

1 **Comparison of long read sequencing technologies in resolving**
2 **bacteria and fly genomes**

3 Eric S. Tvedte¹, Mark Gasser¹, Benjamin C. Sparklin¹, Jane Michalski^{1,2}, Xuechu Zhao¹, Robin
4 Bromley¹, Luke J. Tallon¹, Lisa Sadzewicz¹, David A. Rasko^{1,2}, Julie C. Dunning Hotopp^{1,2,3}

5 ¹Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD,
6 21201, USA

7 ²Department of Microbiology and Immunology, University of Maryland School of Medicine,
8 Baltimore, MD, 21201, USA

9 ³Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD,
10 21201, USA

11

12 ABSTRACT

13 Background

14 The newest generation of DNA sequencing technology is highlighted by the ability to sequence
15 reads hundreds of kilobases in length, and the increased availability of long read data has
16 democratized the genome sequencing and assembly process. PacBio and Oxford Nanopore
17 Technologies (ONT) have pioneered competitive long read platforms, with more recent work
18 focused on improving sequencing throughput and per-base accuracy. Released in 2019, the
19 PacBio Sequel II platform advertises substantial enhancements over previous PacBio systems.

20 Results

21 We used whole-genome sequencing data produced by two PacBio platforms (Sequel II and RS
22 II) and two ONT protocols (Rapid Sequencing and Ligation Sequencing) to compare assemblies
23 of the bacteria *Escherichia coli* and the fruit fly *Drosophila ananassae*. Sequel II assemblies had
24 higher contiguity and consensus accuracy relative to other methods, even after accounting for
25 differences in sequencing throughput. ONT RAPID libraries had the fewest chimeric reads in
26 addition to superior quantification of *E. coli* plasmids versus ligation-based libraries. The quality
27 of assemblies can be enhanced by adopting hybrid approaches using Illumina libraries for
28 bacterial genome assemblies or combined ONT and Sequel II libraries for eukaryotic genome
29 assemblies. Genome-wide DNA methylation could be detected using both technologies,
30 however ONT libraries enabled the identification of a broader range of known *E. coli*
31 methyltransferase recognition motifs in addition to undocumented *D. ananassae* motifs.

32 Conclusions

33 The ideal choice of long read technology may depend on several factors including the question
34 or hypothesis under examination. No single technology outperformed others in all metrics
35 examined.

36 **Keywords**

37 Third generation sequencing, *de novo* assembly, methylome, genome, genome sequencing,
38 PacBio Sequel 2, Oxford Nanopore Technologies, *Drosophila ananassae*, *Escherichia coli*,
39 heterochromatin, euchromatin, chromosomes

40 INTRODUCTION

41 Long read sequencing technologies enable the production of highly contiguous and accurate
42 genome assemblies. Since the release of the Pacific Biosciences (PacBio) RS sequencer in
43 2011 and the Oxford Nanopore Technologies (ONT) MinION sequencer in 2014, improvements
44 in sequencing chemistries and new sequencing platforms have continued to produce longer
45 sequences and higher sequencing throughput, thus decreasing per-base sequencing costs [1].
46 Most recently, the PacBio Sequel II system advertises the highest throughput out of any of its
47 sequencing platforms and includes two distinct sequencing modes: continuous long read
48 sequencing (CLR) for ultralong reads and circular consensus sequencing (CCS/PacBio HiFi) for
49 highly-accurate consensus reads. An insect genome assembled with Sequel II data has been
50 published [2], however Sequel II comparative assembly performance relative to existing
51 sequencing technologies is less clear.

52 Beyond improving genome assemblies, long read sequencing can be used as an alternative to
53 bisulfite sequencing to detect genome-wide DNA methylation, producing the methylome of the
54 organism. DNA methylation is found across the tree of life and is associated with a wide range
55 of biological functions, including protection of host DNA against endonuclease cleavage, DNA
56 replication, and gene expression [3]. DNA modification events are detected as measurements of
57 DNA polymerase kinetics in PacBio SMRT sequencing [4-6] and as changes in the ionic current
58 signal in the ONT nanopore [7, 8].

59 Although long reads can be useful in overcoming potential pitfalls of assembling with short read
60 data alone, there are notable disadvantages of long read sequencing data. The error rate for
61 single pass sequencing is ~13% for PacBio sequencers and ~15% for ONT [9, 10]. Methods
62 have been developed to address these high error rates, such as the use of error correction
63 before or after the assembly to achieve a highly accurate consensus sequence [11], or the

64 derivation of a consensus read from multiple passes of a single template molecule during the
65 sequencing run (e.g. PacBio HiFi; [12]). Artefactual chimeric reads, DNA sequences that
66 originate from two distinct parent sequences, can also hinder the assembly process, although
67 this is also a problem with all prior sequencing platforms. Chimeric reads have been reported in
68 PacBio [13] and ONT sequencing [14], and preparations involving ligation and/or PCR
69 amplification steps are likely to generate such artefacts.

70 Here, we investigate the quality of long read sequencing data produced using four methods:
71 PacBio RS II, PacBio Sequel II CLR, ONT Rapid Sequencing Kit (ONT RAPID), and ONT
72 Ligation Sequencing Kit (ONT LIG). We also sequenced Illumina and PacBio HiFi libraries for
73 hybrid assemblies and genome polishing. To evaluate small genome assemblies, we used
74 *Escherichia coli* E2348/69, a pathovar causing diarrheal illness with a complete genome
75 sequence including numerous plasmids [15], making it an ideal reference for testing the
76 completeness and accuracy of bacterial and plasmid assemblies. To compare assemblies of a
77 larger genome, we produced long reads for *Drosophila ananassae* Hawaii which was previously
78 sequenced but was highly fragmented [16, 17]. Overall, we demonstrate that no method was
79 superior in all analyses performed, and the decision to use PacBio and ONT platforms for
80 sequencing may depend on the specific question being addressed.

81 RESULTS

82 **Read composition and *de novo* assembly performance in *E. coli***

83 *E. coli* sequencing data was generated from PacBio RS II, PacBio Sequel II, ONT RAPID, and
84 ONT LIG (**Figure 1**; **Table S1**). PacBio Sequel II libraries had the highest read N50 value of any
85 library and represented a substantial improvement in read length and sequencing throughput
86 relative to PacBio RS II. The ONT RAPID and LIG libraries had similar read N50 values (20-22
87 kbp) but 50-fold less total sequencing data was obtained from the RAPID run. The maximum
88 read length for ONT libraries were about 50 kbp longer than PacBio Sequel II, representing a
89 ~33% increase in these runs (**Table S1**).

90 Because we did not make an effort to sequence at the same depth in all libraries, the
91 distributions of read lengths and sequenced bases per read length largely reflect differences in
92 the total sequencing throughput of each run (**Figure 1A**). When read counts were expressed as
93 percentages, the abundance of reads <5 kbp in ONT RAPID relative to other libraries reflects
94 the lack of library size-selection in this protocol (**Figure 1B**). The PacBio RS II library had a
95 large percentage of ~10 kbp reads with counts decreasing sharply to the library's maximum
96 read length of ~33 kbp. PacBio Sequel II had higher percentages at intermediate read lengths
97 (20-100 kbp) but ONT had greater read representation at read lengths >100 kbp (**Figure 1B**).
98 Additional ONT libraries were generated to assess variability in sequencing runs but were not
99 assembled in this study.

100 To enable *de novo* assemblies using similar amounts of input sequencing data, read sets were
101 randomly downsampled to approximate the PacBio RS II depth while maintaining the observed
102 patterns for the full datasets (**Figure S1**). *E. coli* assemblies were produced from these random
103 subsets (a) using Canu with long reads alone, (b) using Unicycler with long reads, and (c) using
104 Unicycler with a hybrid approach combining the long reads combined with Illumina reads. All *E.*
105 *coli* assemblies were ~5 Mbp, similar to the reference genome [15] but had variable length and

106 contig composition in Canu and Unicycler long-read assemblies (**Table 1**; **Table S2**). Most
107 libraries produced a single *E. coli* genome contig, whereas the ONT LIG Canu and Unicycler
108 long read assemblies had two genome contigs, and the PacBio RS II Canu assembly had four
109 (**Table 1**). All of the Unicycler hybrid assemblies using Illumina and long-read data produced
110 identical 4,943,955 bp *E. coli* genome sequences and 5,218 bp p5217 plasmid sequences
111 (**Table 1**; **Figure S2**). The 96,603 bp pMAR2 plasmid was identical in ONT RAPID, ONT LIG,
112 and PacBio Sequel II hybrid assemblies, but different in the PacBio RS II hybrid assembly
113 (96,184 bp). Contaminants were present in these assemblies that were removed following
114 assembly; the Illumina libraries contain contaminating reads, as is common, and in this case
115 included reads from human, *Neisseria gonorrhoeae*, and an unknown bacteria.

116 **Conserved gene content in *E. coli* assemblies**

117 The presence of highly conserved bacterial genes in *E. coli* assemblies was assessed using
118 BUSCO [18, 19]. In all cases, BUSCO failed to identify the 50S ribosomal protein L35 and 30S
119 ribosome binding factor RbfA, which could be identified using BLASTN searches with protein
120 queries from *E. coli* E2348/69 (Genbank CAS09394.1 and CAS10996.1, respectively). The
121 remaining 146/148 BUSCO genes were characterized with variable success in long read
122 assemblies. Many BUSCO genes were missing from assemblies of ONT reads without
123 polishing, although Canu assemblies of only PacBio reads without polishing yielded all 146
124 genes. Polishing with Illumina or HiFi reads led to recovering all 146 genes in most cases,
125 including: (a) all hybrid Unicycler assemblies that included Illumina sequencing data; (b) all ONT
126 libraries with Illumina or PacBio HiFi reads; (c) PacBio RS II alone or with Illumina or PacBio
127 HiFi reads; and (d) PacBio Sequel II data alone (**Table S2**). Sequel II assemblies with Illumina
128 or PacBio HiFi reads were missing 2-15 additional genes, and many BUSCO genes were
129 missing from the assemblies with Unicycler or Canu that used only long reads for polishing.

130 The consensus *E. coli* genome sequenced in this study was ~20 kbp shorter than the published
131 genome sequence for this strain (**Table 2**). To validate the genome reduction, we focused on a
132 ~16 kbp region that was present in the NCBI sequence but absent in the Unicycler assembly
133 (**Figure S3A**). The junction spanning the deletion region was validated with PCR amplification
134 (**Figure S3B**), and genes apparently absent from this *E. coli* specimen are involved in colanic
135 acid biosynthesis (**Table S3**).

136 **Read and assembly correctness in *E. coli***

137 Assembly correctness was evaluated using a method similar to Wick et al. [20]. The *E. coli*
138 chromosome was aligned to a trusted consensus that consisted of all ≥ 5 kbp contigs assembled
139 separately using only Illumina data. Long read assemblies had 99-100% accuracy relative to the
140 trusted consensus (**Table S2**). Assemblies polished with long read data alone were less
141 accurate than those polished with short reads and PacBio HiFi reads. All Unicycler hybrid
142 assemblies had 100% identity to the trusted consensus. ONT libraries assembled with Canu
143 were the least accurate, and PacBio assemblies were consistently more accurate than ONT.
144 Systematic, non-random errors in ONT sequencing data may cause this lower consensus
145 accuracy [21].

146 The resolution of the *E. coli* genome into a single contiguous sequence enabled the assessment
147 of the presence of chimeric reads in long read libraries. After mapping reads to the consensus
148 Unicycler genome sequence, chimeras were quantified using Alvis [22]. The ONT RAPID library
149 had the lowest percentage of putative chimeric reads (0.03%), while ONT LIG had the highest
150 (1.44%), (**Table S4**). Visualization of alignments in IGV did not suggest an artificial inflation of
151 chimeras (**Figure S4**).

152 **Detecting DNA modification using *E. coli* long read libraries**

153 According to REBASE [23], *E. coli* E2348/69 has ten methyltransferases and three methylated
154 motifs, including m6A modification of 5'-GATC-3' by DNA adenine methyltransferase (Dam) and

155 its three paralogs, m6A modification of 5'-ATGCAT-3 by YhdJ DNA methyltransferase, and 5mC
156 modification of 5'-CCWGG-3' by DNA cytosine methyltransferase (Dcm) [24].

