
Dynamic regulatory module networks for inference of cell type

specific transcriptional networks

Alireza Fotuhi Siahpirani1,2,+, Deborah Chasman1,8,+, Morten Seirup3,4, Sara Knaack1, Rupa

Sridharan1,5, Ron Stewart3, James Thomson3,5,6, and Sushmita Roy1,2,7*

1Wisconsin Institute for Discovery, University of Wisconsin-Madison

2Department of Computer Sciences, University of Wisconsin-Madison

3Morgridge Institute for Research

4Molecular and Environmental Toxicology Program, University of Wisconsin-Madison

5Department of Cell and Regenerative Biology, University of Wisconsin-Madison

6Department of Molecular, Cellular, & Developmental Biology, University of California Santa

Barbara

7Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison

8Present address: Division of Reproductive Sciences, Department of Obstetrics and Gynecology,

University of Wisconsin-Madison

+These authors contributed equally.

*To whom correspondence should be addressed.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.18.210328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.210328
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Changes in transcriptional regulatory networks can significantly alter cell fate. To gain insight into

transcriptional dynamics, several studies have profiled transcriptomes and epigenomes at different stages

of a developmental process. However, integrating these data across multiple cell types to infer cell type

specific regulatory networks is a major challenge because of the small sample size for each time point.

We present a novel approach, Dynamic Regulatory Module Networks (DRMNs), to model regulatory

network dynamics on a cell lineage. DRMNs represent a cell type specific network by a set of expres-

sion modules and associated regulatory programs, and probabilistically model the transitions between

cell types. DRMNs learn a cell type’s regulatory network from input expression and epigenomic pro-

files using multi-task learning to exploit cell type relatedness. We applied DRMNs to study regulatory

network dynamics in two different developmental dynamic processes including cellular reprogramming

and liver dedifferentiation. For both systems, DRMN predicted relevant regulators driving the major

patterns of expression in each time point as well as regulators for transitioning gene sets that change

their expression over time.
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Introduction

Transcriptional regulatory networks connect regulators such as transcription factors to target genes, and

specify the context specific patterns of gene expression. Changes in regulatory networks can significantly

alter the type or function of a cell, which can affect both normal and disease processes. The regulatory

interaction between a transcription factor (TF) and a target gene’s promoter is dependent upon TF binding

activity, histone modifications and open chromatin, that have all been associated with differential expression

between cell types [1–4]. To probe the dynamic and cell type-specific nature of mammalian regulatory net-

works, several research groups are generating matched transcriptomic and epigenomic data from short time

courses or for cell types related by a branching lineage [5–7]. However, very few methods have exploited

these datasets to infer cell type specific regulatory networks.

Existing computational methods to infer cell type specific networks can be grouped into three main cat-

egories: (i) Skeleton network-based methods, (ii) Regression-based methods, (iii) Probabilistic graphical

model-based methods. Skeleton-network based methods, combine available protein-protein and protein-

DNA interactions to create a “skeleton” network representing the union of possible edges that can exist

in a cell at any time, and overlay context-specific mRNA levels on this network to derive dynamic snap-

shots of the network [8, 9]. Such approaches rely on a comprehensive characterization of the regulatory

network, which we currently lack for most mammalian cell types. A second group uses linear and non-

linear regression-based methods to predict mRNA levels as a function of chromatin marks [10, 11] and/or

transcription factor occupancies [11] and can infer a predictive model of mRNA for a single condition (time

point or cell type). These regression approaches are applied to each context individually and have not been

extended to model multiple related time points or cell types, which is important to study how networks tran-

sition between different time points and cell states. Multi-task regression methods [12–17] are systematic

approaches to learn multiple related networks. Thus far, these approaches have nearly all been based on

mRNA levels and require a sufficiently large number of mRNA samples for each time point or cell type

to reliably estimate the statistical dependency structure. The last class of methods are based probabilis-

tic graphical models, namely, dynamic Bayesian networks (DBNs), including input-output Hidden Markov

Models [18] and time-varying DBNs [15]. Both DREM and time-varying DBNs are suited for time courses

only, and do not accommodate lineage trees.
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To address the limitations of existing methods and systematically integrate parallel transcriptomic and

epigenomic datasets, we have developed a novel dynamic network reconstruction method, Dynamic Regula-

tory Module Networks (DRMNs) to predict regulatory networks in a cell type-specific manner by leveraging

their relationships to each other. DRMNs are based on a non-stationary probabilistic graphical model and

can be used to model regulatory networks on a lineage. DRMNs represent the cell type regulatory network

by a concise set of gene expression modules, defined by groups of genes with similar expression levels, and

their associated regulatory programs. The module-based representation of regulatory networks enables us to

reduce the number of parameters to be learned and increases the number of samples available for parameter

estimation. To learn the regulatory programs of each module at each time point, we use multi-task learning

that shares information between related time points or cell types.

We applied DRMN to three datasets measuring transcriptomic and epigenomic profiles in multiple cell

types at different stages of cellular reprogramming and during dedifferentiation from liver hepatocytes. Two

of these corresponding to cellular reprogramming including one array [19] and one sequencing experiments

[7]. The third dataset (unpublished) includes RNA-seq and ATAC-seq profiling for mouse dedifferentiation.

DRMN learned a modular regulatory program for each of the cell types by integrating chromatin marks, open

chromatin, sequence specific motifs and gene expression. Compared to an approach that does not model

dependencies among cell types DRMN was able to predict more realistic regulatory networks that were

more concise and reflected the shared relatedness among the cell types, while maintaining high predictive

power of expression. Furthermore, integrating cell type specific chromatin data with cell type invariant

sequence motif data enabled us to better predict expression than each data type alone. Comparison of the

inferred regulatory networks showed that they change gradually over time, and identified key regulators

that are different between the cell types. In particular, among the regulators identified by DRMN were

Klf4, Myc, and Tcf3 which are known to be associated with ESC state. In the hepatocyte data, we found

regulators associated with development such as Gbx2, Six6, and Irx1 associated with transitioning gene sets.

Taken together our results show that DRMN is a powerful approach to infer cell type specific regulatory

networks, which enables us to systematically link upstream regulatory programs to gene expression states

and to identify regulator and module transitions associated with changes in cell state.
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Results

Dynamic Regulatory Module Networks (DRMNs)

DRMNs are used to represent and learn cell-type or time-point specific regulatory networks while leveraging

the relationship among the cell types and time points. DRMN’s design is motivated by the difficulty of

inferring a cell type specific regulatory network from expression when only a small number of samples are

available for each cell type. In a DRMN, the regulatory network for each context, such as a cell type, is

represented compactly by a set of modules, each representing a discrete expression state, and the regulatory

program for each module (Figure 1). The regulatory program is a predictive model of expression that

predicts the expression of genes in a module from upstream regulatory features such as sequence motifs and

epigenomic signals. Like previous module-based representations of regulatory networks [14,20,21], DRMN

organizes genes into modules to reduce the number of parameters and increase the number of samples

available for statistical network inference. In addition, DRMN leverages the relationship between cell types

defined by a lineage tree. The modules and regulatory programs are learned simultaneously using a multi-

task learning framework to encourage similarity between the regulators chosen for a cell type and its parent

in the lineage tree. DRMN allows two ways to share information across cell types: DRMN-FUSED and

DRMN-ST. DRMN-FUSED makes use of regularized regression to share information across cell types,

while the other uses a graph structure prior approach (See Methods). Both approaches are able to share

information across timepoints effectively, however, the DRMN-FUSED approach is computationally more

efficient.

DRMNs offer a flexible framework to integrate diverse regulatory genomic features

DRMN’s predictive model can be used to incorporate different types of regulatory features, such as sequence-

based motif strength, accessibility, and histone marks. We first examined the relative importance of context-

specific (e.g., chromatin marks and accessibility) and context independent features (e.g., sequence motifs)

for building an accurate gene expression model. We compared the performance of both versions of DRMNs

on different feature sets on a mouse reprogramming dataset which had both array and sequencing datasets

(Figure 2). Our metric for comparison was the Pearson’s correlation between true and predicted expression
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in each module (Figure 2A) on three fold cross-validation.

The different features we considered were, (1) Motif only, (2) Histone marks, (3) Histone and Motif,

(4) Accessibility (from atac-seq) and motif, (5) Motifs with quantified accessibility (Q-motif), (6) Histone

marks, motif features and accessibility, (7) Histone marks, Q-motif, and (8) Histone marks, Q-motif and

accessibility. We first compared motif alone, chromatin alone, and chromatin+motif, as these features were

available for both array and sequencing datasets for the DRMN-ST (Figure 2B,C) and DRMN-FUSED

(Figure 2D,E) models. In both models, motifs alone (dark blue markers) have minimal predictive power,

which is consistent across different k and for both array (Figure 2B, D) and sequencing (Figure2C, E)

data. Histone marks alone (red marker) have higher predictive power, however adding both histone marks

and motif features (magenta) has the best performance for k = 3 and 5, with the improved performance to

be more striking for DRMN-ST. For DRMN-Fused, Histone only and Histone + motifs seemed to perform

similarly, although at higher k using histone marks is better. Between different cell types the performance

was very consistent in array data, while for sequencing data, the MEF and MEF48 cell types were harder to

predict than ESC and preIPSC.

We next examined the contribution of accessibility data in predicting expression. As only the sequencing

dataset included ATAC-seq data for each cell type, we performed this comparison on the sequencing dataset

alone (Figure 2C, E). We incorporated the ATAC-seq data in five ways: as a single feature defined by

the aggregated accessibility of a particular promoter (ATAC feature, orange markers Figure 2) combined

with motif sequence, using ATAC-seq to quantify the strength of a motif instance (Q-Motif, cyan markers

Figure 2B, D), combining the ATAC feature with histone and motifs (dark purple marker), combining Q-

Motif with histone (light green), and the ATAC feature with histone and Q-motifs (dark green). We also

considered ATAC-seq as a single feature, but this was not very helpful (Supplementary Figure S1).

Combining the ATAC feature together with motif feature improves performance over the sequence motif

feature (Figure 2B, D orange vs. dark blue markers) suggesting that these are both useful features for

predicting expression. The Q-Motif feature (cyan markers) was better than the motif only feature (dark

blue) at lower k (k=3), however, surprisingly, did not outperform the sequence alone features. One possible

explanation for this is that the Q-Motif feature was more sparse than the sequence only feature, due to the 0

feature value if we could not assign a read to the feature. Finally, we compared the ATAC feature combined
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with chromatin and motif features to study additional gain in performance (Figure 2B, D, purple markers).

Interestingly, even though using ATAC-seq features combined with motif features improves the performance

over motif alone, addition of ATAC-seq feature to histone marks+motif does not change the performance

of either version of DRMN (Figure 2B, D) compared to histone + motif (magenta markers). This suggests

that combination of multiple chromatin marks capture the dynamics of expression levels better than the

chromatin accessibility signal. It is possible that the overall cell type specific information captured by the

accessibility profile is redundant with the large number of chromatin marks and we might observe a greater

benefit of ATAC-seq if there were fewer or no marks. We observe similar trends with Histone+Q-Motif and

Histone+ATAC+Q-motif features (light and dark green) which perform on par to each other, and close to

histone+motif and histone+ATAC+motif.

