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Abstract

A key aspect in defining cell state is the complex choreography of DNA binding events in a
given cell type, which in turn establishes a cell-specific gene-expression program. In the past
two decades since the sequencing of the human genome there has been a deluge of genome-
wide experiments which have measured gene-expression and DNA binding events across
numerous cell-types and tissues. Here we re-analyze ENCODE data in a highly reproducible
manner by utilizing standardized analysis pipelines, containerization, and literate programming
with Rmarkdown. Our approach validated many findings from previous independent studies,
underscoring the importance of ENCODE’s goals in providing these reproducible data
resources. This approach also revealed several new findings: (i) 1,362 promoters, termed
‘reservoirs,’ have up to 111 different DNA binding-proteins localized on one promoter yet do not
have any expression of steady-state RNA (ii) The human specific SVA repeat element may
have been co-opted for enhancer regulation. Collectively, this study performed by the students
of a CU Boulder computational biology class (BCHM 5631 — Spring 2020) demonstrates the
value of reproducible findings and how resources like ENCODE that prioritize data standards

can foster new findings with existing data in a didactic environment.

Introduction

In the postgenomic era[1,2] there have been efforts to adapt classical biochemical protocols
studying a few DNA regions to genome-wide events. One of the first of these genome-wide
assays was Chromatin Immunoprecipitation (ChlP) followed by hybridization of co-precipitate

DNA fragments to microarrays (or ChIP-CHIP) representing many thousands of DNA locations
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(e.g. promoters). This application was first demonstrated in yeast and quickly adapted to many
species[3-7]. With the advent of massively parallel sequencing technologies, bound DNA from
the biochemical ChIP could be sequenced (ChlP-seq) to unbiasedly detect binding events
(reviewed[8,9]). This rapid change in platforms for ChlIP analyses resulted in many data sets
that differed greatly in their results (ChIP-ChIP versus ChIP-seq)[10,11]. Only three years after
sequencing of the human genome it became clear that uniform experimental and data

standards were essential to limit a deluge of irreproducible results.

To this end, the field turned to the publicly available ENCODE consortium as the largest and
most standardized repository of ChlP-seq data sets[12—-15]. The goal was to develop
standardized experimental and computational pipelines. Over the past 17 years since its
inception, many thousands of ChIP-seq experiments have been performed. Often these large
consortium studies analyze these data sets across cell types and tissues[13,13,16-19]. In

contrast, fewer studies have investigated dozens of DNA binding proteins (DBPs) in one cell

type.

Observing how hundreds of DBPs are bound relative to each other in the same cellular context
provides a unique perspective. This allows a promoter-centric approach across hundreds of
possible DNA binding events. Thus, we can address the underlying properties of combinatorial
binding at promoters and, in turn, how this relates to promoter activity. Moreover, this approach
allows us to systematically investigate numerous DBPs for possible enrichment in noncoding
regions such as repetitive element class and families. Overall, this strategy is limited in cellular

diversity, but rich in relative information of binding events at a given promoter.

By investigating these properties for 195 DBPs in K562 cells, we were able to reproduce known

findings from independent data sets. For example, the number of binding events at a promoter
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correlates with RNA expression output (both nascent and mature transcripts)[17,18]. We also
made several new observations. Specifically, we identify 1,362 promoters that do not produce a
mature transcript despite having up to 111 DBP binding events. We termed these promoters
“reservoirs” because these promoters serve as ‘reservoirs’ for DBPs. Importantly, reservoirs are
distinct from super-enhancers and highly overrepresented by long noncoding RNA (IncRNA)
promoters. We also observed that the human specific SVA repeat is one of the few repeat
families that had specific DBP enrichment, with a total of three DBPs specific to SVA repeats.
Looking further we found that SVA repeats reside adjacent to or within enhancers and are often

transcribed; suggesting they may have been co-opted in late primates as enhancer elements.

Overall, we demonstrate the utility of implementing data-science and reproducibility standards to
gain new insights combinations of genome-wide DNA binding events. We further note that the
design of this study was intended for didactic purposes and carried out by students in a

classroom setting.

Results

We first set out to survey the encode portal for the largest number of ChiP-seq experiments that
satisfied the following criterion: (i) target was considered a DNA binding protein (DBP), the
experiment used validated antibodies, sequencing was performed with 100bp paired end reads
and were in the same cell setting. We found the maximum number of samples that meet these
requirements were performed in K562 cells. Specifically, there are 1,076 FASTQ files comprised
of 195 DBPs meeting these criteria in K562. Rather than analyzing the peaks already called by
ENCODE for these experiments we chose to re-analyze the raw data using a community-

curated pipeline developed by “nf-core”[20]. This approach meets the highest data
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120  reproducibility standards by using a container for all software and producing extensive

121  documentation at every stage of analysis within the nf-core/chipseq (v1.1.0) pipeline (Fig 1A).
122

123

124  Fig 1. Framework of ChIP-seq analyses and peak calling across replicates. (A) Schematic
125  of data quality requirements (2 or more replicates, 100bp reads, validated antibody) resulting in
126 1,076 FASTAQ files representing 195 unique DNA binding proteins. FASTQs were processed
127  using the nf-core/chipseq pipeline (QC and peak calling). All FASTQ files passed nf-core quality
128  control metrics. (B) Browser view of raw data, individual replicate peak calls and our consensus
129  peaks. All scales are from 0 to 1 representing minimum and maximum reads in that window
130 using UCSC auto-scale. Peaks from individual replicates are in gray and consensus peaks

131  called are represented by black boxes.

