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Abstract

Changes in transcriptional regulatory networks can significantly alter cell fate. To gain insight into
transcriptional dynamics, several studies have profiled transcriptomes and epigenomes at different stages
of a developmental process. However, integrating these data across multiple cell types to infer cell type
specific regulatory networks is a major challenge because of the small sample size for each time point.
We present a novel approach, Dynamic Regulatory Module Networks (DRMNs), to model regulatory
network dynamics on a cell lineage. DRMNs represent a cell type specific network by a set of expres-
sion modules and associated regulatory programs, and probabilistically model the transitions between
cell types. DRMNs learn a cell type’s regulatory network from input expression and epigenomic pro-
files using multi-task learning to exploit cell type relatedness. We applied DRMNs to study regulatory
network dynamics in two different developmental dynamic processes including cellular reprogramming
and liver dedifferentiation. For both systems, DRMN predicted relevant regulators driving the major
patterns of expression in each time point as well as regulators for transitioning gene sets that change

their expression over time.
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Introduction

Transcriptional regulatory networks connect regulators such as transcription factors to target genes, and
specify the context specific patterns of gene expression. Changes in regulatory networks can significantly
alter the type or function of a cell, which can affect both normal and disease processes. The regulatory
interaction between a transcription factor (TF) and a target gene’s promoter is dependent upon TF binding
activity, histone modifications and open chromatin, that have all been associated with differential expression
between cell types [[IH4]. To probe the dynamic and cell type-specific nature of mammalian regulatory net-
works, several research groups are generating matched transcriptomic and epigenomic data from short time
courses or for cell types related by a branching lineage [5H7]]. However, very few methods have exploited
these datasets to infer cell type specific regulatory networks.

Existing computational methods to infer cell type specific networks can be grouped into three main cat-
egories: (i) Skeleton network-based methods, (ii) Regression-based methods, (iii) Probabilistic graphical
model-based methods. Skeleton-network based methods, combine available protein-protein and protein-
DNA interactions to create a “skeleton” network representing the union of possible edges that can exist
in a cell at any time, and overlay context-specific mRNA levels on this network to derive dynamic snap-
shots of the network [_8,|9]. Such approaches rely on a comprehensive characterization of the regulatory
network, which we currently lack for most mammalian cell types. A second group uses linear and non-
linear regression-based methods to predict mRNA levels as a function of chromatin marks [[10L/11]] and/or
transcription factor occupancies [|11]] and can infer a predictive model of mRNA for a single condition (time
point or cell type). These regression approaches are applied to each context individually and have not been
extended to model multiple related time points or cell types, which is important to study how networks tran-
sition between different time points and cell states. Multi-task regression methods [|12H17|] are systematic
approaches to learn multiple related networks. Thus far, these approaches have nearly all been based on
mRNA levels and require a sufficiently large number of mRNA samples for each time point or cell type
to reliably estimate the statistical dependency structure. The last class of methods are based probabilis-
tic graphical models, namely, dynamic Bayesian networks (DBNs), including input-output Hidden Markov
Models [18]] and time-varying DBNs [15]. Both DREM and time-varying DBNs are suited for time courses

only, and do not accommodate lineage trees.
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To address the limitations of existing methods and systematically integrate parallel transcriptomic and
epigenomic datasets, we have developed a novel dynamic network reconstruction method, Dynamic Regula-
tory Module Networks (DRMNss) to predict regulatory networks in a cell type-specific manner by leveraging
their relationships to each other. DRMNs are based on a non-stationary probabilistic graphical model and
can be used to model regulatory networks on a lineage. DRMNs represent the cell type regulatory network
by a concise set of gene expression modules, defined by groups of genes with similar expression levels, and
their associated regulatory programs. The module-based representation of regulatory networks enables us to
reduce the number of parameters to be learned and increases the number of samples available for parameter
estimation. To learn the regulatory programs of each module at each time point, we use multi-task learning
that shares information between related time points or cell types.

We applied DRMN to three datasets measuring transcriptomic and epigenomic profiles in multiple cell
types at different stages of cellular reprogramming and during dedifferentiation from liver hepatocytes. Two
of these corresponding to cellular reprogramming including one array [19]] and one sequencing experiments
[7]. The third dataset (unpublished) includes RNA-seq and ATAC-seq profiling for mouse dedifferentiation.
DRMN learned a modular regulatory program for each of the cell types by integrating chromatin marks, open
chromatin, sequence specific motifs and gene expression. Compared to an approach that does not model
dependencies among cell types DRMN was able to predict more realistic regulatory networks that were
more concise and reflected the shared relatedness among the cell types, while maintaining high predictive
power of expression. Furthermore, integrating cell type specific chromatin data with cell type invariant
sequence motif data enabled us to better predict expression than each data type alone. Comparison of the
inferred regulatory networks showed that they change gradually over time, and identified key regulators
that are different between the cell types. In particular, among the regulators identified by DRMN were
Klf4, Myc, and Tcf3 which are known to be associated with ESC state. In the hepatocyte data, we found
regulators associated with development such as Gbx2, Six6, and Irx1 associated with transitioning gene sets.
Taken together our results show that DRMN is a powerful approach to infer cell type specific regulatory
networks, which enables us to systematically link upstream regulatory programs to gene expression states

and to identify regulator and module transitions associated with changes in cell state.
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Results

Dynamic Regulatory Module Networks (DRMNs)

DRMN:Ss are used to represent and learn cell-type or time-point specific regulatory networks while leveraging
the relationship among the cell types and time points. DRMN’s design is motivated by the difficulty of
inferring a cell type specific regulatory network from expression when only a small number of samples are
available for each cell type. In a DRMN, the regulatory network for each context, such as a cell type, is
represented compactly by a set of modules, each representing a discrete expression state, and the regulatory
program for each module (Figure [T). The regulatory program is a predictive model of expression that
predicts the expression of genes in a module from upstream regulatory features such as sequence motifs and
epigenomic signals. Like previous module-based representations of regulatory networks [[14,20,21[], DRMN
organizes genes into modules to reduce the number of parameters and increase the number of samples
available for statistical network inference. In addition, DRMN leverages the relationship between cell types
defined by a lineage tree. The modules and regulatory programs are learned simultaneously using a multi-
task learning framework to encourage similarity between the regulators chosen for a cell type and its parent
in the lineage tree. DRMN allows two ways to share information across cell types: DRMN-FUSED and
DRMN-ST. DRMN-FUSED makes use of regularized regression to share information across cell types,
while the other uses a graph structure prior approach (See Methods). Both approaches are able to share
information across timepoints effectively, however, the DRMN-FUSED approach is computationally more

efficient.

