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Morphological states of human cells are widely imaged and an-
alyzed to diagnose diseases and to discover biological mecha-
nisms. Morphodynamics of cells capture their functions more
fully than their morphology. Discovery of morphodynamic
states of human cells is challenging, because genetic labeling
or manual annotation may not be feasible. We propose a com-
putational framework, DynaMorph, that combines quantitative
label-free imaging and deep learning for automated discovery of
morphodynamic states. As a case study, we apply DynaMorph
to study the morphodynamic states of live primary human mi-
croglia, which are mobile immune cells of the brain that exhibit
complex functional states. DynaMorph identifies two distinct
morphodynamic states of microglia under perturbation by cy-
tokines and glioblastoma supernatant. We find that microglia
actively transition between the two states. Moreover, single-cell
RNA-sequencing of the perturbed microglia shows that the mor-
phodynamic states correspond to distinct transcriptomic clus-
ters of the cells, revealing how perturbations alter gene expres-
sion and phenotype. DynaMorph can broadly enable automated
discovery of functional states of cellular systems.

Keywords: Label-free imaging, deep learning, human microglia, morphody-
namic states, single-cell RNA-sequencing.

Introduction
Organs and tissues of the human body consist of an aston-
ishing diversity of cell types, classically described by their
anatomical location, morphology, dynamic behavior, gene
expression, and protein expression. These descriptions of
cell types and cell states span multiple biological scales –
the scales of molecules, organelles, cells, and tissue. Build-
ing holistic models of types and states of human cells re-
quires mapping temporal changes in these descriptions in re-
sponse to functionally-relevant and disease-relevant perturba-
tions. Morphometry of human cells is widely used to analyze
healthy and disease states of cells in clinical pathology and
to discover fundamental biological mechanisms. However,
automated analysis of morphodynamic states of human cells
still remains an unsolved problem, because functional states
are difficult to label either with molecular markers or manual
annotations. While recent advances in single cell genomics
have significantly advanced our understanding of molecular

diversity of types of human cells, morphological and behav-
ioral states of cells cannot be inferred from gene expression
data alone. Identifying morphodynamic states in the context
of disease can help elucidate the natural and induced changes
in cell behavior, potentially informing novel therapeutics or
diagnostics. As a result, quantitative analysis of morphody-
namic states of human cells with high-throughput methods is
a timely area of research.

Recent work on analysis of morphological states of cells
has relied on images of fixed cells labeled with a panel of
fluorescent markers (1), live three-dimensional imaging of
the membrane labeled with genetic markers (2), and phase
contrast imaging of live cells (3–6). The morphological
states have been analyzed with low dimensional representa-
tions computed with geometric or biophysical models (3, 7–
11), supervised learning of morphological labels (4, 12–17),
and, recently, self-supervised learning of latent representa-
tions of morphology (5, 6). These analytical approaches have
been inspired by the need for quantitative descriptions of spe-
cific, complex biological functions, such as motility of single
cells (2, 3, 7, 8, 18), collective cell migration (9, 11), cell
cycle (4, 12, 13), spatial gene expression (17), and spatial
protein expression (14, 16).In addition, data-driven integra-
tion of the morphology and gene expression (13, 17, 19–22)
is now enabling rapid analysis of functional roles of genes.

Despite this progress, we currently lack high-throughput
and data driven approaches for analysis of morphodynamic
states of human cells, including their temporal dynamics,
due to few key technological limitations: a) Measurements
of morphodynamics of live human cells is challenging be-
cause they are difficult to label with consistency and with-
out perturbing the cellular behavior. Dozens of molecular re-
porters have been developed to visualize cell structure based
on gene expression studies, but introducing molecular re-
porters in primary human cells is sometimes not possible or
highly disruptive. b) Defining cell states from multidimen-
sional imaging-based datasets remains challenging, because
identifying statistically significant cell behavior by human vi-
sual system is often hard and annotation of cell states in high
dimensional data is time consuming, even when recogniz-
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Fig. 1. DynaMorph enables automated discovery of morphodynamic transitions in human microglia: (A) Human microglia are isolated from
brain tissue and plated in 24-well plates and perturbed with cytokines of relevance to infection (IFN beta, IL17) or cancer (glioblastoma extract),
(B) Morphodynamics of perturbed microglia, along with control cells, are imaged using quantitative label-free imaging with phase and polarization
imaging (QLIPP), which measures isotropic and anisotropic optical path lengths of cells. (C) Gene expression profiles of cells from each condition
were measured using 10x single-cell RNA-sequencing (sc-RNAseq) data at the end of the imaging experiment. (D) Cells were tracked by detecting the
bounding boxes around cells with a sparsely-supervised deep learning model and by linking the cells across frames. (E) A generalizable and quantitative
representation of morphological states was learned from the thousands of tracked cells using a self-supervised model that reconstructs cell morphology.
(F) Morphological states and transitions among states under each perturbation were revealed via dimensionality reduction (PCA and UMAP) algorithms
and clustering of most significant features. (G) The correlations among the morphodynamic and transcriptomic states of the cells were analyzed by
comparing the morphodynamic states and transcriptomic clusters under each perturbation.

able. c) While cell states can be expressed in terms of gene
expression measured with single-cell RNA sequencing, simi-
lar vocabulary for description of cell states from their behav-
ior remains to be developed. In this paper, we explore use of
quantitative label-free measurements of cellular morphody-
namics and deep learning to overcome these limitations and
pursue automated discovery of functionally-relevant morpho-

dynamic states of the human microglia.

Microglia are the resident macrophages of the central
nervous system that are involved in brain development and
homeostasis, as well as immune responses (23). Microglia’s
response to secreted cytokines or viral infections elicits pro-
found changes at the transcriptomic and cell behavioral levels
that are unique for different perturbations (24, 25). Microglia
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survey brain parenchyma with their highly motile processes
and respond to changes in brain homeostasis by altering cell
morphology and motility (26, 27), but large-scale features of
their dynamic behavior are not well characterized partly due
to the lack of tractable molecular labeling tools. For other
types of motile cells, either learned features or the manually
curated features (3, 5, 6, 18) have been used to describe com-
plex cell dynamics, including random search, persistent mi-
gration towards target, changes in cell shape due to interac-
tion with other cells and targets, and endocytosis, among oth-
ers. However, changes in the expression of a small number
of genes or morphological features of relevance to the other
cell types may not reflect the full spectrum of microglia phe-
notypes and functions. Outstanding questions remain: Which
states mediate microglia response to immune signals or infec-
tion? Are these states unique? What is the relationship be-
tween these morphodynamic states and their transcriptomic
profile during immune response? We seek to answer these
questions in the context of various immune responses as a
proof-of-concept of our measurement and analysis method.

We acquired reproducible measurements of cellular ar-
chitecture and dynamics of microglia under immunogenic
perturbations (Figure 1A) using quantitative label-free imag-
ing with phase and polarization (QLIPP) (16). To identify
morphodynamic states for human microglia, we developed
DynaMorph, a deep-learning enabled framework that auto-
matically learns the morphodynamic states and transitions
among states from high-dimensional live cell imaging data.
The main modules of DynaMorph are as follows: A deep
convolutional network for cell segmentation; cell tracking
(Figure 1D); self-supervised model for learning a quantita-
tive and generalizable latent representation of morphology
(Figure 1E); and lastly, clustering of morphology and mo-
tion descriptors for identification of morphological states and
transitions among states (Figure 1F).

By applying DynaMorph to live-cell videos of mi-
croglia perturbed with pro-inflammatory, anti-inflammatory
cytokines, and glioblastoma supernatant, we show that the
model generalizes well across new conditions and identifies
biologically meaningful morphodynamics states. The model
provides a quantitative description of cell morphology and
enables discovery of infrequent transitions among cell states.
The same set of cells were also profiled with single-cell RNA
sequencing after imaging (Figure 1C) to analyze gene expres-
sion clusters. We discovered intriguing correlations between
gene expression and morphodynamic clusters (Figure 1G).

In the following sections, we describe the key components
of the DynaMorph pipeline and describe insights gained from
the results.

Results
Label-free imaging and tracking of microglia. Current
methods for obtaining morphological measurements of cells
require labeling cell membrane with genetic fluorophores,
such as Green Fluorescent Protein (GFP) (2), or involve ex-
ogenous fluorescent compounds (1). Both approaches can in-
fluence the natural behavior of cells and require high-power

light sources that may induce phototoxic or phototactic re-
sponses. Additionally, transfection efficiency of primary hu-
man microglia is usually low, providing a further challenge
for cell labeling. To image the natural behavior of microglia
over long periods, we used quantitative label-free imaging
with phase and polarization (QLIPP) (16). QLIPP measures
physical properties of the specimen in terms of its optical
phase and retardance. The phase, or optical path length, re-
ports the density of molecular assemblies in a cell. The re-
tardance, or polarization-resolved optical path length, reports
the density of anisotropic molecular assemblies such as cy-
toskeletal networks and lipid bilayers (16).

Cellular membrane is highly dynamic and can be dif-
ficult to label densely with fluorescence in primary cells,
but cellular morphology can be quantitatively described with
phase and retardance (Figure 1B. These measurements cap-
ture overall cell morphodynamics without the need to use flu-
orescent markers. Moreover, they do not rely on pre-defined
marker sets, but rather provide an unbiased description of
dynamic cell behavior, allowing one to uncover novel cell
states. We explored live-cell membrane dyes (CellTracker
and diI) for labeling the microglia as shown in Supplemen-
tary Figure 1 and found that distribution of membrane dyes
was not consistent across cells. The measurements of mor-
phology from phase and retardance were more consistent,
quantitative, and gentle on cells for long-term imaging.

We acquired two sets of QLIPP images of cultured pri-
mary human microglia, over a 24-hour period. In the first set
of experiments, primary human microglia were imaged using
standard multi-dimensional acquisition with 52 time points
at 27 minute intervals across 27 field of views, the data from
which were used to build and develop the segmentation and
morphological encoding pipeline. This set will be referred
to as the training dataset in the following text. The second
set of experiments imaged microglia derived from a biolog-
ically independent sample under different perturbations (4
fields of views for each condition). Images were collected
for 24 hours, but with a much higher time resolution of 159
time points at 9 minute intervals. The resulting set, referred
to as the test dataset, is analyzed for validation and cell state
discovery.

