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Abstract

All animals can perform certain survival behaviors without prior experience, suggesting a “hard wiring” of
underlying neural circuits. Experience, however, can alter the expression of innate behaviors. Where in
the brain and how such plasticity occurs remains largely unknown. Previous studies have established the
phenomenon of “aggression training,” in which the repeated experience of winning successive aggressive
encounters across multiple days leads to increased aggressiveness. Here we show that this procedure
also leads to long-term potentiation (LTP) at an excitatory synapse, derived from the Anterior
Hippocampus/Posterior Medial amygdala (AHiPM), onto estrogen receptor 1-expressing (Esrl®) neurons
in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvI). We demonstrate further that
the optogenetic induction of such LTP in vivo facilitates, while optogenetic long-term depression (LTD)
diminishes, the behavioral effect of aggression training, implying a causal role for potentiation at
AHIPM->VMHVIE? synapses in mediating the effect of this training. Interestingly, ~25% of inbred
C57BL/6 mice fail to respond to aggression training. We show that these individual differences are
correlated both with lower levels of testosterone, relative to mice that respond to such training, and with
a failure to exhibit LTP in vivo after aggression training. Administration of exogenous testosterone to
such non-aggressive mice restores both behavioral and physiological plasticity in vivo. Together, these
findings reveal that LTP at a hypothalamic circuit node mediates a form of experience-dependent
plasticity in an innate social behavior, and a potential hormone-dependent basis for individual differences

in such plasticity among genetically identical mice.
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Significance Statement

Madification of instinctive behaviors occurs through experience, yet the mechanisms through which this
happens have remained largely unknown. Recent studies have shown that potentiation of aggression,
an innate behavior, can occur through repeated winning of aggressive encounters. Here we show that
synaptic plasticity at a specific excitatory input to a hypothalamic cell population is correlated with, and
required for, the expression of increasingly higher levels of aggressive behavior following successful
aggressive experience. We additionally show that the amplitude and persistence of long-term potentiation
at this synapse are influenced by serum testosterone, administration of which can normalize individual

differences among genetically identical inbred mice, in the expression of intermale aggression.
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Introduction

Brains evolved to optimize the survival of animal species by generating appropriate behavioral responses
to both stable and unpredictable features of the environments in which they live. Accordingly, two major
brain strategies for behavioral control have been selected. In the first, developmentally specified neural
circuits generate rapid innate responses to sensory stimuli that have remained relatively constant and
predictable over evolutionary timescales (1-5). In the second, neural circuits generate flexible responses

to stimuli that can change over an individual’s lifespan, through learning and memory (6-8).

One prevailing view is that these two strategies are implemented largely through distinct
neuroanatomical structures and neurophysiological mechanisms. According to this view, in the
mammalian brain innate behaviors are mediated by evolutionarily ancient, deep subcortical structures,
such as the medial amygdala and hypothalamus, which link specific sensory inputs to evolutionarily
“prepared” motor outputs through relatively stable synaptic connections (9-13). In contrast, learned
behaviors are mediated by more recently evolved structures, such as the cortex and hippocampus, which

compute flexible input-output mapping responses through synaptic plasticity mechanisms (14-19).

The idea that innate vs. learned behaviors are mediated by largely distinct neural systems has
been reinforced by studies that have revealed, for example, distinct anatomical pathways through which
olfactory cues evoke learned vs. innate behaviors in both the mouse (20-22) and in Drosophila (23-25);
reviewed in (26). The concept of a dichotomous nervous system architecture for mediating appropriate
biological responses to evolutionarily ancient vs. novel stimuli is analogous to the innate vs. adaptive

branches of the immune system (27).

This view of distinct neural pathways for innate vs. learned behaviors, however, is challenged by
case of behaviors that, while apparently “instinctive”, can nevertheless be modified by experience. For
example, while aggression has been considered by classical ethologists as a prototypical “released”
innate behavior (28, 29), studies from the 1940’s onwards showed that mice could be trained to be more

aggressive by repeated fighting experience (30-35). Similarly, studies in rodents have shown that
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defensive behaviors such as freezing can be elicited by both unconditional and conditional stimuli, the

latter via Pavlovian associative learning (reviewed in (36).

These observations raise the question of where in the brain, and how, the neural circuitry that
mediates innate behaviors is modified by experience. In the case of defensive behaviors, such as
freezing, the prevailing view argues for parallel pathways: conditioned defensive behavior is mediated by
circuitry involving the hippocampus, thalamus and the basolateral/central amygdala, whereas innate
defensive responses to predators are mediate by the medial amygdala (MeA)/bed nucleus of the stria
terminalis (BNST) and hypothalamic structures (reviewed in (37)). Although the basolateral amygdala
contains representations of unconditioned aversive and appetitive stimuli, these representations are used
as the cellular substrate for pairing with conditioned stimuli (38, 39). Despite this segregation of learned
and innate defensive pathways, it remains possible that experience-dependent influences on other innate
behaviors may involve plasticity at synapses that directly mediate such behaviors (e.g., at inputs to

midbrain PAGvI neurons (40)).

We have investigated this issue using inter-male offensive aggression in mice as an experimental
paradigm. While mice housed under appropriate conditions can exhibit aggression in the absence of any
prior agonistic encounters with male conspecifics (31, 33, 41), an effect of repeated successful
aggressive experience to facilitate, or “prime”, subsequent attack behavior, considered as a form of
“aggression training”, has been well-documented (42, 43). The neural substrate and physiological
mechanisms underlying this form of experience-dependent plasticity of an innate behavior remain
unknown. Interestingly, inbred strains of laboratory mice exhibit individual differences in the ability to
manifest this form of behavioral plasticity, with up to 25% of animals failing to respond to aggression
training (35). The biological basis of this apparent epigenetic heterogeneity is not understood. Here we
provide data supporting a plausible explanation for both observations, one that links physiological

plasticity at hypothalamic synapses to aggressive behavior and sex hormone levels.
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Results

Aggression training increases VMHVI®™ neuron activity. Aggression levels escalate following the
recurrent manifestation of the behavior (35, 44, 45), an effect termed here as “aggression training”. Using
a five consecutive-day resident-intruder assay (5cdRl, Fig. 1A), aggression training was investigated in
a cohort of C57BL/6 Esr1-Cre mice (n=138), which displayed increased aggression levels that remained
significantly elevated, relative to pre-training animals, over a prolonged period of time (maximal period
tested — three months, Fig. 1C-F). This assay enabled the identification of socially naive, aggressive
(AGG), and non-aggressive (NON) mice, the latter of which represent ~23% of all males tested (Fig. 1B).
Aggression levels were found to plateau on the fourth and fifth day of the 5¢cdRlI, suggestive of a ceiling
effect in the expression of aggressive behavior (Fig. 1C-E). Interestingly, aggression levels remained
elevated for the maximal follow-up period tested (three months) following aggression training, as

compared to the first instance of resident-intruder (RI) test (Fig. 1C).

To test whether aggression training involves plasticity in a structure that mediates the innate aspect of
aggression (46), we initially focused on VMHVIF™? neurons, optogenetic stimulation of which can evoke
attack in socially naive, inexperienced animals (47). Using brain slice Ca2* imaging, the average baseline
activity of VMHVI®" neurons was found to increase in AGGs but not in NONs, following aggression
training (Fig. 1G-J). Voltage-clamp ex vivo VMHVI® neuron recordings revealed in AGG mice a
significant increase in the frequency and amplitude of spontaneous excitatory postsynaptic currents
(SEPSCs, Fig. 2A-C), relative to socially naive animals. The increase in the amplitude of SEPSCs raised
the possibility that a synaptic potentiation mechanism may be present in VMHVIE? neurons (48, 49). In
contrast, voltage-clamp ex vivo VMHVIES™? neuron recordings in slices from NON mice revealed an
increase in the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs, Fig.

s1).

The increased activity of VMHVIES™ neurons following aggression training in AGG mice prompted us to

investigate whether this might involve potentiation of an excitatory input to these cells. Anatomical studies
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have identified a strong purely excitatory input to VMHvIEs™ cells, which originates anatomically from the
posteromedial part of the amygdalohippocampal area (AHIPM, also termed the posterior amygdala, PA)
(50). In vivo optogenetic activation of AHIPM evoked aggression (Fig. 2D-H), confirming a recent report
using chemogenetic activation (51). We found, moreover, that this effect is amplified in aggression-
experienced animals (Fig. 2D-H). Investigation of the functional connectivity at AHIPM—>VMHvIEs?
synapses in acute slices using optogenetic activation of AHIPM inputs (Fig. 2I-K) indicated that this
projection is entirely excitatory, at least in part monosynaptic (Fig. S2), with an absence of any evoked
responses at the reversal potential for excitation (Vi hold = 0 mV, Fig. 2J — middle row) and reliable
photostimulation-evoked currents at the reversal potential for inhibition (Vm hold = -70 mV, Fig. 2J —
bottom row). These observations raised the question of whether potentiation at AHIPM—>VMHvIEs?
synapses underlies the observed increase in the excitatory synaptic input onto VMHVIES neurons

recorded from AGG mice following aggression training.

Plasticity at a hypothalamic synapse following aggression training. At the postsynaptic side of
synapses that can undergo LTP, the response to stimulation of excitatory pre-synaptic inputs largely
depends on the ratio of N-methyl-D-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-4-
isoxazoleproprionic acid (AMPA) receptors (52, 53). To test whether the AHIPM—>VMHVIES™ synapse
undergoes potentiation following aggression training, therefore, we measured the AMPA/NMDA ratio (54-
56). This analysis revealed a significantly higher AMPA/NMDA ratio in AGGs following such training,
compared to socially naive and NON mice (Fig. 2K). As the AMPA/NMDA ratio can influence synaptic
integration properties (57), we also investigated synaptic integration in VMHVIES™ neurons from socially
naive, AGG (trained) and NON mice. Indeed, these three groups of animals exhibited distinct synaptic
integration properties, with depressing/static synaptic integration in socially naive and NON mice, and

facilitating synaptic integration in the VMHVIFS' neurons of AGG (trained) mice (Fig. 2L, M).
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Changes in the AMPA/NMDA ratio and synaptic integration properties are often accompanied by changes
in neuronal morphology and dendritic spine complexity, which can be indicative of structural LTP (SLTP)
(58-62). To investigate this possibility, VMHVIES? neurons which exhibited an increase in the
AMPA/NMDA ratio and synaptic integration in acute slice preparations were filled with neurobiotin, and
super-resolution images for reconstruction were obtained using the Airyscanning technique in a ZEISS
LSM 880 (63, 64). Analysis of second-order dendritic segments identified a prominent increase in
dendritic arborizations in VMHVIFS™ neurons from AGG (trained) mice, in comparison to socially naive and
NON mice (Fig. 3A-L). These changes were reflected in most spine parameters measured, including
density, branching points, volume, area, length, and mean diameter (Fig. 3M-R). However, the principal
feature was an increase in the number of short-length spines, suggesting they were newly generated
during or after training. Collectively, these observations suggested the possibility that potentiation is likely
to occur at AHIPM->VMHVIE? synapses, following aggression training in susceptible animals. We

therefore pursued this possibility using more specific electrophysiological protocols.