DRMN:s offer a flexible framework to integrate diverse regulatory genomic features

DRMN’s predictive model can be used to incorporate different types of regulatory features, such as sequence-
based motif strength, accessibility, and histone marks. We first examined the relative importance of context-
specific (e.g., chromatin marks and accessibility) and context independent features (e.g., sequence motifs)
for building an accurate gene expression model. We compared the performance of both versions of DRMNs
on different feature sets on a mouse reprogramming dataset which had both array and sequencing datasets

(Figure 2)). Our metric for comparison was the Pearson’s correlation between true and predicted expression
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in each module (Figure[2JA) on three fold cross-validation.

The different features we considered were, (1) Motif only, (2) Histone marks, (3) Histone and Motif,
(4) Accessibility (from atac-seq) and motif, (5) Motifs with quantified accessibility (Q-motif), (6) Histone
marks, motif features and accessibility, (7) Histone marks, Q-motif, and (8) Histone marks, Q-motif and
accessibility. We first compared motif alone, chromatin alone, and chromatin+motif, as these features were
available for both array and sequencing datasets for the DRMN-ST (Figure 2B,C) and DRMN-FUSED
(Figure [Z]D,E) models. In both models, motifs alone (dark blue markers) have minimal predictive power,
which is consistent across different & and for both array (Figure 2B, D) and sequencing (Figure2C, E)
data. Histone marks alone (red marker) have higher predictive power, however adding both histone marks
and motif features (magenta) has the best performance for k£ = 3 and 5, with the improved performance to
be more striking for DRMN-ST. For DRMN-Fused, Histone only and Histone + motifs seemed to perform
similarly, although at higher k£ using histone marks is better. Between different cell types the performance
was very consistent in array data, while for sequencing data, the MEF and MEF48 cell types were harder to
predict than ESC and prelPSC.

We next examined the contribution of accessibility data in predicting expression. As only the sequencing
dataset included ATAC-seq data for each cell type, we performed this comparison on the sequencing dataset
alone (Figure 2IC, E). We incorporated the ATAC-seq data in five ways: as a single feature defined by
the aggregated accessibility of a particular promoter (ATAC feature, orange markers Figure [2) combined
with motif sequence, using ATAC-seq to quantify the strength of a motif instance (Q-Motif, cyan markers
Figure 2B, D), combining the ATAC feature with histone and motifs (dark purple marker), combining Q-
Motif with histone (light green), and the ATAC feature with histone and Q-motifs (dark green). We also
considered ATAC-seq as a single feature, but this was not very helpful (Supplementary Figure ST).

Combining the ATAC feature together with motif feature improves performance over the sequence motif
feature (Figure 2B, D orange vs. dark blue markers) suggesting that these are both useful features for
predicting expression. The Q-Motif feature (cyan markers) was better than the motif only feature (dark
blue) at lower k (k=3), however, surprisingly, did not outperform the sequence alone features. One possible
explanation for this is that the Q-Motif feature was more sparse than the sequence only feature, due to the O

feature value if we could not assign a read to the feature. Finally, we compared the ATAC feature combined
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with chromatin and motif features to study additional gain in performance (Figure 2B, D, purple markers).
Interestingly, even though using ATAC-seq features combined with motif features improves the performance
over motif alone, addition of ATAC-seq feature to histone marks+motif does not change the performance
of either version of DRMN (Figure 2B, D) compared to histone + motif (magenta markers). This suggests
that combination of multiple chromatin marks capture the dynamics of expression levels better than the
chromatin accessibility signal. It is possible that the overall cell type specific information captured by the
accessibility profile is redundant with the large number of chromatin marks and we might observe a greater
benefit of ATAC-seq if there were fewer or no marks. We observe similar trends with Histone+Q-Motif and
Histone+ATAC+Q-motif features (light and dark green) which perform on par to each other, and close to
histone+motif and histone+ATAC+motif.

DRMN-ST and DRMN-FUSED behaved in a largely consistent way for these different feature combina-
tions with the exception of the Histone+Motif feature where DRMN-Fused was not gaining in performance
at higher k. However, when we directly compared DRMN-ST to DRMN-FUSED, DRMN-FUSED was able
to outperform DRMN-ST on most of the feature combinations (Figure 2F, G), with the exception of His-
tone+Motif (magenta), Histone + Motif + ATAC (dark purple), Histone + Q-Motif (light green), and Histone
+ Q-Motif + ATAC (dark green) where the two models were similar. It is likely that DRMN-ST learns a
sparser model at the cost of predictive power (Supplementary Figure [S2). For the application of DRMNs

to real data, we focus on DRMN-FUSED due to its improved performance.

Multi-task learning approach is beneficial for learning cell type-specific expression patterns

We next compared the utility of DRMN to share information across cell types or time points while learning
predictive models of expression against several baseline models: (1) those that do not incorporate sharing
(RMN), or (2) those that are clustering-based (GMM-Merged and GMM-Indep). The clustering-based base-
lines offer simple approaches to describe the major expression patterns across time but link cis-regulatory
elements to expression changes only as post-processing steps. For both DRMN and RMN, we learned
predictive models of expression in each module using different regulatory feature sets (Figure 3| Supple-
mentary Figure [S3): motif only, chromatin mark only and using motif and chromatin marks. We used

overall correlation and per module expression level comparison to assess the quality of the predictions. We
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performed these experiments on the array and the RNA-seq dataset for mouse reprogramming.

Using the overall correlation, both variants of DRMN, RMN model and GMM-Indep, vastly outper-
form GMM-Merged, which also had the least stable results across cell types and folds (Supplementary
Figure [SJA-F). This suggests that the gene partitions are likely different between the different cell types
and imposing a single structure for all three, as done in GMM-Merged, misses out on the cell type specific
aspects of the data. Based on overall correlation, DRMN models performed at par with RMN and GMM-
Indep for most cases (Supplementary Figure[S3A-F), with the exception of Histone and Histone+Motif for
sequencing data (Supplementary Figure [S3A, B) where GMM-Indep is worse for lower ks. These results
suggest that based on overall correlation, clustering could offer a first approach to analyze these data, how-
ever, a predictive modeling approach has advantages over a clustering approach as it improves prediction
quality by incorporating additional cis-regulatory data.