DRMN-ST and DRMN-FUSED behaved in a largely consistent way for these different feature combina-

tions with the exception of the Histone+Motif feature where DRMN-Fused was not gaining in performance

at higher k. However, when we directly compared DRMN-ST to DRMN-FUSED, DRMN-FUSED was able

to outperform DRMN-ST on most of the feature combinations (Figure 2F, G), with the exception of His-

tone+Motif (magenta), Histone + Motif + ATAC (dark purple), Histone + Q-Motif (light green), and Histone

+ Q-Motif + ATAC (dark green) where the two models were similar. It is likely that DRMN-ST learns a

sparser model at the cost of predictive power (Supplementary Figure S2). For the application of DRMNs

to real data, we focus on DRMN-FUSED due to its improved performance.

Multi-task learning approach is beneficial for learning cell type-specific expression patterns

We next compared the utility of DRMN to share information across cell types or time points while learning

predictive models of expression against several baseline models: (1) those that do not incorporate sharing

(RMN), or (2) those that are clustering-based (GMM-Merged and GMM-Indep). The clustering-based base-

lines offer simple approaches to describe the major expression patterns across time but link cis-regulatory

elements to expression changes only as post-processing steps. For both DRMN and RMN, we learned

predictive models of expression in each module using different regulatory feature sets (Figure 3, Supple-

mentary Figure S3): motif only, chromatin mark only and using motif and chromatin marks. We used

overall correlation and per module expression level comparison to assess the quality of the predictions. We

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.18.210328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.210328
http://creativecommons.org/licenses/by-nc-nd/4.0/


performed these experiments on the array and the RNA-seq dataset for mouse reprogramming.

Using the overall correlation, both variants of DRMN, RMN model and GMM-Indep, vastly outper-

form GMM-Merged, which also had the least stable results across cell types and folds (Supplementary

Figure S3A-F). This suggests that the gene partitions are likely different between the different cell types

and imposing a single structure for all three, as done in GMM-Merged, misses out on the cell type specific

aspects of the data. Based on overall correlation, DRMN models performed at par with RMN and GMM-

Indep for most cases (Supplementary Figure S3A-F), with the exception of Histone and Histone+Motif for

sequencing data (Supplementary Figure S3A, B) where GMM-Indep is worse for lower ks. These results

suggest that based on overall correlation, clustering could offer a first approach to analyze these data, how-

ever, a predictive modeling approach has advantages over a clustering approach as it improves prediction

quality by incorporating additional cis-regulatory data.

We next compared the different models on the basis of the per-module expression levels (Supplementary

Figure S3G-L). DRMN and RMN clearly outperform the GMM-based approaches, which is expected be-

cause GMM is only able to produce one value per module and does not capture the within-module variation.

The overall high correlation for DRMN and RMN demonstrate that a model learned from the regulatory

features is able to provide a more fine-tuned model of expression variation.

Finally, we compared DRMNs to RMNs (Figure 3). Both versions of DRMN outperform or are at par

with their corresponding RMN versions on histone only and histone + motif features (Figure 3, blue for

DRMN and red for RMN). On motifs, the difference between the models was dependent upon the cell line,

the number of modules, k and specific implementation of DRMNs. In particular, DRMN-Fused was at par

or better than RMs on sequence motifs. However, DRMN-ST had a lower performance for several cell

lines on the sequencing data, at higher k. Interestingly, DRMN-ST did have a greater gain in performance

compared to DRMN-Fused on the Histone-Motif and Histone datasets from arrays. It is likely that motif

only features are being overfit to the data resulting in reduced performance. Overall, our results suggest that

a predictive modeling approach as in DRMN and RMN, can explain the expression variation much better

than a clustering based approach, and that using multi-task learning with regularized regression helps to

build accurate models of gene expression.
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Using DRMN to gain insight into regulatory programs of cellular reprogramming

We applied DRMN to gain insights into the regulatory programs of cellular reprogramming. We focus on

the results obtained on the sequencing dataset for reprogramming (Figure 4), although many of the trends

are captured in the array data too (Supplementary Figure S4). DRMN modules learned on the sequencing

data exhibit seven distinct patterns of expression in each of the four cell types (Figure 4A). We observe that

while the expression patterns remains the same, the number of genes in each module in each cell type varies

(Figure 4A). Furthermore, we compared the extent of similarity of matched modules between consecutive

cell types and found that the modules were on average 30-90% similar, exhibiting the lowest similarity at

the MEF48 to pips transition and the highest between the MEFs (Figure 4C). For the array as well, we

observed the greatest dissimilarity between the MEF and pips transition (Supplementary Figure S4). This

agrees with the pips state exhibiting a major change in transcriptional status during reprogramming.

To interpret the modules, we next looked at the regulatory programs inferred for each module (Figure 4B).

While some of these regulators are selected in all cell types, we also observe some cell type specific pat-

terns, such as Pitx2 in module 4 (associated with muscle cell differentiation [22]), Pou5f1 in module 5

and Esrrb in module 6 (associated with pluripotency state [3]), and Insm1 in module 7 (associated with

differentiation [23], all highlighted in red in Figure 4B).

To gain insight into the dynamics of the process, we identified genes that change their module assign-

ments between time points. Overall, of the 17,358 genes, 11,104 were associated with a module transition

in the sequencing dataset (Figure 5A) and of the 15,982 total genes in the array dataset, 3,573 exhibited a

module transition (Supplementary Figure S4A). We clustered the transitioning genes and tested each for

biological processes and also cis-regulatory elements. These transitioning gene sets can provide insight into

the overall dynamics of the process. One of these sets is enriched for binding sites of Tcf3 (Figure 5B),

which is known to repress pluripotency genes [24, 25] and is only enriched in the low expression module

(module 1) in MEF and MEF48. This gene set, induced specifically in ESCs was predicted to be regulated

by histone marks H3K79me2 and H3K27me3 and the TF, Bcl6, which indicates an interplay of histone and

TF binding to enable cell fate specification. These genes move from low expression module (1) in early

stages (MEF and MEF 48) to highly expressed modules (5,and 6) in the ES state (cell type specific module

assignments on left, cell type specific expression in the middle). We also observe that the promoter regions
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of the genes in this set are strongly enriched for the Tcf3 motif (dark purple heatmap on right). The genes

exhibiting this trend include several ESC specific genes such as Sall4 and Dppa2. We observe a similar pat-

tern with the array data as well (Supplementary Figure S5), identifying ESC specific genes induced in the

iPSC state and enriched for Tcf3, thus corroborating the transitioning gene sets between the two expression

platforms.

Using DRMN to gain insight into regulatory programs of hepatocyte dedifferentiation

We next applied DRMNs to understand the temporal dynamics of regulatory programs during hepatocyte

dedifferentiation. A major challenge in studying dynamics in primary cells such as liver hepatocytes is

that they dedifferentiate from their hepatocyte state. Maintaining hepatocytes in their differentiated state is

important for studying normal liver function as well as for liver-related diseases [26]. Dedifferentiation could

be due to the changes in the regulatory program over time, however, little is known about the transcriptional

and epigenetic changes during this process. To address this, we collected RNA-seq and ATAC-seq data for

16 time points from 0 hours to 36 hours (Figure 6).

Here we applied DRMNs with k=5 modules and followed a similar approach for first interpreting the

modules by regulatory programs inferred for each module. We observe pluripotency associated TFs such as

Gbx2 and Kl4 [27], TFs associated with hepatocyte differentiation such as Onecut2 [28], and liver associated

TFs such as Hnf4a [29]. We also tested these genes for GO enrichment (Supplementary Figure S6) and

found that the repressed module (Module 1) was enriched for developmental processes while the other

modules were enriched for diverse metabolic processes. Of these modules 4 and 5, which are associated with

higher expression are enriched for more liver-specific metabolic function such as co-enzyme metabolism,

acetyl CoA metabolism and modules 2 and 3 where enriched for general housekeeping function such as

DNA and nucleic acid metabolism.

We next examined the transitioning gene sets. We identified a total of 150 transitioning gene sets span-

ning 5,762 genes. Many of the transitions were between modules that are adjacent to each other based on

expression levels, suggesting the majority of the dynamic transitions are subtle (e.g., module 1 and 2, Fig-

ure 7A). We next predicted regulators for these transitioning gene sets using a regularized regression model,

MTG-LASSO (Methods). Using this approach we identified 84 gene sets that we could predict a regulator
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of. Figure 7B shows 5 of these gene sets where module assignment change more than 1 (e.g. 1 to 2 to 3) and

regulators associated with these gene sets. These include pluripotency or development associated TFs such

as Irx1 [30] (gene set 420 and 439), Gbx2 [27, 31] and Six6 [32] (gene set 439), Mecom [33], Esrrb [3],

Alx1 [34] (gene set 390). Together, these results suggest that analysis regulatory interactions associated

with specific modules and transitioning gene sets, can help identify transcription factors that drive these

processes.
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Discussion

Cell type-specific gene expression patterns are the result of a complex interplay between transcription factor

binding, genome accessibility and histone modifications. Accordingly, datasets that measure both transcrip-

tomes and epigenomes in closely related cell types and processes are becoming increasingly available. A

key challenge is to interrogate these datasets to identify the underlying gene regulatory networks that drive

context-specific expression changes. However, doing so from such datasets is a major challenge because of

the large number of variables measured in each time point. In this work, we developed, DRMNs, that sim-

plifies genome scale regulatory networks into gene modules and infers regulatory program for each module

in all the input cell types. Using DRMNs, one can characterize the major transcriptional patterns during a

dynamic process over time or over a cell lineage and identify transcription factors and epigenomic signals

that are responsible for these transitions.

Central to DRMN’s modeling framework is to jointly learn the regulatory programs for each cell type

or time point by using multi-task learning. Using two different approaches to multi-task learning, we show

that joint learning of regulatory programs is advantageous compared to a simpler approach of learning

regulatory programs independently per cell type. Furthermore, predictive modeling of expression that also

clusters genes into expression groups is more powerful than learning a single predictive model and simple

clustering. Such models have improved generalizability and are able to capture fine-grained expression

variation as a function of the upstream regulatory state of a gene.

DRMN offers a flexible framework to integrate a variety of experimental setups. In its simplest form,

DRMN can be applied to an expression time course, array or sequencing, and can use sequence specific

motif instances to learn a predictive model. However, DRMN is able to integrate other types of regulatory

signals such as chromatin accessibility measured using ATAC-seq, histone modifications and transcription

factor measured using ChIP-seq. The datasets that we applied DRMN to include exemplars of different

designs. In particular the reprogramming sequencing dataset was the most comprehensive with nine histone

marks, ATAC-seq and expression measured for four cell types. In contrast the dedifferentiation dataset

measured RNA-seq and ATAC-seq for 16 time points.

The Chronis et al [7] dataset enabled us to systematically study the utility of different cell-type specific

measurements such as chromatin marks and accessibility to predict expression. When combining ATAC-seq
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with chromatin marks to predict expression, we did not see a substantial improvement in predictive power.

This is likely because of the large number of chromatin marks in our dataset. However, in both array and

sequencing data we found that combine sequence features (motifs) and histone modifications had the highest

predictive power. In our application to the Chronis et al dataset, we did not observe a substantial advantage

of using accessible motif instances (Q-motif) as opposed to all motif instances. This is most likely due to the

sparsity of the feature space of Q-motifs. As future work, an important direction of work would be to explore

additional ways to incorporate the ATAC-seq signal for each motif could provide a greater benefit [2].

We applied DRMNs to two distinct types of developmental processes: mouse reprogramming (3-4 cell

types) and hepatocyte dedifferentiation (16 time points). DRMN application identified the major patterns

of expression in both sequencing and array reprogramming datasets as well as the dedifferentation dataset.