132

133

134  The nf-core pipeline consists of documented analyses and quality control metrics that results in
135  significant windows or peaks of DNA binding events for each replicate[20]. After the

136  standardized pipeline gave us peak calls, we used this data to support our analysis and

137  exploration of the data. Our approach was to use R and Rmarkdown to document the analyses.
138  Compiling the 11 Rmarkdown files provided in the GitHub repository

139 (https://github.com/boulderrinnlab/CLASS 2020) will reproduce all the results and figures of this

140  study.

141

142 After calling significant peaks (MACS broad peak) for each replicate ChIP experiment for each
143  of the 195 DBPs, we wanted to develop consensus peaks across replicates. Briefly, we filtered
144  to peaks on canonical chromosomes and required that peaks overlap by at least 1nt in all

145  replicates for a given DBP. Peaks that overlap in all replicates are then merged by the union of
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peak widths (Fig 1B-C). We observed five DBPs that did not have any peaks overlapping across
replicates perhaps suggesting that these are promiscuous antibodies, or these proteins have

heterogeneous binding across K562 cell populations (MCM2, MCM5, MCM7, NR3C1, TRIM25).

We next plotted the distribution of the number of consensus peaks for each DBP and found that
many DBPs had very few peaks. In order to capture the majority of DBPs and still provide a
reasonable number of peaks for analyses (e.g., permutation analyses), we chose a cutoff of 250
peaks (15% percentile, Supplemental Fig 1A). This results in 161 proteins to carry forward in the
analysis and in losing the following proteins: ARNT BCLAF1 COPS2 CSDE1 DNMT1 eGFP-
ETS2 FOXA1 KAT8 KDM4B MCM2 MCM5 MCM7 NCOA1 NCOA2 NCOA4 NROB1 NR3C1
NUFIP1 PYGO2 THRA TRIM25 TRIP13 XRCC3 YBX1 YBX3 ZBTB8A ZC3H8 ZNF318

ZNF830.

Promoter centric binding properties of 161 DNA Binding
Proteins

We next plotted the relationship between the number of consensus peaks observed for each
DBP and how many promoters overlapped (36,814 IncRNA and mRNA promoters). We observe
a linear relationship (slope = 0.31 for mMRNA and IncRNA promoters) between the number of
peaks and or size of peaks and the number of overlaps with promoter regions (Fig 2A).
Somewhat surprising was this trend was even more pronounced when comparing overlaps
within gene-bodies rather than promoter regions (Fig 2B). This suggests we could have an
observation bias at promoters where promoter binding simply increases with the number of

peaks observed for a given DBP and not due to preferential binding at promoters.
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170

171  Fig 2. Promoter binding properties of 161 DBPs. (A) Schematic of promoter overlap strategy.
172 Number of overlapping promoters (y-axis) per number of peaks for each DBP (x-axis). (B) Same
173  asin (A) but for overlapping gene bodies instead of promoters. (C) Binary clustering of 161

174  DBPs based on promoter binding profiles (consensus peaks). Zoom out of specific regions.

175

176

177  To detect preferential binding at promoters, we took a permutation-based approach for each
178 DBP’s peak-profile across the genome. Briefly, we took the consensus peaks for each DBP and
179  randomly placed them across the genome, while controlling for (i) number of peaks, (ii) width of
180  peaks and (iii) number of peaks on each chromosome. We then performed a Fisher exact test of
181  the observed binding at promoters versus expected binding in the empirically derived null

182  distributions. We observed that nearly all DBPs exhibit significant overlap with promoters versus
183 the rest of the genome, despite being involved in many different DNA regulatory processes

184  (Supplemental Fig 1B).

185

186  To more closely examine the results of our consensus peak strategy we performed manual

187  inspection of samples with two or more replicates (Fig 1B-C). We find that our peaks are

188  consistent with what would be expected of highly reproducible binding events. We see that most
189 Pol2 and ATF3 peaks show good agreement between replicates. Interestingly in this example
190  ATF3is not localized to the promoter but in an upstream region that could be a newfound

191 enhancer or upstream regulatory element. Overall, these analyses are consistent with our

192  consensus overlap strategy representing expected and newfound features in peak size profiles.

193
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194 Global analysis of similarities in binding profiles

195  To determine if there were underlying similarities and differences of 161 DBPs that passed our
196  conservative filtering, we first performed hierarchical clustering (Fig 2C) on binary vectors

197  representing binding events on 36,814 IncRNA and mRNA promoters defined in GENCODE 32
198 where 1 = bound, 0 = not bound for each promoter and DBP. As a quality control check, we
199  looked for clustering of known factors. The binary vector profiles validated that POLR2A,

200 POLR2B, and SUPT5H form a distinct cluster. Known family members, such as ATF3 and ATF2
201 co-cluster together as well, along with the e GFP-ATF3 control. This indicates that these DBPs
202  had similar binding profiles with or without the eGFP tag. However, 11 cases of eGFP-tagged
203  samples clustered together, despite having widely different functions. This may suggest that in
204  some rare cases the tag can alter the binding profiles in a manner that is more consistent with
205 the tag than DBP function.