In order to identify and track microglia, DynaMorph uses
segmentation algorithms that required small amount of hu-
man annotation and resulted in robust detection of bounding-
boxes around single cells. As illustrated in Supplementary
Figure 2, Supplementary Figure 3, and detailed in Methods,
we used ilastik (28) for interactive annotation that distin-
guished microglia from background and other cell types, fol-
lowed by sematic segmentation of microglia pixels with neu-
ral network, followed by clustering to separate the segmen-
tation results into cell masks. We used cell masks to identify
bounding boxes and patches of images around each cells. A
tracking algorithm was used to match and link static patches
from adjacent frames of time-lapse images, which generated
trajectories of cells along with motion of the cell throughout
the tracking period (Figure 1D). In total, 2016 and 3715 mi-
croglia trajectories were extracted from the training and test
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set, respectively.
Above trajectories formed the corpus of data from which

the morphological representation was learned and morpho-
dynamic states were discovered.

Learning a latent representation of morphology that
generalizes across experiments. Among all perturba-
tions, we observed significant diversity in morphology and
behavior of microglia. While microglia are classically char-
acterized as amoeboid, ramified, mobile, or immobile, in our
videos they appeared to demonstrate a variety of complex
shapes and state transitions that we attempt to capture in our
model. We used self-supervised deep learning (Figure 1E) to
build an unbiased model of microglia morphology. Recent
work has demonstrated that self-supervised learning with au-
toencoders (5, 6) can provide a quantitative model of cell
morphology informed by all of data.

We trained the autoencoder for image compression and
reconstruction. We tracked individual microglia cells from
the training dataset as described in the previous section and
trained a recent variant of autoencoder, vector quantized
variational autoencoder (VQ-VAE) (29), with untreated mi-
croglia cells from the training set to encode and reconstruct
the image patches. Latent space of the VQ-VAE model was
then extracted and interpreted as the morphological space
of microglia. In our experiments, multiple variants of au-
toencoder were tested and VQ-VAE appeared as the best-
performing structure with the most stable reconstructions of
phase and retardance (Supplementary Figure 4). Its intrinsic
robustness against noise inherited from the quantization prior
also guaranteed that minor imaging noises won’t contribute
to the latent distribution. The self-supervised encoding led
to a noise-robust and interpretable morphological represen-
tation of different cells regardless of position or pose, while
reconstruction from the encoding ensured that minimal infor-
mation was lost in the process of encoding.

We also imposed a matching loss in the model during
training to minimize frame-to-frame differences between la-
tent vectors of the same cell along its trajectory, based upon
the prior that cell architecture rarely changes significantly
between consecutive frames. (see Methods for training de-
tails) This approach is motivated by the previous work that
enforced temporal slowness constraint on the feature repre-
sentation of adjacent frames (30). It is also related to the
family of triplet loss that contrasts similar samples against
non-similar samples to learn metrics of similarity (31). In our
settings, cell embedding of a certain frame is encouraged to
be closer to other frames of the same cell, which helps to reg-
ularize the locality of cell trajectories in morphological space,
from which rare events such as significant size/density/shape
changes due to cell state transition can become highly notice-
able.

The learned morphology space of the DynaMorph autoen-
coder substantially compresses the data in the raw imaging–
by over 680 times. Reconstruction loss averaged over all
training cell patches is 0.16±0.08SD after normalization of
both channels. This was further validated on the test dataset,
on which model reconstruction loss is 0.18± 0.07SD with

no significant signs of overfitting. Other autoencoder-based
models tested in the same procedure all showed higher recon-
struction losses as seen from the comparisons in Supplemen-
tary Figure 4.

Comparison of reconstructed morphologies from the test
set (Figure 2A and Supplementary Figure 5) and training set
(Supplementary Figure 6A) along with the analysis of the la-
tent representation described in the next section show that our
self-supervised model trained on one experiment generalized
well to unseen cells that were treated with multiple perturba-
tions.

Latent representation provides a quantitative descrip-
tion of morphology. We sought to evaluate whether the
learned representation provides quantitative metric of mor-
phology, i.e., we sought to answer these questions: Are the
most significant modes of morphology retrieved from the
learned representation interpretable? Does the distance in the
latent space capture morphological similarity?

Interpretation of learned representation. We use principal
component analysis (PCA) to visualize the learned morphol-
ogy space. Distributions of the first two PCs are displayed
in Figure 2B, in which each individual dot represents an en-
coded cell patch and the color indicates the size of its seg-
mentation mask. A horizontal gradient of cell size is ob-
served (Supplementary Figure 6B shows similar results for
training cells), which suggests quantitative relationships be-
tween top PCs and cell properties.

To validate the necessity of morphology encoding, we
evaluated direct application of PCA on the patch image in-
puts through the same procedure. The derived top PCs have
weaker and more intertwined correlations (Supplementary
Figure 7) and consequently are harder to interpret. The fol-
lowing clustering analysis also yielded worse performance
(Supplementary Figure 8 and Supplementary Table 1), in-
dicating that the encoding step helped in denoising the in-
puts and emphasizing informative properties that constitute
the morphology of microglia.

To further interpret the latent space, we tried to link the
top PCs with heuristic cell geometric properties. Qualita-
tively, we first sampled cell patches along PC axes (Figure 2C
and Supplementary Figure 9), from which we recognized
some significant correlations: PC1 relates with cell sizes;
PC2 relates with peak phase and retardance; PC3 and PC4
relate with cell orientations. Then we performed a quantita-
tive comparison based on Spearman’s rank correlation coef-
ficients (Figure 2D), which validated the correlations discov-
ered above.

Our results showing that PC1, or the first significant mode
of morphology, represents cell size is intriguingly related
with the analysis of cell masks of other immune cell types
in Chan et al. (6). They also show that the most significant
shape mode of three different motile cell types is also the cell
size. In addition, the second most significant morphological
mode in our data is cell density as measured with phase and
retardance. This result also comports with the result in Zarit-
sky et al. (5) that light scattering is a significant descriptor
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Fig. 2. DynaMorph learns a generalizable and quantitative representation of cell morphology via self-supervision: (A) We encoded the mor-
phology of microglia in quantized latent vectors and reconstructed the morphology from the latent vectors by training a convolutional neural network
model, vector quantized variational autoencoder (VQ-VAE), under self-supervision. The phase and retardance images from the test experiment (test
set) shown here were encoded and reconstructed using models trained on the data from control experiment (training set). Comparison of reconstruc-
tions from training set Supplementary Figure 6 illustrates generalizability of the model to the test set. (B) Morphological modes that describe the most
significant differences were computed with principal component analysis (PCA) of the latent vectors. Resulting top 2 principal components (PC) are
visualized, in which each dot represents a single cell patch from the test set and its color indicates the size of cell segmentation mask. 4 representative
trajectories: two cells with static morphology (green and black) and two cells undergoing changes in morphology (orange and brown) are plotted in the
PCA space as arrows. (C) The first two morphological modes (PC1 and PC2) were interpreted by sampling representative patches along each PC axis
and are shown here. Clear trends of changing size/cell density could be observed. Note that patches shown combine both phase channel (as grey
scale) and retardance channel (as magenta shades). (D) We explored correlation between the top 6 PCs and selected geometric properties of the test
set using Spearman’s rank correlation coefficients. PC1 and PC2 both show positive correlations with cell size; PC2 is also highly correlated with cell’s
peak phase and retardance that measure isotropic and anisotropic density, respectively; PC3 is correlated with cell’s aspect ratio; PC4 is correlated with
the orientation of the cell (long axis of the cell body). Note that all results are consistent between training set cells and test set cells (Supplementary
Figure 6C). (E) Representative cells plotted in (B) are visualized. Significant changes in morphology could be linked to jumps in the latent space.

of cell behavior. Thus, our results show that the latent repre-
sentation automatically identified morphological modes that
capture morphological diversity.

Intriguingly, while 80% of the shape variance of ame-
boid cells analyzed in Chan et al. (6) is captured by 5 shape
modes, we found that the first 4 morphological modes (or
PCs) of microglia account for less than 20% of all variance
(Supplementary Figure 10A). The remaining variance might
exist in more complex features such as diversity of protru-
sions, the variations in cell density, location of nuclei in mi-
grating cells, etc. UMAP(32) projections of the patch-level

latent vectors show no apparent clustering patterns (Supple-
mentary Figure 10B and C), suggesting that microglia mor-
phology undergoes continuous change and hence no discrete
states could be defined based on static frames.

Trajectories in the learned morphology space characterizes
dynamics. Latent representations of morphology on static
frames were then concatenated to represent the morpholog-
ical variations throughout the trajectories of each single cell.
As a sanity check, the distance between the learned represen-
tations of adjacent and non-adjacent frames in the video is
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compared before and after quantization. We found that the
distance between temporally adjacent frames of the cells is
substantially less than non-adjacent frames, indicating that
our morphology space captures the continuity of cellular dy-
namics (Supplementary Figure 11).

Among all observed test cells, most trajectories are lo-
calized in the morphological space, which likely reflects the
fact that for most cells, morphology features remain relatively
constant throughout the imaging period. In Figure 2E we il-
lustrate some representative trajectories (marked in green and
black) that are in static cell states and have stable appear-
ances. Their PC1 and PC2 indicators are located in confined
areas. However, we also observed a number of “leap” events
in the PC plane, which coincide with cells undergoing signif-
icant transitions in morphological appearances. Representa-
tive examples (marked in orange and brown) are also shown
in Figure 2E, in which transitions in size or density could be
observed. Full video clips of these example cell trajectories
could be found in Video Set 1.

Morphology and motility of microglia under pertur-
bations. Microglia cells are highly dynamic cells and can
rapidly change their morphology and motion in response to
external stimuli. We hypothesized that exposing microglia
to different types of disease-relevant perturbations could re-
fine the description of biologically-relevant morphodynamic
states, or reveal novel states not seen under homeostatic cul-
ture conditions.

To test this hypothesis, we used the following conditions
to mimic pro- and anti-inflammatory brain states: (1) un-
treated control (Control), (2) pro-inflammatory cytokine in-
terleukin 17A (IL17), (3) anti-inflammatory cytokine inter-
feron beta (33) (IFN beta), and (4) supernatant from cultured
primary human glioblastoma cells (GBM) to model complex
inflammatory tumour environment.