157 Using the PacBio RS II library, the SMRT Tools DNA base modification pipeline identified five
158 DNA motifs forming three distinct palindromes that were only enriched for m6A methylation
159 (**Table S5**). There were 39,668 GATC sites identified in the *E. coli* dsDNA genome sequence,
160 and >99.9% were characterized as methylated (**Table S5**), likely by Dam and its paralogs. Most
161 GATC sites assigned as unmethylated were noncoding (**Table S6**), in agreement with the
162 observation of methylase protection in noncoding regions in a previous study [25]. The
163 YTCAN⁶GTNG/CNACN⁶TGAR motif had 878 sites with nearly ubiquitous methylation. This DNA
164 methylase recognition sequence is shared with four REBASE entries, including three *E. coli*
165 strains and *Shigella boydii* ATCC 49812 but was not previously characterized in this *E. coli*
166 strain. The CYYAN⁷RTGA/TCAYN⁷TRRG motif had 579 sites and was nearly universally
167 methylated but had no matches in REBASE (**Table S5**).

168 The greater sequencing depth of the Sequel II library resulted in higher modification quality
169 values (QV) and GV/GT was a nondescript motif reported by default SMRT Tools parameters
170 (**Table S5**). Guanine nucleotides had exceptionally high baseline modification QV, indicative of
171 bias in the v0.9 beta sequencing chemistry likely resulting in spurious identification of GV/GT as
172 methylated motifs (**Figure S5**). This bias was not unexpected since base modification was not
173 supported in this chemistry release during the beta testing phase when this sequencing was
174 completed. However, at the suggestions of Pacific Biosciences, increasing the modification QV
175 threshold removed the GV/GT motifs from the report but identified fewer methylated GATC sites
176 (99.3%; **Table S5**). Elevated baseline modification QV scores were not observed in RS II data
177 (**Figure S5**).

178 DNA methylation in *E. coli* ONT libraries was assessed with tombo [26]. Tombo uses canonical
179 base models for *de novo* detection of DNA methylation events in addition to alternative models

180 that are modification-centric (e.g. m5C, m6A) or motif-centric (e.g. GATC, CCWGG). The *de*
181 *novo* model identified a high incidence of methylation activity at the GATC, YTCAN⁶GTNG, and
182 TCAYN⁷TRRG palindromic motifs similar to the PacBio sequencing (**Figure 2A; Figure S6**).
183 There was no apparent support for methylation at ATGCAT motifs, which is consistent with the
184 PacBio results (**Figure S6**). Unlike PacBio, ONT sequencing identified cytosine methylation at
185 CCWGG motifs (**Figure 2B**). Detection of methylated GATC and CCWGG motifs improved with
186 the increased sequencing depth of the ONT LIG data, supporting previous findings (**Figure 2C**)
187 [26].

188 Due to the distinct pipelines of SMRT Tools and tombo, it is difficult to assess the convergence
189 of DNA modification using PacBio and MinION sequencing. In addition to the joint identification
190 of specific m6A-methylated motifs, there is a positive association between PacBio modification
191 QV and the proportion of ONT reads supporting a methylation event when considering all *E. coli*
192 adenine residues (**Figure 2D**).

193 ***E. coli* plasmids are underrepresented in ligation-based libraries**

194 The presence of the ~97 kbp plasmid pMAR2 and the ~5 kbp plasmid p5217 was confirmed
195 with searches against the plasmid database PLSDB [27]. Without polishing, the plasmid contig
196 was frequently up to 2X-longer than the actual plasmid, but this could be resolved with polishing
197 and circularization (**Table S2**). The p5217 plasmid was not assembled with only PacBio RS II or
198 Sequel II data, the pMAR2 was not assembled with ONT LIG data alone, and the previously
199 reported pE2348-2 plasmid from this *E. coli* strain (Genbank FM18070.1) [15] was not present
200 in any assemblies.

201 Size-selected libraries may fail to produce plasmid sequences in assemblies if plasmid sizes are
202 small, but assemblers could also fail to properly identify plasmids because of k-mer abundance
203 differences due to copy-number differences. To differentiate between these scenarios, reads
204 were mapped to a reference containing the consensus *E. coli* genome and two plasmids from

205 the Unicycler assemblies with Illumina error correction that was recovered independently four
206 times, once for each long read library. The combined depth of pMAR2 and p5217 contributed to
207 nearly 5% of total sequencing depth in ONT RAPID libraries with both being estimated to be
208 present in 2-3X copy number relative to the *E. coli* genome (**Table S7**). Sequence reads from
209 plasmids were less abundant in other libraries, contributing to less than 2% of total sequencing
210 depth in ONT LIG and PacBio datasets. The size-selected PacBio libraries had no primary
211 alignments reads mapping to the p5217 plasmid.

212 Using qPCR, there are approximate two copies of p5217 per genome, similar to the observed
213 ratio in the ONT RAPID reads (**Table S7**; **Table S8**; **Table S9**; **Figure S7**) while there is
214 approximate one copy of pMAR2 per genome. Assuming that the qPCR results are correct, this
215 suggests that it is overrepresented in the ONT RAPID library and underrepresented in ONT LIG
216 and PacBio libraries, although amplification biases have been demonstrated in plasmid qPCR
217 experiments [28]. The results for the pE2348-2 replicates resembled the negative control,
218 suggesting this plasmid is not present in this *E. coli* sample (**Figure S7**). These findings are
219 consistent with previous observations of underrepresentation of small plasmid sequences in
220 size-selected libraries [20, 29].

221 **ONT variability**

222 There are reports of ONT sequencing variability, which was assessed with an additional ONT
223 RAPID library as well as an additional ONT LIG library that lacked shearing and size selection
224 steps. The second ONT RAPID run generated 7.2 Gbp of sequencing data (an 8-fold increase
225 after correcting for run time) and had a similar read length distribution as the first run (**Table S1**;
226 **Figure 1**). The second ONT LIG run generated ~1.0 Gbp of sequencing data and had a larger
227 proportion of short reads sequenced, similar to the two ONT RAPID runs (**Table S1**; **Figure 1**).
228 Estimated copy number of both plasmids was similar in the two ONT RAPID runs (**Table S7**).
229 Recovery of plasmid reads was superior in the second ONT LIG library, with pMAR2 copy

230 number closer to the expected 1X but p5217 remaining underrepresented (**Table S7**). Overall,
231 all but ONT RAPID gave lower than expected plasmid sequencing depth ratios while ONT
232 RAPID was the only protocol to consistently produce reads corresponding to small plasmids.

233 **Read composition and *de novo* assembly performance in *D. ananassae***

234 *D. ananassae* sequencing data produced from PacBio and ONT libraries had read composition
235 profiles similar to *E. coli* (**Table S1**; **Figure S8**). The PacBio Sequel II library had the highest
236 read N50 value while ONT libraries had longer maximum read lengths. The two ONT libraries
237 had similar overall throughput, with RAPID having higher representation of <10 kbp reads and
238 LIG having higher representation of >10 kbp reads (**Figure S8**). The sequencing depth of the
239 PacBio RS II library (~4X) was too low to assemble individually.

240 *D. ananassae* assemblies were produced (a) using Canu with individual long read libraries and
241 (b) using Canu to generate hybrid assemblies with combined read data from PacBio Sequel II
242 and one additional read library. All assemblies were generated with default Canu parameters,
243 with the longest reads up to ~40X sequencing depth used to construct the assembly. *D.*
244 *ananassae* assembly sizes were 208-234 Mbp, partially overlapping the 185-224 Mbp range of
245 reported genome size estimates for this species (**Table 2**) [30]. All assemblies had fewer than
246 700 contigs and had maximum contig sizes >20 Mbp. Among single library assemblies, the
247 PacBio Sequel II assembly had the lowest contig count and the highest contig N50. Despite
248 ONT reads being the longest, the hybrid ONT RAPID + Sequel II assembly had a lower N50
249 value and the largest contig was smaller (**Figure S9**; **Table S10**). The hybrid Sequel II + RS II
250 had the largest single contig of any assembly, however other large contigs corresponding to
251 euchromatic arms were smaller in this assembly relative to Sequel II alone and Sequel II + ONT
252 LIG (**Figure 4**). All assemblies produced in this study were more contiguous than prior
253 assemblies using capillary-based sequencing [16] and ONT sequencing [17] (**Figure S9**; **Table**
254 **S10**).

255 **Comparison of major chromosomes in *D. ananassae* genome assemblies**

256 The *D. ananassae* genome contains three euchromatic chromosomes (X, 2, 3) and two

257 heterochromatic chromosomes (4, Y) [31]. Since all assemblies were more contiguous than

258 previously published *D. ananassae* genomes, a new high-quality *D. ananassae* reference

259 genome was separately assembled (referred to here as Dana.UMIGS) to facilitate comparisons

260 between assemblies generated in this study. Briefly, the Dana.UMIGS assembly was

261 constructed by merging a Flye assembly generated using Sequel II reads with a Canu assembly

262 using Sequel II + ONT LIG reads and subsequently removing contaminants, assembly artefacts,

263 and erroneously duplicated regions. The final Dana.UMIGS genome assembly was 234 Mbp,

264 had 154 contigs, and resolved the six euchromatic arms (XL, XR, 2L, 2R, 3L, 3R) into six

265 contigs totaling 158 Mbp (**Figure 3-Figure 5**). The spatial organization of the euchromatic arms

266 is supported by physical maps of polytene chromosomes, including a known strain-specific

267 chromosomal inversion on 3L (**Figure 3-Figure 5; Table S11**) [31]. Chromosome arms were

268 more highly fragmented in assemblies using individual long read libraries, with these same

269 regions in at least 11, 15, and 26 contigs in the PacBio Sequel II, ONT LIG, and ONT RAPID

270 assemblies, respectively (**Figure 3-Figure 5; Table S12-Table S14**). Chromosome X was more

271 fragmented in ONT assemblies and the order and orientation of the X pericentromere regions

272 were not consistently resolved across assemblies (**Figure 3**). The euchromatic arms of

273 chromosomes 2 and 3 were more contiguous and the Sequel II assembly contained

274 pericentromeric regions in these chromosomes (**Figure 4; Figure 5**). Differences in

275 chromosome fragmentation in individual library assemblies enabled the resolution of contiguous

276 sequence in the Dana.UMIGS assembly which used both ONT and PacBio reads.

277 Chromosomes 2L and 2R were resolved from multiple contigs in the ONT LIG and PacBio

278 Sequel II assembly, respectively (**Figure 4**) and the entire chromosome 3 was assembled into a

279 single large contig (**Figure 5**).

280 **Conserved gene content in *D. ananassae* assemblies**

281 The identification of complete metazoan BUSCOs was consistently high (90-98%) across *D.*
282 *ananassae* assemblies (**Table 2**; **Table S10**). As observed in *E. coli*, ONT assemblies had a
283 higher proportion of missing and fragmented BUSCOs while PacBio assemblies had more
284 successfully characterized single-copy BUSCOs (**Table S10**). After polishing the ONT LIG +
285 PacBio Sequel II assembly, maximal BUSCO recovery (962/978; ~98%) was produced with
286 PacBio HiFi polishing, similar to the proportion found in the Dana.UMIGS assembly (963/978)
287 and the Miller *et al.* genome assembly (961/978) (**Table S10**). Of the 14 genes characterized as
288 incomplete by BUSCO, 13 were incomplete in the published Miller *et al.* assembly and eight
289 were incomplete in *D. melanogaster* Release 6 (Genbank GCA_000001215.4), meaning that
290 these genes may indeed be absent from *D. ananassae*.

291 **Assembly correctness in *D. ananassae***

292 Assemblies using PacBio Sequel II data were ~10-20 Mbp larger relative to ONT assemblies
293 (**Table 2**). The genome fraction was calculated for each assembly in QUAST-LG as the length
294 of aligned sequence in a queried assembly divided by the Dana.UMIGS assembly size. The
295 genome fraction was lower in ONT versus PacBio assemblies (**Table 2**). The duplication ratio
296 was calculated for each assembly in QUAST-LG as the length of aligned sequence in a queried
297 assembly divided by the length of aligned sequence in Dana.UMIGS. PacBio assemblies had
298 slightly higher duplication ratios relative to ONT assemblies (**Table 2**). The number of duplicated
299 BUSCOs was also 3-4X higher in PacBio assemblies compared to ONT assemblies and
300 published *D. ananassae* genomes (**Table S10**). While there may be true duplications in *D.*
301 *ananassae*, the higher duplicated BUSCOs could be a consequence of mis-assembled regions
302 due to elevated chimeric reads as observed in *E. coli*. The sequenced *D. ananassae* line was
303 highly inbred, therefore duplicated regions are less likely due to recent divergence of haplotypes
304 and more likely due to sequencing/assembly errors.