206

207  As an unbiased approach to find underlying properties in DBP binding profiles, we also

208 performed UMAP[21] dimensionality reduction for the global binding profile of each DBP (Fig
209 3A). Briefly, UMAP uses algebraic topology to reduce the data dimensionality. We further

210  clustered this reduced representation using density-based clustering (HDBscan[22]). We

211 observed a total of seven clusters. Similar to binary clustering, we identify a clear cluster of
212 POLR2A, POLR2B, and SUPT5H and other basal transcriptional associated factors (TAF) as
213  would be expected. This is another example of high reproducibility as POL2 has three different
214  antibodies with 2 replicates each that are all highly concordant with thousands of peaks each.
215

216

217  Fig 3. Binding properties of DBPs and expression output of promoters. (A) UMAP

218 dimensionality reduction to identify DBPs with similar promoter binding profiles. (B) Four
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discrete clusters of binding patterns around promoter TSSs with 3Kb up- and downstream. Line
is the average profile of all peaks in each cluster. (C) The number of peaks per DBP versus
number of mMRNA or IncRNA promoter overlaps. X-axis is the number of DBPs overlapping
either IncRNA (red) or mRNA (black) promoters. (D) Chi-sqared test for enrichment of DBPs
between IncRNAs and mRNAs. The x-axis is the log2(observed over expected) and y-axis is the

P-value.

Next we compared specific features of the DBP with their position in the reduced space by
mapping metadata (e.g., type of DNA binding domain) onto the UMAP points (Fig 2A,
Supplemental Fig 2A-D). We found no clear association with (i) type of DNA binding domain, or
(i) annotation as a transcription factor, (iii) RNA-seq expression of bound genes, or other
properties. Collectively, these results recapitulate known biological functions of DBPs while

including potential new factors across these different promoter regulatory functions.

Promoter binding specificity of 161 DNA binding proteins

We next wanted to assess the underlying promoter features associated with each DBP.
Specifically, we wanted to determine where each DBP is bound relative to the TSS of 36,814
IncRNA and mRNA promoters. To this end, we generated ‘binding profile plots’ by calculating
the read counts across all promoters centered at the TSS with 3kb flanking up- and down-
stream (Fig 3B, Supplemental Fig 2E-F). We next clustered the 161 DBPs based on their
promoter profile plot. We split the dendrogram into clusters by ‘cut-height’ (h = 65). We
observed 4 distinct clusters with at least two DBPs. The first distinction is that about half exhibit

a narrow peak profile (71) and half with a broader peak profile (74). In both cases these profiles
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peak near the TSS. Interestingly, 6 genes (eGFP-PTRF, ZBTB33, SMARCAS5, HDGF, eGFP-
ZNF512, eGFP-ZNF740) have the inverse pattern: depletion of binding at the TSS with strong

enrichment at flanking regions (Supplemental Fig 2E-F).

Previous studies have identified several differences in binding features at coding (mMRNA)
compared to noncoding (INncRNA) promoters. Here we wanted to independently test this across
161 DBPs to determine if there was an enrichment or depletion at mMRNA versus INcRNA
promoters. We counted the number of IncRNA and mRNA promoter overlaps separately and
observed the same linear trend of more peaks resulting in more binding events for both
IncRNAs and mRNAs. However, the slope for mMRNA is 0.19 (R = 0.75, P < 1e-10) and IncRNA
is 0.088 (R = .87, P < 1e-10) suggesting a two-fold reduction on an average IncRNA promoter

(Fig 3C).

We then performed permutation analysis (above) separately for IncRNAs and mRNAs to
determine if the observed overlap is greater than expected by chance (Supplemental Fig 3C).
Similar to our previous observation, nearly all DBPs were significantly (Fisher-exact P < 0.05)
enriched at both INncRNA and mRNA promoters yet with a smaller magnitude of enrichment of
binding events on INcRNA promoters (similarly to previously reported[17]). We observed two
DBPs that were significantly depleted: BRCA1 on mRNA promoters, and ZNF507 on both
IncRNA and mRNA promoters. Four DBPs showed neither enrichment or depletion at IncRNA or
mRNA promoters. In total 155 of the 161 tested DBPs were enriched at IncRNA and mRNA

promoters more than expected by chance (Supplemental Fig 2G).

Our previous permutation test above demonstrated that most DBPs bind both IncRNA and
mRNA promoters more than expected by chance. But this approach does not account for DBPs

that may prefer INcRNA or mRNA promoters. Thus, we hypothesized that some DBPs may have
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a bias in binding for mRNA relative to INcRNA promoters and vice-versa. To test this, we
performed a Chi-squared test to compare the number of binding events for each DBP at IncRNA
versus mMRNA promoters. Interestingly, although most DBPs are enriched on mRNA promoters,
there were a few with a relative bias toward INcRNA promoters (P < 0.05): BRCA1, eGFP-
ZNF507, EWSR1, eGFP-TSC22D4 (Fig 3D). Interestingly, BRCA1 prefers to bind outside of

promoters, yet if it does bind a promoter BRCA1 prefers INcRNA over mRNA promoters.

Repeat family and class binding preferences for 161 DNA

binding proteins

In order to determine if DBPs are enriched or depleted in TE classes and families we performed
a permutation enrichment analysis. As above, we randomly shuffled peaks around the genome
and calculated the number of overlaps with repeat family and classes from RepeatMasker

Open-3.0 occurring by chance (Fig 4A).

Fig 4. Many DBPs are enriched or depleted on repeat families and classes. (A) Heat map
of Z-scores of observed overlaps of each DBP versus the overlap distribution of 1,000 random
permutations of each DBPs profile genome wide. Red indicates depletion and blue enrichment
(negative versus positive Z-scores respectively). The observed and permuted Z-scores are for
overlaps with repeat classes. (B) The same permutation analysis as in (A), but for observed

versus permuted overlaps with repeat families. Red indicates depletion and blue enrichment.
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292  We observe that some classes, such as Simple Repeats and tRNAs, were enriched for most
293 DBPs, while others, such as the LINEs and Satellites, were depleted for most DBPs (Fig 4A).
294  The LINE class was depleted of all DBPs with the exception of five DBPs with zinc finger-like
295  motifs (ZNF507, ZNF316, ZNF184, ZNF24 and ZNF512). Additionally, the LTR class was

296  depleted for most DBPs, but enriched for a subset of 23 DBPs (Fig 4B).

