analyzed initial
and recurrent tumor samples from the Glioma Longitudinal AnalySiS (GLASS) consortium for
which DNA sequencing and DNA methylation data were available (n = 102 tumors, n = 51
patients). For each sample, we catalogued the specific copy number and DNA methylation
alterations at individual CpG sites that changed between an initial tumor and its matched
recurrence. Overall, we observed that DNA methylation changes were mostly decreases in DNA
methylation consistent with previous findings (de Souza et al., 2018; Mazor et al., 2015), and
that DNA methylation changes mainly occurred in regions that remained copy number stable
between timepoints (Figure 5E). We then tested for DNA methylation changes following
treatment while accounting for differences in cellular composition of the tumor microenvironment
(Methods, Figure S14E). We discovered that regions with consistently altered DNA methylation
independent of changes in microenvironment cell type distribution were enriched for the binding
sites of transcription factors that regulate cellular stress response, particularly hypoxia
(Methods, Figure 5F-G). We also observed the enrichment for differential DNA methylation
among TFs that differed between stem-like and differentiated-like states in our single-cell data
(e.g., SP1 and TFAP2A, Figure 5F and Figure 2H). These observations support our single-cell
findings that regions with greatest epimutation levels are involved with processes regulating

cellular differentiation and stress signaling. In summary, these results suggest that stochastic
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DNA methylation alterations can provide the variability necessary to enable transition to

adaptive epigenetic phenotypes that are responsive to cellular stress (Figure 6).

DISCUSSION:

Here, we integrated multimodal single-cell DNA methylation and transcriptomic profiles
along with bulk profiles to interrogate the association between genetic tumor subclones, cellular
states and epigenetic heterogeneity of glioma. We found that early genetic alterations largely
precede epimutations, or stochastic changes in DNA methylation, whose accumulation
throughout the genome led to dysregulated transcription and altered cellular states. Despite
extensive intertumoral heterogeneity, we found recurrent epimutations localized to cellular
differentiation genes and higher epimutation levels were associated with environmental
pressures, such as hypoxia, highlighting a mechanism to overcome cell stress and enhance
treatment resistance. Taken together, epigenetic intratumoral heterogeneity provides a plastic
intermediate between genetic subclones and adaptive phenotypic cell states.

Epimutations increase a tumor population’s epigenetic diversity through random errors in
the DNA methylation replication machinery (Klughammer et al., 2018; Landan et al., 2012;
Landau et al., 2014). We found that genetic and environmental stimuli further induce epigenetic
variability likely through altered cellular metabolism. Deregulated metabolism is a hallmark of
glioma characterized by somatic mutations in the metabolic isocitrate dehydrogenase (IDH)
genes and a hypoxic microenvironment in IDH-wild-type tumors. IDH-mutant glioma cells
produce the oncometabolite 2-hydroxyglutarate (2HG) that interferes with DNA demethylation
(Ceccarelli et al., 2016; Dang et al., 2009; Losman and Kaelin, 2013; Noushmehr et al., 2010;
Turcan et al., 2012) leading to the observed high promoter epimutation levels at cellular
differentiation genes and the predominance of a stem-like cell state. Across both subtypes,
epimutation level was positively associated with broad chromosomal alterations, such as arm-
level gains and losses, but not mutational burden. Copy number alterations occur during
replicative crises that originate early in a tumor’s life history through punctuated evolution (Gao
et al., 2016; Gerstung et al., 2020). We used a multimodal approach to link genetic clones
across platforms and found that chromosomal alterations precede epigenetic and transcriptomic
heterogeneity. The chromosomal imbalances may potentiate non-genetic diversity by
accelerating cell proliferation (Taylor et al., 2018) and generating metabolic disruption via
reactive oxygen species (Zhu et al., 2018a), thereby increasing the likelihood of aberrant DNA

methylation. We also found that environmental stimuli, such as hypoxia, increase the rate of
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epimutation and is supported by a previous study that demonstrated hypoxia reduced the
enzymatic activity of DNA methylation regulators (Thienpont et al., 2016). Tumor hypoxia is
common across many cancers and could more broadly shape the phenotype of cells resistant to
therapy through epimutation (Heddleston et al., 2010). Collectively, increased chromosomal
alterations and more adverse microenvironments may explain the greater cell state diversity that
exists in IDH-wild-type compared with IDH-mutant gliomas.

In a non-tumor setting, a cell’s epigenome reflects the tissue of origin and serves to
stabilize cell state-specific gene expression (Roadmap Epigenomics et al., 2015). Epimutations
may occur when this homeostasis is disrupted, enabling cells to acquire a de-differentiated
malignant cell state or create an altered epigenetic landscape permissive to cell state transitions
(Flavahan et al., 2017). Glioma cell states have been described to fall along axes of
differentiation and proliferating potential (Bhaduri et al., 2020; Neftel et al., 2019; Venteicher et
al., 2017; Wang et al., 2019). In accordance with prior reports, we observed pan-glioma
malignant cell states that were found within each tumor. Our epigenetic single-cell profiles
revealed that cell state-defining transcription factor activity can be perturbed by epimutation.
Thus, diverse DNA methylation marks help to sustain multiple cell states that each confer their
own fitness advantages and together accelerate disease progression.

Intratumoral heterogeneity in glioma reflects the Darwinian process of subclonal
competition driven by limited nutrient access. While single-cell transcriptome-based phenotypes
have investigated glioma transcriptomic heterogeneity (Bhaduri et al., 2020; Neftel et al., 2019;
Tirosh et al., 2016; Venteicher et al., 2017; Wang et al., 2019), we have only limited knowledge
on the degree of epigenetic variability. The intratumoral epigenetic variation defined here
provides a link between Darwinian clone wars and phenotypic state changes by enabling
diverse responses to selective pressures such as hypoxia and treatment. A better
understanding of how to reprogram the glioma epigenome toward a more therapeutically
vulnerable cell state will be needed to develop more effective interventions. In summary, single-
cell epigenetic profiles show that each cell contains a unique set of methylation marks with

distinct patterns regulating cellular states and reflecting variable levels of environmental stress.
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FIGURE LEGENDS:

Figure 1. Single-cell DNA methylation sequencing highlights intratumoral heterogeneity
and disruption of epigenetic regulatory mechanisms.

(A) Schematic diagram detailing tumor sample processing and molecular profiling of single cells
and bulk tumor samples (n = 11 subjects). (B) Multidimensional scaling (MDS) analysis using
pairwise individual CpG distance metrics calculated between individual cells. Shapes represent
whether a sample was a single tumor cell (n = 844 cells) or 50-tumor cells, n = 9/11 subjects).
Colors indicate individual subjects, shaded regions indicated /DH7-mutation status of tumor, and
annotation is provided indicating clinical timepoint (I = initial, R = recurrence). (C) Schematic
depiction of local DNA methylation disorder in different genomic contexts. Left panel
demonstrates epimutation, or local DNA methylation disorder, at the promoter region, where
gene expression is disrupted by epimutation. The right panel provides an example of disrupted
transcription factor binding due to epimutation. (D) Boxplots of tumor cell epimutation burden
grouped by sample. Each boxplot spans the interquartile range with the whiskers representing
the absolute range, excluding outliers. Wilcoxon rank sum p-value represents comparison
between IDHmut and IDHwt epimutation burden. Each sample is annotated with clinical and
molecular metrics with p-values indicating the relationship between sample mean epimutation
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burden and whole-genome sequencing derived somatic mutation burden or somatic alteration
burden (Spearman correlation). (E) Boxplots of gene expression values, as log2 (counts per
million), from single-cell RNAseq data across different gene epimutation groups. Gene
epimutation groups are defined by the determining the mean epimutation value across a single
gene. Color indicates IDH1 mutation status. (F) Boxplots of gene expression dispersion.
Expression profiles were mean-expression scaled to account for expression level-dependent
variability across the same gene epimutation groups defined in panel E. (G) Scatterplot of the
mean single-cell epimutation burden metric calculated across transcription factor binding sites
(TFBSs) within a subtype, ordered by IDHwt TFBS epimutation. Each column represents a
single transcription factor (TF) with a colored dotted line connecting IDHmut and IDHwt values.
Names of TFs previously indicated to confer fitness advantages to glioma cells (MacLeod et al.)
are listed above their TFBS epimutation burden estimate. (H) Scatterplot depicting the
association between average single-cell epimutation burden estimate and single-sample Gene
Set Enrichment Score for stress response, hypoxia, and random genes from bulk RNAseq data.
Spearman correlation coefficient and p-values are indicated.

Figure 2. Integrative single-cell gene expression and DNA methylation analyses nominate
epigenetic regulators of glioma cell state variability.

(A) Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction plot of
scRNAseq data (n = 55,284 tumor cells, n = 11 subjects) showing the clustering of cell
populations by transcriptionally defined cell state (point color) and labelled according to marker
gene expression (Figure S6B). (B) Stacked bar plots representing the proportion of cellular
states per tumor for pan-glioma classification. Each sample is annotated with molecular metrics
with p-values indicating the relationship between cell type diversity, measured by Shannon’s
entropy, and sample mean epimutation burden, whole-genome sequencing derived somatic
alteration burden, or whole-genome sequencing derived somatic mutation burden (Spearman
correlation). (C-D) Enriched transcription factor activity across pan-glioma cellular states
determined using SCENIC algorithm and displayed as a heatmap of z-score enrichment values.
Visualization is presented for the hierarchical clustering of 5,000 randomly selected tumor cells
in both (C) IDHmut and (D) IDHwt tumors. (E) Schematic diagram representing LIGER workflow
to jointly cluster single-cell RNAseq and DNA methylation data generated from the same tumor
dissociation. (F) Boxplots representing the average epimutation burden in differentiated-like and
stem-like populations in IDHmut (left panel) and IDHwt (right) tumors. (G) Boxplots representing
the 10-kb tiled DNA methylation levels in differentiated-like and stem-like populations in IDHmut
(left panel) and IDHwt (right) tumors. (H) Region set enrichment analysis for 10-kb tiles with
higher DNA methylation in Stem-like (left panel) or Differentiated-like cells (right panel).
Enrichment was determined by Locus Overlap Analysis (LOLA). Individual points represent
enrichment of specific TFs in differentially methylated regions, color indicates results for specific
IDH-mutant subtype, point size indicates log-odds ratio, and dotted line represents the statistical
significance threshold (adjusted p-value < 0.05).

Figure 3. Somatic copy number alterations are associated with stochastic DNA
methylation changes during disease evolution.

(A) Scatterplot depicting the association between single-cell (n = 844 tumor cells) somatic copy
number alteration (SCNA) and epimutation burden estimates by IDHmut (left panel) and IDHwt
(right panel) subtypes. Points are colored by patient. Spearman correlation coefficients
represent subtype-specific estimates. (B) Boxplots of epimutation burden calculated across the
promoter (left panel) and gene body regions (right panel) based on different DNA replication
times in IDHmut (n = 510) and IDHwt (n = 334) single cells. Kruskal-Wallis p-values indicate a
test for differences across the replication time groupings separately for IDHmut and IDHwt cells
(C) Scatterplot depicting the re-analysis of bulk promoter epimutation burden and SCNA burden

17


https://doi.org/10.1101/2020.07.22.215335
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.22.215335; this version posted July 23, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

614  in IDHwt initial (n = 255) and recurrent (n = 152) tumors (Klughammer et al.). Spearman

615 correlation coefficients and p-values are presented for each independent timepoint. (D)

616  Scatterplot depicting the association between bulk delta (subject-specific recurrence — initial
617 estimates) SCNA burden and delta promoter epimutation burden in longitudinally profiled IDHwt
618 tumors (n = 98 subjects, Klughammer et al.) Spearman correlation coefficient and p-value are
619 presented. (E) Kaplan-Meier curve depicting time to second surgery in subjects where the
620 change in epimutation burden between initial and recurrent disease was above (high, red) and
621 below (low, blue) the median. Log-rank p-value for univariate analysis is presented within the
622 figure. Hazard Ratio and p-value for change in epimutation burden are presented below for
623 multi-variate Cox proportional hazard model including subject age and sex as predictors.