305 The Dana.UMIGS assembly was polished for successive rounds with PacBio Sequel II and
306 PacBio HiFi data and was compared to other assembled genomes to evaluate assembly
307 accuracy using QUAST-LG. Consensus accuracy was estimated by dividing 100 kbp by the
308 sum of the mismatch rate (MMR) and the indel rate (IDR), both which were calculated in
309 QUAST-LG per 100 kbp of aligned sequence. All assemblies had >99% consensus accuracy
310 (**Table S10**). PacBio assemblies had fewer mismatches (29-90 MMR) than ONT (134 and 167
311 MMR in ONT LIG and RAPID, respectively) and indel frequencies in PacBio assemblies were
312 tenfold lower (**Table S10**). Although we did not exhaustively test genome polishing schemes for
313 all *D. ananassae* assemblies, polishing the ONT LIG + PacBio Sequel II using various read sets
314 reduced the frequency of mismatches and indels relative to the original assembly, and the
315 highest consensus accuracy (>99.9%) was achieved with PacBio HiFi polishing.

316 **Assembly of heterochromatic regions in *D. ananassae***

317 Repeat-rich regions are notoriously difficult to assemble and thus tend to be understated in
318 genome reports. Substantial portions of the *D. ananassae* genome are highly heterochromatic,
319 including all of chromosomes 4 and Y. *D. ananassae* has an expanded chromosome 4 relative
320 to other *Drosophila* species, appearing similar in size to the X chromosome [31]. The increased
321 size of chromosome 4 is partially attributed to its incorporation of large lateral gene transfers
322 (LGT) from its *Wolbachia* endosymbiont (wAna) [32, 33]. There is also evidence for
323 retrotransposon proliferation in *D. ananassae* chromosome 4 relative to *D. melanogaster* [34].
324 The sequencing of long reads spanning repeat regions should enable the resolution of
325 heterochromatin in fewer and longer contigs. To compare the contiguity of heterochromatic
326 regions between assemblies, an additional QUAST-LG analysis was performed after removal of
327 sequences corresponding to the euchromatic chromosome arms. The 206 heterochromatic
328 contigs in the PacBio Sequel II assembly had a size of 76 Mbp and a contig N50 of 1.6 Mbp

329 (Table S15). ONT assemblies had over twice the number of heterochromatic contigs and N50
330 values <750 kbp, consistent with the lower overall contiguity in ONT assemblies (Table S15).

331 **Detecting DNA modification using *D. ananassae* long read libraries**

332 The extent of DNA methylation in *Drosophila* is not fully understood. Methylation in animals
333 consists primarily of cytosine modification in CpG islands maintained by multiple DNA
334 methyltransferases (DNMTs) [35]. *D. melanogaster* lacks homologs of DNMT1 and DNMT3 but
335 possesses DMNT2 which is highly conserved across dipterans, mouse, and human [36]. In the
336 attempt to characterize methylation in *D. melanogaster*, multiple studies disagree in (a) the
337 extent of genome-wide cytosine methylation and (b) the role of DMNT2 in this process [37-40].
338 The retention of cytosine methylation in DNMT2-knockout embryos [41, 42] indicate there are
339 unidentified methyltransferases in *Drosophila*. Global 5mC has been quantified in *D. ananassae*
340 using liquid-chromatography-mass spectrometry [43], but methylated motifs have not been
341 reported.

342 Given its lower sequencing depth, the application of DNA modification pipelines is less reliable
343 in *D. ananassae*. The PacBio IPD signatures of 5mC modifications are more challenging to
344 detect relative to 6mA and require >250X depth or enzymatic conversion of 5mC to improve
345 detection [44, 45]. Therefore, not surprisingly, we could not identify methylation signatures in *D.*
346 *ananassae* using PacBio libraries. The <40X depth in ONT libraries was too low for robust
347 genome-wide methylation calls. The Tombo 5mC model-based calling of the ONT LIG library
348 permitted preliminary analysis: The 1000 regions in the ONT LIG + Sequel II assembly with the
349 highest proportion of ONT reads supporting DNA methylation contained CG and GC
350 dinucleotides (Data S1), however the precise methylation sites cannot be readily identified in
351 more complex motifs using this method.

352 **DISCUSSION**

353 Our study demonstrates that highly contiguous assemblies can be obtained with long-read
354 technologies, but highly accurate assemblies benefit from error correction with more accurate
355 reads than currently available long reads alone. All *E. coli* assemblies surpassed 99% accuracy
356 when using long read data alone, and accuracy was further improved when using Illumina or
357 PacBio HiFi data for hybrid assembly and error correction. *D. ananassae* assemblies had
358 improved contiguity relative to published genomes, and nearly all euchromatic chromosome
359 arms were resolved in single contigs.

360 **Comparative analyses support superior performance of PacBio Sequel II libraries**

361 PacBio Sequel II sequencing represents a major advancement in sequencing throughput over
362 previous PacBio platforms with the production of more sequencing data and longer reads
363 versus RS II and the Sequel I (not tested here). Although ONT libraries had longer reads
364 sequenced, Sequel II had a larger pool of ultra-long reads, demonstrated by higher read N50
365 values. Additionally, the overall sequencing throughput of ONT was more variable: the runs
366 produced between 12-670 Mbp/hr sequencing data, compared to 224-340 Mbp/hr in PacBio RS
367 II and 2.1-2.7 Gbp/hr in PacBio Sequel II.

368 While greater sequencing depth increases the likelihood of producing high consensus accuracy
369 resolution from error-prone reads, the subsampling of datasets confirmed that *E. coli*
370 assemblies using PacBio sequencing were the most accurate. Highly conserved bacterial genes
371 were also more consistently characterized in PacBio assemblies. Consensus accuracy and
372 BUSCO identification were not improved when using long reads alone for polishing, suggesting
373 that the sequencing depth of corrected reads was too low and/or that persistent errors remain in
374 long reads following read correction with Canu. Superior accuracy was achieved after polishing
375 with Illumina or PacBio HiFi reads for polishing, although residual errors in repetitive regions

376 may remain when using these datasets for correction that won't be assessed with this BUSCO-
377 based method.

378 *D. ananassae* assemblies using PacBio Sequel II data were the most contiguous despite the
379 sequencing of longer ONT reads. Heterochromatic regions were also more contiguous in
380 PacBio assemblies. Since assemblies were generated using default Canu parameters, *i.e.*
381 assembling the longest reads up to ~40X sequencing depth, differences in assembly contiguity
382 could be partially attributable to the increased percentage of bases sequenced in ultra-long
383 reads in Sequel II. However, higher incidence of errors in ONT reads could also hinder overlap
384 detection. Although the summary statistics commonly used to describe genome assemblies
385 (e.g. contig count, contig N50, maximum contig length) were superior in PacBio, these
386 assemblies might also have more duplicated content from uncollapsed regions; researchers
387 must exercise appropriate caution when choosing the "best" assembly to report.

388 **PacBio sequencing is not optimal for all sequencing applications**

389 While PacBio Sequel II demonstrated the best results for most data quality tests, there are
390 certain situations where alternatives to PacBio sequencing might be preferred. First, the upper
391 limit of PacBio read length is determined by polymerase processivity and DNA loading into the
392 SMRT Cell, meaning ONT sequencing can span longer repetitive regions. In highly repetitive
393 eukaryotic genomes a hybrid approach might be warranted; multiple *D. ananassae* assembly
394 gaps were closed using both PacBio and ONT. Second, size-selected libraries will exclude
395 small sequences from the assembly. Our *E. coli* results demonstrated the complete omission of
396 a 5 kbp plasmid and the underrepresentation of a 97 kbp plasmid using Sequel II sequencing.
397 Conversely, ONT RAPID produced plasmid sequencing data much closer to expected
398 proportions. Third, the higher cost of entry for the PacBio platform might be prohibitive for some
399 researchers, despite the lower cost per base for Sequel II sequencing. Fourth, chimeric reads
400 are more common in library preparations that involve ligation. Unicycler uses long reads to

401 generate scaffold bridges across contigs assembled with Illumina data, meaning assemblies
402 shouldn't be negatively impacted by chimeric reads [20, 46]. Although the overall frequency of
403 chimeric reads is low, additional investigation of the occurrence and genome-wide distribution of
404 chimeras is needed, particularly for eukaryotic genomes. Fifth, characterization of cytosine
405 methylation is more challenging with PacBio sequencing.

406 **Development of new sequencing products and bioinformatics tools will continue to**
407 **improve long read sequencing**

408 The rapid turnover of sequencing platforms and analysis pipelines will continue to improve the
409 utility of long read sequencing data. Since the design of this experiment, Oxford Nanopore
410 Technologies have begun distribution of the R10 nanopore which advertises to improve
411 consensus accuracy to over 99.99%. New Sequel II sequencing chemistry released by PacBio
412 claims to improve performance, including the reduction of baseline DNA modification scores.
413 The increased use of long read sequencing data has spurred a plethora of bioinformatic tools
414 for long read overlap detection, contig assembly, and error correction [11, 47, 48]. Platform-
415 specific tools have been developed to achieve optimal results given the underlying features of
416 long read data (e.g. Arrow and Nanopolish used for polishing genomes using PacBio and ONT
417 data, respectively). After generating assemblies for this study, Canu v.1.9 has been released
418 allowing users to set parameters specific to PacBio HiFi sequencing. While it is possible that
419 improved results could have been obtained in this study by using platform-specific tools, we
420 chose tools for the study on the basis of a) their wide usage in long read genome assembly and
421 b) their platform independence. Nevertheless, it is possible that the tools with the specified
422 parameters are better able to handle the error profile of data from a specific platform, leading to
423 the observation of superior performance in many of our tests.

424 **CONCLUSIONS**

425 With the arrival of PacBio Sequel II, researchers can achieve unprecedented throughput in long
426 read sequencing data. The advancement of Sequel II confers an increase in consensus
427 accuracy and a higher likelihood of sequencing across repetitive regions. Increased adoption of
428 long read sequencing platforms promises to revolutionize genomics research.

429 **METHODS**

430 **Biological samples**

431 *Escherichia coli* E2348/69 cultures grown overnight in L-broth were pelleted (12,000 x g),
432 resuspended in 50 mM Tris, 1 mM EDTA, 10 µl RNase (20mg/ml) and lysed with 0.4% SDS
433 (final) at 56 °C for 30 min. A 0.5 volume of 7.5 M ammonium acetate was added, and samples
434 were incubated for 15 min on ice. Genomic DNA was extracted with phenol:chloroform:isoamyl
435 alcohol followed by chloroform: isoamyl alcohol and precipitated with isopropanol. After two
436 washes with 70% ethanol, the pellet was allowed to air dry and resuspended in water.

437 *Drosophila ananassae* Hawaii (14024–0371.13) were obtained from the *Drosophila* Species
438 Stock Center (University of California, San Diego, USA). Populations were grown on Jazz-
439 Mix *Drosophila* food (Applied Scientific) in plastic bottles at 25°C and 70% humidity with a 12hr-
440 12hr light-dark cycle. Flies were treated with tetracycline to remove the *Wolbachia*
441 endosymbiont. Genomic DNA was extracted from ~350 flies with phenol:chloroform:isoamyl
442 alcohol followed by chloroform: isoamyl alcohol and precipitated with isopropanol. After two
443 washes with 70% ethanol, the pellet was allowed to air dry and resuspended in water.
444 Genomic DNA was quantified using the Qubit 4 fluorometer (Thermo Fisher Scientific) and the
445 presence of >20 kbp fragments were validated using the FEMTO Pulse automated pulsed-field
446 capillary electrophoresis instrument (Agilent Technologies).

447 **Nanopore libraries and sequencing**

448 ONT RAPID libraries for *E. coli* and *D. ananassae* were prepared with the Rapid Sequencing Kit
449 SQK-RAD004 (Oxford Nanopore Technologies) using 10 µL DNA, 8.5 µl EB, 1.5 µl FRA, and
450 omitting library-loading beads. After adding Rapid adapters, the reactions were incubated for 30
451 min at room temperature. One 24 hr sequencing run was performed for *E. coli* and two
452 sequencing runs were performed for *D. ananassae* using FLO-MIN106 R9 MinION flowcells

453 (Oxford Nanopore Technologies). An additional RAPID sequencing experiment was performed
454 on a second *E. coli* gDNA sample to assess ONT sequencing variability. The second *E. coli*
455 sample was sequenced on the MinION for 72 hrs, and data from the first 24 hr was used for
456 comparisons.