Experimental induction of LTP and LTD at AHiIPM->VMHvVI®™ synapses. LTP and LTD can be
experimentally induced in slices from brain areas typically associated with higher cognitive processing
(65-70), such as the hippocampus, but few studies have demonstrated that this can occur in the

hypothalamus (71-73), a site traditionally considered the source of instincts.

To determine whether LTP can be experimentally induced at AHIPM->VMHUVIES™ synapses ex vivo, we
employed acute VMHvI slices, and used an optogenetics protocol composed of three bouts of
photostimulation of Chronos-expressing AHiIPM terminals, during which the VMHVIES neuron (identified
by Cre-dependent expression of tdTomato in Esrl-Cre mice) was voltage-clamped at a depolarized
membrane potential (-30 mV; Fig. 4A, 4B). The choice of this Hebbian stimulation protocol was based on

our initial finding that combined pre- and post-synaptic depolarization were necessary for induction of
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potentiation at AHIPM—>VMHVIE? synapses (Fig. S3) (74). The stimulation frequency of AHIPM terminals
used here (20 Hz) was chosen based on our previous demonstration that direct optogenetic stimulation
of VMHVIE neurons at this same frequency drives action potential firing with 100% spike fidelity ex vivo
as well as in vivo, without depolarization block (47), and that it produces reliable synaptic integration in
VMHVIE™ neurons (Fig. 2L, M). Ex vivo whole-cell voltage-clamp recordings composed of 20 min baseline
and 20 min follow-up, revealed that the majority of VMHVIES™ neurons recorded in slices from socially
naive, AGG (trained) and NON mice were able to express synaptic potentiation in response to this
manipulation (Fig. 4C). Comparison of the responses with the animals’ aggression phenotypes revealed,
however, that the dynamics of the response, including its maximum amplitude and persistence, differed
between groups, with synaptic potentiation in slices from NON mice returning to baseline levels within
the maximal period tested (20 min, Fig. 4D). Based on the Hebbian conditions required to evoke this form
of synaptic potentiation, and the similarity of its features to LTP as characterized in the hippocampus (75,

76), we refer to this form of plasticity as hypothalamic LTP.

These findings in turn raised the question of whether AHIPM->VMHVIES™! synapses can also express long-
term synaptic depression (LTD). This was investigated using a longer stimulation protocol for activating
AHiIPM terminals (10 min continuous stimulation at 1Hz, Fig. 4E). Similar to the case of LTP, most
VMHVIE™ neurons expressed LTD of varying amplitude and dynamics, in a manner that varied with the
animals’ aggression phenotypes (Fig. 4F, 4G). Interestingly, VMHVIE cells from NON mice expressed

higher amplitude LTD (Fig. 4G) than did cells from other groups.

An important question raised by these ex vivo observations was whether LTP and LTD can be induced
at AHIPM->VMHVIES synapses in vivo, using either optogenetic stimulation or aggression training. To
study the optogenetic induction of LTP in vivo, we used a similar paradigm to the ex vivo stimulation
protocol (Fig. 4A, 4H). However, in order to be able to simultaneously depolarize both pre- and post-
synaptic terminals we used spectrally segregated opsins with an overlap at 535 nm, to permit co-

excitation (77). As in the case of the ex vivo experiments, AHIPM was transduced with Chronos; in
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addition, VMHVIE™? neurons were transduced with ChrimsonR (Fig. 4H). Chronic implantation of a silicon
probe optrode in the VMHvI allowed the detection of optically induced LTP or LTD in individual freely-
moving mice in their home cage, as a change in AHiIPM stimulation-evoked local field potentials (fEPSPs;
Fig. 41-4K). Application of the Hebbian protocol in socially naive mice led to the robust expression of LTP
in VMHVI in vivo (Fig. 4L), while application of the spaced protocol led to robust expression of LTD (Fig.
4M). Although VMHVIES™ neurons in silicon probe recordings were identified by optogenetic photo-tagging
of post-synaptic cells, we cannot exclude that other classes of VMHvI neurons contribute to recorded

fEPSPs.

These findings in turn raised the question of whether LTP can be induced in vivo by aggression training.
Applying the same testing method used to analyze the optogenetic induction of in vivo LTP and LTD, the
field excitatory postsynaptic potential (fEPSP) was monitored during a 10 min baseline period and then
following aggression training in initially socially naive mice. We used test optogenetic pulses to briefly
activate AHIPM terminals and ask whether the fEPSP increased in amplitude following the expression of
aggression. Indeed, LTP was induced in VMHVIES™ neurons immediately after the expression of social
behavior and aggression (Fig. 4N-P, n=4 mice tested). Notably, the behavioral induction of LTP (Fig. 40),
led to a persistent change in the amplitude of the fEPSP. This might suggest a lack of an early- vs late-
phase distinction in the LTP at AHIPM->VMHVIE™? synapses, in contrast to LTP features observed at

defined synapses in the hippocampus and the amygdala (78, 79).

The above findings identify hypothalamic synaptic plasticity, and specifically LTP and LTD, as
mechanisms that can occur and can alter VMHVI®S neuronal excitability in vivo. Next we sought to

address whether LTP and LTD have a causal role in the behavioral effect of aggression training.

LTP facilitates and LTD inhibits potentiation of aggression following aggression training. To

address whether LTP in the AHIPM->VMHVIF? synapses can influence the expression of aggression in

10
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inexperienced animals, we performed an in vivo optogenetic manipulation using the approach we
established for the experimental induction of hypothalamic LTP in vivo. The AHiIPM of Esr1-Cre mice was
transduced with Chronos or YFP, while VMHVI®™ neurons were transduced with Cre-dependent
ChrimsonR or mCherry (Fig. S4A). The effects of these manipulations were investigated behaviorally,

not physiologically, therefore silicon recording probes were not implanted.

Following application of the LTP induction protocol over three consecutive days in socially naive, solitary
mice, the RI test was performed on the fourth day, and behavior was quantified (Fig. S4B-G). The opsin
expressing mice (LTP group), exhibited elevated levels of aggression, indicating that the experimental
induction of LTP in this particular projection in vivo can influence the expression of aggression in the

absence of prior social experience (Fig. S4D-G).

The above paradigm was further modified to test, whether LTP and LTD can exert a causal influence on
aggression training. Using the approach we established for the experimental induction of hypothalamic
LTP or LTD in vivo (Fig. 4K-M), the AHIPM of Esr1-Cre mice was transduced with Chronos or YFP, while
VMHVIE? neurons were transduced with Cre-dependent ChrimsonR or mCherry (Fig. 5A) and the effects

of these manipulations were investigated behaviorally.

The 5cdRlI test was used to investigate the possible influence of LTP and LTD on aggression training. In
one experiment, to determine whether LTP could facilitate aggression training, the LTP induction protocol
was delivered at the end of each RI trial in both the control (YFP/mCherry-expressing) and LTP groups.
In a separate experiment, to determine whether LTP was necessary for aggression training, the LTD
induction protocol was delivered at the end of each RI trial in the control and LTD groups (Fig. 5B);
application of LTD is expected to override any LTP that may have occurred (80). As in Fig. 1A, smaller
size BALBI/c intruders were introduced to Esrl-Cre residents, in which the LTP/LTD protocols were
optogenetically delivered (Fig. 5C). Aggression levels were recorded and analyzed on each day of the

5cdRil (i.e., 24 hrs following the previous LTP or LTD manipulation, with the exception of day one).

11
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Applying LTP or LTD induction protocols in vivo facilitated or diminished the behavioral effect of
aggression training, respectively, as quantified by aggression/trial (% of the total trial duration occupied
by aggressive behavior) and attack latency (Fig. 5D-K). Interestingly, although LTP was found to enhance
the behavioral effect of aggression training on the second and third day of the 5¢cdRI assay, it did not lead
to ever-increasing aggression levels; rather the effect plateaued on days four and five, at a level similar
to the control group (see also Fig. 1C), suggesting an effect to accelerate learning. In contrast, LTD had
a profound inhibitory effect on aggression training, leading to similar aggression levels between day one
and day five of the 5cdRI test (Fig. 5D, two-tailed paired t-test, P = 0.0592 between day one and day five

in the LTD group).

We investigated next whether the observation that control and LTP-induced groups expressed similar
levels of aggressive behavior following training day three is due to a “ceiling effect” in the aggression
training paradigm. To do this, we performed further tests following completion of the 5cdRlI training
routine. On day six, mouse social behavior was tested in a novel arena against a CD1 male conspecific
of larger size (Fig. 5B, 5C), under which condition aggressive resident mice are less likely to attack (81).
We reasoned that LTP mice that reached “ceiling” levels of aggression in the 5cdRI assays using
conventional, smaller subordinate intruders might nevertheless show higher aggression under these sub-

optimal conditions.

Indeed, under these conditions, the 5cdRI/LTP-treated mouse group exhibited higher aggression levels
than any other tested group, while the control and LTD groups expressed similar aggression levels (Fig.
5L-0). This finding suggests that hypothalamic LTP expressed by VMHVIES™ neurons can facilitate
aggression under modified conditions where resident aggressiveness is behaviorally reduced, relative to

that typically detected in our conventional RI assay.

Together these experiments demonstrate a potential role for LTP and LTD in AGG mice. We next

investigated the basis for individual differences in aggression training among genetically identical mice,

12


https://doi.org/10.1101/2020.07.21.214619
http://creativecommons.org/licenses/by-nd/4.0/

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.214619; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

by asking whether we could identify any experimental intervention that would allow aggression and/or

hypothalamic LTP to be expressed in NON mice.

Testosterone enables the expression of aggression and hypothalamic LTP in NON mice. Levels of
testosterone (T) have been suggested to correlate with aggression and dominance in numerous species
(82-90), while administration of T following castration or ovariectomy has been shown to restore
aggression to the animal’s behavioral repertoire (91-96). As T levels are subject to epigenetic influences
(97), we sought to determine whether individual differences in levels of the hormone were detectable
among genetically identical, inbred C57BL/6N mice, and if so whether they correlated with and were

responsible for individual differences in the capacity to undergo aggression training.

To investigate whether serum T levels differ between NON and AGG mice, we collected blood samples
at different time points of the 5¢cdRI test (Fig. 6A-D). This experiment revealed that prior to the experience
of aggression, a small but statistically significant (P < .05) difference in serum T is present between NON
and AGG mice (Fig. 6B). This difference between the two groups was further accentuated following
aggression training (Fig. 6C). This is because serum T levels remained unaltered following aggression
training in NON mice, whereas they increased in AGG mice following training (Fig. 6D). Interestingly the
increase in serum T in AGG mice occurred in the first three days, and was not further accentuated through
additional aggression training (Fig. 6D). Together, these data reveal a correlation between individual
differences in T and the ability to respond to aggression training in NON vs. AGG mice, as well as between

levels of aggressiveness and T levels in AGG mice during training.