624

625 Figure 4. Clonal evolution analyses highlight early copy number evolution followed by
626 epigenetic and transcriptomic diversification.

627  (A) Stacked bar plots representing the proportion of whole-genome sequencing (WGS) derived
628  somatic copy number alteration (SCNA) burden attributed to clonal vs. subclonal events. (B)
629  Scatterplot depicting entanglement coefficients for tanglegrams comparing cluster dendrograms
630 of scRRBS derived copy number and DNA methylation profiles. A coefficient of 0 indicates
631 complete alignment of the tree structures, whereas a 1 indicates random association. Color
632 indicates IDH1 mutation status. (C) Examples of phylogenetic trees constructed from whole
633 genome sequencing data (mutations and SCNAs) and further annotated using single-cell

634 inferred copy number alterations (scRRBS + scRNAseq). Tree nodes represent alterations
635  specific to the given clone, with node size corresponding to the fraction of cells with the

636  associated alterations. Branch length scales with the number of mutations attributed to that
637 clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes
638 considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal
639 arm-level events are presented. (D) Single-cell RNAseq-derived cellular proportions separated
640 by copy number-defined tumor subclone (Figure S3). Reported p-values represent Fisher’s
641  exact test comparing the cellular state distributions across tumor subclones. (E) Representative
642  Fluorescence in situ hybridization (FISH) images for IDHwt tumors computationally predicted to
643  harbor EGFR extrachromosomal DNA (ecDNA) by whole genome sequencing (n = 4 patients).
644  FISH images show EGFR amplifications (red) that occur distal to control chromosome 7 probes
645 (green) indicating extrachromosomal status and high variability in copy number status across
646  tumor cells. Scale bars = 10 microns. (F) Ridge plots of SM012 single-cell expression of

647 receptor tyrosine kinase and hypoxia-associated genes, grouped by copy number-defined

648  subclones. Reported p-values represent Wilcoxon Rank Sum tests comparing the gene

649  expression of cells across tumor subclones.

650

651 Figure 5. Integrated molecular trajectories supports adaptive DNA methylation changes
652 under microenvironmental and therapeutic pressures.

653  (A) Schematic workflow for construction of a DNA methylation instability metric in bulk cohorts
654 informed by regions of high epimutation in single-cell DNA methylation data. The DNA

655 methylation instability metric was calculated across bulk DNA methylation microarray data in a
656  primary tumor cohort (TCGA), a cohort of multiple, spatially distinct biopsies from the same
657  tumor (Verburg et al.), and a longitudinal cohort with accompanying genomic sequencing data
658 (Glioma Longitudinal AnalySiS (GLASS), Barthel et al.). (B) Boxplots displaying the bulk DNA
659  methylation instability metric calculated across previously described DNA-methylation based
660 TCGA tumor classifications (Ceccarelli et al). Colors represent IDH1/2 mutation status, and
661  Kruskal-Wallis p-value testing for differences in distributions across classification is reported (n
662 =615 primary gliomas, p < 2.2e-16). (C-D) Scatterplots depicting distance from radiographic
663 features plotted against the DNA methylation instability metric. Colors represent spatially

664  separated biopsies from a single patient at initial clinical timepoint for (C) IDHwt tumors (n = 57
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biopsies, n = 6 subjects) and (D) IDHmut tumors (n = 62 biopsies, n = 8 subjects). Linear
regression lines colored by patient demonstrate the relationship between DNA methylation
instability and radiographic features (i.e., contrast enhancement surface). The p-value reported
from a multivariable linear regression model adjusting for subject represents the subtype-
specific association between DNA methylation instability and radiographic feature. Biopsies
taken closer to the tumor’s center (i.e., core) have the lowest value (left hand side of plot). (E)
Each column represents an individual patient sampled across initial and recurrent timepoints
and is separated into IDHmut (n = 24 subjects) and IDHwt (n = 27 subjects). Top panel, stacked
bar plot represents the proportion of CpGs sites that experienced DNA methylation change
associated with a subject-specific copy number change (defined by DNA sequencing data)
between primary and recurrent disease (red), DNA methylation gain not associated with a CNV
change (orange), DNA methylation loss not associated with a CNV change (blue), and no
longitudinal DNA methylation change (gray). Middle panel, heatmap of DNA methylation
instability metric in primary and recurrent disease (blue = low, red = high). Bottom panel,
differences in SCNA burden between primary and recurrent tumor. All associated p-values
represent Spearman correlations between absolute change in associated metric and the fraction
of longitudinal DNA methylation differences. (F) Enrichment analysis for differentially methylated
CpGs between primary and recurrent timepoints when adjusting for cellular composition, glioma
subtype, and subject included as a random effect. Individual points represent enrichment of
specific TFs in differentially methylated positions, color indicates the average TFBS epimutation
burden from single-cell RRBS data (Figure 1G), point size indicates log-odds ratio, and dotted
line represents the statistical significance threshold (Q-value < 0.05). (G) Gene Ontology
enrichment of transcription factors associated with longitudinal DNA methylation changes.
Dotted line represents threshold for statistical significance (Fisher's exact test, p < 0.05).

Figure 6. Model of epigenetic heterogeneity and tumor evolution. Schematic depiction of
tumor evolution with general DNA methylation patterns represented by methylated (5-
methylcytosine, 5mC) and unmethylated (5C) regions of the epigenome. Initiating genetic
events such as IDH1 and other driver mutations as well as somatic copy number alterations
represent early stresses in glioma evolution that precipitate epigenetic heterogeneity. Both
mutations in epigenetic enzymes and SCNAs can increase the likelihood of heritable DNA
methylation alterations (i.e., epimutations). IDH1 mutations result in the production of the
oncometabolite 2-Hydroxyglutarate (2-HG) that leads to failure to remove aberrant DNA
methylation while SCNAs can generate mitotic stress leading to the erosion of ordered DNA
methylation. Non-genetic determinants further shape epigenetic heterogeneity as tumors evolve
by exposing cells to spatially distinct microenvironmental stresses that impact the DNA
methylation replication machinery. The subsequent epigenetic diversity provides an additional
layer on which clonal evolution acts to select those cells with fitness-conferring epigenetic
alterations. Ultimately, the loosened epigenetic control allows tumor cells to transition to cell
states responsive to different selective pressures.

Figure S1. Integrated molecular profiles of patient samples. Related to Figure 1.

Each patient is in a single column with data presented to indicate clinical features (top), followed
by genetic alterations defined from bulk whole genome sequencing data, bulk RNA sequencing
based subtype classification probabilities (Wang et al., n = 8 available), single-cell RNA tumor
cellular state proportions, bulk DNA methylation microarray subtype classification probabilities
(Capper et al.), and boxplots of single-cell epimutation burden with samples colored by clinical
timepoint.
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715  Figure S2. Sample pre-processing and metrics related to single-cell DNA methylation
716  data assessment. Related to Figure 1.

717  (A) Representative fluorescence activated cell sorting (FACS) data and strategy for viable cell
718  enrichment for both single-cell protocols, and tumor cell enrichment in scRRBS. (B) The same
719  multidimensional scaling (MDS) analysis using pairwise distance metrics calculated between
720 individual cells as in Figure 1B, except colored by bisulfite conversion efficiency. (C) The

721 number of unique CpGs detected per single cell, with the red line indicating the threshold

722  (minimum 40,000 unique CpGs) for inclusion in the dataset presented herein. (D)

723  Representative distribution of single locus DNA methylation estimates for a single cell. DNA
724  methylation percentage of 0 represents an unmethylated locus, while a percentage of 100

725 represents a methylated locus. (E) Representative genomic distribution of DNA methylation
726  values within a single cell.

727

728  Figure S3. Somatic copy number alteration examples estimated from whole genome

729 sequencing, single-cell Reduced Representation Bisulfite Sequencing, and single-cell
730 RNA-sequencing. Related to Figure 1.

731  (A-C) Representative images of copy number alterations derived from SM012 (IDHwt initial)
732  whole genome sequencing (WGS) data. (A) Depth ratio for each segment with copy number
733  status determined as compared with germline (normal blood) WGS data. (B) SM012 Single-cell
734  DNA methylation-based copy number estimates (n = 69 tumor cells) with copy number integer
735  depicted by color (blue = CN loss, white = neutral CN, and red = CN gain). Each row is a single
736  cell with annotation for epimutation burden provided. (C) SM012 Single-cell RNAseq based
737  copy number inference (n = 5,489) identifying major copy number events found in WGS with
738 labelled subclones as presented in Figure 4D. (D-F) Similar example profiles as presented in (A-
739  C) for tumor sample SM006 (IDHwt initial, n = 82 scRRBS cells, n = 3,310 scRNAseq cells). (G-
740 1) Similar example profiles as presented in (A-C) for tumor sample SM001 (IDHmut recurrence,
741  n=181scRRBS cells, n = 5,713 scRNAseq cells).

742

743  Figure S4. Distribution and relationship of DNA methylation and epimutation throughout
744  the glioma genome. Related to Figure 1.

745  (A) Boxplots representing average 10-kb tiled DNA methylation values per single tumor cell. (B)
746  Boxplots highlighting the single-cell epimutation burden estimates calculated across different
747  genomic contexts. (C) Scatterplots showing the relationship between genomic context-specific
748  single-cell epimutation burden (sample-specific ScRRBS average) and genomic context-specific
749  mutation burden derived from whole genome sequencing (n = 10 excluding hypermutant

750 sample). Panels are separated into global (i.e., all regions), promoter, gene body, and intergenic
751  regions (Spearman correlations p > 0.05 for all comparisons). (D) The dominant Catalogue of
752  Somatic Mutations in Cancer (COSMIC v3) mutational signatures are presented for each

753  subject. The stacked bar plots represent the relative contribution of each mutational signature to
754  the tumor’s mutational burden. Colors indicate distinct mutational signatures, which are further
755  annotated with their proposed etiology.

756

757  Figure S5. Association between epimutation and disrupted transcriptional programs.
758 Related to Figure 1.

759  (A-B) Scatterplots depicting single-cell gene-level epimutation average plotted against the gene-
760 level methylation estimates in both (A) promoter regions and (B) gene body regions. (C)

761 Boxplots of gene expression values, in log2 (counts per million), from single-cell RNAseq data
762  across different sets of promoter regions defined by gene-derived epimutation groups. Gene
763  epimutation groups are defined by the determining the mean epimutation value across a single
764  gene. Color indicates IDH1 mutation status. (D) Boxplots of gene expression dispersion that
765  were mean-expression scaled to account for expression level-dependent variability across the
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same promoter-based gene epimutation groups defined in panel C. (E-F) Gene Ontology
enrichment analyses for low epimutation genes (Figure 1E, mean epimutation across all tumor
cells: 0.0 - 0.1) and high epimutation genes (Figure 1F, mean epimutation across all tumor cells:
> 0.5) using gene body estimates. A meta biological process is placed next to significant Gene
Ontology terms. (G-H) Same analyses presented in panels E-F, but for gene-level epimutation
estimates determined in promoters.

Figure S6. Enrichment of high epimutation transcription factors and association with
environmental stress response. Related to Figure 1.