When comparing the results from both processes there were greater changes in expression in the repro-

gramming time course compared to dedifferentiation indicative of the different dynamics in the two pro-

cesses. Importantly DRMN was able to identify key regulators for each module as well as dynamic gene

sets in both cases. Among the regulators identified by DRMN for the induces genes in the reprogramming

dataset included known pluripotency markers. Similarly, DRMN predicted liver transcription factors such

as HNF4G::HNF4A for induced genes in the dedifferentiation dataset. In both datasets, we identified tran-

sitioning genes and predicted regulators for these genes using simple or multi-task regression. This enabled

us to identify regulators important for transitions. In particular for ESC, we found a gene set that exhibited

dynamics predictable by histone elongation marks and a transcription factor Bcl6. Similarly for hepatocyte

dedifferentiation, we found gene sets associated with changes in HNF4G motif accessibility.

Currently DRMN operates on regulatory features on gene promoter regions. An important direction

of future work would be to incorporate long-range interactions to enable distal regions to contribute to

the expression levels of gene. Another direction would be to use more generic sequence features, such as

k-mers [35] to enable the discovery of novel regulatory elements and offer great flexibility in capturing

sequence specificity and its role in predictive models of expression.

Taken together, DRMN offers a powerful and flexible framework to model time series and lineage

specific regulatory genomic datasets and enables inference of cell type-specific regulatory programs. As

datasets that profile epigenetic and transcriptomic dynamics of specific processes become available, methods
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like DRMNs will become increasingly useful to examine cell type and context-specific regulatory networks

form these datasets.

Materials and methods

Dynamic Regulatory Module Networks (DRMNs)

DRMN model description

The DRMN is a probabilistic model of regulatory networks for multiple cell types related by a lineage tree.

DRMN is suited for datasets with multiple time points or conditions, with a small number of samples (e.g,

one or two) per condition and several types of measurements, such as RNA-seq, ChIP-seq and ATAC-seq.

Due to the small sample size, a standard regulatory network, that connects individual TFs to target genes for

each time point, cannot be inferred. Instead in DRMN, we learn regulatory programs for groups of genes.

For C cell types, the DRMN model is defined by a set of regulatory module networks, R = {R1, ..., RC},

a lineage tree τ , and transition probability distributions Π = {Π1, ...,ΠC}, Figure 1. For each cell type c,

Rc =< Gc,Θc > defines the regulatory program as Gc, the set of edges between regulators and modules,

and Θc, the parameters of a regression function for each module that relates the selected regulatory features

to the expression of the module’s genes. Transition matrices {Π1, ...,ΠC} capture the dynamics of the

module assignments in one cell type c given its parent cell type in the lineage tree τ . Specifically, Πc(i, j)

is the probability of any gene being in module j given that its parental assignment is to module i. For the

root cell type, this is simply a prior probability over modules.

The DRMN inputs are (i) cell type-specific expression for N genes X ∈ RN×C , assuming we have

a single measurement of a gene in each cell type; (ii) gene-specific regulatory features for F candidate

regulators YN×C×F ; and (iii) the lineage tree, τ . The regulatory signals used in the regulatory program

can be either context-independent (e.g., a sequence-based motif network) or context-specific (e.g., a motif

network informed by epigenomic measurements). The number of modules, k, is provided as input to the

method. Given the above inputs, the DRMN model aims to optimize the following score:

P (R|X,Y) ∝ P (X|R,Y)P (R) (1)
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Here P (X|R,Y) is the data likelihood given the regulatory program, and P (R), is a prior probability

distribution of the regulatory program. The data likelihood can be decomposed over the individual cell

types: P (X|R,Y) =
∏
c P (Xc|Rc, Yc). Within each cell type, this is modeled using a mixture of predictive

models, one model for each module. The prior, P (R) can in turn be defined in terms of the graph structure

Gc and parameters, Θc. We used two formulations for this prior to enable sharing information: DRMN-

Structure Prior (DRMN-ST) defines a structure prior over the graph structures P (G1, ..., GC) while DRMN-

FUSED uses a regularized regression framework and implicitly defines priors on the P (θ1, · · · , θC). In both

frameworks, we share information between the cell types/time points to learn the regulatory programs of

each cell type or time point.

DRMN-ST: Structure prior approach. The structure prior, P (R), which is defined only over the graph

structures, P (G1, ..., GC) assumes the parameters are set to their Maximum likelihood setting. The prior

term P (G1, ..., GC) determines how information is shared between different cell types at the level of the

network structure and encourages similarity of regulators between cell types. P (G1, ..., GC) is computed

using the transition matrices {Π1, ...,ΠC} and decomposes over individual regulator-module edges within

each cell type as follows:

P (G1, · · · , GC) =
∏
f→k

P (If→k)

where

P (If→k) = P (Irootf→k)
∏

c′→c∈τ
P (Icf→k|Ic

′
f→k)

where Icf→k is an indicator function for the presence of the edge f → k for cell type c, between a

regulator f and a module k. To define P (Icf→k|Ic
′
f→k), we use the transition probability of the modules as:

P (Icf→k|Ic
′
f→k) =


Πc(k|k) if Icf→k = Ic

′
f→k

1−Πc(k|k) otherwise

Here the first option gives the probability of maintaining the same state from parent to child cell lines, if the

edge has the same state in both parent and child (is present in both c and c′ or is absent in both), and the
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second option gives the probability of changing the edge state.

We implemented a greedy hill climbing algorithm to incorporate the structure prior. See Section DRMN

learning for more details of the learning algorithm.

DRMN-FUSED: Parameter prior approach. Our second approach used a fused group LASSO formu-

lation to share information between the cell types/time points by defining the following objective:

min
Θ

∑
c

||Xc,k − Yc,kΘT
c,k||22 + ρ1||Θk||1 + ρ2||RΘk||1 + ρ3||Θk||2,1, (2)

where Xc,k is the expression vector of genes in module k in cell line c, Yc,k is the feature matrix (size

of module k by F , the number of features) corresponding to the same genes, and Θc,k is the vector of

regression coefficients for the same module and cell line (1 by F , non-zero values correspond to selected

features), and Θk is the C by F matrix resulting from concatenation of Θc,k vectors (number of cell types/

time points by number of features, C by F ). R is a C − 1 by C matrix, encoding the lineage tree. Each

row of R correspond to an edge of the tree, meaning that if row i of R correspond to the edge c1 → c2

in the lineage tree, we set R(i, c1) to 1, R(i, c2) to −1, and all other values in that row to 0. This would

mean that RΘk would be a C − 1 by F where row i correspond to Θc1,k − Θc2,k, the difference between

regression coefficients of cell lines c1 and c2. ||.||1 denotes l1-norm (sum of absolute values), ||.||2 denotes

l2-norm (square root of sum of square of value), and ||.||2,1 denotes l2,1-norm (sum of l2-norm of columns

of the given matrix). ρ1, ρ2 and ρ3 correspond to hyper parameters, with ρ1 for sparsity penalty, ρ2 to

enforce similarity between selected features of consecutive cell lines in the lineage tree, and ρ3 to enforce

selecting the same features for all cell lines/time points. Thus, ρ2 controls the extent to which more closely

related cell types are closer in their regulatory program, which ρ3 controls the extent to which all the cell

types share similarity in their regulatory programs. We set these hyper parameters based on cross-validation

by performing a grid search for ρ1 ∈ {0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130}, and

ρ2, ρ3 ∈ {0, 10, 20, 30, 40, 50}. We implemented the algorithm described in MALSAR Matlab package

[36], which uses accelerated gradient method [37, 38] to minimize the objective function above in C++.
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DRMN learning

DRMNs are learned by optimizing the DRMN score (Eqn 1), using an Expectation Maximization (EM)

style algorithm that searches over the space of possible graphs for a local optimum (Algorithm 1). The

algorithm uses a multi-task learning approach to jointly learn the regulatory programs for all cell types. In

the M step, we estimate transition parameters (M1 step) and the regulatory program structure (M2 step). In

the E step, we compute the expected probability of a gene’s expression profile to be generated by one of the

regulatory programs.

Algorithm 1: DRMN Algorithm
Input:
- Expression data X = {X1, ..., XC},
- Regulatory features Y = {Y1, ..., YC},
- Initial module assignments M = {M1, ...,MC}
Output:
- Regulatory programs R = {R1 = (G1,Θ1), ..., RC = (GC ,ΘC)},
- Transition probabilities Π = {Π1, ...,ΠC}
while not converged do

M1: Estimate transition parameters (Π1, ...,ΠC)
M2: Update regulatory programs (G1, ..., GC ,Θ1, ...,ΘC)
E: Update module assignment probabilities and module assignments (Γ,M1, ...,MC)

end

Estimate transition parameters (M1 step): Let γg,ck,k′ be the probability of gene g in cell type c to belong

to module k, and, in its parent cell type c′, to module k′. We calculate the probability of transitioning from

k′ in c′ to k in c as Πc(k, k
′) =

∑
g γ

g,c

k,k′∑
g,k,k′ γ

g,c

k,k′
.

Update regulatory programs (M2 step): Recall that the regulatory program for each cell type c isRc =<

Gc,Θc >, where Gc is a set of regulatory interactions f → k from a regulatory feature f to a module k, and

Θc are the parameters of a regression function for each module that relates the selected regulatory features

to the expression of the module’s genes. The estimation of the regulatory programs is specific to the way in

which information is shared across tasks, and differs in the DRMN-ST and DRMN-FUSED approach.

We assume that the expression levels are generated by a mixture of experts, each expert corresponding

to a module. Each expert uses a Multivariate normal distribution, which means that the likelihood of gene
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g’s expression being generated by the regulatory program for a module k in cell type c can be written as:

P (xg,c|Rc,k,yg,c) ∼ N(µc,k,Σc,k)

= N(θ0
c,k +

∑
f∈Gc,k

θfc,ky
f
g,c,Σc,k)

whereGc,k is the current list of regulators selected for module k in cell type c. This is the equivalent of a

linear regression to predict expression of genes in module k in cell type c, using regulatory features of genes

in cell type c. In the DRMN-ST approach, the regulatory interactions are learned by per-module per-cell type

regression in a greedy hill-climbing framework. At initialization, all regulatory network structures Gc are

empty, and the parameters Θc are computed simply as the empirical mean and variance of the genes initially

assigned to each module in each cell type. In each iteration of DRMN learning, we fix the current module

assignments Mc for all cell types c and update the regulatory program of each module independently. In

each iteration, we score each potential regulatory feature based on its improvement to the likelihood of the

model, and choose the regulator with maximum improvement (if over a minimum threshold). This regulator

is added to the module’s regulatory program for all cell types for which it improves the cell type-specific

likelihood. For the regularized regression version, DRMN-FUSED, the parameters are learned using an

accelerated gradient method [37, 38] to minimize the objective function in Eqn 2.

Update soft module assignments (E step): Let γg,ck|k′ be the probability of gene g in cell type c to belong

to module k, given that in its parent cell type c′, it belonged to module k′. We also introduce αcg, a vector

of size K × 1 where each element αcg(c
′) specifies the probability of observations given the parent state is

c′. We estimate the probabilities using a dynamic programming procedure, where values at internal nodes

in the lineage tree are computed using the values for all descendent nodes, down to the leaves.

If c is a leaf node, we calculate

γg,ck|k′ = P (xg,c|Rc,k,yg,c)Πc(k|k′)

where the first term is the probability of observing expression of gene g in cell type c in module k (given its
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regulatory program and regulatory features), and the second is the probability of transitioning from module

k′ in the parent cell type c′ to module k in cell type c.

