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Abstract

Deep proteomics profiling using labelled LC-MS/MS experiments has been
proven to be powerful to study complex diseases. However, due to the dynamic
nature of the discovery mass spectrometry, the generated data contain a
substantial fraction of missing values. This poses great challenges for data
analyses, as many tools, especially those for high dimensional data, cannot deal
with missing values directly. To address this problem, the NCI-CPTAC
Proteogenomics DREAM Challenge was carried out to develop effective
imputation algorithms for labelled LC-MS/MS proteomics data through crowd
learning. The final resulting algorithm, DreamAl, is based on an ensemble of six
different imputation methods. The imputation accuracy of DreamAl, as
measured by correlation, is about 15%-50% greater than existing tools among
less abundant proteins, which are more vulnerable to be missed in proteomics
data sets. This new tool nicely enhances data analysis capabilities in
proteomics research.
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Introduction

Proteins are responsible for nearly every task of cellular life and are important
molecules for disease diagnosis, prevention and treatment. The technique of
Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) using isobaric
labeling methods, including isobaric tags for absolute and relative quantification
(ITRAQ) and tandem mass tags (TMT), allows detection and quantification of
thousands of proteins and tens of thousands of their post-translational
modifications (PTM) in a given biological sample [1,2]. Isobaric labeling not only
greatly enhance the precision of quantification, but also improve the throughput
[3,4], as multiple samples can be combined into one multiplex and profiled
simultaneously. These technology developments greatly accelerate the
application of proteomics to study various diseases [1,2,5-8].

Due to the proteome complexity of many biological samples, in combination with
the stochastic sampling procedure and limited duty cycle of mass spectrometry
based discovery proteomics, only a subset of peptides and PTMs in a sample
can be detected and quantified in each LC-MS/MS experiment, and the
members of this subset vary from experiment to experiment. Thus, when
proteomics profiles from a collection of LC-MS/MS experiments are analyzed
together, a substantial number of missing values are present [9]. In addition, in
isobaric labeling experiments, the missingness is correlated with the multiplex
structure since the detection of a peptide is done together for all samples in MS1
within the multiplex. Consequently, a peptide is either observed or missing
simultaneously for all samples analyzed together. This type of experimental
induced multiplex-level missing constitutes the majority of missing events when
using isobaric labeling. For example, in proteomics data sets generated in
CPTAC ovarian cancer study with iTRAQ platform[2], among all detected
proteins and phosphosites, 31.1% proteins and 98.3% phosphosites had
missing values in at least one sample (Fig. 1a-b, Supplemental Fig. 1a-b). And
more than 95% or 99% of total missing events in the whole global or phospho-
proteomics data sets are multiplex-level missing (Fig. 1c). This multiplex-level
missing is also prevalent in data from TMT platforms, as illustrated in Fig. 1la-b
based on data examples from the CPTAC ovarian cancer confirmatory study [7]
(Supplemental Fig. 1a-b)
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Moreover, as indicated in previous works [10-12], missing in mass spectrometry
(MS) based proteomics data is non-random: probabilities of a peptide being
missing depend on their abundances in the sample, such that peptides with
higher abundance tend to have lower missing rates. Furthermore, the degree of
this dependence often varies across different experiments and studies (Fig. 1d-
e, Supplemental Fig. 1c-d). This dependence between the propensity of a
value to be missing and its values is referred to as MNAR --- missing not at
random [13]. It has been well established in the statistical literature that analysis
based on the observed data only in the presence of MNAR shall lead to biased
estimates and incorrect inference[13].

The substantial missing rates combined with multiplex dependent MNAR bring
great challenges to the downstream data analysis. The common strategy of
focusing only on proteins observed in all samples [1,2] makes the downstream
data analysis convenient, but abandons a large amount of information from
hundreds or thousands of proteins in each proteomics data set. These
abandoned proteins could, unfortunately, be very interesting for understanding
disease mechanisms, as disease-relevant proteins are often low abundant or
subtypes specific and therefore less likely to be measured in all samples.

Thus, there is a pressing need to have strategies other than simply ignoring
proteins and PTMs with missing values in proteomics data analysis. Two
commonly used methods for handling data with missing values are: 1. to
substitute missing values with some constants (e.g., a small number or an
estimated mean/median value)[14]; and 2. to perform analysis using observed
data only [1,2]. The constant imputation, as well as its enhanced variation
(Perseus [15]) which fills in missing values with random variables independently
drawn from a pre-specified Gaussian distribution, obviously, will not work for
labelled proteomics data, due to the experimentally induced multiplex-level
missing patterns. On the other hand, for mass spectrometry data with MNAR, it
is dangerous to perform analyses based on observed data points only, which
could lead to biased estimates and incorrect inferences [10,13]. In addition, for
multivariate and high-dimensional analysis, a subset of samples with completely
observed data in multiple features could be small or non-existent.

A more sensible solution is to perform stage-wise learning: firstly use
information from observed data points to “learn” the unobserved data points, i.e.
impute the missing values; and then conduct statistical analysis based on the
imputed matrices. Since proteins and PTMs that interact with each other usually
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have correlated abundances, the measured abundances in a given sample
contain substantial information of other unobserved proteins and PTMs.
Information of other samples with shared properties can also be useful in this
learnings step. A few imputation strategies have been proposed to handle
missing values in high dimension omics data sets in the past decades. Some of
the strategies take advantage of local similarity of the data set. For example, the
commonly used KNN imputation predicts missing values based on information
from K nearest neighbors (proteins or samples) [16,17]. This strategy has been
applied to a few proteogenomics studies [5]. To better accommodate the MNAR
in proteomics data, in another work [6], the authors proposed a modified KNN
algorithm, ADMIN, which employs weighted average incorporating abundance
dependent missing mechanisms in proteomics data [6]. In addition, MissForest,
which builds Random Forest models to predict missing values of one feature
based on observed values of all other features [18], is another effective local
similarity based imputation strategy and has been adopted in multiple genomic
studies [19,20].

Besides methods relying on local similarity in the data, there is a collection of
imputation algorithms utilizing global structure of the data based on low rank
matrix completion. Those methods stemmed from the field of image de-noising
[16,21-23], has flourished in a broad range of applications to solve various
imputation problems, such as completion of single cell RNA-seq data [24] and
GWAS data [25], as well as prediction of miRNA-Disease association [26]. Low
rank matrix completion techniques have been recently applied to proteomic data
imputation too. For example, pcaMethods, a PCA-based method for matrix
completion [27], has been applied to impute missing values in TMT proteomics
data sets in a recent publication.[28]

Good efforts have been made to evaluate performances of different
imputation strategies on label free proteomics data [12,29]. Consensus
conclusions from these studies suggest that local similarity based methods and
global structure based methods perform better than the constant imputation
methods in the presence of MNAR [12,29]. In addition, one study [29] reported
superior performance of methods based on global structure, such as low-rank
matrix completion [17] and linear model based maximum likelihood estimate [30]
[31] to those of local similarity based methods (KNN) for label free proteomics
data. Moreover, as expected, it is more challenging to impute missing values for
features with missing rate higher than 50% than those with lower missing rates
[29].
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Despite these various efforts, there has not been any systematic evaluation
on whether and how various imputation tools work on labelled LC-MS/MS data
sets. The pioneer investigation by Palstram et. al.[28] is informative and
confirms the advantage of KNN and low rank matrix completion over constant
imputation for labelled proteomics data. But this investigation is
incomprehensive due to the limited number of imputation methods considered
and the inadequate numerical examples with rather simplified missing
mechanism assumptions. Therefore it is of great interest to perform more
systematically assessment on which tools may best solve the missing value
imputation problem for proteomics data from labelled LC-MS/MS experiments.