(A) Computational approach to defining TFBSs with high epimutation burden (red tangent line at
0.399 TFBS epimutation burden). X-axis represents each TF ordered by mean epimutation
burden in IDHwt single-cells (n = 334 cells). (B) Gene Ontology enrichment analysis of TFs with
high epimutation burden in their binding sites. A meta biological process is placed next to
significant Gene Ontology (GO) terms.

Figure S7. Pan-glioma cell state assignment and characteristics. Related to Figure 2.

(A) UMAP dimensionality reduction plot of all sScRNAseq data, including tumor and non-tumor
cells (n = 55,248 cells). Each dot depicts a single cell and colors represents the tumor of origin.
Shaded regions represent cell state classification. (B) Stacked violin plots of average single-cell
gene expression for cells presented in Figure S7A. Selected genes presented are informative
for cell state classification. (C) Stacked bar plots representing the proportion of non-tumor
cellular states (D) Stacked bar plots representing the proportion of tumor cellular states per
tumor for pan-glioma classification (top row) and previously published classifications (middle
row; Venteicher et al. and Neftel et al.) (E) Sankey plot representing the proportion of IDHmut
tumor cells with pan-glioma classification and associated classification described in Venteicher
et al. (F) Sankey plot representing the proportion of IDHwt tumor cells with pan-glioma
classification and associated classification described in Neftel et al. (G) Density plots
representing TFBS epimutation burden (scRRBS data) in IDHmut single-cell DNA methylation
data for TFs whose activity (scRNAseq based SCENIC analysis) characterizes a specific cell
state (n = 20 TFs per cell state). Kolmogorov-Smirnov p-value tests for differences in TFBS
epimutation burden across the cellular states. (H) Density plots representing TFBS epimutation
burden (scRRBS data) in IDHwt single-cell DNA methylation data for TFs whose activity
(scRNAseq based SCENIC analysis) characterizes a specific cell state (n =20 TFs per cell
state). Dotted lines represent the median TFBS value for cell state defining TFs. The
Kolmogorov-Smirnov p-value corresponds to differences in TFBS epimutation burden across
the cellular states.

Figure S8. LIGER integrated tumor-specific clustering of single-cell RNA and single-cell
DNA methylation data. Related to Figure 2.

Joint single-cell RNAseq (scRNA) and single-cell DNA methylation (scDNAm) clustering and
UMAP projections highlighting similar cellular state distributions across platforms. Sample
annotation is presented on the left of each paired UMAP plot, each dot is an individual single
cell, and cell number for each technology is presented in the lower-left hand corner. UMAP
coordinate space remains the same for both scRNA and scDNAm visualizations with cellular
states for that platform represented by a colored dot and data for the other platform represented
by a gray dot. Stacked bar plots enumerating the proportion of cellular states detected by each
platform are presented to the right of each paired UMAP plot. *** indicate specimens in which
the cellular proportions across the two platforms are significantly different (Fisher's Exact test, p
<0.05).
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Figure S9. Sample-specific differences in DNA methylation and epimutation burden
across different cellular states. Related to Figure 2.

(A-B) Boxplots showing sample-specific differences in (A) epimutation burden and (B) 10-kb
tiled DNA methylation across LIGER-defined cellular states in IDHmut tumors. Wilcoxon Rank
Sum p-values are presented comparing cells from a given tumor. (C-D) Boxplots showing
sample-specific differences in (C) epimutation burden and (D) 10-kb tiled DNA methylation
across LIGER-defined cellular states in IDHwt tumors. Wilcoxon Rank Sum p-values are
presented comparing cells from a given tumor. Samples with only one defined cell state are not
visualized.

Figure S10. Relationships between epimutation burden and genetic alterations. Related
to Figure 3.

(A) Single-cell epimutation burden estimates were calculated across genomic regions with (teal)
and without (gray) copy number alterations. The paired-sample Wilcoxon test p-value for each
subtype represents the statistical difference of epimutation burden across these two regions. (B)
Visualized results from multi-variable linear regression model testing for association with
epimutation burden. Dot size indicates -log10 (p-value) for each predictor and color represents
direction of association with epimutation burden (red = negative association, blue = positive
association). Explanatory variables included subject age, timepoint (pre- and post-treatment),
level of cellular proliferation determined by histological marker (MIB staining), and somatic copy
number alteration burden (SCNA, total number of bases altered / total number of bases
measured).

Figure S11. Whole genome sequencing phylogenetic inference of tumor samples.
Related to Figure 4.

(A-H) Phylogenetic trees constructed from whole genome sequencing data (mutations and
somatic copy number alterations) using phyloWGS and further annotated using single-cell
inferred copy number alterations (SCRRBS + scRNAseq). Tree nodes represent alterations
specific to the given clone, with node size corresponding to the fraction of cells with the
associated alterations. Branch length scales with the number of mutations attributed to that
clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes
considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal
arm-level events are presented. Arm-level events are defined as spanning at least 80 percent of
the chromosome arm, while partial events span at least 40 percent.

Figure S12. Tumor-specific comparisons of phylogenetic and phyloepigenetic trees.
Related to Figure 4.

(A-K) Tangelgrams highlighting the relationship between single-cell copy number and single-cell
DNA methylation tree diagrams. Phylogenetic trees (left cluster) were calculated from copy
number profiles (ScCRRBS data) and phyloepigenetic trees were constructed from the same cells
across 10-kb tiled DNA methylation values. Cluster labels are connected with solid lines and are
colored by cellular states determined by LIGER. Entanglement scores are listed above the
phylogenetic and phyloepigenetic trees and indicate whether labels share the same structure
(score = 0) or exhibit unrelated structures (score = 1).

Figure S13: Focal extrachromosomal DNA amplifications generate greater levels of
epigenetic and transcript diversity in glioma single cells. Related to Figure 4.

(A-D) Extrachromosomal DNA circular amplicon reconstruction displaying genomic
rearrangements predicted from whole genome sequencing. Coverage depth is represented as a
histogram across a genomic interval with segment copy number (CN) estimation provided on
the right y-axis. Discordant read pair clusters are indicated by arcs and colors highlight read pair
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orientation (e.g., brown = everted read pairs, (Deshpande et al., 2019). Amplicon intervals are
provided at the bottom of the plot with annotation for known oncogenes (e.g., EGFR). (E) EGFR
copy number estimation from single-cell RRBS data in ecDNA+ tumors. Cells with EGFR copy
number greater than 7 were classified as EGFR ecDNA+ (blue). (F) Single-cell 10-kb tiled DNA
methylation separated by EGFR ecDNA status. Single cells with inferred copy number status
greater than 7 were classified as ecDNA+ (blue). Wilcoxon rank sum test p-values comparing
DNA methylation across ecDNA status are reported for each patient tumor. (D) Boxplots
depicting transcriptional diversity using gene count signatures calculated in scRNAseq data for
each tumor, with cells separated based on inferred EGFR copy number status (gray = EGFR
ecDNA-, blue = EGFR ecDNA+). Transcriptional diversity was compared based on predicted
ecDNA status within each tumor subclone. Stars (*) indicate statistically significant differences
based on Wilcoxon Rank Sum test (p < 0.05).

Figure S14. DNA methylation instability metrics calculated in primary tumor, spatial, and
longitudinal cohorts. Related to Figure 5.

(A) Scatterplot highlights the significant positive correlation between the single-cell epimutation
burden metric and the bulk microarray-based DNA methylation instability metric (n = 11 tumors,
Spearman correlation). (B-C) Scatterplot between DNA methylation instability and (bulk
RNAseq) ssGSEA enrichment scores for (B) oxidative stress response genes and (C) a
randomly selected gene set substantiates finding that epigenetic instability is associated with
stress response. (D) Schematic depiction of magnetic resonance image-guided biopsies and
radiographic features used in spatial cohort (Verburg et al.). (E) Workflow for linear-mixed effect
model identifying differentially methylated CpG sites that are selected for during tumor evolution
when adjusting for estimated cellular proportions, glioma subtype, and a random effect for
patient (n = 102 tumor samples, n = 51 patients).

METHODS:

EXPERIMENTAL METHODS

Description of human tumor specimens.

Human glioma resection specimens were obtained from the University of Connecticut Health
Center and from St. Michael’s Hospital. All tissue donations were approved by the Institutional
Review Board of the Jackson Laboratory and clinical institutions involved. This work was
performed in accordance with the Declaration of Helskinki principles. Initial pathological
diagnosis was confirmed with tumor DNA methylation classification according to the Molecular
Neuropathology Tool (Capper et al., 2018). Clinical characteristics for this population are
provided in Table S1.

Sample preparation, partitioning, and fluorescence activated cell sorting for single-cell
experiments.

Tumor specimens were collected directly from the operating room and immediately placed into
MACS tissue storage solution at 4C (Miltenyi, Cat. no. 130-100-008). Tumor specimens from

the same spatial region were then minced and partitioned into single-cell and bulk fractions
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910  (Figure 1A). Any remaining tumor tissue was deposited into freezing media consisting of 90%
911  heat-inactivated fetal bovine serum (FBS) (Invitrogen) and 10% dimethyl sulfoxide (Sigma-

912  Aldrich), and gradually frozen in a freezing container (Mr. Frosty, Corning) over 24 hours before
913  being stored in liquid nitrogen for future experiments (i.e., Fluorescence in situ hybridization).
914  Bulk tissue specimens were immediately flash frozen for subsequent DNA and RNA extraction.
915  The specimen fraction for single cell analyses was further mechanically and enzymatically

916  dissociated using the Brain Tumor Dissociation Kit (P) according to the manufacturer’s protocol
917  (Miltenyi Cat. No. 130-095-942) and as previously reported (Neftel et al., 2019; Tirosh et al.,
918 2016; Venteicher et al., 2017).

919 Single cell suspensions were blocked with human BD Fc Block (BioLegend) for 5 min on
920 ice, prior to antibody staining, and labelled via incubation with 1:100 dilution of Alexa Fluor 488
921  conjugated anti-CD45 antibody (Cat. no. 304017, BioLegend) and 1:100 dilution of PECy7-
922  conjugated anti-CD31 antibody (Cat. no. 303117, BioLegend) for 30 minutes at 4C. Cells were
923  washed with Hank’s buffered saline solution and resuspended in 2mM EDTA/ 2% BSA/ PBS
924  buffer containing [2ug/mL] propidium iodide (PI) (BD Biosciences, Cat. No. 556364) and [1uM]
925  Calcein violet (Invitrogen) for 20 minutes at 4C. Fluorescence activated cell sorting (FACS) was
926  performed using a BD FACSAria Fusion instrument with an 130um nozzle and using the lowest
927 event rate. Single cell mode was selected to further ensure stringency of sorting. For the

928 generation of 10X sequencing libraries, 50,000-150,000 PI-, Calcein+ viable single cells were
929  collected in 20% FBS/HBSS buffer. CD45+ cells were limited to no more than 20% of the total
930 viable sort to enrich for tumor cells (Figure S2A). For the generation of single-cell DNA

931  methylation libraries, we sorted viable (Pl and Calcein+), non-immune (CD45), and non-

932  endothelial (CD31) cells into 96-well plates that were pre-loaded with 5 pL of 1X Tris-EDTA
933  buffer (Figure S2A). Once the cells had been sorted, 96-well plates were either immediately
934  processed through the single-cell DNA methylation protocol or flash frozen and stored at -80C.
935

936 scRRBS library preparation.