Imaging patches from the test conditions were processed
and encoded through the DynaMorph pipeline. Video clips
of some representative cell trajectories from each condition
can be found in Video Set 2. Patch reconstruction and la-
tent space interpretations both show consistent results to the
training dataset as discussed above. (Figure 2). The mor-
phology descriptors from the DynaMorph autoencoder and
motion descriptors from cell tracking (mean displacement,
discussed below), were then concatenated as trajectory fea-
ture vectors to represent cell behavior. These vectors could
then be clustered and visualized to identify discrete morpho-
dynamic states of the cell population. (Figure 1F)

For each cell, we collected and averaged its PC1 and PC2
values of static frames along the trajectory (Figure 3A). Dis-
tributions of these trajectory-averaged PC1 and PC2 values
are summarized for each treatment and plotted in Figure 3B
and Supplementary Figure 12. It is clearly seen that IL17
and IFN beta subsets have similar distributions on both de-
scriptors, which differ from control and GBM subsets, espe-
cially on average PC2 values. This suggests that microglia
under IL-17 and IFN-beta treatment tend to have lower den-
sity while maintaining a similar size.
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Fig. 3. DynaMorph reveals differences in morphodynamics of mi-
croglia under different perturbations. (A) To compare the morpho-
dynamics of cell populations under different perturbations, we computed
trajectory-averaged features as follows: principal components of the la-
tent vectors of morphology of the frames of a tracked cell were concate-
nated with position displacements between frames and averaged over
each trajectory. (B) We analyzed the distributions of trajectory features
under multiple perturbations by plotting probability densities of trajectory-
averaged PC1, PC2 and mean displacement, i.e., mean speed. The
geometric properties of cell size and density correlated highly with PC1
and PC2, respectively. Trajectories under IL17 and IFN beta treatments
show significant differences from trajectories under GBM and control
treatments in cell density and speed. (C) and (D) We analyzed changes
in average cell size (PC1) and average cell speed, as well as average
cell density (PC2) and speed by plotting their joint distributions. Left
panels show density plots of distributions under different perturbations.
Right panels show the combined distributions, with apexes under each
perturbations marked with stars. Separations among IL17/IFN beta and
GBM/control conditions observed in (B) were confirmed.

To better understand the interplay between morphology
and dynamic behavior, we further analyzed the movement
patterns of microglia by calculating and averaging posi-
tion displacements between frames (speed) along trajectories
(Figure 3A), generating feature vectors by combining with
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morphology descriptors. Speed is then plotted individually
(Figure 3B) and against top PCs as kernel density estima-
tion (KDE) plots (Figure 3C and D). Microglia cells display
a broad range of motility under different conditions, with
the fast-moving population (control subset) traveling over 2
times faster than the slow-moving population under an anti-
inflammatory IFN beta treatment.

In the joint distribution, apexes of subsets’ KDE plot in
Figure 3D (right panel) can be separated into two groups:
IL17 and IFN beta versus GBM and control. In their indi-
vidual KDE plots, control and IFN beta subsets form two
densely populated groups on different morphology and motil-
ity values, while IL17 and glioblastoma have broader dis-
tribution that cover both groups. The separation was fur-
ther revealed in a discriminative study that predict treat-
ment/condition purely based on trajectory feature vectors
(Supplementary Figure 13). In the results from gradient
boosted decision tree models (34), cells from control subset
could be better separated, especially from IFN beta subset,
while larger confusions exist for GBM and IL-17 subsets.

Together, this analysis suggests that at least two broad
morphodynamic states of microglia can be detected using
DynaMorph. In particular, exposure of microglia to IFN beta
or IL17, which mimic responses to viral infections, induces a
state characterized by reduced density and migration speed.
In contrast, exposure to GBM supernatant, which likely con-
tains pro-inflammatory and anti-inflammatory cytokines, in-
duces more subtle, but detectable changes in cell dynamics.

Identification of morphological states and transitions
between them. To further probe the hypothesis that latent
space and motion descriptors of microglia under perturba-
tions are informative, or reveal novel morphodynamic states,
we applied unsupervised clustering on the test cell patches
to locate and quantify the underlying cell states. For each
cell we observed in the test dataset, its trajectory-averaged
PCs and mean displacements between frames were gathered
and combined as feature vectors (Figure 3A). These cell fea-
ture vectors were then normalized and fitted using a Gaussian
Mixture Model (GMM) with 2 components (Figure 4A). In
the expectation-maximization (EM) procedure, we assumed
that cells from each subset are sampled from a Bernoulli dis-
tribution dependent on the condition. The parameters of these
distributions as well as the centers of mixture components
were estimated iteratively. (See Methods for details)

Two components are extracted from the combined test
population following the procedure above, which will be re-
ferred to as state-1 and state-2 respectively in the following
text. Comparing with inter-condition differences, inter-state
separation is much stronger (Supplementary Figure 14) and
hence has better chances in finding morphodynamic modes of
microglia. Representative samples from the two states are il-
lustrated in Figure 4B, with their movement trajectories plot-
ted as colored lines. Representative cell trajectories could
also be found in Video Set 3. Morphological distributions
of the two states are described in Figure 4F, details could
be found in Supplementary Table 1. Qualitatively, based
on the appearance and features of the two components, we

describe state-1 (blue) cells as large-sized, low density and
slow-moving population, and state-2 (red) cells as a higher
density and fast-moving population. The two states differ the
most on PC2 and mean displacement, and have slight differ-
ence on PC1 as well.

A more quantitative view on cell motion demonstrates
that state-2 cells, enriched in control subset, are on aver-
age 2.3 times faster than state-1 cells (Figure 4C) that appear
mostly in IFN beta and IL17 subsets, in line with the subset-
level speed differences we noted above. We also consider di-
rectionality in the two states, which represents an important
feature of cell migration. Note that the movement trajecto-
ries of state-1 cell in Figure 4B aligned with the direction
of its cell body. We validated this motion pattern on all mi-
croglia cells by calculating angles between movement and
long axis of cell body in each frame and conducting vector
sums over these angles. Resulting trajectory-summed direc-
tions are visualized in Figure 4H. Distributions of the direc-
tions shows dominating peaks at 0°(Figure 4D), indicating a
very high preference for cell body-aligned motion. Notably,
state-2 cells have less such tendencies, which is in part due
to the morphology distinction as state-2 cells usually appear
as dense, round shapes that do not have significant long axes,
in contrast to state-1 cells that appear more in oval shapes.
Analysis on the Mean Square Displacement (MSD) of the
two states were then conducted. Figure 4E and Supplemen-
tary Figure 15 plot the log-log fit of MSD over time lag.
Both states have similar slopes (∼ 0.9) that are close to 1,
indicating a near-random motion. State-2 have larger inter-
cept, indicating a larger diffusion constant and hence faster
movements. Taken together, the quantitative measurements
of speed and directionality for cell populations defined by
each GMM state further validate that these populations are
unique and descriptive of each perturbation condition.

Among the different perturbation conditions in the test
population, cells are widely distributed between two states
depending on the treatment (Figure 4H and Supplementary
Table 1): majority of the control subset cells are in state-
2 (∼ 75%), while almost all IFN beta-treated cells are in
state-1 (> 90%); GBM subset falls between the two extremes
with near-equal split on the two states. Based on the previ-
ous observations that microglia adopt an amoeboid morphol-
ogy upon exposure to inflammatory stimuli, we speculate that
state-2 with faster moving, denser and round-shaped cells
represents activated microglia, while state-1 that is character-
ized by ramified and slower moving cells represents survey-
ing microglia. The treatment of microglia with glioblastoma
supernatant lead to an intermediate distribution between the
two states, suggesting a complex mixture of both pro- and
anti-inflammatory cytokines.

Furthermore, the quantitative definition of states allows
us to rigorously characterize state transition events such as
the ones shown in Figure 2E (orange and brown trajectories).
Given the morphology and motion changes throughout the
imaging period, we separated each trajectory into segments
(2 hour each) and applied the unsupervised GMM to esti-
mate posterior probabilities of cell states for each segment.
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Fig. 4. Cell trajectories are clustered into two states based on the morphodynamic features. (A) We identified two states of the trajectories by
pooling their feature vectors and clustering them with a Gaussian Mixture Model (GMM). B Representative trajectories from the two states are shown:
initial frames are visualized, and the movement of cells in the following frames are marked. (C–F) We compared two morphodynamic states with multiple
metrics: (C) cells in state-1 were found to be slower than cells in state-2 from the probability densities of trajectory-averaged speeds. (D) cells in state-1
were found to align more with directions of migration than cells in state-2 from the probability densities of angles between cell body (long axis) and the
directions of movement. (E) cells in state-1 and state-2 were found to undergo random motion over the time-scale of hours from the mean squared
displacement (MSD) curves of the trajectories. Consistent with the speed distribution, state-2 cells travel longer distances on all time scales. (F) cells in
state-1 had narrower distribution of size and density relative to cells in state-2, as seen from the Kernel density estimates (KDE) of PC1 (cell size) and
PC2 (cell density). (G) We counted the number of trajectories that transitioned between two states under each perturbation and found rare instances
of transition as noted in the table. Note that only trajectories longer than 4.5 hours are considered. (H) Metrics shown in (C)–(F) were elaborated per
perturbation with scatter plots of the metrics: each marker represents a single trajectory, whose length indicates the speed of the cell. Direction of the
marker is aligned with the angle between cell body and movement, with a vertical line indicating a perfect alignment. (See legend in the bottom right
panel). Fraction of trajectories that occupy either state under each perturbation are noted in the insets.

Cells that have different states assigned to different segments
would be of great interest to the study of dynamics and behav-
ior of microglia. We counted the observed transition cases in
the test set and report the numbers in Figure 4G. In our anal-
ysis, transition events are very rare among cells treated with
IFN beta, while cells treated with GBM supernatant are more
enriched for such events. While both directions of transitions
were observed within the imaging period, cells in state-1 are
more likely to transition to state-2 than vice versa. Represen-
tative state-transition cells can be found in Video Set 4.

