

1 **Short title:** Drivers of drinking behavior in an arboreal mammal

2

3 **Leaf and flower consumption modulate the drinking behavior in a folivorous-frugivorous**
4 **arboreal mammal**

5

6 **Óscar M. Chaves** ^{1,2*}, **Vanessa B. Fortes** ³, **Gabriela P. Hass** ¹, **Renata B. Azevedo** ⁴,
7 **Kathryn E. Stoner** ⁵, and **Júlio César Bicca-Marques** ¹

8

9 **1** Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul,
10 Porto Alegre, Rio Grande do Sul, Brazil, **2** Escuela de Biología, Universidad de Costa Rica, San
11 Pedro de Montes de Oca 2060, San José, Costa Rica, **3** Departamento de Zootecnia e Ciências
12 Biológicas, Universidade Federal de Santa Maria, Palmeira das Missões, Rio Grande do Sul,
13 Brazil, **4** Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico
14 Mendes de Conservação da Biodiversidade, João Pessoa, Paraíba, Brazil, **5** Department of Fish,
15 Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, United
16 States

17

18 *ochaba@gmail.com

19

20

21

22

23

24

25

26 Abstract

27

28 Water is vital for the survival of any species because of its key role in most physiological
29 processes. However, little is known about the non-food-related water sources exploited by
30 arboreal mammals, the seasonality of their drinking behavior and its potential drivers (including
31 diet composition, temperature, and rainfall). We investigated this subject in 14 wild groups of
32 brown howler monkeys (*Alouatta guariba clamitans*) inhabiting small, medium, and large
33 Atlantic Forest fragments in southern Brazil. We found a wide variation in the mean rate of
34 drinking among groups (range=0-16 records/day). Streams (44% of 1,258 records) and treeholes
35 (26%) were the major types of water sources, followed by bromeliads in the canopy (16%), pools
36 (11%), and rivers (3%). The type of source influenced whether howlers used a hand to access the
37 water or not. Drinking tended to be evenly distributed throughout the year, except for a slightly
38 lower number of records in the spring than in the other seasons, but it was unevenly distributed
39 during the day. It increased in the afternoon in all groups, particularly during temperature peaks
40 around 15:00 and 17:00. We found via generalized linear mixed modelling that the daily
41 frequency of drinking was mainly influenced by flower (negatively) and leaf (positively)
42 consumption, whereas fruit consumption, fragment size, rainfall, and mean ambient temperature
43 played negligible roles. The influence of leaf consumption is compatible with the ‘metabolite
44 detoxification hypothesis,’ which states that the processing of this fibrous food requires the
45 ingestion of larger volumes of water to help in the detoxification/excretion of its metabolites. In
46 sum, we found that irrespective of habitat size and climatic conditions, brown howlers seem to
47 seek a positive water balance by complementing preformed and metabolic water with drinking
48 water, even when it is associated with a high predation risk in terrestrial sources.

49

50

51

52

53

54

55

56

57 **Introduction**

58
59 Water is an essential chemical substance for all animals, not only because it represents a large
60 percentage of whole-body mass, but because it is the medium within which the chemical
61 reactions and physiological processes of the body take place [1-3]. This substance is involved in a
62 myriad of vital processes, such as secretion, absorption, and transport of macromolecules (e.g.
63 nutrients, hormones, metabolites, antibodies, and neurotransmitters), electrolyte homeostasis,
64 transmission of light and sound, and thermoregulation [2-4]. Therefore, water intake is essential
65 for animal health and survival, particularly in the case of terrestrial vertebrates [3, 5-7].

66 In all terrestrial mammals, water inputs come from three major sources – water ingested
67 within consumed foods, metabolic water resulting from macronutrient oxidation, and water
68 drunk. Water outputs result from excretion, egestion, or evaporation through the skin or the
69 respiratory tract [4, 5, 8]. When water intake is appropriate, healthy animals maintain a
70 physiological state in which water inputs and outputs are the same throughout the day (i.e. the
71 ‘water balance’), an essential condition for the correct functioning of body cells [2, 5]. Animals
72 reach this water and electrolyte homeostasis by applying a repertoire of behavioral and
73 physiological strategies that depend on the organism’s complexity and the surrounding
74 environment [2]. Whereas drinking increases water input, shade seeking, low metabolic rates, and
75 the excretion of salt by the kidney reduce water loss [1, 2, 4]. Dehydration (i.e. a negative water
76 balance) resulting from long periods of adverse dry conditions when water losses exceed water
77 intake can seriously compromise health, being lethal when losses reach 15 to 25% of body weight
78 (camels are an exception [2, 4]).

79 Given that plant foods contain more water than animal foods, herbivorous mammals are
80 expected to obtain a larger volume of water from their diets than do omnivores and carnivores

81 [8]. However, plant items can show wide intraspecific and seasonal variations in chemical
82 composition that influence their importance and reliability as water sources, thereby influencing
83 the animals' need to drink [9]. Herbivorous mammals inhabiting dry environments, such as desert
84 rodents and camelids, can reach water balance by relying on preformed (i.e. water in plant items)
85 and oxidation (i.e. metabolic water resulting from macronutrient oxidation) water during dry
86 periods [2, 10]. In addition to these water sources, animals inhabiting wetter environments also
87 rely on another major source, drinking water [2, 7, 11]. Drinking is rare (e.g. giraffe, *Giraffa*
88 *camelopardalis*) or presumably nonexistent in mammals that rely on succulent diets [2]. Arboreal
89 folivores once believed to obtain all their water demands from food have been reported to drink
90 either in captivity (sloth, *Choloepus hoffmannii* [12]) or in the wild (koala, *Phascolarctos cinereus*
91 [13, 14]).

92 While ground-living species drink water from rarely-depletable sources (e.g. rivers,
93 streams, and lagoons), highly arboreal mammals depend on depletable arboreal reservoirs, such
94 as bromeliads and treeholes (primates [15-18]), or on short lasting rain water on tree branches
95 and leaves (koalas [14], sloths [19]). However, the exploitation of terrestrial water reservoirs by
96 these mammals tends to be rare because their vulnerability to predators likely increases when
97 they descend to the forest floor, as has been observed for other tropical primates [15, 20-23].

98 Among the highly arboreal Neotropical primates, reports of drinking are restricted to a
99 few social groups of the better-studied taxa, including howler monkeys (*Alouatta* spp. [6, 15, 17,
100 22, 24-26], spider monkeys (*Ateles geoffroyi* [27]), capuchin monkeys (*Cebus capucinus* [28],
101 *Sapajus libidinosus* [29]), and marmosets (*Callithrix flaviceps* [11]). These monkeys meet their
102 water needs primarily via preformed water [15, 30], although they also drink from arboreal
103 reservoirs or, to a lesser extent, terrestrial sources [15-17, 20].

104 Two main non-exclusive hypotheses have been proposed to explain the drinking behavior
105 of howler monkeys. The thermoregulatory/dehydration-avoidance hypothesis (TDH) relates
106 drinking to a behavioral strategy for maintaining a positive water balance during the hottest and
107 driest periods of the year [6, 17, 26]. The metabolite detoxification hypothesis (MDH) states that
108 the consumption of large amounts of some plant parts (e.g. mature leaves, branches, and seeds)
109 containing digestion inhibitors (fiber and secondary metabolites) ‘forces’ monkeys to drink more
110 to help in their processing [15, 17, 20, 26]. The trend of anti-herbivory metabolites to increase in
111 plants with increasing latitude [31] further supports the potential relevance of the MDH to howler
112 monkeys living in southern latitudes (e.g. *Alouatta guariba clamitans* and *A. caraya*). The
113 bacterial fermentation of the leaf-rich diet of howlers also requires an appropriate water supply
114 [32], as does the excretion of the higher salt content of leaves [8].

115 Howlers’ low rates of digestion [32] together with the cumulative water loss via urine,
116 lung evaporation, and sweat over the course of an activity period (i.e. daytime), especially during
117 more active and hot times, and under low air humidity [33], can increase plasma osmolarity and
118 cell dehydration to levels that cause thirst and create circadian rhythms of drinking [2, 30].
119 Similar drinking rhythms associated with feeding are found in squirrel monkeys (*Saimiri* sp. [34])
120 and owl monkeys (*Aotus* sp. [35]). Finally, forests inhabited by howler monkeys also show
121 seasonal and site-related differences in thermal environment [36], food availability [6, 37], and
122 the presence and reliability of water sources. Therefore, it is important to identify the factors that
123 modulate their drinking behavior to better understand how habitat patch size and spatial
124 restriction resulting from land use changes can affect their health and survival.