457 To prepare ONT LIG libraries, gDNA was sheared to 20 kbp using g-TUBE (Covaris) and size-
458 selected for fragments >10 kbp using the BluePippin system (Sage Science). Libraries were
459 prepared with size-selected DNA using the Ligation Sequencing Kit SQK-LSK109 (Oxford
460 Nanopore Technologies) according to the manufacturer's protocol and including 1 μ l DNA
461 control sequence (DCS) in the master mix to validate library prep. Single 24 hr sequencing runs
462 for *E. coli* and *D. ananassae* were performed with R9 MinION flowcells. An additional
463 sequencing run was performed for *E. coli* using a FLO-MIN111 R10 MinION flowcell (Oxford
464 Nanopore Technologies) that was produced without library size selection and shearing.

465 Base calling for all R9 runs was performed with Guppy v.3.1.5 using the
466 'dna_r9.4.1_450bps_fast' model. Base calling for the R10 run was performed with Guppy
467 v.3.2.10 using the 'dna_r10.3_450bps_fast' model. DCS sequences were subsequently
468 removed from ONT LIG fastq files using NanoLyse [49].

469 **PacBio libraries and sequencing**

470 PacBio libraries were prepared using the SMRTbell Template Prep Kit 1.0/SMRTbell Express
471 Template Prep Kit 2.0 (Pacific Biosciences). Genomic DNA was sheared to 20 kbp using g-
472 TUBE, followed by DNA-damage repair and end-repair using polishing enzymes. Blunt-end
473 ligation was used to create the SMRTbell template. Library fragments were size-selected using
474 BluePippin. SMRTbell Polymerase Complex was created using DNA/Polymerase Binding Kit P6
475 v2 for RSII libraries and Sequel II Binding Kit 1.0 for Sequel II and HiFi libraries (Pacific
476 Biosciences). PacBio RS II libraries were sequenced using DNA Sequencing Reagent Kit 4.0 v2
477 and RS II SMRT Cells v3 (Pacific Biosciences), with 4 hr movie length. Sequel II and HiFi

478 libraries were sequenced using Sequel II Sequencing Plate 1.0 and SMRT Cells 8M (Pacific
479 Biosciences), with 30 hr movie length.

480 **Illumina libraries and sequencing**

481 Illumina libraries for *E. coli* and *D. ananassae* were prepared using the KAPA HyperPrep kit
482 (Kapa Biosystems, Wilmington, MA) using manufacturer's instructions. Quantification of libraries
483 was performed using the Quant-iT™ PicoGreen® dsDNA kit (Thermo Fisher Scientific). Library
484 fragment size was assessed with the LabChip GX instrument (PerkinElmer). Paired end libraries
485 (2x150 bp) were sequenced on an Illumina HiSeq4000 instrument (Illumina Inc.).

486 ***E. coli* genome assembly**

487 Read length histograms were generated from the 'readlength.sh' script of bbtools v.38.47 [50]
488 using 1 kbp bins. Reads from the ONT LIG and PacBio Sequel II libraries were randomly
489 downsampled to approximate the sequencing depth of the PacBio RS II library using seqkit
490 v.0.7.2 [51].

491 Assemblies were generated using Canu v.1.8 using default parameters and genomeSize=4.6m
492 [52]. A custom script adapted from Chang & Larracuente [53] was used to iteratively polish
493 genomes for five rounds using Pilon v.1.22 [54] with --minmq 10 and --fix bases. Separate
494 polishing runs were performed with a) Illumina reads, b) corrected/trimmed long reads used in
495 the Canu assembly, c) combined short and long reads, and d) PacBio HiFi reads. After
496 polishing, circularization of the *E. coli* genome and candidate plasmids was attempted by the
497 'minimus2' command of Circlator v.1.5.5 [55] followed by *E. coli* genome rotation using the
498 Circlator 'fixstart' command.

499 *E. coli* sequences were assembled separately using Unicycler v.0.4.8 [46], including long read
500 assemblies and hybrid assemblies with Illumina data. The Unicycler pipeline includes a
501 polishing step, performed here using Racon v.1.3.1 [56] for long read assemblies and Pilon
502 using hybrid assemblies.

503 **Evaluation of *E. coli* genome assemblies**

504 To detect plasmids in sequencing datasets, we submitted polished assemblies to the plasmid
505 database PLSDB [27] using the mash dist search strategy with default parameters. To assess
506 sequencing depth and estimated plasmid copy number, long reads were mapped to the
507 consensus Unicycler genome using minimap2 v.2.1 [57] with default parameters and Illumina
508 reads were mapped using bwa mem with -k 23 [58]. SAMtools v.1.9 [59] was used to filter out
509 secondary and duplicate (Illumina only) alignments and calculate sequencing depth for each
510 position. The estimated copy number for the *E. coli* genome and plasmids was determined by
511 dividing the total number of bases mapping to each sequence by the total length of the
512 sequence (**Table S2**). As a separate test of plasmid copy number, primers were designed for
513 the *E. coli* genome, pMAR2, and p5217 from the Unicycler consensus assembly (**Table S16**)
514 and pE2348-2 from NCBI (Genbank FM18070.1). Amplicons were quantified using the CFX384
515 Touch Real-Time Detection System and qPCR cycle threshold and melt curve values were
516 obtained from CFX Maestro™ Software (Bio-Rad Laboratories Inc.). The mean cycle threshold
517 (C_t) value for each sequence was calculated by averaging values from three replicates. ΔC_t was
518 calculated as the difference between the mean C_t value of the sequence of interest and the
519 mean C_t genome. Estimated sequence copy number was calculated as 2^{-ΔC_t} [60]. As a negative
520 control, qPCR experiments also included samples with no template DNA.

521 The presence of highly conserved genes was determined using BUSCO v.3 [19] using the
522 bacteria odb9 dataset from OrthoDB [61]. Following a strategy described in Wick *et al.* 2017
523 [20], assembly correctness was evaluated by generating assemblies of Illumina paired end data
524 with ABYSS v.2.1.1 [62] and separately with velvet v.1.2.10 [63]. Scripts from Wick *et al.* were
525 used to identify assembled regions with >10 kbp length and 100% identity between the
526 assemblies as trusted contigs. Following this procedure, BLAST v.2.8.1 [64] was used to generate

527 counts for mismatches, gap openings, and alignment lengths between trusted contigs and newly
528 assembled *E. coli* genome sequences to determine overall correctness.

529 **Chimera detection**

530 To evaluate chimeric read content in sequencing datasets, raw reads were aligned to the *E. coli*
531 genome sequence using minimap2. Output files in paf format were used to identify putative
532 chimeras using Alvis [22]. Using the -chimeras parameter, a read was called as chimeric when
533 $\geq 90\%$ of its length overlapped the consensus genome (-minChimeraCoveragePC 90) and two
534 sub-alignments $\geq 10\%$ of the total read length aligned to discordant regions of the genome (-
535 minChimeraAlignmentPC 10). Since reads mapping to the two ends of the linear representation
536 of the *E. coli* genome would be identified as chimeric, a second run of Alvis was performed with
537 a rotated genome. Putative chimeras were calculated as the number of reads assigned as
538 chimeras in both Alvis runs.

539 ***D. ananassae* genome assembly**

540 The ONT RAPID, ONT LIG, and PacBio Sequel II libraries were assembled with Canu using
541 genomeSize=240m and default assembly parameters. Hybrid assemblies were also generated
542 with combined read data from Sequel II and one other library (ONT RAPID, ONT LIG, PacBio
543 RS II). The Sequel II + ONT LIG assembly was iteratively polished for five rounds using Pilon
544 using Illumina reads, corrected long reads, and PacBio HiFi reads.

545 **Dana.UMIGS genome assembly**

546 A new *D. ananassae* reference assembly (referred to as Dana.UMIGS) was generated
547 separately to enable comparisons between test assemblies produced in this study. The PacBio
548 and ONT libraries were assembled with Canu using genomeSize=240m, corOutCoverage=80,
549 and other default assembly parameters. The output assembly was polished for two rounds with
550 Arrow v.2.3.3 (SMRTTools v7) using Sequel II read data. The Sequel II reads were also
551 assembled with Flye v. 2.7.1 [65] in raw pacbio mode using -g 240m and --asm-coverage 60

552 and included a polishing step. Following the merger of the Canu (query) and Flye (reference)
553 assemblies with quickmerge v.0.3 [66] using conservative parameters (-ml 5000000 -l 20000),
554 the resulting merging events were manually inspected. Unsupported merge events were split
555 into constitutive contigs. The final merged assembly was polished for one round with Sequel II
556 reads using Arrow and five rounds with HiFi reads using Pilon. To assess the presence of
557 duplicated content, PacBio HiFi reads were mapped to the assembly using minimap2 and a
558 histogram of sequencing depth across the genome was produced using purge_haplotigs v.1.1.1
559 [67]. After manually inspecting assembly contigs classified as 'junk' or 'suspect' using a low
560 depth cutoff of 10 and a high depth cutoff of 200, we removed 86 contigs corresponding to
561 bacterial contaminants, assembly artefacts, and erroneous duplications in the assembly.

562 **Anchoring Dana.UMIGS contigs**

563 To identify contigs in the Dana.UMIGS assembly corresponding to the major euchromatic
564 chromosomes (X, 2, 3), regions with known positions on chromosome arms were extracted from
565 the caf1 assembly. Coordinates of the caf1 regions were reported previously [31]. Dana.UMIGS
566 assembly contigs were searched for caf1 sequences using BLASTN. After initial searches using
567 default parameters indicated the presence of high-quality matches as the first hits for each caf1
568 query, a second BLASTN search was conducted to retain the single best hit for each query (-
569 max_target_seqs 1 -max_hsps 1). The positions of loci in the Dana.UMIGS assembly were
570 plotted using a custom script in R.

571 To anchor contigs to chromosome Y, two male and two female 2x150 bp Illumina libraries were
572 prepared and sequenced using the same methods as the mixed sex *D. ananassae* Illumina
573 library. Reads were randomly downsampled to ~150X depth using seqkit and mapped to the
574 Dana.UMIGS assembly using bwa mem. Duplicate reads were removed with Picard
575 MarkDuplicates (Broad Institute) and the sequencing depth for each position in the genome was
576 determined with SAMtools depth while removing low-quality mappings (-Q 10). A script adapted

577 from Chang & Larracuente [53] was used to split the genome into 10 kbp windows and
578 determine the median of the female/male sequencing depth ratio for each window. Contigs were
579 assigned as putative Y contigs as having (a) at least one window with a median female/male
580 ratio of zero, (b) ≥80% of its windows with median female/male ratios below 0.05, and (c)
581 conditions (a) and (b) met for two female-male replicates.

582 To anchor contigs to chromosome 4, Dana.UMIGS contigs were aligned to caf1 assembly
583 contigs previously assigned to chromosome 4 [34] using nucmer with -l 1000 and - -maxmatch.
584 Chromosome 4 contigs containing LGT from the fly's Wolbachia endosymbiont (wAna) were
585 anchored by aligning Dana.UMIGS contigs to the previously assembled wAna genome [68] with
586 -l 1000 and - -maxmatch.

587 **Evaluation of *D. ananassae* genome assemblies**

588 To generate assembly statistics, assembly contigs were evaluated using QUAST-LG [69] with
589 the Dana.UMIGS assembly. NGX plots were generated with a script adapted from the
590 Assemblathon 2 paper with 231 Mbp as an estimated genome size [70]. BUSCO searches were
591 conducted using the metazoa odb9 dataset. For comparisons to published *D. ananassae*
592 assemblies, the same analyses were performed on the caf1 genome assembly (Genbank
593 GCA_000005115.1) published as part of the *Drosophila* 12 Genomes Project [16] and a
594 genome assembled by Miller *et al.* [17] using ONT sequencing.

595 To evaluate contiguity of the euchromatic chromosome arms in assemblies produced from
596 single long read libraries, contigs corresponding to chromosome X, 2, and 3 were extracted
597 from each assembly using BLASTN-based searches as described above for Dana.UMIGS.

598 Dana.UMIGS contigs were aligned to contig sets with nucmer using -l 200 and - -maxmatch.
599 To evaluate contiguity of heterochromatic regions, the contig sets that were not anchored to
600 euchromatic chromosomes were extracted from single library assemblies. Summary statistics

601 for heterochromatic contigs were produced using QUAST-LG without specifying a reference
602 genome.

603 **DNA modification**

604 Detection of DNA methylation using *E. coli* PacBio libraries was assessed with PacBio SMRT
605 Tools. Differences in RS II and Sequel II libraries necessitated the use of similar pipelines (*i.e.*,
606 PacBio base modification pipeline) on different software releases (RS II: SMRT Link v.7; Sequel
607 II: SMRT Link v.8). Reads were mapped to the *E. coli* genome with pbmm2 and detection of
608 DNA methylation signatures was performed with ipdSummary using --identify
609 m4C,m6A,m5C_TET to search for m4C, m6A, and m5C modifications, respectively. Highly
610 modified motifs were identified with motifMaker. The distribution of modification QV scores for
611 the four nucleotide bases was produced by the SMRT Tools pipeline and an appropriate
612 modification QV cutoff was determined.

