

Landscape management for grassland multifunctionality

Neyret M., Fischer M., Allan E., Hözel N., Klaus V. H., Kleinebecker T., Krauss J., Le Provost G., Peter. S, Schenk N., Simons N.K., van der Plas F., Binkenstein J., Börshig C., Jung K., Prati D., Schäfer M., Schäfer D., Schöning I., Schrumpf M., Tschapka M., Westphal C. & Manning P.

9 Summary

Land-use intensification has contrasting effects on different ecosystem services, often leading to land-use conflicts. Multiple studies, especially within the 'land-sharing versus land-sparing' debate, have demonstrated how landscape-scale strategies can minimise the trade-off between agricultural production and biodiversity conservation. However, little is known about which land-use strategies maximise the landscape-level supply of multiple ecosystem services (landscape multifunctionality), a common goal of stakeholder communities. Here, we combine data collected from 150 grassland sites with a simulation approach to identify landscape compositions, with differing proportions of low-, medium-, and high-intensity grasslands, that minimise trade-offs between the four main grassland ecosystem services demanded by stakeholders: biodiversity conservation, aesthetic value, productivity and carbon storage.

20 We show that optimisation becomes increasingly difficult as more services are considered, due
21 to varying responses of individual services to land-use intensity and the confounding effects of
22 other environmental drivers. Thus, our results show that simple land-use strategies cannot
23 deliver high levels of all services, making hard choices inevitable when there are trade-offs
24 between multiple services. However, if moderate service levels are deemed acceptable, then
25 strategies similar to the 'land-sparing' approach can deliver landscape multifunctionality. Given
26 the sensitivity of our results on these factors we provide an online tool that identifies strategies
27 based on user-defined demand for each service
28 (https://neyret.shinyapps.io/landscape_composition_for_multifunctionality/). Such a tool can aid
29 informed decision making and allow for the roles of stakeholder demands and biophysical trade-
30 offs to be understood by scientists and practitioners alike.

31 Introduction

32 Habitat conversion and land-use intensification are driving biodiversity loss and changes to
33 ecosystem service supply across the world (IPBES 2019). While high land-use intensity
34 promotes a small number of ecosystem services related to food production, it is often detrimental
35 to biodiversity conservation (Anderson et al., 2009; Bennett et al., 2009; Lavorel et al., 2011;
36 Raudsepp-Hearne et al., 2010) and other regulating or cultural ecosystem services that depend
37 on biodiversity for their delivery (Allan et al., 2015; Cardinale et al., 2012; Clec'h et al., 2019;
38 Foley, 2005; Triviño et al., 2017). Such contrasting responses of different ecosystem services to
39 ecosystem drivers often make it impossible to achieve high levels of all desired services (i.e.
40 ecosystem service multifunctionality, *sensu* Manning et al. (2018)) at a local scale (van der Plas
41 et al., 2019). This has led to land-use conflicts, which are becoming increasingly common across
42 the globe (Eastburn et al., 2017; Goldstein et al., 2012).