125 Here we investigate the drinking behavior in wild groups of brown howler monkeys (*A.*
126 *guariba clamitans*) inhabiting Atlantic Forest fragments in southern Brazil as models of
127 folivorous-frugivorous arboreal mammals. Specifically, we assess (i) the arboreal and terrestrial

128 water sources that these monkeys exploit and how they drink, (ii) the daily frequency and
129 seasonal distribution of drinking records, and (iii) the influence of fragment size, season, ambient
130 temperature, rainfall, and the contribution of fruits, leaves, and flowers to the diet on drinking.
131 We predicted that brown howlers would complement the preformed water obtained from their
132 diet with water from arboreal and terrestrial reservoirs, if available, because the availability of
133 fleshy fruits, flowers and young leaves vary seasonally in the study region [37]. We also
134 predicted a within-day increase in drinking in the afternoon in response to an increase in water
135 demands resulting from higher ambient temperatures and the daily water loss via digestion,
136 excretion, breathing, and sweating [1, 8]. Finally, we predicted that diet composition, climatic
137 variables, and fragment size influence the frequency of drinking. While the TDH will receive
138 support if ambient temperature and rainfall are good predictors of the frequency of drinking, a
139 positive influence of leaf ingestion on water consumption will support the MDH.

140

141 **Methods**

142

143 This investigation followed the ethical guidelines of the International Primatological Society and
144 the legal requirements established by the Ethical Committee of the Zoological Society of London
145 for research with nonhuman primates. All studies met all Brazilian animal care policies and were
146 strictly observational. Furthermore, studies conducted from 2011 to 2019 were approved by the
147 Scientific Committee of the Faculty of Biosciences of the Pontifical Catholic University of Rio
148 Grande do Sul (projects SIPESQ #5933 and 7843).

149

150 **Study fragments and groups**

151

152 We collected data on 14 groups of wild brown howlers inhabiting Atlantic Forest fragments
153 ranging from 1 to 977 ha in the municipalities of Porto Alegre, Viamão, and Santa Maria in the

154 state of Rio Grande do Sul, southern Brazil (Table 1, Fig 1). We classified the fragments in three
155 size categories: small (<1 to 10 ha), medium (>10 to 100 ha) and large (>100 to 1,000 ha; *sensu*
156 [38]). Small and medium fragments in Porto Alegre (S1-S3 and M1) and Viamão (S4-S6; Figure
157 1) were surrounded by anthropogenic matrices comprised of small human settlements, pastures,
158 subsistence orchards, and small parcels of cultivated land (<0.5 to 2 ha). None of them are
159 officially protected. Conversely, the large fragments in Porto Alegre and Viamão (L1-L3) are
160 found in legally protected areas (Fig 1, see [37] for further information on these fragments). The
161 Atlantic Forest study fragments in Santa Maria (S7, M2, L4, and L5; <1 to 977 ha; Figure 1)
162 compose a 5,876-ha mosaic of natural grasslands, extensive pastures devoted to cattle ranching,
163 and other scattered forest fragments. This area, named Campo de Instrução de Santa Maria
164 (CISM), belongs to the Brazilian Army. Therefore, although it is not officially protected by
165 Brazilian laws, CISM is impacted by a lower human pressure than the unprotected study sites.

166 The predominant vegetation in all study fragments is subtropical semideciduous forest.
167 Given its latitude (30°-31°S), the region is characterized by marked climatic seasonality: summer
168 (21 December-20 March), fall (20 March-21 June), winter (21 June-22 September), and spring
169 (22 September-21 December). According to meteorological records of Porto Alegre, the average
170 annual ambient temperature during the study period was 21°C [39]. The highest temperatures
171 occurred in the summer (mean=26°C, range=19°-35°C), and the lowest in the winter
172 (mean=15°C, range=3°-26°C; Supplementary Figs S1 and S2). The average annual rainfall during
173 the study years was 1,450 mm. There was no clear rainfall pattern between months or seasons in
174 Porto Alegre, Viamão or Santa Maria (Supplementary Figs S1 and S2).

175 Despite the variation in fragment size, all fragments contained fleshy fruit tree species
176 (i.e. *Ficus* spp., *Eugenia* spp., and *Syagrus romanzoffiana*) intensively exploited by brown

177 howlers [37, 40, 41]. All study fragments had arboreal and terrestrial water reservoirs, such as
178 bromeliads, streams, and/or rivers (Table 1).

179 We followed brown howler monkey groups ranging from 4 to 12 individuals in each
180 fragment ($n=116$ individuals, Table 1). All groups in small fragments were well-habituated to
181 humans before study, while we habituated the groups inhabiting medium and large fragments
182 during two to three months prior to their respective monitoring. Whereas most groups inhabited a
183 single forest fragment, S1, S2, and S7 (hereafter named by the acronym of their respective
184 fragments) used more fragments. S1 ranged outside of its most used fragment for about 35% of
185 the study days to feed in a neighboring 10-ha fragment. S2 regularly used three forest fragments
186 distant about 70 to 850 m from each other (the home range of this group included the area of
187 these three fragments). Lastly, S7 also used three forest remnants distant from 30 to 40 m from
188 each other.

189

190 **Behavioral data collection**

191 We studied the diet and drinking behavior of the groups during periods ranging from 12 to 21
192 months (Table 1): (i) January to December 1996 (L5), (ii) June 2002 to August 2003 (M1), (iii)
193 January to December 2005 (S7, M2, and L4), (iv) June 2011 to June 2014 (S1, S2, S3, L1, L2,
194 and L3), and (v) June 2018 to July 2019 (S4, S5, and S6). We collected data for all groups from
195 dawn to dusk using high-resolution 10 x 42 binoculars. We monitored the groups on a monthly
196 basis during three to eight consecutive days in periods (i), (ii), and (iii), during four to five
197 consecutive days on a bimonthly basis in period (iv), and during four to eight consecutive days
198 on a monthly basis in period (v). We recorded the behavior of these groups using the
199 instantaneous scan sampling method in periods (i) to (iv) and the focal-animal method [42] n
200 period (v). However, we recorded all drinking events (i.e. when at least one member of the study

201 group drank) that occurred outside scan or focal sampling units using the ‘all occurrences’
202 method [42] in all groups. We recorded the behavior of adults, subadults, and conspicuous
203 juvenile individuals, except for S4, S5, and S6, of which we only recorded the behavior of adults.

204 During feeding bouts we recorded the main plant items eaten (i.e. ripe and unripe fruits,
205 old and young leaves, and flowers) and, whenever possible, the plant species (see [37] for
206 additional details). We used the number of drinking records (i.e. the total number of individual
207 records devoted to drinking per study day) and the number of feeding records devoted to each
208 plant item in the analyses.

209

210 **Climatic data**

211 We obtained data on ambient temperature and rainfall for Porto Alegre and Santa Maria from the
212 meteorological database of the Instituto Nacional de Meteorologia do Brasil [39]. We estimated
213 both the mean ambient temperature and the weekly rainfall (i.e. the rainfall accumulated during
214 the previous seven days) for each day with a record of drinking as they represent better the
215 thermal environment and the amount of rainfall water potentially available for brown howlers.
216 Furthermore, we recorded the ambient temperature in the shade at a height of ca. 2 m above the
217 ground after each behavioral sampling unit using a pocket thermo-hygrometer (Yi Chun®, PTH
218 338) during period (iv) and a portable meteorological station (Nexus, model 351075) distant
219 about 1 km from the study fragments during period (v).

220

221 **Statistical analyses**

222 We performed Chi-square tests for proportions to compare the proportions of drinking records
223 per water source and season in each study group using the ‘prop.test’ function of R. We
224 calculated these proportions by dividing the number of records for each water source (or season)

225 by the total number of records for each group during the entire study period. We did not compare
226 fragments or groups because of their sampling effort differences (i.e. the number of sampling
227 months, days, or days per month varied between the five study periods, Table 1). We used the
228 same procedure above to calculate and compare the proportion of drinking records in each hour
229 of the day in those fragments with >10 drinking records. When we found significant differences,
230 we compared the proportion of records in each class using post-hoc proportion contrasts via the R
231 function 'pairwise.prop.test' with a Bonferroni correction because of multiple comparisons of the
232 same data sets.

233 We performed generalized linear mixed-effects models GLMM to assess the influence of
234 the contribution of fruits, leaves, and flowers to the diet, fragment size, ambient temperature, and
235 weekly rainfall on the daily number of drinking records (our response variable) using the function
236 'lmer' of the R package lme4. We set the Poisson error family for the response variable and we
237 specified group ID as a random factor to account for repeated-measures from the same groups.
238 We did not consider interactions between predictor variables to minimize overparameterization
239 and problems of convergence of the global model (i.e. the model containing all fixed and random
240 factors [43]). We standardized variable scales using the 'stdize' function of the R package MuMIn
241 [44]. Additionally, we found no multicollinearity problem between variables using the 'vifstep'
242 function of R package dplyr [45], as all of them had Variance Inflation Factor (VIF) <3 [46].
243 Therefore, we included all variables in the global GLMM model.