Correlation between morphodynamic states and tran-
scriptomic clusters. We examined the transcriptomes of
cultured microglia to identify the key molecular sub-types

that could correspond to morphodynamic states. In this ex-
periment, cells from three conditions (control, IFN beta and
GBM) were processed for single cell mRNA sequencing.
Note that the majority of the measured cells (∼ 90%) are
from control subset. We generated UMAP projections of both
morphodynamic features (Figure 5A) and scRNA-seq results
to parallel the comparison, which are plotted in Figure 5B,
C, D. A similar two-component clustering was performed on
scRNA data, using Leiden clustering (35). The distributions
of state/cluster assignments in each subset are plotted as bars
in Figure 5E. Notably, cells from the control subset form a
large group (cluster 2) and three small isolated groups (com-
bined as cluster 1), in which the isolated groups could be fur-
ther separated and interpreted through a more fine-grained
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Fig. 5. Comparison of morphodynamic states and gene expression
per perturbation. (A) We compared relative abundance of state-1 and
state-2 with clusters of gene expression by computing consistent low di-
mensional projections (UMAP) of the trajectory feature vectors and tran-
scriptome. Scatter plots of cell populations from three perturbations ((B)
Control; (C) IFN beta; (D) GBM) are shown. Each dot represents a trajec-
tory from imaging or a cell measured for transcriptome, and grey shades
show the outlines of the distributions. Left panels show the UMAP pro-
jections of combination of morphology features (first 48 PCs) and motility
feature (speed, mean displacement) derived from imaging. GMM clus-
tering results are illustrated as the colors of the dots. Right panels show
UMAP projections of single-cell RNA sequencing (scRNA-seq) results,
on which a similar two-state clustering is performed. (E) Distributions of
cluster/state assignments of cells from each test condition are plotted as
bar graphs. Interestingly, in control and IFN beta conditions, the occu-
pancy ratios between morphodynamic state-1 and state-2 matched with
occupancy ratios of gene expression clusters 1 and 2.

clustering procedure. (Supplementary Figure 16A) Cluster 1
accounts for ∼ 15% of all control cells, this striking differ-
ence in relative abundance of cells in different clusters coin-

cides with the ratio of cells in states 1 and 2 defined on the
morphodynamic space. Interestingly, exposure to IFN beta,
which is enriched for morphodynamic state-1, also shows en-
richment in transcriptomic cluster 1, appearing as one of the
isolated group. In contrast, microglia that were treated with
supernatant from GBM cultures, are transcriptomically more
similar to the majority of control microglia cells, consistent
with more subtle differences in morphodynamic states.

To address this further, we identified the top differentially-
expressed genes (Supplementary Figure 16B) for each tran-
scriptomic cluster. Cluster 1, which is the minor group
in control subset and enriched for cells exposed to IFN
beta, has up-regulated genes encoding antiviral proteins
(RSAD2, MX1, etc.) and interferon-induced proteins (IFIT1,
IFIT2, IFIT3, etc.). Part of the cluster is also enriched
for cytoskeleton and microtubule-related genes (MAP1B,
STMN1, TUBA1A, etc.), which would usually cause struc-
tural changes in cells. Therefore, the observed shape and
density differences between different morphodynamic states
could potentially be correlated with the corresponding cell’s
expression changes.

Discussion
In this work, we present DynaMorph: a deep learning frame-
work for automatic segmentation, feature extraction and anal-
ysis for label-free live cell imaging. Multiple tools, includ-
ing conventional machine learning (random forest, GMM,
DBSCAN), deep convolutional networks (U-Net), and vari-
ational autoencoder (VQ-VAE) are incorporated to facili-
tate/optimize each stage of data processing and analysis. The
resulting workflow allows us to analyze cell dynamics and
behavior on both individual cell-level and population-level.

Our work formalizes an analytical approach for data-
driven discovery of morphodynamic cell states based on the
extractions of morphology and motion descriptors. This
method enables sensitive detection of transition events in-
duced by exogenous perturbation. Here, we specifically
demonstrate the utility of this method to discover and classify
morphodynamic states of human primary microglia cultured
in vitro, and to detect a shift in morphodynamic states upon
exposure to polarizing, disease-relevant environments. We
have further confirmed, using single cell transcriptomics, that
changes in morphodynamic states are paralleled by changes
in gene expression, suggesting that morphodynamic features
extracted from live imaging might serve as correlates to
molecular signatures. In this work, we specifically targeted
microglia and unveiled distinct morphodynamic states from
its population under different perturbations. DynaMorph can
be used with other cell types and other live cell imaging data
to delineate morphodynamic distributions. All components
in the pipeline are interchangeable based on the needs of anal-
yses and characteristics of the imaging system.

The high-throughput data-driven approach for discover-
ing and classifying morphodynamic cell states developed
here has the potential to facilitate unbiased, real-time anal-
ysis of imaging data. It further allows filtering and selection
of cell-of-interest by identification of critical points of state
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transition along the trajectory. These specific cells could be
used for downstream single cell profiling to discover molecu-
lar correlates of those events and consolidate the relationship
between morphodynamic behavior and transcriptomic alter-
ation.

It should also be noted that certain caveats still exist in
this approach: instance segmentation and cell tracking are
limited by the culture density as denser environment will sig-
nificantly increase the difficulty of segmenting and tracking
individual cells. Methods that incorporate more human su-
pervision would be required to better extract and analyze cell
behavior in a complex environment. VQ-VAE provides a
natural interface to characterize the latent vector states in a
discrete fashion, which is lacking in most other autoencoder-
based method. This intrinsic advantage could be further ex-
amined and linked with other quantitative attributes of the
cell. Direct correlation between the single cell morphody-
namic behavior and its gene transcriptome profile is lack-
ing. We found strong agreement between the gene expres-
sion changes and morphodynamics in response to different
perturbations at the resolution of cell population. The transi-
tions in gene expression and morphodynamics driven by the
perturbations can be further elucidated by measuring gene
expression and morphodynamics with single- cell resolution.
Post-imaging staining of cells using markers that discrimi-
nate gene expression clusters seen in single cell transcrip-
tomes can provide this information.

Taken together, DynaMorph is a versatile and expressive
framework to analyze visual features of live cell imaging.
Extraction of morphology and motility descriptors could be
coupled with a broad spectra of downstream tasks includ-
ing anomaly detection, unsupervised state discovery, super-
vised phenotype classification, etc. Integration with bio-
chemical/transcriptomic assays could further enable a more
comprehensive understanding of cell behavior.

References
1. Mark-Anthony Bray, Shantanu Singh, Han Han, Chadwick T. Davis,

Blake Borgeson, Cathy Hartland, Maria Kost-Alimova, Sigrun M.
Gustafsdottir, Christopher C. Gibson, and Anne E. Carpenter, “Cell
Painting, a high-content image-based assay for morphological pro-
filing using multiplexed fluorescent dyes,” Nature Protocols, vol. 11,
no. 9, pp. 1757–1774, Sept. 2016.

2. Meghan K. Driscoll, Erik S. Welf, Andrew R. Jamieson, Kevin M.
Dean, Tadamoto Isogai, Reto Fiolka, and Gaudenz Danuser, “Ro-
bust and automated detection of subcellular morphological motifs
in 3D microscopy images,” Nature Methods, vol. 16, no. 10, pp.
1037–1044, Oct. 2019.

3. Z. Pincus and J. A. Theriot, “Comparison of quantitative methods
for cell-shape analysis,” Journal of Microscopy, vol. 227, no. 2, pp.
140–156, 2007.

4. David A. Van Valen, Takamasa Kudo, Keara M. Lane, Derek N.
Macklin, Nicolas T. Quach, Mialy M. DeFelice, Inbal Maayan,
Yu Tanouchi, Euan A. Ashley, and Markus W. Covert, “Deep Learn-
ing Automates the Quantitative Analysis of Individual Cells in Live-
Cell Imaging Experiments,” PLoS computational biology, vol. 12,
no. 11, pp. e1005177, Nov. 2016.

5. Assaf Zaritsky, Andrew R. Jamieson, Erik S. Welf, Andres Nevarez,
Justin Cillay, Ugur Eskiocak, Brandi L. Cantarel, and Gaudenz
Danuser, “Interpretable deep learning of label-free live cell im-
ages uncovers functional hallmarks of highly-metastatic melanoma,”
bioRxiv, p. 2020.05.15.096628, May 2020.

6. Caleb K. Chan, Amalia Hadjitheodorou, Tony Y.-C. Tsai, and Julie A.

Theriot, “Quantitative comparison of principal component analysis
and unsupervised deep learning using variational autoencoders for
shape analysis of motile cells,” bioRxiv, p. 2020.06.26.174474, June
2020.

7. Kinneret Keren, Zachary Pincus, Greg M. Allen, Erin L. Barnhart,
Gerard Marriott, Alex Mogilner, and Julie A. Theriot, “Mechanism of
shape determination in motile cells,” Nature, vol. 453, no. 7194, pp.
475–480, May 2008.

8. Wallace F. Marshall, “Origins of cellular geometry,” BMC Biology,
vol. 9, no. 1, pp. 57, Aug. 2011.

9. Shahriar Shadkhoo and Madhav Mani, “The Role of Cytoplasmic
Interactions in the Collective Polarization of Tissues and its Interplay
with Cellular Geometry,” bioRxiv, p. 289520, Mar. 2018.

10. P. Rezaie, G. Trillo-Pazos, J. Greenwood, I. P. Everall, and D. K.
Male, “Motility and Ramification of Human Fetal Microglia in Culture:
An Investigation Using Time-Lapse Video Microscopy and Image
Analysis,” Experimental Cell Research, vol. 274, no. 1, pp. 68–82,
Mar. 2002.

11. Assaf Zaritsky, Erik S. Welf, Yun-Yu Tseng, M. Angeles Rabadán,
Xavier Serra-Picamal, Xavier Trepat, and Gaudenz Danuser,
“Seeds of Locally Aligned Motion and Stress Coordinate a Collec-
tive Cell Migration,” Biophysical Journal, vol. 109, no. 12, pp. 2492–
2500, Dec. 2015.

12. Erick Moen, Enrico Borba, Geneva Miller, Morgan Schwartz, Dy-
lan Bannon, Nora Koe, Isabella Camplisson, Daniel Kyme, Cole
Pavelchek, Tyler Price, Takamasa Kudo, Edward Pao, William Graf,
and David Van Valen, “Accurate cell tracking and lineage construc-
tion in live-cell imaging experiments with deep learning,” bioRxiv, p.
803205, Oct. 2019.