To test whether T levels are causally responsible for the difference in aggressiveness between NON and
AGG mice, subcutaneous osmotic mini-pumps containing T or vehicle were implanted in NON mice (Fig.
6E). The serum T levels in NONs measured at seven days post T mini-pump implantation were

significantly higher than (but within the upper quartile of) the endogenous T levels measured in AGG mice
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following completion of the 5cdRl training (Fig. 6D, F, serum T in NONs following T administration through
mini-pump 39.22+2.73 ng/mL, serum T in AGGs following aggression training 16.61+1.01 ng/mL, n=6
and 46 mice respectively, two-sided Mann—Whitney U test, P < 0.0001). Strikingly, the administration of
exogenous T induced aggression in all NON mice tested (Fig. 6G-J). We next investigated whether the
emergence of aggression through T administration correlated with the expression of LTP. In acute VMHuvI
slices from vehicle vs T-treated NON mice, we investigated the induction and expression of LTP using
ex vivo recordings. Using the same Hebbian induction protocol, stronger LTP could be elicited from
VMHVIE™ neurons recorded in slices from T-treated NON mice, in comparison to those from vehicle-

treated NON mice (Fig. 6K-O). Thus, T implants facilitate LTP induction ex vivo in NON mice.

An important remaining question, however, was whether LTP was expressed in VMHVIES™ neurons in
vivo, following aggression training in T-treated NON mice. To address this question, we used the design
previously described in Fig. 4H, N, in which AHIPM was transduced with Chronos, while VMHVIES cells
were transduced with ChrimsonR. A novel BALB/c, small size male intruder was introduced into the
NON’s home cage (Fig. 6P). In vehicle-treated mice, social interactions with intruder mice, but no
aggression, were observed, and LTP did not occur in vivo, as measured by fEPSP recordings in response
to optogenetic stimulation of Chronos-expressing AHIPM terminals (Fig. 6Q-T). However, T
administration through subcutaneous osmotic mini-pumps led to the expression of both aggressive

behavior and in vivo behaviorally induced LTP, in NON mice (Fig. 6Q-T).

These findings suggest that individual differences in serum T are responsible, at least in part, for
individual differences in the capacity for aggression training amongst inbred mice. Elevation of serum T
in NON mice can restore susceptibility to aggression training, as well as the capacity to express strong
LTP at AHIPM->VMHUVIE? synapses (both ex vivo and in vivo following aggression training). This
observation further strengthens the correlation between the ability to respond positively to aggression

training, and the expression of LTP. However, it does not distinguish whether the enhanced LTP in NON
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mice is directly caused by T treatment, or rather is an indirect effect of the increased aggression promoted

by the hormone implants.

Discussion

A prevailing view in neuroscience is that anatomically distinct neural systems mediate innate vs. learned
behaviors: the former are thought to be processed by “labelled lines,” developmentally hard-wired circuits
in evolutionarily ancient, deep subcortical structures such as the hypothalamus (13, 98, 99); in contrast,
the latter engage synaptic plasticity mechanisms in more recently evolved brain structures, such as the
neocortex and hippocampus. Reflecting this view, in the mammalian brain the vast majority of studies of
synaptic plasticity mechanisms, such as LTP and LTD, have been performed in the latter structures (as
well as in the cerebellum (100-102). Whether such mechanisms also operate in deep subcortical
structures, and if so, what types of behavioral plasticity (if any) they might subserve, has remained

unclear. However, this knowledge gap reflects an absence of evidence, more than evidence of absence.

Here we have identified and deconstructed the neural substrate and physiological mechanism
underlying a form of experience-dependent plasticity in aggression, a prototypic innate social behavior.
We show that a training paradigm that increases aggressiveness via repeated successful agonistic
encounters is correlated with, enhanced by and dependent upon, LTP operating at a glutamatergic
synapse on a population of hypothalamic Esrl* neurons that mediates innate aggressive behavior (47).
The plasticity observed at AHIPM->VMHVIES? synapses likely has both post- and pre-synaptic
components, as suggested by an increase in the AMPAR/NMDAR ratio (54-56) following aggression
training (Fig. 2J, K), and by the differential responses of VMHVIES™ neurons to trains of pre-synaptic stimuli
(103, 104) (Fig. 2L, M), respectively. Surprisingly, the form of hypothalamic LTP studied here does not
exhibit “occlusion,” phenomenon observed in studies of hippocampal or amygdalar LTP (105, 106), in
which following in vivo behavioral induction of LTP in the synaptic population of interest, the magnitude

of LTP that can be induced subsequently ex vivo is markedly decreased (Fig. 4D, K). Similarly, we do

15


https://doi.org/10.1101/2020.07.21.214619
http://creativecommons.org/licenses/by-nd/4.0/

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.214619; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

not observe the related phenomenon in which prior in vivo LTP can enhance the extent of LTD that can
be induced ex vivo in slices from such animals. The reason(s) for the failure to observe these phenomena
are not clear, and will require further studies to elucidate. There are a number of effects, however, which
could account for these observations. Firstly, it is possible that the proportion of synapses modified by
the in vivo social experience was small compared to the synapses being sampled in the slice. Another
possibility is that the synapses being assayed in the slice are a different population than the ones modified
in vivo, or lastly that new synapses were formed by the in vivo experience and they are the ones primarily
contributing to the LTP and LTD being measured in vitro. This last possibility is of particular interest,

given that - as presented in Fig. 3, an increase in spine density occurs in VMHVIES™ neurons of AGG mice.

The data on LTP presented here, blur the distinction between neural circuits mediating learned
vs. innate behaviors, and reinforce the concept of “learned innate behavior,” in which synaptic plasticity
within developmentally hardwired circuits can function to modify the strength of an instinctive behavior in
response to social experience. An example of the latter in an invertebrate is the post-mating response in
Drosophila, a form of memory in which female sexual receptivity is inhibited following mating (107-109).
Interestingly, recent studies have blurred the classic distinction between the innate and adaptive immune

systems as well (110, 111).

This idea notwithstanding, more complex forms of learning, such as classical or operant
conditioning, may utilize circuits that are parallel to those that mediate innate forms of the modified
behavior, as shown in the case of conditioned vs. unconditioned fear (112-114). In this context, it is worth
noting that mice can learn an instrumental, operant response using successful aggressive encounters as
a reinforcer (115), and that performance of this instrumental task is facilitated by optogenetic activation
of VMHvI neurons (116). The neural substrates and synaptic mechanisms underlying this operant
conditioning remain to be elucidated, although the nucleus accumbens-based reward system has been

implicated in recent studies (117).

16


https://doi.org/10.1101/2020.07.21.214619
http://creativecommons.org/licenses/by-nd/4.0/

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.214619; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Aggressiveness can be enhanced not only by repeated successful agonistic encounters, as
shown here, but also by prior mating experience (118). Recently, we showed that as little as 30 minutes
of free social interaction with a female was sufficient to transform a socially naive mouse into an AGG
mouse within 24 hrs of the interaction (119). This effect was associated with a change in the neural
representation of male vs. female conspecifics among VMHVI®™ neurons, from partially overlapping to
largely non-overlapping (119). Whether this change in neural population coding involves synaptic
plasticity within VMHUVI, or is inherited from upstream structures, such as the MeA (120), remains to be
determined. In other studies, we have shown that the effect of social isolation stress to promote
aggression in non-sexually experienced males is mediated by the neuropeptide Neurokinin B (NkB) and
its receptor Nk3R, acting in the dorso-medial hypothalamus (DMH) (121). The relationship of this form of

experience-dependent plasticity to VMHVIES™ neuronal activity is currently unknown.

Our current findings also provide insights into individual differences in the ability of genetically
identical animals to respond to “aggression training”. Firstly, we show here that several physiological
parameters in AGG mice are different from those in socially naive mice. These include elevated baseline
VMHVIE? neuron activity (Fig. 1G-J), increased spontaneous excitatory input onto VMHVIES neurons
(Fig. 2A-C), increased AMPA/NMDA ratio at AHIPM->VMHVIES™ synapses (Fig. 21-K) and altered synaptic
integration properties (Fig. L, M). By contrast, in NON mice the spontaneous inhibitory inputs to VMHvIEs?
neurons are increased, relative to socially naive mice (Fig. S1). In addition, NON mice exhibit shorter
lasting LTP and longer lasting LTD than are observed in AGG mice (Fig. 4D, G). Whether increased LTD
is sufficient to account for the failure of NON mice to respond to aggression training is not yet clear.
Another possibility, suggested by the increased spontaneous IPSCs, is that VMHvI receives stronger
inhibitory input from GABAergic neurons in NON mice. While there are very few GABAergic neurons
within VMHUVI itself (122), VMHUvI receives strong inhibitory input from the neighboring tuberal (TU) region.
It is possible that the lack of aggression in NON mice reflects potentiation of these TU GABAergic

neurons. Whether these TU neurons receive feed-forward input from VMHVI® neurons, or from another
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source, is not known. The synaptic mechanisms responsible for the lack of aggression in NON mice will

clearly require further investigation.

We also find that NON mice — unsusceptible to aggression training, have low levels of circulating
T in comparison to AGG mice, and experimental administration of supplemental T can restore the
capacity for “aggression learning” in such animals. While the permissive role of T in promoting male
aggressiveness is well-established (82, 86, 123-126), our studies provide new insight into the
neurophysiological mechanisms that may mediate this effect in the context of aggression training.
Specifically, we observe that NON animals can only express LTP in vivo following administration of
exogenous T. Although LTP can be induced optogenetically ex vivo in slices from control NON animals,
LTP in slices from T-implanted NON animals exhibited higher-amplitude and persistence. Moreover, in
AGG mice levels of T increased during aggression training. This correlation suggests either that T acts
directly to enhance LTP at this synapse, which in turn promotes aggression, or that T acts indirectly, by
promoting aggressive behavior which in turn enhances LTP (Fig. S5). Whether T directly influences
synaptic plasticity, and if so the underlying molecular mechanisms involved, as well as the mechanistic

basis of individual differences in T levels, are interesting topics for future study.

Our experiments have focused on a specific glutamatergic input to VMHVIES! neurons which have
a causal role in aggression. In addition to our finding, recent work reported that VMHuvI-projecting Vglut*
neurons in the AHIPM exhibited elevated c-fos expression following both social investigation and attack,
while chemogenectic silencing of AHIiPM neurons inhibited attack (51). VMHVIE' neurons receive inputs
from neurons in over 30 different structures (50), raising the question of whether other inputs to these
cells also display plasticity. Indeed, recently published work has identified synaptic plasticity promoted
by foot-shock stress in a medial amygdala projection that primarily targets the central part of VMH (VMHCc)
(127). Although a causal role in promoting aggression was not directly demonstrated for this input, and
the mechanism of potentiation was not established, plasticity at this synapse may regulate stress-induced

aggression (127). The present study demonstrates that AHIPM-> VMHVIES™ synapses can undergo
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Hebbian LTP, and that potentiation of these synapses occurs during social experience that enhances
offensive aggression (47, 119). Together, these data suggest that VMHvI likely provides a substrate in
which aggression plasticity can occur at multiple synaptic inputs, each of which may play distinct roles in
physiology and/or behavior. Our results also reveal striking effects of aggression training on dendritic
spine morphology among VMHVIFS neurons, although we cannot be certain whether the secondary
dendritic branches where we observe this phenomenon receive synaptic input from AHiIPM. Other recent
studies have identified structural plasticity among VMHvIPR-derived axons innervating hypothalamic
targets in females, which are mediated by changes in sex steroids during estrus (128). The present work,
together with these other studies, begins to provide a view of the acute and dynamic changes that can
occur through experience and/or hormonal modulation, in a brain node that controls innate social

behaviors.