We next compared the different models on the basis of the per-module expression levels (Supplementary
Figure [S3(G-L). DRMN and RMN clearly outperform the GMM-based approaches, which is expected be-
cause GMM is only able to produce one value per module and does not capture the within-module variation.
The overall high correlation for DRMN and RMN demonstrate that a model learned from the regulatory
features is able to provide a more fine-tuned model of expression variation.

Finally, we compared DRMNs to RMNs (Figure [3). Both versions of DRMN outperform or are at par
with their corresponding RMN versions on histone only and histone + motif features (Figure [3| blue for
DRMN and red for RMN). On motifs, the difference between the models was dependent upon the cell line,
the number of modules, k£ and specific implementation of DRMNs. In particular, DRMN-Fused was at par
or better than RMs on sequence motifs. However, DRMN-ST had a lower performance for several cell
lines on the sequencing data, at higher k. Interestingly, DRMN-ST did have a greater gain in performance
compared to DRMN-Fused on the Histone-Motif and Histone datasets from arrays. It is likely that motif
only features are being overfit to the data resulting in reduced performance. Overall, our results suggest that
a predictive modeling approach as in DRMN and RMN, can explain the expression variation much better
than a clustering based approach, and that using multi-task learning with regularized regression helps to

build accurate models of gene expression.
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Using DRMN to gain insight into regulatory programs of cellular reprogramming

We applied DRMN to gain insights into the regulatory programs of cellular reprogramming. We focus on
the results obtained on the sequencing dataset for reprogramming (Figure [d)), although many of the trends
are captured in the array data too (Supplementary Figure [S4). DRMN modules learned on the sequencing
data exhibit seven distinct patterns of expression in each of the four cell types (Figure dA). We observe that
while the expression patterns remains the same, the number of genes in each module in each cell type varies
(Figure [dA). Furthermore, we compared the extent of similarity of matched modules between consecutive
cell types and found that the modules were on average 30-90% similar, exhibiting the lowest similarity at
the MEF48 to pips transition and the highest between the MEFs (Figure {iC). For the array as well, we
observed the greatest dissimilarity between the MEF and pips transition (Supplementary Figure [S4). This
agrees with the pips state exhibiting a major change in transcriptional status during reprogramming.

To interpret the modules, we next looked at the regulatory programs inferred for each module (Figure[dB).
While some of these regulators are selected in all cell types, we also observe some cell type specific pat-
terns, such as Pitx2 in module 4 (associated with muscle cell differentiation [22]), Pou5fl in module 5
and Esrrb in module 6 (associated with pluripotency state [3[]), and Insm1 in module 7 (associated with
differentiation [23]], all highlighted in red in Figure dB).

To gain insight into the dynamics of the process, we identified genes that change their module assign-
ments between time points. Overall, of the 17,358 genes, 11,104 were associated with a module transition
in the sequencing dataset (Figure [S]A) and of the 15,982 total genes in the array dataset, 3,573 exhibited a
module transition (Supplementary Figure [S4A). We clustered the transitioning genes and tested each for
biological processes and also cis-regulatory elements. These transitioning gene sets can provide insight into
the overall dynamics of the process. One of these sets is enriched for binding sites of Tcf3 (Figure SB),
which is known to repress pluripotency genes [24,25]] and is only enriched in the low expression module
(module 1) in MEF and MEF48. This gene set, induced specifically in ESCs was predicted to be regulated
by histone marks H3K79me2 and H3K27me3 and the TF, Bcl6, which indicates an interplay of histone and
TF binding to enable cell fate specification. These genes move from low expression module (1) in early
stages (MEF and MEF 48) to highly expressed modules (5,and 6) in the ES state (cell type specific module

assignments on left, cell type specific expression in the middle). We also observe that the promoter regions
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of the genes in this set are strongly enriched for the Tcf3 motif (dark purple heatmap on right). The genes
exhibiting this trend include several ESC specific genes such as Sall4 and Dppa2. We observe a similar pat-
tern with the array data as well (Supplementary Figure [S5), identifying ESC specific genes induced in the
iPSC state and enriched for Tcf3, thus corroborating the transitioning gene sets between the two expression

platforms.

Using DRMN to gain insight into regulatory programs of hepatocyte dedifferentiation

We next applied DRMNs to understand the temporal dynamics of regulatory programs during hepatocyte
dedifferentiation. A major challenge in studying dynamics in primary cells such as liver hepatocytes is
that they dedifferentiate from their hepatocyte state. Maintaining hepatocytes in their differentiated state is
important for studying normal liver function as well as for liver-related diseases [26]. Dedifferentiation could
be due to the changes in the regulatory program over time, however, little is known about the transcriptional
and epigenetic changes during this process. To address this, we collected RNA-seq and ATAC-seq data for
16 time points from 0 hours to 36 hours (Figure [6).

Here we applied DRMNs with k=5 modules and followed a similar approach for first interpreting the
modules by regulatory programs inferred for each module. We observe pluripotency associated TFs such as
Gbx2 and K14 [27]], TFs associated with hepatocyte differentiation such as Onecut2 [28]], and liver associated
TFs such as Hnf4a [29]. We also tested these genes for GO enrichment (Supplementary Figure [S6) and
found that the repressed module (Module 1) was enriched for developmental processes while the other
modules were enriched for diverse metabolic processes. Of these modules 4 and 5, which are associated with
higher expression are enriched for more liver-specific metabolic function such as co-enzyme metabolism,
acetyl CoA metabolism and modules 2 and 3 where enriched for general housekeeping function such as
DNA and nucleic acid metabolism.