13. Beate Neumann, Thomas Walter, Jean-Karim Hériché, Jutta
Bulkescher, Holger Erfle, Christian Conrad, Phill Rogers, Ina Poser,
Michael Held, Urban Liebel, Cihan Cetin, Frank Sieckmann, Gre-
goire Pau, Rolf Kabbe, Annelie Wünsche, Venkata Satagopam,
Michael H. A. Schmitz, Catherine Chapuis, Daniel W. Gerlich, Rein-
hard Schneider, Roland Eils, Wolfgang Huber, Jan-Michael Peters,
Anthony A. Hyman, Richard Durbin, Rainer Pepperkok, and Jan El-
lenberg, “Phenotypic profiling of the human genome by time-lapse
microscopy reveals cell division genes,” Nature, vol. 464, no. 7289,
pp. 721–727, Apr. 2010.

14. Chawin Ounkomol, Sharmishtaa Seshamani, Mary M. Maleckar,
Forrest Collman, and Gregory R. Johnson, “Label-free prediction
of three-dimensional fluorescence images from transmitted-light mi-
croscopy,” Nature Methods, vol. 15, no. 11, pp. 917, Nov. 2018.

15. Eric M. Christiansen, Samuel J. Yang, D. Michael Ando, Ashkan
Javaherian, Gaia Skibinski, Scott Lipnick, Elliot Mount, Alison
O’Neil, Kevan Shah, Alicia K. Lee, Piyush Goyal, William Fedus,
Ryan Poplin, Andre Esteva, Marc Berndl, Lee L. Rubin, Philip Nel-
son, and Steven Finkbeiner, “In silico labeling: Predicting fluores-
cent labels in unlabeled images,” Cell, vol. 173, no. 3, pp. 792–
803.e19, Apr. 2018.

16. Syuan-Ming Guo, Li-Hao Yeh, Jenny Folkesson, Ivan Ivanov,
Anitha Priya Krishnan, Matthew G. Keefe, David Shin, Bryant
Chhun, Nathan Cho, Manuel Leonetti, Tomasz J. Nowakowski, and
Shalin B. Mehta, “Revealing architectural order with quantitative
label-free imaging and deep learning,” bioRxiv, p. 631101, Nov.
2019.

17. Bryan He, Ludvig Bergenstråhle, Linnea Stenbeck, Abubakar Abid,
Alma Andersson, Åke Borg, Jonas Maaskola, Joakim Lundeberg,
and James Zou, “Integrating spatial gene expression and breast
tumour morphology via deep learning,” Nature Biomedical Engi-
neering, pp. 1–8, June 2020.

18. Jacob C. Kimmel, Amy Y. Chang, Andrew S. Brack, and Wallace F.
Marshall, “Inferring cell state by quantitative motility analysis re-
veals a dynamic state system and broken detailed balance,” PLOS
Computational Biology, vol. 14, no. 1, pp. e1005927, Jan. 2018.

19. Anne E. Carpenter and David M. Sabatini, “Systematic genome-
wide screens of gene function,” Nature Reviews Genetics, vol. 5,
no. 1, pp. 11–22, Jan. 2004.

20. Keara Lane, David Van Valen, Mialy M. DeFelice, Derek N. Mack-
lin, Takamasa Kudo, Ariel Jaimovich, Ambrose Carr, Tobias Meyer,
Dana Pe’er, Stéphane C. Boutet, and Markus W. Covert, “Measur-
ing Signaling and RNA-Seq in the Same Cell Links Gene Expres-
sion to Dynamic Patterns of NF-κB Activation,” Cell Systems, vol.
4, no. 4, pp. 458–469.e5, Apr. 2017.

21. Karren Dai Yang, Anastasiya Belyaeva, Saradha Venkatachalapa-
thy, Karthik Damodaran, Adityanarayanan Radhakrishnan, Abigail

10 | bioRχiv Wu, Chhun, Schmunk et al. | DynaMorph

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.20.213074doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.20.213074
http://creativecommons.org/licenses/by-nc/4.0/


Katcoff, G. V. Shivashankar, and Caroline Uhler, “Multi-Domain
Translation between Single-Cell Imaging and Sequencing Data us-
ing Autoencoders,” bioRxiv, p. 2019.12.13.875922, Dec. 2019.

22. Kaytlyn A. Gerbin, Tanya Grancharova, Rory Donovan-Maiye,
Melissa C. Hendershott, Jackson Brown, Stephanie Q. Dinh,
Jamie L. Gehring, Matthew Hirano, Gregory R. Johnson, Aditya
Nath, Angelique Nelson, Charles M. Roco, Alexander B. Rosen-
berg, M. Filip Sluzewski, Matheus P. Viana, Calysta Yan, Rebecca J.
Zaunbrecher, Kimberly R. Cordes Metzler, Vilas Menon, Sean P.
Palecek, Georg Seelig, Nathalie Gaudreault, Theo Knijnenburg, Su-
sanne M. Rafelski, Julie A. Theriot, and Ruwanthi N. Gunawar-
dane, “Cell states beyond transcriptomics: Integrating structural or-
ganization and gene expression in hiPSC-derived cardiomyocytes,”
bioRxiv, p. 2020.05.26.081083, May 2020.

23. Michael W Salter and Beth Stevens, “Microglia emerge as central
players in brain disease,” Nature medicine, vol. 23, no. 9, pp. 1018,
2017.

24. Chintan Chhatbar, Claudia N Detje, Elena Grabski, Katharina Borst,
Julia Spanier, Luca Ghita, David A Elliott, Marta Joana Costa Jor-
dao, Nora Mueller, James Sutton, et al., “Type i interferon receptor
signaling of neurons and astrocytes regulates microglia activation
during viral encephalitis,” Cell reports, vol. 25, no. 1, pp. 118–129,
2018.

25. Starlee Lively and Lyanne C Schlichter, “Microglia responses to
pro-inflammatory stimuli (lps, ifnγ+ tnfα) and reprogramming by re-
solving cytokines (il-4, il-10),” Frontiers in Cellular Neuroscience,
vol. 12, pp. 215, 2018.

26. Axel Nimmerjahn, Frank Kirchhoff, and Fritjof Helmchen, “Resting
microglial cells are highly dynamic surveillants of brain parenchyma
in vivo,” Science, vol. 308, no. 5726, pp. 1314–1318, 2005.

27. Louis-Philippe Bernier, Christopher J Bohlen, Elisa M York, Hyun B
Choi, Alireza Kamyabi, Lasse Dissing-Olesen, Jasmin K Hefendehl,
Hannah Y Collins, Beth Stevens, Ben A Barres, et al., “Nanoscale
surveillance of the brain by microglia via camp-regulated filopodia,”
Cell reports, vol. 27, no. 10, pp. 2895–2908, 2019.

28. Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N.
Straehle, Bernhard X. Kausler, Carsten Haubold, Martin Schiegg,
Janez Ales, Thorsten Beier, Markus Rudy, Kemal Eren, Jaime I.
Cervantes, Buote Xu, Fynn Beuttenmueller, Adrian Wolny, Chong
Zhang, Ullrich Koethe, Fred A. Hamprecht, and Anna Kreshuk,
“Ilastik: Interactive machine learning for (bio)image analysis,” Na-
ture Methods, vol. 16, no. 12, pp. 1226–1232, Dec. 2019.

29. Aaron van den Oord and Oriol Vinyals, “Neural discrete represen-
tation learning,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 6306–6315.

30. Will Zou, Shenghuo Zhu, Kai Yu, and Andrew Y Ng, “Deep learning
of invariant features via simulated fixations in video,” in Advances in
neural information processing systems, 2012, pp. 3203–3211.

31. Florian Schroff, Dmitry Kalenichenko, and James Philbin, “Facenet:
A unified embedding for face recognition and clustering,” arXiv
preprint arXiv:1503.03832, 2015.

32. Leland McInnes, John Healy, and James Melville, “Umap: Uni-
form manifold approximation and projection for dimension reduc-
tion,” arXiv preprint arXiv:1802.03426, 2018.

33. Thomas Blank and Marco Prinz, “Type i interferon pathway in cns
homeostasis and neurological disorders,” Glia, vol. 65, no. 9, pp.
1397–1406, 2017.

34. Jerome H Friedman, “Greedy function approximation: a gradient
boosting machine,” Annals of statistics, pp. 1189–1232, 2001.

35. Vincent A Traag, Ludo Waltman, and Nees Jan van Eck, “From lou-
vain to leiden: guaranteeing well-connected communities,” Scientific
reports, vol. 9, no. 1, pp. 1–12, 2019.

36. Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net: Con-
volutional networks for biomedical image segmentation,” in Inter-
national Conference on Medical image computing and computer-
assisted intervention. Springer, 2015, pp. 234–241.

37. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp.
770–778.

38. Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

39. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu,
“A density-based algorithm for discovering clusters in large spatial
databases with noise.,” in Knowledge Discovery and Data Mining,
1996, vol. 96, pp. 226–231.

40. Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi,
“You only look once: Unified, real-time object detection,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 779–788.

41. Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick,
“Mask r-cnn,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 2961–2969.

42. Khuloud Jaqaman, Dinah Loerke, Marcel Mettlen, Hirotaka Kuwata,
Sergio Grinstein, Sandra L. Schmid, and Gaudenz Danuser, “Ro-
bust single-particle tracking in live-cell time-lapse sequences,” Na-
ture Methods, vol. 5, no. 8, pp. 695–702, Aug. 2008.

43. Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Ed-
ward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer, “Automatic differentiation in pytorch,” in
NIPS-W, 2017.

44. Laurens van der Maaten and Geoffrey Hinton, “Visualizing data
using t-sne,” Journal of machine learning research, vol. 9, no. Nov,
pp. 2579–2605, 2008.

45. Christopher S McGinnis, David M Patterson, Juliane Winkler,
Daniel N Conrad, Marco Y Hein, Vasudha Srivastava, Jennifer L
Hu, Lyndsay M Murrow, Jonathan S Weissman, Zena Werb, et al.,
“Multi-seq: sample multiplexing for single-cell rna sequencing using
lipid-tagged indices,” Nature methods, vol. 16, no. 7, pp. 619, 2019.

46. Christoph Hafemeister and Rahul Satija, “Normalization and vari-
ance stabilization of single-cell rna-seq data using regularized neg-
ative binomial regression,” Genome biology, vol. 20, no. 1, pp. 1–15,
2019.

