

1 **Closing Gaps But Increasing Bias In North American Butterfly Inventory Completeness**

2 **Authors:** Vaughn Shirey¹, Michael W. Belitz², Vijay Barve², Robert Guralnick²

3 ¹ Department of Biology, Georgetown University; Washington, DC USA

4 ² Florida Museum of Natural History, University of Florida, Gainesville, FL USA

5

6 **Corresponding author:**

7 Vaughn Shirey, vms55@georgetown.edu; ORCID: 0000-0002-3589-9699

8 Box 571229 Reiss Science Bldg., Room 406, 37th and O Streets, NW Washington DC 20057

9

10 **Additional authors:**

11 Michael W. Belitz, ORCID: 0000-0002-8162-5998

12 Vijay Barve, ORCID: 0000-0002-4852-2567

13 Robert Guralnick, ORCID: 0000-0001-6682-1504

14

15 **Statement of authorship:** VS, MWB, VB, and RG developed the initial research idea. VS, MWB,
16 and VB curated the data and VS performed the analysis. VS, MWB, VB, and RG wrote and edited
17 the manuscript together.

18

19 **Funding:** VS was supported by Georgetown University. MWB was supported by a University of
20 Florida Biodiversity Institute Fellowship. VB and RG were supported by the ButterflyNet project
21 (DEB-1541500).

22

23 **Conflicts of Interest**

24 The authors report no conflicts of interest.

25

26 **Acknowledgements**

27 We would like to thank the countless museum staff and community scientists for their tremendous
28 work in digitizing and documenting butterfly records from across the continent. We appreciate
29 Michelle Duong and the Map of Life informatics team for help with Mexican distribution data.
30 Map of Life provides visualizations of range products utilized here.

31

32 **Data Deposition:** Scripts and author generated data are stored both within a Github repository
33 cited in the text as well as a static Zenodo archive. Other, 3rd party datasets are cited throughout
34 the text.

35

36 **Abstract:** Aggregate biodiversity data from museum specimens and community observations have
37 promise for macroscale ecological analyses. Despite this, many groups are under-sampled, and
38 sampling is not homogeneous across space. Here we used butterflies, the best documented group
39 of insects, to examine inventory completeness across North America. We separated digitally
40 accessible butterfly records into those from natural history collections and burgeoning community
41 science observations to determine if these data sources have differential spatio-taxonomic
42 biases. When we combined all data, we found startling under-sampling in regions with the most
43 dramatic trajectories of climate change and across biomes. We also found support for the
44 hypothesis that community science observations are filling more gaps in sampling but are more
45 biased towards areas with the highest human footprint. Finally, we found that both types of
46 occurrences have familial-level taxonomic completeness biases, in contrast to the hypothesis of
47 less taxonomic bias in natural history collections data. These results suggest that higher inventory
48 completeness, driven by rapid growth of community science observations, is partially offset by

49 higher spatio-taxonomic biases. We use the findings here to provide recommendations on how to
50 alleviate some of these gaps in the context of prioritizing global change research.

51

52 **Keywords:** butterflies, sampling bias, sampling completeness, GBIF, north America, global
53 change

54

55

56

57 INTRODUCTION

58 The mobilization of openly and freely available natural history data has increased the
59 ability for researchers to access information about species distribution and abundance in a given
60 time and place. In recent years, these data have been augmented by community science programs
61 which facilitate collection of biodiversity observations and digital vouchers from a network of
62 volunteers. Aggregated data from both natural history collections and community science
63 programs have been used to answer often broad questions in ecology, including assessing
64 extinction risks for understudied groups (Carlson *et al.* 2017, Seppälä *et al.* 2018) and modeling
65 species response to environmental change (Eskildsen *et al.* 2015).

66 Despite the utility of these data, many taxa are still under-sampled (Troudet *et al.* 2017)
67 and prevalent biases in the spatiotemporal distribution of these data are noteworthy (Beck *et al.*
68 2013, Meyer *et al.* 2015). These biases imply that inventory completeness (how many species have
69 been recorded vs. how many are expected to occur) is uneven across time and space. Given the
70 urgency to understand ecological responses to many global change processes, knowing where
71 sampling has and has not occurred to a sufficient degree is critical for both prioritizing effort to
72 close information gaps and choosing extents and scales for macroecological analyses. The
73 enormous growth of community science reporting for some groups promises to rapidly close
74 inventory gaps, but less is known about how specimens from natural history collections and
75 community science data may be differentially spatially biased. Community science volunteers may
76 stay closer to developed areas to sample biodiversity than collectors who may be more attentive to
77 collecting in under-sampled regions. This may lead to larger under-sampling by community
78 scientists in remote regions, including the far North, which is projected to experience the most

79 dramatic effects of climate change. Under-sampling in the Arctic and other sparsely populated
80 regions negatively impacts ability to assess how climate has impacted communities over time.

81 Butterflies (Lepidoptera: Papilionoideae) are a diverse group of organisms that are
82 relatively less sampled compared to vertebrate fauna (Troudet *et al.* 2017) which have been the
83 focus on previous sampling completeness assessments (Meyer *et al.* 2015). Additionally,
84 butterflies have been widely used to detect signals of global change (Parmesan *et al.* 1999,
85 Eskildsen *et al.* 2015). Given the value of butterflies as an indicator group, we aim to test how well
86 sampled North America is for butterflies using natural history collections and community science
87 data, as gaps in openly accessible biodiversity data limit efforts to address ecological, evolutionary,
88 and conservation questions. More specifically, we utilize estimates of distributions from field
89 guides to establish a baseline richness value at multiple, coarse scales usable for presence
90 prediction (Jetz *et al.* 2012). We then compare that value to richness derived from occurrence
91 records from the Global Biodiversity Information Facility (GBIF), iDigBio, and eButterfly.

92 We separated occurrence records into those from natural history collections and from
93 community science-based observations and examined temporal trends in the number of records
94 and completeness for each. We then tested the hypothesis that both types of occurrences were
95 biased to areas where the humans are likely to be most active, but that those biases were
96 particularly severe for community science records. We also examine if there are differences across
97 butterfly families among these record types, presuming that records from natural history
98 collections are less likely to be biased in familial completeness coverage. To provide further
99 context for these results, we ask how biomes and climate regimes are sampled differently in order
100 to provide meaningful information for global change ecologists and other users of these data.

101 Finally, we discuss potential strategies to mitigate under-sampling across the continent in the
102 future.

103

104 **MATERIAL AND METHODS**

105 Occurrence records were obtained from GBIF (GBIF 2020), iDigBio (iDigBio 2020), and
106 eButterfly (Prudic *et al.* 2017) from 1950 through 2019 within North America (Canada, Mexico,
107 United States). Range maps of species found in the United States and Canada were digitized from
108 the *Kaufman Field Guide to Butterflies of North America* (Brock and Kaufman 2006). For species
109 found in Mexico, range maps were digitized from *A Swift Guide to Butterflies of Mexico and*
110 *Central America* (Glassberg 2018) as part of the ButterflyNet project, which are digitally available
111 for visualization on Map of Life (Jetz *et al.* 2012). These maps only include known source
112 population locations, and do not include distributions of strays. All range maps from the sources
113 were merged into a single shapefile consisting of many spatial polygons which were clipped to
114 only terrestrial areas within North America. These range maps were then intersected with
115 continent-wide equal area grids at 100km, 200km, and 400km resolution. A species was
116 considered to occupy a 100km cell if its range passed within 2,000m of the grid centroid and
117 considered to occupy a cell at coarser resolutions if it intersected the grid cell irrespective of
118 distance to the cell centroid. Taxonomic names across the fishnet grids and occurrence data were
119 harmonized to a single taxonomic list using R package taxotools (Barve 2020) and the small
120 minority of names that could not be resolved manually after the process were discarded from the
121 analysis. We analyzed only occurrence records that fell within the boundaries of their species'
122 range map but recorded how many records fell outside of these boundaries over time to assess any
123 potential temporal degradation of range maps.