We next examined the transitioning gene sets. We identified a total of 150 transitioning gene sets span-
ning 5,762 genes. Many of the transitions were between modules that are adjacent to each other based on
expression levels, suggesting the majority of the dynamic transitions are subtle (e.g., module 1 and 2, Fig-
ure[7A). We next predicted regulators for these transitioning gene sets using a regularized regression model,

MTG-LASSO (Methods). Using this approach we identified 84 gene sets that we could predict a regulator
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of. Figure[7B shows 5 of these gene sets where module assignment change more than 1 (e.g. 1 to 2 to 3) and
regulators associated with these gene sets. These include pluripotency or development associated TFs such
as Irx1 [30] (gene set 420 and 439), Gbx2 [27,/31] and Six6 [32] (gene set 439), Mecom [33]], Esrrb [3],
Alx1 [34] (gene set 390). Together, these results suggest that analysis regulatory interactions associated
with specific modules and transitioning gene sets, can help identify transcription factors that drive these

processes.
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Discussion

Cell type-specific gene expression patterns are the result of a complex interplay between transcription factor
binding, genome accessibility and histone modifications. Accordingly, datasets that measure both transcrip-
tomes and epigenomes in closely related cell types and processes are becoming increasingly available. A
key challenge is to interrogate these datasets to identify the underlying gene regulatory networks that drive
context-specific expression changes. However, doing so from such datasets is a major challenge because of
the large number of variables measured in each time point. In this work, we developed, DRMNs, that sim-
plifies genome scale regulatory networks into gene modules and infers regulatory program for each module
in all the input cell types. Using DRMNSs, one can characterize the major transcriptional patterns during a
dynamic process over time or over a cell lineage and identify transcription factors and epigenomic signals
that are responsible for these transitions.

Central to DRMN’s modeling framework is to jointly learn the regulatory programs for each cell type
or time point by using multi-task learning. Using two different approaches to multi-task learning, we show
that joint learning of regulatory programs is advantageous compared to a simpler approach of learning
regulatory programs independently per cell type. Furthermore, predictive modeling of expression that also
clusters genes into expression groups is more powerful than learning a single predictive model and simple
clustering. Such models have improved generalizability and are able to capture fine-grained expression
variation as a function of the upstream regulatory state of a gene.

DRMN offers a flexible framework to integrate a variety of experimental setups. In its simplest form,
DRMN can be applied to an expression time course, array or sequencing, and can use sequence specific
motif instances to learn a predictive model. However, DRMN is able to integrate other types of regulatory
signals such as chromatin accessibility measured using ATAC-seq, histone modifications and transcription
factor measured using ChIP-seq. The datasets that we applied DRMN to include exemplars of different
designs. In particular the reprogramming sequencing dataset was the most comprehensive with nine histone
marks, ATAC-seq and expression measured for four cell types. In contrast the dedifferentiation dataset
measured RNA-seq and ATAC-seq for 16 time points.

The Chronis et al [[7] dataset enabled us to systematically study the utility of different cell-type specific

measurements such as chromatin marks and accessibility to predict expression. When combining ATAC-seq
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with chromatin marks to predict expression, we did not see a substantial improvement in predictive power.
This is likely because of the large number of chromatin marks in our dataset. However, in both array and
sequencing data we found that combine sequence features (motifs) and histone modifications had the highest
predictive power. In our application to the Chronis et al dataset, we did not observe a substantial advantage
of using accessible motif instances (Q-motif) as opposed to all motif instances. This is most likely due to the
sparsity of the feature space of Q-motifs. As future work, an important direction of work would be to explore
additional ways to incorporate the ATAC-seq signal for each motif could provide a greater benefit [2].

We applied DRMNS to two distinct types of developmental processes: mouse reprogramming (3-4 cell
types) and hepatocyte dedifferentiation (16 time points). DRMN application identified the major patterns
of expression in both sequencing and array reprogramming datasets as well as the dedifferentation dataset.
When comparing the results from both processes there were greater changes in expression in the repro-
gramming time course compared to dedifferentiation indicative of the different dynamics in the two pro-
cesses. Importantly DRMN was able to identify key regulators for each module as well as dynamic gene
sets in both cases. Among the regulators identified by DRMN for the induces genes in the reprogramming
dataset included known pluripotency markers. Similarly, DRMN predicted liver transcription factors such
as HNF4G::HNF4A for induced genes in the dedifferentiation dataset. In both datasets, we identified tran-
sitioning genes and predicted regulators for these genes using simple or multi-task regression. This enabled
us to identify regulators important for transitions. In particular for ESC, we found a gene set that exhibited
dynamics predictable by histone elongation marks and a transcription factor Bcl6. Similarly for hepatocyte
dedifferentiation, we found gene sets associated with changes in HNF4G motif accessibility.

Currently DRMN operates on regulatory features on gene promoter regions. An important direction
of future work would be to incorporate long-range interactions to enable distal regions to contribute to
the expression levels of gene. Another direction would be to use more generic sequence features, such as
k-mers [35] to enable the discovery of novel regulatory elements and offer great flexibility in capturing
sequence specificity and its role in predictive models of expression.

Taken together, DRMN offers a powerful and flexible framework to model time series and lineage
specific regulatory genomic datasets and enables inference of cell type-specific regulatory programs. As

datasets that profile epigenetic and transcriptomic dynamics of specific processes become available, methods
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like DRMNs will become increasingly useful to examine cell type and context-specific regulatory networks

form these datasets.

Materials and methods

Dynamic Regulatory Module Networks (DRMNs)
DRMN model description

The DRMN is a probabilistic model of regulatory networks for multiple cell types related by a lineage tree.
DRMN is suited for datasets with multiple time points or conditions, with a small number of samples (e.g,
one or two) per condition and several types of measurements, such as RNA-seq, ChIP-seq and ATAC-seq.
Due to the small sample size, a standard regulatory network, that connects individual TFs to target genes for
each time point, cannot be inferred. Instead in DRMN, we learn regulatory programs for groups of genes.
For C cell types, the DRMN model is defined by a set of regulatory module networks, R = { Ry, ..., R¢'},
a lineage tree 7, and transition probability distributions IT = {II;, ..., II¢}, Figure(l} For each cell type c,
R, =< G, 0, > defines the regulatory program as G, the set of edges between regulators and modules,
and O, the parameters of a regression function for each module that relates the selected regulatory features
to the expression of the module’s genes. Transition matrices {II;,...,IIc} capture the dynamics of the
module assignments in one cell type ¢ given its parent cell type in the lineage tree 7. Specifically, IT.(4, )
is the probability of any gene being in module j given that its parental assignment is to module i. For the
root cell type, this is simply a prior probability over modules.

