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Abstract: Aggregate biodiversity data from museum specimens and community observations have
promise for macroscale ecological analyses. Despite this, many groups are under-sampled, and
sampling is not homogeneous across space. Here we used butterflies, the best documented group
of insects, to examine inventory completeness across North America. We separated digitally
accessible butterfly records into those from natural history collections and burgeoning community
science observations to determine if these data sources have differential spatio-taxonomic
biases. When we combined all data, we found startling under-sampling in regions with the most
dramatic trajectories of climate change and across biomes. We also found support for the
hypothesis that community science observations are filling more gaps in sampling but are more
biased towards areas with the highest human footprint. Finally, we found that both types of
occurrences have familial-level taxonomic completeness biases, in contrast to the hypothesis of
less taxonomic bias in natural history collections data. These results suggest that higher inventory

completeness, driven by rapid growth of community science observations, is partially offset by
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higher spatio-taxonomic biases. We use the findings here to provide recommendations on how to

alleviate some of these gaps in the context of prioritizing global change research.

Keywords: butterflies, sampling bias, sampling completeness, GBIF, north America, global

change
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INTRODUCTION

The mobilization of openly and freely available natural history data has increased the
ability for researchers to access information about species distribution and abundance in a given
time and place. In recent years, these data have been augmented by community science programs
which facilitate collection of biodiversity observations and digital vouchers from a network of
volunteers. Aggregated data from both natural history collections and community science
programs have been used to answer often broad questions in ecology, including assessing
extinction risks for understudied groups (Carlson et al. 2017, Seppélé et al. 2018) and modeling
species response to environmental change (Eskildsen et al. 2015).

Despite the utility of these data, many taxa are still under-sampled (Troudet et al. 2017)
and prevalent biases in the spatiotemporal distribution of these data are noteworthy (Beck et al.
2013, Meyer et al. 2015). These biases imply that inventory completeness (how many species have
been recorded vs. how many are expected to occur) is uneven across time and space. Given the
urgency to understand ecological responses to many global change processes, knowing where
sampling has and has not occurred to a sufficient degree is critical for both prioritizing effort to
close information gaps and choosing extents and scales for macroecological analyses. The
enormous growth of community science reporting for some groups promises to rapidly close
inventory gaps, but less is known about how specimens from natural history collections and
community science data may be differentially spatially biased. Community science volunteers may
stay closer to developed areas to sample biodiversity than collectors who may be more attentive to
collecting in under-sampled regions. This may lead to larger under-sampling by community

scientists in remote regions, including the far North, which is projected to experience the most
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79  dramatic effects of climate change. Under-sampling in the Arctic and other sparsely populated
80  regions negatively impacts ability to assess how climate has impacted communities over time.

81 Butterflies (Lepidoptera: Papilionoideae) are a diverse group of organisms that are
82  relatively less sampled compared to vertebrate fauna (Troudet et al. 2017) which have been the
83  focus on previous sampling completeness assessments (Meyer et al. 2015). Additionally,
84  butterflies have been widely used to detect signals of global change (Parmesan et al. 1999,
85  Eskildsen et al. 2015). Given the value of butterflies as an indicator group, we aim to test how well
86  sampled North America is for butterflies using natural history collections and community science
87  data, as gaps in openly accessible biodiversity data limit efforts to address ecological, evolutionary,
88 and conservation questions. More specifically, we utilize estimates of distributions from field
89  guides to establish a baseline richness value at multiple, coarse scales usable for presence
90  prediction (Jetz et al. 2012). We then compare that value to richness derived from occurrence
91  records from the Global Biodiversity Information Facility (GBIF), iDigBio, and eButterfly.

92 We separated occurrence records into those from natural history collections and from
93  community science-based observations and examined temporal trends in the number of records
94  and completeness for each. We then tested the hypothesis that both types of occurrences were
95 biased to areas where the humans are likely to be most active, but that those biases were
96 particularly severe for community science records. We also examine if there are differences across
97  butterfly families among these record types, presuming that records from natural history
98  collections are less likely to be biased in familial completeness coverage. To provide further
99  context for these results, we ask how biomes and climate regimes are sampled differently in order

100  to provide meaningful information for global change ecologists and other users of these data.
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101  Finally, we discuss potential strategies to mitigate under-sampling across the continent in the
102 future.