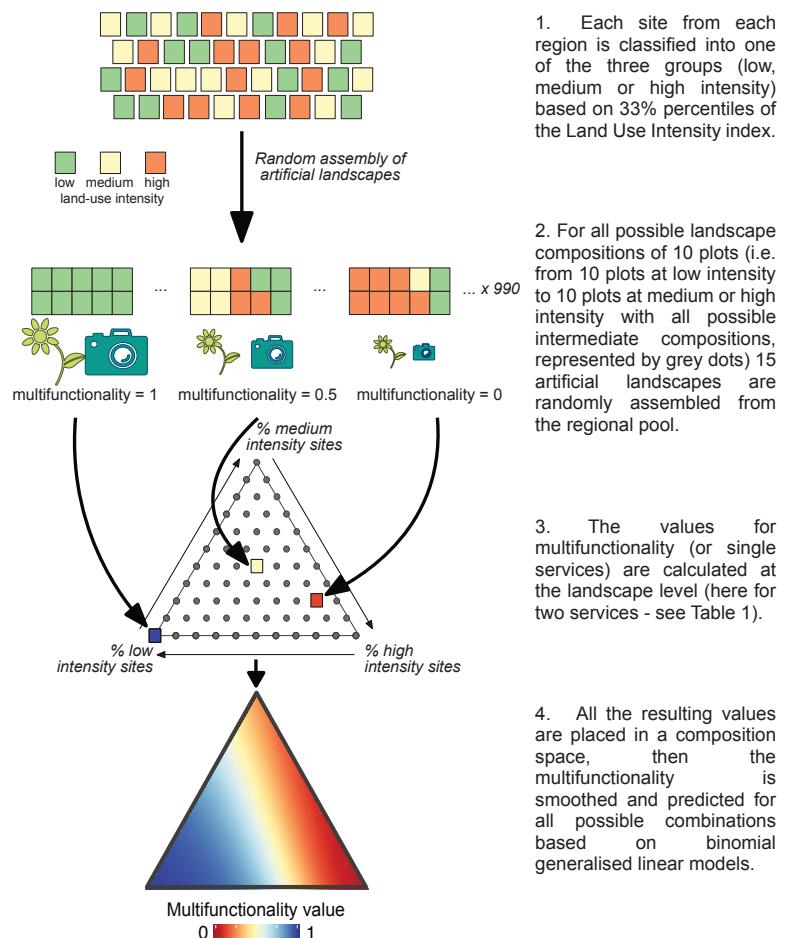
43 To date, much of the work on minimising trade-offs between ecosystem services within
44 landscapes has compared a 'land sparing' strategy, in which semi-natural high-biodiversity areas
45 and intensive farmland are spatially segregated, and a 'land sharing' strategy in which
46 biodiversity conservation and commodity production are co-delivered in a landscape of
47 intermediate intensity (Green, 2005). Within this field, most studies have found that land sparing
48 is the best way to achieve high levels of both biodiversity conservation and commodity production
49 (Feniuk et al., 2019; Phalan et al., 2011; Simons & Weisser, 2017). However, multiple studies
50 have also stressed the limitations of the land sharing versus land sparing concept. The
51 framework focuses on just two extreme strategies, and on only two services - commodity
52 production and biodiversity conservation (Bennett, 2017; Fischer et al., 2014), while in reality,
53 most landscapes are expected to provide multiple services, even within a single ecosystem type.
54 This is the case for semi-natural grasslands (*sensu* Bullock et al. 2011), which supply a wide
55 range of highly demanded ecosystem services including water provision, climate regulation
56 (carbon storage) and recreation services, in addition to food production and biodiversity
57 conservation (Bengtsson et al., 2019). Accounting for these additional ecosystem services could
58 significantly affect which land-use strategies deliver multifunctionality (Knocke, 2020), but the
59 optimal strategy for achieving high levels of multiple services within grassland landscapes
60 remains unknown.

61

62 Here, we present a novel approach to identifying the optimal landscape composition for multiple
63 ecosystem services, that involves varying the proportion of land under different intensities in data
64 simulations. We also investigate how the levels of services demanded by land governors affect
65 the optimal strategy. Because trade-offs between services mean that it is unlikely that all services

66 can be maintained at high levels (Bennett et al., 2009; Raudsepp-Hearne et al., 2010; van der
67 Plas et al 2019), managers are often faced with hard choices. To simulate the compromises that
68 can be made we therefore generated two contrasting metrics of multifunctionality. In the first,
69 governors choose to provide a small number of services at high levels, e.g. to meet the needs
70 of a single or few groups to the exclusion of others (hereafter 'threshold scenario'). In the second,
71 governors opt for a compromise situation in which all services are provided at moderate levels
72 but without any guarantee of them being high (hereafter 'compromise scenario'). We base our
73 metrics of multifunctionality on four services which are directly linked to final benefits (*sensu*
74 Fisher & Turner (2008); Mace et al., (2012)): fodder production, biodiversity conservation, climate
75 change mitigation, and aesthetic value. Among the services provided by grasslands in our study
76 region, those four were ranked as most important by the main stakeholder groups, as identified
77 in a social survey (Figure S 1).