Towards this goal, we carried out a NCI-CPTAC DREAM Proteogenomics
Imputation Challenge, aiming to leverage techniques from multiple research field
such as statistical computation and machine learning, and to achieve a superior
solution for the data imputation problem for labelled LC-MS/MS proteomics data
sets through crowd learning (https://sagebionetworks.org/research-projects/nci-
cptac-dream-proteogenomics-challenge/).

The Challenge included a competition phase and a collaborative phase. In the
competition phase, participants were invited to submit imputation algorithms
trained on labelled LC-MS/MS proteomics data sets, and the performances of
these algorithms were evaluated on a collection of test datasets generated from
the CPTAC breast data [1]. In the collaborative phase, together with the three
winning teams from the competition phase, we further enhanced and integrated
different imputation techniques and developed the final Aggregation based
Imputation algorithm --- DreamAl, which is based on ensemble of six different
imputation methods including two low-rank matrix completion methods, two
prediction based imputation methods, and two KNN type methods. The
performance of DreamAl and other imputation tools were then systematically
evaluated and compared using the CPTAC ovarian proteomics data sets, which
contains profiles of duplicate tumor samples from the same patients [2]. The
imputation accuracy of DreamAl, as measured by correlation, is about 15%-50%
greater than the few leading popular tools, including ADMIN [6], KNN[16,17],
missForest[18] and pcaMethods[27].

To illustrate the usage of imputation in proteomics data analysis, we performed
proteogenomic integrative analysis using a newly published data of deep TMT
proteomic profiling of 103 clear cell renal cell carcinoma (CCRCC) samples and
80 adjacent normal tissue samples[32]. We observed better RNA-protein
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concordances between transcriptomic data and proteomic data with imputation
than that without imputation. When evaluating the power to detect proteins
having significantly different abundances in tumor and adjacent normal tissues,
we further observed an advantage of using data with DreamAl imputation over
that with KNN imputation or no imputation.

In summary, this work represents a landmark crowdsourced community effort to
address the problem of imputation for labelled LC-MS/MS proteomics data sets.
The R package of DreamAl is provided through github. This tool can benefit
data analysis practice in a broad range of proteomics research.

Result

Challenge overview

The NCI-CPTAC DREAM Proteogenomics Imputation Challenge was carried
out to develop a benchmark imputation strategy for labelled LC-MS/MS
proteomics data sets through crowd learning. The challenge consists of two
phases: a challenging and a community phase. In the challenging phase,
participants were invited to build their own imputation algorithms and winners
were identified based on performances of submitted imputation algorithms on
test data sets. In the community phase, top-performing participants worked
jointly to develop a benchmark imputation strategy for labelled LC-MS/MS
proteomics data. In both phases, imputation performances were assessed
based on two metrics: protein-wise correlation and normalized root mean
squared error (NRMSD) between imputed and true values.

The challenging phase

Since imputation is an unsupervised learning, to objectively evaluate different
imputation algorithms, in the challenge phase, we implemented a simulation
framework to generate decoy data sets with missing patterns mimicking that of
the real data sets, based on protein profiles from labelled LC-MS/MS
experiments in CPTAC breast cancer studies.[1,8] Specifically, we started with
subsets of protein intensity matrices with complete measurements and
superimposed pseudo missing data points generated from a probability model,
which incorporates both biological and instrumental missing events, with the
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probability of the latter depending on protein abundance measurements (see
Online Methods).

In total 10 training data sets and 100 testing data sets were generated. The
large number of test data sets is to allow a thorough evaluation of performances
of submitted imputation algorithms (Fig 2a, see Online Methods). Specifically,
training data sets were generated based on global proteome data from CPTAC
retrospective breast cancer study [1] and were shared with participants, while
testing datasets were based on global proteomics from CPTAC breast cancer
confirmatory study[8] and were not shared with participants. Each participant
team needed to firstly develop an imputation algorithm based on training data
sets, and then submit their final algorithm to Synapse to be evaluated on the
testing data sets. The final ranking of participating teams during the challenge
phase was determined by a tie breaking strategy (see Online Methods and
Supplementary Table 1-2).

Among 21 teams participating in this challenge, 17 got valid scores on the final
leaderboard. Names and affiliations of all participants were listed in
Supplementary Table 3. The corresponding 17 imputation methods include 6
methods based on prediction models, 5 using matrix completion techniques, 2
relying on constant imputation, 2 employing multiple strategies and 2 other
method without algorithm strategies reports in the survey. The performances of
these 17 algorithms were illustrated in Fig. 2b, 2c. Interestingly, diverse
performances were observed for teams employing the same category of
methods. For example, among the five low-rank matrix completion based
imputation methods by five different teams, two showed superior performance,
but the other three got much worse results than KNNimpute [16,17], a baseline
imputation method (Fig. 2b). This observation suggests that customized
treatment for labelled proteomics data in employing these imputation techniques
is important to assure good performance. Also, as expected, the two methods
based on constant imputation showed poor performances, suggesting this
simple treatment does not work well for proteomics data with complicated
missing mechanisms.

Three methods --- SpectroFM, Regimpute, and Birnn --- demonstrate better
performance than the baseline algorithm KNNimpute [16,17]. Both SpectroFM
and Birnn use matrix completion techniques, while Regimpute employs
prediction models. Please see next section and Online Methods for more
details. The corresponding teams of the three winning algorithms --- SpectroFM,
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Regimpute, and Birnn --- were then invited to participate in the community
phase.

The community phase

In the community phase, the goal is to construct a consensus imputation
algorithm by integrating multiple methods with diverse strategies. We not only
utilized the winning algorithms from the challenging phase, but also leveraged
existing tools that provide complementary strengths. We extensively evaluated
different integration strategies, and developed a bagging based aggregation
framework that enhances the robustness of the final algorithm ---DreamAl:
Aggregated Imputation algorithms based on bagging procedure. Please see
next Section for methodology and performance details of DreamAl.

We utilized protein profiles of 32 pairs of duplicate tumor samples quantified by
two independent proteomics labs in the CPTAC ovarian study [2] to evaluate
imputation performances. Specifically, one set of the 32 tumor samples were
processed by the Pacific Northwest National Lab; and the duplicate set of the 32
tumors were processed by a proteomics lab from John Hopkins University. We
thus referred to these two data sets of 32 samples as PNNL-data and JHU-data
respectively.

All imputation methods were firstly applied to the PNNL-data of 3027 genes
(n=32) and the results were then evaluated against corresponding data points in
JHU-data, which is regarded as good approximation for the true values that was
missing in PNNL-data. There are 3700 missing values in the PNNL-data, and
most (>99%) of them were not missing in the JHU-data. In addition, to account
for technical and biological factors contributing to different protein abundance
measurements in PNNL- and JHU data sets, we employed scaled correlation
and NRMSD-d as performance evaluation. Specifically, for each protein,
background correlation and NRMSD were obtained using paired data points
observed in both PNNL- and JHU-data. Scaled correlation was then calculated
by dividing the correlation between imputed values and ground truths with the
background correlation of each protein. NRMSD-& was calculated as the
NRMSD performance of the imputed values minus the background NRMSD. In
addition, to ensure robust evaluation, we select a subset of 289 proteins which
have at least 5 missing data points and background correlation between PNNL
and JHU-data greater than 0.3 for imputation performance evaluation.
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DreamAl: Methodology and Performance

DreamAl utilizes an aggregated imputation framework [33] including three steps
(Fig. 3a): generates 100 bagging sets with pseudo missing values based on the
original data; imputes each bagging set with a consensus imputation strategy;
and averages imputated values of each missing spot across different bagging
sets.