103

104 MATERIAL AND METHODS

105 Occurrence records were obtained from GBIF (GBIF 2020), iDigBio (iDigBio 2020), and
106  eButterfly (Prudic et al. 2017) from 1950 through 2019 within North America (Canada, Mexico,
107  United States). Range maps of species found in the United States and Canada were digitized from
108  the Kaufman Field Guide to Butterflies of North America (Brock and Kaufman 2006). For species
109  found in Mexico, range maps were digitized from 4 Swift Guide to Butterflies of Mexico and
110  Central America (Glassberg 2018) as part of the ButterflyNet project, which are digitally available
111 for visualization on Map of Life (Jetz et al. 2012). These maps only include known source
112 population locations, and do not include distributions of strays. All range maps from the sources
113 were merged into a single shapefile consisting of many spatial polygons which were clipped to
114  only terrestrial areas within North America. These range maps were then intersected with
115  continent-wide equal area grids at 100km, 200km, and 400km resolution. A species was
116  considered to occupy a 100km cell if its range passed within 2,000m of the grid centroid and
117  considered to occupy a cell at coarser resolutions if it intersected the grid cell irrespective of
118  distance to the cell centroid. Taxonomic names across the fishnet grids and occurrence data were
119  harmonized to a single taxonomic list using R package taxotools (Barve 2020) and the small
120  minority of names that could not be resolved manually after the process were discarded from the
121  analysis. We analyzed only occurrence records that fell within the boundaries of their species’
122 range map but recorded how many records fell outside of these boundaries over time to assess any

123 potential temporal degradation of range maps.
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124 Sampling completeness was calculated as the ratio of species observed in occurrence data
125  within a grid cell to the number of overlapping range maps within that grid cell. In some cases due
126  to range map exclusion along coastlines and because we only included species present in this
127  fishnet if it occurred within 2000m of the grid centroid, this ratio was slightly higher than 1.0 and
128  was thus floored to 1.0. The occurrence dataset was then filtered by the basis of the record, year,
129  and taxonomy attributes to examine how specimen-only (listed as preserved specimen or material
130  sample), community observation-only (listed as human observations from the basisOfRecord field
131  in Darwin Core), time period, and the taxon-rank of family (which are monophyletic, Espeland et
132 al., 2018) impacted completeness scores. Machine observations were a small fraction of these data
133 and were not included in the analysis.

134 Overall average completion between specimen and observation data was assessed using a
135  t-test. We then tested average completion differences among families using an ANOVA on the
136  combined, specimen, and community observation datasets, and differences in the number of cells
137  complete at or over 50% using a Chi-square test for families between specimen and observation
138  based datasets. Post-hoc testing was conducted with Bonferroni correction in the case of Chi-
139  square.

140 We also assembled spatial data including velocity of climate under RCP 8.5 forecasts into
141 2085 (AdaptWest 2015); human footprint, representing areas where there are built environments,
142 roads, or converted land (Venter et al. 2016); protected regions (Dept. of Forestry and Natural
143 Resources, Clemson University for CEC 2010); and biomes as designated by the World Wildlife
144 Fund (Olson et al. 2001). For human footprint and climate velocity, we calculated average values,
145  and for protected areas, the percent coverage of those areas, within each 100km grid cell. For

146  biome type, we determined the majority biome within each 100km grid. We used these resampled
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147  values alongside the completion scores to identify drivers of sampling completeness and under-
148  sampled regions described in more detail below.

149 For potential drivers of completeness, we considered human footprint and protected areas
150 to each represent areas where humans may be actively reporting butterfly occurrences, and
151  specified separate linear models for the combined, museum specimen, and community observation
152  datasets as (Sampling Completeness ~ Human Footprint + Protected Region Cell Coverage). We
153  also ran these univariate models using either human footprint or protected areas as predictors.
154  Model selection was then performed using AIC as the selection criterion to determine the top
155 model. We compared model goodness of fit for the best models for natural history versus
156 community science in order to assess the differential impact these factors may have on datasets
157  with potentially different underlying observation strategies.