297

298  Overall, we found that most small TE families were not significantly enriched or depleted for
299  specific DBPs. However, a subset of 23 DBPs were enriched in the ERV1 family, but depleted in
300 the L1 family. These 23 DBPs are the same that were enriched in the LTR class. This is

301  consistent with ERV1 family TEs being a part of the LTR class. Similarly, the MIR family shows
302  a similar enrichment pattern to the tRNA family (Fig 4B). Thus, using this approach we can

303 provide a map of which DBPs are specifically bound to which repeat family.

304

305 We did observe a subset of 6 DBPs (NUFIP1, ZC3H8, PHF21A, ARHGAP35, NCOA4, PYGO2)
306 enriched in snRNAs, but no other TE family. Each of these DBPs, except NCOA4, contains a
307  zinc-finger-like DNA binding domain, and a few (NUFIP1 and ZC3H8) are known to be a part of
308 the snRNA biogenesis pathway, perhaps suggesting some form of feedback. The L1 family is
309 depleted for almost every DBP, but is highly enriched for ZNF507, an interaction which has

310  been previously described in an undergraduate thesis and confirmed genome-wide here

311 (https://web.wpi.edu/Pubs/E-project/Available/E-project-042618-111020/unrestricted/ MQP.pdf).

312


https://doi.org/10.1101/2020.07.21.213603
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.21.213603; this version posted July 21, 2020. The copyright holder for this preprint (which

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1

The human specific SVA repeat family has enhancer like

features

Although most families are not enriched for specific DBPs, the human specific SVA repeat
family is specifically enriched for three DBPs: ZBTB33, CBFA2T2, and CBFA2T3. Interestingly,
all three of these DBPs are known transcriptional repressors. The SVA family is the youngest
family of TEs, is enriched in gene-rich areas of the genome[23-25], and can cause human
disease[24]. Based on these interesting features we further explored the binding of these factors

on the SVA repeat.

We first retrieved histone modification ChIP data for K562 cells from ENCODE and visualized
the coverage centered on the 5,882 SVA repeats with 5kb up- and down-stream. We find that
Lysine 4 mono-methylation (K4me1) is the only histone modification enriched on SVA elements
— all others were depleted (Supplemental Fig 3A). Moreover, the enrichment of K4me1 is on the
5 end of the SVA element suggesting it could be an insulator for enhancers or part of the
enhancer element. This pattern is so sharp we were concerned about mapability to the SVA
element — despite observing the 5" enrichment of K4me1. We reasoned that ZBTB33, CBFA2T2
and CBFA3T3 should be enriched across the SVA element. We performed the same analysis
above for the these 3 DBPs and find there is strong mapping to these SVA regions, which
suggests a low potential for the histone mark depletion to be an artifact of low mappability
(Supplemental Fig 3B). We next looked at the expression level of SVA elements relative to other
repeat family members. Interestingly, we observed that SVA elements have more transcription
(Supplemental Fig 3C) than LTR family members that are known to function as promoters[26].
Together, these results demonstrate that the SVA region has enriched and fully mappable

coverage of K4me1, ZBTB33, CBFA2T2, CBFA3T3 and are expressed.
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Of the 5,882 SVA elements genome-wide, 255 SVAs were found to contain consensus peaks
for all three enriched DBPs: ZBTB33, CBFA2T2, CBFA3T3. We took the same approach above
for this subset of bound SVA elements. We see even stronger enrichment of K4me1 (Fig 5A)
and also coverage by ZBTB33, CBFA2T2 and CBFA3T3 (Fig 5B). Interestingly, the shape and
position of ZBTB33 is distinctly different than that of CBFA2T2/3T3 (Fig 5B). It suggests that
ZBT33 binds on the 5’ region near K4me1 and CBFA2T2/3T3 have overlapping positions on the
3’ end of SVA elements. Closer examination of nascent, steady state RNA-sequencing (see
below) and K4me1 ChIP shows a very interesting pattern of the SVA elements being
transcribed and or producing bi-directional RNAs in K4me1 enriched (Fig 5C-D). This is very
similar to what has been seen for enhancer regions genome wide[27,28]. Thus, the SVA
transposon may have evolved (neutrally or positively) to ‘co-opt’ binding of DBPs adjacent or

within enhancer regions.

Fig 5. Human SVA repeats are enriched for DBPs and enhancer properties. (A) Heatmap of
histone modification reads centered on SVA and 5Kb up- and down-stream for the 255 SVA
elements containing ZBTB33 and CBFA2T2/3T3 peaks. Here red indicates enrichment, while
blue indicates depletion. Above is the average profile line of enrichment within and outside SVA
elements. (B) Same as (A) but coverage of ZBTB33 and CBFA2T2/3T3. The K4me1 plot is

same as in (A) for direct comparison. (C) Browser examples in the same format as Fig 1.
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360 Promoter binding of 161 DNA binding proteins versus

361 promoter expression output

362 Here we set out to investigate how binding events at individual promoters relate to the

363  concomitant expression of the gene-product at that promoter. To this end, we analyzed

364 ENCODE K562 total RNA sequencing data from two replicates. We calculated the average read
365 coverage across replicates and quantified by transcripts per million reads (TPM); while

366  considering the variance between replicates in further analyses. We first asked if the number of
367  binding events at a promoter correlated with expression. We observed a positive correlation (R
368 =0.6, P <2.2e-16) between the number of DBPs bound at a promoter and expression output of
369 the promoter (Supplemental Fig 4A).

