
1 
 

Closing Gaps But Increasing Bias In North American Butterfly Inventory Completeness 1 

Authors: Vaughn Shirey1, Michael W. Belitz2, Vijay Barve2, Robert Guralnick2 2 

1 Department of Biology, Georgetown University; Washington, DC USA 3 

2 Florida Museum of Natural History, University of Florida, Gainesville, FL USA 4 

 5 
Corresponding author:  6 

Vaughn Shirey, vms55@georgetown.edu; ORCID: 0000-0002-3589-9699 7 

Box 571229 Reiss Science Bldg., Room 406, 37th and O Streets, NW Washington DC 20057 8 

 9 
Additional authors: 10 

Michael W. Belitz, ORCID: 0000-0002-8162-5998 11 

Vijay Barve, ORCID: 0000-0002-4852-2567 12 

Robert Guralnick, ORCID: 0000-0001-6682-1504 13 

 14 
Statement of authorship: VS, MWB, VB, and RG developed the initial research idea. VS, MWB, 15 

and VB curated the data and VS performed the analysis. VS, MWB, VB, and RG wrote and edited 16 

the manuscript together.  17 

 18 

Funding: VS was supported by Georgetown University.  MWB was supported by a University of 19 

Florida Biodiversity Institute Fellowship.  VB and RG were supported by the ButterflyNet project 20 

(DEB-1541500). 21 

 22 

Conflicts of Interest 23 

The authors report no conflicts of interest. 24 

 25 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.20.212381doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.20.212381
http://creativecommons.org/licenses/by/4.0/


2 
 

Acknowledgements 26 

We would like to thank the countless museum staff and community scientists for their tremendous 27 

work in digitizing and documenting butterfly records from across the continent.  We appreciate 28 

Michelle Duong and the Map of Life informatics team for help with Mexican distribution data.  29 

Map of Life provides visualizations of range products utilized here.  30 

 31 

Data Deposition: Scripts and author generated data are stored both within a Github repository 32 

cited in the text as well as a static Zenodo archive. Other, 3rd party datasets are cited throughout 33 

the text. 34 

 35 

Abstract: Aggregate biodiversity data from museum specimens and community observations have 36 

promise for macroscale ecological analyses. Despite this, many groups are under-sampled, and 37 

sampling is not homogeneous across space. Here we used butterflies, the best documented group 38 

of insects, to examine inventory completeness across North America. We separated digitally 39 

accessible butterfly records into those from natural history collections and burgeoning community 40 

science observations to determine if these data sources have differential spatio-taxonomic 41 

biases.  When we combined all data, we found startling under-sampling in regions with the most 42 

dramatic trajectories of climate change and across biomes.  We also found support for the 43 

hypothesis that community science observations are filling more gaps in sampling but are more 44 

biased towards areas with the highest human footprint.  Finally, we found that both types of 45 

occurrences have familial-level taxonomic completeness biases, in contrast to the hypothesis of 46 

less taxonomic bias in natural history collections data. These results suggest that higher inventory 47 

completeness, driven by rapid growth of community science observations, is partially offset by 48 
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higher spatio-taxonomic biases. We use the findings here to provide recommendations on how to 49 

alleviate some of these gaps in the context of prioritizing global change research. 50 

 51 

Keywords: butterflies, sampling bias, sampling completeness, GBIF, north America, global 52 

change 53 

 54 

 55 
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INTRODUCTION 57 

The mobilization of openly and freely available natural history data has increased the 58 

ability for researchers to access information about species distribution and abundance in a given 59 

time and place. In recent years, these data have been augmented by community science programs 60 

which facilitate collection of biodiversity observations and digital vouchers from a network of 61 

volunteers. Aggregated data from both natural history collections and community science 62 

programs have been used to answer often broad questions in ecology, including assessing 63 

extinction risks for understudied groups (Carlson et al. 2017, Seppälä et al. 2018) and modeling 64 

species response to environmental change (Eskildsen et al. 2015).  65 

Despite the utility of these data, many taxa are still under-sampled (Troudet et al. 2017) 66 

and prevalent biases in the spatiotemporal distribution of these data are noteworthy (Beck et al. 67 

