

Soil N₂O emission potential falls along a denitrification phenotype gradient linked to differences in microbiome, rainfall and carbon availability

Matthew P. Highton¹, Lars R. Bakken², Peter Dörsch³, Steve Wakelin^{4, 5}, Cecile A. M. de Klein⁶, Lars Molstad³, Sergio E. Morales^{1,*}

Highlights

- N₂O emission potential is linked to microbiome changes associated with rainfall, but not to pH.
- Sequential vs. concurrent denitrification phenotypes differing in NO and N₂O accumulation are identified.
- High N₂O accumulation is associated with increased NO accumulation.
- Sequentiality of N₂O production/reduction determines soil N₂O emission potential.
- Sequentiality of N₂O reduction was susceptible to manipulation via carbon addition.

1 **Soil N₂O emission potential falls along a denitrification phenotype gradient**
2 **linked to differences in microbiome, rainfall and carbon availability**

3 Matthew P. Highton¹, Lars R. Bakken², Peter Dörsch³, Steve Wakelin^{4,5}, Cecile A. M. de
4 Klein⁶, Lars Molstad³, Sergio E. Morales^{1,*}

5 ¹Department of Microbiology and Immunology, University of Otago, Dunedin, New
6 Zealand

7 ²Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life
8 Sciences, Ås, Norway

9 ³Faculty of Environmental Sciences and Natural Resource Management, Norwegian
10 University of Life Sciences, Ås, Norway

11 ⁴AgResearch Lincoln Science Centre, Christchurch, New Zealand

12 ⁵Scion Research, Christchurch, New Zealand

13 ⁶AgResearch Invermay, Mosgiel, New Zealand

14 *Corresponding Author

15 **Keywords:** Denitrification phenotype, N₂O emission potential, microbiome, rainfall,
16 carbon availability, *nosZ*

17 Abstract

18 Soil denitrification produces the potent greenhouse gas nitrous oxide (N_2O) and by further
19 reduction of N_2O , the harmless inert gas N_2 . N_2O emission is determined by rate and timing
20 of the N_2O producing and reducing steps which are sensitive to a series of proximal and
21 distal regulators such as pH and microbial community composition. Microbial community
22 associations to N_2O emission potential ($N_2O/(N_2O+N_2)$) are commonly entangled with pH
23 leaving the true role of community composition unclear. Here, we leverage a set of soil
24 microbiomes strongly linked to rainfall above pH to test the hypothesis that microbiome vs.
25 N_2O emission potential ($N_2O/(N_2O+N_2)$) correlations will be maintained across alternative
26 distal drivers. N_2O emission potential ($N_2O/(N_2O+N_2)$) and denitrification gas (NO, N_2O ,
27 N_2) kinetics were assessed by automated gas chromatography while community
28 composition was assessed by 16S rRNA gene sequencing and qPCR of *nosZI* and *II* genes.
29 Analyses revealed a sustained correlation between microbiome and N_2O emission potential
30 ($N_2O/(N_2O+N_2)$) in the absence of a pH effect. Further, a continuum of gas accumulation
31 phenotypes linked to NO accumulation and sensitive to carbon addition are identified.
32 Separate phenotypes carried out N_2O production and reduction steps more concurrently or
33 sequentially and thus determined N_2O accumulation and emission potential
34 ($N_2O/(N_2O+N_2)$). Concurrent N_2O producing/reducing soils typically contained NO
35 accumulation to a low steady state, while carbon addition manipulations which increased
36 NO accumulation also increased sequentiality of N_2O production/reduction and thus
37 emission potential ($N_2O/(N_2O+N_2)$). These features may indicate a conserved NO
38 inhibitory mechanism across multiple effectors (rainfall, community composition, carbon
39 availability).

40 Introduction

41 Production and emission of nitrous oxide (N_2O) represents a significant climate
42 concern due to its high global warming potential (298 times that of CO_2 over a 100 year
43 time span on a mass to mass basis) (Myhre *et al.*, 2013) and ozone depleting activity
44 (Ravishankara *et al.*, 2009). The most recent IPCC report ranks N_2O as the third most
45 significant greenhouse gas, accounting for 6.2% of global climate forcing
46 (Intergovernmental Panel on Climate Change, 2013). Atmospheric concentrations of N_2O
47 have risen dramatically over the past century to a current concentration of greater than 333
48 ppb (Jan, 2020; 2° Institute, 2016), much of which is attributed to anthropogenic soil
49 emissions (Davidson, 2009). Global N_2O budgets suggest that around 45% of the emitted
50 N_2O is produced anthropogenically with the majority (60%) coming from agricultural
51 sources (Syakila and Kroeze, 2011). In an agricultural setting, N_2O production is
52 traditionally attributed to denitrification and nitrification (Bremner, 1997) of N in animal
53 excreta or applied fertilizers (Davidson, 2009; Syakila and Kroeze, 2011; Oenema *et al.*,
54 2005) but a number of other biological processes are also relevant (Baggs, 2011).

55 Denitrification occurs under anoxic conditions when microbial populations switch
56 from O_2 based respiration to reduction of nitrogenous molecules ($\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow$
57 $\text{N}_2\text{O} \rightarrow \text{N}_2$). In each step, reduction of the nitrogenous molecule as a terminal electron
58 acceptor is catalyzed by an independent reductase enzyme (nitrate reductase-Nar or Nap,
59 nitrite reductase-Nir, nitric oxide reductase-Nor, and nitrous oxide reductase-Nos) (Zumft,
60 1997). The last step in the process, N_2O reduction, is an important focus in denitrification
61 and greenhouse gas research (Jones *et al.*, 2014; Liu *et al.*, 2014; Richardson *et al.*, 2009)
62 as it determines whether the final gaseous product of denitrification is the greenhouse gas
63 N_2O or the harmless inert gas N_2 . In fact, N_2O reductase is the only known biological sink
64 of N_2O (Thomson *et al.*, 2012), therefore, encouraging complete denitrification at the time

65 of N_2O production represents an important strategy to preventing further rise in
66 atmospheric concentrations (Richardson *et al.*, 2009). In reality, N_2O vs. N_2 production is
67 not binary (only N_2O or N_2 produced) and N_2O to N_2 product ratios depend on a great
68 number of factors including pH (Simek and Cooper, 2002), carbon and nitrate (NO_3^-)
69 availability (Senbayram *et al.*, 2012), as well as nitrite (NO_2^-) (Firestone *et al.*, 1979;
70 Gaskell *et al.*, 1981).

71 Conceptually, factors affecting N_2O emission ratios can be separated into i) microbial
72 community genetic potential for each denitrification step, ii) distal factors, determining that
73 genetic potential in the long term, and iii) proximal factors, acting within genetic potential
74 on short term time scales to impact instantaneous denitrification rates (e.g. carbon and NO_3^-
75 concentrations), (Wallenstein *et al.*, 2006; Groffman *et al.*, 1988). There has been some
76 debate over the relative importance of these factors and disentangling their effects can be
77 difficult when factors such as pH have both immediate effects on enzymatic activity during
78 denitrification and distal effects on denitrification potential (Samad *et al.*, 2016b).

79 The effect of pH on soil N_2O emissions is well documented (Simek and Cooper,
80 2002). Low soil pH results in higher soil $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ ratios, most clearly demonstrated
81 in pH manipulations of soils from the same site (Čuhel *et al.*, 2010; Liu *et al.*, 2010; Simek
82 and Cooper, 2002), but also manifests in differences in N_2O product ratios between sites
83 (Samad *et al.*, 2016b). Bergaust *et al.* (2010) showed evidence for a post-transcriptional
84 effect on the formation of functional N_2O reductase at low pH in pure culture experiments,
85 possibly due to impeded assembly of this periplasmic enzyme at low pH. A similar post
86 transcriptional phenomenon was supported using microbial consortia extracted from soils
87 with different native pH (Liu *et al.*, 2014). Contrastingly, some studies have demonstrated
88 that pH effects on N_2O reduction are dependent on the concentration of NO_3^- or NO_2^-
89 (Blackmer and Bremner, 1978; Firestone *et al.*, 1979; Gaskell *et al.*, 1981). Blackmer and

90 Bremner (1978) showed that pH had negligible effects on N_2O reduction activity of soils in
91 the absence of supplied NO_3^- while other studies observed an increased inhibitory impact
92 of NO_3^- or NO_2^- under decreasing pH (Firestone *et al.*, 1979; Gaskell *et al.*, 1981). To
93 confuse matters further, pH probably also has long term distal effects on denitrification
94 potential due to its well-known impact on microbial community structuring (Lauber *et al.*,
95 2008; Kaminsky *et al.*, 2017) and probably more specifically the abundance and ratios of
96 denitrification genes (e.g. Samad *et al.*, 2016b; Domeignoz-Horta *et al.*, 2015; Jones *et al.*,
97 2014).

98 The functional and taxonomic composition of denitrifier communities has become an
99 important focus of denitrification research due to advances in molecular tools. Denitrifying
100 microbes may carry all or only some of the full denitrification gene repertoire and therefore
101 changes in the phylogenetic composition of denitrifier communities can affect the ratio of
102 genes coding for N_2O reductase to those coding for N_2O producing enzymes, thus
103 determining the genetic potential for N_2O emission (Graf *et al.*, 2014; Roco *et al.*, 2017).
104 Graf *et al.* (2014) showed that the organisms carrying the *nosZII* gene encoding nitrous
105 oxide reductase clade II commonly had a truncated denitrification pathway without the
106 genes encoding the preceding denitrification steps. Implicit to this finding is the suggestion
107 they may reduce $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ ratios by acting as N_2O sinks. Jones *et al.* (2014) showed
108 evidence for N_2O sink capacity related to low *nosZI/nosZII* ratios, though controversial
109 because the results could also be explained as a direct (proximal) effect of soil pH (Bakken
110 *et al.*, 2015). $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ product ratios have been linked to differences in overall
111 microbial community structure as measured by 16S rRNA gene sequencing, suggesting that
112 this could be used as a predictor of N_2O emission potential (Morales *et al.*, 2014; Samad *et*
113 *al.*, 2016b). However, it remains unclear whether these correlations indicate a true causal
114 relationship. For example Samad *et al.* (2016b) linked 16S community composition to soil
115 $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ product ratios but both these measures were also correlated to soil pH.

116 Therefore, the results are possibly explained by the well documented but separate effects of
117 pH on $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ (Simek and Cooper, 2002) and on microbial community composition
118 (Lauber *et al.*, 2009; Kaminsky *et al.*, 2017).

119 N_2O accumulation during denitrification may also be caused by differential flow of
120 electrons to the separate N-reductases (Pan *et al.*, 2013). In wastewater treatment, low
121 carbon (reductant) availability enhances competition for electrons between N_2O and
122 upstream N-reductases which can result in transient N_2O accumulation (Pan *et al.*, 2013;
123 Ribera-Guardia *et al.*, 2014). Indeed carbon and substrate availability can affect
124 $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ product ratios in many contexts including soils, though the direction of the
125 effect is not always consistent (Gillam *et al.*, 2008; Senbayram *et al.*, 2012; Weier *et al.*,
126 1993).

127 Here, we aimed to re-assess the consistency of previously outlined (Samad *et al.*,
128 2016b, 2016a) linkages between $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$, microbial community composition (as
129 measured by 16S rRNA gene sequencing and qPCR of *nosZ* genes) and pH in a larger
130 alternative cohort (20 soils) of pasture soils. Previous investigations indicated community
131 composition in the present soil set was correlated to changes in long term rainfall above pH
132 and we hypothesized microbiome to N_2O emission potential associations would be
133 maintained across this alternate distal driver. Anoxic soil incubations revealed contrasting
134 $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ and denitrification phenotypes based on the timing of N_2O reduction which
135 determined the propensity for soil N_2O emission. We further assessed the phenotypes and
136 $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ ratios in relation to potential proximal controls ($\text{NO}_3^- + \text{NO}_2^-$ concentration,
137 carbon availability) based on 2 alternate hypotheses: 1) N_2O reduction activity was
138 impaired by higher $\text{NO}_3^- + \text{NO}_2^-$ concentrations. 2) Impaired N_2O reduction in high
139 $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ ratio soils is caused by limited carbon availability and thus electron supply
140 to N_2O reductase.

141 **Materials and methods**

142 **2.1 Soil collection**

143 Soils were sampled at 20 sites representing sheep, dairy, beef and goat farms across
144 multiple regions of New Zealand's South Island. Sampling begun on the 2nd of September
145 2016 and continued through until the 8th of September. At each site, soil cores (10 cm
146 depth, 2.5 cm diameter) were sampled at 2.5 m intervals across a 7.5 m transect (0 m, 2.5
147 m, 5 m, 7.5 m) using a stainless steel auger. Triplicate cores were collected for each
148 distance and composited in a bag (12 pooled cores) while a fourth core from each distance
149 was kept separate for molecular analyses (4 cores). If topsoil was less than 10cm deep,
150 additional cores were taken to make up the volume. Soil cores were stored in partially open
151 ziplock bags (to prevent anoxia) on ice until sampling was completed. Pooled cores were
152 homogenized, and worms, insects, grass and large roots removed before field moist storage
153 at 4°C. Core samples for molecular analysis were immediately frozen at -80°C until DNA
154 extraction. See Table S1 for basic soil descriptors based on current analyses and data
155 collected from separate sampling in 2011 (Wakelin *et al.*, 2013).

156 Pooled site cores were transported to the Norwegian University of Life Sciences
157 (NMBU, Ås, Akershus, Norway), where they were sieved (2mm) and stored at 4°C before
158 initiating kinetic experiments.