For a non-leaf cell type c:

γg,ck|k′ = P (xg,c|Rc,k,yg,c)Πc(k|k′)
∏

c→l∈τ
αg,l(k)

For both internal and leaf cell types, we write the joint probability of the (k′, k) pair as γg,ck,k′ =
γg,c
k|k′

αg,c(k′) ,

where αg,c(k′) =
∑

k γ
g,c
k|k′ is the probability of g’s expression in any module given parent module k′.

Termination: DRMN inference runs for a set number of iterations or until convergence. Final module

assignments are computed as maximum likelihood assignments using a dynamic programming approach.

While module assignments between consecutive iterations do not change significantly, the final module as-

signments are significantly different from the initial module assignments, and predictive power of model

significantly improves as iterations progress (though improvements are small after 10 iterations, Supple-

mentary Figure S7).

In our experiments, we ran DRMN for up to ten iterations. When using greedy hill climbing approach,

to decrease computation time, we inferred regulatory edges in small batches per DRMN iteration. For each

full DRMN iteration, the M2 step was run until up to five regulators were added per module.

Hyper parameter tuning of DRMN-FUSED To assess the effect of hyper-parameters on the performance

of DRMN when using fused group LASSO, we performed a grid search on a wide range of parameters

values. Supplementary Figure S8 shows the average correlation (averaged over modules, and averaged

over cell lines) for different sequencing feature sets (same features sets described in Figure 2). We observe

that increase in ρ3 penalty (which enforces the selection of the same features across all cell lines) decreases

the predictive power of the model in almost all cases (no penalty (magenta curve) vs. high penalty (yellow

curve)). Supplementary Figure S9 shows the effect of ρ1 (sparsity penalty) and ρ2 (fused penalty) on

the predictive power of the model. We observe that when using chromatin features (Motif+Chromatin,

and ATAC+Motif+Chromatin), increase in ρ1 (increasing the sparsity) and increase in ρ2 (increasing the

similarity of inferred networks) improves the predictive power of the method. Inversely, for the feature sets
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that do not use chromatin (Motif, Q-Motif, and ATAC+Motif), increase in ρ1 (sparser models) decrease

the predictive power of the model. Increase in ρ2 decrease the predictive power of the method for sparser

models, while for denser networks (lower values of ρ1) changes in ρ2 does not significantly change the

performance. Finally, we note that while ρ1 is the main driver of sparsity of the model, increase in ρ2 also

increase the sparsity of the model (second column in Supplementary Figure S9).

Input datasets

We applied DRMN to study regulatory program transitions during reprogramming of differentiated cells to

pluripotent cells. We obtained four datasets, one measured by array and three by sequencing. Three of these

assayed mouse cell types representing different stages of reprogramming, while the fourth one focused on

hepatocyte dedifferentation. The reprogramming dataset included differentiated mouse embryonic fibrob-

lasts (MEFs), partially reprogrammed induced pluripotent stem cells (pre-iPSCs), and pluripotent stem cells

(iPSCs or embryonic stem cells, ESCs).

Reprogramming array data

We obtained measurements of gene expression and eight chromatin marks in three cell types that were pro-

cessed by [19]. The measurements spanned three cell types: MEF, pre-iPSC, and iPSC. The original data

were collected from multiple publications [19, 39–41]. The gene expression of 15,982 genes was measured

by microarray. Eight chromatin marks were measured by ChIP-on-chip (chromatin immunoprecipitation

followed by promoter microarray). For each gene promoter, each mark’s value was averaged across a 8000-

bp region associated with the promoter. The chromatin marks were associated with active transcription

(H3K4me3, H3K9ac, H3K14ac, and H3K18ac), repression (H3K9me2, H3K9me3, H3K27me3), and tran-

scription elongation (H3K79me2).

Reprogramming data from Chronis et al

Chronis et al. [7] assayed gene expression with RNA-seq, nine chromatin marks with ChIP-seq, and chro-

matin accessibility with ATAC-seq using sequencing in different stages of reprogramming (MEF, MEF48

(48 hours after start of the reprogramming process), pre-iPSC, and embryonic stem cells (ESC)). We aligned
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all sequencing reads to the mouse mm9 reference genome using Bowtie2 [42]. For RNA-seq data, we quan-

tified expression to TPMs using RSEM [43] and applied a log transform. After removing unexpressed genes

(TPM< 1), we had 17,358 genes. The epigenomic data spanned nine histone modification marks (H3K27ac,

H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, and H3K9me3), and

chromatin accessibility (ATAC-seq). For the epigenomic datasets, we obtained per-base pair read coverage

using BEDTools [44], aggregated counts within ±2, 500 bps of genes’ transcription start sites, and applied

log transformation.

Hepatocyte dedifferentiation time course data

For the dedifferentiation time course, samples were extracted from adult mouse liver, and gene expression

and chromatin accessibility was assayed by RNA-seq and ATAC-seq at 0 hours, 0.5 hours, 1 hours, 2 hours,

and every 2 hours until 24 hours, and finally 36 hours (16 time points in total). All sequencing reads

were aligned to mouse mm10 reference genome using Bowtie2 [42], and gene expression was quantified

using RSEM [43]. Any gene with TPM= 0 in all time points was removed, resulting in 14,794 genes

with measurement in at least one time point. Per-base pair read coverage for ATAC-seq was obtained using

BEDTools [44], and counts were aggregated within±2, 500 bps of genes’ transcription start sites. Both gene

expression and accessibility data were quantile normalized across 16 time points and then log transformed.

Feature set generation for reprogramming datasets

We considered the following features for each gene to predict its expression. Feature datasets were processed

as described above. Features involving the accessibility data were only available for the sequencing dataset

(marked below with *). Any missing values in the feature data were set to 0.

• Motif network, scored by −log10(p-value) of motif instances (features for 353 TFs). We assembled

a motif-based, context-independent network by computationally identifying links between transcrip-

tion factor motifs and the genes from the expression data based on the presence of a motif instance

within the gene’s promoter region. We downloaded a meta-compilation of mouse motif PWMs from

http://piq.csail.mit.edu/ [45], which were sourced from multiple databases [46–48]. From the full mo-

tif list, we used only those annotated as transcription factor proteins [49]. We applied FIMO [50] to
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scan the mouse genome (Ensembl version NCBIM37.66) for significant motif instances (p < 1e− 5).

This resulted in a total of 353 TFs. Each edge in the motif network between transcription factor r and

gene g is scored with the smallest p-value for any instance of r within 2kb of any TSS for g. We also

assessed a z-score transformation of the p-values, which performed poorly compared to the p-value

representation (not shown).

• Chromatin mark signal (feature for 8 marks in array dataset, 9 marks in sequencing dataset)

• Chromatin + motif: Concatenation of chromatin and motif features (361 features array, 362 sequenc-

ing)

• *ATAC: Log ATAC-seq signal (1 feature).

• *ATAC + motif: ATAC-seq signal and motif features (354 features)

• *Q-motif: Motif features scored by ATAC-seq signal (353 features) We quantified cell type-specific

motif networks using the ATAC-seq data from the sequencing dataset. We used BedTools (bedtools

genomecov -ibam input.bam -bg -pc > output.counts) to obtain the aggregated sig-

nal on each base pair. We defined the feature value as the log-transformed mean ATAC-seq count

under each motif instance.

• *Chromatin + ATAC + motif: Concatenation of chromatin, accessibility, and motif features (363

features).

• *Chromatin + Q-motif: Concatenation of chromatin and Q-motif features (362 features)

• *Chromatin + ATAC + Q-motif: Concatenation of chromatin, accessibility, and Q-motif features (363

features).

Feature set generation for dedifferentiation datasets

We used PIQ package [45] to identify genome-wide motif instances using PWMs from CIS-BP database

[51]. Motif instances were mapped to pm2, 500bp of genes’ TSS, creating 2,856 features. Motif instances

were scored by ATAC-seq signal (see Q-Motif above), and accessibility signal on promoter (pm2, 500bp
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of genes’ TSS) was added as an additional feature. Features were quantile normalized and log transforemd

across the 16 time points.

Experiments to evaluate DRMN and feature combinations

In our experiments, we sought to evaluate (a) whether sharing information between cell types is beneficial,

and (b) which types of regulatory features are most useful to predict gene expression. We evaluated ex-

pression prediction in three-fold cross-validation, where a model was trained on two-thirds of the genes and

used to predict expression for the held-aside third. We ran each experiment over a range of the number of

modules, k ∈ 3, 5, 7, 9, 11.

DRMN’s performance was compared to that of two baseline algorithms. RMN is simply DRMN run on

one cell type at a time, keeping all other experimental parameters identical. GMM applies Gaussian Mixture

Model clustering to gene expression values, and predicts the expression of a held-aside gene as the mean

of the module with the highest posterior probability. We ran GMM per-cell type (GMM-Indep) as well as

on a merged expression matrix with all three cell types (GMM-Merged). For GMM-Merged, the expression

predictions were scored per cell-type.

We evaluated DRMN to other base line methods based on the ability to predict held-aside gene expres-

sion in three-fold cross validation. Expression prediction was evaluated using two metrics. First, the overall

expression prediction was assessed using, the Pearson’s correlation between actual and predicted expression

of all held-aside genes. Second, the average Pearson’s correlation in each module, which reflects a more

fine-grained view of the utility of using regulatory features in explaining the expression levels of individual

genes in a module. The first metric examines how each model (e.g., simple expression-based clustering

approach versus expression and regulatory feature-based model), explains the overall variation in the data.

The second metric assess the value of using additional regulatory features, such as, sequence and chromatin

to predict expression. We assessed this ability using a 3-fold cross validation scheme for different values

of k, number of clusters, and compared the observed (true) expression in the three test sets to predicted

expression values.
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Identification of transitioning genes

A transitioning gene was defined as a gene that its module assignment was changed in at least one time

point/cell line. These genes were grouped into transitioning gene sets using hierarchical clustering approach

(with city block as distance metric and 0.05 as distance threshold) using our in-house programs.

Prediction of regulators for transitioning genes

To identify regulators associated with transitioning gene sets in dedifferentiation dataset, we used Multi-

Task Group LASSO. Briefly, in each transitioning gene sets, we solve a linear regression for each gene to

predict its expression (across time points) using Q-motif features as predictor, with the group constraint to

enforce selection of similar predictors for all the genes in the gene set:

min
Θ
||X − YΘ||22 + λ||Θ||2,1,

where X is the expression matrix of genes in the transitioning gene set, and Y correspond to fea-

ture matrix of Q-motif features of regulators for genes in the transitioning gene set. We used MATLAB

implementation of multi-task group LASSO from SLEPP package [52]. We performed leave-one-out cross-

validation and selected regulators that were selected in at least 60% of the trained models. Additionally, we

used randomized feature data to train 40 random models, and asked if the frequency of selecting a regulator

was significantly higher random models (z-test with p-value< 0.05 using mean and standard deviation from

the 40 random models).