2013, Meyer et al. 2015). These biases imply that inventory completeness (how many species have 68 

been recorded vs. how many are expected to occur) is uneven across time and space. Given the 69 

urgency to understand ecological responses to many global change processes, knowing where 70 

sampling has and has not occurred to a sufficient degree is critical for both prioritizing effort to 71 

close information gaps and choosing extents and scales for macroecological analyses. The 72 

enormous growth of community science reporting for some groups promises to rapidly close 73 

inventory gaps, but less is known about how specimens from natural history collections and 74 

community science data may be differentially spatially biased. Community science volunteers may 75 

stay closer to developed areas to sample biodiversity than collectors who may be more attentive to 76 

collecting in under-sampled regions. This may lead to larger under-sampling by community 77 

scientists in remote regions, including the far North, which is projected to experience the most 78 
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dramatic effects of climate change. Under-sampling in the Arctic and other sparsely populated 79 

regions negatively impacts ability to assess how climate has impacted communities over time. 80 

Butterflies (Lepidoptera: Papilionoideae) are a diverse group of organisms that are 81 

relatively less sampled compared to vertebrate fauna (Troudet et al. 2017) which have been the 82 

focus on previous sampling completeness assessments (Meyer et al. 2015). Additionally, 83 

butterflies have been widely used to detect signals of global change (Parmesan et al. 1999, 84 

Eskildsen et al. 2015). Given the value of butterflies as an indicator group, we aim to test how well 85 

sampled North America is for butterflies using  natural history collections and community science 86 

data, as gaps in openly accessible biodiversity data limit efforts to address ecological, evolutionary, 87 

and conservation questions. More specifically, we utilize estimates of distributions from field 88 

guides to establish a baseline richness value at multiple, coarse scales usable for presence 89 

prediction (Jetz et al. 2012). We then compare that value to richness derived from occurrence 90 

records from the Global Biodiversity Information Facility (GBIF), iDigBio, and eButterfly.   91 

We separated occurrence records into those from natural history collections and from 92 

community science-based observations and examined temporal trends in the number of records 93 

and completeness for each. We then tested the hypothesis that both types of occurrences were 94 

biased to areas where the humans are likely to be most active, but that those biases were 95 

particularly severe for community science records. We also examine if there are differences across 96 

butterfly families among these record types, presuming that records from natural history 97 

collections are less likely to be biased in familial completeness coverage.  To provide further 98 

context for these results, we ask how biomes and climate regimes are sampled differently in order 99 

to provide meaningful information for global change ecologists and other users of these data. 100 
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Finally, we discuss potential strategies to mitigate under-sampling across the continent in the 101 

future. 102 

 103 

MATERIAL AND METHODS 104 

 Occurrence records were obtained from GBIF (GBIF 2020), iDigBio (iDigBio 2020), and 105 

eButterfly (Prudic et al. 2017) from 1950 through 2019 within North America (Canada, Mexico, 106 

United States). Range maps of species found in the United States and Canada were digitized from 107 

the Kaufman Field Guide to Butterflies of North America (Brock and Kaufman 2006). For species 108 

found in Mexico, range maps were digitized from A Swift Guide to Butterflies of Mexico and 109 

Central America (Glassberg 2018) as part of the ButterflyNet project, which are digitally available 110 

for visualization on Map of Life (Jetz et al. 2012).  These maps only include known source 111 

population locations, and do not include distributions of strays.  All range maps from the sources 112 

were merged into a single shapefile consisting of many spatial polygons which were clipped to 113 

only terrestrial areas within North America. These range maps were then intersected with 114 

continent-wide equal area grids at 100km, 200km, and 400km resolution. A species was 115 

considered to occupy a 100km cell if its range passed within 2,000m of the grid centroid and 116 

considered to occupy a cell at coarser resolutions if it intersected the grid cell irrespective of 117 

distance to the cell centroid. Taxonomic names across the fishnet grids and occurrence data were 118 

harmonized to a single taxonomic list using R package taxotools (Barve 2020) and the small 119 

minority of names that could not be resolved manually after the process were discarded from the 120 

analysis. We analyzed only occurrence records that fell within the boundaries of their species’ 121 

range map but recorded how many records fell outside of these boundaries over time to assess any 122 

potential temporal degradation of range maps. 123 
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Sampling completeness was calculated as the ratio of species observed in occurrence data 124 