159 **2.2 Nitrate + nitrite measurements**

160 Endogenous soil nitrate + nitrite ($\text{NO}_3^- + \text{NO}_2^-$) content was measured in sieved
161 pooled soils using 0.2g of each soil with 1mL of 2M KCl extractant in 1.5 mL microfuge
162 tubes (Lim *et al.*, 2018). Slurries were shaken and spun down at 16000G for 2 minutes
163 before recovering the supernatant into fresh 1.5mL microfuge tubes. $\text{NO}_3^- + \text{NO}_2^-$
164 concentration was quantified by chemical reduction to nitric oxide (NO) followed by

165 chemiluminescent detection as detailed by (Braman and Hendrix, 1989; Lim *et al.*, 2018). In
166 brief, 10 μ L of supernatant was introduced into a sealed glass piping system containing a
167 heated (95°C) acid vanadium chloride solution (50mM VCl₃ in 1M HCl). VCl₃ reacts to
168 reduce NO₃⁻ quantitatively to NO₂⁻ before converting it to NO gas. The NO gas was
169 captured and carried in an N₂ stream to a Sievers Nitric Oxide Analyzer 280i system (GE
170 Analytical Instruments, Boulder, CO, USA) for quantification. Standard KNO₃ solutions
171 (100 to 0.01mM) were used to calibrate the area under detection signal peaks allowing
172 calculation of NO₂⁻+NO₃⁻ concentration in soil supernatants. NO₂⁻+NO₃⁻ per gram soil or
173 per μ L porewater was back calculated based on KCl dilution factor, and soil dry
174 weight/moisture weight (as determined gravimetrically below) .

175 **2.3 Nitrate adjustment**

176 Soil moisture was determined gravimetrically by drying 5-10g soil at 60°C for
177 minimum 24h (ASTM D2216-10, 2010). Prior to incubation, soils were supplemented with
178 NO₃⁻ and ammonium by flooding and draining with a 2mM NH₄NO₃ solution e.g. (Samad
179 *et al.*, 2016a; Liu *et al.*, 2010; Qu *et al.*, 2014). NO₃⁻ supplied N for denitrification while
180 ammonium acted as a preferential assimilatory N source. For this, an 80g dry weight
181 equivalent of soil was placed in a 500mL Sterafil Filter Holder (Merck, Burlington, MA,
182 USA) and flooded with 300mL of 2mM NH₄NO₃ (sufficient volume to dilute endogenous
183 NO₃⁻) . After 15min the solution was drained through a 0.2 μ M cellulose filter (Merck) with
184 1.2 μ M glass-fibre pre filter (Merck) using a vacuum manifold. Soils were mixed and a
185 subsample was taken for overnight moisture content analysis (5g, as above). The remainder
186 of the soils was stored overnight in funnels covered with aluminum foil before use in
187 incubation experiments the next day.

188 **2.4 Gas kinetics measurements**

189 Respiration and denitrification activity of soils was measured by gas chromatography
190 of headspace gases (O₂, CO₂, NO, N₂O, N₂) in oxic and anoxic batch incubations
191 commencing between 39 and 56 days post sampling. The temperature controlled robotic
192 autosampler, gas chromatograph (Agilent GC -7890A equipped with ECD, TCD, FID) and
193 chemiluminescence NO_x analyzer (Model 200A, Advanced Pollution Instrumentation, San
194 Diego, USA) used here are described in detail by (Molstad *et al.*, 2007; Qu *et al.*, 2014).
195 The device holds up to 44 sealed 120 mL serum vials in a temperature controlled water
196 bath. A robotic arm equipped with a hypodermic needle and a peristaltic pump takes
197 headspace gas samples periodically and pumps them through dedicated sample loops in the
198 GC. The GC uses helium as carrier gas while subsequent back pumping replaces sampled
199 gas with helium thus maintaining the pressure in the serum vials at ~1 atm. Dilution and
200 leakage are back calculated following experiment completion to allow estimation of true
201 gas production. Here, 20g dry weight equivalent of NH₄NO₃ adjusted soil was placed in
202 triplicate 120mL serum vials and crimp sealed with butyl rubber septa. A 15g subsample of
203 each soil was frozen at the start of each incubation for subsequent measurement of NO₂⁻
204 +NO₃⁻ concentrations as described above. The serum vials were placed in the water bath
205 (20°C) under the autosampler and allowed to equilibrate before releasing overpressure
206 through a water filled syringe without piston. Additional vials (duplicates) were filled with
207 premixed standard gases (including 400ppm CO₂, 10,000ppm CO₂, 500ppb N₂O, 151ppm
208 N₂O, 25ppm NO) supplied by AGA industrial gases (Oslo, Akershus, Norway),
209 compressed air (781,000ppm N₂, 200900ppm O₂) or helium. The autosampler was
210 programmed to take headspace samples every ~5hrs. After 7 rounds of sampling, at ~40hrs,
211 anoxia was induced by helium flushing the vials (3 cycles of evacuation for 180sec and He-
212 filling for 20sec) and incubation was continued until most soils had converted all
213 denitrification products to N₂. Two separate experiments were required 10 days apart to
214 process all 20 soils.

215 **2.5 Measures of N₂O emission potential/kinetics**

216 The N₂O hypothetically emitted (%) metric was calculated as max $\mu\text{mol N}_2\text{O-N}$
217 accumulated in vial expressed as a percentage of final cumulative N (N₂-N). N₂O
218 hypothetically emitted (%) was used to evaluate the sequentiality of N₂O production and
219 reduction steps over the course of an incubation and the relative N₂O emission potential of
220 each soil. It is equivalent to typical N₂O product ratios (N₂O/N₂O + N₂) but expressed
221 relative to total final accumulated N rather than just gaseous N₂O+N₂ at the timepoint of
222 calculation. It is our preferred metric because:

223 1) It is event based (i.e. calculated at peak in vial N₂O). This allows comparison of
224 soils with divergent denitrification timescales/rates.

225 2) It is a relative measure (i.e. expressed as a percentage of total N finally
226 accumulated). This allows comparison of soils with contrasting initial NO₃⁻ supply
227 and net denitrification rates.

228 3) It describes N₂O emission potential (i.e. soils accumulating greater peak N₂O in
229 headspace are likely to be higher emitters in situ). This N₂O is likely to be emitted
230 in an unsealed environment therefore this metric ignores net N₂O reconsumption
231 from the headspace.

232 4) It directly describes the sequentiality of N₂O production/reduction (i.e. to what
233 degree N₂O production and reduction to N₂ were carried out at the same time and to
234 the same magnitude, thus mitigating N₂O accumulation). This was highly relevant
235 to the soil kinetics observed here (see results).

236 Additional emission potential metrics were evaluated to allow comparison with previous
237 studies. N₂O/(N₂O+N₂) (N₂O ratio) calculated as $\mu\text{mol cumulative N}_2\text{O-N}$ (per vial) over
238 max $\mu\text{mol cumulative N}_2\text{O-N}$ plus $\mu\text{mol cumulative N}_2\text{-N}$ at various timepoints

239 (N₂O/(N₂O+N₂) (max N₂O), N₂O/(N₂O+N₂) (50hrs)) (Samad *et al.*, 2016a). N₂O index
240 (I_{N₂O}) as used previously (Liu *et al.*, 2010; Qu *et al.*, 2014; Samad *et al.*, 2016a), calculated
241 as the area under a N₂O curve over the area under an N₂O curve + N₂ curve using the
242 following formula: $I_{N_2O} = \int_0^T N_2O(t)dt / \int_0^T [N_2O(t) + N_2(t)]dt$

243 It is useful because it allows a time-integrated view of N₂O vs. N₂ stoichiometry. Areas are
244 calculated for each time period between two sampling points (~5hrs) and summed up to an
245 arbitrary time point (T). Here, we used 50hrs (I_{N₂O} (50hrs)) and once all denitrification gas
246 was accumulated as N₂ (I_{N₂O} (N₂ plateau)).

247 N₂O hypothetically emitted (%) value cut-offs were assigned to separate N-gas
248 accumulation patterns into discrete phenotypes based on N₂O, NO, and N₂ accumulation
249 patterns. Sequential soils (88% to 100%) had close to 0 accumulation of N₂ before peak
250 N₂O, a sudden increase in N₂ rate was observed after peak N₂O, and a single often high NO
251 peak was usually observed. Concurrent soils (0 to 80%) developed N₂ production early
252 which was either sustained or gradually increased. NO levels were typically controlled
253 after a brief peak. Intermediate soils (81% to 87%) had features of both phenotypes. NO
254 was typically poorly controlled, some N₂ production was observed before peak N₂O but
255 sharp increases in N₂ rate were observed after peak N₂O.

256 **2.6 pH measurement**

257 For each soil, a 10mL subsample was placed in a plastic container using a volumetric
258 spoon and 20mL of 10mM CaCl₂ was added. Containers were capped and shaken until the
259 soil was dispersed in the solution. Soils were left overnight at room temperature. Soils were
260 re-dispersed by shaking and left to settle for 10min before the pH was measured in the
261 supernatant using a H170 pH meter (Hach, Loveland, CO, USA).

262 **2.7 Rainfall**

263 Average daily rainfall at the sample sites (mm day⁻¹) was estimated at various
264 timescales (month, year, 10 years) using rainfall data from New Zealand's national climate
265 database. Data were assessed through the CliFlo web system (NIWA, 2017). Collected data
266 spanned from 08/09/96 to 07/09/2016. We also included rainfall and potential
267 evapotranspiration estimates from a previous study (Wakelin *et al.*, 2013) on the same soils
268 (rainfall historical) which used average daily measurements for 5 years prior to sampling.
269 Values were calculated through interpolations (Cichota *et al.*, 2008; Tait *et al.*, 2005) using
270 the Virtual Climate Station from NIWA (Wellington, Wellington, New Zealand). Drainage
271 class (1: very poor to 5: well) was collected from the New Zealand Fundamental soil Layer
272 (LRIS, 2020).

273 **2.8 DNA extraction**

274 Distance-specific site cores (0m, 2.5m, 5m, 7.5m) were defrosted for DNA extraction.
275 To test if pooling and sieving was necessary for future sampling, a subsample of 15g fresh
276 weight from each core was pooled into a mixed sample (mixed-m) and a subsample of this
277 sample was sieved through a 2mm sieve (mixed and sieved-ms). ~0.25g of each distance
278 specific sample per site and the two additional m and ms samples per site (6 samples per
279 site times 20 sites = 120 samples) were extracted using a Powersoil DNA Isolation kit
280 (Mobio, Carlsbad, CA, USA) according to the standard instructions. Bead beating was
281 carried out at 1500rpm in two 15sec steps with intermittent cooling using a 1600 MiniG
282 cell-lyser (SPEXSamplePrep, Metuchen, NJ, USA). DNA extracts were quantified and
283 quality checked using a Qubit fluorometer (Invitrogen, Carlsbad, CA, USA) with Qubit
284 dsDNA HS assay (Invitrogen) and NanoDrop One (Thermo Scientific, Waltham,
285 Massachusetts, USA). pH-CaCl₂ and pH-H₂O of ms soils was measured as described earlier
286 (section 2.2.2, pH measurement) but using a MP220 pH meter with Inlab 413 electrode
287 (Mettler Toledo, Columbus, Ohio, USA).

288 **2.9 16S amplicon sequencing**

289 16S amplicon sequencing was carried out on a single lane of an Illumina HiSeq using
290 Version 4_13 of the Earth Microbiome Project standard protocol (Caporaso *et al.*, 2012).
291 Open reference OTU picking (97% similarity, UCLUST (Edgar, 2010) and taxonomy
292 assignment (BLAST (Altschul *et al.*, 1990) was carried out in QIIME 1.9.1 (Caporaso *et*
293 *al.*, 2010) using version 128 of the SILVA database (Quast *et al.*, 2013). Site-specific
294 sequence pools were then subsampled 10 times to a depth of 37120 sequences. Subsampled
295 pools were averaged using basic R functions (R Core Team, 2016). NMDS ordinations
296 (Bray Curtis dissimilarity) were carried out using Phyloseq (McMurdie and Holmes, 2013).
297 Mantel tests were carried out in Vegan (Dixon, 2003) using a Pearson correlation method.
298 Sequences have been submitted to the NCBI Sequence Read Archive under accession
299 numbers SRR11650167 to SRR11650286 and BioProject ID PRJNA629050.

300 **2.10 qPCR**

301 Total prokaryotic abundance, and nitrous oxide reductase gene abundance for Clade I
302 and II were measured by targeting the 16S rRNA gene and *nosZ* gene respectively, using
303 the following primer pairs: 16S UNIV F&R (Hartman *et al.*, 2009), nosZ2F & nosZ2R
304 (Henry *et al.*, 2006) , 1153_nosZ8F & 1888_nosZ29R (Jones *et al.*, 2013). Reactions (10 μ L
305 total volume) consisted of 10ng soil DNA, forward and reverse primers at a final
306 concentration of 0.5 μ M (except for *nosZ* II reactions which included 1 μ M), 5 μ L of
307 Luminaris HiGreen low Rox qPCR Master Mix (Thermo Scientific) and nuclease free
308 water (Thermo Scientific) to make up the 10 μ L volume. Minimum triplicate reactions per
309 sample were performed using a QuantStudio 6 flex qPCR machine (Applied Biosystems,
310 Foster City, CA, USA) according to the following thermal cycling conditions. 16S: 2 min
311 UDG pre-treatment at 50°C, 10min initial denaturation at 95°C, 40 cycles of 15sec
312 denaturation at 95°C, 30sec annealing at 65°C and 30sec extension at 72°C. *nosZ*I: 2 min

313 UDG pre-treatment at 50°C, 10min initial denaturation at 95°C, 40 cycles of 15sec
314 denaturation at 95°C, 30sec annealing at 58.5°C and 30sec extension at 72°C. *nosZII*
315 touchdown: 2 min UDG pre-treatment at 50°C, 10min initial denaturation at 95°C, 6 cycles
316 of amplification decreasing annealing temperature by 1°C per cycle consisting of 15sec
317 denaturation at 95°C, 30sec annealing at 60-55°C and 30sec extension at 72°C, 44 cycles of
318 amplification consisting of 15sec denaturation at 95°C, 30sec annealing at 54°C, 30sec
319 extension at 72°C and 30sec at 80°C for signal detection. All reaction plates included
320 minimum triplicate no-template controls and a 10-fold dilution series of pGEM-t-easy
321 (Promega, Madison, WI, USA) cloned standards for the relevant amplicon, encompassing
322 the sample quantification range. Measurement of the desired amplicon was confirmed by a
323 melt curve analyses (15sec denaturation at 95°C, 1min 60°C, 30 sec 95°C) following target
324 amplification.