244 We used the Akaike's Information Criterion for small samples (AICc) to select the
245 models that best explain the effects of the predictor variables on drinking behavior. According to
246 this criterion, the model with the strongest empirical support is the one with the smallest
247 difference in AICc [47]. However, given that all models with $\Delta\text{AICc} < 2$ are considered equally
248 parsimonious, we used the full-model averaging framework to determine which parameters best

249 predict the number of drinking records while accounting for model uncertainty [43]. We used the
250 'dredge' function of the package MuMIn [44] to generate a full submodel set from the global
251 model and the 'model.avg' function of the same package to determine the averaged model and
252 the relative importance of each variable or predictor weight ($\sum w_i$). We used a likelihood ratio test
253 over the function 'anova' to test the significance of the averaged model compared with the model
254 including only the random factor (i.e. null model). We used the 'r.squaredGLMM' function of the
255 package MuMIn to estimate an equivalent of the coefficient of determination or pseudo- R^2 for
256 each competing best GLMM model. All statistical analyses were run in R v.3.6.3 [48] and the
257 statistical significance threshold was set at $P \leq 0.05$.

258

259 **Results**

260

261 **Water sources**

262 We obtained a total of 1,258 individual drinking records (range=4-322 records/group, Table 1)
263 distributed in 917 events of group drinking and 313 observation days (range=0-16 records/day,
264 Table 1). We did not record drinking in 66% of the study days (i.e. 596 out of 909 days).

265 The water sources were streams (44% of 1,258 records), followed by treeholes (26%),
266 *Vriesea*, *Aechmea*, and *Tillandsia* bromeliads (16%), pools (11%), and rivers (3%) (Fig 2a). The
267 proportion of drinking records per water source type differed in nine of the fourteen groups (χ^2
268 tests, $P < 0.05$ in all significant cases, Fig 2a). Arboreal sources were exploited by most groups
269 (treeholes=12, bromeliads=11), whereas terrestrial ones were less common (streams=6, pools=4,
270 rivers=2; Fig 2a).

271 The most common drinking behavior consisted of inserting their head and sipping water
272 directly from bromeliads and treeholes. When the treehole had a small diameter, monkeys
273 immersed a cupped hand into the hole, pulled it out, and placed the mouth under the fingers to
274 lick the dripping water. Vigilance was negligible during these arboreal drinking events.

275 In contrast, when drinking from terrestrial sources (rivers, streams and pools) howlers
276 scanned the surroundings very carefully and were highly vigilant when drinking. Terrestrial
277 drinking events began with some group members moving slowly to the understory, where they
278 remained vigilant for ca. 30 s to 5 min before one or two of them descended to the ground to
279 drink directly from the terrestrial water source for 102 ± 66 s (mean \pm S.D., $n=463$) while the
280 other individuals waited in vigilance in the understory. When the first individuals climbed back
281 to the understory, the others descended slowly to the ground to drink, and the first remained in
282 vigilance. A single drinking event involved between 1/5 and 4/5 of the group members.

283

284 **Seasonal and daily patterns in drinking behavior**

285 We found no clear pattern in the proportion of drinking records between or within seasons (Fig
286 2b, Supplementary Fig S3). We observed drinking in all seasons in seven fragments, in three
287 seasons in six fragments, and in two seasons in the remaining fragment (Fig 2b). For those
288 fragments where we found seasonal differences in the proportion of drinking records ($n=11$),
289 proportion contrasts, $P<0.05$ in all significant cases, Fig 2b), a greater proportion of records
290 occurred in a single season (winter - $n=3$ fragments: S3, S5, and L2; summer - $n=2$ fragments: S7
291 and L1; fall - $n=2$ fragments: M1, L3), in two seasons ($n=1$ fragment: S4) or in three ($n=3$
292 fragments: S2, M2, and L5; Fig 2b). We found a lower percentage of drinking records in the
293 spring than in the other seasons in the pooled dataset ($\chi^2=77$, $df=3$, $P<0.0001$; Fig 2b).

294 Finally, we found that the distribution of drinking during the day showed a unimodal
295 pattern in most fragments. The higher percentages of records occurred in the afternoon,
296 particularly from 15:00 to 17:00 (8 out of 12 analyzed fragments; proportion contrasts, $P<0.05$ in
297 all significant cases, Fig 3). This peak of drinking occurred near times with higher ambient
298 temperatures in the fragments for which we have in-site temperature data ($n=7$; Supplementary
299 Fig S4).

300

301 **Factors driving the drinking behavior of brown howlers**

302 We found six models that included all predictor variables, except weekly rainfall, with substantial
303 empirical support (i.e. $\Delta\text{AICc}<2$; Table 2). Flower and leaf consumption were the only predictors
304 present in all models. The two best models for explaining the frequency of drinking contained
305 only these two variables (first), plus ambient temperature (second; Table 2). The averaged model
306 differed from the null model (likelihood ratio test: $\chi^2=22$, $\text{df}=5$, $P<0.001$). Flower consumption
307 had an inverse relationship with drinking ($\beta=-0.14$, $z\text{-value}=3.08$, $P<0.01$), whereas leaf
308 consumption had a direct one ($\beta= 0.14$, $z\text{-value}=2.35$, $P<0.05$, Table 2). Fragment size, fruit
309 consumption, and ambient temperature had insignificant relationships with howler monkey
310 drinking (Table 2).

311

312 **Discussion**

313 We found that brown howlers drank water accumulated in bromeliads and treeholes in the
314 canopy, and that they also descended to the ground to drink from streams, rivers, and pools.
315 Drinking increased in the afternoon and was less frequent in the spring. Also, while howlers
316 drank more when their diet included more leaves and drank less when they ate more flowers, the

317 contribution of fruits to the diet, habitat size, mean ambient temperature, and rainfall did not
318 predict the frequency of drinking.

319 The exploitation of non-food arboreal and terrestrial water reservoirs supports our
320 expectation that oxidation and preformed water are insufficient for permanently satisfying
321 howlers' water needs, as reported for many terrestrial mammals [1-3]. The finding that streams
322 were the most used water sources by brown howlers differs from the greater importance of
323 arboreal water reservoirs for other howler monkeys inhabiting both large (e.g. 1,564 ha in Barro
324 Colorado Island, Panama [15, 30]) and small forest remnants (e.g. ≤ 10 ha [26, 49]).

325 This use of terrestrial water sources occurred despite the high risk of predation by
326 domestic/stray dogs and small wild felids in the study region (e.g. *Leopardus wiedii* [50]; also
327 OM Chaves, personal communication). The fact that dog attacks represent a major cause of
328 brown howler death in urban and suburban populations in southern Brazil [23, 51] explains the
329 highly cautious behavior and vigilance displayed by brown howlers when descending to the
330 ground to drink, a behavior also observed in other primates (e.g. *Callithrix flaviceps* [11]). This
331 threat is believed to reduce (or even eliminate) howlers' use of terrestrial water reservoirs in
332 better-conserved large forests inhabited by wild carnivore populations in Central America (e.g. *A.*
333 *palliata* [30, 52]). The frequency of brown howler remains in ocelot (*Leopardus pardalis*) scats
334 in a ca. 950-ha Atlantic Forest reserve in southeastern Brazil highlights their vulnerability to wild
335 felids [21].

336 The general lower drinking in the spring may be explained, at least partially, by three
337 main reasons. First, unlike at lower tropical latitudes where the hottest and driest times often
338 coincide (i.e. dry season [53]), summer and spring are the hottest, but not the driest seasons in the
339 subtropical study region (ca. 31°S) (Supplementary Fig S1). In fact, rainfall is relatively well

340 distributed throughout the year in Rio Grande do Sul state ([39], see also Supplementary Figs S1
341 and S2), where ‘rainy quarters’ occur at any time [54].

342 Second, the higher availability and consumption of flowers and fleshy ripe fruits, and the
343 consequent lower consumption of leaves, by the study groups also occurred in the hottest seasons
344 [37]. This diet composition likely reduces the need for water to detoxify secondary metabolites
345 while supplying water to counterbalance the losses of thermoregulation and other physiological
346 processes.