937  Single-cell DNA methylation profiling was performed using a modified version of a previous
938 scRRBS protocol (Guo et al., 2015; Guo et al., 2013). Single-cell DNA methylation experiments
939  were performed with sorted viable, non-immune, non-endothelial (PI-, Calcein+, CD45", CD31")
940 cells in a 96-well plate containing 5 pL pre-loaded Tris-EDTA buffer with an empty well control.
941 For 9 out of 11 tumors, the protocol was also applied to a small population control of 50-cells
942  (PI-, Calcein+, CD45", CD31°). Sorted 96-well plates were frozen at -80 C until processing when
943  cells were lysed with 0.2 uL 1 M KCI (Millipore Sigma), 0.2uL 10% Triton X-100 (Millipore
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944  Sigma), 0.3 uL 20mg/mL protease (Qiagen), and nuclease-free water in a total volume of 6 uL
945  for 3 hours at 50 C. The protease was then heat-inactivated at 75 C for 15 minutes. The DNA
946  was incubated with 50 units of Mspl (NEB) and Taqgl (NEB) with CutSmart buffer (NEB) for 3
947  hours at 37 C. 60fg of unmethylated Lambda bacteriophage DNA (Promega) was added to each
948  well to serve as a control for bisulfite conversion efficiency assessment. The solution was

949  heated to 80 C for 20 minutes to heat-inactivate the restriction enzymes and placed on ice. 5
950  units of Klenow Fragment (3'> 5 exo-, NEB), CutSmart buffer (NEB), and end-repair ANTP mix
951 (40uM dATP, 4uM dGTP, and 4uM dCTP; NEB) totaling 2 uL per reaction were added to

952  perform end-repair and dA-tailing. 1:250X diluted NEXTflex methylated adapters (BiooScientific)
953 were added to each quadrant of the 96-well plate (n = 24 unique adapters) with a ligation

954  mixture of 40 Weiss U T4 ligase (NEB), 1mM ATP (ThermoFisher Scientific), and nuclease-free
955  water to a final volume of 4 uL per reaction. TruSeq methylated adapters (lllumina) were also
956 used in a single sample (SM001) using the same protocol. The ligation reaction proceeded at 16
957  C for 30 minutes followed by an incubation of 4 C for at least 8 hours. The ligation reaction was
958  stopped by heat-inactivation at 65 C for 20 minutes. Post-adapter ligation, 24 individual cells
959  with unique ligated adapters were pooled from each plate quadrant for the protocol’s remainder.
960 Excess adapter was removed using a 1:1 volumetric ratio of Ampure beads (Beckman Coulter).
961  Bisulfite conversion was performed using the EZ-DNA methylation kit (Zymo) according to the
962 manufacturer’s instructions except with one-half volumes due to reduced DNA input. The

963  solution was incubated at 98 C for 8 minutes, 64 C for 3.5 hours, and held at 4 C once the

964 reaction was complete. 10ng of tRNA (Roche) was added prior to column elution to serve as a
965 protective carrier. PCR enrichment was performed using the PfuTurbo Cx hotstart (Agilent),
966  PfuTurbo Cx hotstart buffer (Agilent), primer mix (Bioo Scientific), INTP mix (Promega), and
967 nuclease-free water under the following conditions: 95 degrees Celsius for 2 minutes, 32 cycles
968 of 95 C for 20 seconds, 60 C for 30 seconds, and 72 C for 60 seconds. The PCR reaction was
969 terminated by incubating at 72 C for 5 minutes. The libraries were purified in a 1:1 volumetric
970 ratio of Ampure beads (Beckman Coulter), Pippin size selection was performed between 200-
971 1000bp (Sage Science), and quantified by qPCR (Kapa Biosystems / Roche). scRRBS libraries
972  were paired-end sequenced alongside bulk whole genome libraries on an lllumina HiSeq4000
973  using 1% PhiX spike-in and 75bp reads.

974

975 Single-cell RNA library preparation.

976  Sorted cells were washed and resuspended in 0.04% BSA/PBS buffer. Cells were counted on a

977  Countess Il automated cell counter and were loaded on a 10X Chromium chip with a target cell
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978  recovery of 6,000 cells per lane. Sequencing libraries were performed using the single-cell 3’
979  mRNA kit according to the manufacturer’s protocol (10X Genomics). cDNA and library quality
980 were examined on an Agilent 4200 TapeStation and quantified by gPCR (Kapa Biosystems /
981 Roche). lllumina sequencing was performed using a paired-end 100bp protocol. Libraries were
982  sequenced to an average depth of 50,000 unique reads per cell.
983
984  Whole genome sequencing of tumors and matched normal blood.
985  Genomic DNA was extracted from the same tumor region as the single-cell analyses using the
986  Qiagen AllPrep kit and matched normal blood using DNeasy kit (Qiagen). Briefly, 400ng of DNA
987  was sheared to 400bp using a LE220 focused-ultrasonicator (Covaris) and size selected using
988 SPRI beads (Beckman Coulter). The fragments were treated with end-repair, A-tailing, and
989 ligation of unique adapters (lllumina) using the KAPA HyperPrep Kit (Roche). This was followed
990 by 5 cycles of PCR amplification when necessary. DNA sequencing was performed using
991  paired-end 75bp protocol according to the manufacturer’s protocol (lllumina). The tumor
992 samples were sequenced to an average depth of 44X and tumor-matched normal blood to 30X.
993
994  Bulk lllumina EPIC DNA methylation microarrays.
995 250 ng of genomic tumor DNA was subject to bisulfite conversion using the EZ DNA Methylation
996 kit (Zymo) and genome-wide DNA methylation was assessed by the Infinium MethylationEPIC
997 kit according to the manufacturer’s protocol (lllumina).
998
999 Bulk RNA sequencing.
1000 Bulk tumor RNA was extracted from samples with sufficient tissue using the AllPrep kit
1001  (Qiagen). Samples with RIN values > 5 as assessed by TapeStation (Agilent Technologies)
1002  were prepared with KAPA mRNA HyperPrep kit (Roche). Libraries were sequenced using a
1003 paired-end 150bp protocol on a NovaSeq to 50 million reads according to the manufacturer’s
1004  protocol (lllumina).
1005
1006  Fluorescent in situ hybridization (FISH) analysis.
1007  Tissue slides were prepared by tumor touch prep method (deCarvalho et al., 2018). Positively
1008 charged glass slides were pressed against the surface of slightly thawed tissues. The slides
1009  were then immediately fixed by cold Carnoy’s fixative (3:1 methanol:glacial acetic acid, v/v) for
1010 30 min and then air-dried. Slides were denatured in Hybridization buffer (Empire Genomics)
1011 mixed with EGFR-Chr7 probe (EGFR-CHR07-20-ORGR, Empire Genomics) at 75°C for 5 min
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and then incubated at 37°C overnight. The posthybridization wash was with 0.4x SSC at 75°C
for 3 min followed by a second wash with 2x SSC/0.05% Tween20 for 1 min. The slides were
then briefly rinsed by water and air dried. The VECTASHIELD mounting medium with DAPI
(Vector Laboratories) was applied and the coverslip was mounted onto a glass slide. Tissue

images were scanned under Leica STED 3X/DLS Confocal with 100x magnification.

ANALYTICAL METHODS.

Single-cell DNA methylation processing.

Raw sequencing reads were trimmed to remove adapters and low-quality bases using
trim_galore with the "-- rrbs™ and "-- paired” parameters (version 0.4.0
https://github.com/FelixKrueger/TrimGalore). The trimmed reads were then aligned to the
GRCh37 (hg19) genome using Bismark (version 0.19.1) with parameters "-N 1 -- bowtie2 --
score_min L,0,-0.4" (Krueger and Andrews, 2011). PCR duplicates were removed with the
“deduplicate_bismark® command. Bisulfite conversion efficiency was determined using the
spike-in unmethylated lambda DNA. Cells with fewer than 40,000 unique CpGs detected and
bisulfite conversion rates below 95% were removed from analysis. 914 single cells were
retained for downstream analysis (n = 914 / 1,076 total cells sequenced) with a mean of
145,000 CpGs per cell and mean bisulfite conversion rate of 98.4% (Table S4).

Unsupervised clustering of scRRBS data.

Unsupervised clustering of the DNA methylation data was performed using pairwise
comparisons of individual CpGs across all cell-to-cell comparisons as previously described
(PDclust) (Hui et al., 2018). Briefly, this method performs pairwise comparisons of single-CpG
methylation measurements to create a pairwise dissimilarity (PD) value that reflects the average
absolute difference in methylation values at CpGs covered in any two cells. The pairwise
dissimilarity values were used as input features for the Multidimensional Scaling (MDS) analysis
for which visualization of cells in close proximity reflects greater similarity than cells further apart
(Figure 1B).

Epimutation burden as a measure of epigenome instability.

Epimutation burden was determined by identifying DNA methylation concordance of nearby
CpGs on a single sequencing read as previously described for bulk and single-cell DNA
methylation data (Gaiti et al., 2019; Landan et al., 2012; Landau et al., 2014). Briefly, in order for

a sequencing read to be considered for this analysis it required a minimum of 4 CpGs located
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on the same sequencing read. These sequencing reads are referred to as “epialleles” and
represent a subset of a cell’s total sequencing reads. An epiallele read is considered discordant
if any of the CpGs on that sequencing read have different methylation states (e.g., three
methylated CpGs and an unmethylated CpG). The epimutation burden metric reflects the sum
of discordant epialleles divided by the total number of epialleles considered for analysis as
previously described (Gaiti et al., 2019; Landan et al., 2012; Landau et al., 2014). The
epimutation burden metric can be calculated across the entire genome (i.e., “epimutation
burden”) or restricted to specific genomic regions where the metric considers only the epialleles
overlapping that particular genomic context. A linear regression model was used to assess the
impact of the total number of epialleles considered for analysis on the epimutation burden. The
epimutation metric was very weakly associated with epiallele count in that an additional 10,000
epialleles was associated with an 0.001 increase in the epimutation burden metric. For analyses
associating epimutation burden with metrics derived from bulk WGS data, sample-level

epimutation burden was calculated as the median of single-cell epimutation values.

DNA methylation and epimutation over genomic annotations.

To determine region-specific DNA methylation or epimutation burden, each cell’s measured
CpGs or epialleles were intersected with the genomic coordinates of interest before methylation
value or epimutation burden calculation, respectively. All coordinates were mapped against the
hg19 human genome assembly. Regions of interest considered for analyses included promoter,
gene body, intergenic, and DNasel regions, TF binding sites, replication timing domains, and
5kb and 10kb tiled regions. Promoters were defined as 1kb upstream and 500 bp downstream
of FANTOMS (Forrest et al., 2014) TSS that mapped to Ensembl genes. If multiple TSSs
mapped to a given gene, the TSS with the lowest genomic coordinate was selected. Gene body
annotations were obtained from the Ensembl Genome Browser (Hunt et al., 2018). Intergenic
regions were annotated by selecting regions not overlapping Ensembl gene body coordinates.
DNasel hypersensitivity region annotations were obtained from the UCSC Genome Browser
(Raney et al., 2013). TF binding sites were obtained from the JASPAR 2020 Core Vertebrate
database (Fornes et al., 2020) of non-redundant TF binding motifs. Each binding site is
assigned a score of 0-1000, which corresponds to the p-value for the relative position weight
matrix score of a TF binding site prediction. For a given TF, all identified target binding site
coordinates were aggregated, and binding sites were excluded if they had a relative score less
than 400, corresponding to a p-value greater than 0.0001. Replication timing of genes was

retrieved from MutSigCV (Lawrence et al., 2013), and annotations for replication timing domains
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1080 were generated by binning gene coordinates into quartiles based on the replication timing score.
1081  Methylation values were also calculated for non-overlapping windows of 5kb or 10kb. Ranks of
1082  high epimutation levels were determined by applying the ROSE software

1083  (https://bitbucket.org/young computation/rose) for both gene-level and transcription factor

1084  binding sites.