RNXC

The DRMN inputs are (i) cell type-specific expression for /N genes X &€ , assuming we have

a single measurement of a gene in each cell type; (ii) gene-specific regulatory features for F' candidate

regulators YV XCOx I,

and (iii) the lineage tree, 7. The regulatory signals used in the regulatory program
can be either context-independent (e.g., a sequence-based motif network) or context-specific (e.g., a motif
network informed by epigenomic measurements). The number of modules, k, is provided as input to the

method. Given the above inputs, the DRMN model aims to optimize the following score:

PRIX,Y) x P(X|R,Y)P(R) (1)
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Here P(X|R,Y) is the data likelihood given the regulatory program, and P(R), is a prior probability
distribution of the regulatory program. The data likelihood can be decomposed over the individual cell
types: P(X|R,Y) = [[. P(X.|R., Y.). Within each cell type, this is modeled using a mixture of predictive
models, one model for each module. The prior, P(R) can in turn be defined in terms of the graph structure
G, and parameters, ©.. We used two formulations for this prior to enable sharing information: DRMN-
Structure Prior (DRMN-ST) defines a structure prior over the graph structures P(G1, ..., G¢') while DRMN-
FUSED uses a regularized regression framework and implicitly defines priors on the P (6, - - ,0¢). In both
frameworks, we share information between the cell types/time points to learn the regulatory programs of

each cell type or time point.

DRMN-ST: Structure prior approach. The structure prior, P(R), which is defined only over the graph
structures, P(G1, ..., G¢) assumes the parameters are set to their Maximum likelihood setting. The prior
term P(Gq, ..., Go) determines how information is shared between different cell types at the level of the
network structure and encourages similarity of regulators between cell types. P(G1q, ..., G¢) is computed
using the transition matrices {IIy, ..., II¢} and decomposes over individual regulator-module edges within

each cell type as follows:

P(Gy,---,Geo) = H P(Ir_)
f—k

where

P(Lpp) = P T PUSolTy)

c—ceT

where Iji _, 1s an indicator function for the presence of the edge f — k for cell type c, between a

regulator f and a module k. To define P(/ ¢ s ]Cc/_> 1.)» we use the transition probability of the modules as:

, I (k|k) if 15 =I5,
P(I](i—ﬂcu}:—)k:) =
1 —TI.(k|k) otherwise

Here the first option gives the probability of maintaining the same state from parent to child cell lines, if the

edge has the same state in both parent and child (is present in both ¢ and ¢’ or is absent in both), and the
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second option gives the probability of changing the edge state.
We implemented a greedy hill climbing algorithm to incorporate the structure prior. See Section DRMN

learning for more details of the learning algorithm.

DRMN-FUSED: Parameter prior approach. Our second approach used a fused group LASSO formu-

lation to share information between the cell types/time points by defining the following objective:

m(gnz 1 Xek — YerOLkl13 + p1llOkll + p2| [ROKIL + p3]|Okll2,1, 2
C

where X . is the expression vector of genes in module % in cell line ¢, Y., is the feature matrix (size
of module k£ by F, the number of features) corresponding to the same genes, and O, is the vector of
regression coefficients for the same module and cell line (1 by F', non-zero values correspond to selected
features), and ©y, is the C' by F' matrix resulting from concatenation of ©,, ;. vectors (number of cell types/
time points by number of features, C' by F'). Ris a C — 1 by C matrix, encoding the lineage tree. Each
row of R correspond to an edge of the tree, meaning that if row ¢ of R correspond to the edge ¢c; — c2
in the lineage tree, we set R(i,c1) to 1, R(i,c2) to —1, and all other values in that row to 0. This would
mean that RO, would be a C' — 1 by F’ where row 7 correspond to O, , — O, 1, the difference between
regression coefficients of cell lines ¢; and ¢s. ||.||1 denotes /1-norm (sum of absolute values), ||.||2 denotes
lo-norm (square root of sum of square of value), and ||.||2,1 denotes I ;-norm (sum of l3-norm of columns
of the given matrix). pi,p2 and p3 correspond to hyper parameters, with p; for sparsity penalty, ps to
enforce similarity between selected features of consecutive cell lines in the lineage tree, and p3 to enforce
selecting the same features for all cell lines/time points. Thus, ps controls the extent to which more closely
related cell types are closer in their regulatory program, which p3 controls the extent to which all the cell
types share similarity in their regulatory programs. We set these hyper parameters based on cross-validation
by performing a grid search for p1 € {0.5, 1,2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130}, and
p2,p3 € {0,10,20,30,40,50}. We implemented the algorithm described in MALSAR Matlab package

[36]], which uses accelerated gradient method [|37,38]] to minimize the objective function above in C++.
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DRMN learning

DRMNSs are learned by optimizing the DRMN score (Eqn [I)), using an Expectation Maximization (EM)
style algorithm that searches over the space of possible graphs for a local optimum (Algorithm 1). The
algorithm uses a multi-task learning approach to jointly learn the regulatory programs for all cell types. In
the M step, we estimate transition parameters (M1 step) and the regulatory program structure (M2 step). In
the E step, we compute the expected probability of a gene’s expression profile to be generated by one of the

regulatory programs.

Algorithm 1: DRMN Algorithm
Input:
- Expression data X = { X7, ..., X},
- Regulatory features Y = {Y1,..., Yo},
- Initial module assignments M = {M;, ..., M¢}
Output:
- Regulatory programs R = {R; = (G1,01), ..., Rc = (G¢,0¢)},
- Transition probabilities IT = {IIy, ..., I}
while not converged do
M1: Estimate transition parameters (I1y, ..., 1)
M2: Update regulatory programs (G, ..., G, O1, ..., O¢)
E: Update module assignment probabilities and module assignments (I', M, ..., M¢)
end

Estimate transition parameters (M1 step): Let fyg ’z, be the probability of gene g in cell type c to belong

to module %, and, in its parent cell type ¢/, to module k’. We calculate the probability of transitioning from
Z g 'Y,g:z/

gk Vg

K incd tokincasIl.(k, k") =

Update regulatory programs (M2 step): Recall that the regulatory program for each cell type cis R, =<
G, 0, >, where G, is a set of regulatory interactions f — k from a regulatory feature f to a module &, and
O, are the parameters of a regression function for each module that relates the selected regulatory features
to the expression of the module’s genes. The estimation of the regulatory programs is specific to the way in
which information is shared across tasks, and differs in the DRMN-ST and DRMN-FUSED approach.

