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ABSTRACT: 50 
Glioma intratumoral heterogeneity enables adaptation to challenging microenvironments and 51 
contributes to universal therapeutic resistance. Here, we integrated 914 single-cell DNA 52 
methylomes, 55,284 single-cell transcriptomes, and bulk multi-omic profiles across 11 adult 53 
IDH-mutant or IDH-wild-type gliomas to delineate sources of intratumoral heterogeneity. We 54 
found that local DNA methylation instability, or epimutation burden, was elevated in more 55 
aggressive tumors, reflected intratumoral variability, linked with transcriptional disruption, and 56 
associated with environmental stress response. We show that the activation of cell-state specific 57 
transcription factors is impacted by epimutations and that loosened epigenetic control may 58 
facilitate cellular plasticity. Our analyses support that somatic copy number alterations (SCNAs) 59 
promote epigenetic instability and that SCNAs largely precede epigenetic and transcriptomic 60 
diversification during glioma evolution. We confirmed the link between genetic and epigenetic 61 
instability by analyzing larger cohorts of bulk longitudinally collected and spatially separated 62 
DNA methylation data. Increased DNA methylation instability was associated with accelerated 63 
disease progression, and recurrently selected DNA methylation changes were enriched for 64 
environmental stress response pathways. Our work provides an integrative framework to better 65 
understand glioma evolution and highlights the importance of epigenetic heterogeneity in 66 
shaping therapeutic response.  67 
 68 
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INTRODUCTION:  84 
Diffuse gliomas are the most common malignant brain tumors in adults and remain 85 

incurable. Extensive molecular characterization of glioma has defined genomic drivers and 86 
clinically relevant subtypes based on the presence of IDH1/2 gene mutations (i.e., IDH-mutant 87 
and IDH-wild-type) (Cancer Genome Atlas Research et al., 2015; Ceccarelli et al., 2016; Louis 88 
et al., 2016). Inter- and intra-tumoral heterogeneity are salient features across glioma subtypes 89 
that contribute to the universal therapeutic resistance. The heterogeneity observed in surgical 90 
resection specimens reflects each tumor’s evolutionary path that is driven by competition 91 
between subpopulations harboring diverse genetic, epigenetic, and transcriptional aberrations 92 
(Barthel et al., 2019; Klughammer et al., 2018; Korber et al., 2019; Mazor et al., 2015; Wang et 93 
al., 2017). Thus, understanding how these different layers of heterogeneity integrate to define 94 
clonal lineages and drive glioma evolution may provide insights into treatment failure.  95 

The study of tumor heterogeneity is complicated by cellular plasticity that enables cancer 96 
cells to reversibly transition between distinct cellular states in response to genetic, 97 
microenvironmental, and therapeutic stimuli (Flavahan et al., 2017). Single-cell RNA sequencing 98 
studies have previously identified such dynamic cellular states in IDH-wild-type gliomas 99 
(Bhaduri et al., 2020; Neftel et al., 2019; Wang et al., 2019; Yuan et al., 2018). Cell states of 100 
IDH-mutant gliomas were found to display a more restricted plasticity along a hierarchical 101 
differentiation axis (Tirosh et al., 2016; Venteicher et al., 2017). Epigenetic modifications, such 102 
as DNA methylation at cytosine followed by guanine dinucleotides (i.e., CpGs), are mitotically 103 
heritable marks and regulate cellular states (Easwaran et al., 2014). For example, the transition 104 
from a differentiated-like state to an undifferentiated, or stem-like, state following chemotherapy 105 
in glioma was accompanied by epigenetic reprogramming (Liau et al., 2017). However, the 106 
epigenetic mechanisms that enable cellular plasticity and regulate glioma cell states remain 107 
poorly understood.  108 

Epimutation is aberrant DNA methylation resulting from errors in the placement or 109 
removal of epigenetic marks. These stochastic errors in DNA methylation replication can 110 
accumulate in cancer cells as passenger events or be evolutionarily selected by destabilizing 111 
gene expression programs. Accordingly, epimutations provide genetically identical tumor cells 112 
with greater plasticity to respond to environmental stressors (Flavahan et al., 2017). Previous 113 
studies of glioma have demonstrated associations between bulk tumor epigenetic heterogeneity 114 
metrics and clinical outcomes (Ceccarelli et al., 2016; Klughammer et al., 2018). Together, 115 
these findings suggest that stochastic DNA methylation alterations contribute to tumor 116 
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heterogeneity and cellular plasticity and may drive clonal evolution of treatment-resistant 117 
phenotypes.  118 

Single-cell DNA methylation technologies have recently emerged as tools to further 119 
dissect heterogeneous cell populations (Angermueller et al., 2016; Argelaguet et al., 2019; 120 
Farlik et al., 2016; Zhu et al., 2018b) and define epigenetic states that contribute to tumor 121 
evolution (Bian et al., 2018; Gaiti et al., 2019). Here, we integrated single-cell DNA methylomes, 122 
single-cell transcriptomes, and single-cell copy number profiles with bulk genomic profiles 123 
across a cohort of 11 glioma patient samples to deconstruct the sources of glioma 124 
heterogeneity. These analyses identified the gene regulatory regions most susceptible to 125 
stochastic DNA methylation alterations, the epigenetic modulation of transcriptional networks 126 
involved in glioma cellular identity, and that genetic driver events largely precede DNA 127 
methylation diversification during glioma evolution. We confirmed these single-cell findings 128 
through the association of DNA methylation instability across spatially separated and 129 
longitudinally collected bulk glioma tissue samples. Collectively, our work provides insights into 130 
the sources of intratumoral heterogeneity that fuel glioma evolution. 131 
 132 
RESULTS: 133 
Single-cell DNA methylation highlights inter- and intratumoral heterogeneity at gene 134 
regulatory regions. 135 
To investigate glioma heterogeneity we performed single-cell DNA methylation, single-cell gene 136 
expression, and accompanying bulk tumor profiling in 11 adult patients with glioma (Figure 1A). 137 
This cohort was representative of two principal molecular subtypes (IDH-mutant and IDH-wild-138 
type) and captured distinct clinical time points (i.e., unmatched initial and recurrent tumors, 139 
Table S1 and Figure S1). We mechanically dissected tumor specimens from the same 140 
geographic region dissociating tissue for single-cell protocols and flash freezing tissue for bulk 141 
genomic assays (Figure 1A). We implemented an established single-cell DNA methylation 142 
protocol, reduced representation bisulfite sequencing (scRRBS), and 10X Genomics’ single-cell 143 
gene expression protocol on cells from the same dissociation (Figure S2A) (Guo et al., 2015; 144 
Guo et al., 2013). Viable CD45- (i.e., pan-immune cell marker) cells were plated for scRBBS, 145 
while single-cell transcriptomics was performed on all viable cells deriving a set of 914 single-146 
cell methylomes and 55,284 single-cell transcriptomes (Methods). On average, ~150,000 147 
unique CpG dinucleotides covering representative chromosomal regions were measured per 148 
cell (Figure S2B-E), and expression was measured on an average of 2,340 genes per cell.  149 
Tumor cells were defined based on the detection of inferred copy number alterations in both 150 
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datasets resulting in a final set of 844 tumor cells for single-cell DNA methylation and 30,831 151 
tumor cells for single-cell transcriptomics (Methods, Figure S3A-I). 152 

Unsupervised clustering and multidimensional scaling of the pairwise distances between 153 
single-cell genome-wide DNA methylation patterns grouped tumor cells by IDH1 mutation status 154 
consistent with IDH-mutant tumors displaying greater genome-wide DNA methylation levels 155 
(Figure 1B and Figure S4A, Wilcoxon p < 2.2e-16).  The co-localization of cells from different 156 
patients suggested some shared epigenetic states, while the isolated patient-specific grouping 157 
of 1 of 6 IDH-mutant and 2 out of 5 IDH-wild-type tumors suggested that genetic intertumoral 158 
heterogeneity identified by whole genome sequencing was also observed at the epigenetic level 159 
(Figure S1 and Figure 1B).  160 

We next sought to determine the extent of intratumoral epigenetic heterogeneity by 161 
quantifying stochastic DNA methylation alterations in each single cell. In a non-diseased gene 162 
regulatory context, there is a general DNA methylation congruence in nearby CpGs reflecting 163 
tightly ordered gene regulation (Figure 1C top panel) (Kelsey et al., 2017). Epimutations reflect 164 
local DNA methylation disorder and may disrupt both local and distant gene regulation (Figure 165 
1C bottom panel) (Easwaran et al., 2014). We constructed an epimutation burden metric per cell 166 
measured by the proportion of sequencing reads discordant for DNA methylation status as 167 
previously described (Gaiti et al., 2019; Klughammer et al., 2018; Landau et al., 2014). Cell-to-168 
cell variation in epimutation burden was tumor dependent (Figure 1D) and was increased in 169 
tumor cells compared with non-tumor cells across IDH-mutant and IDH-wild-type glioma 170 
subtypes (Wilcoxon p < 0.0001, Figure S4B). The mean epimutation burden across a tumor’s 171 
single cells was not associated with the total somatic single nucleotide variant burden inferred 172 
through whole genome sequencing (Spearman correlation rho = 0.26, p = 0.43), independent of 173 
sequence context (Figure S4C). However, there was a positive association between the fraction 174 
of the genome with somatic copy number alterations (SCNA burden) and epimutation burden 175 
(Spearman correlation rho = 0.66, p = 0.03). Mutation burden reflects patient age (Alexandrov et 176 
al., 2020) and mutational processes (Figure S4D), while SCNA burden is associated with 177 
severed cell cycle checkpoints that compromises a cell’s ability to correct mis-segregations (Zhu 178 
et al., 2018a). The stronger relationship with SCNA burden suggested that epimutation burden 179 
increases with advanced disease rather than being elevated in the tumor cell of origin.  180 

We next examined whether stochastic DNA methylation changes might impact levels of 181 
DNA methylation and transcriptional output. First, we determined both the epimutation and DNA 182 
methylation levels per gene, observing significant positive correlations across gene regions 183 
(Spearman correlation p < 2.2e-16, Figure S5A-B). An increase in stochastic DNA methylation 184 
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might exert its functional impact by disrupting transcription programs (Gaiti et al., 2019). We 185 
leveraged companion single-cell RNAseq data to examine the association between epimutation 186 
burden, gene expression, and transcriptional variability. We observed both a reduction in mean 187 
expression (Kruskal Wallis p < 2.2e-16, Figure 1E) and an increase in gene dispersion 188 
(expression variability normalized for mean expression level) with increasing levels of 189 
epimutation burden in both IDH-mutant and IDH-wild-type tumors (Kruskal Wallis p < 2.2e-16, 190 
Figure 1F, Figure S5C-D), implying that epimutation contributes to gene expression 191 
dysregulation. To understand how aberrant DNA methylation could rewire broader regulatory 192 
networks, we performed a Gene Ontology enrichment analysis on genes with high epimutation 193 
(i.e., epimutation burden > 0.5) and genes with low epimutation (i.e., epimutation burden 0.0-194 
0.1) (Methods), revealing that high epimutation genes were associated with processes involved 195 
in cellular differentiation and low epimutation genes were related with critical metabolic 196 
processes (Fisher’s Exact test, p < 0.05, Figure S5E-F). The enrichment results were consistent 197 
when using epimutation burden groupings from the promoter or gene body (Figure S5G-H). 198 
Together, these results suggest that cells may acquire adaptive cell states through the 199 
accumulation of epimutations that impair normal transcriptional and differentiation programs. 200 

Beyond proximal dysregulation of gene expression, epimutations may impact the binding 201 
of key transcription factors, as changes in DNA methylation at DNA-binding motifs can positively 202 
or negatively impact transcription factor binding (Yin et al., 2017). To identify regulatory 203 
elements more prone to stochastic DNA methylation changes we determined the epimutation 204 
burden across the transcription factor binding sites (TFBS) listed in the JASPAR database 205 
(Methods, Figure 1G). Consistent with observed subtype-specific differences in methylation 206 
disorder, the majority of transcription factor binding sites had increased epimutation burden in 207 
IDH-wild-type compared with IDH-mutant cells. In both subtypes, transcription factors shown to 208 
be essential for glioma stem cell maintenance (e.g., SOX2, SOX9, etc. (MacLeod et al., 2019)) 209 
had lower than the median binding site epimutation burden suggesting that selection may act to 210 
deplete stochastic DNA methylation at these target regions (Figure 1G). In contrast, 211 
transcription factors that displayed high epimutation levels (Methods, Figure S6A) were 212 
associated with response to extracellular stimuli (Fisher’s Exact test, p < 0.05, Figure S6B). 213 
These findings suggest that increased epimutation levels at these environmental stress 214 
response regulators may facilitate an adaptive response to stressors such as hypoxia, which is 215 
commonly observed in glioma (Jin et al., 2017). To substantiate this association in the bulk 216 
glioma tissues, we performed single-sample Gene Set Enrichment Analyses (ssGSEA, 217 
Methods) using bulk RNAseq data and demonstrated robust associations between tumor 218 
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average epimutation and positive stress response regulation (Spearman correlation rho = 0.9, p 219 
< 0.01) or cellular response to hypoxia (Spearman correlation rho = 0.98, p < 0.001 220 
respectively), but not randomly selected genes (Spearman correlation rho = -0.05, p > 0.05, 221 
Figure 1H). Taken together, these results suggest that intratumoral variability in single-cell DNA 222 
methylation disorder may facilitate the adoption of distinct phenotypic states in response to 223 
stress stimuli.  224 
 225 
Integrative single-cell gene expression and DNA methylation analyses nominate 226 
epigenetic regulators of glioma cell states and stress response. 227 
To further examine the association between DNA methylation, stress response, and cellular 228 
states, we defined each tumor’s cellular composition from the single-cell transcriptional profiles. 229 
We performed unsupervised clustering analysis of all single cells and annotated clusters using 230 
marker genes (Figure 2A, Figure S7A-D) that revealed glial, immune, stromal, and malignant 231 
populations previously identified in glioma (Bhaduri et al., 2020; Wang et al., 2019). Malignant 232 
cells were broadly distributed over three cell states that all expressed canonical stem cell 233 
marker SOX2 (Figure S7B). These pan-glioma states exist across both IDH-mutant and IDH-234 
wild-type tumors, which we labelled as 1. differentiated-like, 2. stem-like, and 3. proliferating 235 
stem-like tumor cells, on the basis of marker gene expression (Figure 2A, Figure S7B, Table 236 
S2). Enumerating the proportion of pan-glioma malignant states by tumor of origin showed that 237 
IDH-mutant gliomas contained high fractions of stem-like cells (median 61%), while IDH-wild-238 
type gliomas were dominated by differentiated-like cells (median 83%) and significantly higher 239 
fractions of proliferating stem-like cells (16% IDH-wild-type vs. 2% IDH-mutant, Wilcoxon p = 240 
0.01, Figure 2B). Malignant cell state diversity (Shannon diversity index) was not associated 241 
with epigenetic (Spearman correlation rho = 0.12, p > 0.05) or genetic burden metrics 242 
(Spearman correlation rho = -0.18, p > 0.05, Figure 2B). Previously described malignant 243 
signatures of IDH-mutant glioma included Astrocyte-like and Oligodendrocyte-like cell types 244 
(Venteicher et al., 2017), which correspond to “differentiated-like” cells here. IDH-wild-type 245 
glioma cellular states (Neftel et al., 2019) included the “Astrocyte-like” and “Mesenchymal-like”, 246 
which were identified as “differentiated-like” in our clustering (Figure 2B, Figure S7D-F). The 247 
“proliferating stem-like” and “stem-like” states in our pan-glioma classification align closely with 248 
the “Undifferentiated” cells in IDH-mutant tumors and “Oligodendrocyte progenitor-like” and 249 
“Neural progenitor-like” in the IDH-wild-type tumors (Figure S7D-F), thus highlighting 250 
consistency of these pan-glioma signatures with previously reported IDH-subtype specific 251 
signatures (Neftel et al., 2019; Venteicher et al., 2017).  252 
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We next inferred gene regulatory networks from IDH-mutant and IDH-wild-type single-253 
cell gene expression data to identify transcription factors (TFs) governing cell states (Methods) 254 
(Aibar et al., 2017). The inferred TF activity demonstrated that the three pan-glioma cell states 255 
are each regulated by a small set of TFs (Figure 2C-D). For example, stem-like tumor cells 256 
demonstrated the highest activity for known stem-cell regulators such as SOX2, SOX8, and 257 
OLIG2 in both the IDH-mutant and IDH-wild-type tumors (Figure 2C-D). In addition to high 258 
activity for these transcription factors, proliferating stem-like cells also had an 259 
overrepresentation of gene regulatory networks involved in chromatin remodeling and DNA 260 
repair such as those directed by EZH2 and BRCA1 (Figure 2C-D). In contrast, differentiated-like 261 
cells had higher transcription factor activities involved in astrocyte differentiation (i.e., SOX9) 262 
and response to stress stimuli (i.e., JUND, PPARA, HIF2A). We then tested whether the 263 
epimutation burden differed between cell state-specific transcription factors and did not find 264 
significant differences (Kolmogorov-Smirnov test p > 0.05 Figure S7G-H). However, several 265 
transcription factors associated with the differentiated-like cell state (e.g., JUND, TFE3, and 266 
SREBF1) were characterized by high epimutation levels, nominating them as regulators of 267 
cellular fitness (Figure 2C-D).  268 