613 Detection of DNA methylation using *E. coli* ONT libraries was assessed with Tombo v.1.5 [26]
614 using the *de novo* model for modified base detection. The dampened fraction of reads
615 supporting each modification event was produced with tombo text_output. The presence of DNA
616 modification at specific motifs was assessed using the tombo plot motif_with_stats command by
617 plotting the dampened fraction values for up to 10,000 genomic sites containing the motif of
618 interest. ROC curves for detected GATC and CCWGG motifs in ONT libraries were produced
619 with the tombo plot roc command.

620 DNA methylation detection in the *D. ananassae* ONT LIG library was conducted using Tombo
621 similar to the methods described in *E. coli*. Given the lack of known methylated motifs in *D.*
622 *ananassae*, *de novo* modified base detection was followed by the extraction of 1000 regions
623 showing the largest estimated dampened fraction of modified bases using the tombo text_output
624 command. The presence of overrepresented motifs in candidate modified regions was
625 evaluated with MEME v.4.12.0 using the parameters -dna -mod zoops -nmotifs 50.

626 **AVAILABILITY OF DATA AND MATERIALS**

627 All the data supporting the conclusions of this article have been deposited in
628 Genbank/EMBL/DDBJ Sequence Read Archive under BioProject PRJNA602597. Additional
629 figures and tables supporting the conclusion of the article are available as Supplementary
630 Information. All commands and scripts used in the study are available at
631 <https://github.com/Dunning-Hotopp-Lab/Ecoli-Dana-LongReads>.

632 **ACKNOWLEDGEMENTS**

633 Not applicable.

634 **FUNDING**

635 This project has been funded by the National Institute of Allergy and Infectious Diseases,
636 National Institutes of Health, Department of Health and Human Services under grant
637 U19AI110820. JCDH and EST are also supported by an NIH Director's Transformative
638 Research Award (R01CA206188).

639 **ETHICS DECLARATIONS**

640 **Ethics approval and consent to participate**

641 Not applicable.

642 **Consent for publication**

643 Not applicable.

644 **Competing interests**

645 We have no competing financial interests.

646 **AUTHOR INFORMATION**

647 **Affiliations**

648 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD,

649 21201, USA

650 Eric S. Tvedte, Mark Gasser, Benjamin C. Sparklin, Jane Michalski, Robin Bromley, Luke J.

651 Tallon, Lisa Sadzewicz, David A. Rasko, Julie C. Dunning Hotopp

652 Department of Microbiology and Immunology, University of Maryland School of Medicine,

653 Baltimore, MD, 21201, USA

654 Jane Michalski, David A. Rasko, Julie C. Dunning Hotopp

655 Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201,

656 USA

657 Julie C. Dunning Hotopp

658 **Contributions**

659 EST and JCDH wrote the manuscript. All authors read and edited the manuscript. JM and DAR

660 prepared and provided *E. coli* DNA samples, MG and JCDH prepared and provided *D.*

661 *ananassae* samples. MG and BCS prepared sequencing libraries. BCS conducted PCR and

662 qPCR validation experiments. MG, BS, XZ, LJT, LS, and JCDH sequenced or oversaw

663 sequencing. EST performed bioinformatic analysis and generated figures. RB obtained and

664 modified publication-quality polytene map images and prepared sequencing data submission to

665 SRA. JCDH, DAR, LJT and LS designed and supervised the study.

666 REFERENCES

667 1. van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C: **The Third Revolution in Sequencing**
668 **Technology.** *Trends in Genetics* 2018, **34**:666-681.

669 2. Kingan SB, Urban J, Lambert CC, Baybayan P, Childers AK, Coates B, Scheffler B, Hackett K,
670 Korlach J, Geib SM: **A high-quality genome assembly from a single, field-collected spotted**
671 **lanternfly (*Lycorma delicatula*) using the PacBio Sequel II system.** *GigaScience* 2019, **8**.

672 3. Sánchez-Romero MA, Cota I, Casadesús J: **DNA methylation in bacteria: from the methyl group**
673 **to the methylome.** *Current Opinion in Microbiology* 2015, **25**:9-16.

674 4. Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ,
675 Korlach J: **Characterization of DNA methyltransferase specificities using single-molecule, real-**
676 **time DNA sequencing.** *Nucleic Acids Research* 2011, **40**:e29-e29.

677 5. Lee WC, Anton BP, Wang S, Baybayan P, Singh S, Ashby M, Chua EG, Tay CY, Thirriot F, Loke MF,
678 et al: **The complete methylome of *Helicobacter pylori* UM032.** *BMC Genomics* 2015, **16**:424.

679 6. Payelleville A, Legrand L, Ogier J-C, Roques C, Roulet A, Bouchez O, Mouammine A, Givaudan A,
680 Brillard J: **The complete methylome of an entomopathogenic bacterium reveals the existence**
681 **of loci with unmethylated Adenines.** *Scientific Reports* 2018, **8**:12091.

682 7. Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B: **Mapping DNA**
683 **methylation with high-throughput nanopore sequencing.** *Nature Methods* 2017, **14**:411-413.

684 8. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W: **Detecting DNA cytosine**
685 **methylation using nanopore sequencing.** *Nature Methods* 2017, **14**:407-410.

686 9. Jain M, Tyson JR, Loose M, Ip CLC, Eccles DA, O'Grady J, Malla S, Leggett RM, Wallerman O,
687 Jansen HJ, et al: **MinION Analysis and Reference Consortium: Phase 2 data release and analysis**
688 **of R9.0 chemistry.** *F1000Research* 2017, **6**:760-760.

689 10. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y: **A**
690 **tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific**
691 **Biosciences and Illumina MiSeq sequencers.** *BMC genomics* 2012, **13**:341.

692 11. Sedlazeck FJ, Lee H, Darby CA, Schatz MC: **Piercing the dark matter: bioinformatics of long-**
693 **range sequencing and mapping.** *Nature Reviews Genetics* 2018, **19**:329-346.

694 12. Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A,
695 Kolesnikov A, Olson ND, et al: **Accurate circular consensus long-read sequencing improves**
696 **variant detection and assembly of a human genome.** *Nature Biotechnology* 2019.

697 13. Fichot EB, Norman RS: **Microbial phylogenetic profiling with the Pacific Biosciences sequencing**
698 **platform.** *Microbiome* 2013, **1**:10-10.

699 14. White R, Pellefigues C, Ronchese F, Lamiable O, Eccles D: **Investigation of chimeric reads using**
700 **the MinION [version 2; peer review: 2 approved].** *F1000Research* 2017, **6**.

701 15. Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T, Henderson IR, Harris D, Asadulghani M,
702 Kurokawa K, Dean P, et al: **Complete Genome Sequence and Comparative Genome Analysis of**
703 **Enteropathogenic Escherichia coli O127:H6 Strain E2348/69.** *Journal of Bacteriology* 2009,
704 **191**:347-354.

705 16. Consortium DG: **Evolution of genes and genomes on the Drosophila phylogeny.** *Nature* 2007,
706 **450**:203.

707 17. Miller DE, Staber C, Zeitlinger J, Hawley RS: **Highly Contiguous Genome Assemblies of 15**
708 **Drosophila Species Generated Using Nanopore Sequencing.** *G3: Genes/Genomes/Genetics*
709 2018, **8**:3131-3141.

710 18. Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV,
711 Zdobnov EM: **BUSCO applications from quality assessments to gene prediction and**
712 **phylogenomics.** *Molecular biology and evolution* 2017, **35**:543-548.

713 19. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM: **BUSCO: assessing genome**
714 **assembly and annotation completeness with single-copy orthologs.** *Bioinformatics* 2015,
715 **31**:3210-3212.

716 20. Wick RR, Judd LM, Gorrie CL, Holt KE: **Completing bacterial genome assemblies with multiplex**
717 **MinION sequencing.** *Microbial genomics* 2017, **3**:e000132-e000132.

718 21. Giordano F, Aigrain L, Quail MA, Coupland P, Bonfield JK, Davies RM, Tischler G, Jackson DK,
719 Keane TM, Li J, et al: **De novo yeast genome assemblies from MinION, PacBio and MiSeq**
720 **platforms.** *Scientific Reports* 2017, **7**:3935.

721 22. Martin S, Leggett RM: **Alvis: a tool for contig and read ALignment VIualisation and chimera**
722 **detection.** *bioRxiv* 2019:663401.

723 23. Roberts RJ, Vincze T, Posfai J, Macelis D: **REBASE—a database for DNA restriction and**
724 **modification: enzymes, genes and genomes.** *Nucleic Acids Research* 2014, **43**:D298-D299.

725 24. Marinus MG, Løbner-Olesen A: **DNA Methylation.** *EcoSal Plus* 2014, **6**:10.1128/ecosalplus.ESP-
726 0003-2013.

727 25. Tavazoie S, Church GM: **Quantitative whole-genome analysis of DNA-protein interactions by in**
728 **vivo methylase protection in *E. coli*.** *Nature Biotechnology* 1998, **16**:566-571.

729 26. Technologies ON: **Tombo: detection of non-standard nucleotides using the genome-resolved**
730 **nanopore signal.**

731 27. Galata V, Fehlmann T, Backes C, Keller A: **PLSDB: a resource of complete bacterial plasmids.**
732 *Nucleic Acids Research* 2018, **47**:D195-D202.

733 28. Lin C-H, Chen Y-C, Pan T-M: **Quantification bias caused by plasmid DNA conformation in**
734 **quantitative real-time PCR assay.** *PloS one* 2011, **6**:e29101-e29101.

735 29. George S, Pankhurst L, Hubbard A, Votintseva A, Stoesser N, Sheppard AE, Mathers A, Norris R,
736 Navickaite I, Eaton C, et al: **Resolving plasmid structures in Enterobacteriaceae using the**

737 **MinION nanopore sequencer: assessment of MinION and MinION/Illumina hybrid data**

738 **assembly approaches.** *Microbial genomics* 2017, **3**:e000118-e000118.

739 30. **Animal Genome Size Database** [<http://www.genomesize.com>]

740 31. Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O'Grady PM, Rohde C, Valente

741 VL, Aguadé M, Anderson WW: **Polytene chromosomal maps of 11 Drosophila species: the**

742 **order of genomic scaffolds inferred from genetic and physical maps.** *Genetics* 2008, **179**:1601-

743 1655.

744 32. Klasson L, Kumar N, Bromley R, Sieber K, Flowers M, Ott SH, Tallon LJ, Andersson SGE, Dunning

745 Hotopp JC: **Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila**

746 **ananassae.** *BMC Genomics* 2014, **15**:1097.

747 33. Dunning Hotopp JC, Klasson L: **The Complexities and Nuances of Analyzing the Genome of**

748 **Drosophila ananassae and Its Wolbachia Endosymbiont.** *G3: Genes/Genomes/Genetics* 2018,

749 **8**:373-374.

750 34. Leung W, Shaffer CD, Chen EJ, Quisenberry TJ, Ko K, Braverman JM, Giarla TC, Mortimer NT,

751 Reed LK, Smith ST: **Retrotransposons are the major contributors to the expansion of the**

752 **Drosophila ananassae Muller F element.** *G3: Genes, Genomes, Genetics* 2017, **7**:2439-2460.

753 35. Goll MG, Bestor TH: **EUKARYOTIC CYTOSINE METHYLTRANSFERASES.** *Annual Review of*

754 *Biochemistry* 2005, **74**:481-514.

755 36. Marhold J, Rothe N, Pauli A, Mund C, Kuehle K, Brueckner B, Lyko F: **Conservation of DNA**

756 **methylation in dipteran insects.** *Insect Molecular Biology* 2004, **13**:117-123.

757 37. Lyko F, Ramsahoye BH, Jaenisch R: **DNA methylation in Drosophila melanogaster.** *Nature* 2000,

758 **408**:538-540.

759 38. Kunert N, Marhold J, Stanke J, Stach D, Lyko F: **A Dnmt2-like protein mediates DNA methylation**

760 **in Drosophila.** *Development* 2003, **130**:5083-5090.

761 39. Zemach A, McDaniel IE, Silva P, Zilberman D: **Genome-Wide Evolutionary Analysis of Eukaryotic**
762 **DNA Methylation.** *Science* 2010, **328**:916-919.