The consensus imputation strategy

The central piece of DreamAl --- the consensus imputation strategy, is based on
results from six imputation algorithms: the three winning algorithms in the
challenging phase (spectroFM: Team DMIS_PTG; Reglmpute: Team Jeremy
Jacobsen; Birnn: Team BruinGo) and 3 baseline algorithms (ADMINJ6],
KNNJ[16,17], missForest[18]) (Fig. 3b).

Both spectroFM and Birnn are based on low rank matrix completion methods.
Specifically, spectroFM employs LibFM, a factorization machine library [34] to
approximate the normalized protein abundance matrix (with missing values) with
the product of two dense latent low rank matrices corresponding to proteins and
samples respectively. In addition, a regularized MCMC algorithm is implemented
in spectroFM to solve the optimization problem. Birnn, while employs a similar
low rank matrix decomposition framework, uses a different regularization
technique --- the smoothly clipped absolute deviation (SCAD) penalty [35] --- to
constrain the ranks of the decomposed matrices, and implements an iteratively
reweighted nuclear norm (IRNN) [36] algorithm to solve the optimization
problem (see Online Methods).

Similar as missForest [18], Regimpute tackles the problem of imputation through
prediction. The idea is to use observed abundances of other proteins (samples)
to estimate the missing abundance of a given protein (sample). While random
forest models are used by missForest, ridge regressions [37] are utilized by
Regimpute (see Online Methods). Specifically, Reglmpute incorporates an
iterative procedure to refit the prediction models leveraging the imputed values
from the last iteration. This iterative procedure helps to improve the prediction
accuracy, and usually converges after 10 iterations.

KNN based imputation, the most commonly used imputation strategy in omics
studies, can also be viewed as a prediction approach: a small set of features
(samples) in the neighborhood of the feature (sample) to be imputed are used to
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fit a prediction model, which often takes the form of a linear combination
(weighted average). ADMIN [6] is an enhanced version of KNN. It specifically
models the abundance-dependent missing mechanism in proteomics data set,
and uses the joint likelihood of protein abundances and missing mechanisms to
calculate the optimal weight for predicting the missing values (see Online
Methods).

In addition, when selecting baseline methods to be included in DreamAl
aggregation, we also considered pcaMethods [27], a low-rank matrix completion
method that has been applied to missing value imputation of labelled proteomics
data [28]. However, the performance of pcaMethods is substantially worse than
that of KNN, MissForest, and ADMIN on the CPTAC2 ovarian cancer data set
(Fig S3). Thus we did not include this algorithm in the final consensus of
DreamAl.

All selected methods provide complementary strengths. While the low rank
matrix completion based methods take good advantage of the strong global
covariance structure among proteins, the prediction-based methods provide
more flexible imputation solution to small neighbors (individual features) in the
data. In addition, missFroest helps to capture non-linear relationship among
proteins, and ADMIN utilized the abundance-dependent missing trend in
proteomics data. Thus, by aggregating all these strategies in an effective way,
we expect to achieve more optimal and robust imputation performance.
Specifically, we propose to average the imputation results of all the 6 methods
on one data set as the consensus imputation strategy. The bagging procedure,
described below, makes this simple average rather robust and effective.

Model aggregation through bagging

A modified bagging strategy is adopted in DreamAl to improve the robustness
and accuracy of imputation algorithms. Instead of sub-sampling subjects or
proteins, DreamAl generates “bagging” (perturbed) data matrices by setting a
small subset of observed data points in the original data matrix as pseudo NAs.
Specifically, these data points were selected according to a probability model
reflecting the abundance-dependent missing mechanism with parameters
estimated based on the original data matrix (see Online Methods). Then
DreamAl applies imputation algorithms on a collection of bagging matrices with
both true and pseudo missing values, and reports the average of the imputed
values of each missing spot across all bagging matrices as the final imputed
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values. For the application on the PNNL-data, we utilized 100 bagging matrices,
and set the missing rates in the bagging matrices to double that of the original
data set.

Performance evaluation

We first illustrated the benefit of bagging aggregation on imputation. We applied
individual imputation method with or without bagging aggregation on the PNNL
data. For each method, correlation between imputed values and the observed
“true” values from the JHU data set of the corresponding data points for protein
groups based on different stratification criterions were used for evaluation.
Specifically, proteins were divided into multiple groups with different (a) protein
closeness in observed data, (b) NRMSD of pseudo missing data from all
bagging sets and (c) average protein abundances in observed data. Note,
protein closeness measures correlation strength between each protein and its
neighboring proteins (see Methods). As shown in Fig. 3C, the results based on
bagging aggregation showed overall improved correlations compared to those
without using bagging aggregation. And the improvement is more dramatic for
baseline methods than the winning algorithms from the challenging phase.

We then compared the performance of DreamAl to that of the individual
imputation algorithm (with bagging). The average scaled correlation and
NRMSD based on all proteins are shown in Fig. 3d. DreamAl achieves higher
correlation and lower NRMSD than all the six individual imputation methods.
Specifically, the imputation accuracy of DreamAl, as measured by scaled-
correlation, is about 20% greater than KNN and ADMIN, and 15% greater than
missForest. In addition, the performance of DreamAl was also compared to that
of pcaMethods, and a 50% improvement on performance in term of correlation
was observed (Fig S3). In addition, the dashed line in the NRMSD plot
represents the reference NRMSD based on all paired data points observed in
both the PNNL and the JHU data sets. Interestingly, NRMSD of DreamAl is
smaller than the reference NRMSD, implying superior performance of DreamAl.

As illustrate in Fig. 3d, the three winning algorithms from the Challenge all
outperformed the three baseline methods, which is consistent with what we
observed in the challenge phase. An immediate question, then, is whether it
helps, in the aggregation exercise, to include any or all of the baseline methods,
which have suboptimal performances. We thus also evaluated strategies of
aggregating none or a subset of the baseline methods in DreamAl. As illustrated


https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.214205; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

in Supplementary Fig. 2a, without any of the baseline methods, the scaled
correlation of imputation result is about 13% lower than the result from
aggregating all 6 methods. This clearly demonstrates the benefit of aggregating
methods with complementary strengths. Moreover, ADMIN appears to be a
more important player than KNN and missForest, such that the scaled
correlation drops more if ADMIN was left out from the aggregation than when
missForest or KNN was left out. This illustrates the benefit of incorporating the
abundance dependent missing mechanism, a common feature of proteomics
data, in the imputation framework. Between KNN and missForest, KNN is less
helpful in the aggregation, such that the method by leaving KNN out achieves
even slightly better performance in terms of scaled correlation. More detailed
investigation further suggests that KNN helps only for proteins with close
neighbors and high abundances (supplementary Fig. 2b-c).

In practice, DreamAl R-package provides the flexibility for users to specify any
combination of the 6 individual methods to perform DreamAl imputation. When
the data dimension or computational cost is not a concern, one may choose to
include ADMIN and missForest, in addition to the three winning algorithms, to
achieve the optimal performance. When the data matric has a large dimension,
computational time required by missForest could be substantial, and the users
may choose to include ADMIN and KNN instead of missForest to balance the
tradeoff between performance and computational burden.

To further understand the impact of various protein characteristics on the
imputation performances, we compared imputation results of different protein
groups stratified by three criterions: (a) protein closeness based on observed
data; (b) NRMSD of pseudo missing across all bagging sets; and (c) average
protein abundances based on observed data. Please see Methods for details.
Average scaled-correlation and NRMSD-0 are calculated for each protein group.
The results are shown in Fig. 4.

Imputation performance of DreamAl, in term of (scaled-)correlation, shows an
increasing trend with protein closeness. Moreover, the improvement of DreamAl
over KNN is the most dramatic, more than 65%, for the protein cluster with the
lowest closeness, suggesting the advantage to leverage the information in the
whole data set for data points with uninformative neighbors when performing
imputation (Fig. 4a). Similar pattern is observed based on NRMSD-d as well.
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Across the four protein clusters with different pseudo missing performance
evaluations, both DreamAIl and KNN showed better imputation accuracy in term
of correlation for the cluster with the best pseudo missing performance than the
others. The improvements of DreamAl over KNN, however, are quite
comparable across the four clusters (Fig. 4b).