To define the epigenetic states of stem-like and differentiated-like cells in glioma, we 269 
used the linked inference of genomic experimental relationships (LIGER) method to identify 270 
shared properties between single-cell gene expression and DNA methylation data (Methods, 271 
Figure 2E) (Welch et al., 2019). We found that the distribution of tumor cell states within each 272 
sample was consistent between the two methods, as expected from the same tissue 273 
dissociation (Figure S8). We next investigated whether there were different levels of DNA 274 
methylation and epimutation between the two broad cell state classifications of stem-like 275 
(combining stem-like and proliferating stem-like) and differentiated-like. In IDH-mutant tumors, 276 
stem-like cells had significantly higher levels of both epimutation burden (p = 2.4e-13; Figure 2F 277 
left panel, Figure S9A) and DNA methylation (p = 6.0e-04, Figure 2G left panel, Figure S9B) 278 
likely reflecting elevated DNA methylation at genes responsible for cellular differentiation (Figure 279 
S5H). In IDH-wild-type tumors, which are marked by higher levels of epimutation and lower 280 
levels of DNA methylation compared with IDH-mutants, the differences between differentiated-281 
like and stem-like cell populations demonstrated greater variability in both epimutation (p = 0.51; 282 
Figure 2F, Figure S9C) and DNA methylation (p = 0.48; Figure 2G and Figure S9D) suggesting 283 
loosened epigenetic control over cell states. To identify changes in DNA methylation between 284 
differentiated-like and stem-like cells in both IDH-wild-type and IDH-mutant glioma, we 285 
compared DNA methylation between cell states using a linear mixed effect model with tumor of 286 
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origin as the random effect (Methods). Regions with increases in DNA methylation in stem-like 287 
cells were enriched for binding sites of SP1 and TFAP2A, two transcription factors that 288 
frequently cooperate in regulation of development associated genes (Figure 2H) (Orso et al., 289 
2010). In addition, the analysis identified enrichment of increased DNA methylation at binding 290 
sites of the HIF1A/ARNT master transcriptional regulator of hypoxic response, in stem-like cells 291 
(Figure 2H). As increased DNA methylation at binding sites may result in reduced transcription 292 
factor binding efficiency, these results suggest that elevated cell stress transcription factor 293 
activity in differentiated-like cells may occur via dynamic epigenetic remodeling (Figure 2H). We 294 
found only a few regions where there was an increase in DNA methylation in differentiated-like 295 
cells (Figure 2H). Together, these results suggest that perturbing epigenetic control via 296 
epimutation may promote the adaptive cell states necessary to tolerate diverse stressful 297 
microenvironments, including hypoxia (Li et al., 2009) and therapy (Liau et al., 2017; Shaffer et 298 
al., 2017; Sharma et al., 2010).  299 
 300 
Somatic copy number alterations are associated with stochastic DNA methylation 301 
changes during disease evolution. 302 
 We next investigated whether genetic stimuli could help explain the variability of 303 
epimutation burden across glioma cells. The fraction of genome with SCNAs was associated 304 
with epimutation burden at the bulk level (Spearman correlation rho = 0.66, p = 0.03, Figure 1D) 305 
and we confirmed this broad observation at the single-cell level (Spearman correlation rho = 306 
0.50, p < 2.2e-16 IDH-mutant and rho = 0.72, p < 2.2e-16 IDH-wild-type, Figure 3A). To 307 
determine whether this relationship was driven by greater epimutation burden in copy number 308 
altered regions, we calculated the epimutation burden for each cell in copy number altered and 309 
non-altered regions. We did not observe a consistent relationship between epimutation burden 310 
and the copy number status in single-cell DNA methylation data (paired Wilcoxon p > 0.05, 311 
Figure S10A). Instead, most genomic regions displayed a similar epimutation burden 312 
independent of copy number status (e.g., SM012, Figure S10A) suggesting that aneuploid 313 
regions do not directly account for increases in epigenetic diversity, but that these somatic 314 
events are likely shaped by similar biological processes (e.g., replication errors). Late replicating 315 
regions of the genome tend to accumulate more DNA mutations and structural rearrangements 316 
(Koren et al., 2012), and we discovered that single-cell epimutation burden across both 317 
promoter and gene body regions was positively associated with later replication regions in both 318 
subtypes (Kruskal Wallis p < 1e-04, Figure 3B). Late replicating genomic regions may have 319 
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reduced capacity to correct epimutations leading to their accumulation in a largely stochastic 320 
manner.  321 

To validate the relationship between SCNA and epimutation burden in a larger cohort, 322 
we re-analyzed the bulk RRBS and copy number profiles of initial (n = 255 patients) and 323 
recurrent (n = 152 patients) IDH-wild-type gliomas, including a subset of longitudinally collected 324 
samples (n = 98 patients) (Klughammer et al., 2018). We confirmed our findings by 325 
demonstrating that SCNA burden was positively associated with epimutation burden at both 326 
initial and recurrent timepoints (Spearman correlation rho = 0.43, p = 3.5e-13 initial; rho = 0.36, 327 
p = 6.2e-06 recurrence, Figure 3C). A multivariable linear regression verified that this positive 328 
association between epimutation and SCNA burden was independent of subject age, tumor 329 
timepoint, and cellular proliferation (Figure S10B). To assess the relationship between 330 
longitudinal changes in SCNA burden and epimutation, we restricted our analysis to paired 331 
initial and recurrent samples and observed a positive association between increases in SCNA 332 
burden and epimutation (Spearman’s correlation rho = 0.37, p = 0.0002, Figure 3D). 333 
Furthermore, the highest increases in epimutation burden between initial and the recurrent 334 
tumor were associated with a shorter time to second surgery in both univariate (log-rank test p = 335 
0.02, Figure 3F) and multivariate survival analyses (Cox proportional hazard model, HR = 1.69 336 
95% CI (1.09 – 2.62), p = 0.02, Table S3) supporting that increased epigenetic instability is 337 
associated with accelerated disease progression. SCNA burden or aneuploidy results from mis-338 
segregation during cell cycle, which can further perpetuate epimutations through aneuploid-339 
induced metabolic and replication stress (Zhu et al., 2018a). The association between 340 
aneuploidy and epimutation uncovered here implicates that defective cell cycle checkpoints 341 
compromises genomic but also epigenetic integrity. 342 
 343 
Clonal evolution analyses highlight early somatic copy number evolution followed by 344 
epigenetic and transcriptomic diversification. 345 
 The processes resulting in genetic, epigenetic, and transcriptomic heterogeneity may act 346 
at different times during tumor development. To evaluate somatic alteration timing and delineate 347 
intratumoral heterogeneity in the 11 glioma specimens, we reconstructed each tumor’s 348 
evolutionary history from bulk tumor whole genome sequencing data. Briefly, we determined the 349 
clonality of SCNAs and somatic point mutations assigning each genomic alteration to a tumor 350 
subclone (Methods). One to four genetic subclonal populations were detected per tumor, with 351 
linear and branched evolutionary patterns consistent with those previously observed in glioma 352 
(Kim et al., 2015; Korber et al., 2019). Assessment of the timing of genetic events revealed that 353 
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chromosomal arm-level SCNA events were more likely to be classified as clonal (Fisher’s exact 354 
p = 0.03), while mutations at genes significantly mutated in glioma were more evenly distributed 355 
across subclones (56.1% classified as clonal in non-hypermutant tumors) (Methods, Figure 4A, 356 
Figure S11A-H). To identify any copy number alterations associated with DNA methylation 357 
states we compared phylogenetic and phyloepigenetic trees derived from single-cell DNA 358 
methylation data using an entanglement coefficient where a low value (i.e., 0 entanglement) 359 
indicates complete single cell alignment across the tree structures (Methods, Figure S12). We 360 
did not observe strong alignments between phylogenetic and phyloepigenetic trees (median 361 
value = 0.46, Figure 4B); instead DNA methylation profiles grouped by similar cell states, 362 
showing that, like transcriptomic cell states, epigenetic clones are distributed across genetic 363 
clones. Moreover, these results suggest that many large-scale copy number alterations occur as 364 
early events which propagate broad epigenetic diversification rather than simply affecting 365 
methylation state in proximal regions (Figure 4B, Figure S12A-K).  366 
 We next asked whether genetic subclones within a tumor were associated with 367 
transcriptional diversity. We first used single-cell transcriptome inferred copy number profiles 368 
and found that three of eleven tumors (SM001, SM006, and SM012) had at least two distinct 369 
clones with chromosome arm-level alterations (Figure 4C, Figure S3). These tumors 370 
demonstrated significant shifts in cell state distributions across clones suggesting that the 371 
genetic heterogeneity also increases transcriptomic heterogeneity (per sample Fisher’s Exact 372 
test, p < 0.05, Figure 4D). Changes in transcriptional states may reflect cellular behaviors 373 
required to adapt to the varied microenvironmental niches, such as hypoxia, within a tumor.  374 

Previous studies have demonstrated that EGFR-amplifying extrachromosomal DNA 375 
(ecDNA) elements are common in IDH-wild-type gliomas and enable widespread genomic 376 
heterogeneity through both the amplification of oncogenes as well as enhancer elements 377 
(deCarvalho et al., 2018; Morton et al., 2019; Wu et al., 2019). Therefore, we hypothesized that 378 
ecDNA may represent a particularly potent contributor to genomic heterogeneity whose impact 379 
extends to epigenetic and transcriptomic diversity (Verhaak et al., 2019; Wu et al., 2019). We 380 
detected ecDNAs by analyzing whole-genome sequencing data for our cohort and validated the 381 
variable distribution of extrachromosomal EGFR elements within a tumor using fluorescence in 382 
situ hybridization for EGFR (Figure 4E, Figure S13A-D). EGFR ecDNAs, like chromosomal arm 383 
level events (e.g., chr7 amplification in SM001) were able distinguish subsets of tumor cells 384 
(e.g. EGFR ecDNA in SM006) (Figure 4C, Figure S11F-G). We classified both single-cell DNA 385 
methylation and RNA profiles as ecDNA+ or ecDNA- based on EGFR copy number level 386 
(Figure S13E). We observed ecDNA+ cells had increased genome-wide DNA methylation in 3 387 
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of 4 cases (Wilcoxon p < 0.05, Figure S13F) and greater transcriptional diversity using gene 388 
count signatures compared with ecDNA- cells (Wilcoxon p < 0.05, Figure S13G, Methods) 389 
(Gulati et al., 2020). The tumor with the highest number of genetic subclones and epimutation 390 
burden (SM012) contained an EGFR amplifying ecDNA assigned to subclones 3 and 4 which 391 
were marked by differential expression of a receptor tyrosine kinase gene signature. The 392 
ecDNA(-) subclone 2 most closely associated with hypoxia gene expression (Wilcoxon p < 2.2e-393 
16, Figure 4F), providing an example of how genetic heterogeneity may influence epigenetic 394 
and transcriptional reprogramming.  395 

Taken together, our evolutionary analyses show that genetic evolution largely precedes 396 
epigenomic and transcriptomic diversification, and that intratumoral genetic heterogeneity 397 
influences but does not determine cell states.  398 
  399 
Integrated molecular trajectories supports adaptive DNA methylation changes under 400 
microenvironmental and therapeutic pressures. 401 
Our observation that genetic events likely precede epigenetic and transcriptomic diversification 402 
led us to ask whether epigenetic diversity accelerates tumor evolution by promoting cell survival 403 
in resource-deprived tumor environments (e.g., hypoxia or therapeutic exposures). To address 404 
this question and extend the generalizability of our findings, we sought to determine variable 405 
intratumoral DNA methylation levels in large-scale bulk glioma studies (Barthel et al., 2019; 406 
Ceccarelli et al., 2016; Verburg et al., 2020). Since these datasets were generated using DNA 407 
methylation microarrays, we used our single-cell DNA methylation data to define a microarray 408 
metric that quantified the DNA methylation instability of gene regions prone to epimutation 409 
(Figure 1E and Figure 5A). We reasoned that regions most susceptible to DNA methylation 410 
changes would reflect this stochasticity in bulk data by taking on intermediate DNA methylation 411 
values (Figure 5A). We confirmed that this epimutation, or DNA instability metric, approximated 412 
that of single-cell epimutation averages from the same tumor by comparing to microarray-413 
derived profiles across the 11 tumors in our cohort (Spearman correlation rho = 0.65 p = 0.02, 414 
Figure S14A). We first applied this metric to The Cancer Genome Atlas (TCGA) data and found 415 
that the DNA methylation instability metric demonstrated differences across the TCGA-defined 416 
subtypes (Ceccarelli et al., 2016), with IDH-wild-type tumors displaying the highest levels 417 
(Kruskal Wallis p < 2.2e-16, Figure 5B). Integrating matching DNA methylation and RNAseq 418 
samples from 568 TCGA samples, we found that samples with higher levels of DNA methylation 419 
instability levels showed increased transcriptional activity of oxidative stress response genes, 420 
which corroborated our earlier finding of stronger positive associations between epigenetic 421 
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instability and stress response regulation than randomly selected genes (Spearman rho = 0.47, 422 
p < 2.2e-16, n = 516 IDH-mutant initial tumors, rho = 0.31, p = 0.03, n = 52, IDH-wild-type initial 423 
tumors, Figure S14B-C).  424 