124 Sampling completeness was calculated as the ratio of species observed in occurrence data
125 within a grid cell to the number of overlapping range maps within that grid cell. In some cases due
126 to range map exclusion along coastlines and because we only included species present in this
127 fishnet if it occurred within 2000m of the grid centroid, this ratio was slightly higher than 1.0 and
128 was thus floored to 1.0. The occurrence dataset was then filtered by the basis of the record, year,
129 and taxonomy attributes to examine how specimen-only (listed as preserved specimen or material
130 sample), community observation-only (listed as human observations from the basisOfRecord field
131 in Darwin Core), time period, and the taxon-rank of family (which are monophyletic, Espeland *et*
132 *al.*, 2018) impacted completeness scores. Machine observations were a small fraction of these data
133 and were not included in the analysis.

134 Overall average completion between specimen and observation data was assessed using a
135 t-test. We then tested average completion differences among families using an ANOVA on the
136 combined, specimen, and community observation datasets, and differences in the number of cells
137 complete at or over 50% using a Chi-square test for families between specimen and observation
138 based datasets. Post-hoc testing was conducted with Bonferroni correction in the case of Chi-
139 square.

140 We also assembled spatial data including velocity of climate under RCP 8.5 forecasts into
141 2085 (AdaptWest 2015); human footprint, representing areas where there are built environments,
142 roads, or converted land (Venter *et al.* 2016); protected regions (Dept. of Forestry and Natural
143 Resources, Clemson University for CEC 2010); and biomes as designated by the World Wildlife
144 Fund (Olson *et al.* 2001). For human footprint and climate velocity, we calculated average values,
145 and for protected areas, the percent coverage of those areas, within each 100km grid cell. For
146 biome type, we determined the majority biome within each 100km grid. We used these resampled

147 values alongside the completion scores to identify drivers of sampling completeness and under-
148 sampled regions described in more detail below.

149 For potential drivers of completeness, we considered human footprint and protected areas
150 to each represent areas where humans may be actively reporting butterfly occurrences, and
151 specified separate linear models for the combined, museum specimen, and community observation
152 datasets as (Sampling Completeness ~ Human Footprint + Protected Region Cell Coverage). We
153 also ran these univariate models using either human footprint or protected areas as predictors.
154 Model selection was then performed using AIC as the selection criterion to determine the top
155 model. We compared model goodness of fit for the best models for natural history versus
156 community science in order to assess the differential impact these factors may have on datasets
157 with potentially different underlying observation strategies.

158 Finally, we examined the sampling completeness within the cells with the most extreme
159 10% and 25% of climate velocities and the sampling completeness across the WWF biomes found
160 in North America. We removed from our analysis biomes in which the number of 100x100km
161 cells was less than 10. This included mangrove forests, tropical grasslands, and flooded
162 grasslands. All data preparation and analysis was performed in R version 3.6.3 “Holding the
163 Windsock” (R Core Team 2020) using the packages tidyverse, sp, sf, raster, data.table, mapdata,
164 maptools, gridExtra, stringr, rgdal, ggforce, exactextractr, and scales (Pebesma *et al.* 2005,
165 Auguie 2017, Brownrigg 2018, Pebesma 2018, Dowle and Srinivasan 2019, Pedersen 2019,
166 Wickham 2019a, Wickham 2019b, Baston 2020, Bivand 2020, Bivand and Lewin-Koh 2020,
167 Hijmans 2020, Wickham and Seidel 2020). The script utilized here is available from a public
168 GitHub repository at [anonymized]. It is also available with our generated datasets via a Zenodo
169 archive at [anonymized].

170

171 **RESULTS**

172 We obtained approximately 2.8 million records from our aggregate iDigBio, GBIF, and
173 eButterfly datasets. Overall, 91.2% of occurrence records fell within range map delineations for
174 their respective species. This has changed little over time with an average annual percentage of
175 88.6% from 1950-2019 and a recent increase within the last decade of sampling to 91.4%. From
176 1950 to 2019, the ratio of cells sampled biyearly at 80% completion by museum specimen data to
177 those by community observations alone decreased dramatically, especially in the last decade of
178 sampling with community based completion becoming more prevalent as the number of
179 community observations increases (Figure 1).

180

181 *Human Footprint and Protected Areas*

182 In all cases, the best performing model according to AIC included human footprint alone
183 without the percentage of protected natural areas (Table 1). For museum records, the variance
184 explained by the model was low ($R^2 = 0.09$) compared to the composite dataset ($R^2=0.25$) and the
185 community science dataset ($R^2=0.29$).

186

187 *Geographic and Taxonomic Sampling Completeness*

188 Sampling completeness was not homogeneous across scales with noticeable geographic
189 gaps in the far north, midwest, and northern Mexico as illustrated in Figure 2. Mean specimen and
190 observation-based completeness was significantly different according to our t-test (-13.27, 2919
191 DF, $p < 0.0001$), with observations having a higher average completion ratio (0.40 +/- 0.007 SE
192 to 0.27 +/- 0.006 SE). Sampling was also inconsistent across families, especially within the

193 Lycaenidae. To illustrate this better, in the composite dataset, differences among completeness
194 across families were significant according to ANOVA ($F_{(4, 7267)}=51.49$, $p < 0.0001$) (Figure 3a) and
195 ANOVA also supported significant differences across families for the specimen based ($F_{(4, 5368)}=86.44$,
196 $p < 0.0001$)(Figure 3b) and observation based ($F_{(4, 6325)}=44.72$, $p < 0.0001$)(Figure 3c)
197 datasets (Post-hoc test results in Supplemental Figure 1). Chi-square tests to assess differences in
198 the number of 100x100km cells completed at 50% or more between specimens and observations
199 revealed there is a significant association with family-level completion and basis of record
200 ($X^2=31.04$, 4 DF, $p < 0.0001$)(Figure 3b,c). Post hoc comparisons (Beasley and Schumacker 1995)
201 revealed that this association was significant for Nymphalidae and Pieridae with observations
202 having more cells at 50% or more complete in these families ($p < 0.01$)(Figure 3d).

203

204 *Sampling in Projected Novel Climate Regimes and Biomes*

205 Of the 80th and 95th percentile 100km resolution grid cells experiencing the most dramatic
206 climate effects on average under RCP 8.5 into 2080, 97.5% and 97.2% fell below the 80%
207 sampling completeness mark respectively, indicating under-sampling in these regions (Figure 4).
208 In addition, sampling across biomes at the 100x100km resolution was inconsistent, with some
209 biomes being sampled on average more completely than others as illustrated in Figure 5. Only the
210 Mediterranean woodland/scrub biome demonstrated over 80% sampling completeness on average
211 with notable under-sampling occurring in deserts, tropical, and boreal/arctic regions. Moderate
212 sampling (between 50% - 80% completeness on average) was demonstrated within most mid-
213 latitude temperate regions.