Protein abundance, a metric correlates with imputation performance of KNN,
however does not show obvious association with performance of DreamAl (Fig.
4c). And DreamAl showed the biggest improvement over KNN for the protein
group with the lowest abundances. NRMSD-& of both DreamAl and KNN
appeared to be negatively associated with the protein abundance, which seems
to imply that NRMSD depends on the scale of the value to be imputed, and thus
its interpretation needs to be taken with cautious.

Imputation helps to gain biological insights

To illustrate the improvement of data analysis power based on proteomics data
with proper imputation, we applied DreamAl to a large TMT proteomics data set
from a newly published proteogenomic study of clear cell renal cell carcinoma
(CCRCCQC) [32]. In this study, 103 treatment naive renal cell carcinoma and 80
paired normal adjacent tumor (NAT) tissue samples were profiled using a
proteogenomic approach wherein each tissue was homogenized via
cryopulverization and aliquoted to facilitate genomic, transcriptomic, and
proteomic analyses on the same tissue sample. In the global proteomics TMT
experiments, protein abundance measurements of 9209 genes were obtained in
at least 50% of the samples, with 2059 genes having missing abundance
measurements in at least one sample. The overall missing rate of the protein
abundance matrix of these 2059 genes was 20.4%, and sample wise missing
rate ranges from 2.5% to 7%. The abundance dependent missing (MNAR)
trends in proteomics data of tumor and NAT samples are illustrated in Fig. 5a,
S4a respectively.

We first evaluated gene-wise correlations between RNAseq and global
proteomics data with or without DreamAl imputation among tumors samples.
For 2012 proteins with at least one missing value in tumor samples, we
observed improved protein-RNA concordance in proteomic data with DreamAl
imputation than that without imputation, including significantly higher gene-wise
protein-RNA correlations (wilcox test pvalue<10e-16) (Fig 5b), as well as
greater numbers of genes with significantly non-zero protein-RNA correlation at
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various p-value cutoffs (Figs 5c, 5d). Parallel analysis applied to proteogenomic
data of NAT samples reveals similar improvement of protein-RNA concordance
based on proteomic data with DreamAl imputation over that without imputation
(Fig. S4).

We then evaluate whether different treatment of missing values may impact
statistical powers to detect proteins associated with normal-tumor status.
Specifically, we focused on a subset of 49 genes in the CCRCC proteomic data,
whose imputed protein abundances by KNN and that by DreamAl are rather
different (the NRMSD between the imputed abundance by KNN and that by
DreamAl is greater than 0.5). As illustrated in Fig. S5a, the distribution of p-
values from Wilcox two-sample t-tests comparing tumor and NAT samples
based on proteomic data with imputation by DreamAl is more significant than
that by KNN as well as that based on data without imputation. Similar benefit of
power gain by DreamAl imputation over KNN as well as no-imputation is also
observed in Fig. S5b when screening for proteins associated with four different
immune subtypes of CCRCC samples[32] using Kruskal-Wallis tests. These
examples illustrate the advantage of using proteomic data with DreamAl
imputation in downstream statistical analysis over other alternative strategies.

Discussion

How to handle missing values in MS based proteomics data has been a long-
standing challenge in proteomics research. The larger the study size is, the
worse the issue of missing will be, as data from more mass spectrometry
experiments need to be merged together. The isobaric labelling technique,
which on one hand greatly enhances the quantitation precision and experiment
throughput, on the other hand, further exacerbates the missing data problem.
With experimental induced multiplex-level missing pattern as well as the
abundance dependent missing trend, proteomics data from labelled MS
experiments cannot be properly or effectively analyzed by using observed data
only (either ignoring all features with missing values or ignoring subsets of
samples with missing data points in feature-wise modeling).

Another strategy to handle missing data is through imputation, which has been
widely adopted in many research fields, such as image processing, single-cell
RNAseq studies, as well as label free proteomics data analysis. Its usage in
proteomics data from labelled MS experiments is still limited, largely due to a
lack of a benchmark imputation method suitable for this type of data. Because of
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the complicated missing structure in labelled proteomics data, imputation tools
developed for other data types do not apply or does not perform well.

The goal of this study is to develop a benchmark imputation algorithm for
labelled proteomics data sets. Specifically, we conducted the NCI-CPTAC
DREAM Proteogenomics Imputation Challenge to achieve this goal through
crowd learning. 21 teams from a broad range of research fields participated in
the Challenge and contributed diverse expertise. As expected, many general
imputation algorithms used in other disciplines/applications do not perform well
on labelled proteomics data sets. Indeed, only a subset of teams achieved
better performance than the KNN imputation on Challenge data sets, suggesting
customized treatment of the imputation algorithm for labelled proteomics data is
important in order to effectively tackle this problem.

The three winning teams from the Challenge further participated in a
collaborative phase, and we jointly developed the final algorithm --- DreamAl ---
an ensemble based imputation method. DreamAl employs a bagging framework
to aggregate results from 6 diverse imputation methods: three winning
algorithms from the Challenge (two based on low-rank matrix completion and
one based on prediction model fitting), as well as three baseline imputation
methods --- KNN, ADMIN, and missForest, which have been used in previous
proteogenomics data analysis [5,6,19,20]. This ensemble strategy of DreamAl
leads to greatly improved performance compared to that of individual algorithm:
the imputation accuracy of DreamAl in terms of correlation is 15-50% better than
that of individual baseline tool, or 9-15% better than that of the individual
winning algorithm on an ovarian cancer proteomics data set.

The bagging framework in DreamAl not only enhances the imputation
performance, but also helps one gain insights on imputation quality of each
feature. Specifically, for a given feature, DreamAl estimates its imputation
quality using the correlation between the true and imputed values of pseudo
missing data points of this feature across different bagging iterations. In the
CPTAC ovarian data application, the correlation assessment for the protein
group with the best pseudo missing performance is 0.75, at least 26% higher
than the rest protein groups. Therefore, the pseudo missing performance score
of each feature is informative to shed light on feature-specific imputation quality.

Since imputation is an unsupervised learning problem, it has been a challenging
task to objectively assess the performance of imputation methods. Thus, one of
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the major efforts during the Dream Challenge was to create high-quality bench-
mark simulation data sets to objectively evaluate imputation performances.
Specifically, simulations were set up to mimic missing patterns in real
proteomics data sets as closely as possible. Multiple testing data sets with
varying proportions of biological and experimental missing rates, as well as
different degrees of abundance dependent missing trend were generated based
on two CPTAC breast cancer proteomics data sets.[1,8] Moreover, to
complement the usage of simulated data sets during the Challenge phase, in
the community phase, we utilized the CPTAC ovarian cancer proteomic data set
[2], which contains proteomics profiles of two replicate biological samples of 32
ovarian tumors. This provides a unique opportunity to directly assess imputation
performances on real missing data points in cancer proteomics studies.

The benefit of using imputed data in downstream analyses stems from the
improvement of sample size and thus the analysis power. As illustrated in the
CCRCC application, imputation helps to capture more molecular features in
proteomics data and improves the RNA-protein concordance overall. In the real
data analysis, we removed features with missing rates higher than 50% in
imputation and downstream analysis. The choice of 50% cutoff is a tradeoff
between imputation accuracy and information (data feature) loss in the
downstream analysis. For features with high missing rate, the tasks to
accurately identify close neighbors or to fit prediction model based on observed
data points become very challenging due to the sample size limitation. It has
been suggested that, in general, imputation methods perform better on features
with less missing values (<50%) than on features with more missing values
(>50%)[29]. Also, in downstream analyses, it's preferred that the observed data
points out weight the imputed data points to ensure robustness. Thus, we
settled with a cutoff of 50%.