347 Third, brown howlers may lower the thermoregulatory demands for water by preventing
348 body over-heating and dehydration via riparian microhabitat selection (OM Chaves and VB
349 Fortes, personal observation), positional adjustments and shade-seeking [55] during the hottest
350 times of the day (strategies also reported in other Neotropical primates: *A. palliata* [56], *A.*
351 *caraya* [36], *Cebus capucinus* [57], *Callicebus bernhardi* [58]). Despite these strategies, the
352 peaks of drinking in the afternoon tended to occur around the warmer times of the day
353 (Supplementary Fig S4), which are likely triggered by the need of water in this period of
354 intensified physiological thermoregulation together with the recovery of the water spent earlier in
355 the day that is required to reach the homeostasis of blood osmolarity [34, 35]. Testing this
356 hypothesis requires data on body temperature and water balance.

357 The within-day relationship between drinking and higher ambient temperatures together
358 with the lack of a significant relationship between mean ambient temperature and drinking at a
359 broader temporal scale show that the circadian rhythm of drinking supports the
360 thermoregulatory/dehydration-avoidance hypothesis (TDH), whereas the seasonal pattern of
361 drinking does not. This finding is not surprising given the everlasting essential role that water
362 plays in the functioning of living organisms and the absence of a dry season in the study region.
363 In seasonal environments where water availability decreases significantly during the dry season,

364 howler (*Alouatta palliata*), spider (*Ateles geoffroyi*), and capuchin (*Cebus capucinus*) monkeys
365 may camp around the remaining arboreal and ground water reservoirs [52]. Yet the opposing
366 influences of the consumption of leaves and flowers on the frequency of drinking support the
367 metabolite detoxification hypothesis (MDH). While the ingestion of leafy material can also
368 demand water for the process of bacterial fermentation [30, 32], flowers can have high water
369 contents [59] that contribute to satisfy the monkeys' daily requirements [60].

370 In sum, we have found that both the TDH and the MDH can explain the drinking behavior
371 of brown howlers in response to short-term thermal environment and diet composition.

372 Extrapolating from brown howlers to arboreal folivorous-frugivorous mammals in general that
373 also lack adaptations to tolerate high levels of dehydration, we suggest that the higher the
374 proportion of leaves in their diet, the greater might be the challenges in fulfilling their water
375 requirements, particularly in habitats where terrestrial water reservoirs are scarce or absent, such
376 as some forest fragments. Therefore, highly folivorous species may be more sensitive to droughts
377 than more frugivorous ones. Despite the higher availability of leaves than flowers and fruits in
378 forests, highly folivorous mammals may also be more vulnerable to predators if they are forced to
379 descend to the ground to drink from terrestrial reservoirs, particularly in forest fragments
380 immersed in anthropogenic landscapes where dogs roam freely. In this respect, studies assessing
381 how differences in land-use and human disturbance influence the abundance and distribution of
382 arboreal and terrestrial water reservoirs and how they impact the drinking behavior, water
383 balance, and health of arboreal folivorous-frugivorous mammals are critical for enabling us to
384 design and implement appropriate management strategies for promoting their conservation in
385 anthropogenic fragmented landscapes.

386

387 **Supporting information**

388 **Fig. S1.** Rainfall (blue line) and mean air temperature (yellow line) in Porto Alegre and Viamão
389 municipalities during the study.

390

391 **Fig. S2.** Rainfall (blue) and mean air temperature (yellow) in Santa Maria municipality during the
392 study years of 1996 and 2005.

393

394 **Fig. S3.** Seasonal distribution of drinking events by 14 brown howler monkey groups inhabiting
395 small, medium, and large Atlantic forest fragments in southern Brazil.

396

397 **Fig. S4.** Hourly variation in average ambient temperature of seven Atlantic Forest fragments in
398 Porto Alegre and Viamão municipalities.

399

400 **Acknowledgements**

401

402 We thank Danielle Camaratta and João Claudio Godoy for logistical support and field assistance.

403 We thank the landowners of the study fragments in Porto Alegre and Viamão for giving us
404 permission to conduct this research on their properties. We thank Commandant Aluísio S.R.
405 Filho for giving us permission to work in the Campo de Instrução de Santa Maria (CISM).

406

407 **Author Contributions**

408 **Conceptualization:** Óscar M. Chaves, Júlio César Bicca-Marques.

409 **Data curation:** Óscar M. Chaves, Vanessa B. Fortes, Gabriela P. Hass.

410 **Formal analysis:** Óscar M. Chaves, Júlio César Bicca-Marques.

411 **Visualization:** Óscar M. Chaves, Júlio César Bicca-Marques.

412 **Investigation:** Óscar M. Chaves, Júlio César Bicca-Marques, Vanessa B. Fortes, Gabriela P.

413 Hass, Renata B. Azevedo.

414 **Methodology:** Óscar M. Chaves, Júlio César Bicca-Marques, Vanessa B. Fortes, Gabriela P.

415 Hass, Kathryn E. Stoner.

416 **Project administration:** Óscar M. Chaves

417 **Writing-original draft:** Óscar M. Chaves

418 **Writing-review & editing:** Óscar M. Chaves, Júlio César Bicca-Marques, Vanessa B. Fortes,

419 Gabriela P. Hass, Kathryn E. Stoner.

420 **Funding acquisition:** Júlio César Bicca-Marques, Kathryn E. Stoner.

421

422 **References**

423 1. Nagy KA, Peterson CC. Scaling of water flux rate in animals. London: University of California
424 Press, 1988.

425 2. Fitzsimons J. Evolution of physiological and behavioural mechanisms in vertebrate body fluid
426 homeostasis. In: Ramsay DJ, Booth D, editors. Thirst. New York: Springer, 1991. pp. 3–22.

427 3. NRC. Nutrient requirements of nonhuman primates. Washington DC: National Resource
428 Council, National Academies Press, 2003.

429 4. Jéquier E, Constant F. Water as an essential nutrient: the physiological basis of hydration. Eur
430 J Clin Nutr. 2010; 64:115–123.

431 5. Grandjean AC, Campbell SM. Hydration: fluids for life. A monograph by the North American
432 Branch of the International Life Science Institute. Washington DC: ILSI North America, 2004.

433 6. Dias PA, Rangel-Negrin A, Coyohua-Fuentes A, Canales-Espinosa D. Factors affecting the
434 drinking behavior of black howler monkeys (*Alouatta pigra*). Primates. 2014; 55:1–5.

435 7. Sharma N, Huffman MA, Gupta S, Nautiyal H, Mendonca R, Morino L, Sinha A. Watering
436 holes: the use of arboreal sources of drinking water by Old World monkeys and apes. *Behav
437 Proc.* 2016; 129:18–26.

438 8. McNab BK. The physiological ecology of vertebrates: a view from energetics. London:
439 Cornell University Press, 2002.

440 9. Green B. Field energetics and water fluxes in marsupials. In: Saunders NR, Hinds LA, editors.
441 *Marsupial Biology: recent research, new perspectives*. Sydney: UNSW Press, 1997. pp. 143–
442 159.

443 10. Xu, M.M., Wang, D.H. Water deprivation up-regulates urine osmolality and renal aquaporin
444 2 in Mongolian gerbils (*Meriones unguiculatus*). *Comp Biochem and Phys A.* 2016; 194:37–
445 44.

446 11. Ferrari SF, Hilário RR. Use of water sources by buffy-headed marmosets (*Callithrix
447 flaviceps*) at two sites in the Brazilian Atlantic forest. *Primates.* 2012; 53:65–70.

448 12. Gilmore DP, Da-Costa CP, Duarte DPF. An update on the physiology of two- and three-toed
449 sloths. *Braz J Med Biol Res.* 2000; 33:129–146.

450 13. Ellis W, Melzer A, Clifton ID, Carrick F. Climate change and the koala *Phascolarctos
451 cinereus*: water and energy. *Aust Zool.* 2010; 35:369–377.

452 14. Mella VSA, Orr C, Hall L, Velasco S, Madani G. An insight into natural koala drinking
453 behavior. *Ethology.* 2020. <https://onlinelibrary.wiley.com/doi/abs/10.1111/eth.13032>.

454 15. Glander KE. Drinking from arboreal water sources by mantled howling monkeys (*Alouatta
455 palliata*-Gray). *Folia Primatol.* 1978a; 29:206–217.

456 16. Oates JF. Water-plant and soil consumption by guereza monkeys (*Colobus guereza*): a
457 relationship with minerals and toxins in the diet? *Biotropica.* 1978; 10:241–253.

458 17. Bicca-Marques JC. Drinking behavior in the black howler monkey (*Alouatta caraya*). *Folia
459 Primatol.* 1992; 58:107–111.