47. Diederik P. Kingma and Max Welling, “Auto-encoding variational
bayes,” arXiv preprint arXiv:1312.6114, 2013.

48. Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfel-
low, and Brendan Frey, “Adversarial autoencoders,” arXiv preprint
arXiv:1511.05644, 2015.

Wu, Chhun, Schmunk et al. | DynaMorph bioRχiv | 11

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.20.213074doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.20.213074
http://creativecommons.org/licenses/by-nc/4.0/


Methods

QLIPP imaging. We acquired all data using a Leica DMI-8
inverted widefield microscope, with 20x objective magnifica-
tion at 0.55NA (air), and 0.4NA condensor on a Hamamatsu
Flash-4 LT camera (6.5 um pixels). The cells were held at
a constant 37°C, 5% CO2 using the Okolab stage-top incu-
bator (H101-K-Frame). Each of the five polarization states
were acquired, in sequence, with 50 ms camera exposure, for
each of 5 z-planes for a given field of view. For the unper-
turbed microglia time series, we acquired 52 time points and
27 fields of view (9 per well) over 24 hours at 27 minute
time intervals. For the perturbed microglia time series, we
acquired 159 time points, 9 fields of view (4 were used for
analysis), over 24 hours at 9 minute time intervals.

Birefringence is an optical property of matter that de-
scribes a different refractive index for different orientation
axes of polarized light. The differential phase shift caused by
these refractive indices, and the orientation axes, allow us to
decompose birefringence into two properties: retardance and
orientation (respectively). Each of these properties can be
represented in terms of a combination of the Stokes parame-
ters, which are Cartesian projections of a vector from spher-
ical coordinates that describes the full polarization state of
light. With the application of Mueller matrices that are tuned
to our instrument setup, we can translate the Stokes repre-
sentation into image intensities and vice versa. Therefore,
given a set of intensity images of the specimen with known
polarization states, we can use the inverse model to compute
the sample’s corresponding Stokes parameters and then phys-
ical properties of retardance and orientation. We estimate
the background level of polarization with a 2D polynomial
fit. Details for label-free hardware calibration, background
correction and reconstruction can be found in previous work
(16).

We used the open-source microscope control software
Micro-Manager 1.4.22 (https://micro-manager.
org/) for all image acquisition. The Micro-Manager plu-
gin OpenPolScope (https://openpolscope.org/)
performs the liquid-crystal-compensator (LCC) calibration
by first finding voltages to achieve extinction (IExt , intensity
minimum). A pre-defined "Swing" voltage (0.03) is applied
to induce slight polarization ellipticity along one axis (I0deg).
This "Swing" is empirically determined based on the sample,
in order to produce maximum polarization contrast. Then,
using the brent-optimizer minimization procedure, we find
three more voltage states centered on I0deg that sample other
orientations (I45deg, I90deg, I135deg).

Following the reconstruction algorithm described pre-
viously (16) and documented on github (https://
github.com/mehta-lab/reconstruct-order),
phase reconstructions used the above hardware parameters
plus the total variation regularizer with parameters: rho=1,
itr=50, absorption=1.0e-3, phase=1.0e-5.
Retardance reconstructions used default parameters plus
"local fit" background correction, and retardance scaling of
1e4.

Culture of primary microglia. De-identified tissue samples
were collected with previous patient consent in strict obser-
vance of the legal and institutional ethical regulations. Pro-
tocols were approved by the Human Gamete, Embryo, and
Stem Cell Research Committee (institutional review board)
at the University of California, San Francisco.

Primary human microglia were obtained from second
trimester (gestational week 18-22) cortical brain tissue us-
ing magnetic-activated cell sorting. Tissue samples were dis-
sected in artificial cerebrospinal fluid containing 125 mM
NaCl, 2.5 mM KCl, 1mM MgCl2, 1 mM CaCl2, and 1.25
mM NaH2PO4. Tissue was cut into 1 mm3 pieces, and
the tissue was enzymatically digested using 0.25% trypsin
(reconstituted from 2.5% trypsin, ThermoFisher 15090046)
with addition of 0.5 mg/ml DNase (Sigma Aldrich, DN25)
for 20 minutes at 37°C, mechanically dissociated and then
passed through a 40 um mesh cell strainer (Corning 352340).
The resulting cell suspension (100-150 million cells) was
centrifuged for 5 minutes at 300× g and washed twice with
Ca2+/Mg2+ - free phosphate buffered solution with addition
of 0.5 mg/ml DNase to prevent cell clumping. Cells were
re-suspended in 900 ul of MACS buffer (PBS with 0.5%
BSA) with addition of 0.5 mg/ml DNase and incubated with
100 ul of the CD11b magnetic beads (Milteniy Biotec, 130-
049-601) for 15 minutes following the manufacturer’s in-
structions. After the magnetic beads incubation, cells were
washed with 20 ml of PBS, span down at 300 × g, re-
suspended in 0.5 ml of MACS buffer and loaded on a MACS
LS column (Milteniy Biotec, 130-042-401). Cells on the col-
umn were washed three time with 3 ml of MACS buffer, the
column was removed from the magnet, and remaining mi-
croglia cells were eluted in 5 ml of microglia culture me-
dia. Microglia culture media (50 ml) consisted of: 33 ml of
phenol red-free basal media Eagle’s (BME), 12 ml Hank’s
buffered solution, 1 ml B27 (ThermoFisher, A3582801), 0.5
ml N2 (ThermoFisher, 17502048), 2 ml of 33% glucose,
0.5 ml GlutaMax (ThermoFisher, 35050061), and 0.5 ml
penicillin/streptomycin (ThermoFisher, 15240062). Purified
microglia cells were span down at 300× g and plated at
100× 103 cells per well in microglia media supplemented
with 100 ng/ml of rhIL34 (Peprotech, 200-34), 2 ng/ml
TGFb2 (Peprotech, 100-35b) and 1x CD lipid concentrate
(Lifetech, 11905031) to promote microglia cell survival in
the monoculture. Prior to plating, glass-bottom 24 well plates
(Cellvis, P24-1.5H-N) were coated with 0.1 mg/ml poly-d-
lysine (Sigma-Aldrich, P7280) for 2 hours at room tempera-
ture followed by three double-distilled water washes and ad-
ditionally incubated with laminin and fibronectin in PBS for 3
hours at 37°C. Cell culture media was changed twice a week,
and was changed 24 hours prior to the start of the time lapse
experiment to allow cells to re-equilibrate.

Time lapse imaging experiment was started on day 6 of
culture and continued for 24 hrs in environmental control
chamber (5%CO2, 37°C and relative humidity of 70%).

dynamorph Pipeline. dynamorph is composed of a col-
lection of machine learning/deep learning tools that operate
on imaging data and automatically generate morphodynamic
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summary of target instances. A brief pipeline is described in
main text section “Automatic morphodynamic state discov-
ery by dynamorph”, here we elaborate technical details of
each component in the same order. Note that two compo-
nents of the pipeline required training in advance to state dis-
covery applications: semantic segmentation model and self-
supervised encoding model. In this work we dedicated a sep-
arate set of experimental data on control microglia (from dif-
ferent individuals) for model training.

Semantic segmentation. A single three-class U-Net classi-
fier (36) was deployed for the cell semantic segmentation,
whose training data was derived from a combination of hu-
man annotations and machine learning (random forest) pre-
diction. In the preparation of training data, we utilized inter-
face from ilastik and manually annotated microglia, contam-
inating non-microglia cells (neurons, radial glia) and back-
ground/experiment artifacts in 30 frames selected from 13
fields of view. Manual annotation took in total approximately
8 hours, generating identifications for 1252 microglia and
312 non-microglia cells. The annotations were only partial,
in which most of the background were not annotated (Sup-
plementary Figure 2B). Most edges of the cell were not an-
notated or only roughly marked. Then the internal seman-
tic segmentation model (random forest-based) of ilastik was
trained and tuned to discriminate foreground (microglia and
contaminating cells) and background, providing full segmen-
tation mask of background/experimental artifacts. 50 frames
of such background-only masks (foreground pixels were left
unannotated) were visualized then inspected, serving as ad-
ditional training inputs.

All training frames (2048× 2048 pixels): human anno-
tated frames and ilastik prediction frames, were combined
and cropped into small patches (256× 256 pixels). Two
strategies were utilized: a frame could either be cut into patch
tiles by a sliding window with no overlap, or by random sam-
pling centers and rotation angles to extract patches from the
context. The second strategy served partially as a data aug-
mentation technique and was designed to increase the diver-
sity of cell orientation and position. No further augmentation
was performed as all frames were imaged with the same scale
and brightness. Due to the sparsity of labels, we excluded
patches with little or none annotations.

U-Net was adapted from https://github.com/
qubvel/segmentation_models, and a pretrained
backbone of resnet34 (37) was used to initialize weights.
The model was trained end-to-end with standard cross en-
tropy loss and Adam optimizer (38). During training, only
partial labels corresponding to human annotations or random
forest background predictions were used, weights elsewhere
were set to 0. Weight scaling was also employed to balance
loss for different classes. No hyperparameter search was per-
formed due to limited amount of data and lack of validation
metrics. Final model was evaluated visually based on crite-
rions including cleanliness of cell edges, prediction consis-
tency and accuracy on microglia/non-microglia/ambiguous
cells. Note that dynamorph pipeline was robust against the
output noise of segmentation as it only provided rough in-

termediate estimates of cell positions and shapes. We thus
didn’t validate and optimize this step exhaustively to ease the
application-time usage.

Qualitatively, we found that ilastik, with a random for-
est core, performed worse in distinguishing cell types, often
generating chimeric segmentation masks of both microglia
and non-microglia cells. We speculated that this is due to
the lack of global feature extractions in the method as cell
type is highly dependent on the overall shapes and large-
scale features such as protrusions. On the other hand, U-
Net, when trained solely with human annotations, was not
capable of delineating clean edges of cells, potentially due
to class imbalance as well as lack of samples having clear
edges annotated (annotators only marked the cell bodies).
Prediction mask would hence frequently exceed the bound-
aries of a cell, posing difficulties to the following instance
separation step. Based upon the above observations, we
took a combination approach by augmenting the annotation
step using an random forest classifier, generating a set of
well-balanced “semi-annotated” training data with samples
of clean foreground-background edges. The resulting U-Net
generated pixel masks with less chimeric cells as well as
clean boundaries. See comparisons in Supplementary Fig-
ure 3.