Availability

The DRMN codeis available at https://github.com/Roy-lab/drmn
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Figure 1: The outline of Dynamic Regulatory Module Networks (DRMN) method. Inputs are a lineage tree
over the cell types, cell type-specific expression levels, a shared skeleton regulatory network (e.g. sequence
specific motif network), and optionally cell type-specific features such as histone modification marks or
chrmatin accessibility signal. The output is a learned DRMN, which consists of cell type-specific expression
state modules, their regulatory programs, and transition matrices describing dynamics between the cell types.
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Figure 2: (A) Predicted expression vs. observed expression, for iPSC/ESC, for (i) DRMN-ST on array
dataset, (ii) DRMN-ST on sequencing dataset, (iii) DRMN-FUSED on array dataset, and (iv) DRMN-
FUSED on sequencing dataset. Average per-module correlation for individual cell lines as a function of
different number of modules, for (B) DRMN-ST on array dataset, (C) DRMN-ST on sequencing dataset,
(D) DRMN-FUSED on array dataset, and (E) DRMN-FUSED on sequencing dataset. Average per-module
correlation for individual cell lines for DRMN-ST vs. DRMN-FUSED for (F) array dataset, and (G) se-
quencing dataset. Each shape correspond to a cell line and each color correspond to a different feature
set.
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Figure 3: Average per-module correlation for individual cell lines as a function of different number of
modules for single task and multi task versions of the method, for A-C) DRMN-ST on sequeincing dataset,
D-F) DRMN-FUSED on sequeincing dataset, G-I) DRMN-ST on array dataset, and J-L) DRMN-FUSED
on array dataset. Each shape correspond to a cell line and each color correspond to a different method.
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Figure 4: Annotation of DRMN modules, for models trained on chromatin+q-motif with k = 7 modules,
for sequencing dataset. (A) The gene expression pattern of the 7 modules. The number above the heatmap
correspond to the number of genes in that module. (B) Inferred regulatory program for different modules
and cell lines. (C) Similarity of modules across cell lines.
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Figure 5: (A) Bird’s eye view of groups of transitioning genes. On left is the average expression of the genes
in the group, in the middle is module assignments, and on right the number of genes in that group. (B) Mod-
ule assignments, gene expression, presence or absence of TCF3 motif, and feature values for H3K27me3,
H3K79me2, and Bcl6b, for genes that transition from low to high expression between differentiated or
partially reprogrammed cells and ESCs/iPSC.
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Module 1

M5303_1.02_Bcl6b
M5831_1.02_Sox21::Sox2::Sox14

M3666_1.02_Rest
M5698_1.02_Crx::Prrxl1::Otx1

M5718_1.02_Pitx2::Pitx3::Pitx1
M0863_1.02_Crx

M6073_1.02_Rara::Rarb::Rarg
M1999_1.02_Gsc2::Alx3::Alx1

M5999_1.02_Hlf::Tef::Dbp
M5941_1.02_Alx3::Alx1::Uncx

M5217_1.02_Ahr::Ahrr
M0742_1.02_Foxa1::Foxa3::Foxa2

M5581_1.02_Irx5::Irx4::Irx6
M1929_1.02_Trp53
M2118_1.02_Nfya

M4717_1.02_Nkx2-3::Nkx2-6::Nkx2-5
M1246_1.02_Pou5f1::Pou3f1::Pou2f2

M5786_1.02_Rorc::Rorb::Rora
M0195_1.02_Tcf15::Msc::Tcf21

M5482_1.02_Gbx2::Gbx1
M5838_1.02_Sox10::Sox8::Sox9

M4551_1.02_Zfp110::Zfp369
M2056_1.02_Twist1::Twist2

M6420_1.02_Plag1
M0882_1.02_Isx

M0214_1.02_Tcf15::Msc::Tcf21
M5884_1.02_Tbx20::Tbx1
M5337_1.02_Hlf::Tef::Dbp

M1096_1.02_Gsc2::Alx3::Alx1
M5714_1.02_Prrx1::Prrx2::Alx3
M5715_1.02_Prrx1::Prrx2::Alx3

M6401_1.02_Crx::Otx1::Otx2
M0985_1.02_Irx5::Irx4::Irx6

M3385_1.02_Foxa1::Foxa3::Foxa2
M6338_1.02_Nr3c2::Nr3c1::Ar

M3226_1.02_Mecom
M4703_1.02_Nr2f6::Nr2f1::Nr2f2

M5972_1.02_Zfp410
M1083_1.02_Alx3::Alx1::Uncx

M5413_1.02_Esrrg::Esrra::Esrrb
M3401_1.02_Hmx1::Hmx3::Hmx2
M4964_1.02_Foxa1::Foxa3::Foxa2

M5629_1.02_Mga
M4945_1.02_En1::En2

M6070_1.02_Rara::Rarb::Rarg
M0902_1.02_Lhx9::Lhx2

M1902_1.02_Prrx2::Arx::Alx1
M6502_1.02_Tbp::Tbpl2

M5502_1.02_Gsx2::Hoxa4::Gsx1
M5205_1.02_Six1::Six2

M6102_1.02_Tcfap2a::Tcfap2c::Tcfap2b
M2041_1.02_Irx5::Irx4::Irx6

M5597_1.02_Lhx9::Lhx2
M5360_1.02_E2f5::E2f4
M5192_1.02_Six4::Six5

M5787_1.02_Rorc::Rorb::Rora
M4994_1.02_Hlx

M1065_1.02_Noto
M6062_1.02_Pknox2::Meis3::Pknox1

M6069_1.02_Rara::Rarb::Rarg
M3298_1.02_Foxa1::Foxa3::Foxa2
M5892_1.02_Tbx21::Eomes::Tbr1

M5357_1.02_E2f3::E2f2
M4489_1.02_Spib::Spic::Sfpi1

M4744_1.02_Irx5::Irx4::Irx6
M0630_1.02_Dmrt1

M2008_1.02_Six6::Six3
M5040_1.02_Pknox2::Meis3::Meis2

M2917_1.02_Ahr::Ahrr
M5359_1.02_E2f3::E2f2

M2585_1.02_Rbpj::Rbpsuh-rs3
M1912_1.02_Rbpj::Rbpsuh-rs3

M5847_1.02_Sox10::Sox8::Sox9
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Module 3

M5847_1.02_Sox10::Sox8::Sox9
M5848_1.02_Sox10::Sox8::Sox9
M5811_1.02_Sox10::Sox8::Sox9

M1434_1.02_Nr2f6::Nr2f1::Nr2f2
M1495_1.02_Nr2c2::Nr2f6::Nr2f1

M6383_1.02_Nr1h2::Nr1h3
M2917_1.02_Ahr::Ahrr

M5626_1.02_Meox1::Meox2
M6093_1.02_Sox3

M5851_1.02_Sox10::Sox8::Sox9
M6054_1.02_Msx1::Msx2::Msx3

M2586_1.02_Tcf7l2
M1041_1.02_Hoxc13::Hoxa13::Hoxd13

M5449_1.02_Foxa1::Foxa3::Foxa2
M6250_1.02_Foxa1::Foxa3::Foxa2
M5894_1.02_Tbx21::Eomes::Tbr1

M1084_1.02_Nobox
M1490_1.02_Nr2e1

M3327_1.02_Gata6::Gata4::Gata5
M5356_1.02_E2f2

M3678_1.02_Pou3f1::Pou2f2::Pou2f1
M2558_1.02_Hoxc8::Hoxb8::Hoxd8

M6073_1.02_Rara::Rarb::Rarg
M0696_1.02_Ehf::Elf3::Elf5
M0697_1.02_Ehf::Elf3::Elf5

M5131_1.02_Tcf4::Tcf3::Tcf12
M4703_1.02_Nr2f6::Nr2f1::Nr2f2

M5014_1.02_Tcf4::Tcf3::Tcf12
M5625_1.02_Meox1::Meox2

M6425_1.02_Pou3f1
M6302_1.02_Hoxc13::Hoxa13::Hoxd13

M6285_1.02_Onecut3::Onecut2::Onecut1
M0947_1.02_Nkx2-3::Nkx3-2::Nkx3-1

M1964_1.02_Myc
M5354_1.02_E2f2

M1091_1.02_Evx1::Evx2
M6415_1.02_Hoxd4::Hoxb3::Hoxd3

M0918_1.02_Evx1::Evx2
M6026_1.02_Hoxd10::Hoxd11::Hoxc11

M5775_1.02_Rfx8::Rfx4::Rfx5
M5535_1.02_Hoxc13::Hoxa13::Hoxd13

M6504_1.02_Tbx2::Tbx3
M0710_1.02_Etv1::Fev::Etv2

M6412_1.02_Pbx4::Pbx2::Pbx3
M5276_1.02_Phf21a::Setbp1::Ahc�1

M5540_1.02_Hoxc13::Hoxa13::Hoxd13
M5692_1.02_Olig2::Olig1::Bhlhe22

M5524_1.02_Hnf4g::Hnf4a
M6516_1.02_Tcf4::Tcf3::Tcf12

M0936_1.02_Gsc::Gsc2
M5859_1.02_Spdef
M5674_1.02_Nr2e1

M6502_1.02_Tbp::Tbpl2
M5879_1.02_Tbx10::Tbx20::Tbx1

M4462_1.02_Etv1::Fev::Etv3
M3990_1.02_Stat5b::Stat5a

M4603_1.02_Mbtps2::Zfp42::Yy1
M6154_1.02_A�5::A�4

M0737_1.02_Foxa1::Foxa3::Foxa2
M5308_1.02_Olig2::Olig1::Bhlhe22

M5827_1.02_Sox21::Sox2
M3679_1.02_Pou3f1::Pou2f2::Pou2f1

M2041_1.02_Irx5::Irx4::Irx6
M5768_1.02_Rara::Rarb::Rarg

M6095_1.02_Sox3
M1023_1.02_Obox6::ENSMUSG00000040953

M5357_1.02_E2f3::E2f2
M1907_1.02_Spib::Spic::Sfpi1

M2955_1.02_Zeb1
M0905_1.02_Hoxb5::Hoxb8::Hoxd8
M1003_1.02_Hoxc9::Hoxc8::Hoxb8

M6401_1.02_Crx::Otx1::Otx2
M6245_1.02_Foxo3::Foxo1::Foxo6

M6136_1.02_Bcl6
M6156_1.02_Bach2::Bach1

M6077_1.02_Rfx8::Rfx4::Rfx5
M5465_1.02_Foxo3::Foxo1::Foxo6

M4555_1.02_Zfp110::Zfp369
M5521_1.02_Hnf1b::Hnf1a

M0897_1.02_Hoxc13::Hoxa13::Hoxd13
M5686_1.02_Nr4a2::Nr4a3::Nr4a1

M5359_1.02_E2f3::E2f2
M5361_1.02_E2f5::E2f4

M6062_1.02_Pknox2::Meis3::Pknox1
M5006_1.02_Heyl::Hey2::Hey1

M6426_1.02_Pou5f1::Pou3f1::Pou2f2
M3666_1.02_Rest

M6075_1.02_Rfx8::Rfx4::Rfx5
M3401_1.02_Hmx1::Hmx3::Hmx2

M5523_1.02_Hnf1b::Hnf1a
M5836_1.02_Sox7

M5820_1.02_Sox15
M5490_1.02_Glis1

M6299_1.02_Hoxc8::Hoxb8::Hoxd8
M6083_1.02_Sox10::Sox8::Sox9

M5878_1.02_Tbx10::Tbx20::Tbx1
M3004_1.02_Tbx19::T

M1946_1.02_Ovol1
M2047_1.02_Pax5

M5852_1.02_Sox10::Sox8::Sox9
M0941_1.02_Pitx2::Pitx3::Pitx1

M1031_1.02_Gm4830
M2585_1.02_Rbpj::Rbpsuh-rs3
M1912_1.02_Rbpj::Rbpsuh-rs3

M0718_1.02_Foxa1::Foxa3::Foxa2
M0757_1.02_Foxa1::Foxa3::Foxa2
M3781_1.02_Pparg::Ppard::Ppara