We next applied the DNA methylation instability metric to 119 image-guided stereotactic 425 
biopsies taken from spatially distinct regions across IDH-wild-type (n = 57 biopsies, 6 patients) 426 
and IDH-mutant (n = 62 biopsies, n = 8 patients) tumors (Verburg et al., 2020). This enabled us 427 
to quantify the physical distance between a biopsied sample and specific radiographic features 428 
that delineate the tumor’s center (e.g., magnetic resonance imaging contrast-enhanced region, 429 
Figure S14D). We found an increase in DNA methylation instability closer to the tumor’s center 430 
across IDH-wild-type tumors while adjusting for patient (multivariable linear regression p = 0.02, 431 
Figure 5C), a region frequently characterized by hypoxia. The link between radiographic 432 
features and epigenetic shifts supports the association between cellular fitness and increased 433 
epigenetic plasticity. We did not observe a consistent relationship between tumor location and 434 
DNA methylation instability in IDH-mutant tumors (multivariable linear regression p = 0.31, 435 
Figure 5D) where hypoxia is less common.  436 

  The environmental pressures that tumors face may vary over time. To assess DNA 437 
methylation instability dynamics and its relationship with genetic alterations, we analyzed initial 438 
and recurrent tumor samples from the Glioma Longitudinal AnalySiS (GLASS) consortium for 439 
which DNA sequencing and DNA methylation data were available (n = 102 tumors, n = 51 440 
patients). For each sample, we catalogued the specific copy number and DNA methylation 441 
alterations at individual CpG sites that changed between an initial tumor and its matched 442 
recurrence. Overall, we observed that DNA methylation changes were mostly decreases in DNA 443 
methylation consistent with previous findings (de Souza et al., 2018; Mazor et al., 2015), and 444 
that DNA methylation changes mainly occurred in regions that remained copy number stable 445 
between timepoints (Figure 5E). We then tested for DNA methylation changes following 446 
treatment while accounting for differences in cellular composition of the tumor microenvironment 447 
(Methods, Figure S14E). We discovered that regions with consistently altered DNA methylation 448 
independent of changes in microenvironment cell type distribution were enriched for the binding 449 
sites of transcription factors that regulate cellular stress response, particularly hypoxia 450 
(Methods, Figure 5F-G). We also observed the enrichment for differential DNA methylation 451 
among TFs that differed between stem-like and differentiated-like states in our single-cell data 452 
(e.g., SP1 and TFAP2A, Figure 5F and Figure 2H). These observations support our single-cell 453 
findings that regions with greatest epimutation levels are involved with processes regulating 454 
cellular differentiation and stress signaling. In summary, these results suggest that stochastic 455 
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DNA methylation alterations can provide the variability necessary to enable transition to 456 
adaptive epigenetic phenotypes that are responsive to cellular stress (Figure 6).  457 

  458 
 459 
DISCUSSION: 460 
 Here, we integrated multimodal single-cell DNA methylation and transcriptomic profiles 461 
along with bulk profiles to interrogate the association between genetic tumor subclones, cellular 462 
states and epigenetic heterogeneity of glioma. We found that early genetic alterations largely 463 
precede epimutations, or stochastic changes in DNA methylation, whose accumulation 464 
throughout the genome led to dysregulated transcription and altered cellular states. Despite 465 
extensive intertumoral heterogeneity, we found recurrent epimutations localized to cellular 466 
differentiation genes and higher epimutation levels were associated with environmental 467 
pressures, such as hypoxia, highlighting a mechanism to overcome cell stress and enhance 468 
treatment resistance. Taken together, epigenetic intratumoral heterogeneity provides a plastic 469 
intermediate between genetic subclones and adaptive phenotypic cell states.  470 