214

215

216 **DISCUSSION**

217 Sample completeness across North American has accelerated in recent years, driven
218 strongly by the growing number of community observations generated from programs such as
219 iNaturalist (observations cited in our GBIF download), who share research grade observations with
220 GBIF, and eButterfly (Figure 1a). The majority of cells with >80% completeness are now from
221 community science data, which continues to grow exponentially per year (Figure 1b),
222 demonstrating the importance of these data for closing distribution knowledge gaps into the future.
223 A large volume of community science records may be due to the ease of submission. For example,
224 iNaturalist submissions can be completed by simply taking a photograph on a mobile phone.
225 Networks such as eButterfly often appeal more directly to dedicated amateur lepidopterists, and
226 do not require photo vouchers to publish data, which has the potential to allow for more
227 observations of butterfly species that are difficult to photograph. This is in contrast to specimen-
228 based data in which preparation, curation, and digitization are all required steps to publish
229 occurrence data.

230 Despite this influx of community science data, sampling is still inconsistent across space
231 and taxonomy (Figure 2, 3). Regions with low human footprint are frequently under-sampled or
232 not sampled at all, and our simple model validates this finding alongside other studies that have
233 examined the relationship between human population densities and record densities (Girardello *et*
234 *al.* 2019). A key finding is that these biases towards sampling where human infrastructure is the
235 most developed are stronger for community observation data than for specimens (Table 1). Thus,
236 community science observations are not likely to be a full panacea for closing inventory
237 knowledge gaps. While some areas of North America are likely to be inventoried at increasingly
238 finer spatial grain with burgeoning growth of community science data, other areas may remain

239 perniciously under-sampled. This likely continuing butterfly inventory knowledge gap in remote
240 regions is thus both particularly challenging and crucial to overcome since these are exactly the
241 areas forecasted to experience the most climatic change. A particularly good example are polar
242 regions of North America, where climate velocities are often particularly high (Figure 4 shows the
243 80th and 95th percentile of highest velocities) and sampling is woefully incomplete. (Figure 4).
244 As well, even some mid and low-latitude biomes are under-sampled, including deserts and many
245 tropical biomes in which butterfly diversity is extremely high (Willig *et al.* 2003) (Figure 3). We
246 argue that community science alone is unlikely to solve existing gaps in biodiversity monitoring
247 unless those programs are directed into sparsely populated regions through socially responsible
248 excursions or other research campaigns that consult with local stakeholders and Indigenous
249 communities. These directed and collaborative efforts, requiring partnerships and coordination,
250 will help to provide a critical basis for mapping and ultimately monitoring butterfly diversity in
251 order to detect changes in the face of shifting climate regimes.

252 We had anticipated that traits that make some butterflies easier to detect, photograph and
253 identify might be biased across butterfly families, thus leading to familial-level biases in
254 completeness. We expected these issues to be more acute for community scientists, compared to
255 professional collectors, who presumably are collectively more knowledgeable and trained in
256 sampling methods that might reduce bias. We already demonstrated reduced spatial biases for
257 natural history specimen collecting, which might also suggest better sampling of habitats, also
258 potentially reducing taxonomic biases. In the composite dataset, Lycaenidae exhibit lower average
259 completeness with most other groups differing from each other as well (Supp. Figure 1),
260 supporting our hypothesis of taxonomic biases in completeness. However, we did not find
261 evidence that natural history specimen collecting led to less taxonomically biased sampling, at

262 least at the familial level. We did however find that completeness from community science
263 observations was higher compared to natural history specimen records only for nymphalids and
264 pierids and not for other butterfly families. While higher completeness itself is not surprising given
265 the trends we report, we had anticipated either similar trends across groups, or that showy groups
266 such as the swallowtail butterflies (i.e. Papilionidae) were more likely to be biased in favor of
267 community science observations given they are generally colorful, large, and charismatic. Further
268 exploration using species-level trait data to tease apart these patterns is warranted. In particular,
269 it may be that species-level rarity may be particularly important, especially if phylogenetically
270 conserved. Other traits that may be worth examining include habitat and flight preferences (canopy
271 vs. understory fliers) that directly relate to ease of human observation.

272 Our study expands upon prior work done on butterfly inventory completeness (Girardello
273 *et al.* 2019) by including an independent baseline richness via digitized maps at coarse resolution
274 and by examining the contributions of specimens and community observations. In addition, with
275 a narrower focus on just North America and by including an assessment of sampling completeness
276 in regions with high climate velocity and across biomes, we can better assess which areas are in
277 need of targeted sampling in the future. Specifically, and in contrast to previous work (Girardello
278 *et al.* 2019), we found a severe lack of sampling in the most northern regions of North America.
279 This urgency to sample the north is further supported by the stark reality that these regions are also
280 experiencing the most drastic impacts of climate change (Manabe and Stouffer 1980, Gauthier *et*
281 *al.* 2015). Overall, several key regions should be prioritized for sampling including: (a) tundra and
282 boreal forest, (b) tropical forests, and (c) deserts. Given the relatively low human population
283 densities of these regions, funding directed towards establishing community science initiatives,
284 and partnerships among organizations with interests in butterfly monitoring, will likely be critical

285 alongside complementing these initiatives with specimen collection and focal digitization of
286 records in these regions.

287

288 **Conclusions**

289 Butterfly inventory completeness is not uniform across North America. Our research has
290 revealed continuing under-sampling in regions that are facing threats from climate change as
291 well as within specific biomes across the continent. Additionally, family level differences in
292 sampling completeness may be driven by species traits and abundance, leading to disparities in
293 completeness across taxa. In order to mitigate some of these issues, attention should be drawn
294 towards establishing community partnerships of both opportunistic and structured survey
295 systems in under-sampled regions. It is clear that community science provides a strong
296 mechanism for alleviating sampling shortfalls and has potential to provide finer-grained views of
297 butterfly communities, but only if such initiatives are also directed farther from regions with the
298 densest human populations and travel infrastructure. Furthermore, additional curation and
299 digitization of museum specimens will be critical in developing a historical backbone for
300 analyses across time and space. Millions of specimens still remain undigitized in arthropod
301 natural history collections (Cobb *et al.* 2019), and the continuation of funding for museum staff
302 and biodiversity informatics infrastructure will be critical in mobilizing these data needed for
303 ecological research, especially potential for some kinds of temporal trend analyses (Soroye *et al.*
304 2020) . Supporting digitization in tandem with concerted efforts to direct community science
305 initiatives towards under-sampled regions will move us towards unlocking the full potential of
306 these opportunistic data in an era of global change.

307

308 **References**

309 AdaptWest Project. 2015. Gridded climate velocity data for North America at 1km resolution.

310 Available at adaptwest.databasin.org.

311 Auguie, B. 2017. GridExtra: Miscellaneous functions for “grid” graphics. R package version 2.3.

312 <https://CRAN.R-project.org/package=gridExtra>.

313 Barve, V. 2020. Taxotools: Tools to handle taxonomic lists. R package version 0.0.43.

314 <http://doi.org/10.5281/zenodo.3934939>.

315 Baston, D. 2020. Exactextractr: Fast extraction from raster datasets using polygons. R package

316 version 0.3.0. <https://CRAN.R-project.org/package=exactextractr>.

317 Beasley, T.M., Schumacher, R.E. 1995. Multiple regression approach to analyzing contingency

318 tables: Post hoc and planned comparison procedures. - The Journal of Experimental

319 Education 64: 79-93.

320 Beck, J., Ballesteros-Mejia, L., Nagel, P., Kitching, I.J. 2013. Online solutions and the Wallacean

321 shortfall: What does GBIF contribute to our knowledge of species’ ranges?. - Diversity and

322 Distributions 19: 1043-1050.

323 Bivand, R., Keitt, T., Rowlingson, B. 2020. Rgdal: Bindings for ‘geospatial’ data abstraction

324 library. R package version 1.5-10. <https://CRAN.R-project.org/package=rgdal>.