Historically, synaptic plasticity mechanisms — and in particular LTP, have been investigated
predominantly in hippocampal circuits that mediate spatial learning (129-132), or in thalamo-amygdalar
circuits that mediate Pavlovian associative conditioning (133-136). Both systems emphasize the role of
LTP in allowing flexible neural circuits to mediate adaptive responses on fast time-scales, as expected
for the recently evolved brain regions in which they operate. By contrast, studies of the hypothalamus
have focused primarily on identifying circuits that mediate evolutionarily ancient, innate survival
behaviors, with the expectation that such circuits would be comprised predominantly of relatively stable,
hard-wired synaptic connections (13, 98, 99). Our results and other data suggest a reconsideration of
this prevailing view of hypothalamic pathways as ‘hard-wired’ neural circuits. They suggest, moreover,
that further investigation of synaptic plasticity mechanisms within neural pathways that control
evolutionarily selected, robust survival behaviors, may yield new insights into both the physiological and
hormonal regulation of such mechanisms, as well as the forms of behavioral plasticity that they ultimately

subserve.
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Materials and Methods

All experimental procedures involving the use of live animals or their tissues were carried out in
accordance with the NIH guidelines and approved by the Institutional Animal Care and Use Committee
and the Institutional Biosafety Committee at the California Institute of Technology (Caltech). Esr1°®*
knock-in mice (47) backcrossed into the C57BL/6N background (>N10) were bred at Caltech. The
Esr1¢®* knock-in mouse line is available from the Jackson Laboratory (Stock no. 017911). Heterozygous
Esr1°™* mice were used for all experiments and were genotyped by PCR analysis of tail DNA. Mice used
as residents (see five consecutive-day resident—intruder assay) were individually housed. All wild-type
mice used as intruders in resident—intruder assays and for behavioral experiments were of the
BALB/cANNCrl or Crl:CD1 (ICR) strain (Charles River Laboratories). Health status was normal for all
animals. Antibodies, compounds, and the experimental procedures with the coordinates of all injection

sites are described in SI Appendix.

Data Availability. . All data discussed in the paper are available in the main text and SI Appendix. We

used standard MATLAB functions and publicly available software indicated in the manuscript for analysis.
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Fig. 1. Aggression learning alters baseline activity dynamics in VMHvI®™ neurons.

(A) Schematic of the experimental design - five consecutive day resident-intruder test (5cdRl), with three

follow-up dates, used for the study of the behavioral effect of aggression training.

(B) Summary indicative of the number of male animals exhibiting the two distinct aggression phenotypes

(n=138).

(C) Quantification of the cumulative duration (in %) of aggression per trial (n=15 AGG mice per group,
Kruskal-Wallis one-way ANOVA with uncorrected Dunn’s post hoc test, P < 0.0001 between day 1 and
day 3 of the 5cdRI, P = 0.4819 between day 4 and day 5 of the 5¢cdRI, P = 0.0149 between day 1 and

day 30).

(D) Quantification of attack latency (in seconds) of aggression per trial (n=15 AGG mice per group,

Kruskal-Wallis one-way ANOVA with uncorrected Dunn’s post hoc test, P < 0.0001 between day 1 and
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day 3 of the 5cdRI, P = 0.5602 between day 4 and day 5 of the 5¢cdRI, P = 0.2184 between day 1 and

day 30).

(E) Quantification of average attack episode duration (in seconds) per trial (n=15 AGG mice per group,
Kruskal-Wallis one-way ANOVA with uncorrected Dunn’s post hoc test, P < 0.0001 between day 1 and
day 3 of the 5cdRI, P = 0.3326 between day 4 and day 5 of the 5¢cdRI, P = 0.0209 between day 1 and

day 30).

(F) Behavior raster plots from AGG and NON mice, at different days of the 5cdRI test.

(G) Baseline Ca?" activity of VMHVIES neurons recorded ex vivo, in brain slices of socially naive,

aggressive (AGG), and non-aggressive (NON) males.

(H) Quantification of active cells/slice (n=16-19 brain slices, collected from n=7-9 mice, one-way ANOVA
with Dunnett’s post hoc test, P = 0.0002 between socially naive and AGG mouse brain slices, P = 0.6358

between socially naive and NON mouse brain slices).

() Quantification of Ca?* spike frequency per cell (n=16-19 brain slices, collected from n=7-9 mice,
Kruskal-Wallis one-way ANOVA with Dunn’s post hoc test, P < 0.0001 between socially naive and AGG

mice, P = 0.3331 between socially naive and NON mice).

(J) Quantification of Ca?* spike amplitude (n=16-19 brain slices, collected from n=7-9 mice, Kruskal-Wallis
one-way ANOVA with Dunn’s post hoc test, P <0.0001 between socially naive and AGG mice, P <0.0001

between socially naive and NON mice).

ns; not significant, *P < 0.05, *P < 0.001, ***P < 0.0001. In box-and-whisker plots, center lines indicate
medians, box edges represent the interquartile range, and whiskers extend to the minimal and maximal

values.
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Fig. 2. AHIPM=>VMHUVI®" synapses become potentiated following aggression training.

(A) Representative recordings of spontaneous excitatory post-synaptic currents (SEPSCs) from VMHv|Es?

neurons, from saocially naive, AGG and NON mice.

(B) Left — cumulative frequency distribution plot of SEPSC IEI in voltage-clamp recordings collected from
VMHVIE™ neurons from socially naive, AGG and NON mice (n=14-18 VMHVIEs"! neuron recording per
group, collected from 8-10 mice per group, Kolmogorov-Smirnov test, P < 0.0001 between socially naive
and AGG mice, P = 0.3454 between socially naive and NON mice). Right — comparison of SEPSC
frequency from voltage-clamp recordings collected from VMHVIES™ neurons from socially naive, AGG and
NON mice (n=14-18 VMHVI®" neuron recording per group, collected from 8-10 mice per group, one-way
ANOVA with Dunnett’s post hoc test, P < 0.0001 between socially naive and AGG mouse brain slices, P

= 0.2576 between socially naive and NON mouse brain slices).
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(C) Left — cumulative frequency distribution plot of SEPSC amplitude in voltage-clamp recordings
collected from VMHVI®™ neurons from socially naive, AGG and NON mice (n=14-18 VMHVI®" neuron
recording per group, collected from 8-10 mice per group, Kolmogorov-Smirnov test, P < 0.0001 between
socially naive and AGG mice, P < 0.0001 between socially naive and NON mice). Right — comparison of
SEPSC frequency from voltage-clamp recordings collected from VMHVIES™ neurons from socially naive,
AGG and NON mice (n=14-18 VMHVIES neuron recording per group, collected from 8-10 mice per group,
Kruskal-Wallis one-way ANOVA with uncorrected Dunn’s post hoc test, P = 0.0041 between socially

naive and AGG mouse brain slices, P = 0.6712 between socially naive and NON mouse brain slices).

(D) Left — schematic of the experimental design used for optogenetic studies of aggression following

photoactivation of AHIPM, and right — confocal image indicative of Chronos-eYFP expression in AHIPM.

(E) Schematic illustration of the experimental protocol used in AHIPMC"ns stimulation experiments.

(F) Sample behavior raster plots with in vivo optogenetics and social behavior in the resident intruder (RI)

assay, of socially naive and AGG mice.

(G) Quantification of attack latency, in the first and sixth Rl trial (n=8 mice per group, first RI, two-sided
Mann—-Whitney U test, P = 0.0033 between YFP and Chronos groups, sixth RI, two-tailed unpaired t-test,

P = 0.0022 between YFP and Chronos groups).

(H) Quantification of attack duration, in the first and sixth RI trial (n=8 mice per group, first RI, two-sided
Mann—-Whitney U test, P = 0.0079 between YFP and Chronos groups, sixth RI, P = 0.0011 between YFP

and Chronos groups).

(I) Top — schematic of the experimental design used for the study of the AHIPMIVMHvI synapse and

bottom — confocal image indicative of AHiIPM originating processes in VMHvI.
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(J) Identification of the AHIPM->VMHvI synapse as purely excitatory, and extraction of the AMPA to
NMDA ratio in socially naive, AGG and NON mice (average of n=13-14 neuron recordings from 8-9

socially naive, AGG and NON mice respectively).

(K) Quantification of the AMPA/NMDA ratio (n=13-14, Kruskal-Wallis one-way ANOVA with Dunn’s post
hoc test, P = 0.0005 between socially naive and AGG mice, P > 0.9999 between socially naive and NON

mice).

(L) Synaptic integration in VMHVIES™? neurons from socially naive, AGG and NON mice (average traces

of n=7-10 neuron recordings from 7-9 mice respectively).

(M) Quantification of the five optically-evoked excitatory post-synaptic potentials (0EPSP) peak amplitude
presented in (O). Top - oEPSP amplitude quantification in VMHVIES'! neurons recorded from socially naive
mice (n=10 neurons from 9 mice, Friedman one-way ANOVA with Dunn’s post hoc test, P > 0.9999
between 15 and 2" pulse, P = 0.3587 between 1%t and 3™ pulse, P = 0.0028 between 1% and 4™ pulse,
and P = 0.0009 between 1%t and 5th pulse). Middle - oEPSP amplitude quantification in VMHVIES™ neurons
recorded from AGG mice (n=10 neurons from 9 mice, one-way ANOVA with Dunnett’s post hoc test, P =
0.2935 between 1%t and 2™ pulse, P < 0.0001 between 1%t and 3" pulse, P < 0.0001 between 15t and 4™
pulse, and P < 0.0001 between 1%t and 5th pulse). Bottom - oEPSP amplitude quantification in VMHvIEs
neurons recorded from NON mice (n=7 neurons from 7 mice, one-way ANOVA with Dunnett’s post hoc
test, P = 0.9865 between 1% and 2" pulse, P = 0.5704 between 1%t and 3" pulse, P = 0.0751 between 1°t

and 4" pulse, and P = 0.9803 between 1%t and 5th pulse).

ns; not significant, **P < 0.01, ***P < 0.001, ***P < 0.0001. In box-and-whisker plots, center lines indicate
medians, box edges represent the interquartile range, and whiskers extend to the minimal and maximal

values.
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Fig. 3. Increased dendritic spine complexity in VMHvI®™ neurons following aggression training.

(A) Maximum projection confocal image of a VMHVIF™ neuron from a socially naive mouse recorded ex

vivo, and filled with Neurobiotin.

(B) 3D rendering of a second order dendritic segment Airyscan image from the neuron presented in (A).

(C) Overlay of reconstruction data generated in Imaris against 3D rendering for the dendritic segment

presented in (B).

(D) Reconstructed dendritic segment of a VMHVIES™ neuron from a socially naive mouse, with color coding

for the dendrite and spines.
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(E) Maximum projection confocal image of a VMHVIES! neuron from an aggressive (AGG) mouse

recorded ex vivo, and filled with Neurobiotin.

(F) 3D rendering of a second order dendritic segment Airyscan image from the neuron presented in (E).