1085

1086 SCNA estimation from single-cell DNA methylation data.

1087  To provide evidence for somatic copy number alterations in single-cell DNA methylation

1088 sequencing data, the Gingko algorithm (Garvin et al., 2015) was applied to single cells that
1089 passed the scRRBS quality control filters mentioned above. Briefly, this method bins mapped
1090 reads by chromosomal location, performs Lowess normalization to correct for GC biases,

1091  adjusts for potential amplification artifacts, and segments the genome to determine

1092 chromosomal regions with consistent copy number states. Here, the genome for each sample
1093  was divided into 2,597 variable-length bins with a median length of 1Mb. Segmentation was
1094  performed using independent normalized read counts and the parameter ‘mask bad bins (i.e.,
1095  bins with consistent pileups) was enabled. Cells were considered “non-tumor” if less than 1% of
1096 the genome had a copy number state that was not 2. Copy number plots were generated using
1097 the R package “gplots”. Phylogenetic and phyloepigenetic trees were constructed for the same
1098 cells (scRRBS data) using Euclidean distance between profiles and clustered with the R

1099 function hclust using “ward.D2” linkage. The concordance between these two trees for each
1100 sample was determined using the tanglegram function in the dendextend R package and 10
1101  random tree rotations were used to minimize artificial branch crossing (Galili, 2015).

1102

1103  Single-cell RNA processing and analysis.

1104  The Cell Ranger pipeline (v3.0.2) was used to convert lllumina base call files to FASTQ files
1105 and align FASTQs to hg19 10X reference genome (version 1.2.0). Preprocessing was

1106  performed using the Scanpy package (1.3.7) (Wolf et al., 2018). The gene expression profiles of
1107  each cell at the 1500 most highly variable genes (as measured by dispersion (Satija et al.,
1108 2015)) were used for neighborhood graph generation (using 33 nearest neighbors) and

1109  dimensionality reduction with UMAP (Becht et al., 2018). Clustering was performed on this
1110  neighborhood graph using the Leiden community detection algorithm (Traag et al., 2019). The
1111 neighborhood graph was batch-corrected using the batch correction software BBKNN (Polanski
1112  etal, 2020). These defined clusters were then labelled with particular cell states based on

1113  marker gene expression and previously described cell states (Bhaduri et al., 2020; Neftel et al.,
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2019; Tirosh et al., 2016). Cell state classification of malignant cells was also performed using
previously developed classifiers for both IDH-wild-type (Neftel et al., 2019) and IDH-mutant
tumors (Venteicher et al., 2017). The Seurat R package was also used for downstream
analyses and visualizations (Stuart et al., 2019). Inference of gene regulatory networks was
performed using SCENIC for a random set of 5,000 cells per subtype to permit heatmap
visualization (Aibar et al., 2017). SCNA estimation from single-cell RNAseq data was performed
as previously reported (Neftel et al., 2019; Tirosh et al., 2016; Venteicher et al., 2017). Briefly,
the InferCNV method provides evidence for large-scale somatic copy number alterations by
comparing averaged gene expression intensity values compared with normal cells (based on
marker gene expression) from the same specimen. Subclusters of cells were partitioned into
clones on the basis of shared copy number patterns

(https://github.com/broadinstitute/inferCNV). Single-cell RNA diversity comparisons using gene

count signatures were performed using the R package CytoTRACE across cells from the same

tumor clone (Gulati et al., 2020).

Joint scRNA and scDNA methylation integration.

Single-cell RNA and DNA methylation malignant cell profiles were integrated within the same
specimen based on the differentially expressed across the pan-glioma RNA cell states (Table
S2). The single-cell RNA data were jointly clustered with the gene-level methylation features as
previously reported (Welch et al., 2019) using the R package liger (linked inference of genomic

experimental relationships).

Analysis of publicly available brain tumor DNA methylation data.
Data re-analysis of longitudinal glioma resources was accessed for Klughammer et al.

(http://www.medical-epigenomics.org/papers/GBMatch/) (Klughammer et al., 2018) and the

Glioma Longitudinal AnalySiS consortium (GLASS, http://synapse.org/glass) (Barthel et al.,

2019). Magnetic Resonance Imaging guided biopsies taken from spatially distinct regions and
subjected to bulk DNA methylation lllumina methylation microarray collected by our group was
also accessed (Verburg et al.). DNA methylation microarrays (450K) were also retrieved The
Cancer Genome Atlas initial glioma samples (Ceccarelli et al., 2016). All lllumina methylation
microarrays were processed using the R package minfi. The recurrent DNA methylation
changes between the initial and recurrent tumors were determined by fitting a linear mixed
effect model (R nime package) to each individual CpG modeled as a logit transformed M-value

with independent variables of timepoint, subtype, cancer cell proportion, immune proportion,
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and subject included as the random effect. The cancer and immune cell proportions in the
GLASS bulk lllumina methylation microarray data were determined using the glioma signature in
the R package MethylCIBERSORT as previously described (Chakravarthy et al., 2018).

Gene and genomic region enrichment analyses.

Enrichment of genes were performed using the R package topGO. Enrichment of genomic
regions were determined using the Locus Overlap Analysis (LOLA) R package (Sheffield and
Bock, 2016). LOLA enrichment analyses used all features considered for analysis as the

background sets.

Variant detection and copy number calling.

Variant detection and bulk copy number determination was performed in accordance to the
GATK Best practices using GATK 4.1.0.0 (Mutect2) and as previously described (Barthel et al.,
2019).

Mutational signature identification

Mutational signatures were identified in bulk WGS samples using the MutationalPatterns R
package (Blokzijl et al., 2018). The trinucleotide context of single base substitutions was
extracted for each sample in order to construct a mutational profile. For each mutational profile,
the contribution of mutational signatures from the Catalogue of Somatic Mutations in Cancer
(COSMIC v3) was quantified. Known signatures were ranked by order of relative contribution to
the sample mutational profile; for visualization the top 5 signatures per sample were listed, with

the remaining signatures collapsed into an “Other” category.

Phylogenetic reconstruction copy number / mutation clonality.

To reconstruct the evolutionary history and subclonal composition of tumors, PhyloWGS
(Deshwar et al., 2015) was applied to bulk WGS samples. PhyloWGS incorporates SCNAs

with simple somatic mutations (SSMs) in inferred phylogenies by converting SCNAs into pseudo
SSMs prior to subclonal reconstruction. For input, phyloWGS requires VCF format variant calls,
SCNA segments, and estimates of tumor purity, which were generated using Mutect2 (Cibulskis
etal., 2013), TITAN (Ha et al., 2014), and Sequenza (Favero et al., 2015), respectively. If a
tumor contained more than 5000 variants, input variants were subsampled to 5000, ensuring all
variants overlapping previously identified significantly mutated genes were included (Barthel et

al., 2019; Ceccarelli et al., 2016). For each phyloWGS run, multiple Markov chain Monte Carlo

31


https://doi.org/10.1101/2020.07.22.215335
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.22.215335; this version posted July 23, 2020. The copyright holder for this preprint (which

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

1214
1215
1216

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

chains were initiated with differing start values, and the optimum solution was selected based on
negative normalized log likelihood. Cancer cell fractions (CCF) were calculated for each tumor
subpopulation as the cellular prevalence for a given subpopulation divided by the maximum
cellular prevalence for that tumor, which corresponds to the estimated tumor purity. Events were
defined as clonal if they have a CCF of 1 or subclonal otherwise. SCNA subpopulation
assignments and cellular prevalence estimates derived from phyloWGS were further informed

by scRNAseq and scRRBS-derived copy number profiles.

Bulk RNA sequencing processing.

FASTQ files were pre-processed with fastp v0.20.0 to assess quality control and were aligned to
the hg19 genome using kallisto v0.46.0 with default parameters (Bray et al., 2016). The bulk
RNA Verhaak classification and simplicity scores were determined as previously reported
(Wang et al., 2017). Single sample gene set enrichment analysis for particular pathways was

performed using the GVSA R package (Hanzelmann et al., 2013).

Detection of extrachromosomal DNA.

Amplicon architect was used to detect extrachromosomal DNA in tumor whole genome
sequencing data as previously described (Deshpande et al., 2019). Briefly, this method
characterizes the architecture of amplified regions that are larger than 10kb and have more than

four copies greater than the median sample ploidy.

DNA methylation-based tumor classification.
Probabilistic estimates of tumor classification were defined both by the Molecular

Neuropathology classification tool (version 11b4) as previously reported (Capper et al., 2018).

Statistical methods.

All data analyses were conducted in R 3.6.1. Statistical analyses are described in the respective
Methods subsection and briefly described in the figure legends. No statistical methods were
used to predetermine study sample size. p-values of < 0.05 were considered statistically

significant.
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Figure 1. Single-cell DNA methylation sequencing highlights intratumoral heterogeneity
and disruption of epigenetic regulatory mechanisms.

(A) Schematic diagram detailing tumor sample processing and molecular profiling of single cells
and bulk tumor samples (n = 11 subjects). (B) Multidimensional scaling (MDS) analysis using
pairwise individual CpG distance metrics calculated between individual cells. Shapes represent
whether a sample was a single tumor cell (n = 844 cells) or 50-tumor cells, n = 9/11 subjects).
Colors indicate individual subjects, shaded regions indicated /DH7-mutation status of tumor, and
annotation is provided indicating clinical timepoint (I = initial, R = recurrence). (C) Schematic
depiction of local DNA methylation disorder in different genomic contexts. Left panel
demonstrates epimutation, or local DNA methylation disorder, at the promoter region, where
gene expression is disrupted by epimutation. The right panel provides an example of disrupted
transcription factor binding due to epimutation. (D) Boxplots of tumor cell epimutation burden
grouped by sample. Each boxplot spans the interquartile range with the whiskers representing
the absolute range, excluding outliers. Wilcoxon rank sum p-value represents comparison
between IDHmut and IDHwt epimutation burden. Each sample is annotated with clinical and
molecular metrics with p-values indicating the relationship between sample mean epimutation
burden and whole-genome sequencing derived somatic mutation burden or somatic alteration
burden (Spearman correlation). (E) Boxplots of gene expression values, as log2 (counts per
million), from single-cell RNAseq data across different gene epimutation groups. Gene
epimutation groups are defined by the determining the mean epimutation value across a single
gene. Color indicates IDH1 mutation status. (F) Boxplots of gene expression dispersion.
Expression profiles were mean-expression scaled to account for expression level-dependent
variability across the same gene epimutation groups defined in panel E. (G) Scatterplot of the
mean single-cell epimutation burden metric calculated across transcription factor binding sites
(TFBSs) within a subtype, ordered by IDHwt TFBS epimutation. Each column represents a
single transcription factor (TF) with a colored dotted line connecting IDHmut and IDHwt values.
Names of TFs previously indicated to confer fitness advantages to glioma cells (MacLeod et al.)
are listed above their TFBS epimutation burden estimate. (H) Scatterplot depicting the
association between average single-cell epimutation burden estimate and single-sample Gene
Set Enrichment Score for stress response, hypoxia, and random genes from bulk RNAseq data.
Spearman correlation coefficient and p-values are indicated.
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Figure 2. Integrative single-cell gene expression and DNA methylation analyses nominate
epigenetic regulators of glioma cell state variability.