78

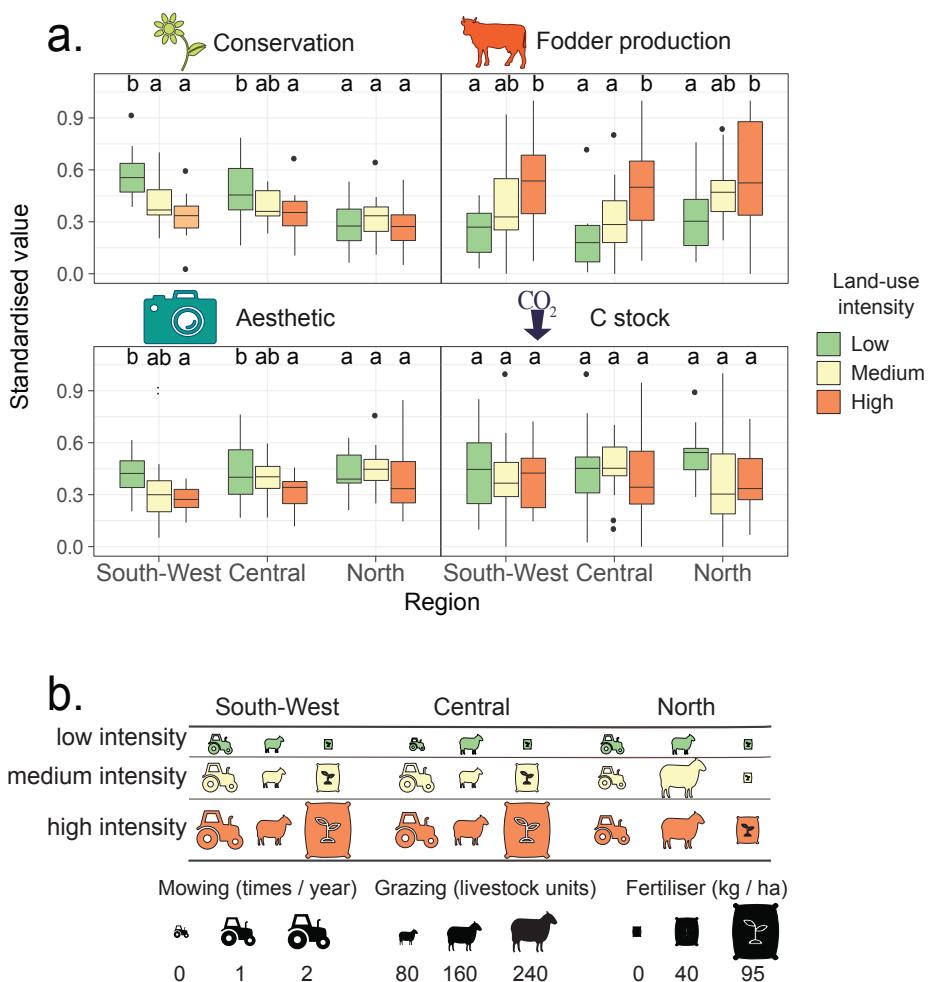

79 The analysis was achieved by combining ecosystem service data collected at 150 grassland
80 sites found in the three regions of the large-scale and long-term Biodiversity Exploratories
81 project, in Germany, with a simulation approach in which artificial 'landscapes' were assembled
82 from site-level data. We then identified the landscape composition with highest multifunctionality
83 in each regional context (Figure 1). For each region, we divided sites into three levels of land-
84 use intensity (Blüthgen et al. 2012). The intensity gradient was mostly driven by fertilisation and
85 cutting frequency in the South-West and Central regions, and by grazing intensity and fertilisation
86 in the North (Figure 2b). We then created 990 different artificial landscapes in each region, that
87 differed in their proportions of high, medium and low intensity grassland. Indicator values for the
88 supply of the four services were then calculated at the landscape level (see Table 1 and Methods)
89 before calculating multifunctionality. We hypothesized that heterogenous landscapes composed
90 of both high- and low-intensity (broadly similar to a land-sparing strategy) sites would have the
91 highest multifunctionality when considering fodder production and biodiversity conservation (van
92 der Plas et al., 2019).

93

Table 1 Estimation of the considered ecosystem services from site-scale ecosystem service indicators. All landscape-scale services were weighted equally within each final benefit category. Services were corrected for the effects of environmental covariates (e.g. soil texture, climate) prior to the calculation of landscape indicators.

Ecosystem service		Site-scale ecosystem service indicator	Landscape-scale ecosystem service indicator
	Biodiversity conservation	Number of plant species (alpha diversity)	Number of plant species (gamma diversity)
		Cover of red list species	Cover of red list plant species
	Fodder production	Estimated biomass production (as per Simons & Weisser 2017) x plant nitrogen concentration x 6.25 (Lee, 2018)	Sum of protein production of all sites in the landscape
	Aesthetic value	Butterfly abundance Flower cover Bird richness	Average butterfly abundance in the landscape Average flower cover in the landscape Number of bird families (gamma diversity) in the landscape (Hedblom <i>et al.</i> , 2014)
	Climate change mitigation (carbon storage)	C stock at 0-10cm depth	Sum of soil C stocks in the landscape