325 Bivand, R., Lewin-Koh, N. 2020. Maptools: Tools for handling spatial objects. R package version

326 1.0-1. <https://CRAN.R-project.org/package=maptools>.

327 Brock, J.P., Kaufman, K. 2006. Kaufman field guide to butterflies of North America. - Houghton
328 Mifflin Harcourt.

329 Brownrigg, R. 2018. Mapdata: Extra map databases. R package version 2.3.0. <https://CRAN.R-project.org/package=mapdata>

331 Carlson, C.J., Burgio, K.R., Dougherty, E.R., Phillips, A.J., Bueno, V.M., Clements, C.F.,
332 Castaldo, G., Dallas, T.A., Cizauskas, C.A., Cumming, G.S., Doña, J. 2017. Parasite
333 biodiversity faces extinction and redistribution in a changing climate. - Science Advances
334 3: e1602422.

335 Cobb, N.S., Gall, L.F., Zaspel, J.M., Dowdy, N.J., McCabe, L.M., Kawahara, A.Y. 2019.
336 ASsessment of North American arthropod collections: Prospects and challenges for
337 addressing biodiversity research. PeerJ 7:e8086.

338 Dept. of Forestry and Natural Resources, Clemson University for the Commission for
339 Environmental Cooperation. 2010. Terrestrial protected areas of North America, 2010.
340 <http://www.cec.org/naatlas>.

341 Dowle, M., Srinivasan, A. 2019. Data.table: Extension of ‘data.frame’ R package version 1.12.8.
342 <https://CRAN.R-project.org/package=data.table>.

343 Eskildsen, A., Carvalheiro, L.G., Kissling, W.D., Biesmeijer, J.C., Schweiger, O., Høye, T.T.
344 2015. Ecological specialization matters: long-term trends in butterfly species richness and
345 assemblage composition depend on multiple functional traits. - Diversity and Distributions
346 21: 792-802.

347 Espeland, M., Breinholt, J., Willmott, K.R., Warren, A.D., Vila R., Toussaint, E.F., Maunsell,
348 S.C., Aduse-Poku, K., Talavera, G., Eastwood, R., Jarzyna, M.A. 2018. A comprehensive
349 and dated phylogenomic analysis of butterflies. - *Current Biology* 28(5): 770-778.

350 Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A.Z., Schepaschenko, D.G. 2015. Boreal
351 forest health and global change. - *Science* 349: 819-822.

352 GBIF.org (05 June 2020) GBIF Occurrence Download <https://doi.org/10.15468/dl.8v7jwf>

353 Girardello, M., Chapman, A., Dennis, R., Kaila, L., Borges, P.A.V., Santangeli, A. 2019. Gaps in
354 butterfly inventory data: A global analysis. - *Biological Conservation* 236: 289-295.

355 Glassberg, J. 2018. A swift guide to butterflies of Mexico and Central America. - Princeton
356 University Press.

357 Hijmans, R.J. 2020. Raster: Geographic data analysis and modeling. R package version 3.1-5.
358 <https://CRAN.R-project.org/package=raster>.

359 iDigBio (02 April 2020) iDigBio Occurrence Download (records citation file in supplemental
360 materials).

361 Jetz, W., McPherson, J.M., Guralnick, R.P. 2012. Integrating biodiversity distribution knowledge:
362 Toward a global map of life. - *Trends in Ecology and Evolution* 27: 151-159.

363 Manabe, S., Stouffer, R.J. 1980. Sensitivity of a global climate model to an increase of CO₂
364 concentration in the atmosphere. - *Journal of Geophysical Research: Oceans* 85: 5529-
365 5554.

366 Meyer, C., Kreft, H., Guralnick, R., Jetz, W. 2015. Global priorities for an effective information
367 basis of biodiversity distributions. - *Nature Communications* 6: 1-8.

368 Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V., Underwood,
369 E.C., D'amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J. 2001. Terrestrial
370 ecoregions of the world: A new map of life on Earth: A new global map of terrestrial
371 ecoregions provides an innovative tool for conserving biodiversity. - *Bioscience* 51: 933-
372 938.

373 Pedersen, T.L. 2019. Ggforce: Accelerating ‘ggplot2.’ R package version 0.3.1. <https://CRAN.R-project.org/package=ggforce>.

375 Parmesan, C., Ryhrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B.,
376 Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., 1999. Poleward shifts in geographical
377 ranges of butterfly species associated with regional warming. - *Nature* 399: 579-583.

378 Pebesma, E.J.. Bivand, R.S. 2005. Classes and methods for spatial data in R. *R News* 5 (2).
379 <https://cran.r-project.org/doc/Rnews/>.

380 Pebesma, E., et al. 2018. Simple Features for R: Standardized Support for Spatial Vector Data.
381 The R Journal 10 (1), 439-446, <https://doi.org/10.32614/RJ-2018-009>

382 Prudic, K.L., McFarland, K.P., Oliver, J.C., Hutchinson, R.A., Long, E.C., Kerr, J.T., Larrivée, M.
383 2017. eButterfly: Leveraging massive online citizen science for butterfly conservation.
384 *Insects* 8: 53.

385 R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for
386 Statistical Computing, Vienna, Austria.

387 Seppälä, S., Henriques, S., Draney, M.L., Foord, S., Gibbons, A.T., Gomez, L.A., Kariko, S.,
388 Malumbres-Olarte, J., Milne, M., Vink, C.J., Cardoso, P. 2018. Species conservation
389 profiles of a random sample of world spiders I: Agelenidae to Filistatidae. - Biodiversity
390 Data Journal 6.

391 Soroye, P., Newbold, T., Kerr, J. 2020. Climate change contributes to widespread declines among
392 bumble bees across continents. – Science 367(6478): 685-688.

393 Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., Legendre, F. 2017. Taxonomic bias in
394 biodiversity data and societal preferences. - Scientific Reports 7.

395 Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., Possingham, H.P.,
396 Laurance, W.F., Wood, P., Fekete, B.M., Levy, M.A. 2016. Global terrestrial human
397 footprint maps for 1993 and 2009. - Scientific Data 3: 1-10.

398 Wickham, H., et al. 2019. Welcome to the tidyverse. Journal of Open Source Software, 4(43),
399 1686, <https://doi.org/10.21105/joss.01686>.

400 Wickham, H. 2019. Stringr: Simple, consistent wrappers for common string operations. R package
401 version 1.4.0. <https://CRAN.R-project.org/package=stringr>.

402 Wickham, H., Seidel, H. 2020. Scales: Scale functions for visualization. R package version 1.1.1.
403 <https://CRAN.R-project.org/package=scales>.

404 Willig, M.R., Kaufman, D.M., Stevens, R.D. 2003. Latitudinal gradients of biodiversity: Pattern,
405 process, scale, and synthesis. - Annual Review of Ecology, Evolution, and Systematics 34:
406 273-309.
407

408

409 **Tables**

410 Table 1. Coefficient estimates of each multiple regression model for the full record set, specimen-
411 only record set, and community observation recordset. Delta-AIC values indicate the difference
412 between the multiple regression and simple regression model which included only human footprint
413 as a predictor variable. In all cases, models excluding protected area percentage outperformed the
414 simple regression according to AIC.