(A) Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction plot of
scRNAseq data (n = 55,284 tumor cells, n = 11 subjects) showing the clustering of cell
populations by transcriptionally defined cell state (point color) and labelled according to marker
gene expression (Figure S6B). (B) Stacked bar plots representing the proportion of cellular
states per tumor for pan-glioma classification. Each sample is annotated with molecular metrics
with p-values indicating the relationship between cell type diversity, measured by Shannon’s
entropy, and sample mean epimutation burden, whole-genome sequencing derived somatic
alteration burden, or whole-genome sequencing derived somatic mutation burden (Spearman
correlation). (C-D) Enriched transcription factor activity across pan-glioma cellular states
determined using SCENIC algorithm and displayed as a heatmap of z-score enrichment values.
Visualization is presented for the hierarchical clustering of 5,000 randomly selected tumor cells
in both (C) IDHmut and (D) IDHwt tumors. (E) Schematic diagram representing LIGER workflow
to jointly cluster single-cell RNAseq and DNA methylation data generated from the same tumor
dissociation. (F) Boxplots representing the average epimutation burden in differentiated-like and
stem-like populations in IDHmut (left panel) and IDHwt (right) tumors. (G) Boxplots representing
the 10-kb tiled DNA methylation levels in differentiated-like and stem-like populations in IDHmut
(left panel) and IDHwt (right) tumors. (H) Region set enrichment analysis for 10-kb tiles with
higher DNA methylation in Stem-like (left panel) or Differentiated-like cells (right panel).
Enrichment was determined by Locus Overlap Analysis (LOLA). Individual points represent
enrichment of specific TFs in differentially methylated regions, color indicates results for specific
IDH-mutant subtype, point size indicates log-odds ratio, and dotted line represents the statistical
significance threshold (adjusted p-value < 0.05).
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Figure 3. Somatic copy number alterations are associated with stochastic DNA
methylation changes during disease evolution.

(A) Scatterplot depicting the association between single-cell (n = 844 tumor cells) somatic copy
number alteration (SCNA) and epimutation burden estimates by IDHmut (left panel) and IDHwt
(right panel) subtypes. Points are colored by patient. Spearman correlation coefficients
represent subtype-specific estimates. (B) Boxplots of epimutation burden calculated across the
promoter (left panel) and gene body regions (right panel) based on different DNA replication
times in IDHmut (n = 510) and IDHwt (n = 334) single cells. Kruskal-Wallis p-values indicate a
test for differences across the replication time groupings separately for IDHmut and IDHwt cells
(C) Scatterplot depicting the re-analysis of bulk promoter epimutation burden and SCNA burden
in IDHwt initial (n = 255) and recurrent (n = 152) tumors (Klughammer et al.). Spearman
correlation coefficients and p-values are presented for each independent timepoint. (D)
Scatterplot depicting the association between bulk delta (subject-specific recurrence — initial
estimates) SCNA burden and delta promoter epimutation burden in longitudinally profiled IDHwt
tumors (n = 98 subjects, Klughammer et al.) Spearman correlation coefficient and p-value are
presented. (E) Kaplan-Meier curve depicting time to second surgery in subjects where the
change in epimutation burden between initial and recurrent disease was above (high, red) and
below (low, blue) the median. Log-rank p-value for univariate analysis is presented within the
figure. Hazard Ratio and p-value for change in epimutation burden are presented below for
multi-variate Cox proportional hazard model including subject age and sex as predictors.
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Figure 4. Clonal evolution analyses highlight early copy number evolution followed by
epigenetic and transcriptomic diversification.

(A) Stacked bar plots representing the proportion of whole-genome sequencing (WGS) derived
somatic copy number alteration (SCNA) burden attributed to clonal vs. subclonal events. (B)
Scatterplot depicting entanglement coefficients for tanglegrams comparing cluster dendrograms
of scCRRBS derived copy number and DNA methylation profiles. A coefficient of O indicates
complete alignment of the tree structures, whereas a 1 indicates random association. Color
indicates IDH1 mutation status. (C) Examples of phylogenetic trees constructed from whole
genome sequencing data (mutations and SCNAs) and further annotated using single-cell
inferred copy number alterations (SCRRBS + scRNAseq). Tree nodes represent alterations
specific to the given clone, with node size corresponding to the fraction of cells with the
associated alterations. Branch length scales with the number of mutations attributed to that
clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes
considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal
arm-level events are presented. (D) Single-cell RNAseq-derived cellular proportions separated
by copy number-defined tumor subclone (Figure S3). Reported p-values represent Fisher’s
exact test comparing the cellular state distributions across tumor subclones. (E) Representative
Fluorescence in situ hybridization (FISH) images for IDHwt tumors computationally predicted to
harbor EGFR extrachromosomal DNA (ecDNA) by whole genome sequencing (n = 4 patients).
FISH images show EGFR amplifications (red) that occur distal to control chromosome 7 probes
(green) indicating extrachromosomal status and high variability in copy number status across
tumor cells. Scale bars = 10 microns. (F) Ridge plots of SM012 single-cell expression of
receptor tyrosine kinase and hypoxia-associated genes, grouped by copy number-defined
subclones. Reported p-values represent Wilcoxon Rank Sum tests comparing the gene
expression of cells across tumor subclones.
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Figure 5. Integrated molecular trajectories supports adaptive DNA methylation changes
under microenvironmental and therapeutic pressures.

(A) Schematic workflow for construction of a DNA methylation instability metric in bulk cohorts
informed by regions of high epimutation in single-cell DNA methylation data. The DNA
methylation instability metric was calculated across bulk DNA methylation microarray data in a
primary tumor cohort (TCGA), a cohort of multiple, spatially distinct biopsies from the same
tumor (Verburg et al.), and a longitudinal cohort with accompanying genomic sequencing data
(Glioma Longitudinal AnalySiS (GLASS), Barthel et al.). (B) Boxplots displaying the bulk DNA
methylation instability metric calculated across previously described DNA-methylation based
TCGA tumor classifications (Ceccarelli et al). Colors represent IDH1/2 mutation status, and
Kruskal-Wallis p-value testing for differences in distributions across classification is reported (n
= 615 primary gliomas, p < 2.2e-16). (C-D) Scatterplots depicting distance from radiographic
features plotted against the DNA methylation instability metric. Colors represent spatially
separated biopsies from a single patient at initial clinical timepoint for (C) IDHwt tumors (n = 57
biopsies, n = 6 subjects) and (D) IDHmut tumors (n = 62 biopsies, n = 8 subjects). Linear
regression lines colored by patient demonstrate the relationship between DNA methylation
instability and radiographic features (i.e., contrast enhancement surface). The p-value reported
from a multivariable linear regression model adjusting for subject represents the subtype-
specific association between DNA methylation instability and radiographic feature. Biopsies
taken closer to the tumor’s center (i.e., core) have the lowest value (left hand side of plot). (E)
Each column represents an individual patient sampled across initial and recurrent timepoints
and is separated into IDHmut (n = 24 subjects) and IDHwt (n = 27 subjects). Top panel, stacked
bar plot represents the proportion of CpGs sites that experienced DNA methylation change
associated with a subject-specific copy number change (defined by DNA sequencing data)
between primary and recurrent disease (red), DNA methylation gain not associated with a CNV
change (orange), DNA methylation loss not associated with a CNV change (blue), and no
longitudinal DNA methylation change (gray). Middle panel, heatmap of DNA methylation
instability metric in primary and recurrent disease (blue = low, red = high). Bottom panel,
differences in SCNA burden between primary and recurrent tumor. All associated p-values
represent Spearman correlations between absolute change in associated metric and the fraction
of longitudinal DNA methylation differences. (F) Enrichment analysis for differentially methylated
CpGs between primary and recurrent timepoints when adjusting for cellular composition, glioma
subtype, and subject included as a random effect. Individual points represent enrichment of
specific TFs in differentially methylated positions, color indicates the average TFBS epimutation
burden from single-cell RRBS data (Figure 1G), point size indicates log-odds ratio, and dotted
line represents the statistical significance threshold (Q-value < 0.05). (G) Gene Ontology
enrichment of transcription factors associated with longitudinal DNA methylation changes.
Dotted line represents threshold for statistical significance (Fisher's exact test, p < 0.05).
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Figure 6. Model of epigenetic heterogeneity and tumor evolution.

Schematic depiction of tumor evolution with general DNA methylation patterns represented by methylated
(5-methylcytosine, 5mC) and unmethylated (5C) regions of the epigenome. Initiating genetic events such as IDH1
and other driver mutations as well as somatic copy number alterations represent early stresses in glioma evolution
that precipitate epigenetic heterogeneity. Both mutations in epigenetic enzymes and SCNAs can increase the
likelihood of heritable DNA methylation alterations (i.e., epimutations). IDH7 mutations result in the production of the
oncometabolite 2-Hydroxyglutarate (2-HG) that leads to failure to remove aberrant DNA methylation while SCNAs
can generate mitotic stress leading to the erosion of ordered DNA methylation. Non-genetic determinants further
shape epigenetic heterogeneity as tumors evolve by exposing cells to spatially distinct microenvironmental stresses
that impact the DNA methylation replication machinery. The subsequent epigenetic diversity provides an additional
layer on which clonal evolution acts to select those cells with fitness-conferring epigenetic alterations. Ultimately, the
loosened epigenetic control allows tumor cells to transition to cell states responsive to different selective pressures.
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Figure S1. Integrated molecular profiles of patient samples. Related to Figure 1.

Each patient is in a single column with data presented to indicate clinical features (top), followed
by genetic alterations defined from bulk whole genome sequencing data, bulk RNA sequencing
based subtype classification probabilities (Wang et al., n = 8 available), single-cell RNA tumor
cellular state proportions, bulk DNA methylation microarray subtype classification probabilities
(Capper et al.), and boxplots of single-cell epimutation burden with samples colored by clinical
timepoint.
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Figure S2. Sample pre-processing and metrics related to single-cell DNA methylation data assessment.

Related to

Figure 1.

(A) Representative fluorescence activated cell sorting (FACS) data and strategy for viable cell enrichment for both
single-cell protocols, and tumor cell enrichment in sScCRRBS. (B) The same multidimensional scaling (MDS) analysis
using pairwise distance metrics calculated between individual cells as in Figure 1B, except colored by bisulfite conversion
efficiency. (C) The number of unique CpGs detected per single cell, with the red line indicating the threshold (minimum
40,000 unique CpGs) for inclusion in the dataset presented herein. (D) Representative distribution of single locus DNA
methylation estimates for a single cell. DNA methylation percentage of 0 represents an unmethylated locus, while a
percentage of 100 represents a methylated locus. (E) Representative genomic distribution of DNA methylation values
within a single cell.
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Figure S3. Somatic copy number alteration examples estimated from whole genome
sequencing, single-cell Reduced Representation Bisulfite Sequencing, and single-cell
RNA-sequencing. Related to Figure 1.

(A-C) Representative images of copy number alterations derived from SM012 (IDHwt initial)
whole genome sequencing (WGS) data. (A) Depth ratio for each segment with copy number
status determined as compared with germline (normal blood) WGS data. (B) SM012 Single-cell
DNA methylation-based copy number estimates (n = 69 tumor cells) with copy number integer
depicted by color (blue = CN loss, white = neutral CN, and red = CN gain). Each row is a single
cell with annotation for epimutation burden provided. (C) SM012 Single-cell RNAseq based
copy number inference (n = 5,489) identifying major copy number events found in WGS with
labelled subclones as presented in Figure 4D. (D-F) Similar example profiles as presented in (A-
C) for tumor sample SM006 (IDHwt initial, n = 82 scRRBS cells, n = 3,310 scRNAseq cells). (G-
I) Similar example profiles as presented in (A-C) for tumor sample SM001 (IDHmut recurrence,
n =181 scRRBS cells, n = 5,713 scRNAseq cells).
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Figure S4. Distribution and relationship of DNA methylation and epimutation throughout the glioma genome.
Related to Figure 1.