Figure 1 Steps of the analysis



95 Results

96 Relationships between land-use intensity and ecosystem services

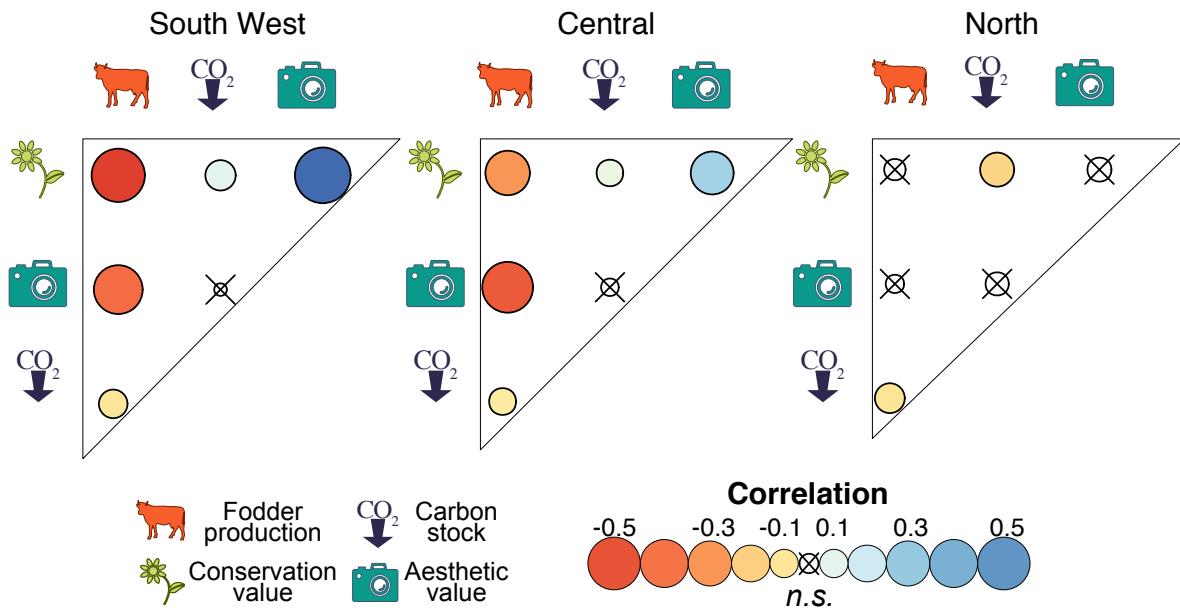

97 At the single-site scale, the optimal land-use intensity for individual services can be easily
98 identified. Across all regions, fodder production consistently increases with land-use intensity
99 while conservation and aesthetic values respond negatively to land-use intensity (Figure 2).
100 Carbon stocks do not vary with land-use intensity. The trade-offs and synergies observed at the
101 landscape scale (Figure 3) are consistent with these site-scale results (Figure 2). Conservation
102 value is synergic with aesthetic value (Pearson's $r = 0.35$ for all regions, $P < 0.001$) but both

Figure 2 Relationship between ecosystem service supply and land-use intensity across the study regions. a. Variation of ecosystem services supplies with land-use intensity. Values shown are calculated at the plot level as the average of their component indicators (see Table 1 and supplementary figures). Values were scaled between 0 and 1. Different letters indicate differences significant at 5% (ANOVA and pairwise comparisons). b. Characterisation of land-use intensity based on mowing, grazing and fertilisation levels in the different regions. The size of the symbols is proportional to the corresponding intensity.