460 18. Hillyer AP, Armstrong R, Korstjens AH. Dry season drinking from terrestrial man-made
461 watering holes in arboreal wild Temminck's red colobus, the Gambia. *Primate Biol.* 2015;
462 2:21–24.

463 19. Martínez N, Antelo C, Rumiz DE. Rehabilitación de perezosos (*Bradypus variegatus*)
464 urbanos en reservas privadas aledañas a Santa Cruz de La Sierra: una iniciativa multipropósito
465 de investigación, manejo y educación. *Rev Bol Ecol.* 2004; 16:1–10.

466 20. Glander KE. Howling monkey feeding behavior and plant secondary compounds: a study of
467 strategies. In: Montgomery GG, editor. The ecology of arboreal folivores, Washington DC:
468 Smithsonian Institution Press, 1978b. pp. 561–574.

469 21. Bianchi RC, Mendes SL. Ocelot (*Leopardus pardalis*) predation on primates in Caratinga
470 Biological Station, southeast Brazil. Am J Primatol. 2007; 69:1173–1178.

471 22. Pozo-Montuy G, Serio-Silva JC. Movement and resource use by a group of *Alouatta pigra* in
472 a forest fragment in Balancán, México. Primates. 2007; 48:102–107.

473 23. Bicca-Marques JC, Chaves ÓM, Hass GP. Howler monkey tolerance to habitat shrinking:
474 lifetime warranty or death sentence? Am J Primatol. 2020; 82:e23089.

475 24. Bonvicino CR. Observações sobre a ecologia e o comportamento de *Alouatta belzebul*
476 (Primates: Cebidae) na Mata Atlântica. M.Sc.Thesis, Universidade Federal da Paraíba. 1988.

477 25. Steinmetz S. Drinking by howler monkeys (*Alouatta fusca*) and its seasonality at the
478 Intervales State Park, São Paulo, Brazil. Neotrop Primates. 2001; 9:111–112.

479 26. Moro-Rios RF, Serur-Santos CS, Miranda JMD, Passos FC. Water intake by a group of
480 *Alouatta clamitans* (Primates: Atelidae), on an Araucaria Pine Forest: seasonal, sex-age and
481 circadian variations. Rev Bras Zool. 2008; 25:558–562.

482 27. Campbell CJ, Aureli F, Chapman CA, Ramos-Fernandez G, Matthews K, Russo SE, Suarez
483 S, Vick L. Terrestrial behavior of *Ateles* spp. Int J Primatol. 2005; 26:1039–1051.

484 28. Freese CH. The behavior of white-faced capucins (*Cebus capucinus*) at a dry-season
485 waterhole. Primates. 1978; 19:275–286.

486 29. Castro SCN, Souto AS, Schiel N, Biondi LM, Caselli CB. Techniques used by bearded
487 capuchin monkeys (*Sapajus libidinosus*) to access water in a semi-arid environment of North-
488 Eastern Brazil. Folia Primatol. 2017; 88:267–273.

489 30. Nagy KA, Milton K. Aspects of dietary quality, nutrient assimilation and water-balance in
490 wild howler monkeys (*Alouatta palliata*). Oecologia. 1979; 39:249–258.

491 31. Moles AT, Bonser SP, Poore AG, Wallis IR, Foley WJ. Assessing the evidence for latitudinal
492 gradients in plant defense and herbivory. Func Ecol. 2011; 25:380–388.

493 32. Milton K. Food choice and digestive strategies of two sympatric primate species. Am Nat.
494 1981; 117:476–495.

495 33. Thompson CL, Williams SH, Glander KE, Teaford MF, Vinyard CJ. Body temperature and
496 thermal environment in a generalized arboreal anthropoid, wild mantled howling monkeys
497 (*Alouatta palliata*). *Am J Phys Anthropol.* 2014; 154:1–10.

498 34. Sulzman FM, Fuller CA, Moore-Ede M. Feeding time synchronizes primate circadian
499 rhythms. *Physiol Behav.* 1977; 18:775–779.

500 35. Hoban TM, Levine AH, Shane RB, Sulzman FM. Circadian rhythms of drinking and body
501 temperature of the owl monkey (*Aotus trivirgatus*). *Physiol Behav.* 1985; 34:513–518.

502 36. Bicca-Marques JC, Calegaro-Marques C. Behavioral thermoregulation in a sexually and
503 developmentally dichromatic neotropical primate, the black-and-gold howling monkey
504 (*Alouatta caraya*). *Am J Phys Anthropol.* 1998; 106:533–546.

505 37. Chaves ÓM, Bicca-Marques JC. Feeding strategies of brown howler monkeys in response to
506 variations in food availability. *Plos One.* 2016; 11:e0145819.

507 38. Marsh LK, Chapman CA, Norconk MA, Ferrari SF, Gilbert KA, Bicca-Marques JC, Wallis J.
508 Fragmentation: specter of the future or the spirit of conservation? In: Marsh LK, editor.
509 *Primates in fragments: ecology and conservation.* New York: Kluwer Academic/Plenum
510 Publishers, 2003. pp. 381–398.

511 39. INMET. Banco de Dados meteorológicos para ensino e pesquisa: registros metereológicos
512 para Rio Grande do Sul. Instituto Nacional de Metereologia do Brasil, Porto Alegre, 2019.
513 <https://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep>.

514 40. Chaves ÓM, Bicca-Marques JC. Dietary flexibility of the brown howler monkey throughout
515 its geographic distribution. *Am J of Primatol.* 2013; 75:16–29.

516 41. Fortes VB. Ecologia e comportamento do bugio-ruivo (*Alouatta guariba clamitans* Cabrera,
517 1940) em fragmentos florestais na depressão central do Rio Grande do Sul, Brasil. Ph.D.
518 Thesis, Pontifícia Universidade Católica do Rio Grande do Sul. 2008.
519 <http://repositorio.pucrs.br/dspace/bitstream/10923/5421/1/000400984-Texto%2BCompleto-0.pdf>.

521 42. Altmann J. Observational study of behavior: sampling methods. *Behavior.* 1974; 49:227–267.

522 43. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. Multimodel inference in ecology and
523 evolution: challenges and solutions. *J Evol Biol.* 2011; 24:699–711.

524 44. Barton K. MuMIn: multi-model Inference. R package version 1.15.6. <http://cran.r-project.org/web/packages/MuMIn/index.html>. 2016.

526 45. Wickham H, François R, Henry L, Müller K. dplyr: a grammar of data manipulation. R
527 package version 0.7.8. <https://CRAN.R-project.org/package=dplyr>. 2018.

528 46. Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical
529 problems. Methods Ecol Evol. 2010; 1:3–14.

530 47. Burnham KP, Anderson D. Model selection and multi-model inference: a practical
531 information-theoretic approach. New York: Springer Press; 2003.

532 48. R Core Team. R: a language and environment for statistical computing. Version 3.6.3.
533 <https://www.R-project.org>. 2020.

534 49. Silver SC, Ostro LET, Yeager CP, Horwich R. Feeding ecology of the black howler monkey
535 (*Alouatta pigra*) in northern Belize. Am J Primatol. 1998; 45:263–279.

536 50. Gonçalves AS. Uso de habitat de mamíferos terrestres em fragmentos de floresta estacional
537 decidual. M.Sc. Thesis, Universidade do Vale do Rio dos Sinos. 2006.
538 <http://www.repositorio.jesuita.org.br/bitstream/handle/UNISINOS/2300/uso%20de%20habitat.pdf?sequence=1>.

539 51. Buss G. Conservação do bugio-ruivo (*Alouatta guariba clamitans*) (PRIMATES,
540 ATELIDAE) no entorno do Parque Estadual de Itapuã, Viamão, RS. Ph.D. Thesis,
541 Universidade Federal do Rio Grande do Sul. 2012. <https://www.lume.ufrgs.br/bitstream/handle/10183/69918/000867969.pdf?sequence=1>.

542 52. Chapman CA. Patterns of foraging and range use by three species of Neotropical primates.
543 Primates. 1988; 29:177–194.

544 53. Allaby M. Tropical forests. New York: Chelsea House Publishers, 2006.

545 54. Nimer E. Climatologia do Brasil. 2.ed. Rio de Janeiro, Brazil: IBGE/Departamento de
546 Recursos Naturais e Estudos Ambientais, 1989.

547 55. Bicca-Marques JC, Azevedo RB. The 'thermoregulation hypothesis' does not explain the
548 evolution of sexual dichromatism in the brown howler monkey (*Alouatta guariba clamitans*).
549 Folia Primatol. 2004; 75:236.

550 56. Paterson JD. Postural-positional thermoregulatory behaviour and ecological factors in
551 primates. Can Rev Phys Anthropol. 1981; 3:3–11.