Epimutations increase a tumor population’s epigenetic diversity through random errors in 471 
the DNA methylation replication machinery (Klughammer et al., 2018; Landan et al., 2012; 472 
Landau et al., 2014). We found that genetic and environmental stimuli further induce epigenetic 473 
variability likely through altered cellular metabolism. Deregulated metabolism is a hallmark of 474 
glioma characterized by somatic mutations in the metabolic isocitrate dehydrogenase (IDH) 475 
genes and a hypoxic microenvironment in IDH-wild-type tumors. IDH-mutant glioma cells 476 
produce the oncometabolite 2-hydroxyglutarate (2HG) that interferes with DNA demethylation 477 
(Ceccarelli et al., 2016; Dang et al., 2009; Losman and Kaelin, 2013; Noushmehr et al., 2010; 478 
Turcan et al., 2012) leading to the observed high promoter epimutation levels at cellular 479 
differentiation genes and the predominance of a stem-like cell state. Across both subtypes, 480 
epimutation level was positively associated with broad chromosomal alterations, such as arm-481 
level gains and losses, but not mutational burden. Copy number alterations occur during 482 
replicative crises that originate early in a tumor’s life history through punctuated evolution (Gao 483 
et al., 2016; Gerstung et al., 2020). We used a multimodal approach to link genetic clones 484 
across platforms and found that chromosomal alterations precede epigenetic and transcriptomic 485 
heterogeneity. The chromosomal imbalances may potentiate non-genetic diversity by 486 
accelerating cell proliferation (Taylor et al., 2018) and generating metabolic disruption via 487 
reactive oxygen species (Zhu et al., 2018a), thereby increasing the likelihood of aberrant DNA 488 
methylation. We also found that environmental stimuli, such as hypoxia, increase the rate of 489 
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epimutation and is supported by a previous study that demonstrated hypoxia reduced the 490 
enzymatic activity of DNA methylation regulators (Thienpont et al., 2016). Tumor hypoxia is 491 
common across many cancers and could more broadly shape the phenotype of cells resistant to 492 
therapy through epimutation (Heddleston et al., 2010). Collectively, increased chromosomal 493 
alterations and more adverse microenvironments may explain the greater cell state diversity that 494 
exists in IDH-wild-type compared with IDH-mutant gliomas. 495 
 In a non-tumor setting, a cell’s epigenome reflects the tissue of origin and serves to 496 
stabilize cell state-specific gene expression (Roadmap Epigenomics et al., 2015). Epimutations 497 
may occur when this homeostasis is disrupted, enabling cells to acquire a de-differentiated 498 
malignant cell state or create an altered epigenetic landscape permissive to cell state transitions 499 
(Flavahan et al., 2017). Glioma cell states have been described to fall along axes of 500 
differentiation and proliferating potential (Bhaduri et al., 2020; Neftel et al., 2019; Venteicher et 501 
al., 2017; Wang et al., 2019). In accordance with prior reports, we observed pan-glioma 502 
malignant cell states that were found within each tumor. Our epigenetic single-cell profiles 503 
revealed that cell state-defining transcription factor activity can be perturbed by epimutation. 504 
Thus, diverse DNA methylation marks help to sustain multiple cell states that each confer their 505 
own fitness advantages and together accelerate disease progression. 506 
 Intratumoral heterogeneity in glioma reflects the Darwinian process of subclonal 507 
competition driven by limited nutrient access. While single-cell transcriptome-based phenotypes 508 
have investigated glioma transcriptomic heterogeneity (Bhaduri et al., 2020; Neftel et al., 2019; 509 
Tirosh et al., 2016; Venteicher et al., 2017; Wang et al., 2019), we have only limited knowledge 510 
on the degree of epigenetic variability. The intratumoral epigenetic variation defined here 511 
provides a link between Darwinian clone wars and phenotypic state changes by enabling 512 
diverse responses to selective pressures such as hypoxia and treatment. A better 513 
understanding of how to reprogram the glioma epigenome toward a more therapeutically 514 
vulnerable cell state will be needed to develop more effective interventions. In summary, single-515 
cell epigenetic profiles show that each cell contains a unique set of methylation marks with 516 
distinct patterns regulating cellular states and reflecting variable levels of environmental stress. 517 
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FIGURE LEGENDS: 546 
Figure 1. Single-cell DNA methylation sequencing highlights intratumoral heterogeneity 547 
and disruption of epigenetic regulatory mechanisms.  548 
(A) Schematic diagram detailing tumor sample processing and molecular profiling of single cells 549 
and bulk tumor samples (n = 11 subjects). (B) Multidimensional scaling (MDS) analysis using 550 
pairwise individual CpG distance metrics calculated between individual cells. Shapes represent 551 
whether a sample was a single tumor cell (n = 844 cells) or 50-tumor cells, n = 9/11 subjects). 552 
Colors indicate individual subjects, shaded regions indicated IDH1-mutation status of tumor, and 553 
annotation is provided indicating clinical timepoint (I = initial, R = recurrence). (C) Schematic 554 
depiction of local DNA methylation disorder in different genomic contexts. Left panel 555 
demonstrates epimutation, or local DNA methylation disorder, at the promoter region, where 556 
gene expression is disrupted by epimutation. The right panel provides an example of disrupted 557 
transcription factor binding due to epimutation. (D) Boxplots of tumor cell epimutation burden 558 
grouped by sample. Each boxplot spans the interquartile range with the whiskers representing 559 
the absolute range, excluding outliers. Wilcoxon rank sum p-value represents comparison 560 
between IDHmut and IDHwt epimutation burden. Each sample is annotated with clinical and 561 
molecular metrics with p-values indicating the relationship between sample mean epimutation 562 
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burden and whole-genome sequencing derived somatic mutation burden or somatic alteration 563 
burden (Spearman correlation). (E) Boxplots of gene expression values, as log2 (counts per 564 
million), from single-cell RNAseq data across different gene epimutation groups. Gene 565 
epimutation groups are defined by the determining the mean epimutation value across a single 566 
gene. Color indicates IDH1 mutation status. (F) Boxplots of gene expression dispersion. 567 
Expression profiles were mean-expression scaled to account for expression level-dependent 568 
variability across the same gene epimutation groups defined in panel E. (G) Scatterplot of the 569 
mean single-cell epimutation burden metric calculated across transcription factor binding sites 570 
(TFBSs) within a subtype, ordered by IDHwt TFBS epimutation. Each column represents a 571 
single transcription factor (TF) with a colored dotted line connecting IDHmut and IDHwt values. 572 
Names of TFs previously indicated to confer fitness advantages to glioma cells (MacLeod et al.) 573 
are listed above their TFBS epimutation burden estimate. (H) Scatterplot depicting the 574 
association between average single-cell epimutation burden estimate and single-sample Gene 575 
Set Enrichment Score for stress response, hypoxia, and random genes from bulk RNAseq data. 576 
Spearman correlation coefficient and p-values are indicated. 577 
 578 
Figure 2. Integrative single-cell gene expression and DNA methylation analyses nominate 579 
epigenetic regulators of glioma cell state variability. 580 
(A) Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction plot of 581 
scRNAseq data (n = 55,284 tumor cells, n = 11 subjects) showing the clustering of cell 582 
populations by transcriptionally defined cell state (point color) and labelled according to marker 583 
gene expression (Figure S6B). (B) Stacked bar plots representing the proportion of cellular 584 
states per tumor for pan-glioma classification. Each sample is annotated with molecular metrics 585 
with p-values indicating the relationship between cell type diversity, measured by Shannon’s 586 
entropy, and sample mean epimutation burden, whole-genome sequencing derived somatic 587 
alteration burden, or whole-genome sequencing derived somatic mutation burden (Spearman 588 
correlation). (C-D) Enriched transcription factor activity across pan-glioma cellular states 589 
determined using SCENIC algorithm and displayed as a heatmap of z-score enrichment values. 590 
Visualization is presented for the hierarchical clustering of 5,000 randomly selected tumor cells 591 
in both (C) IDHmut and (D) IDHwt tumors. (E) Schematic diagram representing LIGER workflow 592 
to jointly cluster single-cell RNAseq and DNA methylation data generated from the same tumor 593 
dissociation. (F) Boxplots representing the average epimutation burden in differentiated-like and 594 
stem-like populations in IDHmut (left panel) and IDHwt (right) tumors. (G) Boxplots representing 595 
the 10-kb tiled DNA methylation levels in differentiated-like and stem-like populations in IDHmut 596 
(left panel) and IDHwt (right) tumors. (H) Region set enrichment analysis for 10-kb tiles with 597 
higher DNA methylation in Stem-like (left panel) or Differentiated-like cells (right panel). 598 
Enrichment was determined by Locus Overlap Analysis (LOLA). Individual points represent 599 
enrichment of specific TFs in differentially methylated regions, color indicates results for specific 600 
IDH-mutant subtype, point size indicates log-odds ratio, and dotted line represents the statistical 601 
significance threshold (adjusted p-value < 0.05).  602 
 603 
Figure 3. Somatic copy number alterations are associated with stochastic DNA 604 
methylation changes during disease evolution. 605 
(A) Scatterplot depicting the association between single-cell (n = 844 tumor cells) somatic copy 606 
number alteration (SCNA) and epimutation burden estimates by IDHmut (left panel) and IDHwt 607 
(right panel) subtypes. Points are colored by patient. Spearman correlation coefficients 608 
represent subtype-specific estimates. (B) Boxplots of epimutation burden calculated across the 609 
promoter (left panel) and gene body regions (right panel) based on different DNA replication 610 
times in IDHmut (n = 510) and IDHwt (n = 334) single cells. Kruskal-Wallis p-values indicate a 611 
test for differences across the replication time groupings separately for IDHmut and IDHwt cells 612 
(C) Scatterplot depicting the re-analysis of bulk promoter epimutation burden and SCNA burden 613 
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in IDHwt initial (n = 255) and recurrent (n = 152) tumors (Klughammer et al.). Spearman 614 
correlation coefficients and p-values are presented for each independent timepoint. (D) 615 
Scatterplot depicting the association between bulk delta (subject-specific recurrence – initial 616 
estimates) SCNA burden and delta promoter epimutation burden in longitudinally profiled IDHwt 617 
tumors (n = 98 subjects, Klughammer et al.) Spearman correlation coefficient and p-value are 618 
presented. (E)  Kaplan-Meier curve depicting time to second surgery in subjects where the 619 
change in epimutation burden between initial and recurrent disease was above (high, red) and 620 
below (low, blue) the median. Log-rank p-value for univariate analysis is presented within the 621 
figure. Hazard Ratio and p-value for change in epimutation burden are presented below for 622 
multi-variate Cox proportional hazard model including subject age and sex as predictors.   623 
 624 
Figure 4. Clonal evolution analyses highlight early copy number evolution followed by 625 
epigenetic and transcriptomic diversification. 626 
(A) Stacked bar plots representing the proportion of whole-genome sequencing (WGS) derived 627 
somatic copy number alteration (SCNA) burden attributed to clonal vs. subclonal events. (B) 628 
Scatterplot depicting entanglement coefficients for tanglegrams comparing cluster dendrograms 629 
of scRRBS derived copy number and DNA methylation profiles. A coefficient of 0 indicates 630 
complete alignment of the tree structures, whereas a 1 indicates random association. Color 631 
indicates IDH1 mutation status. (C) Examples of phylogenetic trees constructed from whole 632 
genome sequencing data (mutations and SCNAs) and further annotated using single-cell 633 
inferred copy number alterations (scRRBS + scRNAseq). Tree nodes represent alterations 634 
specific to the given clone, with node size corresponding to the fraction of cells with the 635 
associated alterations. Branch length scales with the number of mutations attributed to that 636 
clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes 637 
considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal 638 
arm-level events are presented. (D) Single-cell RNAseq-derived cellular proportions separated 639 
by copy number-defined tumor subclone (Figure S3). Reported p-values represent Fisher’s 640 
exact test comparing the cellular state distributions across tumor subclones. (E) Representative 641 
Fluorescence in situ hybridization (FISH) images for IDHwt tumors computationally predicted to 642 
harbor EGFR extrachromosomal DNA (ecDNA) by whole genome sequencing (n = 4 patients). 643 
FISH images show EGFR amplifications (red) that occur distal to control chromosome 7 probes 644 
(green) indicating extrachromosomal status and high variability in copy number status across 645 
tumor cells. Scale bars = 10 microns. (F) Ridge plots of SM012 single-cell expression of 646 
receptor tyrosine kinase and hypoxia-associated genes, grouped by copy number-defined 647 
subclones. Reported p-values represent Wilcoxon Rank Sum tests comparing the gene 648 
expression of cells across tumor subclones.  649 
  650 
Figure 5. Integrated molecular trajectories supports adaptive DNA methylation changes 651 
under microenvironmental and therapeutic pressures. 652 
(A) Schematic workflow for construction of a DNA methylation instability metric in bulk cohorts 653 
informed by regions of high epimutation in single-cell DNA methylation data. The DNA 654 
methylation instability metric was calculated across bulk DNA methylation microarray data in a 655 
primary tumor cohort (TCGA), a cohort of multiple, spatially distinct biopsies from the same 656 
tumor (Verburg et al.), and a longitudinal cohort with accompanying genomic sequencing data 657 
(Glioma Longitudinal AnalySiS (GLASS), Barthel et al.). (B) Boxplots displaying the bulk DNA 658 
methylation instability metric calculated across previously described DNA-methylation based 659 
TCGA tumor classifications (Ceccarelli et al). Colors represent IDH1/2 mutation status, and 660 
Kruskal-Wallis p-value testing for differences in distributions across classification is reported (n 661 
= 615 primary gliomas, p < 2.2e-16). (C-D) Scatterplots depicting distance from radiographic 662 
features plotted against the DNA methylation instability metric. Colors represent spatially 663 
separated biopsies from a single patient at initial clinical timepoint for (C) IDHwt tumors (n = 57 664 
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biopsies, n = 6 subjects) and (D) IDHmut tumors (n = 62 biopsies, n = 8 subjects). Linear 665 
regression lines colored by patient demonstrate the relationship between DNA methylation 666 
instability and radiographic features (i.e., contrast enhancement surface). The p-value reported 667 
from a multivariable linear regression model adjusting for subject represents the subtype-668 
specific association between DNA methylation instability and radiographic feature. Biopsies 669 
taken closer to the tumor’s center (i.e., core) have the lowest value (left hand side of plot). (E) 670 
Each column represents an individual patient sampled across initial and recurrent timepoints 671 
and is separated into IDHmut (n = 24 subjects) and IDHwt (n = 27 subjects). Top panel, stacked 672 
bar plot represents the proportion of CpGs sites that experienced DNA methylation change 673 
associated with a subject-specific copy number change (defined by DNA sequencing data) 674 
between primary and recurrent disease (red), DNA methylation gain not associated with a CNV 675 
change (orange), DNA methylation loss not associated with a CNV change (blue), and no 676 
longitudinal DNA methylation change (gray). Middle panel, heatmap of DNA methylation 677 
instability metric in primary and recurrent disease (blue = low, red = high). Bottom panel, 678 
differences in SCNA burden between primary and recurrent tumor. All associated p-values 679 
represent Spearman correlations between absolute change in associated metric and the fraction 680 
of longitudinal DNA methylation differences. (F) Enrichment analysis for differentially methylated 681 
CpGs between primary and recurrent timepoints when adjusting for cellular composition, glioma 682 
subtype, and subject included as a random effect. Individual points represent enrichment of 683 
specific TFs in differentially methylated positions, color indicates the average TFBS epimutation 684 
burden from single-cell RRBS data (Figure 1G), point size indicates log-odds ratio, and dotted 685 
line represents the statistical significance threshold (Q-value < 0.05). (G) Gene Ontology 686 
enrichment of transcription factors associated with longitudinal DNA methylation changes. 687 
Dotted line represents threshold for statistical significance (Fisher’s exact test, p < 0.05).  688 
 689 
Figure 6. Model of epigenetic heterogeneity and tumor evolution. Schematic depiction of 690 
tumor evolution with general DNA methylation patterns represented by methylated (5-691 
methylcytosine, 5mC) and unmethylated (5C) regions of the epigenome. Initiating genetic 692 
events such as IDH1 and other driver mutations as well as somatic copy number alterations 693 
represent early stresses in glioma evolution that precipitate epigenetic heterogeneity. Both 694 
mutations in epigenetic enzymes and SCNAs can increase the likelihood of heritable DNA 695 
methylation alterations (i.e., epimutations). IDH1 mutations result in the production of the 696 
oncometabolite 2-Hydroxyglutarate (2-HG) that leads to failure to remove aberrant DNA 697 
methylation while SCNAs can generate mitotic stress leading to the erosion of ordered DNA 698 
methylation. Non-genetic determinants further shape epigenetic heterogeneity as tumors evolve 699 
by exposing cells to spatially distinct microenvironmental stresses that impact the DNA 700 
methylation replication machinery. The subsequent epigenetic diversity provides an additional 701 
layer on which clonal evolution acts to select those cells with fitness-conferring epigenetic 702 
alterations. Ultimately, the loosened epigenetic control allows tumor cells to transition to cell 703 
states responsive to different selective pressures. 704 
 705 
 706 
Figure S1. Integrated molecular profiles of patient samples. Related to Figure 1. 707 
Each patient is in a single column with data presented to indicate clinical features (top), followed 708 
by genetic alterations defined from bulk whole genome sequencing data, bulk RNA sequencing 709 
based subtype classification probabilities (Wang et al., n = 8 available), single-cell RNA tumor 710 
cellular state proportions, bulk DNA methylation microarray subtype classification probabilities 711 
(Capper et al.), and boxplots of single-cell epimutation burden with samples colored by clinical 712 
timepoint.  713 
 714 
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Figure S2. Sample pre-processing and metrics related to single-cell DNA methylation 715 
data assessment. Related to Figure 1. 716 
(A) Representative fluorescence activated cell sorting (FACS) data and strategy for viable cell 717 
enrichment for both single-cell protocols, and tumor cell enrichment in scRRBS. (B) The same 718 
multidimensional scaling (MDS) analysis using pairwise distance metrics calculated between 719 
individual cells as in Figure 1B, except colored by bisulfite conversion efficiency. (C) The 720 
number of unique CpGs detected per single cell, with the red line indicating the threshold 721 
(minimum 40,000 unique CpGs) for inclusion in the dataset presented herein. (D) 722 
Representative distribution of single locus DNA methylation estimates for a single cell. DNA 723 
methylation percentage of 0 represents an unmethylated locus, while a percentage of 100 724 
represents a methylated locus. (E) Representative genomic distribution of DNA methylation 725 
values within a single cell. 726 
 727 
Figure S3. Somatic copy number alteration examples estimated from whole genome 728 
sequencing, single-cell Reduced Representation Bisulfite Sequencing, and single-cell 729 
RNA-sequencing. Related to Figure 1. 730 
(A-C) Representative images of copy number alterations derived from SM012 (IDHwt initial) 731 
whole genome sequencing (WGS) data. (A) Depth ratio for each segment with copy number 732 
status determined as compared with germline (normal blood) WGS data. (B) SM012 Single-cell 733 
DNA methylation-based copy number estimates (n = 69 tumor cells) with copy number integer 734 
depicted by color (blue = CN loss, white = neutral CN, and red = CN gain). Each row is a single 735 
cell with annotation for epimutation burden provided. (C) SM012 Single-cell RNAseq based 736 
copy number inference (n = 5,489) identifying major copy number events found in WGS with 737 
labelled subclones as presented in Figure 4D. (D-F) Similar example profiles as presented in (A-738 
C) for tumor sample SM006 (IDHwt initial, n = 82 scRRBS cells, n = 3,310 scRNAseq cells). (G-739 
I) Similar example profiles as presented in (A-C) for tumor sample SM001 (IDHmut recurrence, 740 
n = 181 scRRBS cells, n = 5,713 scRNAseq cells). 741 
 742 
Figure S4. Distribution and relationship of DNA methylation and epimutation throughout 743 
the glioma genome. Related to Figure 1. 744 
(A) Boxplots representing average 10-kb tiled DNA methylation values per single tumor cell. (B) 745 
Boxplots highlighting the single-cell epimutation burden estimates calculated across different 746 
genomic contexts. (C) Scatterplots showing the relationship between genomic context-specific 747 
single-cell epimutation burden (sample-specific scRRBS average) and genomic context-specific 748 
mutation burden derived from whole genome sequencing (n = 10 excluding hypermutant 749 
sample). Panels are separated into global (i.e., all regions), promoter, gene body, and intergenic 750 
regions (Spearman correlations p > 0.05 for all comparisons). (D) The dominant Catalogue of 751 
Somatic Mutations in Cancer (COSMIC v3) mutational signatures are presented for each 752 
subject. The stacked bar plots represent the relative contribution of each mutational signature to 753 
the tumor’s mutational burden. Colors indicate distinct mutational signatures, which are further 754 
annotated with their proposed etiology.  755 
 756 
Figure S5. Association between epimutation and disrupted transcriptional programs. 757 
Related to Figure 1. 758 
(A-B) Scatterplots depicting single-cell gene-level epimutation average plotted against the gene-759 
level methylation estimates in both (A) promoter regions and (B) gene body regions. (C) 760 
Boxplots of gene expression values, in log2 (counts per million), from single-cell RNAseq data 761 
across different sets of promoter regions defined by gene-derived epimutation groups. Gene 762 
epimutation groups are defined by the determining the mean epimutation value across a single 763 
gene. Color indicates IDH1 mutation status. (D) Boxplots of gene expression dispersion that 764 
were mean-expression scaled to account for expression level-dependent variability across the 765 
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same promoter-based gene epimutation groups defined in panel C. (E-F) Gene Ontology 766 
enrichment analyses for low epimutation genes (Figure 1E, mean epimutation across all tumor 767 
cells: 0.0 - 0.1) and high epimutation genes (Figure 1F, mean epimutation across all tumor cells: 768 
> 0.5) using gene body estimates. A meta biological process is placed next to significant Gene 769 
Ontology terms. (G-H) Same analyses presented in panels E-F, but for gene-level epimutation 770 
estimates determined in promoters.  771 
  772 
Figure S6. Enrichment of high epimutation transcription factors and association with 773 
environmental stress response. Related to Figure 1. 774 
(A) Computational approach to defining TFBSs with high epimutation burden (red tangent line at 775 
0.399 TFBS epimutation burden). X-axis represents each TF ordered by mean epimutation 776 
burden in IDHwt single-cells (n = 334 cells).  (B) Gene Ontology enrichment analysis of TFs with 777 
high epimutation burden in their binding sites. A meta biological process is placed next to 778 
significant Gene Ontology (GO) terms.  779 
 780 
Figure S7. Pan-glioma cell state assignment and characteristics. Related to Figure 2. 781 
(A) UMAP dimensionality reduction plot of all scRNAseq data, including tumor and non-tumor 782 
cells (n = 55,248 cells). Each dot depicts a single cell and colors represents the tumor of origin. 783 
Shaded regions represent cell state classification. (B) Stacked violin plots of average single-cell 784 
gene expression for cells presented in Figure S7A. Selected genes presented are informative 785 
for cell state classification. (C) Stacked bar plots representing the proportion of non-tumor 786 
cellular states (D) Stacked bar plots representing the proportion of tumor cellular states per 787 
tumor for pan-glioma classification (top row) and previously published classifications (middle 788 
row; Venteicher et al. and Neftel et al.) (E) Sankey plot representing the proportion of IDHmut 789 
tumor cells with pan-glioma classification and associated classification described in Venteicher 790 
et al. (F) Sankey plot representing the proportion of IDHwt tumor cells with pan-glioma 791 
classification and associated classification described in Neftel et al. (G) Density plots 792 
representing TFBS epimutation burden (scRRBS data) in IDHmut single-cell DNA methylation 793 
data for TFs whose activity (scRNAseq based SCENIC analysis) characterizes a specific cell 794 
state (n = 20 TFs per cell state). Kolmogorov-Smirnov p-value tests for differences in TFBS 795 
epimutation burden across the cellular states. (H) Density plots representing TFBS epimutation 796 
burden (scRRBS data) in IDHwt single-cell DNA methylation data for TFs whose activity 797 
(scRNAseq based SCENIC analysis) characterizes a specific cell state (n = 20 TFs per cell 798 
state). Dotted lines represent the median TFBS value for cell state defining TFs. The 799 
Kolmogorov-Smirnov p-value corresponds to differences in TFBS epimutation burden across 800 
the cellular states. 801 
 802 
Figure S8. LIGER integrated tumor-specific clustering of single-cell RNA and single-cell 803 
DNA methylation data. Related to Figure 2. 804 
Joint single-cell RNAseq (scRNA) and single-cell DNA methylation (scDNAm) clustering and 805 
UMAP projections highlighting similar cellular state distributions across platforms. Sample 806 
annotation is presented on the left of each paired UMAP plot, each dot is an individual single 807 
cell, and cell number for each technology is presented in the lower-left hand corner. UMAP 808 
coordinate space remains the same for both scRNA and scDNAm visualizations with cellular 809 
states for that platform represented by a colored dot and data for the other platform represented 810 
by a gray dot. Stacked bar plots enumerating the proportion of cellular states detected by each 811 
platform are presented to the right of each paired UMAP plot. `*` indicate specimens in which 812 
the cellular proportions across the two platforms are significantly different (Fisher’s Exact test, p 813 
< 0.05). 814 
 815 
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Figure S9. Sample-specific differences in DNA methylation and epimutation burden 816 
across different cellular states. Related to Figure 2. 817 
(A-B) Boxplots showing sample-specific differences in (A) epimutation burden and (B) 10-kb 818 
tiled DNA methylation across LIGER-defined cellular states in IDHmut tumors. Wilcoxon Rank 819 
Sum p-values are presented comparing cells from a given tumor. (C-D) Boxplots showing 820 
sample-specific differences in (C) epimutation burden and (D) 10-kb tiled DNA methylation 821 
across LIGER-defined cellular states in IDHwt tumors. Wilcoxon Rank Sum p-values are 822 
presented comparing cells from a given tumor. Samples with only one defined cell state are not 823 
visualized. 824 
 825 
Figure S10. Relationships between epimutation burden and genetic alterations. Related 826 
to Figure 3. 827 
(A) Single-cell epimutation burden estimates were calculated across genomic regions with (teal) 828 
and without (gray) copy number alterations. The paired-sample Wilcoxon test p-value for each 829 
subtype represents the statistical difference of epimutation burden across these two regions. (B) 830 
Visualized results from multi-variable linear regression model testing for association with 831 
epimutation burden. Dot size indicates -log10 (p-value) for each predictor and color represents 832 
direction of association with epimutation burden (red = negative association, blue = positive 833 
association). Explanatory variables included subject age, timepoint (pre- and post-treatment), 834 
level of cellular proliferation determined by histological marker (MIB staining), and somatic copy 835 
number alteration burden (SCNA, total number of bases altered / total number of bases 836 
measured). 837 
 838 
Figure S11. Whole genome sequencing phylogenetic inference of tumor samples. 839 
Related to Figure 4. 840 
(A-H) Phylogenetic trees constructed from whole genome sequencing data (mutations and 841 
somatic copy number alterations) using phyloWGS and further annotated using single-cell 842 
inferred copy number alterations (scRRBS + scRNAseq). Tree nodes represent alterations 843 
specific to the given clone, with node size corresponding to the fraction of cells with the 844 
associated alterations. Branch length scales with the number of mutations attributed to that 845 
clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes 846 
considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal 847 
arm-level events are presented. Arm-level events are defined as spanning at least 80 percent of 848 
the chromosome arm, while partial events span at least 40 percent. 849 
 850 
Figure S12. Tumor-specific comparisons of phylogenetic and phyloepigenetic trees. 851 
Related to Figure 4. 852 
(A-K) Tangelgrams highlighting the relationship between single-cell copy number and single-cell 853 
DNA methylation tree diagrams. Phylogenetic trees (left cluster) were calculated from copy 854 
number profiles (scRRBS data) and phyloepigenetic trees were constructed from the same cells 855 
across 10-kb tiled DNA methylation values. Cluster labels are connected with solid lines and are 856 
colored by cellular states determined by LIGER. Entanglement scores are listed above the 857 
phylogenetic and phyloepigenetic trees and indicate whether labels share the same structure 858 
(score = 0) or exhibit unrelated structures (score = 1).  859 
 860 
Figure S13: Focal extrachromosomal DNA amplifications generate greater levels of 861 
epigenetic and transcript diversity in glioma single cells. Related to Figure 4. 862 
(A-D) Extrachromosomal DNA circular amplicon reconstruction displaying genomic 863 
rearrangements predicted from whole genome sequencing. Coverage depth is represented as a 864 
histogram across a genomic interval with segment copy number (CN) estimation provided on 865 
the right y-axis. Discordant read pair clusters are indicated by arcs and colors highlight read pair 866 
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orientation (e.g., brown = everted read pairs, (Deshpande et al., 2019). Amplicon intervals are 867 
provided at the bottom of the plot with annotation for known oncogenes (e.g., EGFR). (E) EGFR 868 
copy number estimation from single-cell RRBS data in ecDNA+ tumors. Cells with EGFR copy 869 
number greater than 7 were classified as EGFR ecDNA+ (blue). (F) Single-cell 10-kb tiled DNA 870 
methylation separated by EGFR ecDNA status. Single cells with inferred copy number status 871 
greater than 7 were classified as ecDNA+ (blue). Wilcoxon rank sum test p-values comparing 872 
DNA methylation across ecDNA status are reported for each patient tumor. (D) Boxplots 873 
depicting transcriptional diversity using gene count signatures calculated in scRNAseq data for 874 
each tumor, with cells separated based on inferred EGFR copy number status (gray = EGFR 875 
ecDNA-, blue = EGFR ecDNA+). Transcriptional diversity was compared based on predicted 876 
ecDNA status within each tumor subclone. Stars (*) indicate statistically significant differences 877 
based on Wilcoxon Rank Sum test (p < 0.05).  878 
 879 
 Figure S14. DNA methylation instability metrics calculated in primary tumor, spatial, and 880 
longitudinal cohorts. Related to Figure 5. 881 
(A) Scatterplot highlights the significant positive correlation between the single-cell epimutation 882 
burden metric and the bulk microarray-based DNA methylation instability metric (n = 11 tumors, 883 
Spearman correlation). (B-C) Scatterplot between DNA methylation instability and (bulk 884 
RNAseq) ssGSEA enrichment scores for (B) oxidative stress response genes and (C) a 885 
randomly selected gene set substantiates finding that epigenetic instability is associated with 886 
stress response. (D) Schematic depiction of magnetic resonance image-guided biopsies and 887 
radiographic features used in spatial cohort (Verburg et al.). (E) Workflow for linear-mixed effect 888 
model identifying differentially methylated CpG sites that are selected for during tumor evolution 889 
when adjusting for estimated cellular proportions, glioma subtype, and a random effect for 890 
patient (n = 102 tumor samples, n = 51 patients).  891 
 892 
 893 
METHODS: 894 
EXPERIMENTAL METHODS 895 
Description of human tumor specimens. 896 
Human glioma resection specimens were obtained from the University of Connecticut Health 897 
Center and from St. Michael’s Hospital. All tissue donations were approved by the Institutional 898 
Review Board of the Jackson Laboratory and clinical institutions involved. This work was 899 
performed in accordance with the Declaration of Helskinki principles. Initial pathological 900 
diagnosis was confirmed with tumor DNA methylation classification according to the Molecular 901 
Neuropathology Tool (Capper et al., 2018). Clinical characteristics for this population are 902 
provided in Table S1. 903 
 904 
Sample preparation, partitioning, and fluorescence activated cell sorting for single-cell 905 
experiments. 906 
Tumor specimens were collected directly from the operating room and immediately placed into 907 
MACS tissue storage solution at 4C (Miltenyi, Cat. no. 130-100-008). Tumor specimens from 908 
the same spatial region were then minced and partitioned into single-cell and bulk fractions 909 
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(Figure 1A). Any remaining tumor tissue was deposited into freezing media consisting of 90% 910 
heat-inactivated fetal bovine serum (FBS) (Invitrogen) and 10% dimethyl sulfoxide (Sigma-911 
Aldrich), and gradually frozen in a freezing container (Mr. Frosty, Corning) over 24 hours before 912 
being stored in liquid nitrogen for future experiments (i.e., Fluorescence in situ hybridization). 913 
Bulk tissue specimens were immediately flash frozen for subsequent DNA and RNA extraction. 914 
The specimen fraction for single cell analyses was further mechanically and enzymatically 915 
dissociated using the Brain Tumor Dissociation Kit (P) according to the manufacturer’s protocol 916 
(Miltenyi Cat. No. 130-095-942) and as previously reported (Neftel et al., 2019; Tirosh et al., 917 
2016; Venteicher et al., 2017).  918 