325 **2.11 Predicted $\text{NO}_3^- + \text{NO}_2^-$ accumulation and predicted nitrification**

326 Predicted $\text{NO}_3^- + \text{NO}_2^-$ at the start of anoxia was calculated as the final accumulated
327 $\mu\text{mol-N}$ accumulated in each vial at the end of the incubation. Predicted nitrification during
328 the oxic period was calculated as the difference between measured $\text{NO}_3^- + \text{NO}_2^-$ at the
329 beginning of the experiment and predicted $\text{NO}_3^- + \text{NO}_2^-$ at the start of anoxia.

330 **2.12 Carbon amendment experiment**

331 An independent experiment was set up as described above with some modifications
332 to test the influence of carbon availability on gas kinetics. Incubations commenced 3
333 months after initial sampling. Five soils were selected based on covering a range of N_2O
334 ratios (40-Fairlie Geraldine, 20-Waitaha, 1-Woodend, 33-Rae's Junction, 5-Waipapa). In
335 these incubations, an initial period of oxic storage and incubation was not carried out and
336 the concentration of NH_4NO_3 in flooding solutions was increased (4mM) to account for
337 extra NO_3^- accumulated during the oxic period in the original incubations. Incubations were

338 monitored under two treatment conditions: 4mM NH₄NO₃, ± 10mM sodium glutamate as a
339 carbon source. Glutamate can be utilised by most bacteria and in addition could provide a
340 preferential organic N source preventing NO₃⁻ assimilation (Halvorson, 1972). Sodium
341 glutamate solutions were pH adjusted to the soils' native pH using HCl.

342 **2.13 Statistical analyses**

343 Incubation kinetics variables are presented and used in correlations as the mean of
344 triplicate incubations or duplicate incubations in cases where a replicate had to be dropped
345 due to gas leakage. Spearman's ranked correlations between incubation kinetic measures
346 and soil variables were used based on non-normaly distributed data. Discrete phenotypic
347 groups were compared to incubation variables using a Wilcoxon rank sum test (differences
348 of medians) with chi-squared approximation (but are also supported with continuous/ranked
349 analyses). NMDS plots were evaluated based on stress <0.2. NMDS plots are presented for
350 a single pooled sample per soil for appropriate statistical comparison to gas kinetic and
351 environmental variables but ordinations with full distance specific replicates are available
352 (Figure S3). Bray Curtis dissimilarity matrixes were compared against incubation and
353 environmental variables by Mantel test using a pearson correlation co-efficient.. NMDS
354 axis 1 and 2 co-ordinates were also extracted and tested against incubation and
355 environmental variables using a spearman's ranked correlation to identify variables
356 associated with a particular axis. Multiple linear regression for prediction of N₂O
357 hypothetically emitted (%) using rainfall, soil drainage class and potential
358 evapotranspiration was performed using standard least squares.

359 **Results**

360 **3.1 Denitrification gas kinetics**

361 We monitored gas production (CO_2 , NO , N_2O , N_2) from NH_4NO_3 amended soil
362 incubations to identify soils with contrasting denitrification gas production kinetics and
363 potential for N_2O emission (key incubation variables available in Table S2). Soils were
364 initially incubated under oxic conditions (40hrs) to identify their aerobic respiratory
365 potential. Soil CO_2 production was in the range of 1 to $5\mu\text{mol hr}^{-1} \text{ vial}^{-1}$ (mean \pm SD = 3.43
366 \pm 2.89) with the exception of one soil (18-Kumara, a flipped pasture) that had a production
367 rate of $15.21\mu\text{mol hr}^{-1} \text{ vial}^{-1}$.

368 During the subsequent anoxic incubation period, soils varied greatly in the timing of
369 N_2O production and further reduction to N_2 : while some soils carried out concurrent N_2O
370 production/reduction from the onset of anoxia, others carried out each step sequentially,
371 accumulating most N as N_2O before converting it stoichiometrically to N_2 (Figure 1). We
372 evaluated the sequentiality of N_2O production/reduction on a continuous scale using N_2O
373 hypothetically emitted (%) and applied somewhat arbitrary cutoffs (see section 2.5.) to
374 place each soil in discrete phenotypic groups: concurrent (0 to 80%), intermediate (81% to
375 87%) and sequential (88% to 100%). In addition to timing of N_2O production/reduction,
376 alternative phenotypic groups had contrasting NO accumulation patterns: more concurrent
377 N_2O producing/reducing soils accumulated far less NO (Spearman's correlation, average
378 $\mu\text{mol NO vial}^{-1}$ vs. N_2O hypothetically emitted %, $\rho=0.80$, $p<0.0001$), and most displayed a
379 very low pseudo steady state NO level after a brief peak in accumulation (Figure 1A).

380 N_2O hypothetically emitted (%) was also used to evaluate soil N_2O emission potential
381 as sequentiality of N_2O production/reduction determines N_2O accumulation, while omitting
382 the reconsumption of headspace N_2O predominant late in sequential soils which is more

383 likely to be emitted in an unsealed environment. Alternative measures of N₂O emission
384 potential were also evaluated to maintain comparability with previous studies and gave
385 similar soil rankings (Spearman's correlation vs. N₂O hypothetically emitted %,
386 N₂O/(N₂O+N₂) (max N₂O): $\rho=0.94$, $p<0.0001$, N₂O/(N₂O+N₂) (50hrs): $\rho=0.71$, $p<0.001$,
387 I_{N2O} (N₂ plateau): $\rho=0.79$, $p<0.0001$, I_{N2O} (50hrs): $\rho=0.53$, $p<0.05$).

388 **3.2 Interaction between N₂O emission potential, pH and community composition**

389 We hypothesized that the observed kinetic patterns/N₂O emission potentials were
390 linked to differences in pH and community differences based on previously observed
391 linkages between N₂O product ratios, pH and 16S microbial community composition using
392 the same incubation methodology (Samad *et al.*, 2016b). N₂O hypothetically emitted (%)
393 was not correlated with soil pH (Spearman's correlation, measures of N₂O emission vs. pH
394 (CaCl₂ or H₂O), $p > 0.05$), but did map to differences in 16S community composition across
395 axis 1 in NMDS plots (Table 1, Spearman's correlation NMDS axis 1, Figure 2A).
396 However, significant correlation to the full dissimilarity matrix based on Mantel tests
397 (Table 1) was not achieved unless all distance specific replications were included in
398 analyses (Figure S3). Similar trends were observed for alternative emission potential
399 metrics (Table 1). pH and long-term average daily rainfall were identified as potential
400 drivers of differences in microbial community composition. Both were significantly
401 correlated to overall changes in the dissimilarity matrix, and mapped primarily to NMDS
402 axis 1 and 2 respectively (Table 1, Figure 2B)

403 We also measured *nosZII* gene copy numbers as a community related functional
404 metric as it has been suggested *nosZII* carrying organisms are important for soil N₂O
405 reduction activity. *nosZII* copy number expressed in various forms (numbers per ng soil
406 DNA, per gram of soil, normalized to 16S copy numbers and relative to *nosZI* copy
407 numbers) were not significantly correlated to N₂O hypothetically emitted % or other

408 measures of emission potential ($p>0.05$, Spearman's correlation). *nosZII* copy numbers
409 were most strongly correlated with soil pH CaCl₂ (Spearman's correlation, $\rho=0.60$, $p<0.01$)
410 and interestingly, were ~10 fold higher in abundance than *nosZI* (Figure 2C).

411 **3.3 Rainfall**

412 In addition to community associations, we assessed the direct relationship between rainfall
413 and soil phenotypes/N₂O emission potential. More concurrent N₂O production/reduction
414 was associated with higher long-term average daily rainfall (Figure 3A). The strength of the
415 correlation was best (and highly significant; $p<0.01$) when rainfall regime was averaged
416 over a prior year or decade, and was not significant when averaged over shorter time span
417 (Table S3). Linear regression of rainfall (10 years) and hypothetically emitted N₂O (%)
418 poorly recapitulated the trends observed in non-parametric and non-continuous analyses
419 (Figure 3B), probably due to the high variability in average daily rainfall among low N₂O
420 emitting soils. Correlations between all rainfall and N₂O emission potential metrics are
421 found in Table S3. Multiple linear regression indicated drainage class and potential
422 evapotranspiration did not aid prediction of N₂O hypothetically emitted (%) with only
423 rainfall producing a significant parameter effect ($p = 0.03$, Table S4).

424 **3.4 Nitrate + nitrite**

425 Final cumulated N₂ levels per vial were inconsistent between soils suggesting
426 significant variation in NO₃⁻ + NO₂⁻ concentrations upon initiation of the anoxic incubation
427 period (Figure 4A). Further, comparison of measured soil NO₃⁻ + NO₂⁻ before incubation
428 and at the start of the anoxic incubation estimated from cumulative denitrified N (Figure
429 4A) suggested NO₃⁻ or NO₂⁻ was accumulated during the oxic incubation period,
430 presumably due to nitrification of added ammonium. We investigated the potential impact
431 of these variable initial NO₃⁻ + NO₂⁻ concentrations as it has previously been demonstrated
432 that N₂O reduction activity is sensitive to NO₃⁻ and NO₂⁻ concentration. Predicted NO₃⁻ +

433 NO₂⁻ porewater concentrations at the start of the anoxic period were not significantly
434 correlated to N₂O hypothetically emitted %, however, significant positive correlations were
435 observed for some alternative measures of N₂O emission potential (Table 2).

436 Normalized N₂ production rates (% of maximum) were plotted against residual NO₃⁻
437 + NO₂⁻ concentrations estimated from denitrification progress at different stages during the
438 anoxic incubation to allow comparison of soil N₂O reduction rates at similar NO₃⁻ + NO₂⁻
439 concentrations (Figure 4B, C). Concurrent soils showed greater % N₂ production rate at
440 greater NO₃⁻ + NO₂⁻ levels while most sequential phenotype soils maintained near zero N₂
441 production rates until NO₃⁻ + NO₂⁻ fell below 20-10 μmol (Figure 4C). However, it should
442 not necessarily be concluded that different sensitivities of N₂O reduction to NO₃⁻ + NO₂⁻
443 explain the variation in soil N₂O reduction/production phenotype, due to confounding by
444 time, N denitrified, the natural progression of denitrification and other unknown factors.
445 Sensitivity of N₂O reduction to NO₃⁻ + NO₂⁻ has previously been explained by pH,
446 therefore we overlayed pH onto plots but did not find an explanatory pattern (Figure S4).

447 **3.5 Carbon supplementation**

448 We hypothesized that differences in apparent denitrification phenotypes resulted from
449 electron competition under carbon-limited conditions between earlier steps of
450 denitrification and N₂O reduction. In further incubations, soils representing a range of
451 phenotypes/N₂O emission potentials were amended with both glutamate (to relieve
452 potential carbon limitation) and NH₄NO₃ (to provide NO₃⁻ for denitrification) or control
453 vials with NH₄NO₃ alone. In most cases, carbon negative controls (Figure 5, left panel)
454 recapitulated the general phenotypic trends observed in initial incubations (Figure 1) but
455 there were some large observable differences, possibly caused by changes to the incubation
456 preparation methodology (omitted oxic preincubation, increased added NH₄NO₃ to 4mM).
457 In particular, soil 40-Fairlie-Geraldine (Figure 5A, top-left) showed a “weakened”

458 concurrent phenotype, compared with original incubations (N_2O hypothetically emitted %,
459 0.41 in original vs. 0.80 in second incubation). Differences for other soils were much less
460 dramatic (Table 3). All +N treatments also had higher CO_2 production rates and
461 denitrification process rates, on average 1.44 (average CO_2 production rate) and 1.38 (max
462 N_2O production rate) times higher respectively, compared with original incubations. This
463 may suggest changes made to incubation methodology resulted in higher respiration and
464 probably more available soil carbon.

465 Carbon amendment had variable impacts on denitrification phenotype, respiration and
466 denitrification rates depending on the soil (Figure 5, Table 3). Added carbon clearly
467 relieved some limitation as we observed increased CO_2 production (Table 3) and reduced
468 time to complete denitrification in all soils (Figure 5), but impacts on denitrification
469 phenotype were not in line with our original hypothesis. Carbon amendments drove
470 concurrent soils (40-Fairlie-Geraldine, 20-Waitaha Valley) towards a more sequential
471 phenotype (increased N_2O hypothetically emitted % and max NO accumulation compared
472 with +N controls, Table 3) while sequential soils (1-Woodend, 33-Rae's Junction)
473 maintained their sequential phenotype (similar N_2O hypothetically emitted % and max NO
474 accumulation compared with +N controls, Table 3). Our C amended intermediate soil 5-
475 Waipapa did not appear to respond in the same way as other soils. The soil accumulated
476 less NO than the N amended control (Difference max NO, 3.26 μmol) and showed a
477 variable response in measures of N_2O emission potential (Table 3).