within a grid cell to the number of overlapping range maps within that grid cell. In some cases due 125 

to range map exclusion along coastlines and because we only included species present in this 126 

fishnet if it occurred within 2000m of the grid centroid, this ratio was slightly higher than 1.0 and 127 

was thus floored to 1.0. The occurrence dataset was then filtered by the basis of the record, year, 128 

and taxonomy attributes to examine how specimen-only (listed as preserved specimen or material 129 

sample), community observation-only (listed as human observations from the basisOfRecord field 130 

in Darwin Core), time period, and the taxon-rank of family (which are monophyletic, Espeland et 131 

al., 2018) impacted completeness scores. Machine observations were a small fraction of these data 132 

and were not included in the analysis. 133 

Overall average completion between specimen and observation data was assessed using a 134 

t-test. We then tested average completion differences among families using an ANOVA on the 135 

combined, specimen, and community observation datasets, and differences in the number of cells 136 

complete at or over 50% using a Chi-square test for families between specimen and observation 137 

based datasets. Post-hoc testing was conducted with Bonferroni correction in the case of Chi-138 

square. 139 

 We also assembled spatial data including velocity of climate under RCP 8.5 forecasts into 140 

2085 (AdaptWest 2015); human footprint, representing areas where there are built environments, 141 

roads, or converted land (Venter et al. 2016); protected regions (Dept. of Forestry and Natural 142 

Resources, Clemson University for CEC 2010); and biomes as designated by the World Wildlife 143 

Fund (Olson et al. 2001). For human footprint and climate velocity, we calculated average values, 144 

and for protected areas, the percent coverage of those areas, within each 100km grid cell.  For 145 

biome type, we determined the majority biome within each 100km grid.  We used these resampled 146 
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values alongside the completion scores to identify drivers of sampling completeness and under-147 

sampled regions described in more detail below.  148 

For potential drivers of completeness, we considered human footprint and protected areas 149 

to each represent areas where humans may be actively reporting butterfly occurrences, and 150 

specified separate linear models for the combined, museum specimen, and community observation 151 

datasets as (Sampling Completeness ~ Human Footprint + Protected Region Cell Coverage).  We 152 

also ran these univariate models using either human footprint or protected areas as predictors. 153 

Model selection was then performed using AIC as the selection criterion to determine the top 154 

model. We compared model goodness of fit for the best models for natural history versus 155 

community science in order to assess the differential impact these factors may have on datasets 156 

with potentially different underlying observation strategies.  157 

Finally, we examined the sampling completeness within the cells with the most extreme 158 

10% and 25% of climate velocities and the sampling completeness across the WWF biomes found 159 

in North America. We removed from our analysis biomes in which the number of 100x100km 160 

cells was less than 10. This included mangrove forests, tropical grasslands, and flooded 161 

grasslands.  All data preparation and analysis was performed in R version 3.6.3 “Holding the 162 

Windsock” (R Core Team 2020) using the packages tidyverse, sp, sf, raster, data.table, mapdata, 163 

maptools, gridExtra, stringr, rgdal,  ggforce,  exactextractr, and scales (Pebesma et al. 2005, 164 

Auguie 2017, Brownrigg 2018, Pebesma 2018, Dowle and Srinivasan 2019, Pedersen 2019, 165 

Wickham 2019a, Wickham 2019b,  Baston 2020, Bivand 2020, Bivand and Lewin-Koh 2020, 166 

Hijmans 2020, Wickham and Seidel 2020). The script utilized here is available from a public 167 

GitHub repository at [anonymized]. It is also available with our generated datasets via a Zenodo 168 

archive at [anonymized].  169 
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 170 

RESULTS 171 

 We obtained approximately 2.8 million records from our aggregate iDigBio, GBIF, and 172 

eButterfly datasets. Overall, 91.2% of occurrence records fell within range map delineations for 173 

their respective species. This has changed little over time with an average annual percentage of 174 

88.6% from 1950-2019 and a recent increase within the last decade of sampling to 91.4%. From 175 