370

371  We next wanted to determine if this trend is similar for mRNA and IncRNA promoters

372  separately. Indeed, we see that both IncRNA and mRNA promoters have a positive correlation
373 to binding events and expression output (Fig 6A). We observed that IncRNAs have lower

374  expression in general than mRNA as previously determined[29—-32]. Yet despite these

375  expression differences, both exhibit a positive relationship between number of binding events
376  and promoter activity. This is consistent with observations in a previous study using a different
377  yetoverlapping subset of 73 DBP ChIP datasets[32].

378

379

380 Fig 6. Reservoir promoters are comprised of ghosts and zombies. (A) Number of DBPs
381  bound to a promoter (x-axis) versus log:o(TPM) of transcription as measured by total RNA-seq.
382  (B) Box plot comparing mRNA (black) and IncRNA (red) expression as a function of off, low,

383 medium, and high expressed transcripts. Y-axis is the number of DBPs and X-axis each
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category. (C) Y-axis is the mean expression level in windows of 5 genes excluding the center
gene, with a step (slide) of 1 gene. X-axis is by category of windows containing a reservoir, non-
reservoir or super-enhancer. Y-axis is mean expression in each 5 gene window. (D) Density plot
of number of DBPs bound at a promoter at expressed (grey) versus non-expressed promoters
(red), separated by IncRNA and mRNA promoter types. (E) Nascent TPM expression (y-axis)
compared to number of DBPs bound at a promoter. (F) Density plots of DBPs ghost reservoirs
(those without nascent expression, PRO-seq TPM < 0.001) vs those with detectable nascent

expression (zombie reservoirs).

Although we saw a linear trend with binding events and expression output above, we wanted to
refine this analysis to a binned approach. Specifically, we binned IncRNA and mRNA promoters
by expression output of: Off: < 0.001 TPM, Low: (0.001,0.137] TPM, Medium: (0.137,3] TPM,
and High: >3 TPM. Interestingly, at ‘low’ and ‘off’ expressed promoters there is no difference in
binding event distributions between IncRNA and mRNA promoters (Fig 6B). Thus, they both
have similar numbers of binding events -- and can have dozens of DBPs bound -- despite
having little to no expression output. In contrast, mMRNA promoters show significant increases in
binding events, compared to INcRNA promoters, at medium and high expressed promoters.
Thus, in the middle to high ranges of expression is where we begin to see the differences
between mRNA and IncRNA promoters. Collectively, these results identify over a thousand
promoters that resemble the DBP content of highly-expressed promoters yet do not have any

detectable expression by RNA-seq.
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Promoters with numerous binding events but lack gene-
expression output

Based on the observation of over a thousand promoters that have numerous DBPs bound, but
do not produce a transcript identified by RNA-seq, we wanted to further characterize the global
properties of this subset of promoters. First, we made density plots of the number of binding
events at promoters. We observed a bimodal distribution of binding events where the cutoff
between the distributions is around seven binding events at a promoter (54% percentile). Based
on these two distinct distributions, we focus our analysis on those promoters with more than
seven binding events (Supplemental 4B) and further required that the RNA-seq output was less
than 0.001 TPM. This resulted in 1,362 promoters which had a relatively high number of binding
events but lack of RNA-seq output from these promoters. Interestingly, 981 of the 1,362 are
comprised of INcCRNA promoters (Supplemental Fig 4C). This is a significant over-representation
of IncRNAs in these high-binding non-expressed promoters over what would be expected by

chance (hypergeometric p-value = 1.1 x 10-88).

There are two trivial explanations that could explain these high binding low expression
promoters: (i) these are simply super enhancer[33-35] annotations (as they share similar

properties of many binding events) and or (ii) the promoter is regulating a neighboring gene.

Ouir first concern is that super-enhancers (SE) share the similar property of many binding
events, we wanted to determine how many of these regions were super enhancers. For super-
enhancer annotations we used the SE-DB[36] that is comprised of 331,601 super-enhancers
from 542 tissues and cells, including K562. We first retrieved the SE annotations in K562 with

the hg19 reference genome alignments. We then lifted over these annotations from hg19 (732
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431  annotated SEs) to hg38. We found 714 annotations have one match to the genome and took a
432  conservative approach of not including the 18 SEs with multi-mapping in the genome (often too
433  many chromosomes). Of these 714 regions, 35 overlapped with the 1,363 reservoirs (P = .991
434  Hypergeometric). Thus, reservoirs are distinct from SE annotations and are enriched with

435  repressor complexes unlike SEs.

436

437  Another concern is that these promoters we identified could regulate a neighboring gene; this
438  would be most obvious for bidirectional promoters. Thus, we first defined a set of promoter

439 types: (i) bidirectional, if another promoter on opposite strand overlaps within 1,000 bp upstream
440 of the TSS on the opposite strand (147 / 11%); (ii) multiple nearby promoters, if there is more
441  than one promoter on either strand within 1,000 bp (91 / 7%); (iii) nearby on same strand if there
442  is another promoter upstream within 1,000bp (113 / 8%); (iv) none (1,011 / 74%), if there are no
443  promoters within 1,000 bp (Supplemental Fig 4D). Collectively, very few reservoirs had shared
444  promoters of any type i-iii (26%), thus this cannot likely account for the lack of transcription at
445  the observed or neighboring promoter (since there are so few). Nonetheless we calculated the
446  TPM of promoter(s) neighboring reservoirs. We observed that 68% of these shared promoters
447  did have a neighboring gene expressed (subcategories in Supplemental Fig 4E) for a total 240
448  (15%) of reservoirs that could affect neighboring gene expression. Thus, neighboring promoters
449  of any orientation cannot account for the general lack of expression observed at reservoirs (Chi-
450 squared p-value 2e-22).