(G) Overlay of reconstruction data generated in Imaris against 3D rendering for the dendritic segment

presented in (F).

(H) Reconstructed dendritic segment of a VMHVIES™ neuron from an AGG mouse, with color coding for

the dendrite and spines.

(I) Maximum projection confocal image of a VMHvI®™ neuron from a non-aggressive (NON) mouse

recorded ex vivo, and filled with Neurobiotin.

(J) 3D rendering of a second order dendritic segment Airyscan image from the neuron presented in (I).

(K) Overlay of reconstruction data generated in Imaris against 3D rendering for the dendritic segment

presented in (J).

(L) Reconstructed dendritic segment of a VMHVIE™ neuron from a NON mouse, with color coding for the

dendrite and spines.

(M) Quantification of spine density in second order dendrites of VMHVIES neurons from socially naive,
AGG and NON mice (n=3-5 cells per group, n=1 cell/brain slice/animal, n=23-26 segments analyzed per
group, Kruskal-Wallis one-way ANOVA with Dunn’s post hoc test, P < 0.0001 between socially naive and

AGG mice, P = 0.0432 between socially naive and NON mice).

(N) Quantification of branching points in second order dendrites of VMHVI®S"! neurons from socially naive,
AGG and NON mice (n=23-26 segments analyzed per group, Kruskal-Wallis one-way ANOVA with
Dunn’s post hoc test, P < 0.0001 between socially naive and AGG mice, P = 0.9969 between socially

naive and NON mice).
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(O) Quantification of spine volume in second order dendrites of VMHVIES! neurons from socially naive,
AGG and NON mice (n=23-26 segments analyzed per group, Kruskal-Wallis one-way ANOVA with
Dunn’s post hoc test, P < 0.0001 between socially naive and AGG mice, P = 0.4640 between socially

naive and NON mice).

(P) Frequency distribution plot of spine area, of spines present in second order dendrites in VMHvIEs
neurons from socially naive, AGG and NON mice (n=3-5 cells per group, n = 1 cell/brain slice/animal,

n=402-2365 spines per group).

(Q) Frequency distribution plot of spine length, of spines present in second order dendrites in VMHv|Esr

neurons from socially naive, AGG and NON mice (n=402-2365 spines per group).

(R) Frequency distribution plot of spine mean diameter, of spines present in second order dendrites in

VMHVIES™ neurons from socially naive, AGG and NON mice (n=402-2365 spines per group).

ns; not significant, *P < 0.05, ***P < 0.0001. In box-and-whisker plots, center lines indicate medians, box

edges represent the interquartile range, and whiskers extend to the minimal and maximal values.
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Fig. 4. Induction of LTP and LTD at AHiIiPM->VMHVI&" synapses ex vivo and in vivo.

(A) Schematic of the experimental design used to study the induction of LTP and LTD ex vivo in socially

naive, aggressive (AGG) and non-aggressive (NON) mice.

(B) Hlustration of the experimental protocol used to induce LTP in the AHIPM->VMHvI synapse.
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(C) Left — heat map illustrating the magnitude of LTP induction in all recorded VMHVIE! neurons. Middle
— average currentimmediately prior to and following the induction of LTP (middle, n=28 neurons collected
from the three groups — socially naive, AGG and NON, with n=6-8 mice per group, light color envelope is
the standard error). Right — quantification of the optically evoked excitatory post-synaptic current
(oEPSC), prior to and following the induction of LTP (pre- vs post-pairing, n=28 neurons collected from
the three groups — socially naive, AGG and NON, with n=6-8 mice per group, two-tailed Wilcoxon signed-

rank test, P < 0.0001).

(D) Identification of differences in amplitude and persistence of LTP in socially naive, AGG, and NON
mice (n=9 neurons for 6 socially naive mice, n=10 neurons from 8 AGGs, and n=9 neurons from 6 NONs,
Kolmogorov-Smirnov test for curve comparison, P = 0.0183 between socially naive and AGG mice, P <

0.0001 between socially naive and NON mice, and P < 0.0001 between AGG and NON mice).

(E) lllustration of the experimental protocol used to induce LTD in the AHIPM->VMHvI synapse.

(F) Left — heat map illustrating the magnitude of LTD induction in all recorded VMHVIES neurons. Middle
— average currentimmediately prior to and following the induction of LTD (middle, n=33 neurons collected
from the three groups — socially naive, AGG and NON, with n=8 mice per group, light color envelope is
the standard error). Right — quantification of the oEPSC, prior to and following the induction of LTD (pre-
vs post-pairing, n=33 neurons collected from the three groups — socially naive, AGG and NON, with n=8

mice per group, two-tailed Wilcoxon signed-rank test, P < 0.0001).

(G) LTD dynamics in the three groups (n=12 neurons for 8 socially naive mice, n=10 neurons from 8
AGGs, and n=11 neurons from 8 NONs, Kolmogorov-Smirnov test for curve comparison, P = 0.0002
between socially naive and AGG mice, P > 0.9999 between socially naive and NON mice, and P = 0.0008

between AGG and NON mice).

(H) Schematic of the experimental design used to study the induction of LTP and LTD in vivo in socially

naive mice.
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() Schematic illustration of the target coordinates of the optrode used to record local field potentials in

VMHuVI.

(J) Left — representative confocal image of Chronos-eYFP expression in AHIPM. Middle - representative
confocal image of the silicon probe tract targeted to VMHvI. Right — high magnification confocal image of

VMHUVL.

(K) Nlustration of the experimental design used to induce LTP or LTD in the AHIPM—->VMHvI synapse in

Vivo.

(L) Left — plot of average of four experiments from four mice of field EPSP slope (normalized to baseline
period) before and after optically-induced LTP (0iLTP). Middle — in vivo average field response prior to
and following the induction of LTP. Right — quantification of optically induced field EPSPs (fEPSP), prior
to and following the induction of LTP (pre- vs post-pairing, n=4 mice per group, two-tailed paired t-test, P

= 0.0283).

(M) Left — plot of average of four experiments from four mice of field EPSP slope (normalized to baseline
period) before and after optically-induced LTD (oiLTD). Middle — in vivo average field response prior to
and following the induction of LTD. Right — quantification of optically induced field EPSPs (fEPSP), prior
to and following the induction of LTD (pre- vs post-pairing, n=4 mice per group, two-tailed paired t-test,

P = 0.0007).

(N) lllustration of the experimental design used to test the behavioral induction of LTP.

(O) Left — plot of average of four experiments from four mice of field EPSP slope (normalized to baseline
period) before and after behaviorally-induced LTP (biLTP). Middle — in vivo average field response prior
to and following the behavioral induction of LTP. Right — quantification of optically induced field EPSPs
(fEPSP), prior to and following social behavior experience in a socially naive mouse (pre- vs post-pairing,

n=4 mice per group, two-tailed paired t-test, P = 0.0071).
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(P) lllustration of the behaviors expressed in the resident-intruder assay from socially naive mice used

for the in vivo study of hypothalamic LTP.

ns; not significant, *P < 0.05, **P < 0.01, **P < 0.001, ****P < 0.0001. In box-and-whisker plots, center
lines indicate medians, box edges represent the interquartile range, and whiskers extend to the minimal

and maximal values.
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Fig. 5. Optogenetic induction of LTP or LTD at AHIPM->VMHvVI®™ synapses in vivo facilitates or

abolishes, respectively, the effect of aggression training.

(A) Left- representative confocal image and schematic indicative of ChrimsonR expression in VMHvIEs™?
neurons, eYFP terminals of the AHIPM->VMHuI projection, and the optic fiber tract terminating above
VMHUVI. Right - representative confocal image and schematic indicative of Chronos-eYFP expression in

AHIPM.
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(B) Schematic of the experimental design used to identify whether LTP and LTD have an impact on

aggression training.

(C) Weight measurements of the mice which were used in the protocol; specifically, the Esr1-Cre mice
were used as residents, the BALB/c as intruders, and the CD1 as novel conspecifics in a novel/neutral
arena (n=32-64 mice per group, one-way ANOVA with Tukey’s test, P < 0.0001 between Esr1-Cre and

BALB/c mice, P < 0.0001 between Esrl-Cre and CD1 mice).

(D) Quantification of aggression levels expressed during a trial throughout the 5 consecutive day RI test

(5cdRl) in the YFP (control), LTP and LTD groups.

(E) Quantification of aggression levels on the first day of the 5¢cdRI test (n=8 mice per group, two-tailed

unpaired t-test, P = 0.1049 between YFP and LTP groups, P = 0.2304 between YFP and LTD groups).

(F) Quantification of aggression levels on the third day of the 5cdRlI test (n=8 mice per group, two-tailed
unpaired t-test, P = 0.0162 [observed power=0.989, Cohen’s D=0.7979, difference between
means=9.13+3.34%, 95% CI| =1.966 to 16.29] between YFP [lower 95% CI=6.452, higher 95% CI=16.06]

and LTP [lower 95% CI=14.12, higher 95% CI=26.65] groups, P =0.0017 between YFP and LTD groups).

(G) Quantification of aggression levels on the fifth day of the 5cdRlI test (n=8 mice per group, two-tailed

unpaired t-test, P = 0.0777 between YFP and LTP groups, P < 0.0001 between YFP and LTD groups).

(H) Quantification of attack latency throughout the 5cdRlI in the YFP (control), LTP and LTD groups.

() Quantification of attack latency on the first day of the 5cdRlI test (n=8 mice per group, two-tailed

unpaired t-test, P = 0.1406 between YFP and LTP groups, P = 0.3688 between YFP and LTD groups).

(J) Quantification of attack latency on the third day of the 5cdRlI test (n=8 mice per group, two-sided
Mann-Whitney U test, P = 0.0415 [observed power=0.999, Cohen’s D=0.6072, difference between

means=159.40+90.79 sec, 95% CIl =-378.8 to 60.04] between YFP [lower 95% CI=-21.05, higher 95%
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Cl=407.0] and LTP [lower 95% Cl=16.54, higher 95% CI=50.56] groups, P = 0.0019 between YFP and

LTD groups).

(K) Quantification of attack latency on the fifth day of the 5cdRI test (n=8 mice per group, two-sided
Mann-Whitney U test, P = 0.5054 between YFP and LTP groups, two-tailed unpaired t-test, P = 0.0052

between YFP and LTD groups).

(L) Representative behavior raster plots of YFP, LTP and LTD mouse behavior in novel arena towards a

novel CD1 conspecific.

(M) Quantification of aggression levels on the sixth day against a CD1 male (n=8 mice per group, two-
tailed unpaired t-test, P = 0.0387 [observed power=0.999, Cohen’s D=0.8980, difference between
means=9.816+3.864%, 95% CI=0.6784 to 18.95] between YFP [lower 95% CI=0.8293, higher 95%
Cl=5.768] and LTP [lower 95% CI=5.190, higher 95% CI=21.04] groups, two-sided Mann—Whitney U test,
P =0.0295 [observed power=0.907, Cohen’s D=0.7357, difference between means=2.161+1.069%, 95%
Cl=-4.616 to 0.2938] between YFP [lower 95% CI=0.1860, higher 95% CI=5.052] and LTD groups [lower

95% ClI=-0.2284, higher 95% CI =1.144])).