552 57. Campos FA, Fedigan LM. Behavioral adaptations to heat stress and water scarcity in white-
553 faced capuchins (*Cebus capucinus*) in Santa Rosa National Park, Costa Rica. Am J Phys
554 Anthropol. 2009; 138:101–111.

555

556

557 **58.** Lopes KG, Bicca-Marques JC. Ambient temperature and humidity modulate the behavioural
558 thermoregulation of a small arboreal mammal (*Callicebus bernhardi*). *J Thermal Biol.* 2017;
559 69:104–109.

560 **59.** Richard A. *Primates in nature*. New York: WH Freeman, 1985.

561 **60.** Hogan JD, Melin AD, Mosdossy KN, Fedigan LM. Seasonal importance of flowers to Costa
562 Rican capuchins (*Cebus capucinus imitator*): implications for plant and primate. *Am J Phys*
563 *Anthropol.* 2016; 161:591–602.

564

565

566

567

568

569

570

571

572

573

574

575

576

577 **Table 1. Study fragments, brown howler group size, sampling effort, and number of**
 578 **drinking records.**

Site	Size	Latitude	Longitude	WS ^a	Group size ^b	Sampling effort			#rec. ^d	
						Months	Days ^c	Hours		
S1	1.6	S30°11'00.1"	W51°06'06.6"	P,B	7 (1,2)	21	67 (4)	492	4	
S2	9.5	S30°12'18.4"	W51°06'05.7"	R,B	11 (1,3)	19	61 (13)	438	47	
S3	2.3	S30°12'26.6"	W51°05'54.0"	S,P,B	10 (1,3)	20	65 (12)	539	28	
S4	3.6	S30°12'27.0"	W50°55'39.0"	B,T	8 (1,2)	12	56 (33)	681	90	
S5	5.2	S30°17'27.0"	W50°57'36.0"	B,T	4 (1,2)	12	55 (14)	663	27	
S6	7.3	S30°17'39.0"	W51°00'42.0"	B,T	8 (1,2)	12	69 (9)	826	13	
S7	1	S29°47'05.8"	W53°53'12.0"	S,B	7 (1,4)	12	59 (44)	654	322	
M1	27	S30°12'00.0"	W51°04'00.0"	P,B	12 (2,2)	12	57 (34)	518	173	
M2	17	S29°45'21.3"	W53°52'32.2"	S,B	6 (1,2)	12	58 (26)	623	99	
L1	108	S30°10'39.5"	W51°06'18.2"	R,B,S	9 (2,3)	21	73 (6)	536	18	
L2	93	S30°23'15.6"	W51°02'43.3"	L,P,B	12 (3,3)	18	81 (7)	460	10	
L3	106	S30°20'56.8"	W51°02'58.2"	L,P,B	10 (2,3)	17	87 (27)	536	102	
L4	977	S29°46'46.0"	W53°51'52.0"	S,B	5 (2,3)	12	54 (45)	577	184	
L5	977	S29°47'05.9"	W53°53'03.0"	S,B	7 (2,3)	12	67 (39)	836	144	
Sum						116	212	909 (313)	8379	1261

579 ^a Water sources detected during the study period: bromeliads (B), treeholes (T), pools (P), rivers
 580 (R), streams (S), and lagoon (L).

581 ^b Group size and number of adult males and females (in parentheses).

582 ^c Number of study days with drinking events in parentheses.

583 ^d Total number of drinking records per study group.

584

585

586 **Table 2. Best supported GLMM models ($\Delta\text{AICc}<2$) and model-averaged that predict the**
 587 **variation in the number of drinking records in 14 brown howler groups in southern Brazil.**

Predictor variables ^a		Parameters ^b			
<i>Best supported models</i>					
		AIC _c	ΔAICc	w_i	R^2_c
1) Flower+Leaf		2049.6	0.00	0.23	0.53
2) Flower+Leaf+Temp		2049.7	0.04	0.23	0.53
3) Flower+Fsize+Leaf		2050.2	0.54	0.18	0.54
4) Flower+Fsize+Leaf+Temp		2050.2	0.59	0.17	0.54
5) Flower+Fruit+Leaf		2051.3	1.63	0.10	0.54
6) FLower+Fsize+Leaf+Temp		2051.5	1.86	0.09	0.54
<i>Averaged model ($R^2_c=0.55$)</i>					
		β_i	SE	95% CI	z-value
Intercept		2.03	0.1	(1.8, 2.2)	19.4***
Flower consumption (Flower)		-0.14	0.05	(-0.23, -0.05)	3.08**
Leaf consumption (Leaf)		0.14	0.06	(0.02, 0.25)	2.35*
Ambient temperature (Temp)		0.03	0.04	(-0.02, 0.15)	0.69
Fragment size (Fsize)		0.1	0.2	(-0.17, 0.77)	0.52
Fruit consumption (Fruit)		0.01	0.03	(-0.08, 0.15)	0.23
		$\sum w_i$			

588 ^aNumber of parameters in each model (k), Akaike's Information Criterion for small samples
 589 (AICc), difference in AICc (ΔAICc), model probability Akaike weights (w_i), Pseudo- R^2 (R^2_c)
 590 indicating the percent of variance explained by the fixed and random factors, partial regression
 591 coefficients of the model-averaged (β), standard errors which incorporate model uncertainty (SE),
 592 95% confidence intervals for the parameter estimates (95% CI), and relative importance of each
 593 predictor variable ($\sum w_i$). Significance level: * $P<0.05$, ** $P<0.01$, *** $P<0.001$.

594 Figure legends

595

596 **Fig 1. Location of the 14 study sites in the municipalities of Santa Maria (SM, red polygon),**
597 **Porto Alegre (PA, purple polygon), and Viamão (Vi, cyan polygon), southern Brazil.** Color
598 markers indicate the exact location of the small (white), medium (rose), and large (cyan) Atlantic
599 Forest fragments inhabited by the study groups. Lansat7 open-access images (available at
600 <http://earthexplorer.usgs.gov/>) from 2008 for SM and 2013 for PA and Vi.

601

602 **Fig 2. Percentage of drinking records in 14 brown howler groups per water source (a) and**
603 **season (b).** The number of records is indicated in the middle of each bar. Asterisks on the bars
604 indicate the significance level according to Chi-square tests for proportions: * $P\leq 0.05$, ** $P<0.01$,
605 *** $P<0.001$. The proportion of records at the forest size level (small=S, medium=M, and
606 large=L) and in the pooled dataset (All) is indicated in the four bars to the right. Water sources –
607 rivers: permanent water currents >4-m in width and >1-m in depth; streams: seasonal water
608 currents <2-m in width and <1-m in depth; treeholes: 10-40-cm diameter holes in trunks or large
609 branches; bromeliads: water stored in the rosette of epiphytic bromeliads. Significant differences
610 in the proportion of records between water sources or seasons within each fragment are indicated
611 with different lower-case letters in the bars. When proportion contrasts tests did not detect
612 differences, no letter is shown. $N=1,128$ records in (a) and 1,131 records in (b).

613

614 **Fig 3. Variation in percentage of drinking records by brown howler monkeys during the**
615 **day in small, medium, and large Atlantic Forest fragments.** Different lower-case letters on the
616 bars indicate significant differences after Bonferroni adjustment in P values. The absence of
617 letters indicates that these hour intervals did not differ from the others. The number of degrees of
618 freedom was 12 in all cases. Only fragments with >10 drinking records were considered in this
619 analysis.