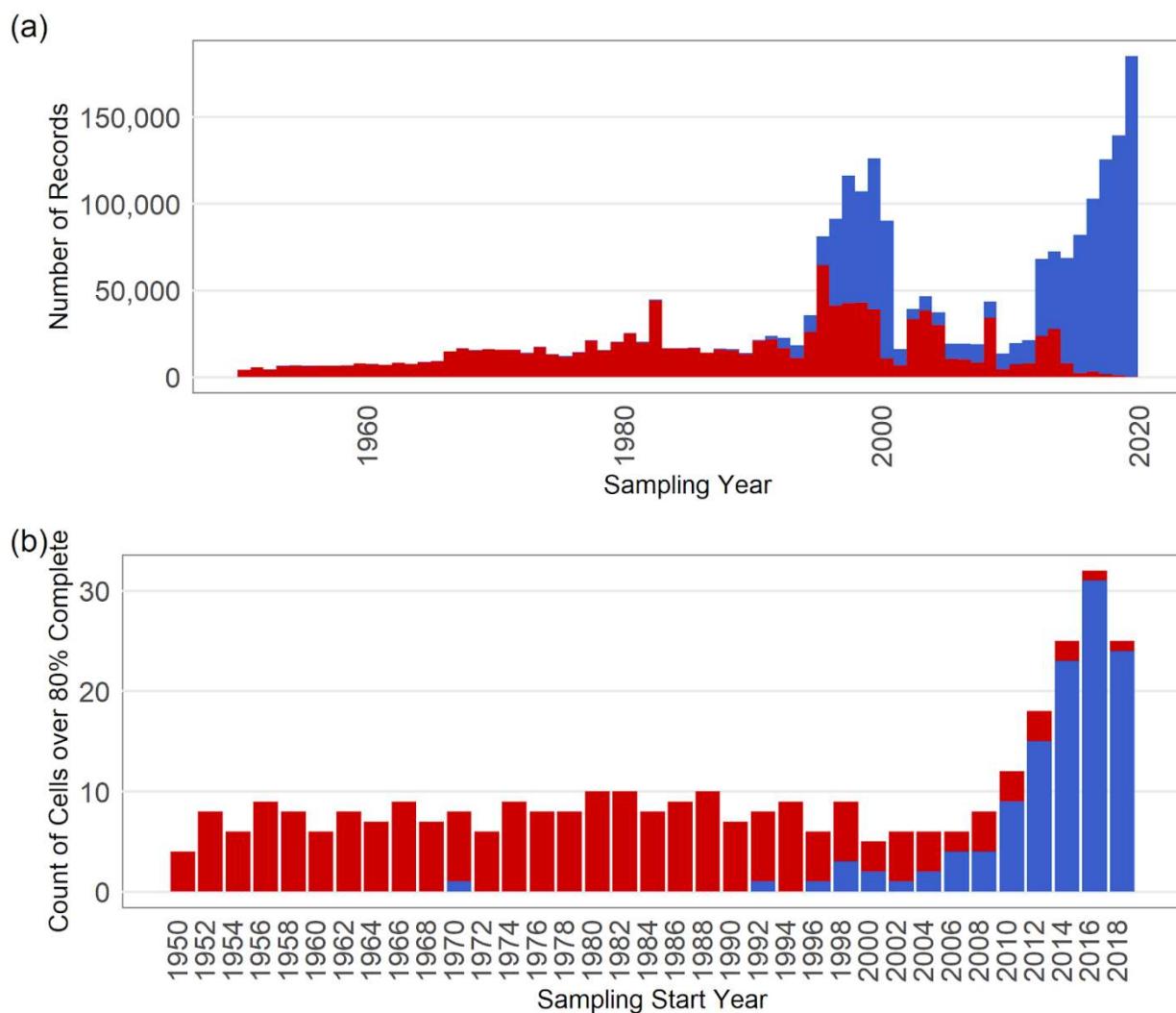
415

	<i>estimate</i>	<i>se</i>	<i>t</i>	<i>p-value</i>	<i>R²</i>	<i>delta-AIC</i>
<u>All Records</u>					0.25	1327.03
Intercept	0.354	0.0083	42.63	< 0.0001		
Human Footprint	0.027	0.0011	23.92	< 0.0001		
<u>Specimens</u>					0.09	1160.43
Intercept	0.194	0.0089	21.57	< 0.0001		
Human Footprint	0.014	0.0012	12.14	< 0.0001		
<u>Observations</u>					0.29	1144.99
Intercept	0.238	0.0088	26.96	< 0.0001		
Human Footprint	0.028	0.0011	24.79	< 0.0001		

416

417

418 **Figures**



419

420 Figure 1. (a) The number of museum specimens and community observation-based occurrence
421 records over time, stacked by year. (b) Number of cells at 100km resolution that are over 80%
422 complete and that meet that threshold by museum or community observation data alone
423 biyearly. Red = museum specimens; Blue = community observations.

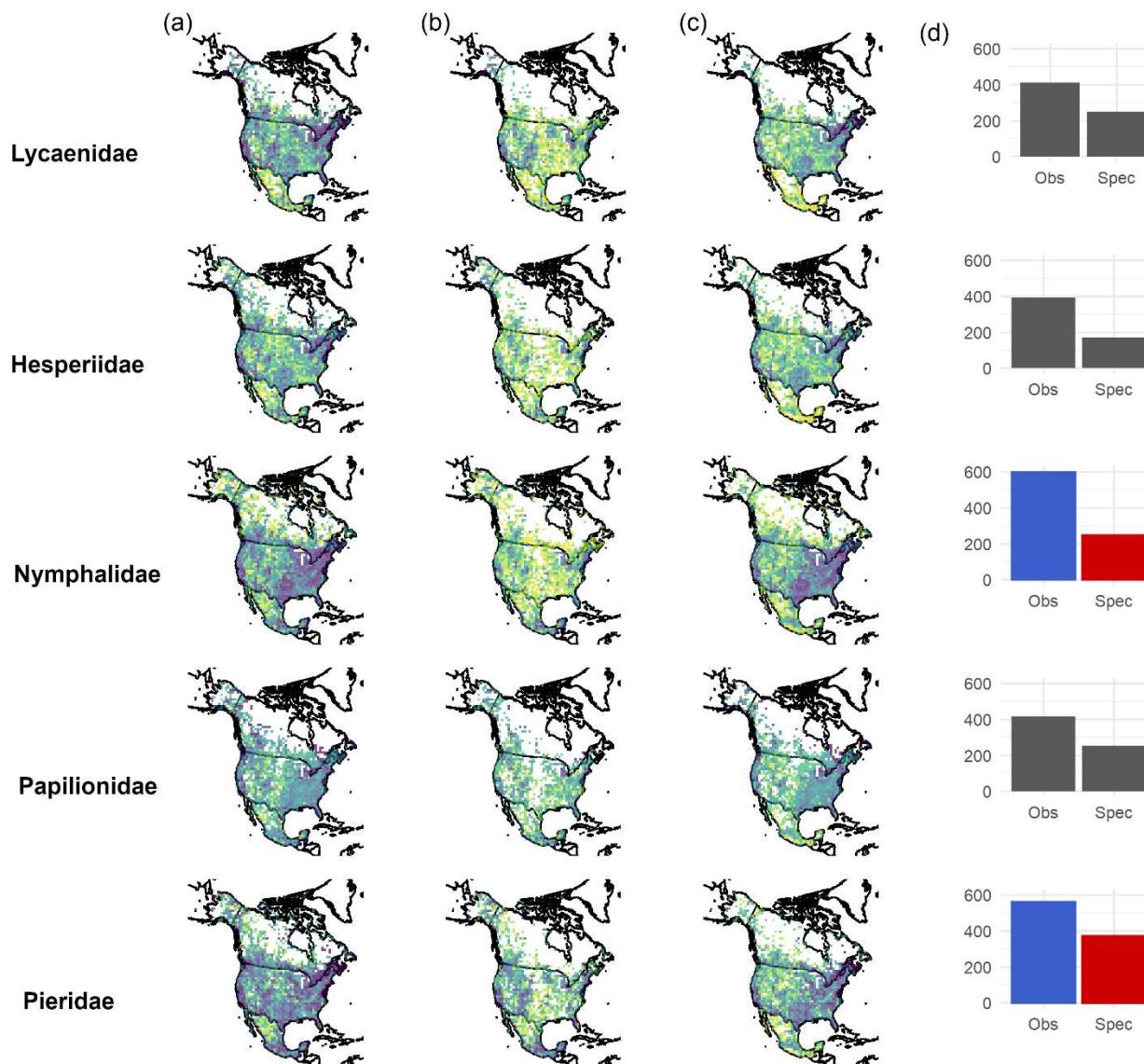
424



425

426 Figure 2. Sampling completeness within cells of varying spatial resolution (100km, 200km,
427 400km) across North America from 1950-2019 based on record source (a) all records, (b)
428 specimens, and (c) community observations.