We assume that the expression levels are generated by a mixture of experts, each expert corresponding

to a module. Each expert uses a Multivariate normal distribution, which means that the likelihood of gene
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g’s expression being generated by the regulatory program for a module & in cell type c can be written as:

P(zgelRek Yge) ~ Nk e k)

k+ Z ecky!]m )

fch,k

where G, is the current list of regulators selected for module % in cell type c. This is the equivalent of a
linear regression to predict expression of genes in module & in cell type ¢, using regulatory features of genes
in cell type c. In the DRMN-ST approach, the regulatory interactions are learned by per-module per-cell type
regression in a greedy hill-climbing framework. At initialization, all regulatory network structures G are
empty, and the parameters ©. are computed simply as the empirical mean and variance of the genes initially
assigned to each module in each cell type. In each iteration of DRMN learning, we fix the current module
assignments M, for all cell types ¢ and update the regulatory program of each module independently. In
each iteration, we score each potential regulatory feature based on its improvement to the likelihood of the
model, and choose the regulator with maximum improvement (if over a minimum threshold). This regulator
is added to the module’s regulatory program for all cell types for which it improves the cell type-specific
likelihood. For the regularized regression version, DRMN-FUSED, the parameters are learned using an

accelerated gradient method [37,38|] to minimize the objective function in Eqn @

Update soft module assignments (E step): Let ’yklk’ be the probability of gene g in cell type c to belong
to module k, given that in its parent cell type ¢, it belonged to module &’. We also introduce aj, a vector
of size K x 1 where each element ag(c’ ) specifies the probability of observations given the parent state is
c’. We estimate the probabilities using a dynamic programming procedure, where values at internal nodes
in the lineage tree are computed using the values for all descendent nodes, down to the leaves.

If ¢ is a leaf node, we calculate

Vi = P(@g.elRe, yo.o) e(K|K)

where the first term is the probability of observing expression of gene g in cell type ¢ in module % (given its
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regulatory program and regulatory features), and the second is the probability of transitioning from module
k' in the parent cell type ¢’ to module k in cell type c.

For a non-leaf cell type c:

fy"ziz’ = P(:L‘Q,C‘Rc,kayg,c)Hc(l{,’|k‘/) H Oég’l(k‘)

c—ler

g,¢
7k|k:’

For both internal and leaf cell types, we write the joint probability of the (£, k) pair as 77}, = e ()°

where a9¢(k') =3, yg[;/ is the probability of ¢’s expression in any module given parent module &’.

Termination: DRMN inference runs for a set number of iterations or until convergence. Final module
assignments are computed as maximum likelihood assignments using a dynamic programming approach.
While module assignments between consecutive iterations do not change significantly, the final module as-
signments are significantly different from the initial module assignments, and predictive power of model
significantly improves as iterations progress (though improvements are small after 10 iterations, Supple-
mentary Figure[S7).

In our experiments, we ran DRMN for up to ten iterations. When using greedy hill climbing approach,
to decrease computation time, we inferred regulatory edges in small batches per DRMN iteration. For each

full DRMN iteration, the M2 step was run until up to five regulators were added per module.

Hyper parameter tuning of DRMN-FUSED To assess the effect of hyper-parameters on the performance
of DRMN when using fused group LASSO, we performed a grid search on a wide range of parameters
values. Supplementary Figure [S§] shows the average correlation (averaged over modules, and averaged
over cell lines) for different sequencing feature sets (same features sets described in Figure [2). We observe
that increase in ps penalty (which enforces the selection of the same features across all cell lines) decreases
the predictive power of the model in almost all cases (no penalty (magenta curve) vs. high penalty (yellow
curve)). Supplementary Figure [S9] shows the effect of p; (sparsity penalty) and py (fused penalty) on
the predictive power of the model. We observe that when using chromatin features (Motif+Chromatin,
and ATAC+Motif+Chromatin), increase in p; (increasing the sparsity) and increase in py (increasing the

similarity of inferred networks) improves the predictive power of the method. Inversely, for the feature sets
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that do not use chromatin (Motif, Q-Motif, and ATAC+Motif), increase in p; (sparser models) decrease
the predictive power of the model. Increase in pa decrease the predictive power of the method for sparser
models, while for denser networks (lower values of p;) changes in py does not significantly change the
performance. Finally, we note that while p; is the main driver of sparsity of the model, increase in py also

increase the sparsity of the model (second column in Supplementary Figure [S9).

Input datasets

We applied DRMN to study regulatory program transitions during reprogramming of differentiated cells to
pluripotent cells. We obtained four datasets, one measured by array and three by sequencing. Three of these
assayed mouse cell types representing different stages of reprogramming, while the fourth one focused on
hepatocyte dedifferentation. The reprogramming dataset included differentiated mouse embryonic fibrob-
lasts (MEFs), partially reprogrammed induced pluripotent stem cells (pre-iPSCs), and pluripotent stem cells

(iPSCs or embryonic stem cells, ESCs).

Reprogramming array data

We obtained measurements of gene expression and eight chromatin marks in three cell types that were pro-
cessed by [19]. The measurements spanned three cell types: MEF, pre-iPSC, and iPSC. The original data
were collected from multiple publications [[19,{39-41]. The gene expression of 15,982 genes was measured
by microarray. Eight chromatin marks were measured by ChIP-on-chip (chromatin immunoprecipitation
followed by promoter microarray). For each gene promoter, each mark’s value was averaged across a 8000-
bp region associated with the promoter. The chromatin marks were associated with active transcription
(H3K4me3, H3K9ac, H3K14ac, and H3K18ac), repression (H3K9me2, H3K9me3, H3K27me3), and tran-

scription elongation (H3K79me?2).

Reprogramming data from Chronis et al

Chronis et al. [7] assayed gene expression with RNA-seq, nine chromatin marks with ChIP-seq, and chro-
matin accessibility with ATAC-seq using sequencing in different stages of reprogramming (MEF, MEF48

(48 hours after start of the reprogramming process), pre-iPSC, and embryonic stem cells (ESC)). We aligned
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all sequencing reads to the mouse mm9 reference genome using Bowtie2 [42]. For RNA-seq data, we quan-
tified expression to TPMs using RSEM [43]] and applied a log transform. After removing unexpressed genes
(TPM< 1), we had 17,358 genes. The epigenomic data spanned nine histone modification marks (H3K27ac,
H3K27me3, H3K36me3, H3K4mel, H3K4me2, H3K4me3, H3K79me2, H3K9ac, and H3K9me3), and
chromatin accessibility (ATAC-seq). For the epigenomic datasets, we obtained per-base pair read coverage
using BEDTools [44]], aggregated counts within +2, 500 bps of genes’ transcription start sites, and applied

log transformation.