Although we provided NRMSD values on all examples, we used Spearman
correlation as the main metric for evaluating imputation performance. NRMSD
measures the distance between the imputed values and the true values of
missing data points normalized by the varying range of abundances of each
protein. Despite being a normalized distance measurement, NRMSD still
depends on the scale and distribution of the protein abundances. On the other
hand, Spearman correlation is a scale free measurement which is robust to any
outliers and the absolute scale of the data distribution. As illustrated in Fig. 4c,
among protein groups with different mean abundance levels, performance
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based on correlation is very stable, but NRMSD has an obvious trend to be
positively associated with protein mean abundances.

For data analysis of label free proteomics data, it has been suggested that
directly model peptide abundance could be more efficient than performing
imputation at the protein abundance level [12]. This is because the summary (or
average) based peptide-protein intensity roll-up used for label free proteomics
data is vulnerable to many confounding factors, and then modeling the peptide
level abundances directly could effectively get around the variabilities induced in
the roll-up step. However, in isobaric labeled proteomics experiments, rolled-up
from peptides to proteins can be performed at the log-ratio intensity level (i.e.
log-ratio between intensity of a target sample and that of the reference sample
in the same TMT multiplex for one peptide). This strategy greatly improves the
robustness and precision of protein quantification, while at the same time,
effectively reduces the missing data percentage in protein level data compared
to the peptide-level data. Thus, for isobaric labeled global proteomics
experiments, we recommend working with protein/gene level data. For
phosphorproteomics experiment, since phosphosite-site is the meaningful
biological unit for downstream analysis, we actually work with the quantification
at phosphor-site level and perform imputation on phosphor-site level data
directly.

Although DreamAl has a general framework and can be applied to other
proteomics data from label free experiments, its performance on those
applications warrants future study. In addition, for proteomics data from targeted
mass spectrometry experiments, such as MRM (multiple reaction monitoring),
imputation could be less of a concern due to the relatively low missing rate.
However, MRM experiments right now can handle at most a few hundred
proteins/peptides in one run, and thus are not suitable for deep profiling in
discovery studies.

An R package of DreamAl has been implemented and is available to public at
Github  (https://github.com/WangLab-MSSM/DreamAl). Performing DreamAl
imputation with this R package on the CCRCC data matrix with 9209 genes and
183 samples took 4.3 hours on a PC with Intel Core i7-7700HQ CPU (2.80GHz).
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ONLINE METHODS

Design and Data Sets of Challenging Phase

Multiple stages were set up in the challenging phase: two leaderboard rounds,
and one final ranking round, to allow self-correction on the algorithm of each
participant and also to achieve fair competition for the final ranks.

The process of generating data matrices with missing value is the same in both
training and testing. We collect protein with complete observation as the basis
matrix of underlying truth (7927 proteins of 80 samples from CPTAC2 breast
cancer retrospective study for training data and around 8203 proteins of 83
samples from CPTAC2 breast cancer confirmatory study for testing data).

Biological missing spots were assigned to basis matrix with missing spot
correlated among proteins with protein intensity correlation of the basis matrix.
Basis matrix with biological missing was considered as underlying truth. Since
biological missing are difficult to identify from the missing data, to raise the
challenge of imputation in the synthetic data set we set the biological missing
rate to be much higher than the non batch level missing rate in real data set.

Next, we simulate instrumental missing with abundance dependent missing
mechanism, learned from the real data set. Both instrumental missing and
biological missing were indicated as ‘NA’ in the observed data sets.

Imputation algorithm will be applied on the observed data sets and evaluated on
the missing spot with underlying truth. We setup multiple replicates of training
and testing data sets to assess robust evaluation on the imputation algorithms.
In total, we generated 10 training data sets with same missing mechanism and
200 data sets of testing with same instrumental missing mechanism but diverse
level of biological missing rate (Fig. 2b).

After opening of the challenge competition, we released the 10 training data set
to public, participants were allowed to build and train their algorithms in the
training data. Leader board were presented and updated during the period of
Round 1 and 2 by evaluating algorithms of participants using 100 testing data
sets. Final Score ranking were generated in the final round by evaluation on the
other 100 testing data sets.


https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.214205; this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Evaluation of Imputation performance and Tie Breaking for Final Round
Leaderboard

Performance of imputation algorithms are evaluated through normalized root-
mean-square errors (NRMSD) and correlation coefficients between imputed
data and underlying truth. NRMSD is calculated on all missing spots of each
protein, and correlation is calculated on instrumental missing spots of each
protein.

Given X to be imputed value and Y to be underlying true value,

\/zzmtssmg Yi C'31‘)2/nv?n'ssing r—= anwsmﬁ? ﬂ?z )(:% Y)
Tomissing—1 Se

NRMSE= 5

maz ~ Ymin Nmissing™

Evaluation metrics of 100 different observed data sets in the final round were
compared to identify the winning team. Specifically, we compared NRMSD first,
and if there are ties on NRMSD, we will compare the correlation to break the tie.
Significance of score differences is tested using two criteria:

1. Confidence Intervals For each team, we computed 95% Confidence
Intervals (Cl) across different data sets. Since difference of biological missing
rate will lead to different levels of scores, to make the variance estimation more
meaningful we calculate Cl for 4 groups with different biological missing rate
separately. We declared two teams statistically different, when one team has
(all) CI non-overlapped with (and higher than) the corresponding interval of the
other team.

2. Bayes Factor Given two teams, we estimated the Bayes Factor (BF) via a
100 paired imputed matrix. Each pair came from the results of the same
observed data set. We declared two teams statistically different if the Bayes
Factor of their scores is larger than 10 or smaller than 0.1.
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We consider the four teams having the lowest average NRMSD scores across
100 data sets, since the baseline method KNN will beat the 5th team with our tie
breaking criterion. Those teams are Hongyang Li and Yuanfang Guan,
DMIS_PTG, BruinGo, Jeremy.

Comparison of Cl was showing in the Supplementary Table 1. If the number
equals 4, scores of the team at row will be significantly higher than the scores of
the team at column. From Supplementary Table 1A, we found out none of
those team can beat any other team by NRMSD. Therefore we look at the
correlation of them in 1B, and infer that the team DMIS_ PTG has the best
correlation scores based on the confidence intervals. We also compared BF. For
each team pairs (Supplementary Table 2) If the number is larger than 10,
scores of the team at row will be significantly higher than the scores of the team
at column. If the number is smaller than 0.1, scores of the team at row will be
significantly lower than the scores of the team at column. We found out only
team DMIS PTG can beat some of the other teams by NRMSD
(Supplementary Table 2A), but none of the team is dominant in this criterion.
Therefore we look at the comparison of correlation (Supplementary Table 2B)
and infer that the team DMIS_PTG has the best correlation scores based on the
BFs. In conclusion, this sub-challenge was won by team DMIS_PTG.

Evaluation of Imputation performance in Community Phase

To fully understand the improving of DreamAl from the baseline method KNN,
and in the mean time to study the impact on the imputation performance by the
protein behavior, we summarized the performance at cluster level. We defined
cluster by three different criteria: protein closeness, pseudo missing
performance, and protein abundance. Those clusters were constructed with
following procedure

1. Protein Closeness: We calculate the pairwise correlation of all proteins
having at least one missing datapoint in the PNNL data, and protein
closeness is calculated using average of largest 50 correlations of each
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protein(those 50 proteins were considered as its neighbor proteins, and
the average of correlation is regarded as closeness of that protein among
all neighbors). We split 289 proteins that are eligible to evaluation into 4
clusters based on the 4 quantiles, with the average closeness from
lowest (first cluster) to highest (4™ cluster).