1950 to 2019, the ratio of cells sampled biyearly at 80% completion by museum specimen data to 176 

those by community observations alone decreased dramatically, especially in the last decade of 177 

sampling with community based completion becoming more prevalent as the number of 178 

community observations increases (Figure 1).    179 

 180 

Human Footprint and Protected Areas 181 

In all cases, the best performing model according to AIC included human footprint alone 182 

without the percentage of protected natural areas (Table 1). For museum records, the variance 183 

explained by the model was low (R2 = 0.09) compared to the composite dataset (R2=0.25) and the 184 

community science dataset (R2=0.29). 185 

 186 

Geographic and Taxonomic Sampling Completeness 187 

 Sampling completeness was not homogeneous across scales with noticeable geographic 188 

gaps in the far north, midwest, and northern Mexico as illustrated in Figure 2. Mean specimen and 189 

observation-based completeness was significantly different according to our t-test (-13.27, 2919 190 

DF, p < 0.0001), with observations having a higher average completion ratio (0.40 +/- 0.007 SE 191 

to 0.27 +/- 0.006 SE). Sampling was also inconsistent across families, especially within the 192 
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Lycaenidae. To illustrate this better, in the composite dataset, differences among completeness 193 

across families were significant according to ANOVA (F(4, 7267)=51.49, p < 0.0001) (Figure 3a) and 194 

ANOVA also supported significant differences across families for the specimen based (F(4, 195 

5368)=86.44, p < 0.0001)(Figure 3b) and observation based (F(4, 6325)=44.72, p < 0.0001)(Figure 3c) 196 

datasets (Post-hoc test results in Supplemental Figure 1). Chi-square tests to assess differences in 197 

the number of 100x100km cells completed at 50% or more  between specimens and observations 198 

revealed there is a significant association with family-level completion and basis of record 199 

(X2=31.04, 4 DF, p < 0.0001)(Figure 3b,c). Post hoc comparisons (Beasley and Schumacker 1995) 200 

revealed that this association was significant for Nymphalidae and Pieridae with observations 201 

having more cells at 50% or more complete in these families (p < 0.01)(Figure 3d).   202 

 203 

Sampling in Projected Novel Climate Regimes and Biomes 204 

 Of the 80th and 95th percentile 100km resolution grid cells experiencing the most dramatic 205 

climate effects on average under RCP 8.5 into 2080, 97.5% and 97.2% fell below the 80% 206 

sampling completeness mark respectively, indicating under-sampling in these regions (Figure 4). 207 

In addition, sampling across biomes at the 100x100km resolution was inconsistent, with some 208 

biomes being sampled on average more completely than others as illustrated in Figure 5. Only the 209 

Mediterranean woodland/scrub biome demonstrated over 80% sampling completeness on average 210 

with notable under-sampling occurring in deserts, tropical, and boreal/arctic regions. Moderate 211 

sampling (between 50% - 80% completeness on average) was demonstrated within most mid-212 

latitude temperate regions. 213 

 214 

 215 
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DISCUSSION 216 

Sample completeness across North American has accelerated in recent years, driven 217 

strongly by the growing number of community observations generated from programs such as 218 

iNaturalist (observations cited in our GBIF download), who share research grade observations with 219 

GBIF, and eButterfly (Figure 1a).  The majority of cells with >80% completeness are now from 220 

community science data, which continues to grow exponentially per year (Figure 1b), 221 

demonstrating the importance of these data for closing distribution knowledge gaps into the future. 222 

A large volume of community science records may be due to the ease of submission. For example, 223 

iNaturalist submissions can be completed by simply taking a photograph on a mobile phone. 224 

Networks such as  eButterfly often appeal more directly to dedicated amateur lepidopterists, and 225 

do not require photo vouchers to publish data, which has the potential to allow for more 226 

observations of butterfly species that are difficult to photograph. This is in contrast to specimen-227 

based data in which preparation, curation, and digitization are all required steps to publish 228 

occurrence data. 229 

 Despite this influx of community science data, sampling is still inconsistent across space 230 

and taxonomy (Figure 2, 3). Regions with low human footprint are frequently under-sampled or 231 

not sampled at all, and our simple model validates this finding alongside other studies that have 232 

examined the relationship between human population densities and record densities (Girardello et 233 

al. 2019). A key finding is that these biases towards sampling where human infrastructure is the 234 

most developed are stronger for community observation data than for specimens (Table 1).  Thus, 235 

community science observations are not likely to be a full panacea for closing inventory 236 

knowledge gaps.  While some areas of North America are likely to be inventoried at increasingly 237 

finer spatial grain with burgeoning growth of community science data, other areas may remain 238 
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perniciously under-sampled. This likely continuing butterfly inventory knowledge gap in remote 239 

regions is thus both particularly challenging and crucial to overcome since these are exactly the 240 

areas forecasted to experience the most climatic change.  A particularly good example are polar 241 

regions of North America, where climate velocities are often particularly high (Figure 4 shows the 242 