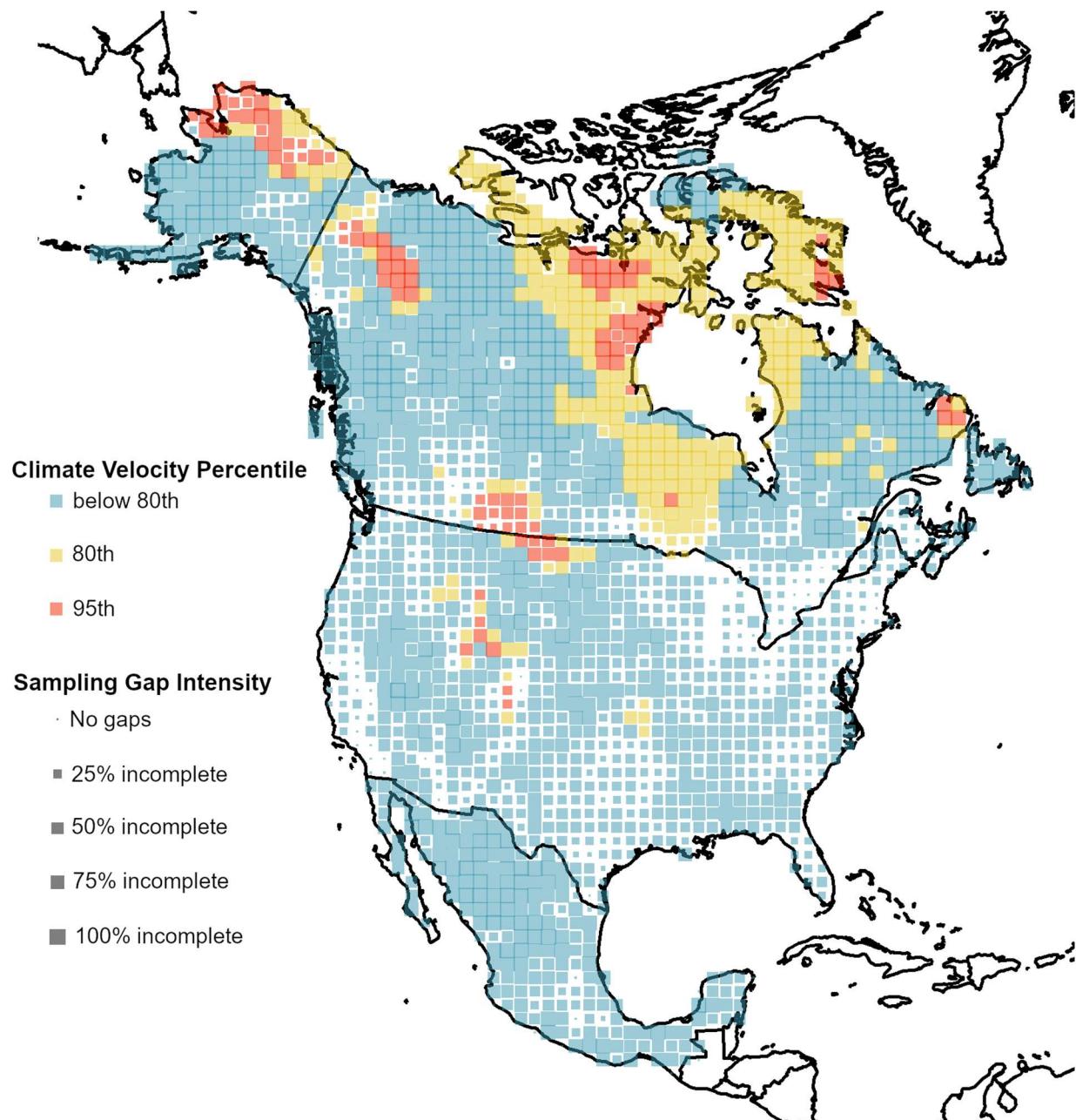
429



430

431 Figure 3. Sampling completeness among butterfly families at 100x100km resolution across
432 North America from 1950-2019 by family and by record source (a) all records, (b) specimens,
433 and (c) community observations. Panel (d) illustrates the number of cells over 50% complete in
434 each family, colored plots indicate a significant contribution to the chi-square statistic after
435 Bonferroni corrected post-hoc tests.

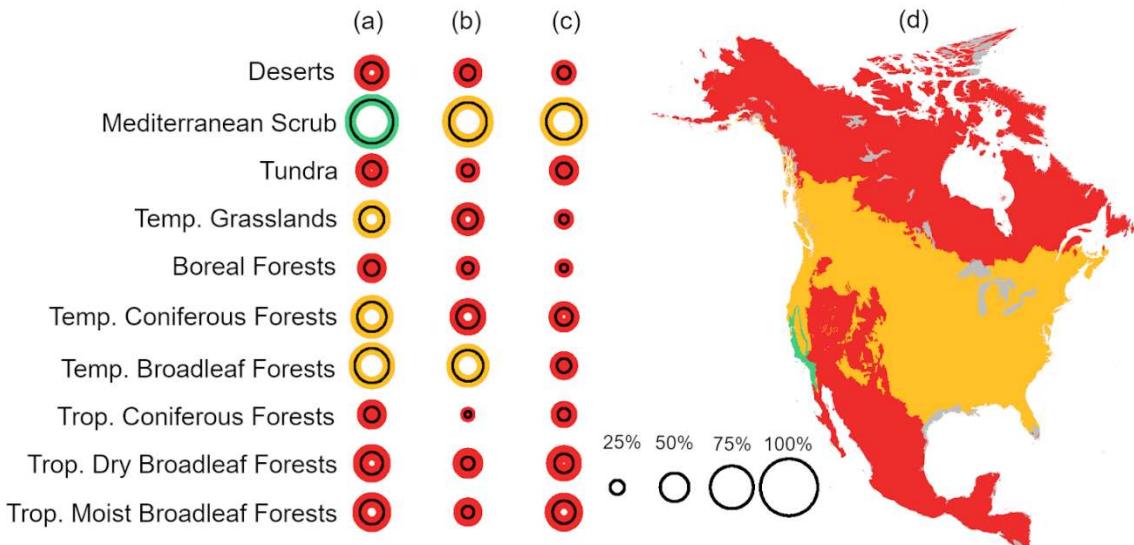
436



437

438 Figure 4. Sampling completeness of 100x100km grid cells by climate velocity percentile. Size of
439 the point within the cell indicates sampling incompleteness (larger cells are less sampled).
440 Yellow and red cells are the 80th and 95th percentile of climate velocities respectively. Blue
441 cells fall underneath the 80th percentile for climate velocity. Climate velocity rasters do not
442 extend into northern Nunavut.