2. Pseudo missing performance: NRMSD was calculated between
pseudo missing values of bagging datasets from the PNNL data and
corresponding observed value in the same data set. We used NRMSD to
form 4 clusters of the 289 proteins. These clusters are ordered from low
performance to high performance by the average pseudo NRMSD
values, meaning that meaning that the 1* cluster has the highest average
pseudo NRMSD and the 4" cluster has the lowest average pseudo
NRMSD.

3. Protein abundance: Finally, we also defined gene cluster by the range
of observed mean protein abundance and ordered the clusters from
lowest (first cluster) to highest (4™ cluster) mean protein abundances.
Genes within each cluster have similar protein abundance.

Methods of 3 baseline algorithms
ADMIN: Abundance Dependent Missing Data Imputation

The method is designed for imputation of isotopic labeling proteomics data in
which batch effects exist and missing data is dependent on protein
abundances.[6] Observed abundance data is assumed to follow a linear mixed-
effect model. Random intercept is accounted for batch effect at protein level.
Each protein is fitted by the linear regression of its close neighbors regardless of
the random intercepts in the model. Close neighbors are determined by the
pairwise correlation. A fixed number of neighbors are included in the linear
regression for each protein. On the other hand, a non-random missing
mechanism is assumed: missing rate is exponentially linear correlated with the
‘true’ abundance. Based on these assumptions, an EM(expectation-
maximization) based algorithm is employed to iteratively solve the linear
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prediction of missing values and estimation of the abundance dependent
missing parameters in one model: given a current estimation of imputation
values, in next M step random effects and parameters of missing mechanism
are estimated with both observed and imputed values; in the following E step,
for a given protein, the missing elements are predicted from the close neighbors
with linear model on both observed and imputed value after removing the bias
from missing mechanism and random effect values. To avoid huge computation
consumption, the default number of neighbors in algorithm is set to be 10.

knn.impute

impute.knn is a function designed to impute missing values of gene expression
data, using K-nearest neighbor averaging.[16,17] For each gene with missing
values, k nearest neighbors were found using a Euclidean distance metric,
confined to the columns for which that gene is NOT missing. After the k nearest
neighbors are identified for a gene, imputed value of a missing element is the
average of those (non-missing) elements of its neighbors. For categorical
variables the mode of the neighbors is used, and for continuous variables the
median value is used instead. To increase computation efficiency, gene sets
over certain threshold (set as 1500 in the package) were broken into blocks
using two-mean clustering. This is done recursively till all blocks have less than
the max number of genes. For each block, k-nearest neighbor imputation is
done separately.

missForest

missForest is developed to impute missing values particularly in mixed-type
data: continuous and/or categorical data including complex interactions and
nonlinear relations.[18] The missing data problem is addressed using an
iterative imputation scheme by training a Random forest model on observed
values, followed by predicting the missing values. Imputation problem is solved
by iteratively fitting and predicting procedure, since the imputed value on
predictors can help to obtain better prediction. Random forest is chosen to
model the missing value because it can handle mixed-type data and is known to
perform very well under conditions like high dimensions, complex interactions
and non-linear data structures. In case of high-dimensional data some
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parameters in the algorithm are suggested with a relatively small value, for
example: number of trees to grow in each forest and number of variables
randomly sampled at each split to obtain an appropriate imputation result within
a feasible amount of time. Moreover, it can be run parallel to save computation
time using an appropriate backend.

Methods of top 3 participants

SpectroFM: Matrix factorization-based imputation

In the computer science domain, the imputation of missing values, which has
been the focus of many studies, can be considered as a recommendation task
since a user’s unobserved preferences are represented as missing values in a
user-item matrix. Given a user-item matrix, a recommendation system predicts a
user’s preferences for an item based on other users’ existing preferences for the
item and the user’s preferences for other items. This is analogous to the task in
this challenge. If we consider proteins as items and patients as users, it is
possible to exploit collaborative filtering algorithms. We first apply Z-
normalization to a protein abundance data matrix to make the data fit a normal
distribution. We save the mean and variance to revert the data to its original
scale when we perform imputation. We train a low-rank matrix factorization
model on existing values in the normalized abundance matrix. For the
implementation of the matrix factorization model, we use LibFM, a factorization
machine library [34]. Using the calculated latent parameter matrix of proteins
and the latent parameter matrix of patients in the model, we reconstruct the best
approximation of the original input matrix by multiplying the two latent matrices.
Since the latent matrices are dense, the missing values in the original matrix are
imputed in the reconstructed approximated matrix. We set the dimensions of the
latent protein and patient matrices to 40. Consequently, the rank of the
reconstructed approximated matrix is 40. We use a Markov chain Monte Carlo
(MCMC)[38] algorithm to optimize parameters. One of the advantages of MCMC
is that it integrates regularization parameters into the model, which allows us to
skip hyper parameter optimization. After the imputation of missing values by the
multiplication of the latent matrices, we revert the normalized values to their
original scale using the saved mean and variance.
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Algorithm 1: SpectroFM
Input: binary indicator feature vector x and observed protein abundance values

obs

y
Output: imputed protein abundance values y

miss
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Reglmpute: Regression-based imputation

A conventional, post-processed proteomics dataset usually takes the form of a
two-dimensional array. From the perspective of training a regression model, the
columns of an array can be interpreted as features (dimensions), and the rows
can be considered as training instances (or vice-versa). The features and
instances can be used to train a predictive model to impute unobserved contains
missing values. One solution is to divide data sets into subsets, on which
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models can be trained. However, this approach can be very time consuming. A
second approach is to train a model on only complete dataset without missing
values. The drawback of this approach is that samples with missing values may
be characteristically different from samples without missing values (e.g., not
missing at random (NMAR) versus missing at random (MAR)). Reglmpute is a
combination of the two approaches above and uses a simple imputation method
such as mean imputation on the existing values to generate a complete training
set. In addition, users can impute missing values using the values (e.g., zeros)
selected by the users. Then, we use ridge regression, which is a fast and robust
linear regression technique. Ridge regression is an extension of linear
regression, and its regularization prevents it from overfitting. Ridge regression
performs regularization by adjusting weights to avoid focusing on only a few
features [37]. Using single regression on the dataset may be sufficient if the
initial guesses are nearly correct or if there are few missing values. However, in
some cases, the initial regression values are heavily influenced by a prior
assumption(s). For this reason, performing regression several times may reduce
estimation errors. At each iteration, we use the imputed missing values from the
previous imputation to improve regression for the current imputation. At some
point, usually after ~10 iterations, convergence is reached.

Algorithm 2: Reglmpute

Input: datg matrix Y of protein abundance

Output: Y

For each iteration n:

1. For each column Y; indata Y (i = 1,...,n) Split the data into two subsets:

Y miss,i- FOws with Y; missing
Yobs,i: Fows with Y; observed
2 Fill NAs in Yqpsi With the imputed values of Y iin iteration n-1 (fill in Os if n=1)

3 Train ridge regression model on data Yps,, to associate ith column with all the
other columns, obtain 3 to solve the minimization:

m/;n(Yc:bs,i - Yoibs,i:B)T (Yoibs,i - Yoibs,i ﬁ) + l(ﬂTﬂ - C)

4 Fill in NAs in Yniss,; With the imputed values of Ypsiin iteration n-1 (fill in Os if
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n=1)
for all but not ith column

5 Use trained model on Ygs; to predict ith column in Ypyissi with the other
columns as predictor
Yrri‘:ss,i =Yn;iss,iﬁ

6 repeat 1 to 5 until convergence of imputed value.