478 **Discussion**

479 The initial incubation experiment unexpectedly revealed a continuum of soil
480 denitrification phenotypes based on the timing of N_2O reduction/production. The most
481 striking soils (Figure 1C) carried out N_2O production and reduction steps almost entirely
482 sequentially, accumulating most N as N_2O in vial headspace before initiating rapid N_2O
483 reduction. In an open vial or pasture soil, this emission pattern is predicted to result in up to
484 100% emission of produced N_2O , depending on soil physical properties (e.g. depth, water
485 filled porosity) determining the ability of delayed N_2O reduction to transform N_2O before
486 emission. In addition to our initial aim of re-assessing previously observed links between
487 $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$, pH and microbial community composition (Samad *et al.*, 2016b, 2016a),
488 we explored the potential causes of these contrasting N_2O production/reduction phenotypes
489 which are hypothesized to be due to a transient mechanism of action, potentially a
490 reversible inhibition or regulatory process.

491 **4.1 The role of pH**

492 The correlation between low pH and high $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ ratio is well documented and has
493 been demonstrated in a variety of experimental systems (Bergaust *et al.*, 2010; Liu *et al.*,
494 2014; Samad *et al.*, 2016a). As such, we were surprised to find that pH was not correlated
495 to measures of N_2O emission potential in the present study. It is possible that variability of
496 other factors influencing N_2O emission ratios overshadowed a pH effect in this particular
497 data. pH correlations with $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ ratios are most often observed through variable
498 pH manipulation within a single site or soil e.g. (Čuhel *et al.*, 2010; Liu *et al.*, 2010; Simek
499 and Cooper, 2002), while the studied soils were from varying geographical locations with
500 variable management.

501 Alternatively, unobserved pH changes before the anoxic incubation period could
502 obscure a true correlation. Comparisons between measured soil $\text{NO}_3^- + \text{NO}_2^-$ before oxic
503 incubation and predicted $\text{NO}_3^- + \text{NO}_2^-$ at the beginning of the anoxic period (based on final
504 N_2 accumulated) showed nitrification must have occurred in most soils while they were
505 under oxic conditions (Figure 4A). Nitrification of ammonium results in the release of two
506 H^+ ions per molecule of ammonium oxidized (Rowell and Wild, 1985; Zhao *et al.*, 2014)
507 and therefore could have caused significant acidification of incubated soils in the present
508 study, making initial pH measurements irrelevant. Various lines of evidence seem to
509 counter this hypothesis:

510 1. There was no correlation between nitrification activity, predicted from the
511 difference in initial measured $\text{NO}_3^- + \text{NO}_2^-$ vs. estimated at the start of the anoxic
512 incubation and $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ suggesting that pH changes due to nitrification were
513 negligible or at least too minor to completely define soil pH trends (Spearman's
514 correlation $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ vs. $\text{NO}_3^- + \text{NO}_2^-$ accumulation during oxic incubation
515 μmol , $\rho=0.15$, $p > 0.05$).

516 2. Samad *et al.* (2016b, 2016a) observed a significant correlation between initial soil
517 pH and $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ using the same incubation methodology used here.
518 Therefore, variable acidification was not an issue, even though high gaseous N
519 accumulation suggested substantial nitrification occurred.

520 3. pH was still not correlated to $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ in repeated soil incubations without an
521 oxic period (and presumably minimal nitrification) (Spearman's correlation,
522 $\rho=0.10$, $p > 0.05$).

523 4. Omission of the oxic incubation period usually resulted in increased hypothetically
524 emitted N_2O (%) compared with initial incubations (Table 3). The opposite would
525 be expected if significant amounts of acidification occurred during oxic periods.

526 Based on these arguments, we tentatively conclude that factors other than pH were the most
527 important drivers of N_2O production/reduction phenotypes and $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ in the
528 current study but do not doubt that soil pH could exert effects on the observed phenotype,
529 associated $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ ratios and NO accumulation patterns based on retrospective
530 analysis of (Samad *et al.*, 2016b, 2016a). Previous evidence suggests pH based control of
531 $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ is due to a post-transcriptional impairment of enzyme maturation in the
532 periplasm (Bergaust *et al.*, 2010; Liu *et al.*, 2014), however, we suggest this does not
533 explain well the delayed nature of N_2O reduction observed in (Samad *et al.*, 2016a) or
534 elsewhere (Liu *et al.*, 2010).

535 **4.2 The role of microbial community composition and distal regulators in
536 determining observed phenotypes**

537 Samad *et al.* (2016b, 2016a) previously linked $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$, pH, and 16S microbial
538 community composition using the same methodology used here. However, it remained
539 unclear whether correlations between $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ and 16S microbial community
540 composition indicated a true causal link. Based on the well-known impacts of pH on both
541 $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ (Simek and Cooper, 2002) and microbial community structuring (Lauber *et*
542 *al.*, 2009; Kaminsky *et al.*, 2017; Samad *et al.*, 2016b), a plausible explanation was that pH
543 independently determined $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ and microbial community composition. A similar
544 3-way correlation emerged here but with average daily rainfall at the sample sites in place
545 of pH. Again, it is plausible that long term rainfall patterns or a linked variable separately
546 influenced $\text{N}_2\text{O}/(\text{N}_2\text{O}+\text{N}_2)$ and community composition, however, taken together Samad *et*
547 *al.* (2016a, 2016b) and the present study may indicate an alternate story: a consistent link

548 (though less strong here than Samad *et al.* (2016a)) between N₂O emission potential and
549 community composition and a consistent continuum of N₂O production/reduction
550 phenotypes (though less obvious in (Samad *et al.*, 2016a)) both occurring across different
551 soil sets among alternate potential confounding drivers (rainfall patterns here, pH in
552 (Samad *et al.*, 2016b). Thus, there is some increased support for a true link between 16S
553 community composition and N₂O emission potential. Soil phenotypes were clearly
554 sensitive to manipulations i.e. carbon addition (Figure 5 Left side vs. right side) and
555 methodology changes altered N₂O emission potential/phenotypes (Figure 1 vs. Figure 5),
556 but different communities could hypothetically display a greater propensity for more
557 sequential or concurrent denitrification under consistent proximal regulators. This could be
558 due to, for example, alternate denitrification regulatory phenotypes (e.g. early *nosZ*
559 expression) of community members between soils (Liu *et al.*, 2013; Lycus *et al.*, 2017;
560 Bergaust *et al.*, 2011).

561 It remains unclear how exactly rainfall patterns shape the denitrifying community
562 and N₂O emission potential, though past hydrological experience has previously been
563 linked to the timing of soil N₂O reduction (Zhu *et al.*, 2013). Short term rainfalls prior to
564 sampling, soil storage moisture and soil moisture content at the time of experimentation
565 were irrelevant to N₂O emission potential, therefore a longterm effect on chemistry or
566 community selection is implied. Selection could involve recruitment of successful
567 organisms from the available biosphere and, over longer periods, evolutionary adaption e.g.
568 (Lynch and Neufeld, 2015; Parkin *et al.*, 1985). We hypothesize long periods of soil
569 saturation, ensuing anoxia and slowed diffusion of N₂O provide a niche in which complete
570 and concurrent denitrifiers are more successful. Under more transient and less complete
571 anoxia (low rainfall), denitrifiers showing short term prioritization of NO₃⁻ + NO₂⁻ may be
572 selected due to a greater energy yield of NO₃⁻ + NO₂⁻ (Giles *et al.*, 2012; Simon and Klotz,
573 2013), their immediacy in the denitrification pathway, a higher availability of nitrate from

574 nitrification coupled denitrification (due to semi-oxic conditions) (Wrage *et al.*, 2001), or
575 the relatively poor (in comparison to prior reductases) activity of N₂O reductase in the
576 presence of O₂ (Morley *et al.*, 2008).

577 The abundance and diversity of Clade II nitrous oxide reductase genes is previously
578 predicted to control the N₂O sink capacity of soils (Jones *et al.*, 2014) as nosZII carrying
579 denitrifiers are more likely to lack N₂O producing steps (Graf *et al.*, 2014). Although
580 nosZII gene abundances and nosZI/nosZII gene abundance ratios here were related to pH
581 differences (Spearman correlation N₂O/(N₂O+N₂) vs. nosZI/nosZII $\rho=-0.47$, $p < 0.05$, vs.
582 nosZII copy numbers $\rho=-0.60$, $p < 0.05$), as in previous studies (Jones *et al.*, 2014; Samad
583 *et al.*, 2016b), they did not show any correlation to N₂O/(N₂O+N₂) product ratios
584 (Spearman's correlation, $p > 0.05$) in this study, suggesting that they probably did not
585 determine N₂O sink capacity. Indeed, the decoupling of N₂O/(N₂O+N₂) product ratios and
586 nosZII abundances/ratios in this study under circumstances where pH was not found to
587 drive N₂O/(N₂O+N₂) product ratios may weaken prior claims (Jones *et al.*, 2014; Samad *et*
588 *al.*, 2016b) that nosZII abundances affected N₂O/(N₂O+N₂) product ratios rather than
589 simply varying with the shared driver of pH.

590 Higher N₂O emission potential for sequential soils occurred due to poor timing of
591 N₂O reduction rather than a deficit in actual N₂O reduction capability (Figure 1), therefore
592 a genotype based explanation (lack of nosZ containing denitrifiers vs. high presence of non-
593 denitrifying nitrous oxide reducers only containing nosZ) for the differing N₂O
594 production/reduction phenotypes seems unlikely. Some of the lowest nosZII gene copy
595 numbers were actually seen in concurrent soils with lower N₂O emission potential (Figure
596 2C, e.g. 39-Lake Heron, 40-Fairlie-Geraldine, 27-Lumsden). Quantification of nosZ
597 transcripts may have been more informative in the current study as it remains unclear
598 whether nosZ expression was just delayed in sequential N₂O producing/reducing soils or

599 early function was impaired by post-transcriptional effects, which are previously observed
600 to occlude transcription based effects (e.g. Liu *et al.*, 2010, 2014).

601 **4.3 The role of proximal regulators in determining observed phenotypes**

602 **4.3.1 The effect of carbon availability**

603 Enhanced N₂O accumulation in response to carbon limitation has been attributed to
604 competition for electrons between the different denitrification enzymes (Pan *et al.*, 2013;
605 Ribera-Guardia *et al.*, 2014; Dendooven *et al.*, 1994). Here, carbon additions were made to
606 denitrifying soil incubations to test the hypothesis that sequential phenotype soils have
607 limited electron supply and thus direct electrons preferentially towards the earlier steps of
608 denitrification. This mechanism would also explain why impaired N₂O reduction activity
609 was transient i.e. as prior electron acceptors deplete, competition would be relieved. Under
610 these circumstances, addition of carbon should lead to increased electron availability (as
611 long as regeneration of the electron carrier pool was not already maximal) and presumably
612 increased early N₂O reduction. Experimental evidence here mostly contradicted that
613 hypothesis. Carbon addition to the hypothesized “electron limited” sequential soils did not
614 result in a consistent shift towards a concurrent phenotype, though increases in
615 denitrification process rates do suggest that those soils were indeed somewhat carbon
616 limited (Table 3). The overall trend observed was that carbon availability, substrate
617 type/quality, C/N ratios or some other related effect sustained or drove soils toward a
618 sequential phenotype with increased N₂O hypothetically emitted % and NO accumulation,
619 excepting soil 20-Waitaha (Figure 5). A possible explanation is that carbon addition
620 preferentially stimulated NO₃⁻ + NO₂⁻ reduction leading to accumulation of NO which may
621 in turn have an inhibitory impact on N₂O reductase (see 4.3.2). Though it remains unclear
622 why the initial denitrification steps would be preferentially enhanced.

623 Comparisons to initial soil incubations may also be informative about the role of
624 carbon, though differences in methodology and initial NO_3^- concentrations should be taken
625 into consideration. These initial soil incubations probably had less carbon available for
626 denitrification due carbon consumption during oxic pre-incubations as evidenced by lower
627 CO_2 production rates during denitrification (Table 3). If the crude assumption is made that
628 average CO_2 production during denitrification was proportional to carbon availability then
629 hypothetical N_2O emission potential in many of these soils (40-Fairlie-Geraldine, 20-
630 Waitaha Valley, 1-Woodend) appear to exhibit a positive correlation to carbon availability
631 (Table 3).

632 Based on the above observations it seems plausible that differences in carbon
633 accounted for some of the phenotypic variation observed between soils in the original
634 incubations. Direct measurement of starting carbon concentrations (e.g. total C, dissolved
635 organic C) or substrates by mass spectrometry in soils would be beneficial in future
636 investigations of the observed denitrification phenotypes.

637 **4.3.2 Nitric oxide accumulation, nitrite accumulation and nitrate concentration**

638 Accumulation of prior N oxyanions/oxides (NO_3^- , NO_2^- , NO) can impair N_2O
639 reduction activity (Blackmer and Bremner, 1978; Firestone *et al.*, 1979; Gaskell *et al.*,
640 1981; Senbayram *et al.*, 2012; Ha *et al.*, 2015; Pan *et al.*, 2013; Zhou *et al.*, 2008; Frunzke
641 and Zumft, 1986) due to N reductase competition for electrons e.g. (Pan *et al.*, 2013;
642 Dendooven *et al.*, 1994) or alternate mechanisms such as direct inhibitory interaction
643 between NO and N_2O reductase (Frunzke and Zumft, 1986), NO_2^- protonation to inhibitory
644 nitrous acid (Zhou *et al.*, 2008) or NO_2^- based enhancement of obligate N_2O endproduct
645 producing fungi (Maeda *et al.*, 2015). Again, transient accumulation of N oxyanions/oxides
646 is in line with transient impairment of N_2O reductase in sequential N_2O producing/reducing
647 soils. The NO accumulation patterns and timing are particularly conspicuous: NO

648 accumulation was higher in sequential N₂O producing/reducing soils (Spearman's
649 correlation, average $\mu\text{mol NO vial}^{-1}$ vs. N₂O hypothetically emitted %, $\rho=0.80$, $p<0.0001$),
650 increased N₂O reduction coincided with rapid depletion of NO (Figure 1C), concurrent N₂O
651 producing/reducing soils eventually stabilized NO levels to a low steady state (Figure 1A),
652 and C amendments increasing or decreasing N₂O hypothetically emitted % also
653 increased/decreased max NO accumulation (Table 3). Based on these observations we
654 hypothesize that sequential type soils were unable to maintain NO concentrations below an
655 inhibitory level, resulting in impaired N₂O reduction until NO production ceased.
656 Alternatively, NO accumulation may be indicative of a significant NO₂⁻ pool stimulating
657 NO production by both abiotic and biotic processes (Lim *et al.*, 2018). NO₂⁻ reductase is
658 proposed to be particularly competitive with N₂O reductase for electrons due to a shared
659 use of the electron carrier cytochrome C550 (Richardson *et al.*, 2009; Pan *et al.*, 2013),
660 therefore, tracking of endogenous NO₂⁻ and evaluating responses to exogenous NO₂⁻ in
661 future experimentation is highly desirable.