158 Finally, we examined the sampling completeness within the cells with the most extreme
159  10% and 25% of climate velocities and the sampling completeness across the WWF biomes found
160  in North America. We removed from our analysis biomes in which the number of 100x100km
161  cells was less than 10. This included mangrove forests, tropical grasslands, and flooded
162  grasslands. All data preparation and analysis was performed in R version 3.6.3 “Holding the
163  Windsock” (R Core Team 2020) using the packages tidyverse, sp, sf, raster, data.table, mapdata,
164  maptools, gridExtra, stringr, rgdal, ggforce, exactextractr, and scales (Pebesma et al. 2005,
165  Auguie 2017, Brownrigg 2018, Pebesma 2018, Dowle and Srinivasan 2019, Pedersen 2019,
166  Wickham 2019a, Wickham 2019b, Baston 2020, Bivand 2020, Bivand and Lewin-Koh 2020,
167  Hijmans 2020, Wickham and Seidel 2020). The script utilized here is available from a public
168  GitHub repository at [anonymized]. It is also available with our generated datasets via a Zenodo

169  archive at [anonymized].
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170

171 RESULTS

172 We obtained approximately 2.8 million records from our aggregate iDigBio, GBIF, and
173 eButterfly datasets. Overall, 91.2% of occurrence records fell within range map delineations for
174  their respective species. This has changed little over time with an average annual percentage of
175  88.6% from 1950-2019 and a recent increase within the last decade of sampling to 91.4%. From
176 1950 to 2019, the ratio of cells sampled biyearly at 80% completion by museum specimen data to
177  those by community observations alone decreased dramatically, especially in the last decade of
178  sampling with community based completion becoming more prevalent as the number of
179  community observations increases (Figure 1).

180

181 Human Footprint and Protected Areas

182 In all cases, the best performing model according to AIC included human footprint alone
183  without the percentage of protected natural areas (Table 1). For museum records, the variance
184  explained by the model was low (R:= 0.09) compared to the composite dataset (R==0.25) and the
185  community science dataset (R==0.29).

186

187  Geographic and Taxonomic Sampling Completeness

188 Sampling completeness was not homogeneous across scales with noticeable geographic
189  gaps in the far north, midwest, and northern Mexico as illustrated in Figure 2. Mean specimen and
190  observation-based completeness was significantly different according to our t-test (-13.27, 2919
191  DF, p <0.0001), with observations having a higher average completion ratio (0.40 +/- 0.007 SE

192  to 0.27 +/- 0.006 SE). Sampling was also inconsistent across families, especially within the
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193 Lycaenidae. To illustrate this better, in the composite dataset, differences among completeness
194  across families were significant according to ANOVA (F...»,=51.49, p <0.0001) (Figure 3a) and
195 ANOVA also supported significant differences across families for the specimen based (F.
196  .x=86.44, p < 0.0001)(Figure 3b) and observation based (F. «»=44.72, p < 0.0001)(Figure 3c)
197  datasets (Post-hoc test results in Supplemental Figure 1). Chi-square tests to assess differences in
198  the number of 100x100km cells completed at 50% or more between specimens and observations
199  revealed there is a significant association with family-level completion and basis of record
200  (X=31.04, 4 DF, p <0.0001)(Figure 3b,c). Post hoc comparisons (Beasley and Schumacker 1995)
201  revealed that this association was significant for Nymphalidae and Pieridaec with observations
202  having more cells at 50% or more complete in these families (p < 0.01)(Figure 3d).

203

204  Sampling in Projected Novel Climate Regimes and Biomes

205 Of the 80th and 95th percentile 100km resolution grid cells experiencing the most dramatic
206  climate effects on average under RCP 8.5 into 2080, 97.5% and 97.2% fell below the 80%
207  sampling completeness mark respectively, indicating under-sampling in these regions (Figure 4).
208  In addition, sampling across biomes at the 100x100km resolution was inconsistent, with some
209  biomes being sampled on average more completely than others as illustrated in Figure 5. Only the
210  Mediterranean woodland/scrub biome demonstrated over 80% sampling completeness on average
211  with notable under-sampling occurring in deserts, tropical, and boreal/arctic regions. Moderate
212 sampling (between 50% - 80% completeness on average) was demonstrated within most mid-
213 latitude temperate regions.