Birnn: Matrix completion and Bagging-based imputation

We consider the imputation of missing protein abundances in a protein-sample
matrix as a matrix completion problem. We assume that all the protein
abundances have the same data distribution because they are from the same
type of cancer, and thus the matrix is assumed to have a low rank structure.
Based on this assumption, we used the iteratively reweighted nuclear norm
(IRNN)[36] algorithm with the smoothly clipped absolute deviation (SCAD)[35]
penalty, which is a non-convex penalty function on singular values, to better
approximate the rank function and enhance low rank matrix approximation.
Moreover, we use the bootstrap aggregating algorithm to train multiple models
on sampled sub-datasets of the original dataset. The final prediction is given by
aggregating the outputs of the multiple models. The bootstrap aggregating
algorithm can help prevent models from over fitting by reducing model variance,
which contributes to performance improvement.

Algorithm 3: Birnn

Initialize: k =0, X5, W, i=1,2,...,min(m,n)
Output: X

1. while not converge do

2. Update X* by solving

min(m,n)

min, Z;WikO'i +%HX — (X —sVf(X k))Hi

with Weighted Singular Value Thresholding (WSVT).
Update the weights w¥, i = 1,2,...,min(m,n) by
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W =g,(0;(X*)

where
A160,0< A
_ 2 _ 2
g,(0) = 0 +260-1 A<0<7A
) 2y-1
M’0> }//1
2
3. end while
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Main Figure Captions

Figure 1. Missing rates and missing patterns in various proteomics data
sets from CPTAC ovarian studies [2,7]. (a) Distribution of protein level
missing rates in a 4plex-iTRAQ global-proteomics data set of 112 tumor
samples and a 10plex-TMT global proteomics data set of 120 tumor samples.
The ITRAQ and TMT data sets consist of 7126 proteins and 8290 proteins
respectively. (b) Distribution of phosphosite-level missing rates in a 4plex-iTRAQ
phospho-proteomics data set of 92 samples and a 10plex-TMT phospho-
proteomics data set of 120 samples. The iTRAQ and TMT data sets consist of
20746 and 45625 phosphosites respectively. (c) Percentage of multiplex-level
and non multiplex-level missing data in iTRAQ global- and phospho-proteomics
data sets. (d) Scatter plot of protein-level missing rates v.s. mean protein
abundances based on observed data in the iTRAQ global-proteomics data set.
(e) Scatter plot of phosphosite level missing rates v.s. mean phosphosite
abundances based on observed data in the iTRAQ phospho-proteomics data
set.

Figure 2. Proteomics Data Imputation Challenge competition design and
performance results of participants (a): Design of data simulation in
challenge phase. (b): Correlation and NRMSD evaluations of 17 submitted
imputation algorithms. Different colors and shapes represent different imputation
strategy categories. The dotted lines illustrate the performance level of KNN
imputation. Three leading algorithms with better performance than KNN
imputation have their names labeled. (c) Performance rank of all algorithms
summarized for each strategy category (*algorithms using multiple strategies
were listed multiple times in all relevant categories).

Figure 3. DreamAl algorithm and its performance. (a) Bagging procedure in
DreamAl. Firstly, different set of pseudo missing are introduced to original
observed data to generate a collection of bagging data sets. Then imputation is
performed for each bagging set using the consensus imputation method. The
final imputed matrix is the average of all bagging sets at the missing spots of the
original data. (b) Consensus imputation method in DreamAl: average of 6
algorithms including 3 baseline methods and 3 winning algorithms from the
Challenge. (c) Imputation performance (correlation) of all individual imputation
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method with and without bagging strategy. Average correlations are reported for
different protein strata based on different protein closeness, average
abundance, or pseudo missing performance evaluations. (d) Performance
comparison between DreamAl and all individual methods. Scaled correlation
was computed by dividing the performance correlation (imputed values v.s.
“ground truth” values) by the correlation between the observed data points of
this feature from PNNL- and JHU-data (please see the text). The dashed line in
the NRMSD panel represents the background NRMSD between PNNL- and
JHU-data based on data points observed in both data sets (please see Online
Method). The numbers on the bars represent the ranks of the performance.

Figure 4. Performance of DreamAl and KNN across different protein strata:
(a) protein closeness in observed data; (b) NRMSD performance of pseudo
missing data of all bagging sets; and (c) average protein abundances based on
observed data. Scaled correlation was computed by dividing the performance
correlation (imputed values v.s. “ground truth” values) by the correlation
between the observed data points of this feature from PNNL- and JHU-data
(please see the text). NRMSD-0 was the difference of performance NRMSD and
background NRMSD (based on data points observed in both data sets).

Figure 5. For a set of CCRCC tumors, proteomic data with DreamAl
imputation shows improved concordance with their corresponding
transcriptome data. (a) Scatter plot of protein-level missing rates vs. mean
protein abundances based on observed values in the global proteomics data of
103 CCRCC tumor samples [32]. (b) Scatter plot of protein-RNA correlation
based on the proteomics data with DreamAl imputation (y-axis) vs. that without
imputation (x-axis). (c) Scatter plot of significance levels (- log 10 p-value) for
testing protein-RNA association based on proteomics data with DreamAl
imputation (y-axis) vs. that without imputation (x-axis). (d) Number of genes
showing significant protein-RNA correlation based on proteomics data with
DreamAl imputation (pink) or without imputation (blue) at different p-value
cutoffs.
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Supplementary Figure Captions

Supplementary Figure 1. Missing rates and Missing patterns of ovarian
cancer global- and phospho-proteomics data [2,7]. (a) Proportion of proteins
with different level of missing multiplexes in global- and phospho-proteomics
iITRAQ data. (b) Proportion of proteins with different level of missing Multiplexes
in global- and phospho-proteomics TMT data. (c) Scatter plot of protein-level
missing rates v.S. mean protein abundances based on observed data in the
TMT global-proteomics data set. (d) Scatter plot of phosphor-site level missing
rates v.s. mean phosphosite abundances based on observed data in the TMT
phospho-proteomics data set.

Supplementary Figure 2. Imputation performance of DreamAl with absence
of one or all baseline methods on CPTAC2 ovarian cancer data set. (a)
Average imputation performance (scaled correlation and NRMSD) of all
proteins. (b) and (c) Average imputation performance of different protein
groups stratified by protein closeness and abundance.

Supplementary Figure 3. Comparing imputation performance (scaled
correlation and NRMSD) of baseline methods on CPTAC2 ovarian cancer
data set. Scaled correlation was computed by dividing the performance
correlation (imputed values v.s. “ground truth” values) by the correlation
between the observed data points of this feature from PNNL- and JHU-data
(please see the text). The dashed line in the bottom panel represents the
background level of NRMSD between PNNL- and JHU-data based on data
points observed in both data sets.

Supplementary Figure 4. For the CCRCC NAT (normal adjacent normal)
tissue samples, proteomic data with DreamAl imputation shows improved
concordance with their corresponding transcriptomic data. (a) Scatter plot
of protein-level missing rates vs. mean protein abundances based on observed
values in the global proteomics data of 80 CCRCC NAT samples [32]. (b)
Scatter plot of protein-RNA correlation based on the proteomics data with
imputation (y-axis) vs. that without imputation (x-axis). (c) Scatter plot of
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significance levels (- log 10 p-value) for testing protein-RNA association based
on proteomics data with imputation (y-axis) vs. that without imputation (x-axis).
(d) Number of genes showing significant protein-RNA correlation based on
proteomics data with imputation (pink) or without imputation (blue) at different p-
value cutoffs.