451

452  Although bidirectional expression cannot explain why these promoters seem inert, we wanted to
453  look more globally at the transcription environment of these promoter regions and their 5

454  neighboring genes. Specifically, we used a “sliding-window” approach to calculate the median
455  TPM expression value for windows of 5 genes. Each window is centered on one gene and the

456  mean of the neighboring four genes is calculated excluding the center gene. We first plotted the
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distribution of windows where the center gene is a reservoir compared to those with non-
reservoir center genes. We also removed the 35 reservoirs that were annotated as super-
enhancers. We observed that the Wilcoxon test statistic (Fig 6C) between means was
significant (P < 9e-06), however the means were very similar (mean = 7.2 for reservoir, mean =
8.4 for non-reservoir). To be sure this is not an artifact of our permutation analysis we performed
the same analysis for windows of genes centered on super-enhancers versus non super-
enhancers. Indeed, we see that super-enhancers reside in regions of significantly higher
transcriptional activity (p < 2.5e-12) with a large fold change (4.5x) in mean expression (mean

super-enhancer = 37 TPM, mean = non super-enhancer 8.4 TPM) (Fig 6C).

Collectively, these results identify a subset of promoters that appear to be a ‘holding place’ for
DNA binding events. Thus, we will refer to these promoters as ‘reservoirs’ since they: (i) are
distinct from super-enhancer annotations; (ii) are located in more transcriptionally silenced
neighborhoods; (iii) share the property of many DNA binding properties as those promoters that

are highly expressed and (iv) have no expression output as measured by RNA sequencing.

DNA binding properties of reservoir promoters

To understand if reservoir promoters are enriched for certain DBPs, we compared the density of
DNA binding events at IncRNA and mRNA reservoir and non-reservoir promoters which had
greater than seven binding events. We observed a shift toward fewer binding events for both
IncRNA and mRNA reservoirs (Fig 6D). However, it's notable that there are still reservoirs along
the whole range of DBP binding. Although reservoirs have fewer binding events in general, we
wanted to determine if there was enrichment of certain DBPs on reservoirs. Using a Chi-
squared test to compare the number of bound promoters for reservoirs versus non-reservoirs

we observed that 31 DBPs were depleted on reservoirs and only one gene enriched (P < 0.001
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and > 2-fold depletion/enrichment, Supplemental Fig 4F). This is in contrast to the IncRNA and
mRNA comparisons above where we saw global depletion of all DBPs on IncRNA promoters.
Thus far, reservoirs are deviant from all trends observed for the other ~33,000 promoters tested

above.

We wanted to further globally characterize reservoir promoters using UMAP dimensionality
reduction as in Fig 2A. Unlike with all promoters we only observe two distinct clusters across
reservoirs (Supplemental Fig 4G). However, gene-ontology analysis revealed that both clusters
are strongly enriched for similar processes such as regulation of transcription (P < 1e-20).
Perhaps as expected, Pol2 and associated transcriptional machinery are some of the most
significantly depleted from reservoirs; consistent with their lack of expression. Despite a global
depletion of Pol Il at reservoirs, we were surprised that over a quarter of reservoirs (417) had
Pol Il binding events, suggestive of ‘paused’ transcription. While only one DBP (eGFP-
TSC22D4) reached the fold-change threshold, two more were found to be significant (P <
0.001) with small enrichments. All three are associated with repressive activity. TSC22D4 and
CBFA2T2 are both known repressors while EHMT2 facilitates transcription repression through
methylation of H3K9. Collectively, these findings show that reservoir promoters are distinct from

super enhancers, bound by many DBPs and yet are not transcribed.

Nascent Expression and chromatin properties of reservoir

promoter

Since reservoirs don’t have mature transcriptional products despite many promoter binding

events, we next examined if reservoirs have “nascent” transcription detected via PRO-seq
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506 (reviewed?®*). These approaches are so precise they can identify specific DBP binding sites

507 through PRO-seq nascent RNA read out [37,38]. Thus, we hypothesized that reservoir

508 promoters would exhibit nascent transcription owing to so many DNA binding events. This could
509 also be similar to more well established “paused” promoters as reviewed[39].

510

511  To determine the nascent transcription properties of reservoirs, we obtained two replicate pro-
512  seq data sets that measure the amount of nascent transcription at a promoter. We used

513  “Rsubread’[40] to calculate TPM values of nascent transcription across the same 6 Kb promoter
514  window defined for DBP binding. We first plotted the relationship of nascent sequence at

515  reservoirs versus non-reservoirs (Supplemental Fig 5A). Although statistically different (P < 3e-
516  9) the distributions are fairly similar for reservoirs (mean = 0.41) and non-reservoirs (mean =
517  0.51) with a fold change of only 1.25. Thus, consistent with lack of RNA-seq expression,

518 reservoirs also have slightly lower nascent expression than non-reservoirs (Supplemental Fig
519  5A). Next, we compared the relationship between the number of DBPs bound and nascent

520 expression levels (Fig 6C). Similar to what was observed for RNA sequencing and previous

521  studies(17,32) (Fig 3C), nascent transcription also has a significant (R = .3, P < 2e-16) positive
522  correlation with the number of DBPs bound at that promoter (Fig 6C).

523

524  Interestingly, we observed a subset of reservoirs that have many DNA binding events but do not
525 have nascent transcriptional activity. Specifically, we found 355 (25%) promoters with more than
526 7 and as many as 60 binding events that have neither nascent nor mature expression (PRO-seq
527 TPM < 0.001, Fig 6F). We refer to these reservoirs without nascent or mature transcription as
528 ‘ghosts’, as there is no presence of transcriptional activity. We also found 964 promoters with
529  more than seven binding events that had no mature expression but did have nascent

530 expression. These are referred to as ‘zombies,’ as there is some presence of activity.