To generate segmentation for a full video, we first sepa-
rated the video into static frames. For each frame, the full
field of view (2048× 2048 pixels) was divided into patches
(256× 256 pixels) following the same sliding window/tiling
strategy, model was then applied on individual patches, re-
sults of which were tiled to generate the full prediction mask
for this frame. To avoid edge effect, 20 repetitions with dif-
ferent offsets were performed, all 20 prediction masks were
aligned and averaged to formulate the final prediction.

Instance separation. We applied clustering on the pixels from
segmentation masks to isolate and extract masks of each in-
dividual cell. In the procedure, all pixels predicted as fore-
ground (microglia and non-microglia) by U-Net were ex-
tracted, then clustered based on their 2D coordinates in the
frame. We used DBSCAN (39) to detect core points of
each cell as well as to exclude outlier points coming from
prediction artifacts. Note that this is feasible when cells are
cultured in a relatively sparse environment. In fields with
densely populated cells, clustering would not be able to sep-
arate boundaries between overlapping/contacting cells, in-
stead more robust end-to-end instance segmentation models
(40, 41) would have better results.

Implementation of DBSCAN from scikit-learn was ap-
plied, the parameters of which were tuned to separate adja-
cent cells with small amount of contact. In practice, since
most of the prediction masks were clean, we searched the
two main parameters (eps and min_samples) to maxi-
mize detected number of cells whose size were above a min-
imum threshold. The final model employed a maximum
neighbor distance (eps) of 10 pixels (3.25 um) and a min
neighborhood size (min_samples) of 250 for core points.
Each set of core points and their reachable points were re-
garded as the mask for an individual cell. We further ap-
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plied a post-processing step to exclude masks with extreme
sizes (>12000 pixels or <500 pixels), serving as a filter for
prediction/experimental artifact and overlapping/contacting
cells that cannot be separated.

The identity of each cell was then determined based on
the average classification score over its mask. We simply av-
eraged the pixel-wise probabilities of both classes (microglia
or non-microglia) across the whole cell mask. The resulting
ratio of probabilities represented the proportion/likelihood
the U-Net regards this specific cell as microglia or non-
microglia. Cells with microglia proportions larger than 0.9
were regarded as true microglia, and vice versa for non-
microglia. The rest would be regarded as ambiguous cells.
Only microglia from training set were used for the self-
supervised model training described below. These identities
also helped in determining validity of trajectories in the fol-
lowing tracking procedure.

Tracking. Within a full video, instance separation was per-
formed on each static frame independently, results of which
were used in this step to connect cells across time and form
trajectories. The tracking procedure followed the work of
(42), in which the core architecture is a linear assignment
problem (LAP). In every two adjacent frames, each frame
would have a list of cells generated from the instance sepa-
ration step, along with their sizes and center positions calcu-
lated on the segmentation masks. Then a matching problem
was set up between the two lists of cells, with a pairwise cost
matrix calculated based on position displacements and shape
differences between pairs of cells:

costij = (rshapeij + 1
rshapeij

)×dij2

rshapeij = si
sj

dij : distance between cell i and cell j
from two adjacent frames

si : size of cell i

The cost favored cell pairs that were spatially close and
morphologically (size) similar. In practice, we also enforced
thresholds (maximum displacement 100 pixels, maximum
size difference 2 folds) to refine results. Resulting match-
ing pairs along all frames in a video were connected, for-
mulating a set of single cell trajectories that span multiple
frames. We further adopted the gap closing strategy in (42)
to connect short trajectories that were separated due to imag-
ing/segmentation issues. A similar LAP set up with only
squared distance cost was employed.

The set of trajectories obtained through the above proce-
dure would contain both microglia and non-microglia cells.
To select only microglia trajectories, the identities of cells
in static frames (proportions of microglia segmentation pro-
vided by UNet) calculated in the previous step were pooled
and filtered. Only trajectories with over 95% of all frames
being labeled as microglia (proportion > 0.9) were kept. The
final collection of cell trajectories would be used to guide

concatenation of morphology descriptors as well as to calcu-
late motion descriptors in the downstream clustering analysis.
In total, 5731 microglia trajectories were collected, 3715 of
which were extracted from the test dataset.

Self-supervised encoding with VQ-VAE. A variational au-
toencoder variant: VQ-VAE (29) was applied in this work
to summarize morphology of cells through a encoding-
decoding process. The model was trained on microglia cell
patches extracted from the training set and directly applied
to the test set data to generate morphological descriptors for
cells under different treatment.

We took all individual microglia cells in static frames
from the instance separation step and cropped patches of size
256×256 pixels around the cell centers. If the cell appeared
on the border of a field of view, the out-of-border area would
be filled with median background values of phase and retar-
dance. Meanwhile, since we focused on analysis of single
microglia, we further masked out other cells appearing in the
patch area and filled with median background values. Sample
patches before the masking can be found in Figure 2, samples
after masking can be found in Supplementary Figure 4 and
Supplementary Figure 5.

VQ-VAE was implemented in pytorch (43), using two
deep convolutional networks as encoder and decoder respec-
tively. Input patches were first down-scaled to 128× 128
and normalized on both channels, then VAE encoder further
down-sampled the image by 64 folds. Resulting latent vec-
tor for each cell had shape of 16, in which the last dimen-
sion was channel. Then consistent with the standard setup of
VQ-VAE, we regularized latent space by forcing a discretiza-
tion step on the channel dimension, in which each vector at
a given position out of the 16×16 grid was matched with 64
embedding vectors and the closest embedding was inserted
back to the position and passed to the decoder. A match-
ing loss was enforced in the later phase of training that min-
imizes frame-to-frame differences between latent vectors of
the same cell along its trajectory. A combination of these two
losses was used to train the model in an end-to-end fashion.

LVQ-VAE(x) = logp(x|zq(x))+

‖sg[ze(x)]−ek‖22 +

β ‖ze(x)− sg[ek]‖22 ,

where k = argminj ‖ze(x)−ej‖22 ,
zq(x) = ek

Lmatching(x(t)) =
∑

i=1,−1

∥∥∥ze(x(t))−ze(x(t+i))
∥∥∥2

2
+

0.1
l∑
i=0

∥∥∥ze(x(t))−ze(x(i))
∥∥∥2

2
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x : input cell image
ze(x) : encoder output
zq(x) : decoder input
e : closest embedding vector to ze(x)
sg : stop gradient operation

x(t) : t-th frame of a cell trajectory
l : length of the cell trajectory

where β = 0.25 controls the amount of commitment loss
regularized during training. In the training procedure, we
applied only LVQ-VAE in the initial phases. When model
achieved a loss plateau and relatively high perplexity (indi-
cating how many of the 64 embedding vectors were used),
we added in Lmatching gradually till a final ratio of 1:0.005 for
VQ-VAE loss/matching loss.

Size of the latent space used in this study was consistent
with the compression fold in its original work (29). Note
that we didn’t push further to a much smaller latent space
(i.e. <100D) due to the concern that smaller latent vector
will consist of more conceptualized and higher-level repre-
sentations of images, which would cast difficulties in inter-
pretation and quantification.

Note that matching loss was only applied within mini-
batch to avoid extensive calculation. During training
we enforced a sample order that aligns most of the
neighboring/same-trajectory cell pairs sequentially, so with
a high chance a cell patch’s next or previous frame would
exist in the same mini-batch.

PCA of latent vectors. PCA was fitted on ze(x) for all mi-
croglia cells in the training set, and applied to all training and
test cells. Implementation from scikit-learn was used, and
we extracted PCs that explain the top 50% of all variances:
48 components were extracted, explained variance of which
is visualized in Supplementary Figure 10A.

We also tried fitting and transforming zq(x) (data not
shown), which generated very similar results and same in-
terpretations for the top PCs. Distance metrics defined with
either ze(x) or zq(x) showed similar results (Supplementary
Figure 11) as well. But since ze(x) contained more informa-
tion before the quantization, we employed it throughout this
work.

Other dimensionality reduction methods including tSNE
(44) and UMAP (32) were also tested and showed no advan-
tage over PCA as no clustering patterns was detected.

Clustering of trajectory feature vectors. In this work, to fur-
ther unravel the morphodynamic features, as well as to link
transcriptomic profiles of microglia, a downstream clustering
was performed on cell trajectories.

Feature vector of each cell was composed of morphology
descriptor and motion descriptor: top 48 PCs derived above
were used as morphology descriptor; position displacements
along the trajectory were averaged, and log mean displace-
ment was used as motion descriptor. The log mean displace-
ment values were scaled to keep variance comparable with
the top 2 PCs.

Then a Gaussian Mixture Model (GMM) with 2 compo-
nents was applied to model different sub-populations of mi-
croglia. Since input data were from different treatment group,
we assumed different mixture weights for different subset
(treatment condition). Given the feature vector xi and treat-
ment group yi of a cell, it was assumed to be sampled from:

p(xi,yi|Θ) =
2∑
k=1

α
(yi)
k pk(xi|θk)

where Θ = {α(1)
1 ,α

(1)
2 ...,α

(4)
1 ,α

(4)
2 ,θ1,θ2}were parame-

ters of the mixture model: θk is the center of k-th component,
α

(j)
k is the weight of k-th component in subset j. In the test

set 4 conditions were used so 4 sets of component weights
were fitted with samples from the corresponding groups.

Expectation-Maximization (EM) algorithm was em-
ployed to iteratively evaluate the parameters of GMM. E-step
evaluates the membership weight of each cell based on the
current set of parameters:

wik =
α

(yi)
k pk(xi|θk)∑2

k=1α
(yi)
k pk(xi|θk)

where pk(xi|θk)∝ e−
1
2 (xi−θks )2

M-step recalculates the parameters based on new mem-
bership weights:

α
(j)
k =

∑
i∈{i|yi=j}wik∑
i∈{i|yi=j} 1

θk =
∑
iwikxi∑
iwik

Two steps above were repeated till parameters converged.
In the procedure we fixed the variance of mixture compo-
nents to be the same as variance of feature vectors to increase
stability. GMM with more than 2 components were tested but
interpretability of each component became worse so we limit
to the two-state model of microglia.

scRNA Sequencing. Cells from three conditions (control,
IFN beta and GBM supernatant) were dissociated using
0.25% trypsin solution, labeled with Multiseq barcodes (45)
and processed for single cell mRNA sequencing using the
10x Genomics Chromium v3 Platform. CellRanger version
3 was used to generate the count matrix of cells by genes.
Cells with more than 20% mitochondrial abundance or less
than 500 UMI were removed. Doublets were removed dur-
ing the demultiplexing of Multiseq barcodes.