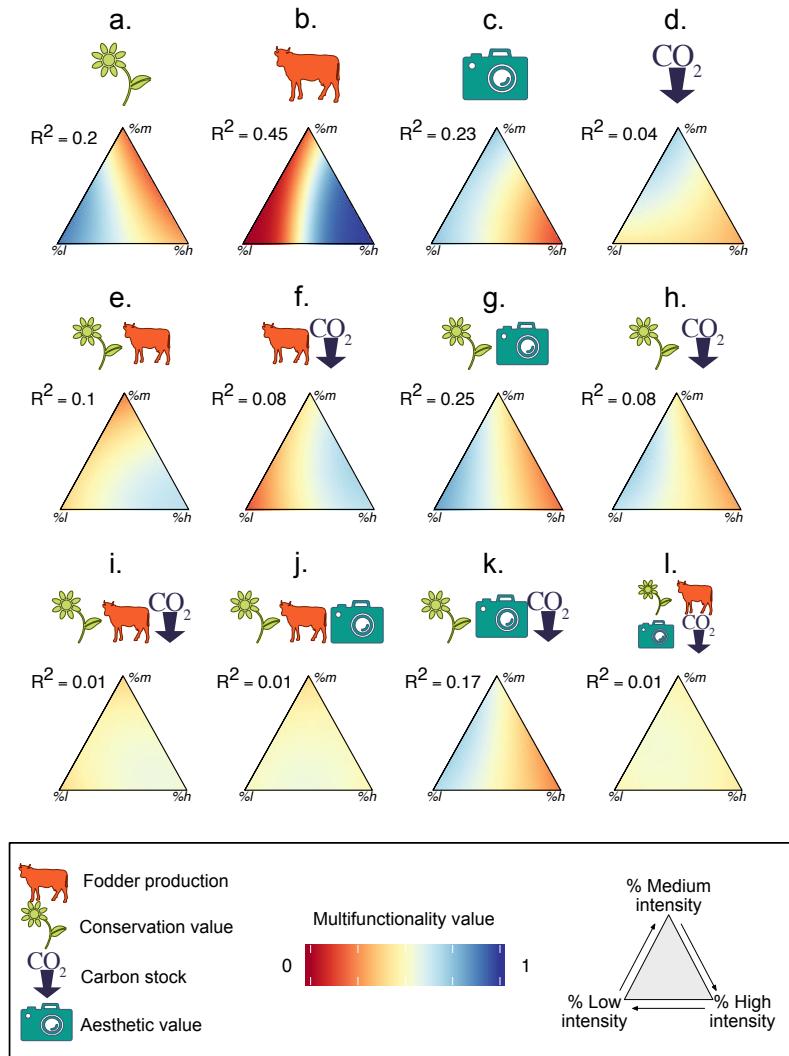

103 display a trade-off with fodder production (respectively $r = -0.28$ and $r = -0.32$, $P < 0.001$). Carbon
104 stocks do not show any consistent relationship with the other services.

Figure 3 Trade-offs between landscape-scale ecosystem services. The colour and size of the circles denote the strength of the correlation between pairs of variables, within each region. Crosses indicate no significant correlations at 5% (Holm correction for multiple testing).

105
106
107 *Optimal land-use allocation at the landscape scale*
108
109 At the landscape scale, effective landscape strategies can be identified where only a few services
110 are desired, but optimisation becomes increasingly difficult as more services are considered.
111 This makes hard choices inevitable when there are trade-offs between multiple ecosystem
112 services. The optimal land-use allocation pattern also depends strongly on whether achieving
113 moderate levels of all services, or high levels of a few, is the priority. Given this sensitivity we
114 developed an online tool to allow users to investigate the best management strategy for a given
115 set of ecosystem services demands
116 (https://neyret.shinyapps.io/landscape_composition_for_multifunctionality/). In the text below we
117 highlight a few of the possible combinations of this parameter space, and demonstrate the
118 sensitivity of multifunctionality to multiple factors. We illustrate our results using data collected
119 from three of the main stakeholder groups of the three study regions; farmers, conservationists
120 and the tourism sector. This social survey showed that all groups demanded at least some of
121 each service (Figure S 1), but that conservationists prioritized biodiversity conservation; farmers,
122 food production; and the tourism sector both landscape beauty and biodiversity conservation.

Figure 4 Dependency of multifunctionality on the services demanded and landscape composition. Landscape composition is presented in proportions of low, medium and high-intensity sites, for selected combinations of ecosystem services in the Central region of the Exploratories. For single ecosystem services (top row), the value presented corresponds to the probability of the given service being above the median. For combinations of multiple services (middle and bottom rows), multifunctionality is the proportion of services above the median. Blue indicates higher multifunctionality values, orange lower. The full set of service combinations in all regions can be found in Figure S 3. R^2 values were calculated from generalised linear models (see Methods).