(A) Boxplots representing average 10-kb tiled DNA methylation values per single tumor cell. (B) Boxplots highlighting
the single-cell epimutation burden estimates calculated across different genomic contexts. (C) Scatterplots showing
the relationship between genomic context-specific single-cell epimutation burden (sample-specific sScRRBS average)
and genomic context-specific mutation burden derived from whole genome sequencing (n = 10 excluding hypermutant
sample). Panels are separated into global (i.e., all regions), promoter, gene body, and intergenic regions (Spearman
correlations p > 0.05 for all comparisons). (D) The dominant Catalogue of Somatic Mutations in Cancer (COSMIC v3)
mutational signatures are presented for each subject. The stacked bar plots represent the relative contribution of each
mutational signature to the tumor’s mutational burden. Colors indicate distinct mutational signatures, which are further
annotated with their proposed etiology.
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Figure S5. Association between epimutation and disrupted transcriptional programs.
Related to Figure 1.

(A-B) Scatterplots depicting single-cell gene-level epimutation average plotted against the gene-
level methylation estimates in both (A) promoter regions and (B) gene body regions. (C)
Boxplots of gene expression values, in log2 (counts per million), from single-cell RNAseq data
across different sets of promoter regions defined by gene-derived epimutation groups. Gene
epimutation groups are defined by the determining the mean epimutation value across a single
gene. Color indicates IDH1 mutation status. (D) Boxplots of gene expression dispersion that
were mean-expression scaled to account for expression level-dependent variability across the
same promoter-based gene epimutation groups defined in panel C. (E-F) Gene Ontology
enrichment analyses for low epimutation genes (Figure 1E, mean epimutation across all tumor
cells: 0.0 - 0.1) and high epimutation genes (Figure 1F, mean epimutation across all tumor cells:
> 0.5) using gene body estimates. A meta biological process is placed next to significant Gene
Ontology terms. (G-H) Same analyses presented in panels E-F, but for gene-level epimutation
estimates determined in promoters.


https://doi.org/10.1101/2020.07.22.215335
http://creativecommons.org/licenses/by-nd/4.0/

F- s 1I0RXIV Preprift aol. Titps.//Aol.org/lvu. L1ul/2UZVU. VUM .££2.£2105959, UlIS VEISION POSIEU JUly 295, £UZU. 1T1€ COPYTIgHL nolacr 10r s preprint (wirncrhi
igure = was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

response to extracellular stimulus

A' High TFBS epimutation value=0.399
N~
g
© —
<)
=
]
s w0 |
5 o
£
o
T o
% =]
L
}_
[er]
2
N —
<]
T T T T 1
0 50 100 150 200
Ranked TFBS epimutation
Gene Ontology Enrichment of TFs
07! p myeloid leukocyte differentiation { E
high epimutation ] response to inorganic substance { :
o8 TFBS |
|

0.5 aging

mitochondrion organization {

0.4
regulation of myeloid leukocyte diff.

03! cellular response to metal ion

" cellular response to inorganic substance{
0254

subtype mean TFBS epimutation burden

positive regulation of cellular comp.

Transcription Factors =———pp response to metal ion

00 05 1.0
~log10(p-value)

Figure S6. Enrichment of high epimutation transcription factors and association with environmental stress
response. Related to Figure 1.

(A) Computational approach to defining TFBSs with high epimutation burden (red tangent line at 0.399 TFBS epimutation
burden). X-axis represents each TF ordered by mean epimutation burden in IDHwt single-cells (n = 334 cells).

(B) Gene Ontology enrichment analysis of TFs with high epimutation burden in their binding sites. A meta biological
process is placed next to significant Gene Ontology (GO) terms.
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Figure S7. Pan-glioma cell state assignment and characteristics. Related to Figure 2.

(A) UMAP dimensionality reduction plot of all sScRNAseq data, including tumor and non-tumor
cells (n = 55,248 cells). Each dot depicts a single cell and colors represents the tumor of origin.
Shaded regions represent cell state classification. (B) Stacked violin plots of average single-cell
gene expression for cells presented in Figure S7A. Selected genes presented are informative
for cell state classification. (C) Stacked bar plots representing the proportion of non-tumor
cellular states (D) Stacked bar plots representing the proportion of tumor cellular states per
tumor for pan-glioma classification (top row) and previously published classifications (middle
row; Venteicher et al. and Neftel et al.) (E) Sankey plot representing the proportion of IDHmut
tumor cells with pan-glioma classification and associated classification described in Venteicher
et al. (F) Sankey plot representing the proportion of IDHwt tumor cells with pan-glioma
classification and associated classification described in Neftel et al. (G) Density plots
representing TFBS epimutation burden (scRRBS data) in IDHmut single-cell DNA methylation
data for TFs whose activity (scRNAseq based SCENIC analysis) characterizes a specific cell
state (n = 20 TFs per cell state). Kolmogorov-Smirnov p-value tests for differences in TFBS
epimutation burden across the cellular states. (H) Density plots representing TFBS epimutation
burden (scRRBS data) in IDHwt single-cell DNA methylation data for TFs whose activity
(scRNAseq based SCENIC analysis) characterizes a specific cell state (n =20 TFs per cell
state). Dotted lines represent the median TFBS value for cell state defining TFs. The
Kolmogorov-Smirnov p-value corresponds to differences in TFBS epimutation burden across
the cellular states.
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Figure S8. LIGER integrated tumor-specific clustering of single-cell RNA and single-cell
DNA methylation data. Related to Figure 2.

Joint single-cell RNAseq (scRNA) and single-cell DNA methylation (scDNAm) clustering and
UMAP projections highlighting similar cellular state distributions across platforms. Sample
annotation is presented on the left of each paired UMAP plot, each dot is an individual single
cell, and cell number for each technology is presented in the lower-left hand corner. UMAP
coordinate space remains the same for both scRNA and scDNAm visualizations with cellular
states for that platform represented by a colored dot and data for the other platform represented
by a gray dot. Stacked bar plots enumerating the proportion of cellular states detected by each
platform are presented to the right of each paired UMAP plot. *** indicate specimens in which
the cellular proportions across the two platforms are significantly different (Fisher's Exact test, p
<0.05).
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Figure S9. Sample-specific differences in DNA methylation and epimutation burden across different cellular states.
Related to Figure 2.

(A-B) Boxplots showing sample-specific differences in (A) epimutation burden and (B) 10-kb tiled DNA methylation

across LIGER-defined cellular states in IDHmut tumors. Wilcoxon Rank Sum p-values are presented comparing cells

from a given tumor. (C-D) Boxplots showing sample-specific differences in (C) epimutation burden and (D) 10-kb tiled

DNA methylation across LIGER-defined cellular states in IDHwt tumors. Wilcoxon Rank Sum p-values are presented
comparing cells from a given tumor. Samples with only one defined cell state are not visualized.
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(A) Single-cell epimutation burden estimates were calculated across genomic regions with (teal) and without (gray)
copy number alterations. The paired-sample Wilcoxon test p-value for each subtype represents the statistical difference
of epimutation burden across these two regions. (B) Visualized results from multi-variable linear regression model

testingfor association with epimutation burden. Dot size indicates -log10 (p-value) for each predictor and color

represents direction of association with epimutation burden (red = negative association, blue = positive association).

Explanatory variables included subject age, timepoint (pre- and post-treatment), level of cellular proliferation

determined by histological marker (MIB staining), and somatic copy number alteration burden (SCNA, total number
of bases altered / total number of bases measured).
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Figure S11. Whole genome sequencing phylogenetic inference of tumor samples.
Related to Figure 4.

(A-H) Phylogenetic trees constructed from whole genome sequencing data (mutations and
somatic copy number alterations) using phyloWGS and further annotated using single-cell
inferred copy number alterations (SCRRBS + scRNAseq). Tree nodes represent alterations
specific to the given clone, with node size corresponding to the fraction of cells with the
associated alterations. Branch length scales with the number of mutations attributed to that
clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes
considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal
arm-level events are presented. Arm-level events are defined as spanning at least 80 percent of
the chromosome arm, while partial events span at least 40 percent.
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Figure S12. Tumor-specific comparisons of phylogenetic and phyloepigenetic trees. Related to Figure 4.

(A-K) Tangelgrams highlighting the relationship between single-cell copy number and single-cell DNA methylation tree
diagrams. Phylogenetic trees (left cluster) were calculated from copy number profiles (ScCRRBS data) and phyloepigenetic
trees were constructed from the same cells across 10-kb tiled DNA methylation values. Cluster labels are connected with
solid lines and are colored by cellular states determined by LIGER. Entanglement scores are listed above the phylogenetic
and phyloepigenetic trees and indicate whether labels share the same structure (score = 0) or exhibit unrelated structures
(score = 1).
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Figure S13: Focal extrachromosomal DNA amplifications generate greater levels of
epigenetic and transcript diversity in glioma single cells. Related to Figure 4.

(A-D) Extrachromosomal DNA circular amplicon reconstruction displaying genomic
rearrangements predicted from whole genome sequencing. Coverage depth is represented as a
histogram across a genomic interval with segment copy number (CN) estimation provided on
the right y-axis. Discordant read pair clusters are indicated by arcs and colors highlight read pair
orientation (e.g., brown = everted read pairs, (Deshpande et al., 2019). Amplicon intervals are
provided at the bottom of the plot with annotation for known oncogenes (e.g., EGFR). (E) EGFR
copy number estimation from single-cell RRBS data in ecDNA+ tumors. Cells with EGFR copy
number greater than 7 were classified as EGFR ecDNA+ (blue). (F) Single-cell 10-kb tiled DNA
methylation separated by EGFR ecDNA status. Single cells with inferred copy number status
greater than 7 were classified as ecDNA+ (blue). Wilcoxon rank sum test p-values comparing
DNA methylation across ecDNA status are reported for each patient tumor. (D) Boxplots
depicting transcriptional diversity using gene count signatures calculated in scRNAseq data for
each tumor, with cells separated based on inferred EGFR copy number status (gray = EGFR
ecDNA-, blue = EGFR ecDNA+). Transcriptional diversity was compared based on predicted
ecDNA status within each tumor subclone. Stars (*) indicate statistically significant differences
based on Wilcoxon Rank Sum test (p < 0.05).
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Related to Figure 5.

(A) Scatterplot highlights the significant positive correlation between the single-cell epimutation burden metric and

the bulk microarray-based DNA methylation instability metric (n = 11 tumors, Spearman correlation). (B-C) Scatterplot
between DNA methylation instability and (bulk RNAseq) ssGSEA enrichment scores for (B) oxidative stress response
genes and (C) a randomly selected gene set substantiates finding that epigenetic instability is associated with stress
response. (D) Schematic depiction of magnetic resonance image-guided biopsies and radiographic features used in
spatial cohort (Verburg et al.). (E) Workflow for linear-mixed effect model identifying differentially methylated CpG sites
that are selected for during tumor evolution when adjusting for estimated cellular proportions, glioma subtype, and a

random effect for patient (n = 102 tumor sam

ples, n = 51 patients).
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Figure 1. Single-cell DNA methylation sequencing highlights intratumoral heterogeneity
and disruption of epigenetic regulatory mechanisms.