80th and 95th percentile of highest velocities) and sampling is woefully incomplete. (Figure 4). 243 

As well, even some mid and low-latitude biomes are under-sampled, including deserts and many 244 

tropical biomes in which butterfly diversity is extremely high (Willig et al. 2003) (Figure 3). We 245 

argue that community science alone is unlikely to solve existing gaps in biodiversity monitoring 246 

unless those programs are directed into sparsely populated regions through socially responsible 247 

excursions or other research campaigns that consult with local stakeholders and Indigenous 248 

communities. These directed and collaborative efforts, requiring partnerships and coordination, 249 

will help to provide a critical basis for mapping and ultimately monitoring butterfly diversity in 250 

order to detect changes in the face of shifting climate regimes. 251 

We had anticipated that traits that make some butterflies easier to detect, photograph and 252 

identify might be biased across butterfly families, thus leading to familial-level biases in 253 

completeness. We expected these issues to be more acute for community scientists, compared to 254 

professional collectors, who presumably are collectively more knowledgeable and trained in 255 

sampling methods that might reduce bias.  We already demonstrated reduced spatial biases for 256 

natural history specimen collecting, which might also suggest better sampling of habitats, also 257 

potentially reducing taxonomic biases. In the composite dataset, Lycaenidae exhibit lower average 258 

completeness with most other groups differing from each other as well (Supp. Figure 1), 259 

supporting our hypothesis of taxonomic biases in completeness. However, we did not find 260 

evidence that natural history specimen collecting led to less taxonomically biased sampling, at 261 
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least at the familial level. We did however find that completeness from community science 262 

observations was higher compared to natural history specimen records only for nymphalids and 263 

pierids and not for other butterfly families. While higher completeness itself is not surprising given 264 

the trends we report, we had anticipated either similar trends across groups, or that showy groups 265 

such as the swallowtail butterflies (i.e. Papilionidae) were more likely to be biased in favor of 266 

community science observations given they are generally colorful, large, and charismatic. Further 267 

exploration using species-level trait data to tease apart these patterns is warranted.  In particular, 268 

it may be that species-level rarity may be particularly important, especially if phylogenetically 269 

conserved. Other traits that may be worth examining include habitat and flight preferences (canopy 270 

vs. understory fliers) that directly relate to ease of human observation. 271 

 Our study expands upon prior work done on butterfly inventory completeness (Girardello 272 

et al. 2019) by including an independent baseline richness via digitized maps at coarse resolution 273 

and by examining the contributions of specimens and community observations. In addition, with 274 

a narrower focus on just North America and by including an assessment of sampling completeness 275 

in regions with high climate velocity and across biomes, we can better assess which areas are in 276 

need of targeted sampling in the future. Specifically, and in contrast to previous work (Girardello 277 

et al. 2019), we found a severe lack of sampling in the most northern regions of North America. 278 

This urgency to sample the north is further supported by the stark reality that these regions are also 279 

experiencing the most drastic impacts of climate change (Manabe and Stouffer 1980, Gauthier et 280 

al. 2015). Overall, several key regions should be prioritized for sampling including: (a) tundra and 281 

boreal forest, (b) tropical forests, and (c) deserts. Given the relatively low human population 282 

densities of these regions, funding directed towards establishing community science initiatives, 283 

and partnerships among organizations with interests in butterfly monitoring, will likely be critical 284 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.20.212381doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.20.212381
http://creativecommons.org/licenses/by/4.0/