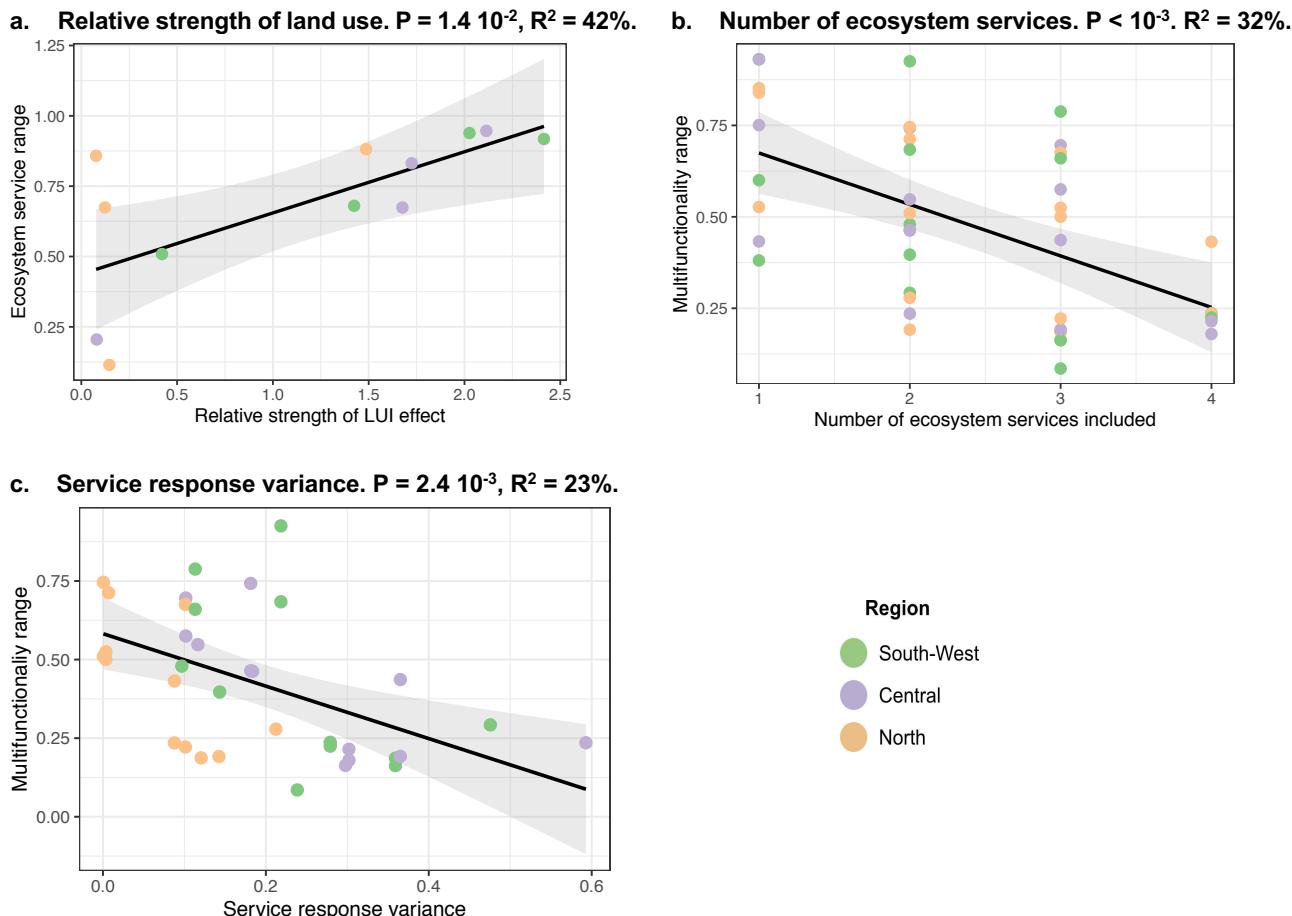


123 In the first set of examples, we present the ‘threshold’ scenario in which land governors choose
 124 to manage the landscape to provide high levels of some services, potentially to the exclusion of
 125 some others. This corresponds to a multifunctionality metric calculated as the number of services
 126 over the median, and is broadly equivalent to a metric widely used in multifunctionality studies
 127 (e.g. Soliveres et al., 2016; van der Plas et al. 2016). Here we find that for individual services,
 128 the optimal landscape composition is predictable and consistent with the site-level results, i.e.
 129 that the highest service values are found in homogeneous landscapes composed of sites with

130 land-use intensities favouring that particular service (Figure 4. a-d). Thus, the optimal landscapes
131 for individual stakeholder groups are composed exclusively of one intensity, either high (e.g.
132 fodder production for farmers, Figure 4b), or low (e.g. conservation for conservationists, Figure
133 4a). The optimal landscape composition when two ecosystem services are considered depends
134 on whether these services have consistent or contrasting responses to land-use intensity. When
135 the two services are synergic, they behave as a single service and optimal landscape
136 composition is found at the common optimum of the two services. For example, a clear optimum
137 can be found for conservation and aesthetic value (Figure 4g), both of which are prioritized by
138 the tourism sector. In contrast, if the two services respond contrastingly to land-use intensity,
139 then whether an optimum could be found depends on the form and strength of their relationship
140 with land-use intensity. For example, a common objective of landscape management is to meet
141 the demands of both the agricultural and conservation sectors, by combining food production
142 with biodiversity conservation (Phalan et al. 2011). As there is a strong trade-off between these
143 services (Figure 3), only a partial optimum with high levels of both services can be found (Figure
144 4e), with the landscape composition delivering this depending on regional differences in the
145 response of services to land-use intensity (see Figure S 3 for details), and the relative
146 responsiveness of the services considered to land use intensity. For three or four services the
147 identification of an optimal land-use strategy becomes even more challenging. In these cases,
148 multifunctionality varies very little across the full range of landscape composition (maximum R^2
149 for Figure 4i-l: 17%, and often < 10%), with relatively uniform multifunctionality values of about
150 50%, regardless of the landscape composition.