Single cell suspensions were blocked with human BD Fc Block (BioLegend) for 5 min on 919 
ice, prior to antibody staining, and labelled via incubation with 1:100 dilution of Alexa Fluor 488 920 
conjugated anti-CD45 antibody (Cat. no. 304017, BioLegend) and 1:100 dilution of PECy7-921 
conjugated anti-CD31 antibody (Cat. no. 303117, BioLegend) for 30 minutes at 4C. Cells were 922 
washed with Hank’s buffered saline solution and resuspended in 2mM EDTA/ 2% BSA/ PBS 923 
buffer containing [2µg/mL] propidium iodide (PI) (BD Biosciences, Cat. No. 556364) and [1µM] 924 
Calcein violet (Invitrogen) for 20 minutes at 4C. Fluorescence activated cell sorting (FACS) was 925 
performed using a BD FACSAria Fusion instrument with an 130µm nozzle and using the lowest 926 
event rate. Single cell mode was selected to further ensure stringency of sorting. For the 927 
generation of 10X sequencing libraries, 50,000-150,000 PI-, Calcein+ viable single cells were 928 
collected in 20% FBS/HBSS buffer. CD45+ cells were limited to no more than 20% of the total 929 
viable sort to enrich for tumor cells (Figure S2A). For the generation of single-cell DNA 930 
methylation libraries, we sorted viable (PI- and Calcein+), non-immune (CD45-), and non-931 
endothelial (CD31-) cells into 96-well plates that were pre-loaded with 5 µL of 1X Tris-EDTA 932 
buffer (Figure S2A). Once the cells had been sorted, 96-well plates were either immediately 933 
processed through the single-cell DNA methylation protocol or flash frozen and stored at -80C.  934 
 935 
scRRBS library preparation. 936 
Single-cell DNA methylation profiling was performed using a modified version of a previous 937 
scRRBS protocol (Guo et al., 2015; Guo et al., 2013). Single-cell DNA methylation experiments 938 
were performed with sorted viable, non-immune, non-endothelial (PI-, Calcein+, CD45-, CD31-) 939 
cells in a 96-well plate containing 5 µL pre-loaded Tris-EDTA buffer with an empty well control. 940 
For 9 out of 11 tumors, the protocol was also applied to a small population control of 50-cells 941 
(PI-, Calcein+, CD45-, CD31-). Sorted 96-well plates were frozen at -80 C until processing when 942 
cells were lysed with 0.2 µL 1 M KCl (Millipore Sigma), 0.2uL 10% Triton X-100 (Millipore 943 
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Sigma), 0.3 µL 20mg/mL protease (Qiagen), and nuclease-free water in a total volume of 6 µL 944 
for 3 hours at 50 C. The protease was then heat-inactivated at 75 C for 15 minutes. The DNA 945 
was incubated with 50 units of MspI (NEB) and TaqI (NEB) with CutSmart buffer (NEB) for 3 946 
hours at 37 C. 60fg of unmethylated Lambda bacteriophage DNA (Promega) was added to each 947 
well to serve as a control for bisulfite conversion efficiency assessment. The solution was 948 
heated to 80 C for 20 minutes to heat-inactivate the restriction enzymes and placed on ice. 5 949 
units of Klenow Fragment (3’à 5’ exo-, NEB), CutSmart buffer (NEB), and end-repair dNTP mix 950 
(40uM dATP, 4uM dGTP, and 4uM dCTP; NEB) totaling 2 µL per reaction were added to 951 
perform end-repair and dA-tailing. 1:250X diluted NEXTflex methylated adapters (BiooScientific) 952 
were added to each quadrant of the 96-well plate (n = 24 unique adapters) with a ligation 953 
mixture of 40 Weiss U T4 ligase (NEB), 1mM ATP (ThermoFisher Scientific), and nuclease-free 954 
water to a final volume of 4 µL per reaction. TruSeq methylated adapters (Illumina) were also 955 
used in a single sample (SM001) using the same protocol. The ligation reaction proceeded at 16 956 
C for 30 minutes followed by an incubation of 4 C for at least 8 hours. The ligation reaction was 957 
stopped by heat-inactivation at 65 C for 20 minutes. Post-adapter ligation, 24 individual cells 958 
with unique ligated adapters were pooled from each plate quadrant for the protocol’s remainder. 959 
Excess adapter was removed using a 1:1 volumetric ratio of Ampure beads (Beckman Coulter). 960 
Bisulfite conversion was performed using the EZ-DNA methylation kit (Zymo) according to the 961 
manufacturer’s instructions except with one-half volumes due to reduced DNA input. The 962 
solution was incubated at 98 C for 8 minutes, 64 C for 3.5 hours, and held at 4 C once the 963 
reaction was complete. 10ng of tRNA (Roche) was added prior to column elution to serve as a 964 
protective carrier. PCR enrichment was performed using the PfuTurbo Cx hotstart (Agilent), 965 
PfuTurbo Cx hotstart buffer (Agilent), primer mix (Bioo Scientific), dNTP mix (Promega), and 966 
nuclease-free water under the following conditions: 95 degrees Celsius for 2 minutes, 32 cycles 967 
of 95 C for 20 seconds, 60 C for 30 seconds, and 72 C for 60 seconds. The PCR reaction was 968 
terminated by incubating at 72 C for 5 minutes. The libraries were purified in a 1:1 volumetric 969 
ratio of Ampure beads (Beckman Coulter), Pippin size selection was performed between 200-970 
1000bp (Sage Science), and quantified by qPCR (Kapa Biosystems / Roche). scRRBS libraries 971 
were paired-end sequenced alongside bulk whole genome libraries on an Illumina HiSeq4000 972 
using 1% PhiX spike-in and 75bp reads. 973 
 974 
Single-cell RNA library preparation. 975 
Sorted cells were washed and resuspended in 0.04% BSA/PBS buffer. Cells were counted on a 976 
Countess II automated cell counter and were loaded on a 10X Chromium chip with a target cell 977 
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recovery of 6,000 cells per lane. Sequencing libraries were performed using the single-cell 3’ 978 
mRNA kit according to the manufacturer’s protocol (10X Genomics). cDNA and library quality 979 
were examined on an Agilent 4200 TapeStation and quantified by qPCR (Kapa Biosystems / 980 
Roche). Illumina sequencing was performed using a paired-end 100bp protocol. Libraries were 981 
sequenced to an average depth of 50,000 unique reads per cell. 982 
 983 
Whole genome sequencing of tumors and matched normal blood. 984 
Genomic DNA was extracted from the same tumor region as the single-cell analyses using the 985 
Qiagen AllPrep kit and matched normal blood using DNeasy kit (Qiagen). Briefly, 400ng of DNA 986 
was sheared to 400bp using a LE220 focused-ultrasonicator (Covaris) and size selected using 987 
SPRI beads (Beckman Coulter). The fragments were treated with end-repair, A-tailing, and 988 
ligation of unique adapters (Illumina) using the KAPA HyperPrep Kit (Roche). This was followed 989 
by 5 cycles of PCR amplification when necessary. DNA sequencing was performed using 990 
paired-end 75bp protocol according to the manufacturer’s protocol (Illumina). The tumor 991 
samples were sequenced to an average depth of 44X and tumor-matched normal blood to 30X. 992 
 993 
Bulk Illumina EPIC DNA methylation microarrays. 994 
250 ng of genomic tumor DNA was subject to bisulfite conversion using the EZ DNA Methylation 995 
kit (Zymo) and genome-wide DNA methylation was assessed by the Infinium MethylationEPIC 996 
kit according to the manufacturer’s protocol (Illumina). 997 
 998 
Bulk RNA sequencing. 999 
Bulk tumor RNA was extracted from samples with sufficient tissue using the AllPrep kit 1000 
(Qiagen). Samples with RIN values > 5 as assessed by TapeStation (Agilent Technologies) 1001 
were prepared with KAPA mRNA HyperPrep kit (Roche). Libraries were sequenced using a 1002 
paired-end 150bp protocol on a NovaSeq to 50 million reads according to the manufacturer’s 1003 
protocol (Illumina).  1004 
 1005 
Fluorescent in situ hybridization (FISH) analysis. 1006 
Tissue slides were prepared by tumor touch prep method (deCarvalho et al., 2018). Positively 1007 
charged glass slides were pressed against the surface of slightly thawed tissues. The slides 1008 
were then immediately fixed by cold Carnoy’s fixative (3:1 methanol:glacial acetic acid, v/v) for 1009 
30 min and then air-dried. Slides were denatured in Hybridization buffer (Empire Genomics) 1010 
mixed with EGFR-Chr7 probe (EGFR-CHR07-20-ORGR, Empire Genomics) at 75°C for 5 min 1011 
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and then incubated at 37°C overnight. The posthybridization wash was with 0.4x SSC at 75°C 1012 
for 3 min followed by a second wash with 2x SSC/0.05% Tween20 for 1 min. The slides were 1013 
then briefly rinsed by water and air dried. The VECTASHIELD mounting medium with DAPI 1014 
(Vector Laboratories) was applied and the coverslip was mounted onto a glass slide. Tissue 1015 
images were scanned under Leica STED 3X/DLS Confocal with 100x magnification. 1016 
 1017 
ANALYTICAL METHODS.  1018 
Single-cell DNA methylation processing. 1019 
Raw sequencing reads were trimmed to remove adapters and low-quality bases using 1020 
trim_galore with the `-- rrbs` and `-- paired` parameters (version 0.4.0 1021 
https://github.com/FelixKrueger/TrimGalore). The trimmed reads were then aligned to the 1022 
GRCh37 (hg19) genome using Bismark (version 0.19.1) with parameters `-N 1 -- bowtie2 -- 1023 
score_min L,0,-0.4` (Krueger and Andrews, 2011). PCR duplicates were removed with the 1024 
`deduplicate_bismark` command. Bisulfite conversion efficiency was determined using the 1025 
spike-in unmethylated lambda DNA. Cells with fewer than 40,000 unique CpGs detected and 1026 
bisulfite conversion rates below 95% were removed from analysis. 914 single cells were 1027 
retained for downstream analysis (n = 914 / 1,076 total cells sequenced) with a mean of 1028 
145,000 CpGs per cell and mean bisulfite conversion rate of 98.4% (Table S4).  1029 
 1030 
Unsupervised clustering of scRRBS data. 1031 
Unsupervised clustering of the DNA methylation data was performed using pairwise 1032 
comparisons of individual CpGs across all cell-to-cell comparisons as previously described 1033 
(PDclust) (Hui et al., 2018). Briefly, this method performs pairwise comparisons of single-CpG 1034 
methylation measurements to create a pairwise dissimilarity (PD) value that reflects the average 1035 
absolute difference in methylation values at CpGs covered in any two cells. The pairwise 1036 
dissimilarity values were used as input features for the Multidimensional Scaling (MDS) analysis 1037 
for which visualization of cells in close proximity reflects greater similarity than cells further apart 1038 
(Figure 1B).  1039 
 1040 
Epimutation burden as a measure of epigenome instability. 1041 
Epimutation burden was determined by identifying DNA methylation concordance of nearby 1042 
CpGs on a single sequencing read as previously described for bulk and single-cell DNA 1043 
methylation data (Gaiti et al., 2019; Landan et al., 2012; Landau et al., 2014). Briefly, in order for 1044 
a sequencing read to be considered for this analysis it required a minimum of 4 CpGs located 1045 
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on the same sequencing read. These sequencing reads are referred to as “epialleles” and 1046 
represent a subset of a cell’s total sequencing reads. An epiallele read is considered discordant 1047 
if any of the CpGs on that sequencing read have different methylation states (e.g., three 1048 
methylated CpGs and an unmethylated CpG). The epimutation burden metric reflects the sum 1049 
of discordant epialleles divided by the total number of epialleles considered for analysis as 1050 
previously described (Gaiti et al., 2019; Landan et al., 2012; Landau et al., 2014). The 1051 
epimutation burden metric can be calculated across the entire genome (i.e., “epimutation 1052 
burden”) or restricted to specific genomic regions where the metric considers only the epialleles 1053 
overlapping that particular genomic context. A linear regression model was used to assess the 1054 
impact of the total number of epialleles considered for analysis on the epimutation burden. The 1055 
epimutation metric was very weakly associated with epiallele count in that an additional 10,000 1056 
epialleles was associated with an 0.001 increase in the epimutation burden metric. For analyses 1057 
associating epimutation burden with metrics derived from bulk WGS data, sample-level 1058 
epimutation burden was calculated as the median of single-cell epimutation values. 1059 
 1060 
DNA methylation and epimutation over genomic annotations. 1061 
To determine region-specific DNA methylation or epimutation burden, each cell’s measured 1062 
CpGs or epialleles were intersected with the genomic coordinates of interest before methylation 1063 
value or epimutation burden calculation, respectively. All coordinates were mapped against the 1064 
hg19 human genome assembly. Regions of interest considered for analyses included promoter, 1065 
gene body, intergenic, and DNaseI regions, TF binding sites, replication timing domains, and 1066 
5kb and 10kb tiled regions. Promoters were defined as 1kb upstream and 500 bp downstream 1067 
of FANTOM5 (Forrest et al., 2014) TSS that mapped to Ensembl genes. If multiple TSSs 1068 
mapped to a given gene, the TSS with the lowest genomic coordinate was selected. Gene body 1069 
annotations were obtained from the Ensembl Genome Browser (Hunt et al., 2018). Intergenic 1070 
regions were annotated by selecting regions not overlapping Ensembl gene body coordinates. 1071 
DNaseI hypersensitivity region annotations were obtained from the UCSC Genome Browser 1072 
(Raney et al., 2013). TF binding sites were obtained from the JASPAR 2020 Core Vertebrate 1073 
database (Fornes et al., 2020) of non-redundant TF binding motifs. Each binding site is 1074 
assigned a score of 0-1000, which corresponds to the p-value for the relative position weight 1075 
matrix score of a TF binding site prediction.  For a given TF, all identified target binding site 1076 
coordinates were aggregated, and binding sites were excluded if they had a relative score less 1077 
than 400, corresponding to a p-value greater than 0.0001. Replication timing of genes was 1078 
retrieved from MutSigCV (Lawrence et al., 2013), and annotations for replication timing domains 1079 
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were generated by binning gene coordinates into quartiles based on the replication timing score. 1080 
Methylation values were also calculated for non-overlapping windows of 5kb or 10kb. Ranks of 1081 
high epimutation levels were determined by applying the ROSE software 1082 
(https://bitbucket.org/young_computation/rose) for both gene-level and transcription factor 1083 
binding sites.  1084 
 1085 
SCNA estimation from single-cell DNA methylation data. 1086 
To provide evidence for somatic copy number alterations in single-cell DNA methylation 1087 
sequencing data, the Gingko algorithm (Garvin et al., 2015) was applied to single cells that 1088 
passed the scRRBS quality control filters mentioned above. Briefly, this method bins mapped 1089 
reads by chromosomal location, performs Lowess normalization to correct for GC biases, 1090 
adjusts for potential amplification artifacts, and segments the genome to determine 1091 
chromosomal regions with consistent copy number states. Here, the genome for each sample 1092 
was divided into 2,597 variable-length bins with a median length of 1Mb. Segmentation was 1093 
performed using independent normalized read counts and the parameter `mask bad bins` (i.e., 1094 
bins with consistent pileups) was enabled. Cells were considered “non-tumor” if less than 1% of 1095 
the genome had a copy number state that was not 2. Copy number plots were generated using 1096 
the R package “gplots”. Phylogenetic and phyloepigenetic trees were constructed for the same 1097 
cells (scRRBS data) using Euclidean distance between profiles and clustered with the R 1098 
function hclust using “ward.D2” linkage. The concordance between these two trees for each 1099 
sample was determined using the tanglegram function in the dendextend R package and 10 1100 
random tree rotations were used to minimize artificial branch crossing (Galili, 2015). 1101 
 1102 
Single-cell RNA processing and analysis. 1103 
The Cell Ranger pipeline (v3.0.2) was used to convert Illumina base call files to FASTQ files 1104 
and align FASTQs to hg19 10X reference genome (version 1.2.0).  Preprocessing was 1105 
performed using the Scanpy package (1.3.7) (Wolf et al., 2018). The gene expression profiles of 1106 
each cell at the 1500 most highly variable genes (as measured by dispersion (Satija et al., 1107 
2015)) were used for neighborhood graph generation (using 33 nearest neighbors) and 1108 
dimensionality reduction with UMAP (Becht et al., 2018). Clustering was performed on this 1109 
neighborhood graph using the Leiden community detection algorithm (Traag et al., 2019). The 1110 
neighborhood graph was batch-corrected using the batch correction software BBKNN (Polanski 1111 
et al., 2020). These defined clusters were then labelled with particular cell states based on 1112 
marker gene expression and previously described cell states (Bhaduri et al., 2020; Neftel et al., 1113 
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2019; Tirosh et al., 2016). Cell state classification of malignant cells was also performed using 1114 
previously developed classifiers for both IDH-wild-type (Neftel et al., 2019) and IDH-mutant 1115 
tumors (Venteicher et al., 2017). The Seurat R package was also used for downstream 1116 
analyses and visualizations (Stuart et al., 2019). Inference of gene regulatory networks was 1117 
performed using SCENIC for a random set of 5,000 cells per subtype to permit heatmap 1118 
visualization (Aibar et al., 2017). SCNA estimation from single-cell RNAseq data was performed 1119 
as previously reported (Neftel et al., 2019; Tirosh et al., 2016; Venteicher et al., 2017). Briefly, 1120 
the InferCNV method provides evidence for large-scale somatic copy number alterations by 1121 
comparing averaged gene expression intensity values compared with normal cells (based on 1122 
marker gene expression) from the same specimen. Subclusters of cells were partitioned into 1123 
clones on the basis of shared copy number patterns 1124 
(https://github.com/broadinstitute/inferCNV). Single-cell RNA diversity comparisons using gene 1125 
count signatures were performed using the R package CytoTRACE across cells from the same 1126 
tumor clone (Gulati et al., 2020). 1127 
 1128 
Joint scRNA and scDNA methylation integration. 1129 
Single-cell RNA and DNA methylation malignant cell profiles were integrated within the same 1130 
specimen based on the differentially expressed across the pan-glioma RNA cell states (Table 1131 
S2). The single-cell RNA data were jointly clustered with the gene-level methylation features as 1132 
previously reported (Welch et al., 2019) using the R package liger (linked inference of genomic 1133 
experimental relationships).  1134 
 1135 
Analysis of publicly available brain tumor DNA methylation data. 1136 