662 Correlations between some measures of N₂O emission potential and predicted NO₃⁻ +
663 NO₂⁻ at the start of anoxia (Table 2) suggest initial N supply may have impacted the
664 observed gas kinetic patterns. However, we are skeptical based on a lack of correlation with
665 the most pertinent variables (N₂O hypothetically emitted % and N₂O/(N₂O+N₂) (max N₂O))
666 and potential biases in the other measures. For instance, measures taken at the 50hr anoxia
667 timepoint will capture higher ratios in soils with high NO₃⁻ + NO₂⁻ because they typically
668 take longer to denitrify. Further, soils showed diverse relative N₂O reduction rates at the
669 same level of remaining NO₃⁻ + NO₂⁻ (Figure 4B, C).

670 NO₃⁻ + NO₂⁻ concentration effects could hypothetically be occluded in correlations
671 between separate soils if individual soils had dramatically differing sensitivities to the
672 similar NO₃⁻ or NO₂⁻ concentrations. Differing sensitivity of N₂O reduction to NO₃⁻ + NO₂⁻

673 concentration in different soils has been previously reported, with higher sensitivity in
674 lower pH soils (Blackmer and Bremner, 1978; Firestone *et al.*, 1979; Gaskell *et al.*, 1981).
675 However, we did not observe pH based ranking of soils once $\text{NO}_3^- + \text{NO}_2^-$ availability was
676 accounted for (Figure S4), and this analysis cannot be considered conclusive due to the
677 potential bias of denitrification progress; because of differences in initial $\text{NO}_3^- + \text{NO}_2^-$,
678 different soils reached the same remaining $\text{NO}_3^- + \text{NO}_2^-$ at different times and different
679 amounts of $\text{NO}_3^- + \text{NO}_2^-$ were already utilized. Experiments applying varying
680 concentrations of NO_3^- or NO_2^- to pH manipulated soils or using temporally constant NO_3^-
681 concentrations (chemostats) would be necessary to understand the true impact of NO_3^- and
682 NO_2^- on the observed denitrification phenotypes and N_2O emission potential.

683 **4.4 Conclusion**

684 Here, we demonstrate considerable variation in N_2O emission potential for New
685 Zealand pasture soils based on the timing and activity of N_2O reduction and associated with
686 the accumulation of NO gas. We show an association between N_2O production/reduction
687 phenotypes and microbial communities in the absence of a pH effect and in conjunction
688 with results from Samad *et al.* (2016b, 2016a) suggest this improves the plausibility of a
689 true link between community composition and the observed phenotypes/ N_2O emission
690 potential. Additional correlates of N_2O emission potential/emission phenotypes are
691 identified at both distal (long term rainfall) and proximal levels (carbon availability) which
692 may be linked by a common mechanism of NO accumulation and inhibition. Further
693 research on the phenomena described here should focus on directly testing the impact of
694 NO concentrations on the observed phenotypes, the potential accumulation of NO_2^- in
695 sequential type soils, and the potential for regulatory effects such as delayed transcription
696 of *nosZ*.

Acknowledgements

697 This work was funded by the New Zealand Government through the New Zealand Fund for
698 Global Partnerships in Livestock Emissions Research to support the objectives of the
699 Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse
700 Gases (Agreement number: 16084 and SOW12-GPLER-OU-SM) awarded to SEM and the
701 University of Otago, New Zealand. MH was funded by a University of Otago Postgraduate
702 Scholarship. PD P received funding from the FACCE-ERA-GAS project MAGGE-pH
703 under the grant agreement no. 696356. We would like to thank the Nitrogen group at the
704 Norwegian University of Life Sciences NMBU for access to lab, robotic autosamplers,
705 experimental and technical assistance. We also thank Steve Wakelin and AgResearch for
706 providing historic physicochemical data and preliminary DNA samples for the analysed
707 soils.

References

708 2° Institute. (2016). Global N₂O Levels. <https://www.n2olevels.org/> (Accessed July 12,

709 2019).

710 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990). Basic local alignment

711 search tool. *J Mol Biol* **215**: 403–410.

712 ASTM D2216-10. (2010). Standard Test Methods for Laboratory Determination of Water

713 (Moisture) Content of Soil and Rock by Mass. *ASTM Int.* e-pub ahead of print, doi:

714 10.1520/D2216-10.N.

715 Baggs EM. (2011). Soil microbial sources of nitrous oxide: recent advances in knowledge,

716 emerging challenges and future direction. *Curr Opin Environ Sustain* **3**: 321–327.

717 Bakken LR, Frostegård Å, Dörsch P, Almøy T. (2015). A critique of Jones et al NCC 2014.

718 *Researchgate*.

719 Bergaust L, Bakken LR, Frostegård A. (2011). Denitrification regulatory phenotype, a new

720 term for the characterization of denitrifying bacteria. *Biochem Soc Trans* **39**: 207–212.

721 Bergaust L, Mao Y, Bakken LR, Frostegård A. (2010). Denitrification Response Patterns

722 during the Transition to Anoxic Respiration and Posttranscriptional Effects of Suboptimal

723 pH on Nitrogen Oxide Reductase in *Paracoccus denitrificans*. *Appl Environ Microbiol* **76**:

724 6387–6396.

725 Blackmer AM, Bremner JM. (1978). Inhibitory effect of nitrate on reduction of N₂O to N₂

726 by soil microorganisms. *Soil Biol Biochem* **10**: 187–191.

727 Braman RS, Hendrix SA. (1989). Nanogram nitrite and nitrate determination in
728 environmental and biological materials by vanadium (III) reduction with
729 chemiluminescence detection. *Anal Chem* **61**: 2715–2718.

730 Bremner JM. (1997). Sources of nitrous oxide in soils. *Nutr Cycl Agroecosystems* **49**: 7–16.

731 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, *et al.* (2010). QIIME allows analysis of high-throughput community sequencing data. *Nat Methods* **7**: 335–336.

734 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, *et al.* (2012).
735 Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq
736 platforms. *ISME J* **6**: 1621–1624.

737 Cichota R, Snow VO, Tait AB. (2008). A functional evaluation of virtual climate station
738 rainfall data. *New Zeal J Agric Res* **51**: 317–329.

739 Čuhel J, Šimek M, Laughlin RJ, Bru D, Chèneby D, Watson CJ, *et al.* (2010). Insights into
740 the effect of soil pH on N₂O and N₂ emissions and denitrifier community size and activity.
741 *Appl Environ Microbiol* **76**: 1870–1878.

742 Davidson EA. (2009). The contribution of manure and fertilizer nitrogen to atmospheric
743 nitrous oxide since 1860. *Nat Geosci* **2**: 659–662.

744 Dendooven L, Splatt P, Anderson JM, Scholefield D. (1994). Kinetics of the denitrification

745 process in a soil under permanent pasture. *Soil Biol Biochem* **26**: 361–370.

746 Dixon P. (2003). VEGAN, a package of R functions for community ecology. *J Veg Sci* **14**:

747 927–930.

748 Domeignoz-Horta LA, Spor A, Bru D, Breuil M-C, Bizouard F, Léonard J, *et al.* (2015).

749 The diversity of the N₂O reducers matters for the N₂O:N₂ denitrification end-product ratio

750 across an annual and a perennial cropping system. *Front Microbiol* **6**: 971.

751 Edgar RC. (2010). Search and clustering orders of magnitude faster than BLAST.

752 *Bioinformatics* **26**: 2460–2461.

753 Firestone MK, Smith MS, Firestone RB, Tiedje JM. (1979). The influence of nitrate, nitrite,

754 and oxygen on the composition of the gaseous products of denitrification in soil. *Soil Sci*

755 *Soc Am J* **43**: 1140.

756 Frunzke K, Zumft WG. (1986). Inhibition of nitrous-oxide respiration by nitric oxide in the

757 denitrifying bacterium *Pseudomonas perfectomarina*. *BBA - Bioenerg* **852**: 119–125.

758 Gaskell JF, Blackmer AM, Bremner JM. (1981). Comparison of effects of nitrate, nitrite,

759 and nitric oxide on reduction of nitrous oxide to dinitrogen by soil microorganisms. *Soil Sci*

760 *Soc Am J* **45**: 1124.

761 Giles M, Morley N, Baggs EM, Daniell TJ. (2012). Soil nitrate reducing processes –

762 drivers, mechanisms for spatial variation, and significance for nitrous oxide production.

763 *Front Microbiol* **3**: 1–16.

764 Gillam KM, Zebarth BJ, Burton DL. (2008). Nitrous oxide emissions from denitrification
765 and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil
766 aeration. *Can J Soil Sci* **88**: 133–143.

767 Graf DRH, Jones CM, Hallin S. (2014). Intergenomic comparisons highlight modularity of
768 the denitrification pathway and underpin the importance of community structure for N₂O
769 emissions De Crécy-Lagard V (ed). *PLoS One* **9**: e114118.

770 Groffman P, Tiedje J, Robertson GP, Christensen S. (1988). Denitrification at different
771 temporal and geographical scales: proximal and distal controls. In: *Advances in Nitrogen*
772 *Cycling in Agricultural Systems*. pp 174–192.

773 Ha TKT, Maeda M, Fujiwara T, Nagare H, Akao S. (2015). Effects of soil type and nitrate
774 concentration on denitrification products (N₂O and N₂) under flooded conditions in
775 laboratory microcosms. *Soil Sci Plant Nutr* **61**: 999–1004.

776 Halvorson H. (1972). Utilization of single L-amino acids as sole source of carbon and
777 nitrogen by bacteria. *Can J Microbiol* **18**: 1647–1650.

778 Hartman AL, Lough DM, Barupal DK, Fiehn O, Fishbein T, Zasloff M, *et al.* (2009).
779 Human gut microbiome adopts an alternative state following small bowel transplantation.
780 *Proc Natl Acad Sci* **106**: 17187–17192.

781 Henry S, Bru D, Stres B, Hallet S, Philippot L. (2006). Quantitative detection of the nosZ
782 gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA,
783 narG, nirK, and nosZ genes in soils. *Appl Environ Microbiol* **72**: 5181–5189.

784 Intergovernmental Panel on Climate Change. (2013). Climate change 2013 the physical
785 science basis: Working Group I contribution to the fifth assessment report of the
786 intergovernmental panel on climate change. Cambridge University Press: Cambridge.

787 Jones CM, Graf DRH, Bru D, Philippot L, Hallin S. (2013). The unaccounted yet abundant
788 nitrous oxide-reducing microbial community: a potential nitrous oxide sink. *ISME J* **7**:
789 417–26.

790 Jones CM, Spor A, Brennan FP, Breuil M-C, Bru D, Lemanceau P, *et al.* (2014). Recently
791 identified microbial guild mediates soil N₂O sink capacity. *Nat Clim Chang* **4**: 801–805.

792 Kaminsky R, Trouche B, Morales SE. (2017). Soil classification predicts differences in
793 prokaryotic communities across a range of geographically distant soils once pH is
794 accounted for. *Sci Rep* **7**: 45369.

795 Lauber CL, Hamady M, Knight R, Fierer N. (2009). Pyrosequencing-based assessment of
796 soil pH as a predictor of soil bacterial community structure at the continental scale. *Appl
797 Environ Microbiol* **75**: 5111–5120.

798 Lauber CL, Strickland MS, Bradford MA, Fierer N. (2008). The influence of soil properties
799 on the structure of bacterial and fungal communities across land-use types. *Soil Biol
800 Biochem* **40**: 2407–2415.

801 Lim NYN, Frostegård Å, Bakken LR. (2018). Nitrite kinetics during anoxia: The role of
802 abiotic reactions versus microbial reduction. *Soil Biol Biochem* **119**: 203–209.

803 Liu B, Frostegård Å, Bakken LR. (2014). Impaired reduction of N₂O to N₂ in acid soils is

804 due to a posttranscriptional interference with the expression of nosZ Bailey M (ed). *MBio*
805 **5**: e01383-14.

806 Liu B, Mao Y, Bergaust L, Bakken LR, Frostegård Å. (2013). Strains in the genus Thauera
807 exhibit remarkably different denitrification regulatory phenotypes. *Environ Microbiol* **15**:
808 2816–2828.

809 Liu B, Mørkved PT, Frostegård Å, Bakken LR. (2010). Denitrification gene pools,
810 transcription and kinetics of NO, N₂O and N₂ production as affected by soil pH. *FEMS*
811 *Microbiol Ecol* **72**: 407–417.

812 LRIS. (2020). New Zealand Fundamental Soil Layer. <https://lris.scinfo.org.nz/> (Accessed
813 July 1, 2020).

814 Lycus P, Bøthun KL, Bergaust L, Shapleigh JP, Bakken LR, Frostegård Å. (2017).
815 Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy.
816 *ISME J* **11**: 2219–2232.

817 Lynch MDJ, Neufeld JD. (2015). Ecology and exploration of the rare biosphere. *Nat Rev*
818 *Microbiol* **13**: 217–229.