Supplementary Figure 5. Improved power to detect proteins associated
with tumor/normal status or immune subtypes based on the CPTAC-
CCRCC proteomic data with imputation by DreamAl than that by KNN.
Focusing on 49 proteins with substantially different imputed values by DreamAl
and KNN (NRMSD>0.5), the violin plots in (a) illustrate the distributions of p-
values from two-sample t-tests searching for differential expressed proteins
between tumor and NAT samples based on the proteomic data matrix without
imputation (grey), with imputation by KNN (light blue) and with imputation by
DreamAl (red) respectively. (b) is the same as (a) except that the p-values were
from Kruskai-Wallis tests searching for proteins associated with immune
subtypes.
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Supplementary Tables

Supplementary Table 1. Comparing results of Cl. For each team in the row,
number of intervals none-overlapped with (and higher than) the reference team
at each column was showing in the table. Table 1A is showing comparison of
NRMSD and Table 1B is showing comparision of correlation.

a

NRMSD Confidence Interval Rl |R2 |R3 | R4 |Ref
Hongyang Li and Yuanfang Guan (R1) 2 2 2 2
DMIS_PTG(R2) 2 0 0 0
BruinGo(R3) 2 0 0 0
Jeremy(R4) 2 0 0 0
KNN(Ref) 2 0 0 0

b

Correlation Confidence Interval R1 |R2 |R3 |R4 |Ref
Hongyang Li and Yuanfang Guan (R1) 0 0 0 0
DMIS_PTG(R2) 4 4 4 4
BruinGo(R3) 4 0 0 0
Jeremy(R4) 4 0 4 4
KNN(Ref) 4 0 0 0
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Supplementary Table 2 Comparing results of BF. For each team in the row,
BF against the reference team at each column was showing in the table.Table
2A is showing comparision of NRMSD and Table 2B is showing comparision of

correlation

a
NRMSD BayesFactor R1 R2 R3 R4 Ref
Hongyang Li and Yuanfang Guan (R1) 1 1 1 1
DMIS_PTG(R2) 1 Inf | Inf | Inf
BruinGo(R3) 1 0 1 |1.38
Jeremy(R4) 1 0 1 1
KNN(Ref) 1 0 |072] 1

b
Correlation BayesFactor R1 R2 R3 R4 | Ref
Hongyang Li and Yuanfang Guan (R1) 0 0 0 0
DMIS_PTG(R2) Inf Inf Inf Inf
BruinGo(R3) Inf 0 0 1.04
Jeremy(R4) Inf 0 Inf Inf
KNN(Ref) Inf 0 |09 | O
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Supplementary Table 3. The NCI-CPTAC Proteogenomics DREAM
imputation Challenge Participants

Full Name Affiliation
Gajendra Pal Indraprastha Institute of Information Technology, Delhi,
Singh Raghava INDIA
Sunil V Kalmady | University of Alberta,Edmonton, Alberta, Canada
Harpreet Kaur CSIR-Institute of Microbial Technology, Chandigarh, INDIA
Piyush Agrawal | CSIR-Institute of Microbial Technology, Chandigarh, INDIA
Salmaq Sadullah CSIR-Institute of Microbial Technology, Chandigarh, INDIA
Usmani
Eunji Heo Deargen Inc. & School of Computing, KAIST, Daejeon,
South Korea.
Bora Lee Deargen Inc., Daejeon, South Korea
vunoend Liu Department of Biology, Massachusetts Institute of
peng Technology, Cambridge MA, USA
Wei Chen. Department of Biology, Sou.thern University of Science and
Technology, Shenzhen, China.
Yue Shan Department of Biostatistics, The University of North
Carolina at Chapel Hill, USA
Honatu Zhu Department of Biostatistics, the University of Texas MD
g Anderson Cancer Center, USA
Kaixian Yu Department of Biostatistics, the University of Texas MD
Anderson Cancer Center, USA
Honavana Li Department of Computational Medicine and Bioinformatics,
dyang University of Michigan, Ann Arbor, MI, USA
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Department of Computational Medicine and Bioinformatics,

Yuanfang Guan University of Michigan, Ann Arbor, MI, USA

Department of Computer Science and Engineering &
Jaewoo Kang Interdisciplinary Graduate Program in Bioinformatics,
College of Informatics, Korea University

Department of Computer Science and Engineering, College

Daehan Kim . . .
aehan K of Informatics, Korea University

Department of Computer Science and Engineering, College

Keonwoo Kim . : .
of Informatics, Korea University

Department of Computer Science and Engineering, College

Minji Jeon of Informatics, Korea University

Sunkyu Kim Departmen} of Computer Scu?nce and Engineering, College
of Informatics, Korea University

Yonghwa Choi Departmeqt of Computer. Smepce and Engineering, College
of Informatics, Korea University

L Department of Radiology, The University of North Carolina
Tengfei Li at Chapel Hill, USA
Liuging Yan Department of Statistics and Operations Research, The
aing g University of North Carolina at Chapel Hill, USA
Maomao Ding Department of Statistics, Rice University, USA

Department of Statistics, University of California, Los

Jingyi Jessica Li Angeles, CA, USA

Department of Statistics, University of California, Los

Kexin Li Angeles, CA, USA

Department of Statistics, University of California, Los

Xinzhou Ge Angeles, CA, USA

Electrical Engineering and Computer Science, Case

Hulyuan Chen. |\ estern Reserve University, USA
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Electrical Engineering and Computer Science, Case

Ke Hu, Western Reserve University, USA
Kumardeep Epidemiology Program, University of Hawaii Cancer Center,
Chaudhary Honolulu, HI, 96813, USA

Nai-Wen Chang

Graduate Institute of Biomedical Electronics and
Bioinformatics, National Taiwan University, Taipei, Taiwan

Jia Xin Yu,

Icahn School of Medicine at Mount Sinai, New York, New
York

Devishi Kesar

Indraprastha Institute of Information Technology, Delhi,
INDIA

Sherry Bhalla

Indraprastha Institute of Information Technology, Delhi,
INDIA

Institute for Molecular Medicine Finland, Helsinki Institute of

Mehreen Al Life Science, University of Helsinki, Finland
Institute of Enzymology, Research Centre for Natural
Abel Féthi Sciences, Hungarian Academy of Sciences, Budapest,

Hungary

Ching-Tai Chen

Institute of Information Science, Academia Sinica, Taipei,
Taiwan

Ting-Yi Sung

Institute of Information Science, Academia Sinica, Taipei,
Taiwan

Heewon Lee

Interdisciplinary Graduate Program in Bioinformatics,
College of Informatics, Korea University

Hwisang Jeon

Interdisciplinary Graduate Program in Bioinformatics,
College of Informatics, Korea University

Sandeep Kumar
Dhanda

La Jolla Institute for Immunology, La Jolla, CA, USA

Swapnil Mahajan

La Jolla Institute for Immunology, La Jolla, CA, USA
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Master Program in Clinical Pharmacogenomics and
San-Yuan Wang | Pharmacoproteomics, College of Pharmacy, Taipei Medical
University, Taipei, Taiwan

Shujiro Okuda Niigata University, Niigata, Japan

Yasuhiro . . . .
Kambara Niigata University, Niigata, Japan

Turku Bioscience Centre, University of Turku and Abo
Laura L. Elo o : .

Akademi University, Turku, Finland
Mehrad Turku Bioscience Centre, University of Turku and Abo
Mahmoudian Akademi University, Turku, Finland

Turku Bioscience Centre, University of Turku and Abo

Sohrab Sarael Akademi University, Turku, Finland

Turku Bioscience Centre, University of Turku and Abo

Tomi Suomi Akademi University, Turku, Finland
Tommi Turku Bioscience Centre, University of Turku and Abo
Valikangas Akademi University, Turku, Finland

Russell Greiner | University of Alberta, Edmonton, Alberta, Canada

Roberto Vega University of Alberta,Edmonton, Alberta, Canada

Jeremy R.

University of Colorado Boulder, Boulder, Colorado, USA
Jacobsen
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