214

215

10
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216  DISCUSSION

217 Sample completeness across North American has accelerated in recent years, driven
218  strongly by the growing number of community observations generated from programs such as
219  iNaturalist (observations cited in our GBIF download), who share research grade observations with
220  GBIF, and eButterfly (Figure 1a). The majority of cells with >80% completeness are now from
221  community science data, which continues to grow exponentially per year (Figure 1b),
222 demonstrating the importance of these data for closing distribution knowledge gaps into the future.
223 A large volume of community science records may be due to the ease of submission. For example,
224 iNaturalist submissions can be completed by simply taking a photograph on a mobile phone.
225  Networks such as eButterfly often appeal more directly to dedicated amateur lepidopterists, and
226  do not require photo vouchers to publish data, which has the potential to allow for more
227  observations of butterfly species that are difficult to photograph. This is in contrast to specimen-
228  based data in which preparation, curation, and digitization are all required steps to publish
229  occurrence data.

230 Despite this influx of community science data, sampling is still inconsistent across space
231  and taxonomy (Figure 2, 3). Regions with low human footprint are frequently under-sampled or
232 not sampled at all, and our simple model validates this finding alongside other studies that have
233 examined the relationship between human population densities and record densities (Girardello et
234 al 2019). A key finding is that these biases towards sampling where human infrastructure is the
235  most developed are stronger for community observation data than for specimens (Table 1). Thus,
236  community science observations are not likely to be a full panacea for closing inventory
237  knowledge gaps. While some areas of North America are likely to be inventoried at increasingly

238  finer spatial grain with burgeoning growth of community science data, other areas may remain

11
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239  perniciously under-sampled. This likely continuing butterfly inventory knowledge gap in remote
240  regions is thus both particularly challenging and crucial to overcome since these are exactly the
241  areas forecasted to experience the most climatic change. A particularly good example are polar
242 regions of North America, where climate velocities are often particularly high (Figure 4 shows the
243 80th and 95th percentile of highest velocities) and sampling is woefully incomplete. (Figure 4).
244 As well, even some mid and low-latitude biomes are under-sampled, including deserts and many
245  tropical biomes in which butterfly diversity is extremely high (Willig et al. 2003) (Figure 3). We
246  argue that community science alone is unlikely to solve existing gaps in biodiversity monitoring
247  unless those programs are directed into sparsely populated regions through socially responsible
248  excursions or other research campaigns that consult with local stakeholders and Indigenous
249  communities. These directed and collaborative efforts, requiring partnerships and coordination,
250  will help to provide a critical basis for mapping and ultimately monitoring butterfly diversity in
251  order to detect changes in the face of shifting climate regimes.

252 We had anticipated that traits that make some butterflies easier to detect, photograph and
253  identify might be biased across butterfly families, thus leading to familial-level biases in
254  completeness. We expected these issues to be more acute for community scientists, compared to
255  professional collectors, who presumably are collectively more knowledgeable and trained in
256  sampling methods that might reduce bias. We already demonstrated reduced spatial biases for
257  natural history specimen collecting, which might also suggest better sampling of habitats, also
258  potentially reducing taxonomic biases. In the composite dataset, Lycaenidae exhibit lower average
259  completeness with most other groups differing from each other as well (Supp. Figure 1),
260  supporting our hypothesis of taxonomic biases in completeness. However, we did not find

261  evidence that natural history specimen collecting led to less taxonomically biased sampling, at

12
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262  least at the familial level. We did however find that completeness from community science
263  observations was higher compared to natural history specimen records only for nymphalids and
264  pierids and not for other butterfly families. While higher completeness itself is not surprising given
265  the trends we report, we had anticipated either similar trends across groups, or that showy groups
266  such as the swallowtail butterflies (i.e. Papilionidae) were more likely to be biased in favor of
267  community science observations given they are generally colorful, large, and charismatic. Further
268  exploration using species-level trait data to tease apart these patterns is warranted. In particular,
269 it may be that species-level rarity may be particularly important, especially if phylogenetically
270  conserved. Other traits that may be worth examining include habitat and flight preferences (canopy
271  vs. understory fliers) that directly relate to ease of human observation.

272 Our study expands upon prior work done on butterfly inventory completeness (Girardello
273 et al. 2019) by including an independent baseline richness via digitized maps at coarse resolution
274  and by examining the contributions of specimens and community observations. In addition, with
275  anarrower focus on just North America and by including an assessment of sampling completeness
276  in regions with high climate velocity and across biomes, we can better assess which areas are in
277  need of targeted sampling in the future. Specifically, and in contrast to previous work (Girardello
278 et al 2019), we found a severe lack of sampling in the most northern regions of North America.
279  This urgency to sample the north is further supported by the stark reality that these regions are also
280  experiencing the most drastic impacts of climate change (Manabe and Stouffer 1980, Gauthier et
281  al 2015). Overall, several key regions should be prioritized for sampling including: (a) tundra and
282  boreal forest, (b) tropical forests, and (c) deserts. Given the relatively low human population
283  densities of these regions, funding directed towards establishing community science initiatives,

284  and partnerships among organizations with interests in butterfly monitoring, will likely be critical

13
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alongside complementing these initiatives with specimen collection and focal digitization of

records in these regions.