M4726_1.02_Tgif2::Tgif1
M2031_1.02_Pbx4::Pbx2::Pbx3

M6164_1.02_Tbx19::T
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Module 2

M6529_1.02_Ubp1::Tcfcp2l1::Tcfcp2
M1237_1.02_Pou2f1

M1999_1.02_Gsc2::Alx3::Alx1
M6464_1.02_Smad2::Smad3

M1100_1.02_Six6::Six3
M4734_1.02_Tcf4::Tcf3::Tcf12

M5040_1.02_Pknox2::Meis3::Meis2
M2019_1.02_Irx5::Irx4::Irx6

M4010_1.02_Tbp::Tbpl2
M5715_1.02_Prrx1::Prrx2::Alx3

M6554_1.02_Zfp238
M1497_1.02_Nr2c2

M4522_1.02_Etv1::Fev::Etv3
M4853_1.02_Alx1::Alx4::Vsx1

M6491_1.02_Stat5b::Stat5a
M5598_1.02_Lhx9::Lhx2

M4909_1.02_Hoxb8::Hoxd8::Hoxd4
M5657_1.02_Nfatc1::Nfatc2::Nfatc3

M2008_1.02_Six6::Six3
M0951_1.02_Esx1

M4780_1.02_Barx1::Bsx
M2464_1.02_Srf

M5523_1.02_Hnf1b::Hnf1a
M6284_1.02_Hnf4g::Hnf4a

M5986_1.02_Prrx1::Prrx2::Dmbx1
M1054_1.02_Bsx

M5752_1.02_Prop1
M5326_1.02_Creb3l2

M6012_1.02_Foxa1::Foxa3::Foxa2
M5697_1.02_Onecut3::Onecut2::Onecut1

M0631_1.02_Dmrt1
M3985_1.02_Stat5b::Stat5a

M3551_1.02_Mef2c::Mef2b::Mef2a
M0916_1.02_Evx1::Evx2

M1887_1.02_Mzf1
M4530_1.02_Fosb::Fosl2::Fosl1
M3913_1.02_Sox13::Sox6::Sox5

M5528_1.02_Hnf4g::Hnf4a
M6384_1.02_Nr1h4::Nr1h5::Nr1h3

M2102_1.02_Foxj1::Foxj3::Foxk2
M3414_1.02_Hnf4g::Hnf4a

M0742_1.02_Foxa1::Foxa3::Foxa2
M5776_1.02_Rfx8::Rfx4::Rfx5
M4968_1.02_Tcf4::Tcf3::Tcf12

M0412_1.02_Zic4::Zic2::Zic3
M6304_1.02_Hoxc9::Hoxc8::Hoxb8

M6370_1.02_N�b2
M5035_1.02_Nr2e3

M5922_1.02_Tcfap2a::Tcfap2c::Tcfap2b
M0641_1.02_Dmrta2::Dmrt2::Dmrta1

M5919_1.02_Tcfap2a::Tcfap2c::Tcfap2b
M2041_1.02_Irx5::Irx4::Irx6

M6504_1.02_Tbx2::Tbx3
M0889_1.02_Lhx9::Lhx2
M0902_1.02_Lhx9::Lhx2

M5502_1.02_Gsx2::Hoxa4::Gsx1
M1582_1.02_Hmg20b
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Module 4

M5972_1.02_Zfp410
M0118_1.02_Zfp957
M2324_1.02_Zfp263
M4604_1.02_Zfp263

M2041_1.02_Irx5::Irx4::Irx6
M3298_1.02_Foxa1::Foxa3::Foxa2

M6438_1.02_Prop1
M1999_1.02_Gsc2::Alx3::Alx1

M5697_1.02_Onecut3::Onecut2::Onecut1
M5776_1.02_Rfx8::Rfx4::Rfx5

M5723_1.02_Pou1f1::Pit1
M3019_1.02_Cux1::Cux2

M5040_1.02_Pknox2::Meis3::Meis2
M4567_1.02_Foxa1::Foxa3::Foxa2

M2101_1.02_Foxj3
M3732_1.02_Pbx4::Pbx2::Pbx3

M6521_1.02_Thrb::Thra
M2118_1.02_Nfya

M4453_1.02_Bcl11a::Bcl11b
M0435_1.02_Zkscan5

M5071_1.02_Lbx2::Lbx1
M1265_1.02_Irf7

M1418_1.02_Gm239::Gm98
M1952_1.02_Hoxd4::Hoxb3::Hoxd3

M0123_1.02_Phf21a::Setbp1::Ahc�1
M4931_1.02_Emx2::Emx1

M2276_1.02_Etv1::Fev::Etv3
M1419_1.02_Gm239::Gm98

M4537_1.02_E2f5::E2f4
M4010_1.02_Tbp::Tbpl2

M4522_1.02_Etv1::Fev::Etv3
M6109_1.02_Vdr

M0730_1.02_Foxo3::Foxo1::Foxo6
M0726_1.02_ENSMUSG00000090020::Foxa1::Foxa3

M0999_1.02_NP_083278.1::Nkx6-2::Nkx6-3
M5853_1.02_Sp8::Sp9::Sp1

M6226_1.02_Etv1::Fev::Etv3
M1991_1.02_Lmx1a::Lmx1b

M6339_1.02_Mecp2
M6040_1.02_Klf12::Klf7::Klf6
M1970_1.02_Nfic::Nfib::Nfia

M5099_1.02_Smad5::Smad9::Smad1
M6547_1.02_Zfa::Zfx::Zfy1

M4951_1.02_Etv1::Fev::Etv3
M1459_1.02_Rorc::Rorb::Rora
M5097_1.02_Klf12::Klf7::Klf6
M4539_1.02_Etv1::Fev::Etv3

M3926_1.02_Sp8::Sp9::Sp1
M6529_1.02_Ubp1::Tcfcp2l1::Tcfcp2

M5592_1.02_Klf13::Klf11::Klf16
M0421_1.02_Klf12::Klf7::Klf6
M6324_1.02_Klf12::Klf7::Klf6

M4598_1.02_E2f5::E2f4
M4376_1.02_Foxj1::Foxj3::Foxk2

M2008_1.02_Six6::Six3
M3675_1.02_Pou3f1::Pou2f2::Pou2f1

M0757_1.02_Foxa1::Foxa3::Foxa2
M0718_1.02_Foxa1::Foxa3::Foxa2
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Module 5

Regression coefficients
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Figure 6: Annotation of DRMN modules for dedifferentiation dataset with k = 5 modules. (A) The gene
expression pattern of the 5 modules. The number above the heatmap correspond to the number of genes
in that module. (B) Inferred regulatory program for different modules and time points. (C) Similarity of
modules across time point.

45

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.18.210328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.210328
http://creativecommons.org/licenses/by-nc-nd/4.0/


0
h
0
.5
h

1
h
2
h
4
h
6
h
8
h
1
0
h

1
2
h

1
4
h

1
6
h

1
8
h

2
0
h

2
2
h

2
4
h

3
6
h

0
h
0
.5
h

1
h
2
h
4
h
6
h
8
h
1
0
h

1
2
h

1
4
h

1
6
h

1
8
h

2
0
h

2
2
h

2
4
h

3
6
h

Si
ze

Geneset 390
Exp

0h 36
h

Prrxl1(M5149)

0h 36
h

Meox1::Meox2

0h 36
h

Mecom

0h 36
h

Zfp637

0h 36
h

Esrrg

0h 36
h

Prrxl1(M5150)

0h 36
h

Irx1 Zfp740

Hnf4g::Hnf4a Zfp637

0h 36
h

Exp

0h 36
h0h 36
h

0h 36
h0h 36
h

Geneset 420Geneset 439

Gbx2::Gbx1 Arnt Fos::Fosb

Dlx6Mzf1Irx1 (M2026)

Six6::Six3 Lbx2::Lbx1 Irx1 (M2019)

0h 36
h

Exp

0h 36
h0h 36
h0h 36
h

0h 36
h 0h 36
h0h 36
h

0h 36
h0h 36
h0h 36
h

Geneset 443
Lhx9::Lhx2 E2f1

Hoxd4 Mef2a::Mef2c

0h 36
h 0h 36
h

0h 36
h0h 36
h0h 36
h

Exp

Geneset 544

Egr1::Egr4Esrra::EsrrbZfp740

Hmga1 Egr2::Egr4 Jun::Jund

Mafk::Mafg

0h 36
h

Tcfap2d

0h 36
h

0h 36
h0h 36
h0h 36
h

0h 36
h0h 36
h0h 36
h0h 36
h

Exp

C491
C452
C459
C337
C357
C319
C450
C480
C552
C431
C320
C466
C547
C536
C447
C560
C538
C449
C487
C322
C331
C388
C464
C474
C502
C397
C489
C494
C413
C446
C551
C395
C438
C400
C493
C561
C385
C396
C261
C324
C448
C559
C437
C318
C460
C456
C404
C543
C478
C429
C414
C428
C340
C492
C451
C488
C402
C321
C473
C453
C327
C518
C558
C406
C315
C426
C333
C479
C432
C410
C317
C546
C401
C316
C557
C475
C539
C550
C441
C468
C330
C477
C549
C399
C332
C387
C384
C457
C341
C542
C445
C408
C481
C532
C325
C342
C455
C383
C476
C463
C467
C439
C440
C524
C485
C454
C420
C407
C222
C533
C556
C490
C421
C231
C469
C548
C411
C379
C465
C219
C537
C361
C409
C381
C412
C443
C225
C553
C462
C380
C403
C378
C382
C535
C389
C433
C228
C442
C461
C544
C458
C540
C554
C398
C444
C393
C405
C415
C390
C541

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 5
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 6
1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 10
1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 7
1 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 5
1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 6
1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 6
1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 14
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 42
1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 10
1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 26
1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 12
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 64
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 69
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 65
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 77
1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 34
1 1 2 2 2 1 1 1 2 1 1 1 1 1 1 1 6
1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 2 5
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 15
1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 10
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 69
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 201
1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 5
1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 23
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 49
1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 5
1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 15
1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 15
1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 64
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 155
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 64
1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 21
1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 10
1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 7
1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 12
1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 106
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 48
1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 5
1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 2 12
1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 6
1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 53
1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 19
1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 6
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 73
1 1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 8
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 63
1 1 2 2 2 2 2 1 1 1 2 1 1 1 1 1 5
1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 5
1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 9
1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 11
1 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2 7
2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 5
1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 11
1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 9
1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 5
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 5
2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 6
2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 37
2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 5
2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 7
2 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 7
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 130
2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 6
2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 7
2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 8
2 2 2 2 2 2 1 1 2 2 2 1 1 1 1 1 6
2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 5
2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 72
2 2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 8
2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 25
2 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 5
2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5
2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 14
2 2 2 2 2 2 2 1 1 1 1 2 1 1 1 1 7
2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 41
2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 8
2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 9
2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 54
2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 7
2 2 2 2 2 2 2 2 2 1 1 2 1 1 1 1 7
2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 8
2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 9
2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 6
2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 15
2 2 2 2 2 1 1 2 1 1 1 1 1 1 1 1 9
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 75
2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 7
2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 19
2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 19
2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 16
2 2 2 2 2 2 1 1 1 1 1 1 2 2 1 1 6
2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 57
2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 7
2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 8
2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 8
2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 58
2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 28
2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 35
2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 60
2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 20
2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 48
2 2 2 2 2 2 2 2 1 1 2 2 2 1 1 1 5
2 2 2 2 2 2 2 1 1 1 2 1 1 1 1 2 8
2 2 2 2 3 4 4 4 5 5 5 5 5 5 5 5 8
2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 22
2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 18
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 23
2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 38
2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 6
2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 15
2 2 2 2 3 3 3 3 3 3 2 2 2 2 2 2 39
2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 6
2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 92
2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 14
2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 136
2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 381
2 2 2 3 3 3 3 3 2 2 2 2 2 2 2 2 16
2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 5
3 3 3 3 3 2 2 2 2 2 2 3 3 3 3 3 21
3 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 5
3 3 3 3 3 2 2 2 3 3 3 3 3 3 3 3 20
3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 9
3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 228
3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 12
3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 126
3 3 3 3 4 4 4 4 4 4 3 3 3 3 3 3 44
3 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3 9
3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 228
3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 231
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 174
3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 12
3 3 3 3 3 3 3 3 3 3 2 2 2 2 3 3 10
3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 31
3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 5
3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 11
4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 251
4 4 4 4 4 3 3 3 3 3 4 4 4 4 4 4 16
4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 2 29
4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 5
4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 171
4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 264
4 4 4 4 4 4 4 4 3 3 3 3 2 2 2 2 12
4 4 4 4 4 5 5 5 5 5 4 4 4 4 4 4 15
4 4 4 4 4 4 4 4 4 3 3 3 3 3 2 2 7
4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 18
5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 98
5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 22
5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 142