Data re-analysis of longitudinal glioma resources was accessed for Klughammer et al. 1137 
(http://www.medical-epigenomics.org/papers/GBMatch/) (Klughammer et al., 2018) and the 1138 
Glioma Longitudinal AnalySiS consortium (GLASS, http://synapse.org/glass) (Barthel et al., 1139 
2019). Magnetic Resonance Imaging guided biopsies taken from spatially distinct regions and 1140 
subjected to bulk DNA methylation Illumina methylation microarray collected by our group was 1141 
also accessed (Verburg et al.). DNA methylation microarrays (450K) were also retrieved The 1142 
Cancer Genome Atlas initial glioma samples (Ceccarelli et al., 2016). All Illumina methylation 1143 
microarrays were processed using the R package minfi. The recurrent DNA methylation 1144 
changes between the initial and recurrent tumors were determined by fitting a linear mixed 1145 
effect model (R nlme package) to each individual CpG modeled as a logit transformed M-value 1146 
with independent variables of timepoint, subtype, cancer cell proportion, immune proportion, 1147 
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and subject included as the random effect. The cancer and immune cell proportions in the 1148 
GLASS bulk Illumina methylation microarray data were determined using the glioma signature in 1149 
the R package MethylCIBERSORT as previously described (Chakravarthy et al., 2018).  1150 
 1151 
Gene and genomic region enrichment analyses. 1152 
Enrichment of genes were performed using the R package topGO. Enrichment of genomic 1153 
regions were determined using the Locus Overlap Analysis (LOLA) R package (Sheffield and 1154 
Bock, 2016). LOLA enrichment analyses used all features considered for analysis as the 1155 
background sets. 1156 
 1157 
Variant detection and copy number calling. 1158 
Variant detection and bulk copy number determination was performed in accordance to the 1159 
GATK Best practices using GATK 4.1.0.0 (Mutect2) and as previously described (Barthel et al., 1160 
2019).  1161 
 1162 
Mutational signature identification 1163 
Mutational signatures were identified in bulk WGS samples using the MutationalPatterns R 1164 
package (Blokzijl et al., 2018). The trinucleotide context of single base substitutions was 1165 
extracted for each sample in order to construct a mutational profile. For each mutational profile, 1166 
the contribution of mutational signatures from the Catalogue of Somatic Mutations in Cancer 1167 
(COSMIC v3) was quantified. Known signatures were ranked by order of relative contribution to 1168 
the sample mutational profile; for visualization the top 5 signatures per sample were listed, with 1169 
the remaining signatures collapsed into an “Other” category. 1170 
 1171 
Phylogenetic reconstruction  copy number / mutation clonality. 1172 
To reconstruct the evolutionary history and subclonal composition of tumors, PhyloWGS 1173 
(Deshwar et al., 2015) was applied to bulk WGS samples. PhyloWGS incorporates SCNAs 1174 
with simple somatic mutations (SSMs) in inferred phylogenies by converting SCNAs into pseudo 1175 
SSMs prior to subclonal reconstruction. For input, phyloWGS requires VCF format variant calls, 1176 
SCNA segments, and estimates of tumor purity, which were generated using Mutect2 (Cibulskis 1177 
et al., 2013), TITAN (Ha et al., 2014), and Sequenza (Favero et al., 2015), respectively. If a 1178 
tumor contained more than 5000 variants, input variants were subsampled to 5000, ensuring all 1179 
variants overlapping previously identified significantly mutated genes were included (Barthel et 1180 
al., 2019; Ceccarelli et al., 2016). For each phyloWGS run, multiple Markov chain Monte Carlo 1181 
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chains were initiated with differing start values, and the optimum solution was selected based on 1182 
negative normalized log likelihood. Cancer cell fractions (CCF) were calculated for each tumor 1183 
subpopulation as the cellular prevalence for a given subpopulation divided by the maximum 1184 
cellular prevalence for that tumor, which corresponds to the estimated tumor purity. Events were 1185 
defined as clonal if they have a CCF of 1 or subclonal otherwise. SCNA subpopulation 1186 
assignments and cellular prevalence estimates derived from phyloWGS were further informed 1187 
by scRNAseq and scRRBS-derived copy number profiles. 1188 
 1189 
Bulk RNA sequencing processing. 1190 
FASTQ files were pre-processed with fastp v0.20.0 to assess quality control and were aligned to 1191 
the hg19 genome using kallisto v0.46.0 with default parameters (Bray et al., 2016). The bulk 1192 
RNA Verhaak classification and simplicity scores were determined as previously reported 1193 
(Wang et al., 2017). Single sample gene set enrichment analysis for particular pathways was 1194 
performed using the GVSA R package (Hanzelmann et al., 2013). 1195 
 1196 
Detection of extrachromosomal DNA. 1197 
Amplicon architect was used to detect extrachromosomal DNA in tumor whole genome 1198 
sequencing data as previously described (Deshpande et al., 2019). Briefly, this method 1199 
characterizes the architecture of amplified regions that are larger than 10kb and have more than 1200 
four copies greater than the median sample ploidy. 1201 
 1202 
DNA methylation-based tumor classification. 1203 
Probabilistic estimates of tumor classification were defined both by the Molecular 1204 
Neuropathology classification tool (version 11b4) as previously reported (Capper et al., 2018). 1205 
 1206 
Statistical methods. 1207 
All data analyses were conducted in R 3.6.1. Statistical analyses are described in the respective 1208 
Methods subsection and briefly described in the figure legends. No statistical methods were 1209 
used to predetermine study sample size. p-values of < 0.05 were considered statistically 1210 
significant. 1211 
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Figure 1. Single-cell DNA methylation sequencing highlights intratumoral heterogeneity 
and disruption of epigenetic regulatory mechanisms.  
(A) Schematic diagram detailing tumor sample processing and molecular profiling of single cells 
and bulk tumor samples (n = 11 subjects). (B) Multidimensional scaling (MDS) analysis using 
pairwise individual CpG distance metrics calculated between individual cells. Shapes represent 
whether a sample was a single tumor cell (n = 844 cells) or 50-tumor cells, n = 9/11 subjects). 
Colors indicate individual subjects, shaded regions indicated IDH1-mutation status of tumor, and 
annotation is provided indicating clinical timepoint (I = initial, R = recurrence). (C) Schematic 
depiction of local DNA methylation disorder in different genomic contexts. Left panel 
demonstrates epimutation, or local DNA methylation disorder, at the promoter region, where 
gene expression is disrupted by epimutation. The right panel provides an example of disrupted 
transcription factor binding due to epimutation. (D) Boxplots of tumor cell epimutation burden 
grouped by sample. Each boxplot spans the interquartile range with the whiskers representing 
the absolute range, excluding outliers. Wilcoxon rank sum p-value represents comparison 
between IDHmut and IDHwt epimutation burden. Each sample is annotated with clinical and 
molecular metrics with p-values indicating the relationship between sample mean epimutation 
burden and whole-genome sequencing derived somatic mutation burden or somatic alteration 
burden (Spearman correlation). (E) Boxplots of gene expression values, as log2 (counts per 
million), from single-cell RNAseq data across different gene epimutation groups. Gene 
epimutation groups are defined by the determining the mean epimutation value across a single 
gene. Color indicates IDH1 mutation status. (F) Boxplots of gene expression dispersion. 
Expression profiles were mean-expression scaled to account for expression level-dependent 
variability across the same gene epimutation groups defined in panel E. (G) Scatterplot of the 
mean single-cell epimutation burden metric calculated across transcription factor binding sites 
(TFBSs) within a subtype, ordered by IDHwt TFBS epimutation. Each column represents a 
single transcription factor (TF) with a colored dotted line connecting IDHmut and IDHwt values. 
Names of TFs previously indicated to confer fitness advantages to glioma cells (MacLeod et al.) 
are listed above their TFBS epimutation burden estimate. (H) Scatterplot depicting the 
association between average single-cell epimutation burden estimate and single-sample Gene 
Set Enrichment Score for stress response, hypoxia, and random genes from bulk RNAseq data. 
Spearman correlation coefficient and p-values are indicated. 
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Figure 2. Integrative single-cell gene expression and DNA methylation analyses nominate 
epigenetic regulators of glioma cell state variability. 
(A) Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction plot of 
scRNAseq data (n = 55,284 tumor cells, n = 11 subjects) showing the clustering of cell 
populations by transcriptionally defined cell state (point color) and labelled according to marker 
gene expression (Figure S6B). (B) Stacked bar plots representing the proportion of cellular 
states per tumor for pan-glioma classification. Each sample is annotated with molecular metrics 
with p-values indicating the relationship between cell type diversity, measured by Shannon’s 
entropy, and sample mean epimutation burden, whole-genome sequencing derived somatic 
alteration burden, or whole-genome sequencing derived somatic mutation burden (Spearman 
correlation). (C-D) Enriched transcription factor activity across pan-glioma cellular states 
determined using SCENIC algorithm and displayed as a heatmap of z-score enrichment values. 
Visualization is presented for the hierarchical clustering of 5,000 randomly selected tumor cells 
in both (C) IDHmut and (D) IDHwt tumors. (E) Schematic diagram representing LIGER workflow 
to jointly cluster single-cell RNAseq and DNA methylation data generated from the same tumor 
dissociation. (F) Boxplots representing the average epimutation burden in differentiated-like and 
stem-like populations in IDHmut (left panel) and IDHwt (right) tumors. (G) Boxplots representing 
the 10-kb tiled DNA methylation levels in differentiated-like and stem-like populations in IDHmut 
(left panel) and IDHwt (right) tumors. (H) Region set enrichment analysis for 10-kb tiles with 
higher DNA methylation in Stem-like (left panel) or Differentiated-like cells (right panel). 
Enrichment was determined by Locus Overlap Analysis (LOLA). Individual points represent 
enrichment of specific TFs in differentially methylated regions, color indicates results for specific 
IDH-mutant subtype, point size indicates log-odds ratio, and dotted line represents the statistical 
significance threshold (adjusted p-value < 0.05).  
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Figure 3. Somatic copy number alterations are associated with stochastic DNA 
methylation changes during disease evolution. 
(A) Scatterplot depicting the association between single-cell (n = 844 tumor cells) somatic copy 
number alteration (SCNA) and epimutation burden estimates by IDHmut (left panel) and IDHwt 
(right panel) subtypes. Points are colored by patient. Spearman correlation coefficients 
represent subtype-specific estimates. (B) Boxplots of epimutation burden calculated across the 
promoter (left panel) and gene body regions (right panel) based on different DNA replication 
times in IDHmut (n = 510) and IDHwt (n = 334) single cells. Kruskal-Wallis p-values indicate a 
test for differences across the replication time groupings separately for IDHmut and IDHwt cells 
(C) Scatterplot depicting the re-analysis of bulk promoter epimutation burden and SCNA burden 
in IDHwt initial (n = 255) and recurrent (n = 152) tumors (Klughammer et al.). Spearman 
correlation coefficients and p-values are presented for each independent timepoint. (D) 
Scatterplot depicting the association between bulk delta (subject-specific recurrence – initial 
estimates) SCNA burden and delta promoter epimutation burden in longitudinally profiled IDHwt 
tumors (n = 98 subjects, Klughammer et al.) Spearman correlation coefficient and p-value are 
presented. (E)  Kaplan-Meier curve depicting time to second surgery in subjects where the 
change in epimutation burden between initial and recurrent disease was above (high, red) and 
below (low, blue) the median. Log-rank p-value for univariate analysis is presented within the 
figure. Hazard Ratio and p-value for change in epimutation burden are presented below for 
multi-variate Cox proportional hazard model including subject age and sex as predictors.   
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Figure 4. Clonal evolution analyses highlight early copy number evolution followed by 
epigenetic and transcriptomic diversification. 
(A) Stacked bar plots representing the proportion of whole-genome sequencing (WGS) derived 
somatic copy number alteration (SCNA) burden attributed to clonal vs. subclonal events. (B) 
Scatterplot depicting entanglement coefficients for tanglegrams comparing cluster dendrograms 
of scRRBS derived copy number and DNA methylation profiles. A coefficient of 0 indicates 
complete alignment of the tree structures, whereas a 1 indicates random association. Color 
indicates IDH1 mutation status. (C) Examples of phylogenetic trees constructed from whole 
genome sequencing data (mutations and SCNAs) and further annotated using single-cell 
inferred copy number alterations (scRRBS + scRNAseq). Tree nodes represent alterations 
specific to the given clone, with node size corresponding to the fraction of cells with the 
associated alterations. Branch length scales with the number of mutations attributed to that 
clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes 
considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal 
arm-level events are presented. (D) Single-cell RNAseq-derived cellular proportions separated 
by copy number-defined tumor subclone (Figure S3). Reported p-values represent Fisher’s 
exact test comparing the cellular state distributions across tumor subclones. (E) Representative 
Fluorescence in situ hybridization (FISH) images for IDHwt tumors computationally predicted to 
harbor EGFR extrachromosomal DNA (ecDNA) by whole genome sequencing (n = 4 patients). 
FISH images show EGFR amplifications (red) that occur distal to control chromosome 7 probes 
(green) indicating extrachromosomal status and high variability in copy number status across 
tumor cells. Scale bars = 10 microns. (F) Ridge plots of SM012 single-cell expression of 
receptor tyrosine kinase and hypoxia-associated genes, grouped by copy number-defined 
subclones. Reported p-values represent Wilcoxon Rank Sum tests comparing the gene 
expression of cells across tumor subclones.  
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Figure 5. Integrated molecular trajectories supports adaptive DNA methylation changes 
under microenvironmental and therapeutic pressures. 
(A) Schematic workflow for construction of a DNA methylation instability metric in bulk cohorts 
informed by regions of high epimutation in single-cell DNA methylation data. The DNA 
methylation instability metric was calculated across bulk DNA methylation microarray data in a 
primary tumor cohort (TCGA), a cohort of multiple, spatially distinct biopsies from the same 
tumor (Verburg et al.), and a longitudinal cohort with accompanying genomic sequencing data 
(Glioma Longitudinal AnalySiS (GLASS), Barthel et al.). (B) Boxplots displaying the bulk DNA 
methylation instability metric calculated across previously described DNA-methylation based 
TCGA tumor classifications (Ceccarelli et al). Colors represent IDH1/2 mutation status, and 
Kruskal-Wallis p-value testing for differences in distributions across classification is reported (n 
= 615 primary gliomas, p < 2.2e-16). (C-D) Scatterplots depicting distance from radiographic 
features plotted against the DNA methylation instability metric. Colors represent spatially 
separated biopsies from a single patient at initial clinical timepoint for (C) IDHwt tumors (n = 57 
biopsies, n = 6 subjects) and (D) IDHmut tumors (n = 62 biopsies, n = 8 subjects). Linear 
regression lines colored by patient demonstrate the relationship between DNA methylation 
instability and radiographic features (i.e., contrast enhancement surface). The p-value reported 
from a multivariable linear regression model adjusting for subject represents the subtype-
specific association between DNA methylation instability and radiographic feature. Biopsies 
taken closer to the tumor’s center (i.e., core) have the lowest value (left hand side of plot). (E) 
Each column represents an individual patient sampled across initial and recurrent timepoints 
and is separated into IDHmut (n = 24 subjects) and IDHwt (n = 27 subjects). Top panel, stacked 
bar plot represents the proportion of CpGs sites that experienced DNA methylation change 
associated with a subject-specific copy number change (defined by DNA sequencing data) 
between primary and recurrent disease (red), DNA methylation gain not associated with a CNV 
change (orange), DNA methylation loss not associated with a CNV change (blue), and no 
longitudinal DNA methylation change (gray). Middle panel, heatmap of DNA methylation 
instability metric in primary and recurrent disease (blue = low, red = high). Bottom panel, 
differences in SCNA burden between primary and recurrent tumor. All associated p-values 
represent Spearman correlations between absolute change in associated metric and the fraction 
of longitudinal DNA methylation differences. (F) Enrichment analysis for differentially methylated 
CpGs between primary and recurrent timepoints when adjusting for cellular composition, glioma 
subtype, and subject included as a random effect. Individual points represent enrichment of 
specific TFs in differentially methylated positions, color indicates the average TFBS epimutation 
burden from single-cell RRBS data (Figure 1G), point size indicates log-odds ratio, and dotted 
line represents the statistical significance threshold (Q-value < 0.05). (G) Gene Ontology 
enrichment of transcription factors associated with longitudinal DNA methylation changes. 
Dotted line represents threshold for statistical significance (Fisher’s exact test, p < 0.05).  
 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.22.215335doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.215335
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.22.215335doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.215335
http://creativecommons.org/licenses/by-nd/4.0/