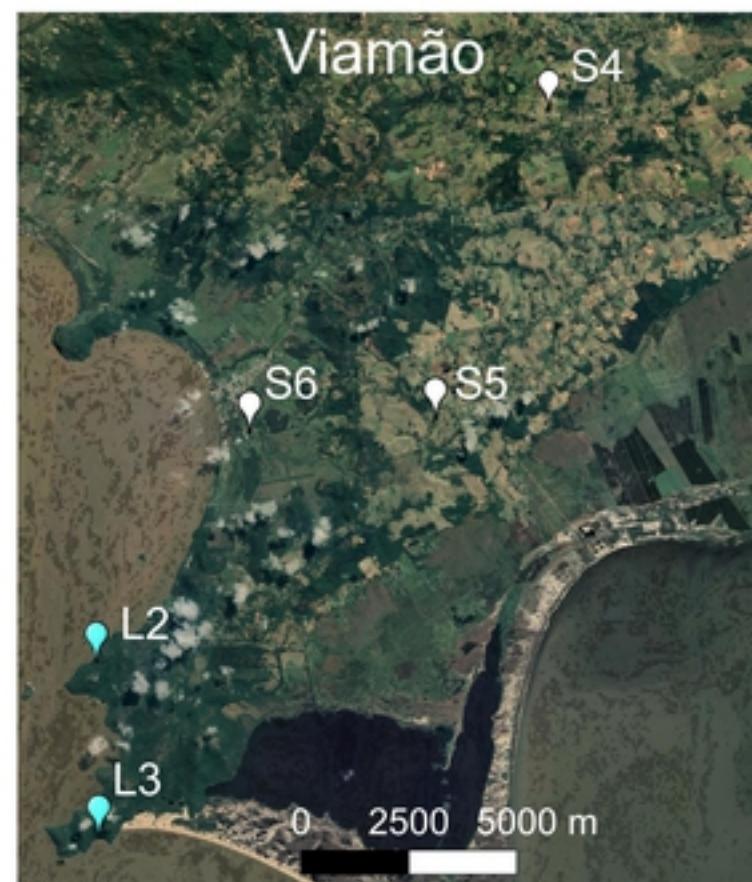
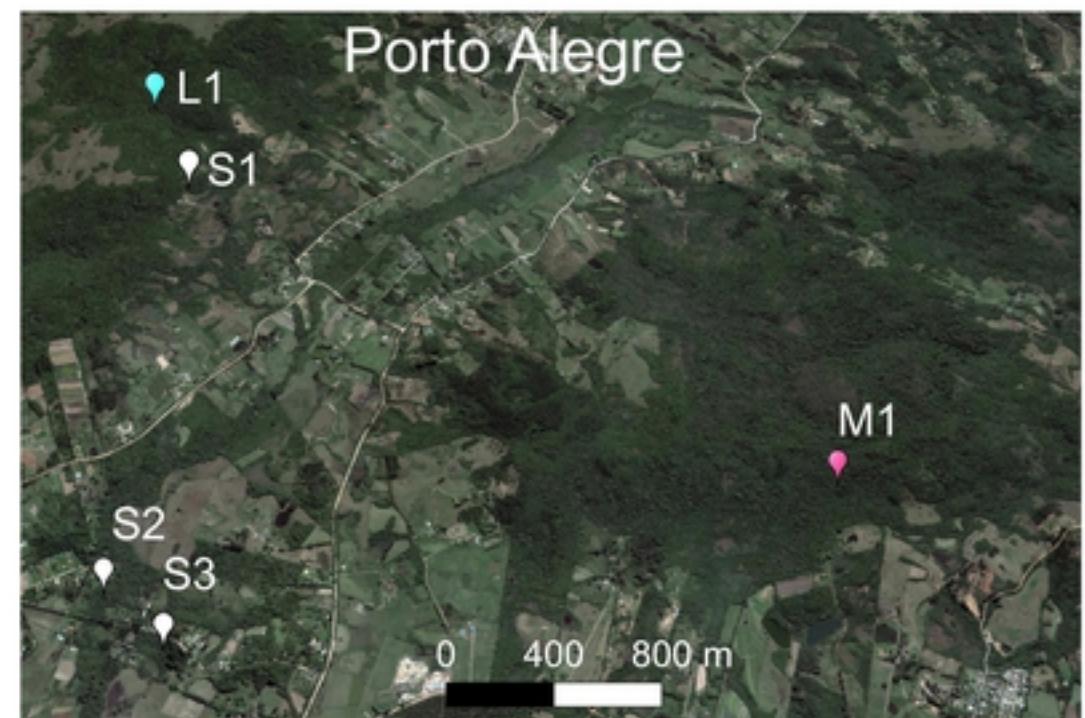
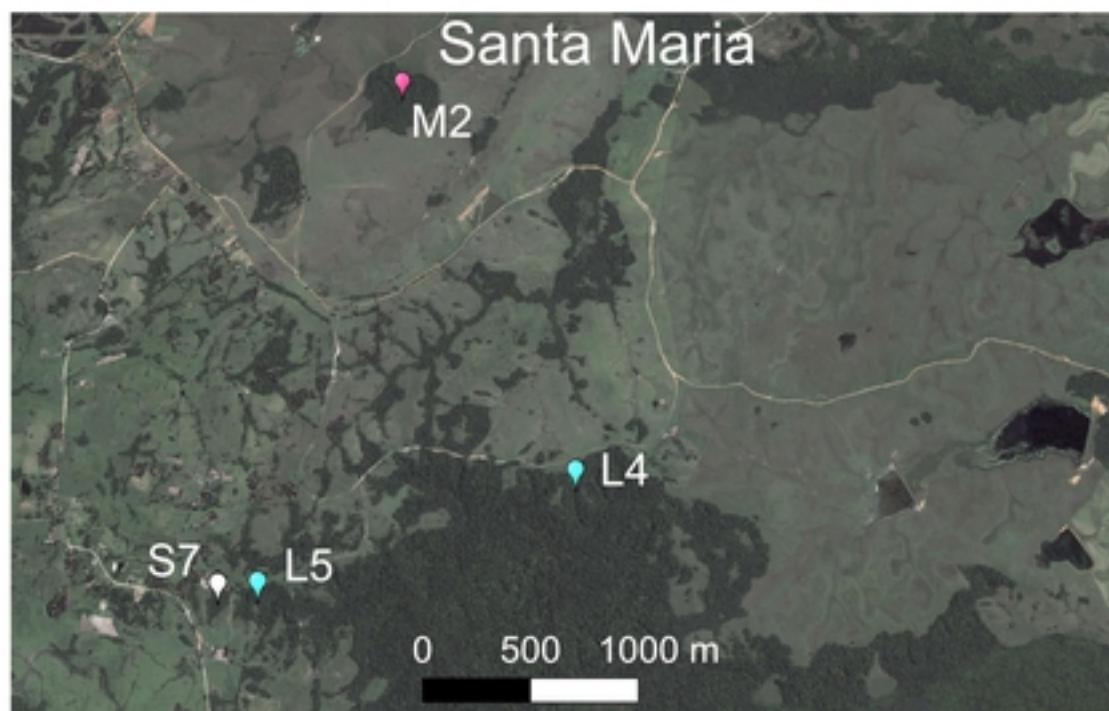
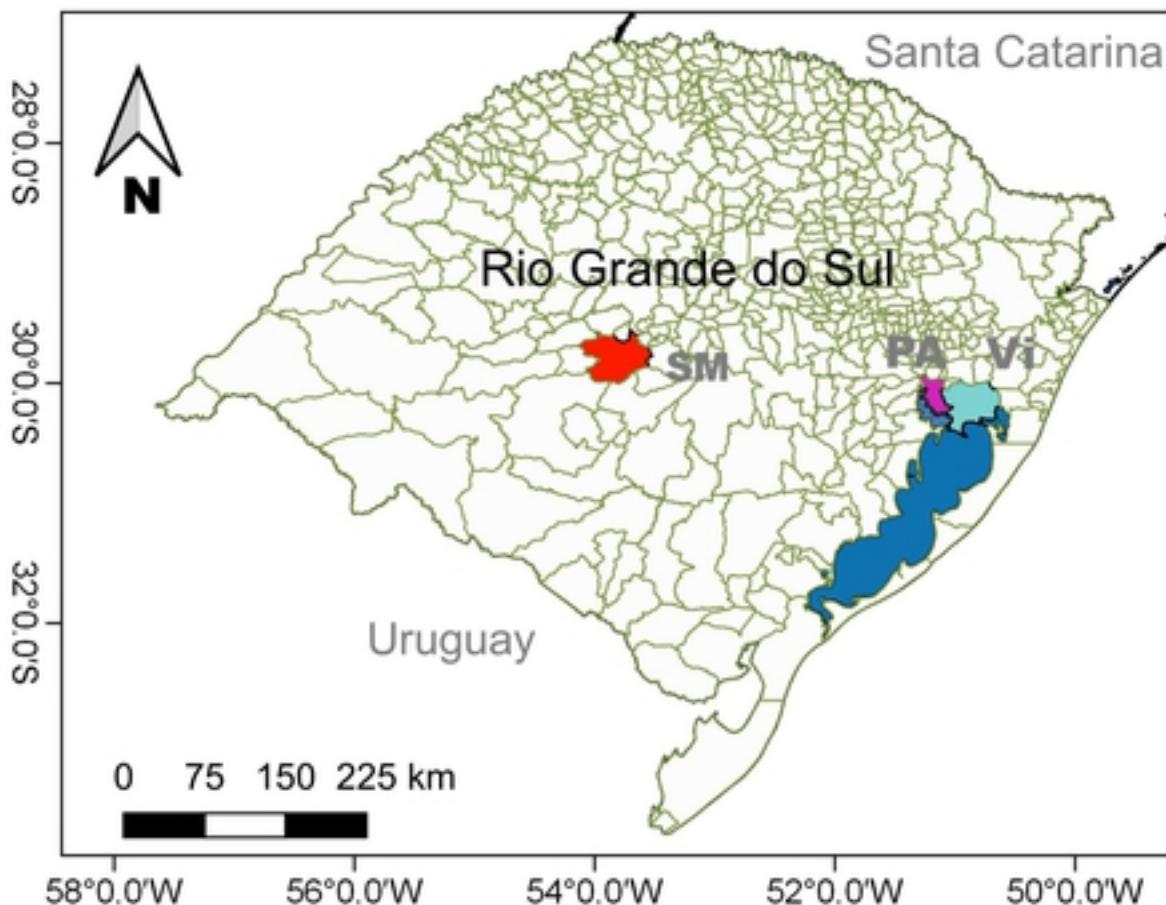