(N) Quantification of attack latency on the sixth day against a CD1 male (n=8 mice per group, two-tailed
unpaired t-test, P = 0.0328 [observed power=0.985, Cohen’s D=1.0431, difference between
means=227.00+82.23 sec, 95% CIl =25.81 to 428.2] between YFP [lower 95% CI=67.01, higher 95%
Cl=477.9] and LTP groups [lower 95% Cl=4.196, higher 95% CI=86.63], two-sided Mann—Whitney U test,

P > 0.9999 between YFP and LTD groups).

(O) Quantification of close investigation on the sixth day against a CD1 male (n=8 mice per group, two-

tailed unpaired t-test, P = 0.6973 between YFP and LTP groups, P = 0.6158 between YFP and LTD

groups).
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1038  ns; not significant, *P < 0.05, **P < 0.01, **P < 0.001, ***P < 0.0001. In box-and-whisker plots, center

1039 lines indicate medians, box edges represent the interquartile range, and whiskers extend to the minimal

1040 and maximal values.
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Fig. 6. Testosterone administration leads to the expression of hypothalamic LTP and aggression

in previously non-aggressive males.

(A) Schematic of the experimental design used to identify aggressive (AGG) and non-aggressive (NON)

males, from which tails blood samples were collected for quantification of serum testosterone levels.

(B) Serum testosterone levels in NON vs AGG mice prior to any aggression experience (n=24-36 samples
per group, two-sided Mann—-Whitney U test, P = 0.0203 between NON and AGG groups). Mice were
assigned as NON or AGG, according to whether they expressed aggression on the 1% day of the 5cdRI

test.

44


https://doi.org/10.1101/2020.07.21.214619
http://creativecommons.org/licenses/by-nd/4.0/

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.214619; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(C) Serum testosterone levels in NON vs AGG mice after completion of the 5cdRlI test (n=14-46 samples
per group, two-tailed unpaired t-test, P < 0.0001 between NON and AGG groups). Mice that did not
express any aggression/attack behavior throughout the 5cdRlI test they were assigned to the NON group.

All other mice they were included in the AGG group.

(D) Left — Quantification of serum testosterone levels in NON mice throughout the 5cdRlI test (n=14-24
samples per group, Kruskal-Wallis one-way ANOVA with Dunn’s post hoc test, P > 0.9999 between prior
to 5¢cdRI and following day 3, P > 0.9999 between prior to 5¢cdRI and following day 5, and P > 0.9999
between following day 3 and following day 5 groups). Right — Quantification of serum testosterone levels
in AGG mice throughout the 5¢cdRI test (n=36-46 samples per group, one-way ANOVA with Tukey’s test,
P < 0.0001 between prior to 5¢cdRI and following day 3, P < 0.0001 between prior to 5cdRI and following

day 5, and P = 0.7060 between following day 3 and following day 5 groups).

(E) Schematic of the experimental design used to identify NON mice, and perform subcutaneous

testosterone mini-pump implantation.

(F) Serum testosterone levels in control vs. testosterone-treated mice (n=6 mice per group, two-tailed

unpaired t-test, P < 0.0001 between vehicle and testosterone).

(G) Representative behavior raster plots of vehicle vs testosterone-treated mice.

(H) Quantification of the number of mice that switched aggression phenotype following vehicle vs
testosterone administration (n=0/6 in the vehicle-treated group vs n=6/6 in the testosterone treated group,

two-sided Mann—Whitney U test, P = 0.0022 between vehicle and testosterone).

() Quantification of attack duration (n=6 mice per group, two-sided Mann-Whitney U test, P = 0.0022

between vehicle and testosterone).

(J) Quantification of attack frequency (# attacks/trial; n=6 mice per group, two-sided Mann-Whitney U

test, P = 0.0022 between vehicle and testosterone).
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(K) Schematic of the experimental design used to study the induction and modulation of LTP by
testosterone in the AHIPM—>VMHUVI synapse in brain slices from NON mice. Note that slices were taken

from animals that received T injections, but no behavioral training or other social experience.

(L) Schematic of the LTP induction protocol, utilizing simultaneous photostimulation of the AHIPM
terminals in VMHvI through the opsin Chronos and depolarization of the VMHVIFs"* neuron through voltage

clamp at -30 mV.

(M) Heat map illustrating the magnitude of LTP induction in VMHVIES® neurons from vehicle- vs

testosterone-treated mice.

(N) Average current immediately prior to and following the induction of LTP in vehicle vs testosterone

conditions (light color envelope is the standard error).

(O) Quantification of the optically evoked excitatory post-synaptic current (cEPSC), prior to and following
the induction of LTP in vehicle vs testosterone conditions (pre-[lower 95% Cl= 0.9508, higher 95%
CI=1.084] vs post-[lower 95% CI=1.274, higher 95% CI=1.786] pairing in vehicle conditions, n=5 cells
from 3 mice, two-tailed paired t-test, P = 0.0038 [observed power=0.992, Cohen’s D=2.704, difference
between means=0.5124+0.0847, 95% CI=0.2771 to 0.7478], pre-[lower 95% CI=0.9349, higher 95%
Cl=1.120] vs post-[lower 95% CI=1.456, higher 95% CI=3.334] pairing in testosterone conditions, n=4
cells from 3 mice, two-tailed paired t-test, P = 0.0209 [observed power=0.889, Cohen’s D=2.232,
difference between means=1.368+0.3063, 95% CI=0.3926 to 2.342], post-pairing in vehicle [lower 95%
Cl=1.274, higher 95% CI=1.786] vs testosterone [lower 95% CI=1.456, higher 95% CI=3.334] conditions,
n=4-5 cells from 6 mice, two-tailed unpaired t-test, P = 0.0174 [observed power=0.932, Cohen’s

D=0.6388, difference between means=0.8652+0.2974, 95% CI=0.2044 to 1.526]).

(P) Schematic of the experimental design used to trigger and record behaviorally induced LTP in vivo in

NONSs.
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(Q) Field EPSP amplitude (fEPSP) over time, prior to and following social behavior in the resident intruder

assay, in vehicle- vs testosterone-treated NON mice (average fEPSP from n=3 mice per group).

(R) Average fEPSP amplitude immediately prior to and following the expression of social behavior in the

resident intruder assay, in vehicle- vs testosterone-treated NON mice.

(S) Quantification of fEPSP amplitude, prior to and following the induction of LTP in vehicle vs
testosterone conditions (pre-[lower 95% CI1=1.027, higher 95% Cl=1.123] vs post-[lower 95% CI=0.7907,
higher 95% Cl=1.143] pairing in vehicle conditions, n=3 mice, two-tailed paired t-test, P = 0.1020
[observed power=0.999, Cohen’s D=1.6667, difference between means=0.1081+0.0374, 95% Cl=-
0.2692 to 0.05303], pre-[lower 95% CI=0.7055, higher 95% CI=1.209] vs post-[lower 95% CI=1.027,
higher 95% CI=2.012] pairing in testosterone conditions, n=3 mice, two-tailed paired t-test, P = 0.0098
[observed power=0.786, Cohen’s D=5.7787, difference between means=0.5625+0.0562, 95% CI1=0.3207

to 0.8043]).

(T) Representative behavior raster plot of the same mouse treated with vehicle and 8 days after with

testosterone and used for in vivo electrophysiology experiments.

ns; not significant, *P < 0.05, **P < 0.01, ***P < 0.0001. In box-and-whisker plots, center lines indicate
medians, box edges represent the interquartile range, and whiskers extend to the minimal and maximal

values. In bar graphs, data are expressed as mean + s.e.m.
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Supplementary Information Text
Extended materials and methods

Animals. All mice were housed in ventilated micro-isolator cages in a temperature-controlled environment (median
temperature 23 °C), under a reversed 12h dark-light cycle, and had ad libitum access to food and water. Mouse

cages were changed weekly on a fixed day on which experiments were not performed.

Brain slice electrophysiology. Acute mouse brain slices were prepared. Slices were cut on a vibratome (Leica
VT1000S) to 300 um thickness and continuously perfused with oxygenated aCSF containing (in millimolar): NacCl
(127), KCI (2.0), NaH2POa4 (1.2), NaHCOs (26), MgCl2 (1.3), CaClz (2.4), and D-glucose (10). See also Table S1.
Whole-cell current- and voltage-clamp recordings were performed with micropipettes filled with intracellular solution
containing (in millimolar), K-gluconate (140), KCI (10), HEPES (10), EGTA (10), and Na2ATP (2) or Cesium
methanesulfonate (140), KCI (10), HEPES (10), EGTA (10), and Na2ATP (2) (pH 7.3 with KOH). Recordings were
performed using a Multiclamp 700B amplifier, a DigiData 1440 digitizer, and pClamp 11 software (Molecular
Devices). Slow and fast capacitative components were semi-automatically compensated. Access resistance was
monitored throughout the experiments, and neurons in which the series resistance exceeded 15 MQ or changed
220% were excluded from the statistics. The liquid junction potential was 9.7 mV and not compensated. The
recorded current was sampled at 20 kHz. Baseline recordings of EPSCs, IPSCs and optogenetically-evoked
synaptic currents were performed in normal aCSF conditions and in the absence of GABA and NMDA receptor
blockers. Spontaneous excitatory currents were sampled at the reversal of ClI- (VhoLo=-70 mV), and spontaneous
inhibitory currents were sampled at the reversal of fast excitatory neurotransmission (Vroo=0 mV). All recordings
were performed at near-physiological temperature (33+1°C). Reagents used in slice electrophysiology experiments;
Neurobiotin™ tracer (Vector laboratories) was used in combination with Streptavidin conjugated to Alexa Fluor 647.
MATLAB and OriginPro9 were used for electrophysiological data analysis. CNQX (10 uM), D-AP5 (25 uyM), TTX
(500 nM), and 4-AP (100 mM) were bath applied to block excitatory transmission and to test if optogenetically
evoked responses are monosynaptic (137). All drugs were pre-applied for 5 min in the slice chamber prior to data

acquisition.

Brain slice Ca?" imaging. The spontaneous activity of mouse VMHvVIEs™ neurons was monitored by imaging

fluorescence changes of the [GCaMP7s biosensor, using a CCD camera (Evolve® 512, Photometrics), mounted on
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an Olympus BX51WI microscope. Recordings were 5 min in duration. As a subpopulation of VMHVIES? neurons
expresses T-type Ca?* channels (unpublished data), the Ca?* transients reported in Fig. 1 likely reflect both action
potentials and subthreshold synaptic potentials. A 60x water-dipping objective was used to focus on VMHvI. Ca?*
imaging analysis was performed using the MIN1PIPE one-photon based calcium imaging signal extraction pipeline

(138), in combination with custom-written MATLAB routines.

Cell filling and reconstruction. Mouse Esrl* VMHvI neurons were recorded in whole-cell mode with intracellular
pipette solution as above, with the addition of 0.2% neurobiotin. After recording, slices were placed in fixative (4%
paraformaldehyde/0.16% picric acid), washed in PBS and incubated at 4°C for 72h in a solution containing
streptavidin conjugated to Alexa Fluor 647. After extensive washing, slices were mounted with 2.5% DABCO in
glycerol. VMHvVIEs™ neuron identity of all filled cells was confirmed with colocalization studies of viral-induced

tdTomato expression.