WHO Grade
Timepoint

Chr1p/19q codel

FUBP1

CIC

PIK3R1

PIK3CA

RB1

TERT

NF1

EGFR

ATRX

PTEN

IDH1

TP53

G
en

e 
M

ut
at

io
n

Classical
Mesenchymal

Proneural

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n 
of

 tu
m

or
ce

ll 
st

at
e

CONTR, HEMI

GBM, MID

GBM, MES

GBM, RTK II

GBM, RTK I

O IDH

A IDH, HG

A IDH

0.25

0.30

0.35

0.40

0.45

Ep
im

ut
at

io
n 

bu
rd

en

IDHmut IDHwt

SM
00

4

SM
00

1

SM
01

5

U
C

91
7

SM
00

2

SM
00

8

SM
00

6

SM
01

2

SM
01

7

SM
01

8

SM
01

1

Mutation burden

SCNA burden

No

Yes

Initial

Recurrence

II

III

IV

Timepoint WHO grade

DNA variant classification

5'Flank

Frame Shift Del

Frame Shift Ins

In Frame Del

Missense

Multiple

Nonsense

1.00

Verhaak bulk RNA
classification p-value

scRNAseq tumor cell state

Diff.−like

Stem−like

Prolif. Stem−like

5 10 100+

Mutations/Mb

0.1 0.2 0.3

SCNA burden

0

Chr1p/19q
codeletion

0.50.75 0.25 0.0

0.0

Heidelberg bulk DNA methylation
classification probability

0.50.25 0.75 1.0

B
ul

k 
D

N
A

se
q

B
ul

k 
R

N
A

se
q

si
ng

le
-c

el
l

R
N

A
se

q
B

ul
k 

D
N

A
 

m
et

hy
la

tio
n

si
ng

le
-c

el
l D

N
A

 
m

et
hy

la
tio

n
Figure S1.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.22.215335doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.215335
http://creativecommons.org/licenses/by-nd/4.0/