443

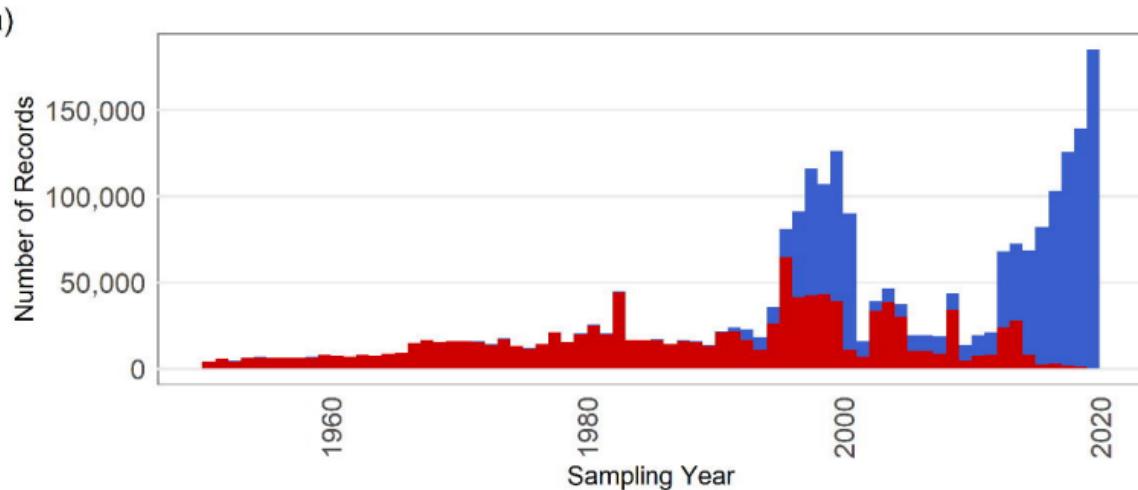


444

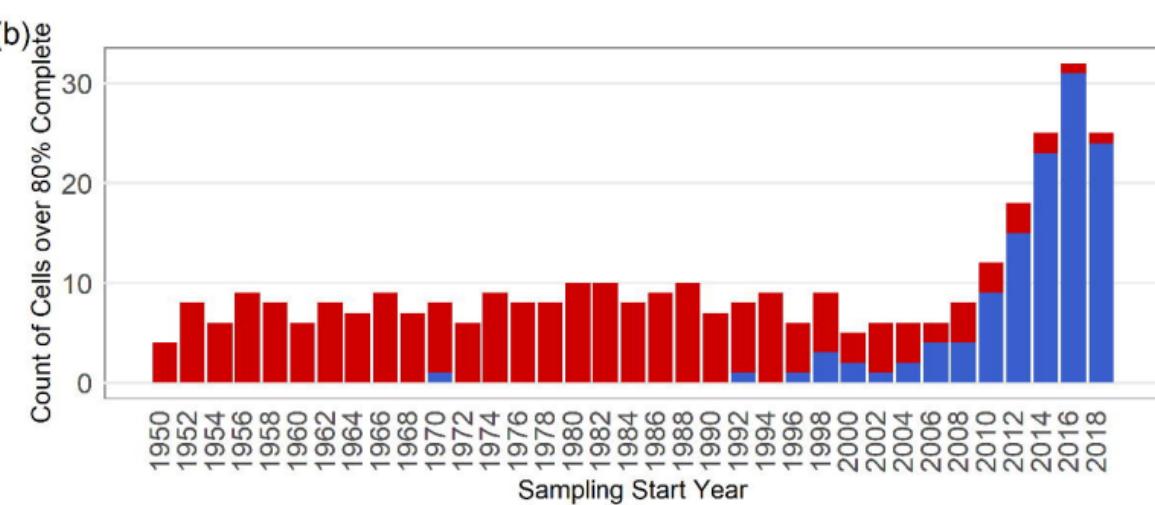
445 Figure 5. Mean +/- SD sampling completeness across WWF biomes, (a) composite dataset, (b)
446 community observations only, and (c) museum specimens only. Panel (d) displays the biomes
447 utilized without delineation for clarity and includes coloration based on average composite
448 sampling completeness. Red = sampling below 50% average completeness, Yellow = sampling
449 average between 50% and 80% completeness, Green = sampling average at or above 80%
450 completeness. Grey regions represent unsampled areas, or regions where the number of
451 100x100km cells within a biome was < 15.