763 40. Raddatz G, Guzzardo PM, Olova N, Fantappié MR, Rampp M, Schaefer M, Reik W, Hannon GJ,
764 Lyko F: **Dnmt2-dependent methylomes lack defined DNA methylation patterns.** *Proceedings of*
765 *the National Academy of Sciences* 2013, **110**:8627-8631.

766 41. Boffelli D, Takayama S, Martin DIK: **Now you see it: Genome methylation makes a comeback in**
767 **Drosophila.** *BioEssays* 2014, **36**:1138-1144.

768 42. Takayama S, Dhahbi J, Roberts A, Mao G, Heo S-J, Pachter L, Martin DIK, Boffelli D: **Genome**
769 **methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2**
770 **activity.** *Genome Research* 2014, **24**:821-830.

771 43. Deshmukh S, Ponnaluri VC, Dai N, Pradhan S, Deobagkar D: **Levels of DNA cytosine methylation**
772 **in the Drosophila genome.** *PeerJ* 2018, **6**:e5119.

773 44. Biosciences P: **Detecting DNA base modifications using single molecule, real-time sequencing.**
774 *White Paper Base Modifications* 2015.

775 45. Clark TA, Lu X, Luong K, Dai Q, Boitano M, Turner SW, He C, Korlach J: **Enhanced 5-**
776 **methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation.** *BMC*
777 *biology* 2013, **11**:4-4.

778 46. Wick RR, Judd LM, Gorrie CL, Holt KE: **Unicycler: Resolving bacterial genome assemblies from**
779 **short and long sequencing reads.** *PLOS Computational Biology* 2017, **13**:e1005595.

780 47. Chu J, Mohamadi H, Warren RL, Yang C, Birol I: **Innovations and challenges in detecting long**
781 **read overlaps: an evaluation of the state-of-the-art.** *Bioinformatics* 2016, **33**:1261-1270.

782 48. Fu S, Wang A, Au KF: **A comparative evaluation of hybrid error correction methods for error-**
783 **prone long reads.** *Genome Biology* 2019, **20**:26.

784 49. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C: **NanoPack: visualizing and**
785 **processing long-read sequencing data.** *Bioinformatics* 2018, **34**:2666-2669.

786 50. Bushnell B: **BBTools software package.** URL <http://sourceforge.net/projects/bbmap> 2014.

787 51. Shen W, Le S, Li Y, Hu F: **SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file**
788 **manipulation.** *PLoS one* 2016, **11**.

789 52. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM: **Canu: scalable and accurate**
790 **long-read assembly via adaptive k-mer weighting and repeat separation.** *Genome Research*
791 2017, **27**:722-736.

792 53. Chang C-H, Larracuente AM: **Heterochromatin-Enriched Assemblies Reveal the Sequence and**
793 **Organization of the *Drosophila melanogaster* Y Chromosome.** *Genetics* 2019, **211**:333-348.

794 54. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman
795 J, Young SK, Earl AM: **Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection**
796 **and Genome Assembly Improvement.** *PLOS ONE* 2014, **9**:e112963.

797 55. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR: **Circlator: automated circularization of**
798 **genome assemblies using long sequencing reads.** *Genome Biology* 2015, **16**:294.

799 56. Vaser R, Sović I, Nagarajan N, Šikić M: **Fast and accurate de novo genome assembly from long**
800 **uncorrected reads.** *Genome Research* 2017, **27**:737-746.

801 57. Li H: **Minimap2: pairwise alignment for nucleotide sequences.** *Bioinformatics* 2018, **34**:3094-
802 3100.

803 58. Li H: **Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.** *arXiv*
804 *preprint arXiv:13033997* 2013.

805 59. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: **The**
806 **sequence alignment/map format and SAMtools.** *Bioinformatics* 2009, **25**:2078-2079.

807 60. Livak KJ, Schmittgen TD: **Analysis of Relative Gene Expression Data Using Real-Time**
808 **Quantitative PCR and the 2- $\Delta\Delta CT$ Method.** *Methods* 2001, **25**:402-408.

809 61. Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simao FA, Ioannidis P, Seppey M,
810 Loetscher A, Kriventseva EV: **OrthoDB v9. 1: cataloging evolutionary and functional**
811 **annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs.** *Nucleic acids*
812 *research* 2016, **45**:D744-D749.

813 62. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H,
814 Coombe L, Warren RL, Birol I: **ABySS 2.0: resource-efficient assembly of large genomes using a**
815 **Bloom filter.** *Genome Research* 2017, **27**:768-777.

816 63. Zerbino DR, Birney E: **Velvet: Algorithms for de novo short read assembly using de Bruijn**
817 **graphs.** *Genome Research* 2008, **18**:821-829.

818 64. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: **Basic local alignment search tool.** *Journal*
819 *of Molecular Biology* 1990, **215**:403-410.

820 65. Kolmogorov M, Yuan J, Lin Y, Pevzner PA: **Assembly of long, error-prone reads using repeat**
821 **graphs.** *Nature Biotechnology* 2019, **37**:540-546.

822 66. Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ: **Contiguous and accurate de novo**
823 **assembly of metazoan genomes with modest long read coverage.** *Nucleic Acids Research* 2016,
824 **44**:e147-e147.

825 67. Roach MJ, Schmidt SA, Borneman AR: **Purge Haplotype: allelic contig reassignment for third-gen**
826 **diploid genome assemblies.** *BMC Bioinformatics* 2018, **19**:460.

827 68. Gasser MT, Chung M, Bromley RE, Nadendla S, Dunning Hotopp JC: **Complete Genome**
828 **Sequence of wAna, the Wolbachia Endosymbiont of Drosophila ananassae.** *Microbiology*
829 *Resource Announcements* 2019, **8**:e01136-01119.

830 69. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A: **Versatile genome assembly**
831 **evaluation with QUAST-LG.** *Bioinformatics* 2018, **34**:i142-i150.

832 70. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S, Chapman JA,
833 Chapuis G, Chikhi R, et al: **Assemblathon 2: evaluating de novo methods of genome assembly**
834 **in three vertebrate species.** *GigaScience* 2013, **2**:10.

835 71. de la Bastide M, McCombie WR: **Assembling Genomic DNA Sequences with PHRAP.** *Current*
836 *Protocols in Bioinformatics* 2007, **17**:11.14.11-11.14.15.

837 72. Drosophila 12 Genomes C, Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA,
838 Kaufman TC, Kellis M, Gelbart W, et al: **Evolution of genes and genomes on the Drosophila**
839 **phylogeny.** *Nature* 2007, **450**:203.

840 73. Tobari YN: *Drosophila ananassae: Genetical and Biological Aspects.* Karger; 1993.

841 74. Thorvaldsdóttir H, Robinson JT, Mesirov JP: **Integrative Genomics Viewer (IGV): high-**
842 **performance genomics data visualization and exploration.** *Briefings in Bioinformatics* 2012,
843 **14**:178-192.

844

845

846 **TABLES**847 **Table 1. Summary of *E. coli* E2348/69 assemblies.**

Library 1	Library 2	Assembler	Contigs	Genome contigs	Genome size	pMAR2 size	p5217 size	Contamination (number of contigs)
ONT RAPID		Canu ^a	3	1	4,900,525	185,910	9,201	N/A
ONT RAPID		Unicycler	3	1	4,936,053	96,458	5,202	N/A
ONT RAPID	Illumina	Unicycler	7	1	4,943,955	96,603	5,218	human (1), <i>Neisseria gonorrhoeae</i> (2), unknown (1)
ONT LIG		Canu ^a	3	2	4,920,170 ^b	N/A	5,186	N/A
ONT LIG		Unicycler	3	2	4,930,625 ^b	96,399	N/A	N/A
ONT LIG	Illumina	Unicycler	7	1	4,943,955	96,603	5,218	human (1), <i>Neisseria gonorrhoeae</i> (2), unknown (1)
Pacbio RS II		Canu ^a	5	4	5,009,999 ^b	104,881	N/A	N/A
Pacbio RS II		Unicycler	2	1	4,947,439	96,655	N/A	N/A
Pacbio RS II	Illumina	Unicycler	7	1	4,943,955	96,184	5,218	human (1), <i>Neisseria gonorrhoeae</i> (2), unknown (1)
Pacbio Sequel II		Canu ^a	2	1	5,013,860	151,844	N/A	
Pacbio Sequel II		Unicycler	2	1	4,953,843	96,744	N/A	N/A
Pacbio Sequel II	Illumina	Unicycler	7	1	4,943,955	96,603	5,218	human (1), <i>Neisseria gonorrhoeae</i> (2), unknown (1)
BAC clones [15]		Phrap [71]	3	1	4,965,553	97,978	N/A	N/A

848 ^aCanu contig lengths are from unpolished assemblies.849 ^bSummed length of multiple *E. coli* genome contigs.

850 **Table 2. Summary of *D. ananassae* assemblies**

Library	Library 2	Assembly size (Mbp)	Contigs	Contig N50 (bp)	% BUSCO Complete*	% Genome fraction**	Duplication ratio**
ONT RAPID		213	691	6,182,963	92.43	84.72	1.02
ONT LIG		208	440	7,957,785	90.59	83.30	1.02
PacBio Sequel II		230	217	18,839,099	98.26	92.53	1.03
PacBio Sequel II	Pacbio RS II	230	244	14,770,151	98.26	92.49	1.04
PacBio Sequel II	ONT RAPID	234	276	10,738,747	98.16	92.83	1.03
PacBio Sequel II	ONT LIG	233	330	19,552,896	98.16	93.03	1.03
Assembly		Assembly size (Mbp)	Contigs	Contig N50 (bp)	BUSCO Complete*	% Genome fraction*	Duplication ratio*
Dana.UMIGS		234	154	22,203,700	98.40	99.93	1.01
Miller et al. 2018 [17]		189	371	2,612,784	98.26	76.84	1.01
D12GC 2007 [72]**		214	20,488	80,807	98.26	82.67	1.06

851 *Percentages of complete metazoan BUSCOs (978 total).

852 **Values are based on alignments to 238 Mbp *D. ananassae* reference assembly.

853 ***Assembly scaffolds were split into contigs.

854 **FIGURE LEGENDS**

855 **Figure 1. Read composition of *E. coli* long read libraries.**
856 Single end reads were placed into 1 kbp read length bins. Read counts and sequenced bases
857 were calculated for each bin using the readlength.sh script of bbtools [50]. **A.** Absolute values
858 for read counts and sequenced bases are plotted for each read length bin. **B.** Read counts and
859 sequenced bases expressed as percentages of the total for each library are plotted for each
860 read length bin. Vertical dotted lines correspond to maximum read length for each library. ^aONT
861 RAPID sequencing run was sequenced following poor throughput of first RAPID run. ^bONT LIG
862 sequencing run was performed without size-selection of DNA fragments.

863 **Figure 2. Evidence of DNA methylation in *E. coli* E2348/69 using long read sequencing.**
864 Methylation at A. GATC and B. CCWGG motifs are supported using ONT LIG sequencing. Top:
865 An example motif is shown, with individual reads plotted to the region shown in red. The
866 expected raw signal distribution using a canonical base model (=unmethylated DNA) is shown
867 in grey. The location of known methylation in *E. coli* is highlighted. Bottom: The fraction of reads
868 supporting a modification event is reported for each position in the motif, and the distribution of
869 proportions are shown. Higher values indicate the motif is more ubiquitously methylated in the
870 *E. coli* genome. Distributions are shown for 11,313 GATC motifs and 20,063 CCWGG motifs. C.
871 ROC curves for detection of methylation at known motifs. GATC and CCWGG motifs were
872 considered ground truth and modified base statistics of these sites were compared against
873 statistics at other base modification sites. ROC curves for ONT RAPID (~60X depth) and ONT
874 LIG (~3,280X) are plotted with AUC and AP values for each condition shown. D. Association of
875 m6A modifications assessed using PacBio and ONT sequencing. All adenine sites meeting the
876 minimum modification QV reporting threshold of 20 were cross-referenced for corresponding
877 dampened fraction values in ONT LIG sequencing. A random sample of 5,000 adenine sites are
878 plotted (total = 43,783). A linear regression was fitted to the data.

879 **Figure 3. Alignments of contigs from long read assemblies to polytene maps of *D.***
880 ***ananassae* chromosome XL and XR.**

881 Top: Alignments of Dana.UMIGS chromosome X contigs to corresponding contigs generated
882 from individual long read sequencing libraries. Dot plots were generated using nucmer in the
883 MUMmer3 package. Parentheses on the y-axis indicate the number of identified contigs
884 contributing to chromosome arms. Bottom: contigs from the Dana.UMIGS assembly are labeled,
885 and lines connect polytene map coordinates with estimated locus positions generated with
886 BLAST searches. Original images for polytene maps are from [73]. Permissions for the use of
887 polytene map images were purchased from Karger Publishers.