819 Maeda K, Spor A, Edel-Hermann V, Heraud C, Breuil MC, Bizouard F, *et al.* (2015). N₂O
820 production, a widespread trait in fungi. *Sci Rep* **5**: 9697.

821 McMurdie PJ, Holmes S. (2013). phyloseq: an R package for reproducible interactive
822 analysis and graphics of microbiome census data. *PLoS One* **8**: e61217.

823 Molstad L, Dörsch P, Bakken LR. (2007). Robotized incubation system for monitoring
824 gases (O₂, NO, N₂O N₂) in denitrifying cultures. *J Microbiol Methods* **71**: 202–211.

825 Morales SE, Jha N, Saggar S. (2014). Biogeography and biophysicochemical traits link
826 N₂O emissions, N₂O emission potential and microbial communities across New Zealand
827 pasture soils. *Soil Biol Biochem* **82**: 87–98.

828 Morley N, Baggs EM, Dörsch P, Bakken L. (2008). Production of NO, N₂O and N₂ by
829 extracted soil bacteria, regulation by NO₂(-) and O₂ concentrations. *FEMS Microbiol Ecol*
830 **65**: 102–12.

831 Myhre G, Shindell D, Bréon F, Collins W, Fuglestvedt J, Huang J, *et al.* (2013).
832 Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science
833 basis. Contribution of working group I. Cambridge University Press: Cambridge.

834 NIWA. (2017). CliFlo: NIWA’s National Climate Database. <http://cliflo.niwa.co.nz/>
835 (Accessed May 17, 2017).

836 Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolffing J, Kuikman PJ. (2005).
837 Trends in global nitrous oxide emissions from animal production systems. *Nutr Cycl
838 Agroecosystems* **72**: 51–65.

839 Pan Y, Ni B-J, Bond PL, Ye L, Yuan Z. (2013). Electron competition among nitrogen
840 oxides reduction during methanol-utilizing denitrification in wastewater treatment. *Water
841 Res* **47**: 3273–3281.

842 Parkin TB, Sextone AJ, Tiedje JM. (1985). Adaptation of Denitrifying Populations to Low

843 Soil pH †. *Appl Environ Microbiol* **49**: 1053–1056.

844 Qu Z, Wang J, Almøy T, Bakken LR. (2014). Excessive use of nitrogen in Chinese
845 agriculture results in high N₂O/(N₂O+N₂) product ratio of denitrification, primarily due to
846 acidification of the soils. *Glob Chang Biol* **20**: 1685–98.

847 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, *et al.* (2013). The SILVA
848 ribosomal RNA gene database project: improved data processing and web-based tools.
849 *Nucleic Acids Res* **41**: D590-6.

850 R Core Team. (2016). R: A language and environment for statistical computing.
851 <https://www.r-project.org/>.

852 Ravishankara AR, Daniel JS, Portmann RW. (2009). Nitrous oxide (N₂O): the dominant
853 ozone-depleting substance emitted in the 21st century. *Science* **326**: 123–125.

854 Ribera-Guardia A, Kassotaki E, Gutierrez O, Pijuan M. (2014). Effect of carbon source and
855 competition for electrons on nitrous oxide reduction in a mixed denitrifying microbial
856 community. *Process Biochem* **49**: 2228–2234.

857 Richardson D, Felgate H, Watmough N, Thomson A, Baggs E. (2009). Mitigating release
858 of the potent greenhouse gas N₂O from the nitrogen cycle – could enzymic regulation hold
859 the key? *Trends Biotechnol* **27**: 388–397.

860 Roco CA, Bergaust LL, Bakken LR, Yavitt JB, Shapleigh JP. (2017). Modularity of
861 nitrogen-oxide reducing soil bacteria: linking phenotype to genotype. *Environ Microbiol*
862 **19**: 2507–2519.

863 Rowell DL, Wild A. (1985). Causes of soil acidification: a summary. *Soil Use Manag* **1**:
864 32–33.

865 Samad MS, Bakken LR, Nadeem S, Clough TJ, de Klein CAM, Richards KG, *et al.*
866 (2016a). High-Resolution Denitrification Kinetics in Pasture Soils Link N₂O Emissions to
867 pH, and Denitrification to C Mineralization Lehman RM (ed). *PLoS One* **11**: e0151713.

868 Samad MS, Biswas A, Bakken LR, Clough TJ, de Klein CAM, Richards KG, *et al.*
869 (2016b). Phylogenetic and functional potential links pH and N₂O emissions in pasture soils.
870 *Sci Rep* **6**: 35990.

871 Senbayram M, Chen R, Budai A, Bakken L, Dittert K. (2012). N₂O emission and the
872 N₂O/(N₂O+N₂) product ratio of denitrification as controlled by available carbon substrates
873 and nitrate concentrations. *Agric Ecosyst Environ* **147**: 4–12.

874 Simek M, Cooper JE. (2002). The influence of pH on denitrification:Progress towards the
875 understanding of this interaction over the last fifty years. *Eur J Soil Sci* **53**: 345–354.

876 Simon J, Klotz MG. (2013). Diversity and evolution of bioenergetic systems involved in
877 microbial nitrogen compound transformations. *Biochim Biophys Acta* **1827**: 114–135.

878 Syakila A, Kroese C. (2011). The global nitrous oxide budget revisited. *Greenh Gas Meas
879 Manag* **1**: 17–26.

880 Tait A, Turner R, Tait A, Turner R. (2005). Generating multiyear gridded daily rainfall
881 over New Zealand. *J Appl Meteorol* **44**: 1315–1323.

882 Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ. (2012). Biological
883 sources and sinks of nitrous oxide and strategies to mitigate emissions. *Philos Trans R Soc
884 Lond B Biol Sci* **367**: 1157–1168.

885 Wakelin S, van Koten C, O'Callaghan M, Brown M. (2013). Physicochemical properties of
886 50 New Zealand pasture soils: a starting point for assessing and managing soil microbial
887 resources. *New Zeal J Agric Res* **56**: 248–260.

888 Wallenstein MD, Myrold DD, Firestone M, Voytek M. (2006). Environmental controls on
889 denitrifying communities and denitrification rates: insights from molecular methods. *Ecol
890 Appl* **16**: 2143–52.

891 Weier KL, Doran JW, Power JF, Walters DT. (1993). Denitrification and the
892 dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. *Soil
893 Sci Soc Am J* **57**: 66.

894 Wrage N, Velthof GL, Van Beusichem ML, Oenema O. (2001). Role of nitrifier
895 denitrification in the production of nitrous oxide. *Soil Biol Biochem* **33**: 1723–1732.

896 Zhao X, Wang S, Xing G. (2014). Nitrification, acidification, and nitrogen leaching from
897 subtropical cropland soils as affected by rice straw-based biochar: laboratory incubation
898 and column leaching studies. *J Soils Sediments* **14**: 471–482.

899 Zhou Y, Pijuan M, Zeng RJ, Yuan Z. (2008). Free nitrous acid inhibition on nitrous oxide
900 reduction by a denitrifying-enhanced biological phosphorus removal sludge. *Environ Sci
901 Technol* **42**: 8260–8265.

902 Zhu J, Mulder J, Solheimslid SO, Dörsch P. (2013). Functional traits of denitrification in a
903 subtropical forest catchment in China with high atmogenic N deposition. *Soil Biol Biochem*
904 **57**: 577–586.

905 Zumft WG. (1997). Cell biology and molecular basis of denitrification. *Microbiol Mol Biol*
906 *Rev* **61**: 533–616.

907 **Figure Legends**

908 **Figure 1.** N₂ gas kinetics of 20 NZ pasture soils amended with 2mM NH₄NO₃ and incubated
909 in a helium atmosphere. The figure shows the wide variation in timing of N₂O reduction
910 (N₂ production) leading to variable N₂O accumulation. N₂O hypothetically emitted (%)
911 (Table S2) was used to evaluate sequentiality of N₂O production/reduction on a continuous
912 scale (soils ordered top left to bottom right) and define soil phenotypes (concurrent (A),
913 intermediate (B) and sequential (C)) based on discrete arbitrary cutoffs. Circles, squares,
914 triangles represent three replicate vials. Concurrent N₂O production/reduction, is associated
915 with specific NO emission pattern: Lower NO accumulation eventually stabilising at a
916 pseudo steady state. Sequential soils usually accumulate higher max NO. Note that the
917 panels have different scaling of N₂O (Orange), N₂ (Black) and NO (Blue) and values are
918 reported as μ mol-N per vial. Scaled version available (Figure S1). Version with CO₂
919 available (Figure S2).

920 **Figure 2.** Microbial community analyses reveal links between 16S community composition
921 and N₂O emission potential/phenotypes (A), average daily rainfall over 10 years and pH
922 (B). qPCR reveals greater abundance of nosZII relative to nosZI (C). NMDS ordination
923 plots (A, B) compare prokaryotic dissimilarities (Bray Curtis) of a single pooled mixed
924 sieved soil sample per site. Full distance specific replications are presented in Figure S3.
925 Stress values for ordinations were 0.14. Correlations between variables and NMDS axes or
926 the Bray Curtis dissimilarity matrix are presented in Table 1.

927 **Figure 3.** Relationship between average daily rainfall (average daily mm rainfall over 10
928 years prior to sampling) and N₂O production/reduction phenotypes (A) or N₂O
929 hypothetically emitted % (B). p-value presented is for difference of medians using

930 Wilcoxon rank sum test with chi-squared approximation. Correlations between all rainfall
931 and N₂O emission potential metrics are presented in **Table S3**.

932 **Figure 4.** Normalized soil N₂ production rates (N₂ rate over max N₂ rate in same soil)
933 increase as available NO₃⁻ + NO₂⁻ is depleted in anoxic soil incubations amended with 2mM
934 NH₄NO₃. In most soils, predicted NO₃⁻ + NO₂⁻ at beginning of anoxic period is greater than
935 measured NO₃⁻ + NO₂⁻ immediately following NO₃⁻ amendment (A) indicating NO₃⁻ + NO₂⁻
936 accumulation, most likely due to nitrification during oxic pre-incubations. Plots (C, D)
937 allow comparison of N₂O reduction activity at similar NO₃⁻ + NO₂⁻ concentration for each
938 soil. Ranking of soils across Y-axis could indicate potential variation in soil N₂O reduction
939 sensitivity to NO₃⁻ + NO₂⁻ concentration, however this ranking simply describes the
940 aforementioned N₂O production/reduction phenotypes (C) and a potential effect cannot be
941 separated from the natural progression of denitrification or other biases.

942 **Figure 5.** Effect of carbon (10mM Na-glutamate + 4mM NH₄NO₃ by flooding and
943 draining) on soil denitrification kinetics in representative soils ranging in N₂O
944 hypothetically emitted (%)/phenotypes: concurrent (A), sequential (B) and intermediate
945 (C). Triplicate incubations per treatment (dots, squares, triangles) were carried out under
946 anoxia without oxic preincubation. Carbon amended treatments right, C negative controls
947 left. Single leaky reps excluded for 20 +N and 40 +C+N. N₂O (Orange), N₂ (Black) and NO
948 (Blue) are reported as μ mol-N per vial. Carbon additions shift kinetics in the tested
949 concurrent soils towards sequential N₂O production/reduction and greater NO accumulation
950 while no dramatic change is observed for the sequential or intermediate soils. Graphs with
951 axes scaled to same maximum available (Figure S5)

952 **Tables**

953 **Table 1.** N₂O emission potential and other variable correlations to community dissimilarity

Variable vs. community composition	NMDS axis 1 co-ords (Spearman's)		NMDS axis 2 co-ords (Spearman's)		Bray curtis dissimilarity matrix (Mantel)	
	rho (ρ)	Sig (p)	rho (ρ)	Sig (p)	r statistic	Sig (p)
N ₂ O hypothetically emitted (%)	-0.51	0.022*	-0.34	0.137	0.18	0.139
IN ₂ O (50hrs)	-0.64	0.002*	-0.29	0.215	0.15	0.208
IN ₂ O (N ₂ plateau)	-0.40	0.093	-0.34	0.154	0.24	0.073
N ₂ O/(N ₂ O+N ₂) (50hrs)	-0.70	0.001*	-0.28	0.232	0.26	0.079
N ₂ O/(N ₂ O+N ₂)(max N ₂ O)	-0.61	0.004*	-0.26	0.262	0.19	0.134
pH H ₂ O	-0.32	0.165	0.50	0.025*	0.35	0.005*
pH CaCl ₂	-0.37	0.110	0.35	0.128	0.32	0.008*
Daily average rainfall (10 years)	0.67	0.001*	0.55	0.012*	0.44	0.009*