(A) Schematic diagram detailing tumor sample processing and molecular profiling of single cells
and bulk tumor samples (n = 11 subjects). (B) Multidimensional scaling (MDS) analysis using
pairwise individual CpG distance metrics calculated between individual cells. Shapes represent
whether a sample was a single tumor cell (n = 844 cells) or 50-tumor cells, n = 9/11 subjects).
Colors indicate individual subjects, shaded regions indicated /DH7-mutation status of tumor, and
annotation is provided indicating clinical timepoint (I = initial, R = recurrence). (C) Schematic
depiction of local DNA methylation disorder in different genomic contexts. Left panel
demonstrates epimutation, or local DNA methylation disorder, at the promoter region, where
gene expression is disrupted by epimutation. The right panel provides an example of disrupted
transcription factor binding due to epimutation. (D) Boxplots of tumor cell epimutation burden
grouped by sample. Each boxplot spans the interquartile range with the whiskers representing
the absolute range, excluding outliers. Wilcoxon rank sum p-value represents comparison
between IDHmut and IDHwt epimutation burden. Each sample is annotated with clinical and
molecular metrics with p-values indicating the relationship between sample mean epimutation
burden and whole-genome sequencing derived somatic mutation burden or somatic alteration
burden (Spearman correlation). (E) Boxplots of gene expression values, as log2 (counts per
million), from single-cell RNAseq data across different gene epimutation groups. Gene
epimutation groups are defined by the determining the mean epimutation value across a single
gene. Color indicates IDH1 mutation status. (F) Boxplots of gene expression dispersion.
Expression profiles were mean-expression scaled to account for expression level-dependent
variability across the same gene epimutation groups defined in panel E. (G) Scatterplot of the
mean single-cell epimutation burden metric calculated across transcription factor binding sites
(TFBSs) within a subtype, ordered by IDHwt TFBS epimutation. Each column represents a
single transcription factor (TF) with a colored dotted line connecting IDHmut and IDHwt values.
Names of TFs previously indicated to confer fitness advantages to glioma cells (MacLeod et al.)
are listed above their TFBS epimutation burden estimate. (H) Scatterplot depicting the
association between average single-cell epimutation burden estimate and single-sample Gene
Set Enrichment Score for stress response, hypoxia, and random genes from bulk RNAseq data.
Spearman correlation coefficient and p-values are indicated.
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Figure 2. Integrative single-cell gene expression and DNA methylation analyses nominate
epigenetic regulators of glioma cell state variability.

(A) Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction plot of
scRNAseq data (n = 55,284 tumor cells, n = 11 subjects) showing the clustering of cell
populations by transcriptionally defined cell state (point color) and labelled according to marker
gene expression (Figure S6B). (B) Stacked bar plots representing the proportion of cellular
states per tumor for pan-glioma classification. Each sample is annotated with molecular metrics
with p-values indicating the relationship between cell type diversity, measured by Shannon’s
entropy, and sample mean epimutation burden, whole-genome sequencing derived somatic
alteration burden, or whole-genome sequencing derived somatic mutation burden (Spearman
correlation). (C-D) Enriched transcription factor activity across pan-glioma cellular states
determined using SCENIC algorithm and displayed as a heatmap of z-score enrichment values.
Visualization is presented for the hierarchical clustering of 5,000 randomly selected tumor cells
in both (C) IDHmut and (D) IDHwt tumors. (E) Schematic diagram representing LIGER workflow
to jointly cluster single-cell RNAseq and DNA methylation data generated from the same tumor
dissociation. (F) Boxplots representing the average epimutation burden in differentiated-like and
stem-like populations in IDHmut (left panel) and IDHwt (right) tumors. (G) Boxplots representing
the 10-kb tiled DNA methylation levels in differentiated-like and stem-like populations in IDHmut
(left panel) and IDHwt (right) tumors. (H) Region set enrichment analysis for 10-kb tiles with
higher DNA methylation in Stem-like (left panel) or Differentiated-like cells (right panel).
Enrichment was determined by Locus Overlap Analysis (LOLA). Individual points represent
enrichment of specific TFs in differentially methylated regions, color indicates results for specific
IDH-mutant subtype, point size indicates log-odds ratio, and dotted line represents the statistical
significance threshold (adjusted p-value < 0.05).
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Figure 3. Somatic copy number alterations are associated with stochastic DNA
methylation changes during disease evolution.

(A) Scatterplot depicting the association between single-cell (n = 844 tumor cells) somatic copy
number alteration (SCNA) and epimutation burden estimates by IDHmut (left panel) and IDHwt
(right panel) subtypes. Points are colored by patient. Spearman correlation coefficients
represent subtype-specific estimates. (B) Boxplots of epimutation burden calculated across the
promoter (left panel) and gene body regions (right panel) based on different DNA replication
times in IDHmut (n = 510) and IDHwt (n = 334) single cells. Kruskal-Wallis p-values indicate a
test for differences across the replication time groupings separately for IDHmut and IDHwt cells
(C) Scatterplot depicting the re-analysis of bulk promoter epimutation burden and SCNA burden
in IDHwt initial (n = 255) and recurrent (n = 152) tumors (Klughammer et al.). Spearman
correlation coefficients and p-values are presented for each independent timepoint. (D)
Scatterplot depicting the association between bulk delta (subject-specific recurrence — initial
estimates) SCNA burden and delta promoter epimutation burden in longitudinally profiled IDHwt
tumors (n = 98 subjects, Klughammer et al.) Spearman correlation coefficient and p-value are
presented. (E) Kaplan-Meier curve depicting time to second surgery in subjects where the
change in epimutation burden between initial and recurrent disease was above (high, red) and
below (low, blue) the median. Log-rank p-value for univariate analysis is presented within the
figure. Hazard Ratio and p-value for change in epimutation burden are presented below for
multi-variate Cox proportional hazard model including subject age and sex as predictors.
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Figure 4. Clonal evolution analyses highlight early copy number evolution followed by
epigenetic and transcriptomic diversification.

(A) Stacked bar plots representing the proportion of whole-genome sequencing (WGS) derived
somatic copy number alteration (SCNA) burden attributed to clonal vs. subclonal events. (B)
Scatterplot depicting entanglement coefficients for tanglegrams comparing cluster dendrograms
of scCRRBS derived copy number and DNA methylation profiles. A coefficient of O indicates
complete alignment of the tree structures, whereas a 1 indicates random association. Color
indicates IDH1 mutation status. (C) Examples of phylogenetic trees constructed from whole
genome sequencing data (mutations and SCNAs) and further annotated using single-cell
inferred copy number alterations (SCRRBS + scRNAseq). Tree nodes represent alterations
specific to the given clone, with node size corresponding to the fraction of cells with the
associated alterations. Branch length scales with the number of mutations attributed to that
clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes
considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal
arm-level events are presented. (D) Single-cell RNAseq-derived cellular proportions separated
by copy number-defined tumor subclone (Figure S3). Reported p-values represent Fisher’s
exact test comparing the cellular state distributions across tumor subclones. (E) Representative
Fluorescence in situ hybridization (FISH) images for IDHwt tumors computationally predicted to
harbor EGFR extrachromosomal DNA (ecDNA) by whole genome sequencing (n = 4 patients).
FISH images show EGFR amplifications (red) that occur distal to control chromosome 7 probes
(green) indicating extrachromosomal status and high variability in copy number status across
tumor cells. Scale bars = 10 microns. (F) Ridge plots of SM012 single-cell expression of
receptor tyrosine kinase and hypoxia-associated genes, grouped by copy number-defined
subclones. Reported p-values represent Wilcoxon Rank Sum tests comparing the gene
expression of cells across tumor subclones.
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Figure 5. Integrated molecular trajectories supports adaptive DNA methylation changes
under microenvironmental and therapeutic pressures.

(A) Schematic workflow for construction of a DNA methylation instability metric in bulk cohorts
informed by regions of high epimutation in single-cell DNA methylation data. The DNA
methylation instability metric was calculated across bulk DNA methylation microarray data in a
primary tumor cohort (TCGA), a cohort of multiple, spatially distinct biopsies from the same
tumor (Verburg et al.), and a longitudinal cohort with accompanying genomic sequencing data
(Glioma Longitudinal AnalySiS (GLASS), Barthel et al.). (B) Boxplots displaying the bulk DNA
methylation instability metric calculated across previously described DNA-methylation based
TCGA tumor classifications (Ceccarelli et al). Colors represent IDH1/2 mutation status, and
Kruskal-Wallis p-value testing for differences in distributions across classification is reported (n
= 615 primary gliomas, p < 2.2e-16). (C-D) Scatterplots depicting distance from radiographic
features plotted against the DNA methylation instability metric. Colors represent spatially
separated biopsies from a single patient at initial clinical timepoint for (C) IDHwt tumors (n = 57
biopsies, n = 6 subjects) and (D) IDHmut tumors (n = 62 biopsies, n = 8 subjects). Linear
regression lines colored by patient demonstrate the relationship between DNA methylation
instability and radiographic features (i.e., contrast enhancement surface). The p-value reported
from a multivariable linear regression model adjusting for subject represents the subtype-
specific association between DNA methylation instability and radiographic feature. Biopsies
taken closer to the tumor’s center (i.e., core) have the lowest value (left hand side of plot). (E)
Each column represents an individual patient sampled across initial and recurrent timepoints
and is separated into IDHmut (n = 24 subjects) and IDHwt (n = 27 subjects). Top panel, stacked
bar plot represents the proportion of CpGs sites that experienced DNA methylation change
associated with a subject-specific copy number change (defined by DNA sequencing data)
between primary and recurrent disease (red), DNA methylation gain not associated with a CNV
change (orange), DNA methylation loss not associated with a CNV change (blue), and no
longitudinal DNA methylation change (gray). Middle panel, heatmap of DNA methylation
instability metric in primary and recurrent disease (blue = low, red = high). Bottom panel,
differences in SCNA burden between primary and recurrent tumor. All associated p-values
represent Spearman correlations between absolute change in associated metric and the fraction
of longitudinal DNA methylation differences. (F) Enrichment analysis for differentially methylated
CpGs between primary and recurrent timepoints when adjusting for cellular composition, glioma
subtype, and subject included as a random effect. Individual points represent enrichment of
specific TFs in differentially methylated positions, color indicates the average TFBS epimutation
burden from single-cell RRBS data (Figure 1G), point size indicates log-odds ratio, and dotted
line represents the statistical significance threshold (Q-value < 0.05). (G) Gene Ontology
enrichment of transcription factors associated with longitudinal DNA methylation changes.
Dotted line represents threshold for statistical significance (Fisher's exact test, p < 0.05).
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Figure 6. Model of epigenetic heterogeneity and tumor evolution.

Schematic depiction of tumor evolution with general DNA methylation patterns represented by methylated
(5-methylcytosine, 5mC) and unmethylated (5C) regions of the epigenome. Initiating genetic events such as IDH1
and other driver mutations as well as somatic copy number alterations represent early stresses in glioma evolution
that precipitate epigenetic heterogeneity. Both mutations in epigenetic enzymes and SCNAs can increase the
likelihood of heritable DNA methylation alterations (i.e., epimutations). IDH7 mutations result in the production of the
oncometabolite 2-Hydroxyglutarate (2-HG) that leads to failure to remove aberrant DNA methylation while SCNAs
can generate mitotic stress leading to the erosion of ordered DNA methylation. Non-genetic determinants further
shape epigenetic heterogeneity as tumors evolve by exposing cells to spatially distinct microenvironmental stresses
that impact the DNA methylation replication machinery. The subsequent epigenetic diversity provides an additional
layer on which clonal evolution acts to select those cells with fitness-conferring epigenetic alterations. Ultimately, the
loosened epigenetic control allows tumor cells to transition to cell states responsive to different selective pressures.
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