531
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We next investigated if the chromatin environment discriminates between ghost and zombie
promoters. We therefore retrieved ENCODE ChIP data from K562 for a euchromatic and
heterochromatic histone modification; Histone 3 Lysine 27 acetylation (H3K27ac) versus
Histone 3 Lysine 27 trimethylation (H3K27me3) respectively. To this end, we downloaded peak
files called in two independent replicates for each histone modification from ENCODE analysis
pipelines. To validate our re-analysis of these ChlP-seq experiments we first determined if
K27ac correlates and K27me3 anticorrelates with global nascent transcription as would be
expected. Indeed, we see that those promoters containing K27ac have increased nascent
expression (P < 2e-16, fold change = 4) (Supplemental Fig 5B). Similarly, we checked the trend
for K27me3 status (Supplemental Fig 5C). As expected, we see that promoters containing

K27me3 have lower nascent expression (P< 2e-16, Fold change = 0.3, Supplemental 5C).

Having validated that our analysis of PRO-seq faithfully represents known biological processes
(e.g., K27ac enriched with higher expression) we wanted to zoom in only on reservoirs. We first
compared K27ac status versus nascent transcription levels on reservoirs. As was seen with all
promoters we see a significant difference in nascent expression between K27ac containing
reservoirs and those without that mark (P < 0.0006, fold change = 1.65, Supplemental Fig 5D).
Similarly, K27me3 status on reservoirs is negatively associated with nascent expression levels
(P < 0.0002, fold change = 0.55, Supplemental Fig 5E). However, chromatin environment
doesn’t fully explain the presence of zombie promoters, as there are promoters with and without

nascent expression in each category of chromatin state.

To understand the difference between ghosts and zombies, we compared DBP binding events,
the distribution of nascent transcription, and histone marks. We did not observe a significant
difference in distribution of DBPs between ghosts and zombies (P = 0.064, fold change = 1.04,

Fig 6F, Supplemental Fig 5F). Thus, unlike all other cases tested, the number of DNA binding
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events cannot account for the difference in those that do and don’t have nascent expression.
Collectively, these findings demonstrate that more than 60 DBPs bound to the same promoter
do not exhibit nascent nor transcript production and are ‘ghosted by Pol II’. All properties

identified above can be found in S2 Table.

Discussion

A fundamental question in biology is to understand when and where DBPs localize on a given
promoter and in turn how these combinations affect expression output. Thanks to heroic efforts
by ENCODE and other genome consortium efforts we now have standardized DNA binding
profiles for hundreds of DBPs[12—-15,31]. Moreover, these datasets go through several quality
control measures before being released by ENCODE (see ENCODE portal). Thus, these
important resources provide two opportunities: one for data-reproducibility standard
advancements based on such well documented data; and a second to re-analyze these data-

sets to find novel insights into the genome-wide localization of DNA binding proteins.

This study found a vast majority of ENCODE data to be highly reproducible -- both with known
biology and in data quality. However, we do note that it may be recommended to be sure
replicates have reproducible peak profiles as we observed a few ChlP-seq experiments that did
not have any overlapping replicate peaks. This led us to identify 5 (2%) experiments that did not
have any reproducible peaks. However, a majority of the experiments (98%) have peaks that
overlap in all replicates as applied in this study. Moreover, taking into account the number of
observations (promoters) it is needed to be sure there are sufficient replicable peaks called for
each DBP. We found 30 more samples that had fewer than 250 peaks between replicates (14th

quartile). Considering the number of observations (promoters) it is also important to be sure
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there are sufficient peak numbers for permutation analysis and statistical comparisons. Finally,
we noted that many of the proteins tagged with “eGFP” had similar binding profiles based on the
tag and not DBP function (Fig 2C). We did not see differences in number or sizes of peaks
compared to antibody-based ChIP. Yet it is surprising that 15 different DBPs all cluster together
based on the “eGFP” tag despite diverse biological roles and all having similar consensus peak

profiles.

These large and standardized data-sets also provide a unique opportunity to search for novel
insights into the relationship of DBPs and expression output. Thus, we can compare 161 DBPs
from the perspective of a promoter to determine how many bind and how this influences
promoter output. Consistent with two recent studies using orthogonal datasets and
approaches[17,18] we found that the more DBPs at a given promoter the more it tends to be
expressed. This was similar for IncRNA and mRNA promoters alike. This analysis similarly
validated these studies finding that mRNA promoters are more enriched in general than

IncRNAs for DBPs[17,18].

Surprisingly, we observed 1,362 promoters had numerous DBPs (more than seven and up to
111 DBPs on one promoter) bound yet did not have expression output. In fact, these promoters
had similar DBP events as the most highly expressed mRNA promoters. We termed these
regions reservoirs as they seem to be a holding spot for DBPs. Notably, reservoirs are highly
over-represented for INCRNA promoters relative to mRNA promoters (p < 2 e-12). We also
determined that reservoirs are not super-enhancers previously defined by having many DBP
binding events. Unlike super-enhancers, reservoirs have many different DBPs bound rather
than many binding events of cell-specific transcription-factors in a defined region[33—-36,41].

Another difference from super-enhancers is the lack of Pol Il, although we do find that a quarter
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607  of reservoirs do have Pol Il machinery bound. Perhaps suggesting that they are “paused

608 promoters’[39,42] potentiated with up to 111 DBP binding events.