954

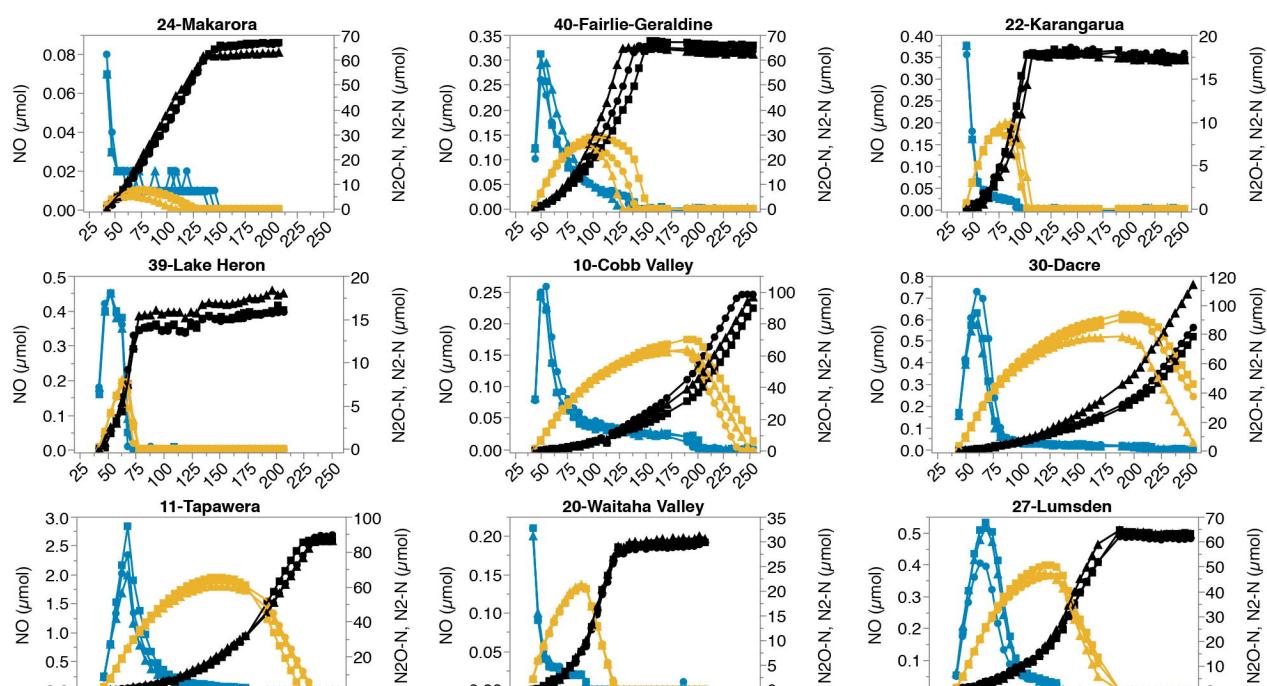
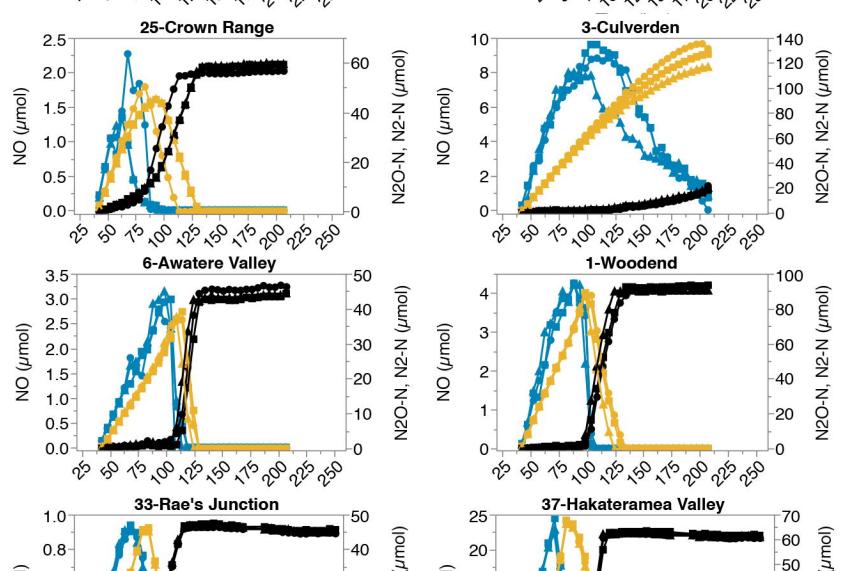
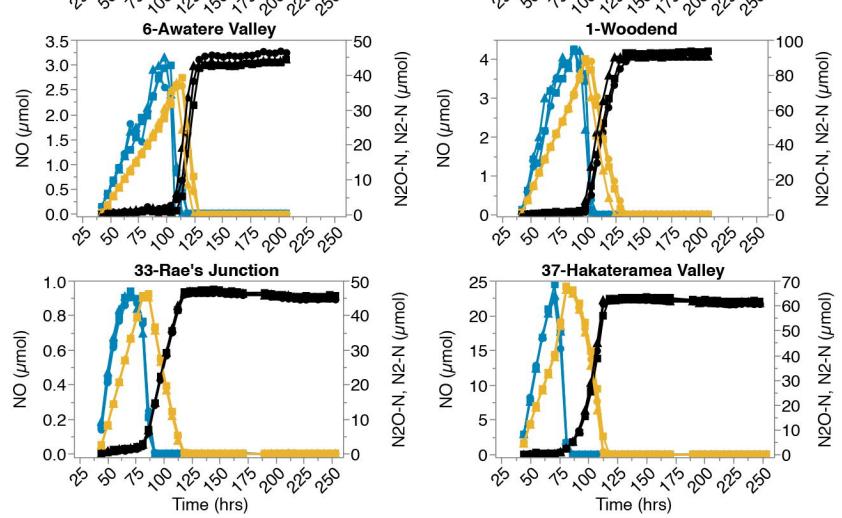
955 *p<0.05

956 **Table 2.** Correlations between predicted NO₃⁻ + NO₂⁻ at the start of anoxia and measures of
957 N₂O emission potential

Variable	Spearman's ρ	Sig (p)
IN ₂ O (50hrs)	0.70	0.001*
IN ₂ O (N ₂ plateau)	0.53	0.019*
N ₂ O/(N ₂ O+N ₂) (50hrs)	0.54	0.013*
N ₂ O/(N ₂ O+N ₂)(max N ₂ O)	0.30	0.200
N ₂ O hypothetically emitted (%)	0.09	0.701

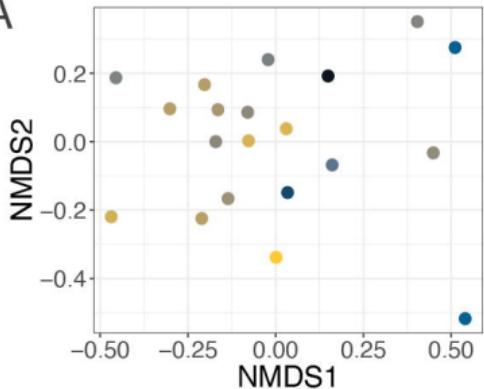
958

959 *p<0.05




960

961 **Table 3.** Comparison of gas kinetics features across all incubation treatments for five soils

Soil	Concurrent						Sequential						Intermediate		
	Fairlie-Ger (40)			Waitaha (20)			Rae's Junct (33)			Woodend (1)			Waipapa (5)		
	1st	+N	+C+N	1st	+N	+C+N	1st	+N	+C+N	1st	+N	+C+N	1st	+N	+C+N
Av N ₂ rate before peak N ₂ O (μmol/hr)	0.38	0.36	0.10	0.17	0.14	0.06	0.16	0.08	0.10	0.08	0.18	0.22	0.11	0.26	0.54
Av N ₂ rate after peak N ₂ O (μmol/hr)	0.98	2.20	3.08	0.58	0.52	1.87	1.26	1.57	4.65	2.62	2.77	4.22	0.84	1.30	2.40
Max N ₂ rate (μmol/hr)	1.39	2.54	4.26	0.76	0.64	3.84	1.51	2.10	6.89	3.65	3.53	5.01	1.04	1.50	3.14
Max N ₂ O rate (μmol/hr)	0.91	1.60	2.46	0.71	0.84	1.15	1.25	1.59	2.77	2.24	2.81	2.83	0.79	1.11	1.87
Estimated Av total N turnover rate (μmol NO ₂ ⁻ , NO, N ₂ O, N ₂ N/hr)	2.78	4.40	5.46	1.42	1.50	3.29	2.73	3.27	6.09	4.44	5.59	6.90	1.77	3.10	4.99
Av CO ₂ rate (μmol/hr)	1.15	1.92	2.68	0.90	0.92	1.64	1.34	1.51	2.55	1.99	2.91	3.61	0.74	1.27	2.28
Av NO (μmol)	0.10	0.67	1.15	0.04	0.04	0.56	0.61	0.63	0.62	1.54	0.27	0.23	1.34	1.50	0.51
Max NO (μmol)	0.29	2.21	4.64	0.21	0.27	1.27	0.92	2.31	2.51	4.25	1.53	1.23	3.25	6.06	2.79
N ₂ OI (N ₂ plateau)	0.44	0.61	0.69	0.57	0.58	0.80	0.65	0.65	0.69	0.66	0.63	0.70	0.64	0.53	0.55
N ₂ O/(N ₂ O+N ₂)(max N ₂ O)	0.59	0.79	0.95	0.71	0.80	0.97	0.87	0.94	0.95	0.96	0.93	0.92	0.84	0.79	0.71
Hypothetically emitted N ₂ O (%)	0.41	0.80	0.92	0.74	0.83	1.00	0.98	0.99	1.00	0.96	0.90	0.96	0.87	0.70	0.74

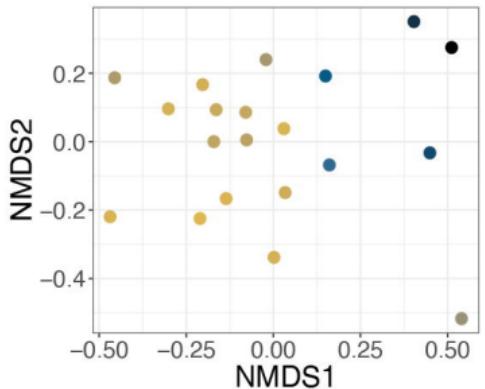

962

963

A**B****C**

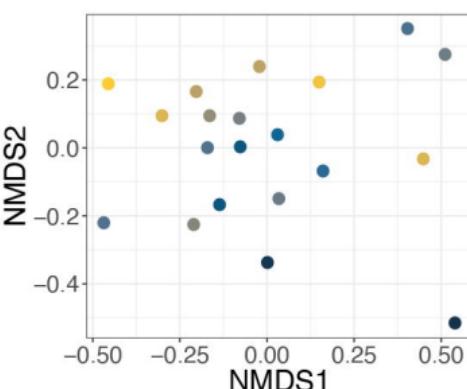
— NO — N2O — N2

A

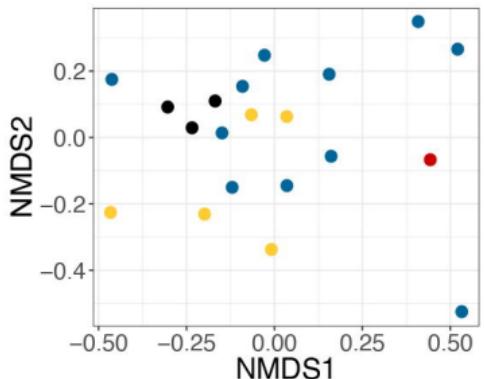


N2O hypothetically emitted (%)

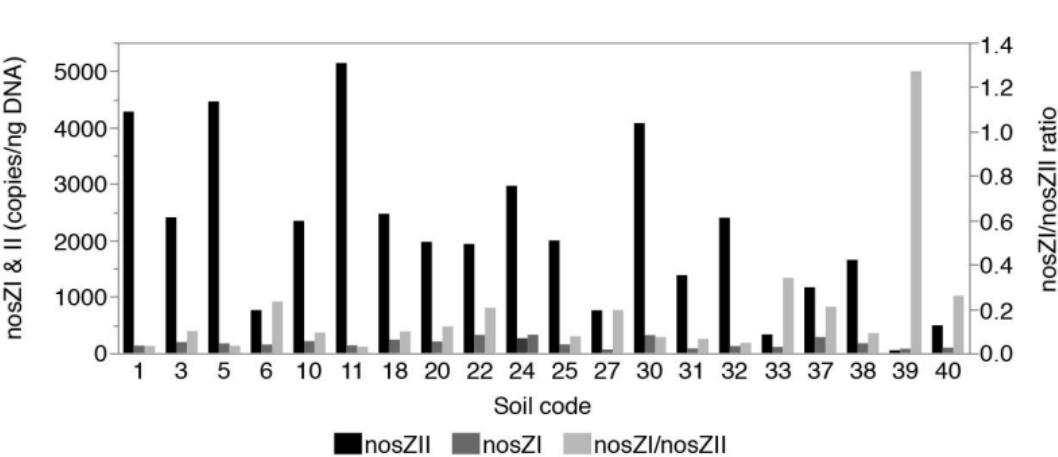
25 50 75 100


B

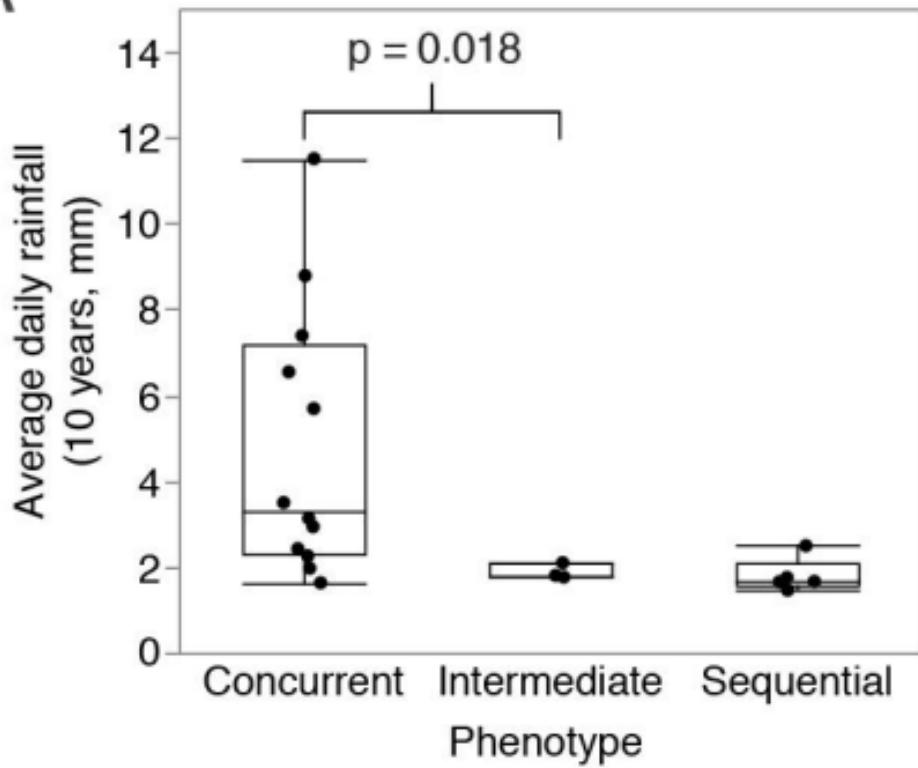
Average Daily Rainfall (mm)