Hepatocyte dedifferentiation time course data

For the dedifferentiation time course, samples were extracted from adult mouse liver, and gene expression
and chromatin accessibility was assayed by RNA-seq and ATAC-seq at 0 hours, 0.5 hours, 1 hours, 2 hours,
and every 2 hours until 24 hours, and finally 36 hours (16 time points in total). All sequencing reads
were aligned to mouse mm10 reference genome using Bowtie2 [42], and gene expression was quantified
using RSEM [43]]. Any gene with TPM= 0 in all time points was removed, resulting in 14,794 genes
with measurement in at least one time point. Per-base pair read coverage for ATAC-seq was obtained using
BEDTools [44], and counts were aggregated within £2, 500 bps of genes’ transcription start sites. Both gene

expression and accessibility data were quantile normalized across 16 time points and then log transformed.

Feature set generation for reprogramming datasets

We considered the following features for each gene to predict its expression. Feature datasets were processed
as described above. Features involving the accessibility data were only available for the sequencing dataset

(marked below with *). Any missing values in the feature data were set to 0.

e Motif network, scored by —log;(p-value) of motif instances (features for 353 TFs). We assembled
a motif-based, context-independent network by computationally identifying links between transcrip-
tion factor motifs and the genes from the expression data based on the presence of a motif instance
within the gene’s promoter region. We downloaded a meta-compilation of mouse motif PWMs from
http://piq.csail.mit.edu/ [45]], which were sourced from multiple databases [46-48|]. From the full mo-

tif list, we used only those annotated as transcription factor proteins [49]. We applied FIMO [50]] to
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scan the mouse genome (Ensembl version NCBIM37.66) for significant motif instances (p < le — ).
This resulted in a total of 353 TFs. Each edge in the motif network between transcription factor » and
gene g is scored with the smallest p-value for any instance of r within 2kb of any TSS for g. We also
assessed a z-score transformation of the p-values, which performed poorly compared to the p-value

representation (not shown).
e Chromatin mark signal (feature for 8 marks in array dataset, 9 marks in sequencing dataset)

e Chromatin + motif: Concatenation of chromatin and motif features (361 features array, 362 sequenc-
ing)
o *ATAC: Log ATAC-seq signal (1 feature).

o *ATAC + motif: ATAC-seq signal and motif features (354 features)

o *Q-motif: Motif features scored by ATAC-seq signal (353 features) We quantified cell type-specific
motif networks using the ATAC-seq data from the sequencing dataset. We used BedTools (bedtools
genomecov —ibam input.bam -bg -pc > output.counts)toobtain the aggregated sig-
nal on each base pair. We defined the feature value as the log-transformed mean ATAC-seq count

under each motif instance.

e *Chromatin + ATAC + motif: Concatenation of chromatin, accessibility, and motif features (363

features).
e *Chromatin + Q-motif: Concatenation of chromatin and Q-motif features (362 features)
e *Chromatin + ATAC + Q-motif: Concatenation of chromatin, accessibility, and Q-motif features (363
features).
Feature set generation for dedifferentiation datasets

We used PIQ package [45] to identify genome-wide motif instances using PWMs from CIS-BP database
[51]]. Motif instances were mapped to pm2, 500bp of genes’ TSS, creating 2,856 features. Motif instances

were scored by ATAC-seq signal (see Q-Motif above), and accessibility signal on promoter (pm2, 500bp
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of genes’ TSS) was added as an additional feature. Features were quantile normalized and log transforemd

across the 16 time points.

Experiments to evaluate DRMN and feature combinations

In our experiments, we sought to evaluate (a) whether sharing information between cell types is beneficial,
and (b) which types of regulatory features are most useful to predict gene expression. We evaluated ex-
pression prediction in three-fold cross-validation, where a model was trained on two-thirds of the genes and
used to predict expression for the held-aside third. We ran each experiment over a range of the number of
modules, k € 3,5,7,9,11.

DRMN’s performance was compared to that of two baseline algorithms. RMN is simply DRMN run on
one cell type at a time, keeping all other experimental parameters identical. GMM applies Gaussian Mixture
Model clustering to gene expression values, and predicts the expression of a held-aside gene as the mean
of the module with the highest posterior probability. We ran GMM per-cell type (GMM-Indep) as well as
on a merged expression matrix with all three cell types (GMM-Merged). For GMM-Merged, the expression
predictions were scored per cell-type.

We evaluated DRMN to other base line methods based on the ability to predict held-aside gene expres-
sion in three-fold cross validation. Expression prediction was evaluated using two metrics. First, the overall
expression prediction was assessed using, the Pearson’s correlation between actual and predicted expression
of all held-aside genes. Second, the average Pearson’s correlation in each module, which reflects a more
fine-grained view of the utility of using regulatory features in explaining the expression levels of individual
genes in a module. The first metric examines how each model (e.g., simple expression-based clustering
approach versus expression and regulatory feature-based model), explains the overall variation in the data.
The second metric assess the value of using additional regulatory features, such as, sequence and chromatin
to predict expression. We assessed this ability using a 3-fold cross validation scheme for different values
of k, number of clusters, and compared the observed (true) expression in the three test sets to predicted

expression values.
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Identification of transitioning genes

A transitioning gene was defined as a gene that its module assignment was changed in at least one time
point/cell line. These genes were grouped into transitioning gene sets using hierarchical clustering approach

(with city block as distance metric and 0.05 as distance threshold) using our in-house programs.

Prediction of regulators for transitioning genes

To identify regulators associated with transitioning gene sets in dedifferentiation dataset, we used Multi-
Task Group LASSO. Briefly, in each transitioning gene sets, we solve a linear regression for each gene to
predict its expression (across time points) using Q-motif features as predictor, with the group constraint to

enforce selection of similar predictors for all the genes in the gene set:

min X = YO|3 + A6 |2,

where X is the expression matrix of genes in the transitioning gene set, and Y correspond to fea-
ture matrix of Q-motif features of regulators for genes in the transitioning gene set. We used MATLAB
implementation of multi-task group LASSO from SLEPP package [52]]. We performed leave-one-out cross-
validation and selected regulators that were selected in at least 60% of the trained models. Additionally, we
used randomized feature data to train 40 random models, and asked if the frequency of selecting a regulator
was significantly higher random models (z-test with p-value < 0.05 using mean and standard deviation from

the 40 random models).