Conclusions

Butterfly inventory completeness is not uniform across North America. Our research has
revealed continuing under-sampling in regions that are facing threats from climate change as
well as within specific biomes across the continent. Additionally, family level differences in
sampling completeness may be driven by species traits and abundance, leading to disparities in
completeness across taxa. In order to mitigate some of these issues, attention should be drawn
towards establishing community partnerships of both opportunistic and structured survey
systems in under-sampled regions. It is clear that community science provides a strong
mechanism for alleviating sampling shortfalls and has potential to provide finer-grained views of
butterfly communities, but only if such initiatives are also directed farther from regions with the
densest human populations and travel infrastructure. Furthermore, additional curation and
digitization of museum specimens will be critical in developing a historical backbone for
analyses across time and space. Millions of specimens still remain undigitized in arthropod
natural history collections (Cobb et al. 2019), and the continuation of funding for museum staff
and biodiversity informatics infrastructure will be critical in mobilizing these data needed for
ecological research, especially potential for some kinds of temporal trend analyses (Soroye et al.
2020) . Supporting digitization in tandem with concerted efforts to direct community science
initiatives towards under-sampled regions will move us towards unlocking the full potential of

these opportunistic data in an era of global change.
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408

409 Tables

410  Table 1. Coefficient estimates of each multiple regression model for the full record set, specimen-
411  only record set, and community observation recordset. Delta-AIC values indicate the difference
412 between the multiple regression and simple regression model which included only human footprint
413  asapredictor variable. In all cases, models excluding protected area percentage outperformed the

414  simple regression according to AIC.

415
estimate  se t p-value R: delta-AIC
All Records 0.25 1327.03
Intercept 0.354 0.0083  42.63 <0.0001
Human Footprint 0.027 0.0011  23.92 <0.0001
Specimens 0.09 1160.43
Intercept 0.194 0.0089  21.57 <0.0001
Human Footprint 0.014 0.0012  12.14 <0.0001
Observations 0.29  1144.99
Intercept 0.238 0.0088  26.96 <0.0001
Human Footprint 0.028 0.0011 24.79 <0.0001
416
417
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419

420  Figure 1. (a) The number of museum specimens and community observation-based occurrence
421  records over time, stacked by year. (b) Number of cells at 100km resolution that are over 80%
422 complete and that meet that threshold by museum or community observation data alone

423 biyearly. Red = museum specimens; Blue = community observations.

424
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425 =3 &

426  Figure 2. Sampling completeness within cells of varying spatial resolution (100km, 200km,
427  400km) across North America from 1950-2019 based on record source (a) all records, (b)

428  specimens, and (c) community observations.

429
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430

431  Figure 3. Sampling completeness among butterfly families at 100x100km resolution across
432 North America from 1950-2019 by family and by record source (a) all records, (b) specimens,
433  and (c) community observations. Panel (d) illustrates the number of cells over 50% complete in
434  each family, colored plots indicate a significant contribution to the chi-square statistic after

435  Bonferroni corrected post-hoc tests.

436
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437

438  Figure 4. Sampling completeness of 100x100km grid cells by climate velocity percentile. Size of

439  the point within the cell indicates sampling incompleteness (larger cells are less sampled).
440  Yellow and red cells are the 80th and 95th percentile of climate velocities respectively. Blue
441  cells fall underneath the 80th percentile for climate velocity. Climate velocity rasters do not

442  extend into northern Nunavut.
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446  community observations only, and (¢) museum specimens only. Panel (d) displays the biomes
447  utilized without delineation for clarity and includes coloration based on average composite

448  sampling completeness. Red = sampling below 50% average completeness, Yellow = sampling
449  average between 50% and 80% completeness, Green = sampling average at or above 80%

450  completeness. Grey regions represent unsampled areas, or regions where the number of

451 100x100km cells within a biome was < 15.

452
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