888 **Figure 4. Alignments of contigs from long read assemblies to polytene maps of *D.***
889 ***ananassae* chromosome 2L and 2R.**

890 Top: Alignments of Dana.UMIGS chromosome 2 contigs to corresponding contigs generated
891 from individual long read sequencing libraries. Dot plots were generated using nucmer in the
892 MUMmer3 package. Parentheses on the y-axis indicate the number of identified contigs
893 contributing to chromosome arms. Bottom: contigs from the Dana.UMIGS assembly are labeled,
894 and lines connect polytene map coordinates with estimated locus positions generated with
895 BLAST searches. Original images for polytene maps are from [73]. Permissions for the use of
896 polytene map images were purchased from Karger Publishers.

897 **Figure 5. Alignments of contigs from long read assemblies to polytene maps of *D.***
898 ***ananassae* chromosome 3L and 3R.**

899 Top: Alignments of the Dana.UMIGS chromosome 3 contig to corresponding contigs generated
900 from individual long read sequencing libraries. Dot plots were generated using nucmer in the
901 MUMmer3 package. Parentheses on the y-axis indicate the number of identified contigs
902 contributing to chromosome arms. Bottom: contigs from the Dana.UMIGS assembly are labeled,
903 and lines connect polytene map coordinates with estimated locus positions generated with
904 BLAST searches. Original images for polytene maps are from [73]. Permissions for the use of
905 polytene map images were purchased from Karger Publishers.

906

907 **SUPPLEMENTARY FIGURE LEGENDS**

908 **Figure S1. Read composition of subsampled *E. coli* long read libraries.**

909 The ONT LIG and PacBio Sequel II reads were randomly sampled to approximate the
910 sequencing depth of the PacBio RS II library using seqkit [51]. Single end reads were placed
911 into 1 kbp read length bins. Read counts and sequenced bases were calculated for each bin
912 using the readlength.sh script of bbtools [50]. **A.** Absolute values for read counts and
913 sequenced bases are plotted for each read length bin. **B.** Read counts and sequenced bases
914 expressed as percentages of the total for each library are plotted for each read length bin.
915 Vertical dotted lines correspond to maximum read length for each library.

916 **Figure S2. Dot plot alignment of the *E. coli de novo* Unicycler assemblies.**

917 For each library, hybrid assemblies were generated using Unicycler with short Illumina reads
918 alongside long reads and subsequently polished with short reads. The assemblies were
919 concatenated into a single file and a self-self dot plot was constructed using NUCmer with the
920 maxmatch parameter and visualized using mummerplot. The colors of alignments represent
921 percent similarity between sequences.

922 **Figure S3. Validation of deletion region in *E. coli* E2348/69.**

923 **A.** Hybrid assemblies using Illumina sequencing with ONT RAPID, ONT LIG, PacBio RS II, or
924 PacBio Sequel II were aligned to a previously reported assembly for this strain (Genbank
925 GCA_000026545.1) [15] using nucmer with the -maxmatch parameter. Colors of alignments
926 indicate the percent similarity of alignments. The grey box outlines a ~16 kbp region that is
927 present in the published sequence of *E. coli* but is missing in the genomes assembled in this
928 study. **B.** Agarose gel electrophoresis of gene sequences in *E. coli* E2348/69. Primers were
929 designed for the following sequences: NADP: NADP-dependent phosphogluconate
930 dehydrogenase (WP_000043439.1) FLP: M-antigen undecaprenyl disphosphate flippase
931 (WP_000058470.1), WcaM: colanic acid biosynthesis protein WcaM (WP_001115987.1), Wcz:

932 tyrosine-protein kinase Wzc (WP_000137154.1), 18S(-): *D. ananassae* 18S rRNA primers with
933 no DNA, 18S(+): *D. ananassae* 18S rRNA primers with fly DNA. M: Marker. The putative ~16
934 kbp deletion region includes FLP and WcaM while the NADP and Wcz genes on opposite sides
935 of this region are present in *E. coli* assemblies generated in this study.

936 **Figure S4. Visualization of chimeric reads mapped to the *E. coli* genome.**
937 Reads with blue outlines are supplementary alignments. Blue, red, green, and orange
938 ticks represent SNPs relative to the reference genome, black dots represent indels.
939 From top to bottom: ONT RAPID, ONT LIG, PacBio RS II, PacBio Sequel II. Split reads
940 mapping to distinctive regions were present (connected by red lines in the figure), which
941 represent chimeric reads. There was no apparent evidence of supplementary
942 alignments immediately adjacent to primary alignments representing erroneous chimera
943 assignment. Screenshot captured in IGV [74].

944 **Figure S5. Distribution of modification QV values in *E. coli* PacBio libraries.**
945 PacBio Sequel II and RS II reads were processed by the SMRT Tools DNA modification
946 pipeline, including read mapping and DNA modification detection using interpulse duration (IPD)
947 values. Each methylated site is assigned a modification quality value (QV) score based on
948 differences between observed and expected IPD values. Distributions of modification QV values
949 are plotted for each of the four nucleotide bases.

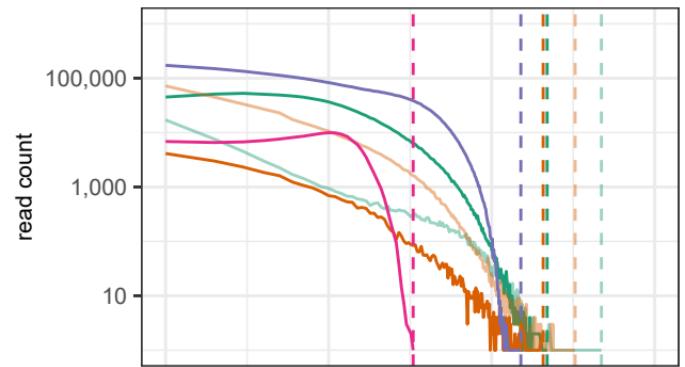
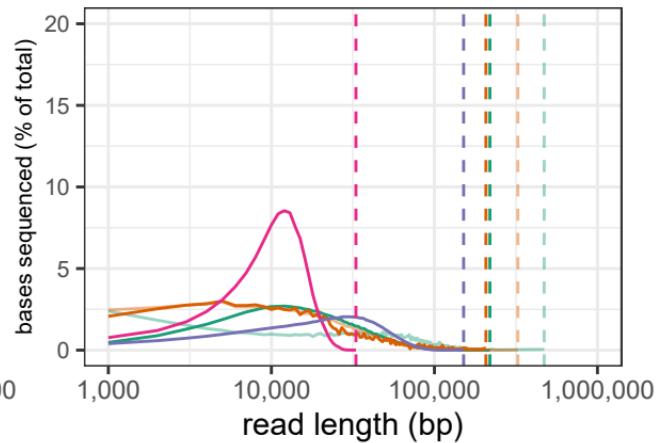
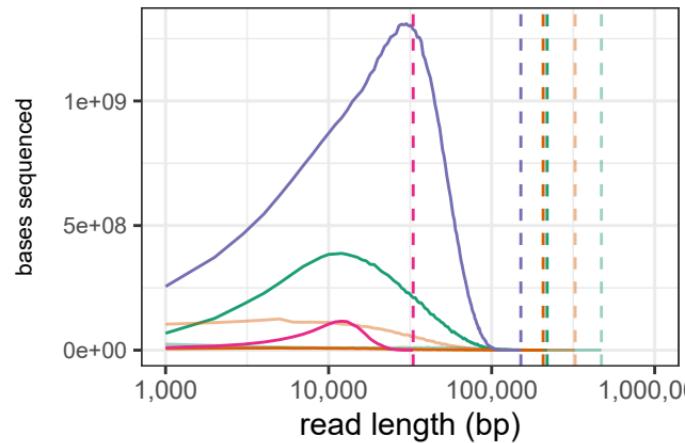
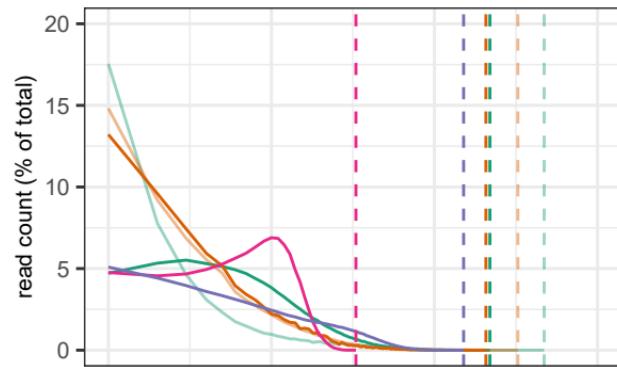
950 **Figure S6. Assessment of m6A modification in *E. coli* E2348/69 DNA motifs.**
951 DNA methylation at YTCAN⁶GTNG, and CYYAN⁷RTGA, and ATGCAT motifs are assessed
952 using ONT LIG sequencing. Top: An example motif is shown, with red lines displaying individual
953 reads mapped to the region. The expected raw signal distribution using a canonical base model
954 (=unmethylated DNA) is shown in grey. The location of known methylation in *E. coli* is
955 highlighted in yellow. Bottom: The fraction of reads supporting a modification event is reported
956 for each position in the motif, and the distribution of proportions are shown. Higher values

957 indicate the motif is more ubiquitously methylated in the *E. coli* genome. Distributions are shown
958 for 242 YTCAN⁶GTNG motifs, 248 CYYAN⁷RTGA motifs, and 66 ATGCAT motifs.

959 **Figure S7. qPCR amplification of *E. coli* sequences.**

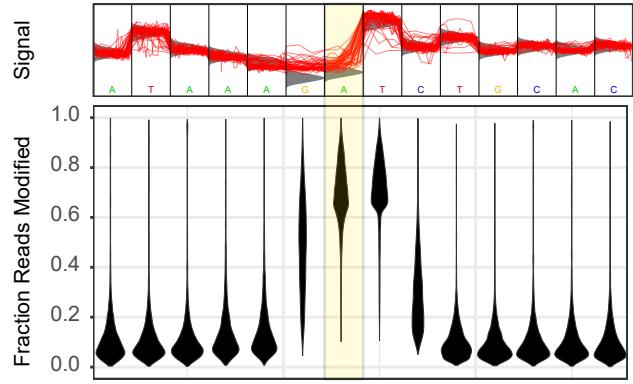
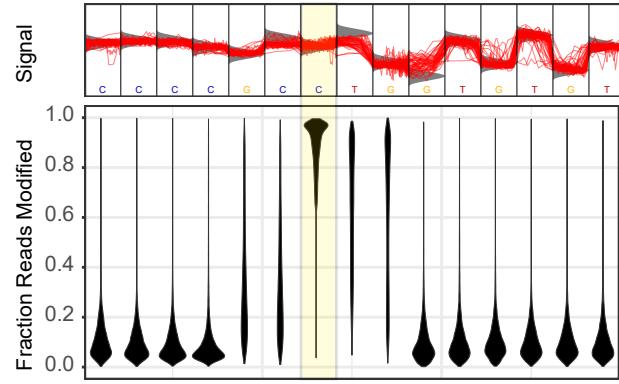
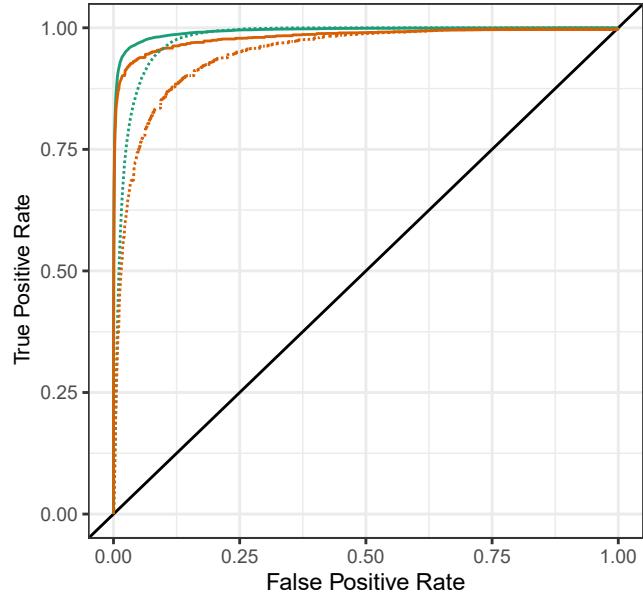
960 **A.** qPCR amplification of *E. coli* sequences. The horizontal black line represents the threshold
961 set by Bio-Rad CFX384 for calling Ct values (RFU = 4000). Vertical dotted lines represent mean
962 Ct values for each target sequence. **B.** Melt curves from qPCR of *E. coli* genome and plasmids.
963 NTC – negative template control.