14 
 

alongside complementing these initiatives with specimen collection and focal digitization of 285 

records in these regions.  286 

 287 

Conclusions 288 

Butterfly inventory completeness is not uniform across North America. Our research has 289 

revealed continuing under-sampling in regions that are facing threats from climate change as 290 

well as within specific biomes across the continent. Additionally, family level differences in 291 

sampling completeness may be driven by species traits and abundance, leading to disparities in 292 

completeness across taxa. In order to mitigate some of these issues, attention should be drawn 293 

towards establishing community partnerships of both opportunistic and structured survey 294 

systems in under-sampled regions. It is clear that community science provides a strong 295 

mechanism for alleviating sampling shortfalls and has potential to provide finer-grained views of 296 

butterfly communities, but only if such initiatives are also directed farther from regions with the 297 

densest human populations and travel infrastructure. Furthermore, additional curation and 298 

digitization of museum specimens will be critical in developing a historical backbone for 299 

analyses across time and space. Millions of specimens still remain undigitized in arthropod 300 

natural history collections (Cobb et al. 2019), and the continuation of funding for museum staff 301 

and biodiversity informatics infrastructure will be critical in mobilizing these data  needed for 302 

ecological research, especially potential for some kinds of temporal trend analyses (Soroye et al. 303 

2020) . Supporting digitization in tandem with concerted efforts to direct community science 304 

initiatives towards under-sampled regions will move us towards unlocking the full potential of 305 

these opportunistic data in an era of global change. 306 

 307 
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 408 

Tables 409 

Table 1. Coefficient estimates of each multiple regression model for the full record set, specimen-410 

only record set, and community observation recordset. Delta-AIC values indicate the difference 411 

between the multiple regression and simple regression model which included only human footprint 412 

as a predictor variable. In all cases, models excluding protected area percentage outperformed the 413 

simple regression according to AIC.  414 

 415 
 

estimate se 
 

t p-value R2 delta-AIC 

All Records 
     

0.25 1327.03 

Intercept 0.354 0.0083 
 

42.63 < 0.0001 
  

Human Footprint 0.027 0.0011 
 

23.92 < 0.0001 
  

Specimens 
     

0.09 1160.43 

Intercept 0.194 0.0089 
 

21.57 < 0.0001 
  

Human Footprint 0.014 0.0012 
 

12.14 < 0.0001 
  

Observations 
     

0.29 1144.99 

Intercept 0.238 0.0088 
 

26.96 < 0.0001 
  

Human Footprint 0.028 0.0011 
 

24.79 < 0.0001 
  

 416 
  417 
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Figures 418 

 419 

Figure 1. (a) The number of museum specimens and community observation-based occurrence 420 

records over time, stacked by year. (b) Number of cells at 100km resolution that are over 80% 421 

complete and that meet that threshold by museum or community observation data alone 422 

biyearly.  Red = museum specimens; Blue = community observations. 423 
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 425 

Figure 2. Sampling completeness within cells of varying spatial resolution (100km, 200km, 426 

400km) across North America from 1950-2019 based on record source (a) all records, (b) 427 

specimens, and (c) community observations. 428 
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 430 

Figure 3. Sampling completeness among butterfly families at 100x100km resolution across 431 

North America from 1950-2019 by family and by record source (a) all records, (b) specimens, 432 

and (c) community observations. Panel (d) illustrates the number of cells over 50% complete in 433 

each family, colored plots indicate a significant contribution to the chi-square statistic after 434 

Bonferroni corrected post-hoc tests. 435 
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 437 

Figure 4. Sampling completeness of 100x100km grid cells by climate velocity percentile. Size of 438 

the point within the cell indicates sampling incompleteness (larger cells are less sampled). 439 

Yellow and red cells are the 80th and 95th percentile of climate velocities respectively. Blue 440 

cells fall underneath the 80th percentile for climate velocity. Climate velocity rasters do not 441 

extend into northern Nunavut. 442 

443 
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 444 

Figure 5. Mean +/- SD sampling completeness across WWF biomes, (a) composite dataset, (b) 445 

community observations only, and (c) museum specimens only. Panel (d) displays the biomes 446 

utilized without delineation for clarity and includes coloration based on average composite 447 

sampling completeness. Red = sampling below 50% average completeness, Yellow = sampling 448 

average between 50% and 80% completeness, Green = sampling average at or above 80% 449 

completeness. Grey regions represent unsampled areas, or regions where the number of 450 

100x100km cells within a biome was < 15. 451 
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