151 Next, we explored the 'compromise' scenario in which land governors choose to balance the
152 demands of different stakeholder groups, ensuring moderate, but not necessarily high, level of
153 all services. We represented this by creating a multifunctionality metric that is equal to 1 if all
154 services are above the 25th percentile, and 0 otherwise. The use of such a metric strongly affects
155 the outcome of the land management strategy, in comparison to the first 'threshold'
156 multifunctionality scenario (for selected service combinations see Figure 5). While the two
157 scenarios give similar results when services were synergic (e.g. Figure 5b), it is easier to identify
158 successful land-use strategies when the considered services display a trade-off for the
159 'compromise' scenario, and especially when there are only two services (Figure 5a). In this case
160 'compromise' multifunctionality is highest in landscapes composed of both high- and low-
161 intensity sites, and with few medium-intensity sites, i.e. - broadly similar to a land-sparing
162 strategy. When multiple services are considered (Figure 5d-f), variation in multifunctionality
163 across the different strategies is also higher in the 'compromise' than the 'threshold' scenario,
164 ranging from 0 to 0.6.

Figure 5 Dependency of multifunctionality on stakeholder demand patterns, as represented by ‘threshold’ and ‘compromise’ metrics. Values also depend on landscape composition (in proportions of low, medium and high-intensity sites). In the threshold scenario, multifunctionality is calculated as the number of services above the median (top row, repeated from Fig. 4). In the compromise scenario, multifunctionality equals 1 if all services are above the 25th quantile, and 0 otherwise (bottom row). R^2 values were calculated from generalised linear models (see Methods). Only data from the Central region and certain service combinations are presented, other service combinations and regions can be found in Figure S 3 and Figure S 8.


165 *Identifying the drivers of multifunctionality*

166

167 To explore why optimal landscape strategies cannot always be identified when multiple services
 168 are demanded, we generated and tested several hypotheses. The first was that some services
 169 are primarily driven by environmental drivers (e.g. climate and underlying geology) and so
 170 respond weakly to landscape land-use composition compared to those predominantly driven by
 171 land-use intensity. Second, we predicted that the response of multifunctionality to landscape
 172 composition should be weaker when services respond contrastingly to land use intensity (high
 173 variance in the response to land use intensity). In such cases, increasing the number of services
 174 will weaken the response of multifunctionality to landscape composition by aggregating
 175 increasing amounts of variation. We tested whether these two factors determined the
 176 responsiveness of multifunctionality to landscape composition, defined as the range of predicted
 177 multifunctionality values in the models (appearing as the strength of colour gradient on Figure 4
 178 and Figure 5, see Methods for details). The first hypothesis was supported; in the threshold
 179 scenario, multifunctionality range increased if land-use intensity had a relatively large effect on
 180 the services included compared to other environmental drivers (Figure 6a, $P = 1.4 \cdot 10^{-2}$, $R^2 =$

181 42%). The second hypothesis was also supported; multifunctionality range decreased with
182 increases in the numbers of services included in the analysis (Figure 6b, $P < 0.001$. $R^2 = 32\%$)
183 and the variance in their response to land-use intensity (Figure 6c, $P = 2.4 \cdot 10^{-3}$, $R^2 = 23\%$). In
184 the compromise scenario, multifunctionality was not affected by these factors (Table S 5), due
185 to relatively high multifunctionality ranges for all service combinations, as detailed above.
186

Figure 6 Factors explaining the sensitivity of multifunctionality to landscape composition. Figures show the responsiveness of multifunctionality (range between 5% and 95% quantiles of the predicted values) to landscape composition depending on (a) the strength of each individual ecosystem service's response to landscape composition relative to the effects of land use and environmental covariates (b) the number of ecosystem services included in its calculation (all possible combinations, of 1 to 4 services) and (c) the service-response variance among the included ecosystem services (all possible combinations). Each dot represents individual services (a), or one combination of services (b, c), per region. The lines show the prediction of a linear model, with multifunctionality range as the response and the considered factor as the explanatory variable.

187 *Additional analyses*

188

189 To assess whether the inability to find a clear optimum was due to our simplification of land-use
190 intensity into three categories, we also investigated the response of multifunctionality to the mean
191 and coefficient of variation of land-use intensity at the landscape level. The results of this analysis
192 were largely consistent with the results of the 'three levels' analysis in that unless the services
193 were synergic, no optimum could be found when several services were demanded (Figure S 18).
194 The model fits were also equivalent to those from the aforementioned analyses but are more
195 difficult to translate into simple management recommendations.

196

197 In addition to the main cases presented here we identified several other sensitivities including
198 additional metrics for multifunctionality calculation at the landscape level, the number of sites
199 included in each landscape, and the use of raw data instead of that corrected for environmental
200 variation. We encourage readers to explore these sensitivities in the app, although the
201 corresponding figures and specificities are also presented extensively in the supplementary
202 information (Figure S 4 to Figure S 18).