Figure 1

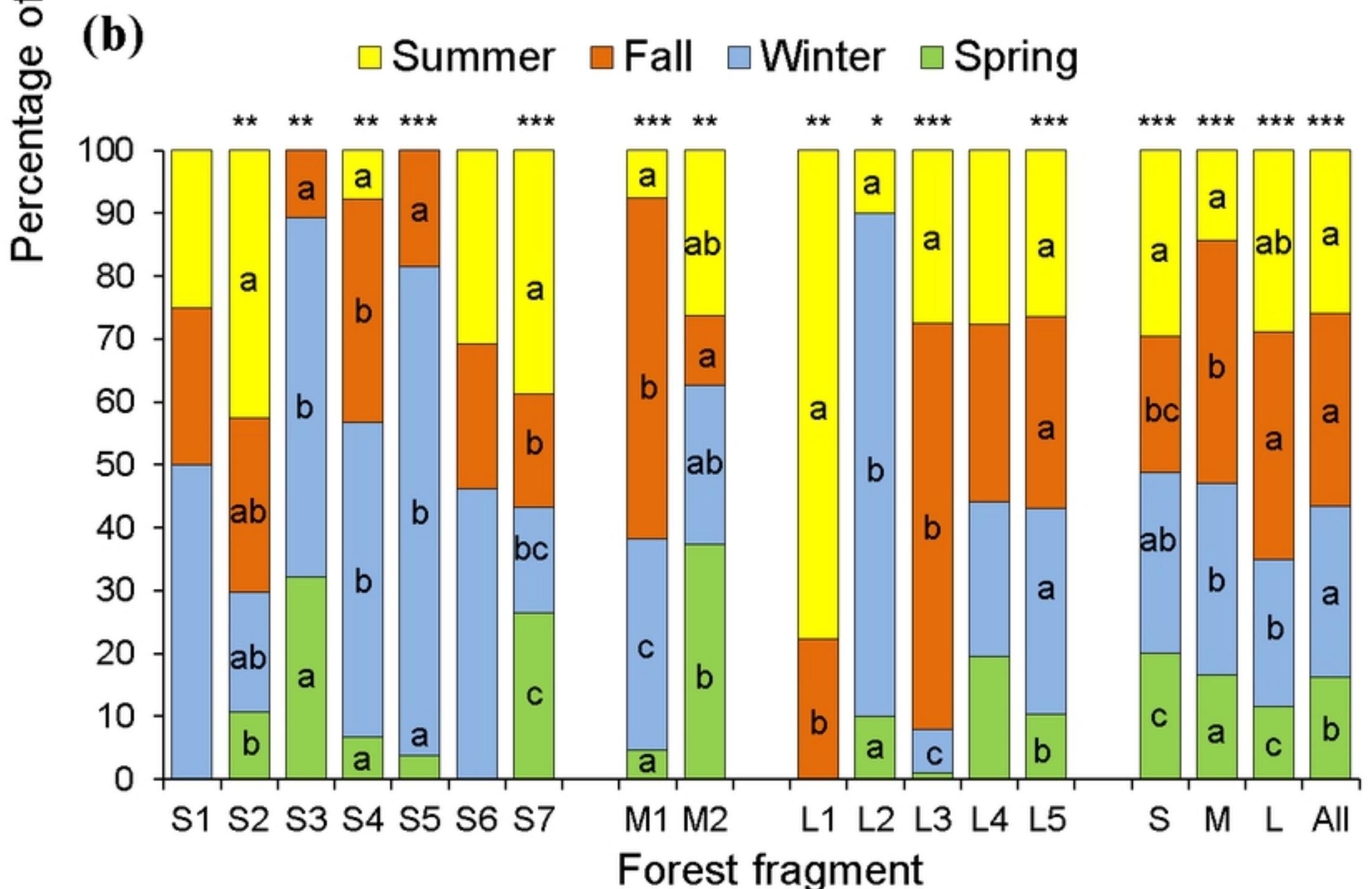



Figure 2

Percentage of drinking records

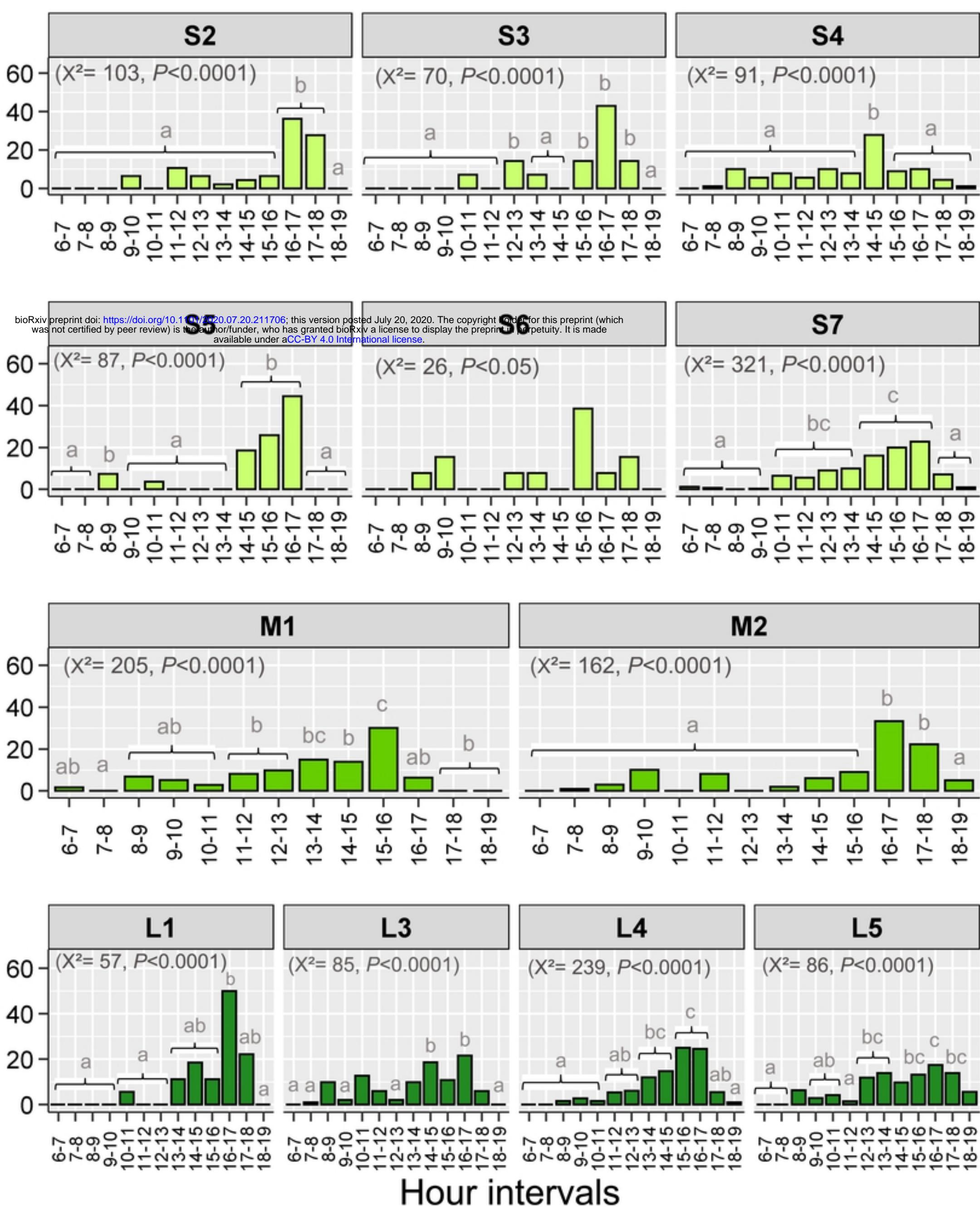


Figure 3