A B

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.18.210328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.210328
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: (A) Bird’s eye view of groups of transitioning genes. On left is the average expression of the
genes in the group, in the middle is module assignments, and on right the number of genes in that group.
(B) Regulators associated some of transitioning gene sets.
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Supplementary Figures
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Figure S1: Performance of ATAC as a single feature (green) vs. Motif alone (blue), Histone+Motif (ma-
genta), Q-Motif (light blue), ATAC+Motif (yellow), Histone alone (red), and Histone+ATAC+Motif (dark
purple) using A) DRMN-ST and B) DRMN-Fused. C) Shows the performance of DRMN-ST vs. DRMN-
Fused for the same features.
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Figure S2: Comparing average number of regulators per module between DRMN ST and Fused models for
different dataset/feature combinations A-C) feature sets in array dataset, and D-I) feature sets in sequencing
dataset.
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Figure S3: Comparing DRMN’s expression predictions to baseline approaches. Each panel compares six
algorithms (legend) on the basis of one correlation metric (y-axis) across a range of k (x-axis). Each dot
represents the results for one cell type averaged over 3 fold of cross validation. The columns show results for
chromatin mark features (left), combination of chromatin and motif (middle), and the motif features (right).
(A-F) Comparison based on Pearson correlation of predicted to true expression for held-aside genes. (G-L)
Comparison of per-module correlation coefficients, averaged across k modules.
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Figure S4: Annotation of DRMN modules, for models trained on chromatin+motif with k = 7 modules, for
array dataset. (A) The gene expression pattern of the 7 modules. The number above the heatmap correspond
to the number of genes in that module. (B) Inferred regulatory program for different modules and cell lines.
(C) Similarity of modules across cell lines.
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Figure S5: (A) Bird’s eye view of groups of transitioning genes; on left is the average expression of the
genes in the group, in the middle is module assignments, and on right the number of genes in that group.
(B) Module assignments (left) and gene expression (middle), and presence or absence of TCF3 motif for
genes that transition from low to high expression between differentiated or partially reprogrammed cells and
ESCs/iPSC.
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0.000 0.000 0.000 0.000 1.857 1.923 2.260 2.304 2.653 2.468 2.122 1.872 2.346 2.361 2.464 2.246

0.000 0.000 0.000 0.000 1.721 1.984 2.243 2.336 2.427 2.117 1.718 1.504 1.916 1.928 2.109 1.870

0.000 0.000 0.000 0.000 1.417 2.227 2.184 2.443 2.334 2.256 1.665 1.713 2.098 2.056 2.353 2.182

0.000 0.000 0.000 0.000 1.486 1.945 2.015 2.046 2.049 1.922 1.515 1.703 2.368 2.294 2.535 2.402

0.000 0.000 0.000 0.000 0.000 1.532 1.520 1.705 0.000 1.511 1.364 1.703 1.760 1.960 1.942 1.870

2.221 2.356 2.487 2.752 2.340 2.770 2.560 1.905 0.000 1.359 1.449 1.650 1.735 1.648 1.996 1.870

2.059 2.162 2.307 2.827 2.609 3.247 3.011 2.314 1.732 1.813 1.865 1.958 2.043 1.960 2.353 2.246

3.553 3.910 4.259 4.387 4.563 2.869 2.857 3.722 2.833 2.887 2.783 1.905 1.760 1.712 1.661 1.582

4.171 4.393 4.916 4.500 6.048 4.543 4.507 5.478 4.744 4.929 3.866 2.851 2.662 2.574 2.518 2.394

6.152 6.363 6.676 7.420 6.689 5.329 5.245 5.359 3.997 3.011 3.015 2.709 2.344 2.344 2.532 2.332

6.152 6.363 6.676 7.420 6.689 5.329 5.245 5.359 3.997 3.011 3.015 2.709 2.344 2.344 2.532 2.332

7.412 7.310 7.184 7.540 8.732 8.845 8.767 8.047 7.680 7.981 7.203 6.643 7.083 6.920 7.636 7.391

7.760 7.728 7.275 7.794 10.551 10.399 10.916 10.567 11.434 11.874 9.905 10.168 10.524 10.995 10.726 10.528

6.880 6.976 6.676 7.420 9.928 10.608 11.107 10.567 11.054 11.208 10.393 11.240 11.709 12.219 11.775 11.529

6.980 7.059 6.983 7.746 10.291 10.834 11.324 10.708 11.006 11.193 10.700 11.762 12.287 12.759 12.191 12.018

8.544 8.565 8.455 9.382 12.266 12.277 13.009 12.927 14.226 14.502 11.829 11.240 12.043 12.460 12.440 11.886

11.858 12.114 12.578 13.925 13.161 12.800 13.158 14.320 13.552 12.691 13.005 11.762 10.921 10.738 10.587 10.094

9.709 9.984 10.019 10.664 12.096 12.506 13.009 12.052 13.194 12.341 13.626 17.694 17.385 17.758 16.979 17.180

10.243 10.472 10.499 11.513 13.161 12.800 13.412 13.159 14.226 14.017 14.249 17.694 16.931 17.166 16.482 16.599

12.198 12.559 12.895 13.673 14.949 14.901 15.511 15.193 16.051 15.079 15.317 17.820 17.563 18.077 17.497 17.304
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22.328 22.312 22.160 19.731 20.317 20.632 19.855 23.219 21.640 22.116 19.488 16.291 16.980 16.880 16.684 16.499

14.635 14.512 14.415 12.174 12.132 12.807 12.360 13.066 12.387 13.190 11.355 9.727 10.440 10.402 10.440 10.805

15.261 15.246 15.307 14.333 13.659 11.765 11.340 13.001 11.871 10.939 8.957 8.482 8.209 8.185 8.597 7.319

11.171 11.054 10.735 10.383 10.274 7.647 7.414 10.200 8.657 8.141 7.880 7.731 7.383 7.368 7.668 6.101

11.171 11.054 10.735 10.383 10.274 7.647 7.414 10.200 8.657 8.141 7.880 7.731 7.383 7.368 7.668 6.101

11.969 11.847 11.511 11.139 11.000 7.815 7.532 10.317 8.805 8.311 7.991 8.156 7.794 7.771 8.098 6.517

11.948 11.827 11.493 11.123 10.990 8.505 8.255 11.139 9.491 8.742 8.678 8.115 7.767 7.752 8.056 6.467

10.373 10.286 10.050 9.377 8.817 7.974 7.740 9.045 9.529 9.817 9.377 10.339 10.367 10.353 10.355 10.691

4.319 4.317 4.263 3.242 3.408 3.964 3.792 3.397 3.235 4.156 4.256 4.684 5.546 5.512 5.275 6.043

4.458 4.402 4.263 4.116 4.065 3.490 3.374 4.424 3.276 3.229 3.288 4.084 3.836 3.828 3.800 2.740

5.313 5.366 5.477 4.387 3.803 4.144 3.822 3.556 3.596 3.848 2.905 2.770 2.534 2.523 2.513 2.720

5.994 6.075 6.186 5.071 4.419 4.775 4.374 4.092 4.216 4.486 3.390 3.224 3.095 3.070 3.050 3.275

7.106 7.050 6.922 7.159 6.399 5.714 5.571 5.287 5.632 5.019 4.566 4.258 3.938 3.932 3.631 3.417

8.565 8.499 8.318 9.028 8.107 7.064 6.520 6.640 7.042 6.410 4.515 3.413 2.915 2.909 2.630 2.502

6.399 6.518 6.747 6.444 5.717 4.600 4.206 3.810 3.994 3.425 2.399 0.000 0.000 0.000 0.000 0.000

2.364 2.341 2.313 2.237 2.081 1.944 1.897 1.762 1.747 2.109 3.033 3.763 3.781 3.776 3.758 3.865

3.543 3.597 3.721 2.997 2.528 3.050 2.812 2.644 2.685 2.858 2.412 2.679 2.611 2.589 2.512 2.756

3.465 3.427 3.325 3.182 3.210 2.465 2.378 3.222 2.454 2.303 1.384 2.074 1.857 1.852 1.862 1.548

3.694 3.652 3.538 3.140 3.115 1.739 1.668 2.897 2.449 2.310 2.885 1.963 1.970 1.967 2.163 1.519

2.925 2.897 2.832 2.380 2.595 2.053 1.978 1.876 2.204 2.278 2.198 1.761 1.758 1.755 1.757 1.519

2.925 2.897 2.832 2.380 2.595 2.053 1.978 1.876 2.204 2.278 2.198 1.761 1.758 1.755 1.757 1.519

2.582 2.569 2.752 2.641 2.432 1.981 1.912 2.191 1.725 1.837 1.718 1.810 1.807 1.802 1.993 1.868

2.459 2.427 2.599 2.481 2.306 1.851 1.786 2.046 1.624 1.729 1.606 1.708 1.692 1.688 1.883 1.760

2.207 2.175 2.353 2.249 2.053 2.053 1.977 2.267 1.809 1.914 1.798 1.878 1.876 1.871 2.099 1.971

3.465 3.597 3.838 3.618 3.237 2.305 2.182 1.958 1.959 1.704 0.000 0.000 0.000 0.000 0.000 0.000

3.045 3.137 2.973 2.638 2.534 2.458 2.304 2.738 2.158 2.071 0.000 0.000 0.000 0.000 0.000 0.000

3.543 3.533 3.462 3.932 3.237 4.592 4.504 3.222 3.187 2.300 1.434 0.000 0.000 0.000 0.000 0.000

3.148 3.134 3.078 3.485 2.862 4.108 4.037 2.846 2.863 2.016 0.000 0.000 0.000 0.000 0.000 0.000

3.148 3.134 3.078 3.485 2.862 4.108 4.037 2.846 2.863 2.016 0.000 0.000 0.000 0.000 0.000 0.000

4.074 4.047 3.973 4.394 3.694 3.962 3.870 2.745 2.767 2.001 0.000 0.000 0.000 0.000 0.000 0.000