Ex vivo optogenetics. Photostimulation during slice whole-cell recordings was performed via a 3.4 watt 535 nm
LED mounted on the microscope fluorescence light source and delivered through the 60X objective’s lens.
Photostimulation was controlled via the analog outputs of a DigiData 1440A, enabling control over the duration and
intensity. The photostimulation diameter through the objective lens was ~310 um with illumination intensity typically

scaled to 0.35 mW/mm?.

In vivo optogenetics. Subjects were coupled via a ferrule patch cord to a ferrule on the head of the mouse using
a zirconia split sleeve (Doric Lenses). Ferrules and fiber-optic patch cords were purchased from Thorlabs and Doric
Lenses, respectively. The optical fiber was connected to THORLABS fiber-coupled LED (M530F2, 9.6 mW) via a
fiber-optic rotary joint (FRJ_1x1 FC-FC, Doric Lenses) to avoid twisting of the cable caused by the animal’s
movement. Prior to a testing session, following the coupling of the patch cords with the optic fiber ferrules, Esr1¢re/*
animals were given 10 min to acclimate in their home cage in the absence of an intruder. The frequency and duration
of photostimulation were controlled using the programmable train generator Pulse Pal (139). Light power was
controlled by dialing an analog knob on the LED driver (T-Cube™ LED Driver with Trigger Mode, Thorlabs,
LEDD1B). Light power was measured from the tip of the ferrule in the patch cord at different laser output settings,
using an optical power energy meter and a photodiode power sensor (Thorlabs, PM100D, and S130VC). Light

power was dialed at 0.5 mW at the fiber tip. Upon identification of the fiber placement coordinates in brain tissue
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slides, irradiance (light intensity) was calculated using the brain tissue light transmission calculator based on

(http://www.stanford.edu/group/dlab/cgi-bin/graph/chart.php) using laser power measured at the tip and the

distance from the tip to the target brain region measured by histology. Animals showing no detectable viral

expression in the target region and/or ectopic fiber placement were excluded from the analysis.

In vivo electrophysiology. In vivo electrophysiology recordings were performed in freely moving mice, using
chronic silicon probe implants. All extracellular recordings were conducted in the left VMHvI, and all mice included
in the present study were validated using the following criteria: identification of the lipophilic dye (DiD) tract targeting
VMHuI, phototagging of VMHVIES neurons, and photostimulation-evoked low-latency attack against a conspecific
through optrode mediated VMHVIEs™ neuron photoactivation. Recordings were performed using an optrode based
on the A1x32-Poly2-10mm-50s-177 NeuroNexus probe and a 100 um optic fiber placed along the probe’s shank
terminating 50 ym above the probe’s first recording sites. Photostimulation was delivered using fiber-coupled
Thorlabs LEDs (M530F2, 9.6 mW for LTP/LTD studies, and M617F2, 13.2 mW for phototagging), and light power
was dialed at 0.33 mW at the optrode’s fiber tip. The probe was implanted 200 um above the intended recording
site, and using the NeuroNexus OH32LP oDrive was lowered over a period of four days to the target coordinates
(lowering by 50 uym/day). Only channels that showed photo-responses in the local field potential were used for LFP
analysis. Recordings were performed using the Open Ephys acquisition board with a sampling rate of 30 kHz, the
Open Ephys I/0 board, and the Open Ephys GUI (140). The LTP signal was obtained by applying low pass-filtering

with a cut-off at 100 Hz on the raw voltage traces.

Immunohistochemistry. Mice were anesthetized with ketamine (KetaVed, VEDCO) and xylazine (AnaSed, NDC
59399-110-20), then transcardially perfused with 20 mL of ice-cold fixative. Whole brains were dissected, immersed
in ice-cold fixative for 90 min then stored in 0.1M PBS (pH 7.4) containing 20% sucrose, 0.02% bacitracin and
0.01% sodium azide for three days, before freezing with dry ice. Coronal sections were cut at a thickness of 14 ym
on a cryostat (Microm, Walldorf) and thaw-mounted onto gelatine-coated glass slides. For GFP staining, brain
sections were incubated overnight at 4°C using a chicken anti-GFP antibody (Aves Labs, Inc., GFP-1010) at 1:500
dilution. For tdTomato staining brain sections were incubated overnight at 4°C using a rabbit anti-DsRed antibody
(Takara, 632392) at 1:500 dilution. Primary antibody incubation was followed by Alexa-488-conjugated goat anti-

chicken secondary antisera (1:500; Invitrogen), and/or Alexa-568-conjugated donkey anti-rabbit secondary antisera
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(1:500; Invitrogen). DAPI solution (Img/mL) was used at 1:10000 dilution. For further details on reagents, see also

Table S1.

Confocal microscopy. Brain slices were imaged by confocal microscopy (Zeiss, LSM 800). Brain areas were

determined according to their anatomy using Paxinos and Franklin Brain Atlas (141).

For cell reconstructions, each entire neurobiotin-filled neuron was acquired at 63X (NA = 1.4), 1 um step size using
a Zeiss LSM880 confocal microscope. Imaris 9.3 (Bitplane) was used to visualize the topology of the dendritic tree
and the centrifugal branch ordering method was chosen to sort dendrites, assigning order 1 to the root. 2" order
dendrites were then selected for further imaging acquisition to perform spine quantification. 70-90 um-long dendritic
segments were acquired at 63X (NA = 1.43), 0.1 um step size and 0.06x0.06 pixel-size using Airy-scan detector at

the LSM880. Two segments were acquired for dendrites longer that 200 pm.

For spine quantification, images of dendritic segments were rendered in Imaris using the Blend algorithm and the
Filament module was used to reconstruct dendrites and spines. Specifically, the auto-path method was chosen and
thinnest spine diameter (between 1.5 and 2 um), maximal distance from the dendrite (between 3 and 8 um) and
fluorescence intensity threshold were defined in every single dendrite to detect spines. The statistics module in
Imaris was used to extract spine density values. Three to six segments per neuron were quantified and values were

averaged.

Tail-tip whole blood sampling. Whole blood samples of 40-70 uL were collected from the lateral tail vein of
restrained mice (142). Only blood samples acquired within 2 min post-restraining were used for hormone
measurements, and the subjects were then returned to their home cage. Briefly, the rodent’s tail was immersed for
30 sec in 40°C water to dilate the tail blood vessels. Immediately after, a 23G needle was used to puncture the
lateral tail vein, and whole blood was collected. Bleeding was stopped via applying gentle pressure to the tail at the
level of the puncture with surgical cleaning tissue, and 2% chlorhexidine antiseptic solution was used for tail
disinfection at the end of the procedure. Blood samples were refrigerated at 4°C for 30 min and then centrifuged at
4°C at 2000 RCF. Following centrifugation, serum was collected and was frozen at -80°C for a maximal period of 2
months prior to performing ELISA measurements. All blood samples were acquired during the dark phase of the

12h/12h light/dark cycle. For further details on reagents, see also Table S1.
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Testosterone ELISA. 96-well plates were used in a ready-to-use kit for testosterone ELISA (R&D systems —
Catalog number KGE010). Linear regression was used to fit the optical densities for the standard curve vs the
concentration. The standard curve range for corticosterone was 300 to 100000 pg/mL. Concentrations were
calculated from the optical density at 450 nm of each sample. Appropriate sample dilutions were carried out to
maintain detection in the linear part of the standard curve and typically involved 1 to 10 for mouse serum samples.
Data acquired from the performed ELISAs are presented as absolute values. Differences between groups were

identified by Student’s t-test or ANOVA.

Viral vectors. For ex vivo Ca?* imaging studies of VMHvI neurons, Esr1Cre/+ male mice were injected in VMHvI
with 200 nL of AAV9-Syn-FLEX-jGCaMP7s-WPRE (addgene 104491-AAV9) 5.3 x 10'? genomic copies per mL.
For ex vivo optogenetic studies, Esr1Cre/+ male mice were injected in VMHvI with 200 nL of AAV9-FLEX-tdTomato
(addgene 28306-AAV9) 4.2 x 1012 genomic copies per mL and in AHiPM with 100 nL of AAV5-Syn-Chronos-GFP
(addgene 59170-AAV5) 3.7 x 102 genomic copies per mL. For in vivo optogenetic and electrophysiology
experiments, EsrlCre/+ male mice were injected in VMHvl with 100 nL of AAV5-Syn-FLEX-rc[ChrimsonR-
tdTomato] (addgene 62723-AAV5) 4.1 x 1012 genomic copies per mL and in AHIPM with 100 nL of AAV5-Syn-
Chronos-GFP (addgene 59170-AAV5) 3.7 x 1012 genomic copies per mL. Control groups were injected in VMHuvI
with 100 nL of AAV9-FLEX-tdTomato (addgene 28306-AAV9) 4.2 x 1012 genomic copies per mL and in AHiIPM with
100 nL of AAV5-CAG-GFP (37825-AAV5) 5.9 x 1012 genomic copies per mL. For further details on reagents, see

also Table S1.

Stereotactic surgery and viral gene transfer. Adult heterozygous EsrlCre/+ males were single-housed for at
least five days before undergoing surgical procedures and were operated on at 16—20 weeks of age. Mice were
anesthetized using isoflurane (5% induction, 1-2% maintenance, in 95% oxygen) and placed in a stereotaxic frame
(David Kopf Instruments). Body temperature was maintained using a heating pad. An incision was made to expose
the skull for stereotaxic alignment using the inferior cerebral vein and the Bregma as vertical references. We based
the coordinates for the craniotomy and stereotaxic injection of VMHvI on an anatomical magnetic resonance atlas
of the mouse brain (AP: -4.68 mm; ML: £0.78 mm; DV: —=5.80 mm), as previously described (47). Virus suspension

was injected using a pulled-glass capillary at a slow rate of 8-10 nL/min, 100 nl per injection site (Nanojector I,
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Drummond Scientific; Micro4 controller, World Precision Instruments). The glass capillary was withdrawn 10 min

after the cessation of injection.

Osmotic mini-pumps. Testosterone was dissolved at 30 mg/ml in sesame oil and was administered for 2 weeks
at a rate of 0.75 mg/hour via subcutaneous osmotic mini-pumps (Alzet, model 1002) (143-145). For further details

on reagents, see also Table S1.

Social behavior assays. The aggression phenotype of animals defined as aggressive (AGG), or non-aggressive
(NON) in the present study was based on the expression of aggressive behavior in the five consecutive day resident-
intruder test (5cdRI). Animals that did not express any aggressive behavior in the 5cdRI were identified as NONs,
while all AGGs expressed aggression in a minimum of three out of the five trials, with the majority expressing attack
behavior in all five days. As described in Fig. 1, the 5cdRI composed of a 15 min social interaction test per day in
the resident’s home arena, with socially naive 4-5 month-old residents. Intruders were BALB/c males 2-3 months
old and of lower weight/size. Three follow up tests were performed in the 5cdRI experimental design presented in
Fig. 1, specifically, 2 weeks, 4 weeks and 12 weeks following the completion date of the 5cdRI assay. Note that
only 15 out of a total of 106 aggressive mice, were used to quantify the effect of aggression training. This was based
on the finding that following behavioral analysis of the first 15 mice used in the study, the power of the ANOVA test
reached P < 0.0001. This suggested that including additional observations would not aid the power of the statistical
test. In Fig. 5, following the 5cdRI, on day six a social interaction test was performed in a novel home-cage-sized
arena. In addition to the C57 male, a male with a larger bodyweight/size CD-1 conspecific was introduced. The

duration of this experiment was 15 min, following which both animals were returned to their home cage.