3 6 9

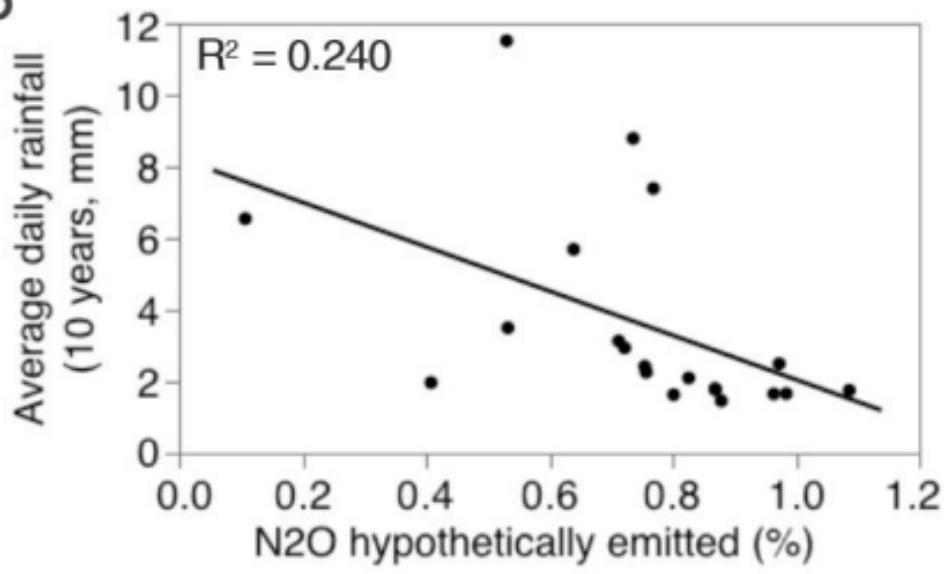
pH H₂O

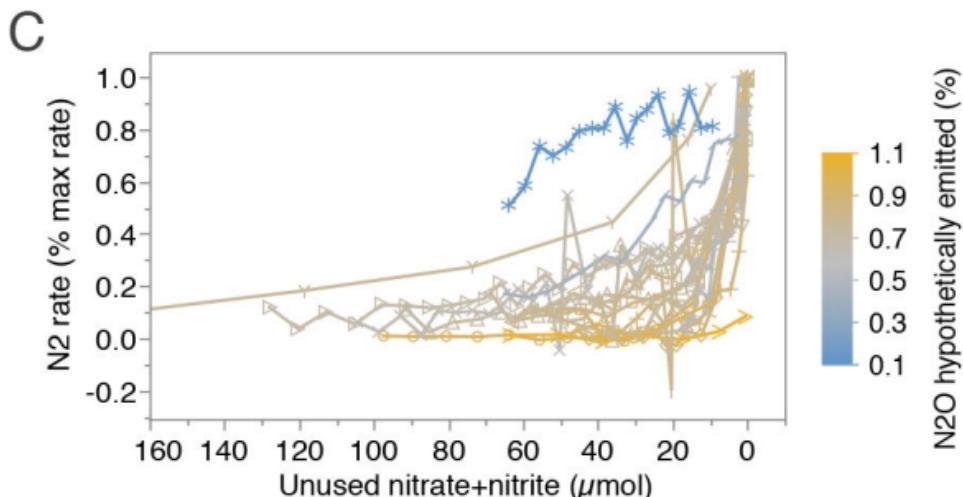
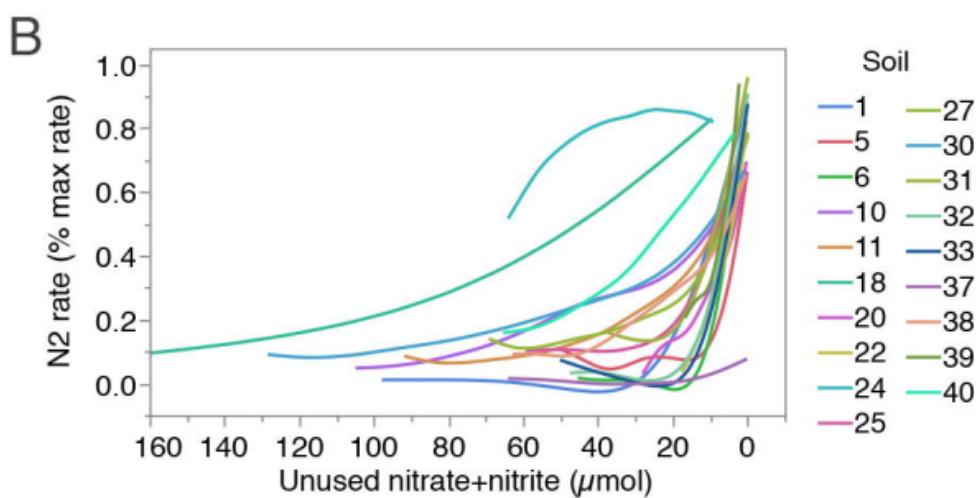
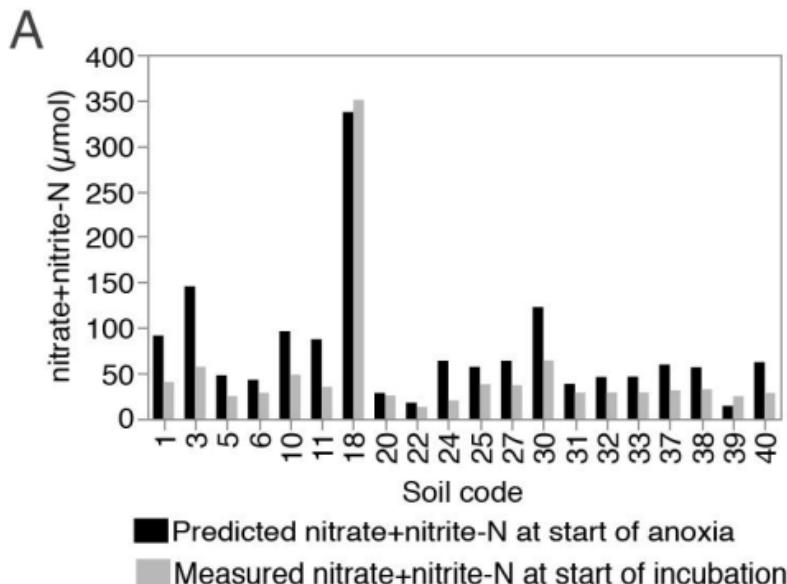


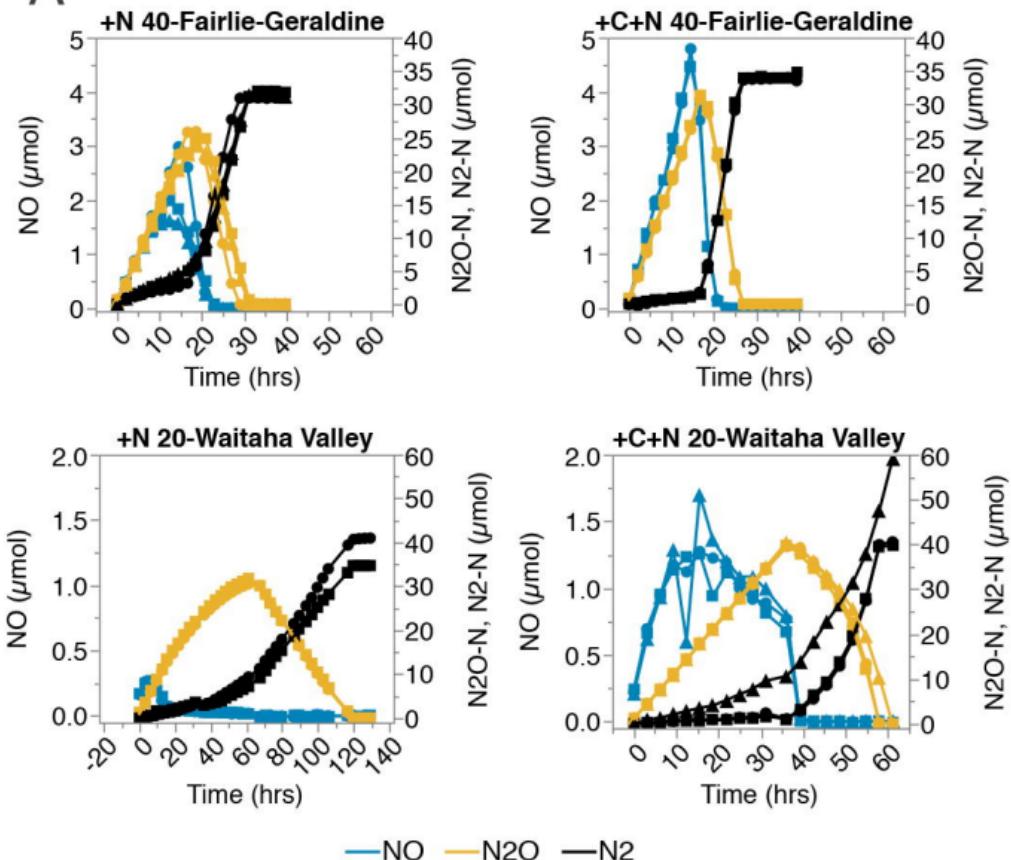
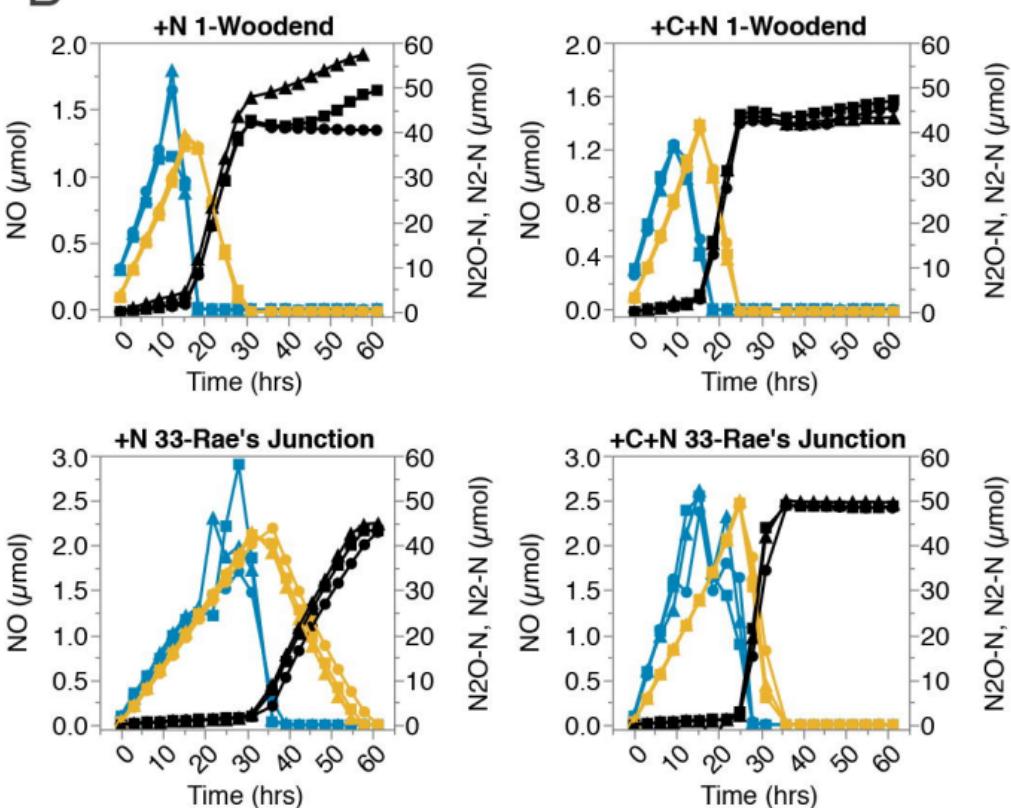
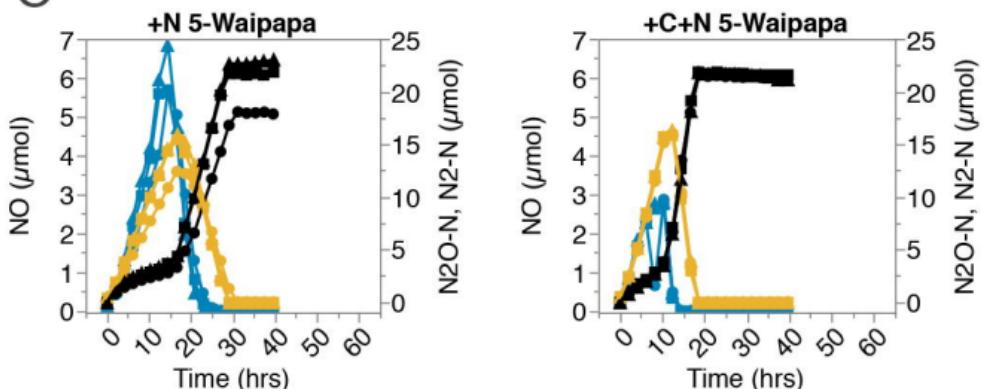
5.6 6.0 6.4 6.8



Sequential
N-A
Intermediate
Concurrent


C




A

B

A**B****C**