4.109 4.070 3.973 3.481 3.258 0.000 0.000 0.000 0.000 0.000 1.346 0.000 0.000 0.000 0.000 0.000

1.989 1.958 2.137 2.049 1.869 1.397 1.338 1.393 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2.524 2.636 2.879 2.721 2.419 2.015 1.912 1.535 1.535 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2.524 2.636 2.879 2.721 2.419 2.015 1.912 1.535 1.535 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2.306 2.293 2.286 2.817 2.154 2.167 2.137 1.570 1.575 1.620 0.000 0.000 0.000 0.000 0.000 0.000

1.993 2.162 2.136 1.590 1.436 2.250 2.179 1.604 1.395 1.478 0.000 0.000 0.000 0.000 0.000 0.000

1.606 1.584 1.546 1.485 1.388 1.471 1.423 1.333 1.660 1.729 0.000 0.000 0.000 0.000 0.000 0.000

2.123 2.078 2.002 1.986 1.959 0.000 0.000 1.853 1.436 1.445 0.000 0.000 0.000 0.000 0.000 0.000

1.957 1.927 2.123 2.030 1.859 1.361 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.586 1.569 1.536 1.958 1.863 1.451 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.542 1.524 1.485 1.780 1.679 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.794 1.779 1.762 1.707 1.656 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.702 1.679 1.650 1.587 1.506 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.643 1.629 1.608 1.550 1.488 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.566 1.537 1.608 1.495 1.312 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2.039 2.023 2.009 1.316 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2.039 2.023 2.009 1.316 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.393 1.381 1.355 1.316 0.000 2.694 2.666 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.586 1.562 1.506 1.421 0.000 1.634 1.578 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.696 1.678 1.638 1.570 1.481 1.547 1.508 0.000 0.000 0.000 1.391 1.592 0.000 0.000 0.000 0.000

1.334 1.320 0.000 0.000 0.000 2.167 2.137 1.570 1.575 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.659 1.814 1.811 1.814 1.908

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.496 1.489 1.487 1.475 1.519

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.384 1.500 1.493 1.492 1.478 1.519

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.433 1.773 1.805 2.128 2.178 2.165 1.918 2.221

1.764 1.732 1.671 1.399 0.000 0.000 0.000 0.000 1.575 1.872 1.361 1.822 2.060 2.055 1.817 1.692
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3.372 3.365 3.365 3.338 3.339 3.194 3.189 3.284 3.262 3.257 2.439 2.466 2.466 2.466 2.471 2.471

3.235 3.229 3.229 3.210 3.210 3.096 3.092 3.171 3.156 3.158 3.257 2.214 2.214 2.214 2.214 2.214

4.048 4.039 4.039 4.015 4.010 2.937 2.939 3.036 3.007 3.007 3.160 2.412 2.412 2.412 1.691 1.691

4.368 4.352 4.352 4.299 4.292 3.990 3.984 3.596 3.542 3.544 3.311 2.020 2.020 2.020 2.027 2.027

3.785 3.772 3.772 3.725 3.722 3.990 3.984 3.596 3.542 3.544 2.828 2.020 2.020 2.020 2.027 2.027

3.684 3.673 3.673 3.635 3.635 4.114 4.107 3.535 3.497 3.501 3.056 1.963 1.963 1.963 1.968 1.968

3.684 3.673 3.673 3.635 3.635 4.114 4.107 3.535 3.497 3.501 3.056 1.963 1.963 1.963 1.968 1.968

3.724 3.713 3.713 3.669 3.667 4.108 4.100 3.572 3.530 3.532 3.131 2.100 2.100 2.100 2.101 2.101

4.354 4.342 4.342 4.299 4.295 3.286 3.277 2.688 1.992 1.989 1.545 1.603 1.603 1.603 1.604 1.604

8.426 8.404 8.404 8.344 8.337 6.401 6.392 5.843 5.741 5.723 4.662 4.162 4.162 4.162 4.168 4.168

8.117 8.095 8.095 8.043 8.036 6.215 6.197 5.742 5.635 5.622 4.106 3.684 3.684 3.684 3.687 3.687

7.793 7.771 7.771 7.711 7.703 5.948 5.930 5.488 5.374 5.368 3.926 3.508 3.508 3.508 3.512 3.512

7.283 7.257 7.257 7.193 7.187 6.130 6.113 6.323 6.219 6.213 5.059 3.850 3.850 3.850 3.859 3.859

6.386 6.370 6.370 6.323 6.330 7.016 7.006 6.270 6.191 6.173 3.991 3.370 3.370 3.370 3.375 3.375

5.370 5.342 5.342 5.655 5.646 4.341 4.325 5.022 4.864 4.858 4.243 3.750 3.750 3.750 3.401 3.401

5.298 5.283 5.283 5.243 5.235 4.961 4.950 4.393 5.031 5.033 4.583 4.004 4.004 4.004 4.010 4.010

5.461 5.448 5.448 5.389 5.383 5.693 5.681 4.636 5.141 5.142 3.754 3.354 3.354 3.354 3.363 3.363

4.586 4.573 4.573 4.514 4.509 4.218 4.206 4.393 4.324 4.316 3.428 2.510 2.510 2.510 2.050 2.050

5.142 5.122 5.122 5.049 5.046 4.706 4.689 4.890 4.780 4.779 3.613 2.842 2.842 2.842 2.412 2.412

5.939 5.912 5.912 5.820 5.808 4.900 4.884 3.844 3.739 3.736 2.630 2.111 2.111 2.111 2.118 2.118

3.851 3.816 3.816 3.903 3.889 5.135 5.094 5.171 5.663 5.641 5.781 5.895 5.895 5.895 5.640 5.640

4.451 4.412 4.412 4.493 4.478 5.880 5.838 5.902 6.440 6.426 6.550 6.644 6.644 6.644 6.385 6.385

4.839 4.821 4.821 4.741 4.737 5.891 5.868 6.165 6.027 6.002 6.575 6.285 6.285 6.285 6.310 6.310

9.274 9.208 9.208 9.315 9.635 9.610 9.870 11.043 11.339 11.339 12.118 11.497 11.497 11.497 11.157 11.157

6.974 7.208 7.208 7.137 7.098 8.637 8.530 8.480 9.243 9.371 11.428 12.476 12.476 12.476 12.645 12.645

4.129 4.097 4.097 4.278 4.267 5.693 5.662 6.865 7.357 7.341 7.674 7.901 7.901 7.901 7.950 7.950

5.178 5.141 5.141 5.301 5.287 6.747 6.717 7.651 8.073 8.052 8.138 8.059 8.059 8.059 8.112 8.112

4.730 4.957 4.957 4.940 4.915 6.213 6.124 6.314 7.158 7.321 8.863 9.822 9.822 9.822 9.895 9.895

5.602 5.565 5.565 5.437 5.427 7.261 7.232 8.525 9.131 9.115 9.372 9.967 9.967 9.967 10.020 10.020

5.981 5.948 5.948 5.820 5.808 7.685 7.643 8.992 9.612 9.595 9.817 10.405 10.405 10.405 10.459 10.459

5.945 5.912 5.912 5.781 5.769 7.682 7.641 8.992 9.612 9.595 9.813 10.399 10.399 10.399 10.451 10.451

5.808 5.775 5.775 5.653 5.641 7.525 7.492 8.813 9.454 9.425 9.649 10.226 10.226 10.226 10.279 10.279

5.981 5.948 5.948 5.820 5.808 7.616 7.582 8.908 9.515 9.485 9.762 9.983 9.983 9.983 10.029 10.029

6.155 6.125 6.125 6.006 5.990 7.740 7.696 9.008 9.612 9.595 9.903 10.120 10.120 10.120 10.175 10.175

6.074 6.026 6.026 6.166 6.458 7.400 7.355 8.360 8.713 8.710 9.372 9.822 9.822 9.822 9.503 9.503

6.074 6.026 6.026 6.166 6.458 7.400 7.355 8.360 8.713 8.710 9.372 9.822 9.822 9.822 9.503 9.503

6.180 6.135 6.135 6.267 6.547 7.671 7.616 8.364 8.711 8.699 9.108 9.217 9.217 9.217 8.914 8.914

7.658 7.642 7.642 7.592 7.587 7.326 7.317 7.584 7.490 7.489 7.826 8.028 8.028 8.028 8.051 8.051

9.453 9.410 9.410 9.747 9.732 7.167 7.137 5.438 5.255 4.858 4.068 1.702 1.702 1.702 1.715 1.715

11.281 11.210 11.210 11.343 11.337 7.951 7.894 6.509 6.207 5.898 4.553 2.204 2.204 2.204 2.219 2.219

10.576 10.533 10.533 10.358 10.344 8.506 8.496 7.159 6.960 6.948 4.648 3.165 3.165 3.165 3.179 3.179

9.838 9.806 9.806 9.689 9.679 8.429 8.420 6.451 6.895 6.886 5.731 3.943 3.943 3.943 3.492 3.492

10.678 10.636 10.636 10.466 11.077 8.132 8.097 8.133 7.946 7.928 6.781 4.472 4.472 4.472 4.489 4.489

11.222 11.174 11.174 11.002 11.503 8.150 8.539 8.214 8.027 8.007 7.078 4.934 4.934 4.934 4.955 4.955

8.824 8.796 8.796 8.694 8.685 7.496 7.472 7.237 7.104 7.096 5.731 5.383 5.383 5.383 5.400 5.400

9.995 9.965 9.965 9.841 9.831 8.542 8.525 7.704 7.563 7.559 6.256 5.935 5.935 5.935 5.941 5.941

8.836 8.815 8.815 8.737 8.730 10.003 9.981 8.541 8.485 8.493 5.661 5.077 5.077 5.077 5.089 5.089

10.035 10.009 10.009 9.903 9.895 9.346 9.322 8.192 8.075 8.775 7.849 7.360 7.360 7.360 7.383 7.383

12.655 12.621 12.621 12.400 12.382 12.233 12.181 9.837 10.484 10.467 8.132 5.736 5.736 5.736 5.380 5.380

12.166 12.719 12.719 13.206 13.190 10.361 10.321 10.249 10.043 10.029 7.483 5.940 5.940 5.940 5.958 5.958
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Figure S6: Enriched GO terms in dedifferentiation datset that show significant changed in enrichment be-
tween earlier time points and later time points.
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Figure S7: The effect of iteration on performance of DRMN (on Motif+Chromatin, k=3, using fused LASSO
(ρ1 = 100, ρ2 = 50, ρ3 = 0). A) Average correlation (over all modules) for each cell line, as a function of
number of iterations. Each marker corresponds to a cell line. B) Similarity of module assignments between
consecutive iterations. C) Similarity of module assignments between iteration 1 and iteration i.
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Figure S8: The effect of group penalty on DRMN performance. Each panel corresponds to one of sequenc-
ing feature sets. In each panel, different colors corresponds to different values of ρ3, the group LASSO
penalty (enforcing selection of same features for all cell lines).
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Figure S9: The effect of fused penalty on DRMN performance and the number of selected features. Each
panel corresponds to one of sequencing feature sets. In each panel, different colors correspond to differ-
ent values of ρ2, the fused LASSO penalty (enforcing similarity of features selected for closer cell lines).
First column shows the average correlation of predicted expression, and second columns shows the average
number of selected features (averaged over cell lines and modules).

66

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.07.18.210328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.210328
http://creativecommons.org/licenses/by-nc-nd/4.0/