964 **Figure S8. Read composition of *D. ananassae* long read libraries.**





965 Reads were binned in 1 kbp intervals, and various statistics were calculated using readlength.sh
966 script of the bbtools package [50]. Top: Read counts are plotted for each read length bin.
967 Bottom: Cumulative percentage of bases sequenced is plotted for each read length bin. Vertical
968 dotted lines correspond to maximum read length for each library. See Table S1 for summary of
969 read libraries.

970 **Figure S9. NGX plot of *D. ananassae* genome assemblies.**

971 Plot of NGX values for *D. ananassae* assemblies produced in this study. Each NGX value
972 represents the shortest contig length when summed with all larger contigs totaling X% of the
973 estimated genome size. Assemblies produced here were compared to two previous assemblies
974 of *D. ananassae* [16, 17], and the 231 Mbp assembly size (including gaps) of the Drosophila 12
975 Genomes Consortium caf1 assembly was used to calculate NGX values.




976 **Data S1. Methylated motifs in *D. ananassae***

977 ONT LIG reads were evaluated for evidence of DNA methylation using Tombo with the ONT LIG
978 + Sequel II assembly as a reference. A total of 1,000 regions showing the strongest evidence
979 for methylation were extracted using tombo text_output and screened for enriched motifs using
980 MEME.

A**B**

+— ONT RAPID +— ONT RAPID ^a	+— ONT LIG +— ONT LIG ^b	+— PacBio RS II +— PacBio Sequel II
--	--	---

Fig. 1

A**B****C**

CCWGG LIG

GATC LIG

AUC	mean AP
0.99	0.81

AUC	mean AP
0.98	0.36

CCWGG RAPID

GATC RAPID

AUC	mean AP
0.98	0.79

AUC	mean AP
0.95	0.30

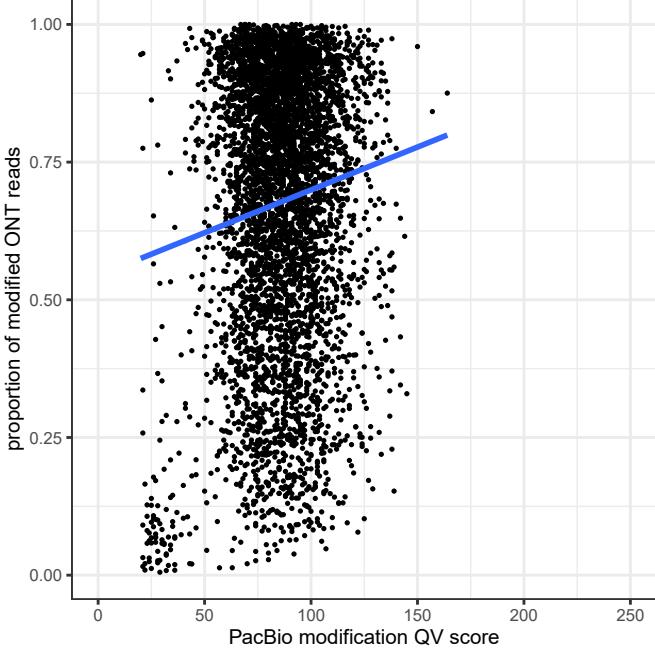

D

Fig. 2

Fig. 3

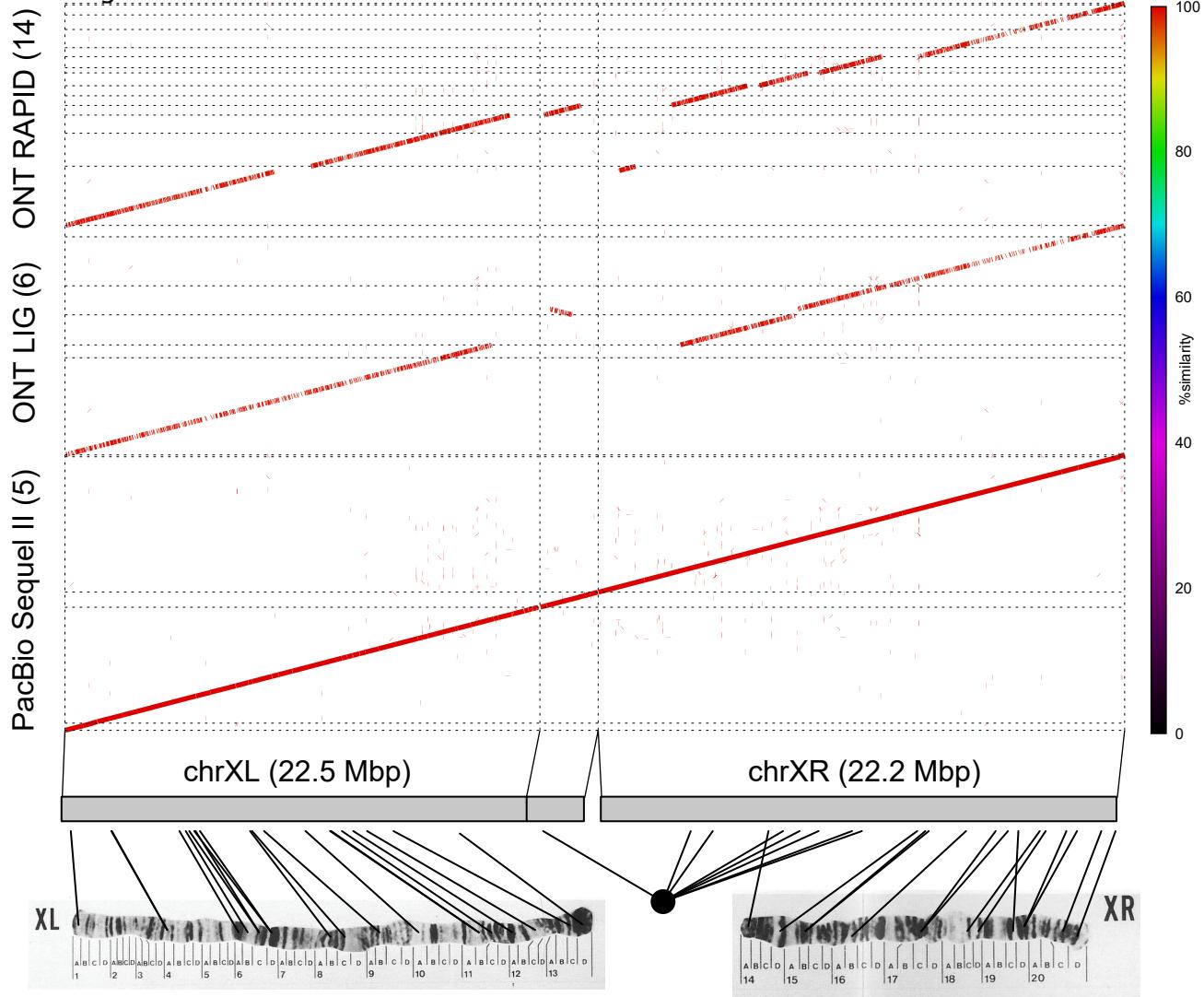


Fig. 4

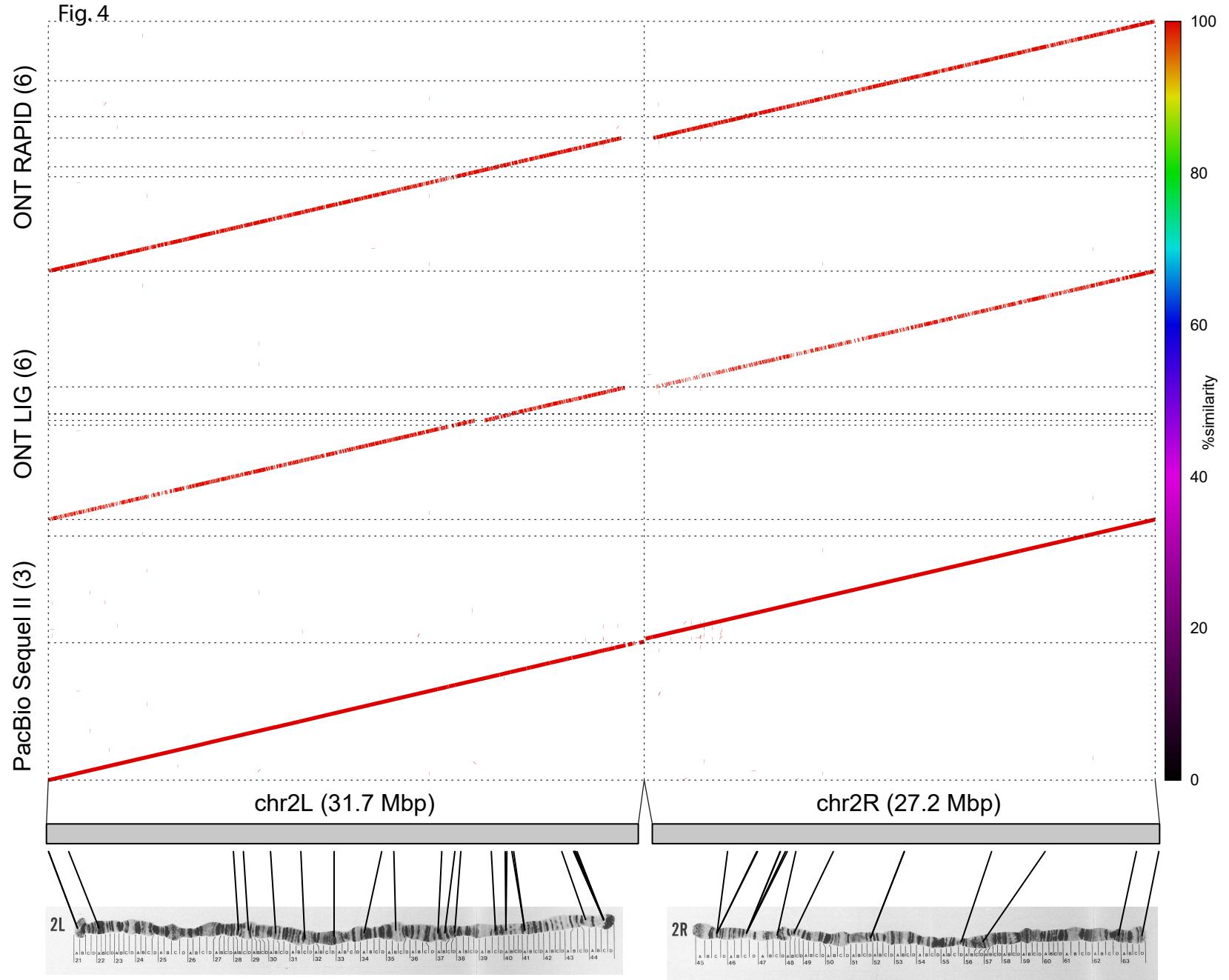
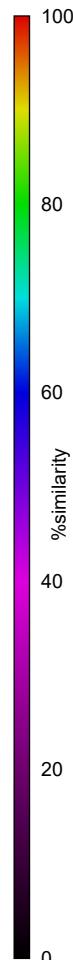
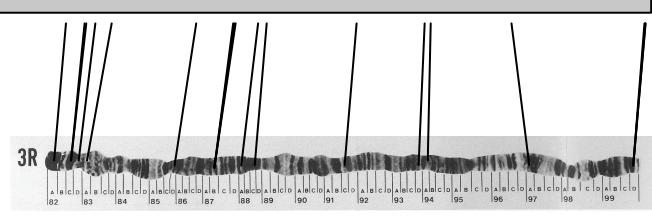
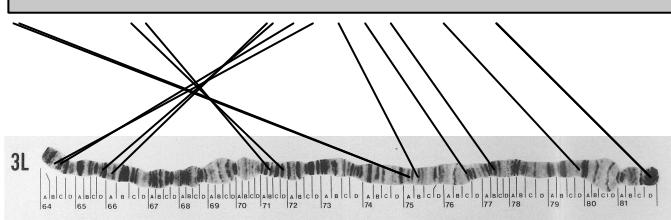



Fig. 5



ONT RAPID (6)

ONT LIG (3)

PacBio Sequel II (3)

chr3 (54.8 Mbp)