Figure S1. Integrated molecular profiles of patient samples. Related to Figure 1. 
Each patient is in a single column with data presented to indicate clinical features (top), followed 
by genetic alterations defined from bulk whole genome sequencing data, bulk RNA sequencing 
based subtype classification probabilities (Wang et al., n = 8 available), single-cell RNA tumor 
cellular state proportions, bulk DNA methylation microarray subtype classification probabilities 
(Capper et al.), and boxplots of single-cell epimutation burden with samples colored by clinical 
timepoint.  
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Figure S3. Somatic copy number alteration examples estimated from whole genome 
sequencing, single-cell Reduced Representation Bisulfite Sequencing, and single-cell 
RNA-sequencing. Related to Figure 1. 
(A-C) Representative images of copy number alterations derived from SM012 (IDHwt initial) 
whole genome sequencing (WGS) data. (A) Depth ratio for each segment with copy number 
status determined as compared with germline (normal blood) WGS data. (B) SM012 Single-cell 
DNA methylation-based copy number estimates (n = 69 tumor cells) with copy number integer 
depicted by color (blue = CN loss, white = neutral CN, and red = CN gain). Each row is a single 
cell with annotation for epimutation burden provided. (C) SM012 Single-cell RNAseq based 
copy number inference (n = 5,489) identifying major copy number events found in WGS with 
labelled subclones as presented in Figure 4D. (D-F) Similar example profiles as presented in (A-
C) for tumor sample SM006 (IDHwt initial, n = 82 scRRBS cells, n = 3,310 scRNAseq cells). (G-
I) Similar example profiles as presented in (A-C) for tumor sample SM001 (IDHmut recurrence, 
n = 181 scRRBS cells, n = 5,713 scRNAseq cells). 
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Figure S5. Association between epimutation and disrupted transcriptional programs. 
Related to Figure 1. 
(A-B) Scatterplots depicting single-cell gene-level epimutation average plotted against the gene-
level methylation estimates in both (A) promoter regions and (B) gene body regions. (C) 
Boxplots of gene expression values, in log2 (counts per million), from single-cell RNAseq data 
across different sets of promoter regions defined by gene-derived epimutation groups. Gene 
epimutation groups are defined by the determining the mean epimutation value across a single 
gene. Color indicates IDH1 mutation status. (D) Boxplots of gene expression dispersion that 
were mean-expression scaled to account for expression level-dependent variability across the 
same promoter-based gene epimutation groups defined in panel C. (E-F) Gene Ontology 
enrichment analyses for low epimutation genes (Figure 1E, mean epimutation across all tumor 
cells: 0.0 - 0.1) and high epimutation genes (Figure 1F, mean epimutation across all tumor cells: 
> 0.5) using gene body estimates. A meta biological process is placed next to significant Gene 
Ontology terms. (G-H) Same analyses presented in panels E-F, but for gene-level epimutation 
estimates determined in promoters.  
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Figure S7. Pan-glioma cell state assignment and characteristics. Related to Figure 2. 
(A) UMAP dimensionality reduction plot of all scRNAseq data, including tumor and non-tumor 
cells (n = 55,248 cells). Each dot depicts a single cell and colors represents the tumor of origin. 
Shaded regions represent cell state classification. (B) Stacked violin plots of average single-cell 
gene expression for cells presented in Figure S7A. Selected genes presented are informative 
for cell state classification. (C) Stacked bar plots representing the proportion of non-tumor 
cellular states (D) Stacked bar plots representing the proportion of tumor cellular states per 
tumor for pan-glioma classification (top row) and previously published classifications (middle 
row; Venteicher et al. and Neftel et al.) (E) Sankey plot representing the proportion of IDHmut 
tumor cells with pan-glioma classification and associated classification described in Venteicher 
et al. (F) Sankey plot representing the proportion of IDHwt tumor cells with pan-glioma 
classification and associated classification described in Neftel et al. (G) Density plots 
representing TFBS epimutation burden (scRRBS data) in IDHmut single-cell DNA methylation 
data for TFs whose activity (scRNAseq based SCENIC analysis) characterizes a specific cell 
state (n = 20 TFs per cell state). Kolmogorov-Smirnov p-value tests for differences in TFBS 
epimutation burden across the cellular states. (H) Density plots representing TFBS epimutation 
burden (scRRBS data) in IDHwt single-cell DNA methylation data for TFs whose activity 
(scRNAseq based SCENIC analysis) characterizes a specific cell state (n = 20 TFs per cell 
state). Dotted lines represent the median TFBS value for cell state defining TFs. The 
Kolmogorov-Smirnov p-value corresponds to differences in TFBS epimutation burden across 
the cellular states. 
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Figure S8. LIGER integrated tumor-specific clustering of single-cell RNA and single-cell 
DNA methylation data. Related to Figure 2. 
Joint single-cell RNAseq (scRNA) and single-cell DNA methylation (scDNAm) clustering and 
UMAP projections highlighting similar cellular state distributions across platforms. Sample 
annotation is presented on the left of each paired UMAP plot, each dot is an individual single 
cell, and cell number for each technology is presented in the lower-left hand corner. UMAP 
coordinate space remains the same for both scRNA and scDNAm visualizations with cellular 
states for that platform represented by a colored dot and data for the other platform represented 
by a gray dot. Stacked bar plots enumerating the proportion of cellular states detected by each 
platform are presented to the right of each paired UMAP plot. `*` indicate specimens in which 
the cellular proportions across the two platforms are significantly different (Fisher’s Exact test, p 
< 0.05). 
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Figure S11. Whole genome sequencing phylogenetic inference of tumor samples. 
Related to Figure 4. 
(A-H) Phylogenetic trees constructed from whole genome sequencing data (mutations and 
somatic copy number alterations) using phyloWGS and further annotated using single-cell 
inferred copy number alterations (scRRBS + scRNAseq). Tree nodes represent alterations 
specific to the given clone, with node size corresponding to the fraction of cells with the 
associated alterations. Branch length scales with the number of mutations attributed to that 
clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes 
considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal 
arm-level events are presented. Arm-level events are defined as spanning at least 80 percent of 
the chromosome arm, while partial events span at least 40 percent. 
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Figure S13: Focal extrachromosomal DNA amplifications generate greater levels of 
epigenetic and transcript diversity in glioma single cells. Related to Figure 4. 
(A-D) Extrachromosomal DNA circular amplicon reconstruction displaying genomic 
rearrangements predicted from whole genome sequencing. Coverage depth is represented as a 
histogram across a genomic interval with segment copy number (CN) estimation provided on 
the right y-axis. Discordant read pair clusters are indicated by arcs and colors highlight read pair 
orientation (e.g., brown = everted read pairs, (Deshpande et al., 2019). Amplicon intervals are 
provided at the bottom of the plot with annotation for known oncogenes (e.g., EGFR). (E) EGFR 
copy number estimation from single-cell RRBS data in ecDNA+ tumors. Cells with EGFR copy 
number greater than 7 were classified as EGFR ecDNA+ (blue). (F) Single-cell 10-kb tiled DNA 
methylation separated by EGFR ecDNA status. Single cells with inferred copy number status 
greater than 7 were classified as ecDNA+ (blue). Wilcoxon rank sum test p-values comparing 
DNA methylation across ecDNA status are reported for each patient tumor. (D) Boxplots 
depicting transcriptional diversity using gene count signatures calculated in scRNAseq data for 
each tumor, with cells separated based on inferred EGFR copy number status (gray = EGFR 
ecDNA-, blue = EGFR ecDNA+). Transcriptional diversity was compared based on predicted 
ecDNA status within each tumor subclone. Stars (*) indicate statistically significant differences 
based on Wilcoxon Rank Sum test (p < 0.05).  
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Figure 1. Single-cell DNA methylation sequencing highlights intratumoral heterogeneity 
and disruption of epigenetic regulatory mechanisms.  
(A) Schematic diagram detailing tumor sample processing and molecular profiling of single cells 
and bulk tumor samples (n = 11 subjects). (B) Multidimensional scaling (MDS) analysis using 
pairwise individual CpG distance metrics calculated between individual cells. Shapes represent 
whether a sample was a single tumor cell (n = 844 cells) or 50-tumor cells, n = 9/11 subjects). 
Colors indicate individual subjects, shaded regions indicated IDH1-mutation status of tumor, and 
annotation is provided indicating clinical timepoint (I = initial, R = recurrence). (C) Schematic 
depiction of local DNA methylation disorder in different genomic contexts. Left panel 
demonstrates epimutation, or local DNA methylation disorder, at the promoter region, where 
gene expression is disrupted by epimutation. The right panel provides an example of disrupted 
transcription factor binding due to epimutation. (D) Boxplots of tumor cell epimutation burden 
grouped by sample. Each boxplot spans the interquartile range with the whiskers representing 
the absolute range, excluding outliers. Wilcoxon rank sum p-value represents comparison 
between IDHmut and IDHwt epimutation burden. Each sample is annotated with clinical and 
molecular metrics with p-values indicating the relationship between sample mean epimutation 
burden and whole-genome sequencing derived somatic mutation burden or somatic alteration 
burden (Spearman correlation). (E) Boxplots of gene expression values, as log2 (counts per 
million), from single-cell RNAseq data across different gene epimutation groups. Gene 
epimutation groups are defined by the determining the mean epimutation value across a single 
gene. Color indicates IDH1 mutation status. (F) Boxplots of gene expression dispersion. 
Expression profiles were mean-expression scaled to account for expression level-dependent 
variability across the same gene epimutation groups defined in panel E. (G) Scatterplot of the 
mean single-cell epimutation burden metric calculated across transcription factor binding sites 
(TFBSs) within a subtype, ordered by IDHwt TFBS epimutation. Each column represents a 
single transcription factor (TF) with a colored dotted line connecting IDHmut and IDHwt values. 
Names of TFs previously indicated to confer fitness advantages to glioma cells (MacLeod et al.) 
are listed above their TFBS epimutation burden estimate. (H) Scatterplot depicting the 
association between average single-cell epimutation burden estimate and single-sample Gene 
Set Enrichment Score for stress response, hypoxia, and random genes from bulk RNAseq data. 
Spearman correlation coefficient and p-values are indicated. 
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Figure 2. Integrative single-cell gene expression and DNA methylation analyses nominate 
epigenetic regulators of glioma cell state variability. 
(A) Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction plot of 
scRNAseq data (n = 55,284 tumor cells, n = 11 subjects) showing the clustering of cell 
populations by transcriptionally defined cell state (point color) and labelled according to marker 
gene expression (Figure S6B). (B) Stacked bar plots representing the proportion of cellular 
states per tumor for pan-glioma classification. Each sample is annotated with molecular metrics 
with p-values indicating the relationship between cell type diversity, measured by Shannon’s 
entropy, and sample mean epimutation burden, whole-genome sequencing derived somatic 
alteration burden, or whole-genome sequencing derived somatic mutation burden (Spearman 
correlation). (C-D) Enriched transcription factor activity across pan-glioma cellular states 
determined using SCENIC algorithm and displayed as a heatmap of z-score enrichment values. 
Visualization is presented for the hierarchical clustering of 5,000 randomly selected tumor cells 
in both (C) IDHmut and (D) IDHwt tumors. (E) Schematic diagram representing LIGER workflow 
to jointly cluster single-cell RNAseq and DNA methylation data generated from the same tumor 
dissociation. (F) Boxplots representing the average epimutation burden in differentiated-like and 
stem-like populations in IDHmut (left panel) and IDHwt (right) tumors. (G) Boxplots representing 
the 10-kb tiled DNA methylation levels in differentiated-like and stem-like populations in IDHmut 
(left panel) and IDHwt (right) tumors. (H) Region set enrichment analysis for 10-kb tiles with 
higher DNA methylation in Stem-like (left panel) or Differentiated-like cells (right panel). 
Enrichment was determined by Locus Overlap Analysis (LOLA). Individual points represent 
enrichment of specific TFs in differentially methylated regions, color indicates results for specific 
IDH-mutant subtype, point size indicates log-odds ratio, and dotted line represents the statistical 
significance threshold (adjusted p-value < 0.05).  
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Figure 3. Somatic copy number alterations are associated with stochastic DNA 
methylation changes during disease evolution. 
(A) Scatterplot depicting the association between single-cell (n = 844 tumor cells) somatic copy 
number alteration (SCNA) and epimutation burden estimates by IDHmut (left panel) and IDHwt 
(right panel) subtypes. Points are colored by patient. Spearman correlation coefficients 
represent subtype-specific estimates. (B) Boxplots of epimutation burden calculated across the 
promoter (left panel) and gene body regions (right panel) based on different DNA replication 
times in IDHmut (n = 510) and IDHwt (n = 334) single cells. Kruskal-Wallis p-values indicate a 
test for differences across the replication time groupings separately for IDHmut and IDHwt cells 
(C) Scatterplot depicting the re-analysis of bulk promoter epimutation burden and SCNA burden 
in IDHwt initial (n = 255) and recurrent (n = 152) tumors (Klughammer et al.). Spearman 
correlation coefficients and p-values are presented for each independent timepoint. (D) 
Scatterplot depicting the association between bulk delta (subject-specific recurrence – initial 
estimates) SCNA burden and delta promoter epimutation burden in longitudinally profiled IDHwt 
tumors (n = 98 subjects, Klughammer et al.) Spearman correlation coefficient and p-value are 
presented. (E)  Kaplan-Meier curve depicting time to second surgery in subjects where the 
change in epimutation burden between initial and recurrent disease was above (high, red) and 
below (low, blue) the median. Log-rank p-value for univariate analysis is presented within the 
figure. Hazard Ratio and p-value for change in epimutation burden are presented below for 
multi-variate Cox proportional hazard model including subject age and sex as predictors.   
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Figure 4. Clonal evolution analyses highlight early copy number evolution followed by 
epigenetic and transcriptomic diversification. 
(A) Stacked bar plots representing the proportion of whole-genome sequencing (WGS) derived 
somatic copy number alteration (SCNA) burden attributed to clonal vs. subclonal events. (B) 
Scatterplot depicting entanglement coefficients for tanglegrams comparing cluster dendrograms 
of scRRBS derived copy number and DNA methylation profiles. A coefficient of 0 indicates 
complete alignment of the tree structures, whereas a 1 indicates random association. Color 
indicates IDH1 mutation status. (C) Examples of phylogenetic trees constructed from whole 
genome sequencing data (mutations and SCNAs) and further annotated using single-cell 
inferred copy number alterations (scRRBS + scRNAseq). Tree nodes represent alterations 
specific to the given clone, with node size corresponding to the fraction of cells with the 
associated alterations. Branch length scales with the number of mutations attributed to that 
clone. Clonal alterations are colored in blue, with subclonal alterations colored in gold. Genes 
considered significantly mutated in TCGA analyses (Ceccarelli et al., 2016) and chromosomal 
arm-level events are presented. (D) Single-cell RNAseq-derived cellular proportions separated 
by copy number-defined tumor subclone (Figure S3). Reported p-values represent Fisher’s 
exact test comparing the cellular state distributions across tumor subclones. (E) Representative 
Fluorescence in situ hybridization (FISH) images for IDHwt tumors computationally predicted to 
harbor EGFR extrachromosomal DNA (ecDNA) by whole genome sequencing (n = 4 patients). 
FISH images show EGFR amplifications (red) that occur distal to control chromosome 7 probes 
(green) indicating extrachromosomal status and high variability in copy number status across 
tumor cells. Scale bars = 10 microns. (F) Ridge plots of SM012 single-cell expression of 
receptor tyrosine kinase and hypoxia-associated genes, grouped by copy number-defined 
subclones. Reported p-values represent Wilcoxon Rank Sum tests comparing the gene 
expression of cells across tumor subclones.  
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Figure 5. Integrated molecular trajectories supports adaptive DNA methylation changes 
under microenvironmental and therapeutic pressures. 
(A) Schematic workflow for construction of a DNA methylation instability metric in bulk cohorts 
informed by regions of high epimutation in single-cell DNA methylation data. The DNA 
methylation instability metric was calculated across bulk DNA methylation microarray data in a 
primary tumor cohort (TCGA), a cohort of multiple, spatially distinct biopsies from the same 
tumor (Verburg et al.), and a longitudinal cohort with accompanying genomic sequencing data 
(Glioma Longitudinal AnalySiS (GLASS), Barthel et al.). (B) Boxplots displaying the bulk DNA 
methylation instability metric calculated across previously described DNA-methylation based 
TCGA tumor classifications (Ceccarelli et al). Colors represent IDH1/2 mutation status, and 
Kruskal-Wallis p-value testing for differences in distributions across classification is reported (n 
= 615 primary gliomas, p < 2.2e-16). (C-D) Scatterplots depicting distance from radiographic 
features plotted against the DNA methylation instability metric. Colors represent spatially 
separated biopsies from a single patient at initial clinical timepoint for (C) IDHwt tumors (n = 57 
biopsies, n = 6 subjects) and (D) IDHmut tumors (n = 62 biopsies, n = 8 subjects). Linear 
regression lines colored by patient demonstrate the relationship between DNA methylation 
instability and radiographic features (i.e., contrast enhancement surface). The p-value reported 
from a multivariable linear regression model adjusting for subject represents the subtype-
specific association between DNA methylation instability and radiographic feature. Biopsies 
taken closer to the tumor’s center (i.e., core) have the lowest value (left hand side of plot). (E) 
Each column represents an individual patient sampled across initial and recurrent timepoints 
and is separated into IDHmut (n = 24 subjects) and IDHwt (n = 27 subjects). Top panel, stacked 
bar plot represents the proportion of CpGs sites that experienced DNA methylation change 
associated with a subject-specific copy number change (defined by DNA sequencing data) 
between primary and recurrent disease (red), DNA methylation gain not associated with a CNV 
change (orange), DNA methylation loss not associated with a CNV change (blue), and no 
longitudinal DNA methylation change (gray). Middle panel, heatmap of DNA methylation 
instability metric in primary and recurrent disease (blue = low, red = high). Bottom panel, 
differences in SCNA burden between primary and recurrent tumor. All associated p-values 
represent Spearman correlations between absolute change in associated metric and the fraction 
of longitudinal DNA methylation differences. (F) Enrichment analysis for differentially methylated 
CpGs between primary and recurrent timepoints when adjusting for cellular composition, glioma 
subtype, and subject included as a random effect. Individual points represent enrichment of 
specific TFs in differentially methylated positions, color indicates the average TFBS epimutation 
burden from single-cell RRBS data (Figure 1G), point size indicates log-odds ratio, and dotted 
line represents the statistical significance threshold (Q-value < 0.05). (G) Gene Ontology 
enrichment of transcription factors associated with longitudinal DNA methylation changes. 
Dotted line represents threshold for statistical significance (Fisher’s exact test, p < 0.05).  
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