609

610  Further investigation into reservoirs revealed that almost half produced “nascent” transcription
611 as measured by PRO-seq. This is consistent with the above hypothesis of paused promoters.
612  What is more surprising is that half of the reservoirs also did not produce nascent transcripts
613  within 6Kb of the TSS (ghosts). The distribution of number of DBPs was not different between
614  poised and ghost promoters. Nor could we find enrichment of specific DBPs that separate these
615  categories. Another possibility is that ghosts are positioned in a three-dimensional space with
616  “DBP” hubs[43,44]. Finally, it could be that the large number of binding events at these

617  promoters causes a ‘liquid phase state transition’ owing to so many proteins in a confined

618 space.

619

620  Our permutation-based approach to determine if a DBP prefers a genomic feature allowed us to
621 extend beyond promoters into the noncoding genome. Specifically, we were interested in

622  determining if certain DBPs were specific to repetitive elements, such as transposons, across
623  the genome. Comparing random permutation versus observed overlaps revealed something
624  somewhat surprising: that repeat classes and families such as ‘simple-repeats’ and tRNA

625 repeats were strongly enriched for all DBPs tested. In contrast, Line and Satellite repeats were
626  strongly depleted for all DBPs. Thus, some repeat sequences ‘repel’ DNA binding and some
627  ‘recruit’ DBPs without discretion.

628

629 In some cases, we did observe some interesting biases for DBPs and repeat elements. One
630 example is the human specific repeat family ‘SVA’ as one of the newest evolving repeats in
631  humans compared to primates. Specifically, three genes had a strong bias of binding SVA

632 elements -- all three of which are known transcriptional repressors. Recently studies have
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identified that primate specific transposons can be co-opted to generate promoters of newly
evolving enhancers and even INcCRNAs[26,45—47]. Thus, unlike many existing examples of co-
option in the case of SVA, it could have selective pressure for binding motifs of the observed
repressors and hitherto to unknown repressor motifs — or hitherto unknown promoter regulatory

elements.

Collectively, this exercise in data-science, reproducibility and scale in a singular cellular context
has been informative to understand relativistic promoter binding events across 161 DBPs. This
has led us to understand new features of the coordination of this binding with respect to
promoter expression output. Perhaps most importantly, 15 graduate students learned data-
sciences and reproducibility measures that not only provide new insight into reservoir promoters

but also a logical framework for future objective teaching exercises of genomic data-science.

All markdown files needed to reproduce the results and figures of this manuscript can be found

here: https://github.com/boulderrinnlab/CLASS 2020.

Materials and Methods

Data, Code and Markdown

Accessions and sample information for the DBPs included in this study can be found in S1
table. All data and analyses are publicly available on our GitHub:

https://github.com/boulderrinnlab/CLASS 2020.

All analyses, code, and compiled markdown are available in S1 File.
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Supporting Information

S1 Fig. (A) Distribution of number of consensus peaks observed for each DBP with cutoff at 15t
percentile shown as red line. (B) Permutation analysis of DBP significance of overlapping a
promoter versus 1,000 random samplings of the same peak profiles for each DBP genome
wide. Showing enrichment and depletion status for DBPs (Fisher Exact P < 0.01).

S2 Fig. UMAP dimensionality reduction based on DBP binding profiles and overlaid with: (A)
DNA binding domain annotations. (B) enrichment score on reservoir promoters (C) TF
annotation status (D) Median RNA-seq expression level of bound promoters. (E) Examples
promoter binding profile. Grey line indicates 95% confidence interval and black line is the mean
value. (F) Heatmap of each promoter binding profile for individual DBPs centered at TSS. Red
indicates degree of binding. Cluster of binding profiles for each DBP. The four clusters are
separated by white space. (G) Enrichment for each DBP at IncRNA and mRNA promoters
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versus 1,000 random samplings of the same profiles for each DBP across the genome. Blue
indicates Z-score of observed versus permuted distribution.

S3 Fig. Heatmaps as in Fig 5 for all SVA elements in the human genome. (A) Histone
modifications (B) DBPs enriched at SVAs. (C) Expression of SVA elements relative to other LTR
containing endogenous retroviruses (ERVS).

S4 Fig. (A) X-axis, number of DBPs bound per promoter for all promoters. Y-axis is the
log1o(TPM) expression of resulting transcript as measured by RNA-seq. (B) Cumulative
distribution of binding events on promoters. Red line indicates approximately the 50th percentile
of binding events occurring at 7 DBPs bound per promoter. (C) Stacked box plots of IncRNA
(red) and mRNA (black) promoters in reservoirs versus non-reservoirs. (D) Stacked box plots of
promoter types in reservoir (right) versus non reservoir (left) (E) Bar plot of the 25% of reservoir
promoters that have other promoters nearby. True equals a neighboring gene promoter is
expressed, False is not expressed. (F) X-axis is Chi-squared test value as
log2(observed/expected), Y-axis is the log10 of Chi-squared P-value. (G) UMAP reduction using
only DBP binding to only reservoir promoters.

S5 Fig. (A) Density plot of nascent expression at reservoirs versus non-reservoirs. (B) Box plot
of nascent expression without (left) and with (right) H3K27ac modifications. (C) Same as (B) for
K27me3. (D-E) Same as (B) for reservoir versus non-reservoir promoters. (F) Boxplot of DBP
distribution at ghosts versus non-ghosts.

S1 Table. Sample information for DNA binding proteins in study.

S$2 Table. Promoter-level summary of DBP properties examined. Each observation (row) is
a promoter and each column a variable investigated in this study.

S1 File. All scripts used to analyze the data and produce figures.
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