Availability

The DRMN codeis available at https://github.com/Roy—lab/drmn
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Figure 1: The outline of Dynamic Regulatory Module Networks (DRMN) method. Inputs are a lineage tree
over the cell types, cell type-specific expression levels, a shared skeleton regulatory network (e.g. sequence
specific motif network), and optionally cell type-specific features such as histone modification marks or
chrmatin accessibility signal. The output is a learned DRMN, which consists of cell type-specific expression
state modules, their regulatory programs, and transition matrices describing dynamics between the cell types.
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Figure 2: (A) Predicted expression vs. observed expression, for iPSC/ESC, for (i) DRMN-ST on array
dataset, (i) DRMN-ST on sequencing dataset, (iii) DRMN-FUSED on array dataset, and (iv) DRMN-
FUSED on sequencing dataset. Average per-module correlation for individual cell lines as a function of
different number of modules, for (B) DRMN-ST on array dataset, (C) DRMN-ST on sequencing dataset,
(D) DRMN-FUSED on array dataset, and (E) DRMN-FUSED on sequencing dataset. Average per-module
correlation for individual cell lines for DRMN-ST vs. DRMN-FUSED for (F) array dataset, and (G) se-
quencing dataset. Each shape correspond to a cell line and each color correspond to a different feature
set.
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Figure 3: Average per-module correlation for individual cell lines as a function of different number of
modules for single task and multi task versions of the method, for A-C) DRMN-ST on sequeincing dataset,
D-F) DRMN-FUSED on sequeincing dataset, G-I) DRMN-ST on array dataset, and J-L) DRMN-FUSED
on array dataset. Each shape correspond to a cell line and each color correspond to a different method.
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Figure 4: Annotation of DRMN modules, for models trained on chromatin+q-motif with £k = 7 modules,
for sequencing dataset. (A) The gene expression pattern of the 7 modules. The number above the heatmap
correspond to the number of genes in that module. (B) Inferred regulatory program for different modules
and cell lines. (C) Similarity of modules across cell lines.
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Figure 5: (A) Bird’s eye view of groups of transitioning genes. On left is the average expression of the genes
in the group, in the middle is module assignments, and on right the number of genes in that group. (B) Mod-
ule assignments, gene expression, presence or absence of TCF3 motif, and feature values for H3K27me3,
H3K79me?2, and Bcl6b, for genes that transition from low to high expression between differentiated or
partially reprogrammed cells and ESCs/iPSC.
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Figure 6: Annotation of DRMN modules for dedifferentiation dataset with & = 5 modules. (A) The gene
expression pattern of the 5 modules. The number above the heatmap correspond to the number of genes
in that module. (B) Inferred regulatory program for different modules and time points. (C) Similarity of
modules across time point.
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Figure 7: (A) Bird’s eye view of groups of transitioning genes. On left is the average expression of the
genes in the group, in the middle is module assignments, and on right the number of genes in that group.
(B) Regulators associated some of transitioning gene sets.
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Figure S1: Performance of ATAC as a single feature (green) vs. Motif alone (blue), Histone+Motif (ma-
genta), Q-Motif (light blue), ATAC+Motif (yellow), Histone alone (red), and Histone+ATAC+Motif (dark
purple) using A) DRMN-ST and B) DRMN-Fused. C) Shows the performance of DRMN-ST vs. DRMN-
Fused for the same features.
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Figure S2: Comparing average number of regulators per module between DRMN ST and Fused models for
different dataset/feature combinations A-C) feature sets in array dataset, and D-I) feature sets in sequencing
dataset.
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Figure S3: Comparing DRMN’s expression predictions to baseline approaches. Each panel compares six
algorithms (legend) on the basis of one correlation metric (y-axis) across a range of k (x-axis). Each dot
represents the results for one cell type averaged over 3 fold of cross validation. The columns show results for
chromatin mark features (left), combination of chromatin and motif (middle), and the motif features (right).
(A-F) Comparison based on Pearson correlation of predicted to true expression for held-aside genes. (G-L)
Comparison of per-module correlation coefficients, averaged across k modules.
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Figure S4: Annotation of DRMN modules, for models trained on chromatin+motif with £ = 7 modules, for
array dataset. (A) The gene expression pattern of the 7 modules. The number above the heatmap correspond
to the number of genes in that module. (B) Inferred regulatory program for different modules and cell lines.
(C) Similarity of modules across cell lines.
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Figure S5: (A) Bird’s eye view of groups of transitioning genes; on left is the average expression of the
genes in the group, in the middle is module assignments, and on right the number of genes in that group.
(B) Module assignments (left) and gene expression (middle), and presence or absence of TCF3 motif for
genes that transition from low to high expression between differentiated or partially reprogrammed cells and
ESCs/iPSC.
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Figure S6: Enriched GO terms in dedifferentiation datset that show significant changed in enrichment be-
tween earlier time points and later time points.
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Figure S7: The effect of iteration on performance of DRMN (on Motif+Chromatin, k=3, using fused LASSO
(p1 = 100, p2 = 50, p3 = 0). A) Average correlation (over all modules) for each cell line, as a function of
number of iterations. Each marker corresponds to a cell line. B) Similarity of module assignments between
consecutive iterations. C) Similarity of module assignments between iteration 1 and iteration s.
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Figure S8: The effect of group penalty on DRMN performance. Each panel corresponds to one of sequenc-
ing feature sets. In each panel, different colors corresponds to different values of ps3, the group LASSO
penalty (enforcing selection of same features for all cell lines).
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Figure S9: The effect of fused penalty on DRMN performance and the number of selected features. Each
panel corresponds to one of sequencing feature sets. In each panel, different colors correspond to differ-
ent values of po, the fused LASSO penalty (enforcing similarity of features selected for closer cell lines).
First column shows the average correlation of predicted expression, and second columns shows the average
number of selected features (averaged over cell lines and modules).
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