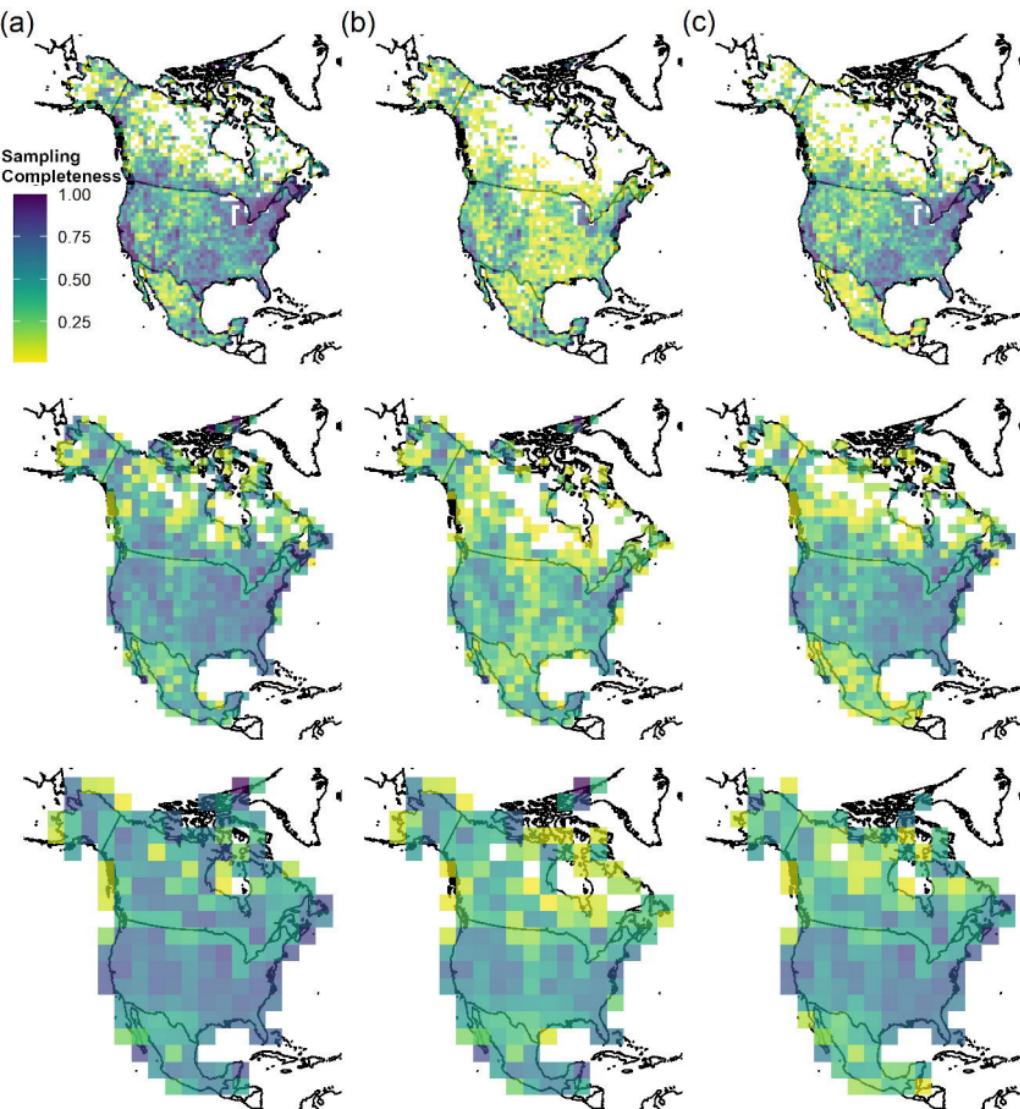
452

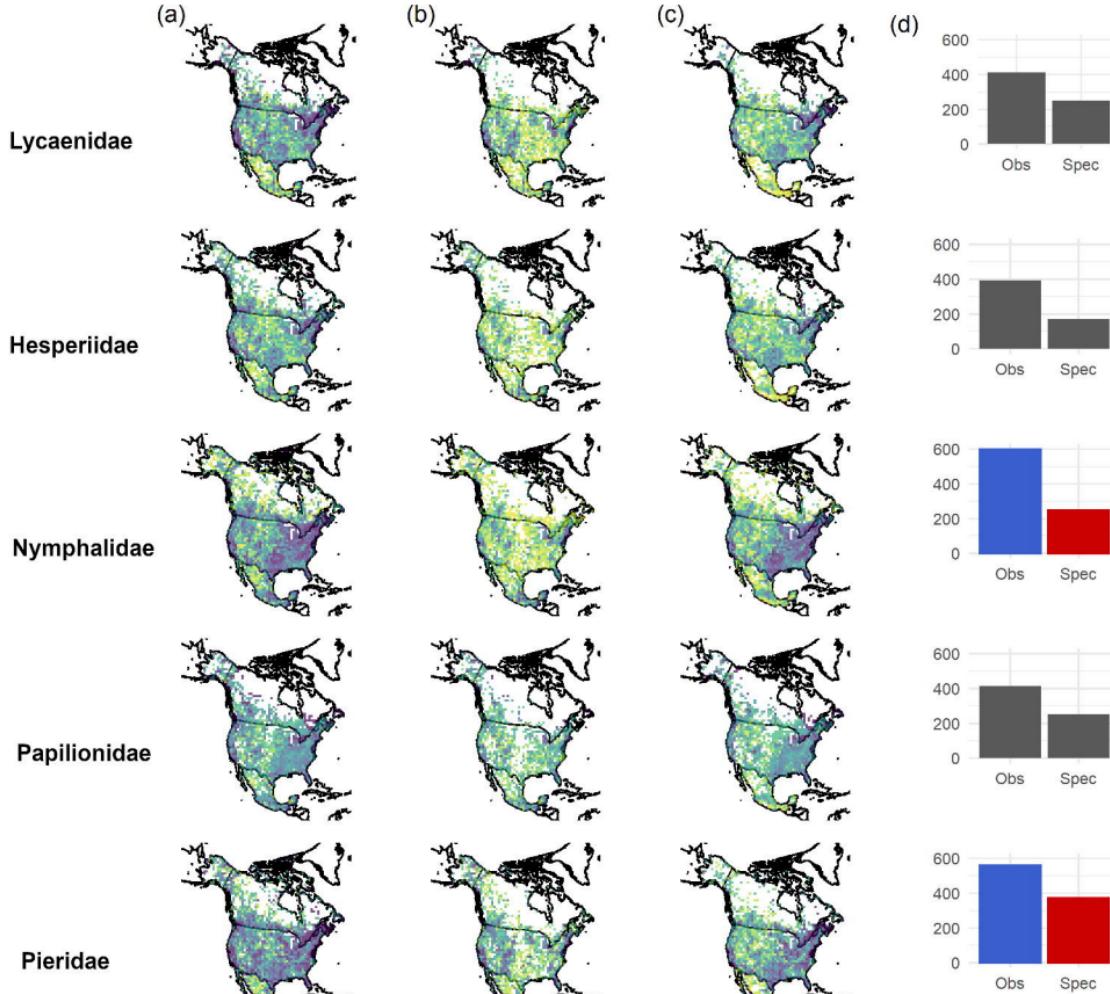
(a)

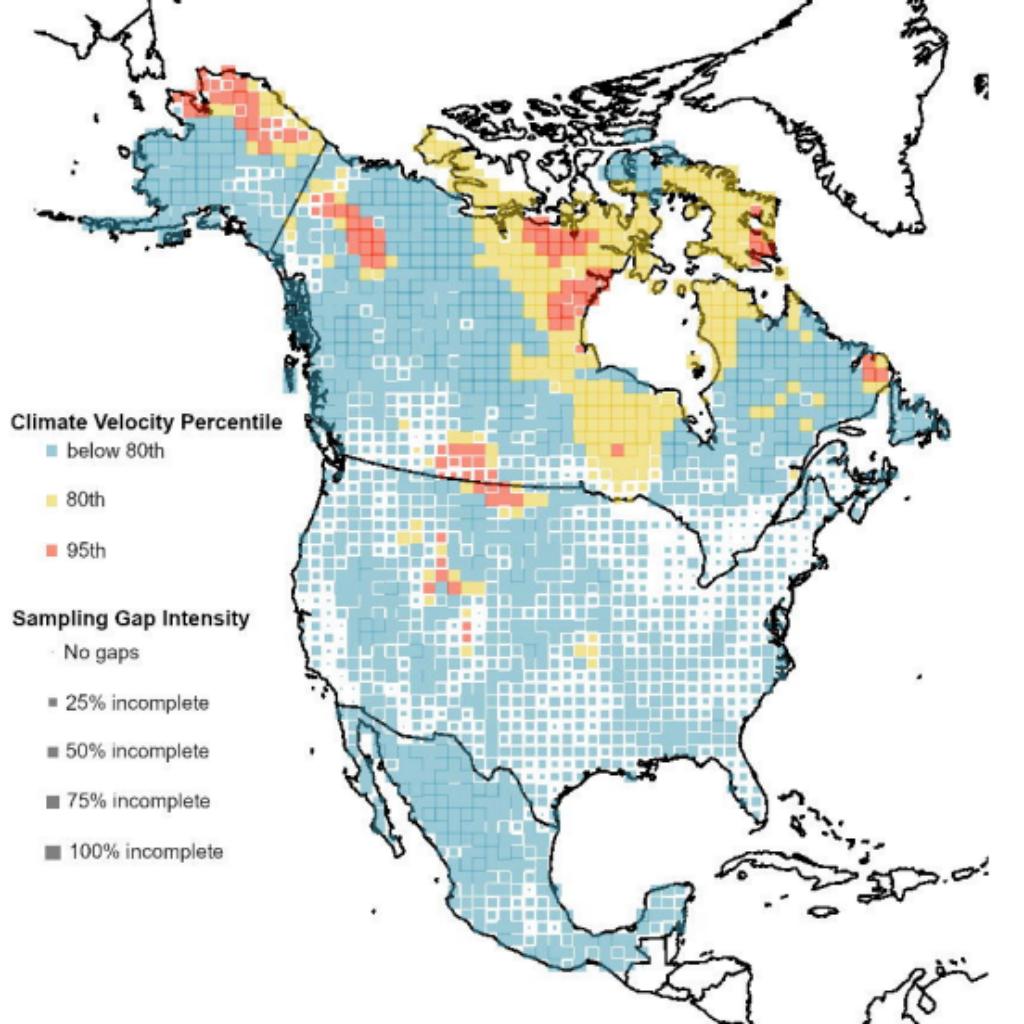


(b)









Climate Velocity Percentile

■ below 80th

■ 80th

■ 95th

Sampling Gap Intensity

· No gaps

■ 25% incomplete

■ 50% incomplete

■ 75% incomplete

■ 100% incomplete