SCTransform (46) was applied to the raw count matrix
followed by PCA on the residuals. The top 30 principal com-
ponents were used to find neighbors for Leiden clustering
(35) and the UMAP (32) projection.

Code Availability
Open source python software for reconstruction of label-
free optical properties is available at https://github.
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com/mehta-lab/reconstruct-order and for ana-
lyzing cell states is available at https://github.com/
czbiohub/dynamorph.
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Supplementary figures
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Supplementary Figure 1. Comparison of microglia morphology as visualized with vital dyes (Di-I and CellTracker CM-DiI) and label-free
measurements (phase and retardance): Two examples from each condition are shown. Di-I and CellTracker are a lipophilic carbocyanine derivatives
that internalize through different protocols, but should penetrate the membrane and persist in the cytoplasm enough to outline cell contours. Both dyes
under all perturbation conditions show similar internalization and sequestration of the dyes. All scale bars are 10 um.
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A. Acquire and reconstruct phase, retardance channels B. Annotations

C. Semantic segmentation D. Instance segmentation E. Microglia (blue) and non-microglia (red) marked in boxes

F. Frame matching: (left) t = 0, (right) t = 1 G. Single cell trajectories
t = 0 t = 1 t = 4 t = 8 t = 16

phase retardance

100 um 100 um

Supplementary Figure 2. Identification and tracking of microglia with sparse supervision: (A) Cell morphology and dynamics are visualized
without label based on density (phase) and structural anisotropy (retardance). (B, C) Sparse human annotations enable microglia segmentation using a
combination of conventional machine learning (ilastik/random forest) to separate foreground and background, and deep convolutional networks (U-Net)
to separate microglia and contaminating non-microglia cells. (D, E) Segmentation masks are further clustered through DBSCAN to form individual cell
masks, from which the position and surrounding patch of the cell are extracted. In the encoding pipeline we extracted boxes of 83µm× 83µm around
the cell centers for the patches. Note that stringent filtering was applied on the cell masks to exclude potential artifact and overlapping/contacting
cells, leaving only masks/bounding boxes of individual cells. (F) Individual cells in adjacent time-points are linked through solving a linear assignment
problem. (G) Connected components through multiple frames form single cell trajectories. Representative trajectories for microglia (top) and progenitor
cells (bottom) are shown.
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Supplementary Figure 3. Comparison of different segmentation results: (A) Raw input of an unannotated slice, phase channel. (B) Prediction
map from a random forest classifier (ilastik) trained on human annotations. Note that predictions are more noisy and chimeric. (C) Prediction map
from a U-Net trained on human annotations. Note that most edges exceed the boundaries of cells. (D) Prediction map from a U-Net trained on human
annotations and random forest generated background annotations.
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Supplementary Figure 4. Sample cell patches (phase channel) randomly selected from the test set and reconstructions from multiple VAE
variants: Reconstruction loss for variational autoencoder (47) (VAE): 0.25 ± 0.06, adversarial autoencoder (48) (AAE): 0.19 ± 0.07, vector quantised-
variational autoencoder (29) (VQ-VAE): 0.18 ± 0.07. All variants have latent space of the same size, VQ-VAE is also regularized by the discrete prior.
Order of the reconstructions is explained in the upper left corner. Vanilla VAE lost more details than AAE and VQ-VAE, VQ-VAE has overall best
reconstruction and image compression fold.
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Supplementary Figure 5. Illustrative cell patches of cells imaged under different perturbations (IL17, IFN beta, GBM, Control) and their
reconstructions by VQ-VAE.
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Supplementary Figure 6. Reconstruction and encodings of samples from the training set: (A) Example patches from the training set and their
reconstructions by VQ-VAE (B) Top 2 PCs of all samples from the training set, 4 representative trajectories are plotted. (C) Spearman’s rank correlation
coefficients calculated between top PCs and geometric properties. Note that results are highly similar to test set samples. (D) Representative trajectories
are visualized.
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Supplementary Figure 7. PCA was directly fitted on input images without encoding from the training dataset and applied to test samples. Resulting
PCs were analyzed for correlations to geometric properties. Spearman’s rank correlation coefficients were calculated between the same set of geometric
properties and top image PCs. Correlations are weaker and more interrelated and thus harder to separate and interpret.
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Supplementary Figure 8. PCs directly calculated on image inputs are used for clustering following the same GMM procedure. Two GMM states
were defined using motion descriptor (speed) and image PCs. KDE plot of trajectories from the two states is illustrated, note that state separation is
much worse than GMM states defined with latent vector PCs.
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Supplementary Figure 9. Cell patches randomly sampled from the upper and lower 20 percentiles along each principal component axis
(PC1 to 4, residue PC1). Patches are visualized as combination of phase channel (as grey scale) and retardance channel (as magenta shades).
Samples along PC1 show different cell sizes; samples along PC2 show different phase strengths; samples along PC3 and PC4 (controlled for PC1
and PC2 values) show different orientations. We further calculated a residue latent space after excluding all known geometric properties of cells (listed
in Figure 2D), samples along the first principal component of the residue space (rPC1) are illustrated in the last row: samples with lower rPC1 values
tend to involve less contact/interaction, while higher rPC1 value correlate with complex environments including overlapping cells, cell on the border of
imaging view, imaging artifact, etc.
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Supplementary Figure 10. Latent space of morphology is high-dimensional: (A) Explained variance ratios of the top 40 principal components of
the morphology space. Note that analysis in this work focuses only on the first 4 principal components. (shaded area, explained ∼17% of all variance).
(B) and (C) UMAP reduction (2 components) on sample latent vectors from the training set and the test set. No clustering patterns are found after tuning
parameters, indicating that the space is highly continuous.
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Supplementary Figure 11. Distributions of latent vector differences between pairs of frames: On both training set (upper panels) and test set
(lower panels), we calculated differences between pairs of frames for three conditions: adjacent frames in trajectories (deep red/blue), non-adjacent pair
of frames from the same trajectory (light red/blue) and random pairs of frames selected from all static patches (grey). In all settings distances in the
latent space match well with our prior of shape similarities (adjacent > same-cell > random pair). Quantization step in the VQ-VAE doesn’t interfere with
the distance metric. Also note that the trends are much more significant in top PCs (PC1-4).
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Supplementary Figure 12. Kernel density estimate (KDE) plots of trajectory-averaged PC1 and PC2 from the test dataset.
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Supplementary Figure 13. Confusion matrix of classifiers that predict condition/subset from trajectory feature vectors. We employed gradient
boosted trees with default hyper-parameters as the predictor models and trained them under 10-fold cross validation.
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Supplementary Figure 14. Confusion matrix of classifiers that predict GMM state from trajectory feature vectors. We employed gradient boosted
trees with default hyper-parameters as the predictor models and trained them under 10-fold cross validation.
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Supplementary Figure 15. Density map of squared cumulative displacements calculated over trajectories from the two GMM states. Mean
square displacements (MSD) are plotted, log-log fit results of the MSD could be found in Figure 4E
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Supplementary Figure 16. Details of scRNA clustering: (A) UMAP projection and clustering of microglia cells based on scRNA-seq. Note that cells
from all three conditions are included. Note that cluster 1 is further separated into 3 sub-clusters by applying the same method, in total identifying four
molecularly distinct clusters. (B) Heatmap of the top differentially expressed genes in each cluster. Cluster 2 includes primarily control microglia and
microglia treated with GBM supernatant. Cluster 1-1 is characterized by non-neuronal genes. Cluster 1-2 has high expression of interferon response
genes. Cluster 1-3 is defined by high expression of cell cycle genes consistent with a dividing population.
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Supplementary tables

Latent vector PCs State-1 State-2 Diff.
PC1 0.44 0.17 0.27 (0.17SD)
PC2 0.66 2.80 2.14 (1.04SD)
PC3 -0.07 0.08 0.15 (0.16SD)
PC4 -0.13 0.00 0.13 (0.14SD)
Log speed 3.25 4.03 0.78 (1.11SD)
Proportion (IL-17) 0.79 0.21
Proportion (IFN beta) 0.93 0.07
Proportion (GBM) 0.42 0.58
Proportion (Control) 0.25 0.75
Image direct PCs State-1 State-2 Diff.
PC1 3.68 3.98 0.30 (0.22SD)
PC2 0.92 1.41 0.49 (0.52SD)
PC3 -0.70 -1.50 0.80 (0.64SD)
PC4 1.30 1.64 0.34 (0.57SD)
Log speed 3.23 3.84 0.61 (0.87SD)
Proportion (IL-17) 0.66 0.34
Proportion (IFN beta) 0.77 0.23
Proportion (GBM) 0.37 0.63
Proportion (Control) 0.38 0.62

Supplementary Table 1. Details of the mixture components detected by GMM using morphodynamic features. “Diff.” column shows the difference
in values and standard deviation (SD) between two states. Clusters of latent vector PCs are mainly separated by PC2 and Log speed. Test subsets
show different distributions of the two morphodynamic states. Clustering (with the same parameter and procedure) on image direct PCs is less clear,
separations between mixture components and test subsets are weaker.
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Supplementary videos
Video Set 1. Video clips of representative cell trajectories visualized in Figure 2 and Supplementary Figure 6: we show full fields of view with bounding
box and enlarged view of the cell. Note that among the 8 trajectories, 4 are more stable in appearance (corresponding to green and black arrows in
Figure 2 and Supplementary Figure 6), 4 undergo significant morphology change (orange and brown arrows).

Video Set 2. Video clips of representative cell trajectories from each subset of the test dataset: 4 trajectories are provided for each treatment condition
(control, GBM, IL17, IFN beta).

Video Set 3. Video clips of representative cell trajectories from each of the two morphodynamic state defined by GMM: 5 trajectories are provided for
each state.

Video Set 4. Video clips of representative cell trajectories that underwent state transitions.
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