Statistics. No statistical methods were used to predetermine sample sizes but our sample sizes are similar to those
reported in previous publications (35, 44, 47). Data met the assumptions of the statistical tests used and were tested
for normality and variance. Normality was determined by D’Agostino—Pearson normality test. All t-tests and one-
way ANOVAs were performed using GraphPad Prism software (Graphpad Software Inc.). Statistical significance

was set at P < 0.05.
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Fig. S1. Presynaptic plasticity of inhibitory input in VMHvVI®™ neurons of non-aggressive male

mice.

(A) Representative recordings of spontaneous inhibitory post-synaptic currents (sIPSCs) from VMHv|&s?

neurons, from socially naive, aggressive (AGG) and non-aggressive (NON) mice.

(B) Left — cumulative frequency distribution plot of sIPSC inter-event interval (IEl) in voltage-clamp
recordings collected from VMHVI®" neurons from socially naive, AGG and NON mice (n=11-14 VMHv|&s"
neuron recording per group, collected from 8-10 mice per group, Kolmogorov-Smirnov test, P < 0.0001
between socially naive and AGG mice, P < 0.0001 between socially naive and NON mice). Right —
comparison of sIPSC frequency in voltage-clamp recordings collected from VMHVIES? neurons from
socially naive, AGG and NON mice (n=11-14 VMHVI*" neuron recording per group, collected from 8-10
mice per group, Kruskal-Wallis one-way ANOVA with uncorrected Dunn’s post hoc test, P = 0.0425

between socially naive and AGG mice, P = 0.0480 between socially naive and NON mice).

(C) Left — cumulative frequency distribution plot of sIPSC amplitude in voltage-clamp recordings
collected from VMHVIES™ neurons from socially naive, AGG and NON mice (n=11-14 VMHVI®™ neuron
recording per group, collected from 8-10 mice per group, Kolmogorov-Smirnov test, P = 0.2780 between
socially naive and AGG mice, P < 0.0001 between socially naive and NON mice). Right — comparison of

sIPSC amplitude in voltage-clamp recordings collected from VMHVIES neurons from socially naive, AGG
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and NON mice (n=11-14 VMHvVI®™ neuron recording per group, collected from 8-10 mice per group,
Kruskal-Wallis one-way ANOVA with uncorrected Dunn’s post hoc test, P = 0.8995 between socially

naive and AGG mice, P = 0.0476 between socially naive and NON mice).

ns; not significant, *P < 0.05, ***P < 0.0001. In box-and-whisker plots, center lines indicate medians, box

edges represent the interquartile range, and whiskers extend to the minimal and maximal values.
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Fig. S2. Monosynaptic connectivity between AHiPM and VMHvVIEs™ neurons.

(A) Schematic illustration of the experimental design, transducing AHiIPM neurons with Chronos and

optically evoking postsynaptic responses in VMHVIES™ neurons ex vivo.
(B) Quantification of VMHVIES™ neurons with optically-evoked EPSCs (0EPSCs).

(C) Averaged amplitudes of oEPSCs evoked on baseline (green), TTX (magenta), TTX + 4AP (orange),
and in CNQX and AP5 (black); n=5 brain slices, collected from n=5 mice, one-way ANOVA with Dunnett’s
post hoc test, P = 0.0002 between baseline and TTX conditions, P = 0.0001 between baseline and
TTX+4AP conditions, P = 0.0002 between baseline and CNQX+AP5 conditions. Shaded region

represents the standard error. The vertical scale bar defines current and the horizontal scale bar time.

*»**P < 0.001. In box-and-whisker plots, center lines indicate medians, box edges represent the

interquartile range, and whiskers extend to the minimal and maximal values.
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Fig. S3. Characterization of LTP-inducing stimulation protocols at the AHIPM=>VMHVIE" synapse.

(A) Schematic of the experimental design used to identify the appropriate stimulation protocol for LTP

induction ex vivo in socially naive mice.

(B) Illustration of the experimental protocols tested to to induce LTP in the AHIPM—->VMHvI synapse.

(C) Monitoring the optically induced EPSC (0EPSC) prior to, and following application of each of three

stimulation protocols (n=8 cells, n=5 socially naive mice).

(D) Alternative quantification/illustration of optically induced EPSC (0EPSC) prior to, and following

application of each of three stimulation protocols (n=8 cells, n=5 socially naive mice — similar to panel C).
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Fig. S4. Optogenetic induction of LTP at AHIPM=>VMHvVIE™ synapses in socially naive mice leads

to elevated aggression in the first resident-intruder test.

(A) Schematic indicative of the experimental design used to induced hypothalamic LTP in the
AHIPM->VMHvI synapses, via Chronos-eYFP expression in AHIPM, and ChrimsonR expression in

VMHVIES™ neurons.

(B) Schematic of the behavior test design used to identify whether induction of LTP in the AHIPM—>VMHuvI

synapses, influences the innate expression of aggression.

(C) Representative behavior raster plots of a control (YFP) and opsin-expressing (LTP) mouse, in the

resident-intruder test against a novel BALBc conspecific.

(D) Quantification of attack duration (n=5-6 mice per group, two-tailed unpaired t-test, P = 0.0046 between

YFP and LTP groups).
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(E) Quantification of attack latency (n=5-6 mice per group, two-tailed unpaired t-test, P = 0.0214 between

YFP and LTP groups).

(F) Quantification of number of attacks per trial (n=5-6 mice per group, two-tailed unpaired t-test, P =

0.0235 between YFP and LTP groups).

(G) Quantification of close investigation duration (n=5-6 mice per group, two-tailed unpaired t-test, P =

0.7106 between YFP and LTP groups).

*P < 0.05, *P < 0.01. In box-and-whisker plots, center lines indicate medians, box edges represent the

interquartile range, and whiskers extend to the minimal and maximal values.
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A Schematic diagram of findings B Schematic diagram of findings
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Fig. S5. Schematic summary.

(A) The schematic summarizes the findings from AGG mice, and the suggested links between

aggression, serum testosterone and hypothalamic LTP.

(B) Similar to panel (A), but summarizing results from experiments in NON mice - this schematic
summarizes the identified links among aggression, serum testosterone and hypothalamic LTP. Our
results do not distinguish whether the effect of elevated serum testosterone to increase LTP in vivo (Fig.
6P-T) is direct, or rather indirect via an effect to increase aggressive behavior, which in turn enhances
LTP. However, exogenous administration of T to NON mice (in the absence of any aggressive

experience) enhances LTP amplitude and persistence as tested ex vivo (Fig. 6K-O).
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Materials and Methods

Table S1. Reagents and resources.

REAGENT or RESOURCE \ SOURCE IDENTIFIER
Antibodies

Rabbit monoclonal anti-DsRed Takara 632392
Anti-GFP rabbit serum Invitrogen A-6455
Chicken polyclonal anti-GFP Aves Labs, Inc. GFP-1010
Donkey anti-Mouse IgG- Alexa Fluor 488 ThermoFisher A-21202
Donkey anti-Rabbit IgG- Alexa Fluor 488 ThermoFisher A-21206
Donkey anti-Rabbit IgG- Alexa Fluor 568 ThermoFisher A-10042
Donkey anti-Rabbit IgG- Alexa Fluor 647 ThermoFisher A-31573
Goat anti-Chicken IgY- Alexa Fluor 488 ThermoFisher A-11039
Biotinylated Goat Anti-Rabbit IgG Antibody | Vector Laboratories BA-1000
Donkey anti-Rabbit 1gG- Alexa Fluor 568 ThermoFisher A-10042
Chemicals, Peptides, and Recombinant Proteins

Picric acid Sigma-Aldrich P6744

4% paraformaldehyde (PFA) in PBS Santa Cruz Biotech. CAS30525-89-4
Streptavidin conjugated to Alexa Fluor 647 | ThermoFisher CS32357
Neurobiotin tracer VectorLabs SP-1120-50
Sodium chloride Sigma-Aldrich S9888
Sodium bicarbonate Sigma-Aldrich S6297
D-(+)-Glucose Sigma-Aldrich G7528
Sodium phosphate monobasic dihydrate Sigma-Aldrich 71505
Potassium chloride Sigma-Aldrich P9333
Magnesium sulfate heptahydrate Sigma-Aldrich 63138
Calcium chloride dihydrate Sigma-Aldrich C5080
4-Aminopyridine Sigma-Aldrich 275875
CNQX disodium salt TOCRIS 1045
D-AP5 TOCRIS 0106
Tetrodotoxin citrate Alomone labs T-550

DAPI solution (Img/mL) ThermoFisher 62248

OCT Cryomount Histolab 45830
Normal donkey serum (NDS) Sigma-Aldrich D9663
Bovine Serum Albumin (BSA) Sigma-Aldrich A2153
Triton X-100 Sigma-Aldrich T8787
Sucrose Sigma-Aldrich S7903

DiD’ solid Invitrogen D7757
Vectastain ABC kit Vector Laboratories PK-6100
ﬁ;/%—ggr?ggg)enmdme tetrahydrochloride Sigma-Aldrich D5637
Testosterone Sigma-Aldrich T1500
Sesame oil Sigma-Aldrich S3547-250ML
Phosphate buffer saline (PBS) Santa Cruz Biotech. SC-24946
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ELISA kit

Testosterone Parameter Assay Kit

R&D systems

KGEO010

Experimental Models: Organisms/Strains

Esr1Cre/* Lee et al., 2014 Own breeding
BALB/cAnNCr mouse line Charles River https://www.criver.com/
Crl:CD1(ICR) Charles River https://www.criver.com/
AAV mediated gene transfer

AAV5-CAG-GFP addgene 37825-AAV5
AAV9-FLEX-tdTomato addgene 28306-AAV9
AAV5-Syn-Chronos-GFP addgene 59170-AAV5
AAV5-Syn-FLEX-rc[ChrimsonR-tdTomato] | addgene 62723-AAV5
AAV9-Syn-FLEX-jGCaMP7s-WPRE addgene 104491-AAV9

Software

Clampfit 11 MOLECULAR DEVICES szzsm:/;www'mo'ecu'ardev'ce
MATLAB 2018 MathWorks https://www.mathworks.com/
OriginPro 9 OriginLab https://www.originlab.com/
ImageJ NIH; Schneider et al., 2012 | https://imagej.nih.gov/ij/
Prism 8 GraphPad https://www.graphpad.com/s

cientific-software/prism/

Illustrator CC 2020

Adobe Systems

http://www.adobe.com

CorelDrawX8

CorelDRAW graphics suite

https://www.coreldraw.com/

Photoshop 2020

Adobe Systems

http://www.adobe.com

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.214619; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

63


https://doi.org/10.1101/2020.07.21.214619
http://creativecommons.org/licenses/by-nd/4.0/