203 Discussion

204 While the land-sharing or -sparing debate has aided our understanding of the trade-offs between
205 commodity production and conservation (Phalan, 2018) we show that neither of these simple
206 strategies can provide high multifunctionality in grassland landscapes, if high levels of multiple
207 ecosystem services are desired. We predict that this difficulty in achieving high multifunctionality
208 is general to many ecosystems and landscapes, as the presence of other drivers and trade-offs
209 or imperfect correlations between services are commonplace (Bennett et al., 2009; Bradford &
210 D'Amato, 2012). Various studies have advocated for the consideration of more complex
211 strategies for balancing commodity production with conservation (Bennett, 2017; Butsic &
212 Kuemmerle, 2015; Fischer et al., 2014; Kamp et al., 2015; Phalan et al., 2011, Simons and
213 Weisser 2017). By employing a rigorous approach based on direct, in-field measurements of
214 ecosystem service indicators, we further show that considering not only trade-offs and synergies
215 between ecosystem services, but also information describing the ecosystem service demand of
216 stakeholders, helps identify land management options that have greater precision and relevance
217 to land users. The approach presented also allows the potential causes of land-use conflicts to
218 be identified, as it can assess whether low multifunctionality is caused by trade-offs in the supply
219 of ecosystem services, or unrealistic and incompatible demands on the ecosystem by
220 stakeholders.

221 In our study system, ecosystem services showed contrasting responses to land-use intensity,
222 such as the commonly observed trade-off between production and biodiversity or cultural
223 services (Allan et al., 2015; Bradford & D'Amato, 2012; Coldingley et al., 2016; Lavorel et al.,
224 2011; Raudsepp-Hearne et al., 2010). Understanding contrasting responses of ecosystem
225 services to land management is fundamental to identifying landscape-level strategies. Here, we
226 show that strong management-driven trade-offs preclude multifunctionality when high levels of
227 services are required. As a result, even complex landscape strategies can fail to deliver high
228 levels of multiple ecosystem services (Allan et al., 2015) and landscape management is likely to
229 require "hard choices" (Coldingley et al., 2016; Slade et al., 2017) regarding which services to
230 prioritise, and which are secondary. At the same time, we show that it is possible to provide
231 limited levels of multiple services by combining sites at low and high intensities, a strategy
232 broadly similar to land-sparing. In this respect, our results show that the optimal strategy depends
233 heavily on the priorities of landscape managers. While different stakeholders are likely to favour
234 different sets of services, landscape-level governors are faced with a difficult choice: create a
235 landscape with a few services at high value, which will create clear winners and losers among
236 stakeholder groups, or one that minimises the trade-offs among services so that all are present
237 at moderate levels, meaning that all stakeholder groups must accept sub-optimal levels of
238 ecosystem services.

239
240 While advancing on previous studies by incorporating multiple services, we acknowledge that
241 our approach to identifying optimal landscape strategies is simple and ignores much of the
242 complexity found in natural systems. Firstly, ecosystem services respond to multiple drivers, and
243 these can be either anthropogenic (e.g. land-use change, overexploitation, Carpenter et al.,
244 (2009)) or environmental (e.g. soil (Adhikari & Hartemink, 2016), climate, or elevation (Lavorel
245 et al., 2011)). Failing to account for these drivers can obscure the relationship between land-use
246 composition and multifunctionality. Environmental drivers will differ in their effect on different
247 services, and so can modify their trade-offs (Clec'h et al., 2019). Therefore, the development of
248 strategies to achieve landscape multifunctionality also needs to be informed by regional
249 knowledge (Anderson et al., 2009; Butsic & Kuemmerle, 2015; Clec'h et al., 2019). For instance,
250 in our analysis the North region responded very differently to the other two regions. This was due
251 to regional specificities, such as its uniformly low plant diversity and the association of low-
252 intensity sites with organic soils, which shifted the optimal landscape compositions to different
253 regions of the triangular space compared to the other regions (Figure S 3).

254
255 In addition to local drivers, the delivery of many ecosystem services depends on the movement
256 of matter or organisms among landscape units (Mitchell et al., 2014). For instance, pollination,

257 water quality, or pest and disease control are affected by landscape complexity, fragmentation
258 and surrounding land uses (Duarte et al., 2018). Accordingly, we advocate the incorporation of
259 spatial interactions between landscape units (Lindborg et al., 2017) into future models, elements
260 which may modify and expand upon the conclusions presented here.

261

262 Our system consists of only one land-use type and does not include unmanaged land, making it
263 only broadly comparable to the land-sparing and -sharing strategies. However, we argue that the
264 methodology presented here could be extended to many different land-use and management
265 regimes, provided that appropriate data on services and drivers is available. Steps must also be
266 taken to ensure that insights from such studies are in a format that can be communicated
267 effectively to land managers. For instance, we argue that the proposed methodology -
268 proportions of land in a number of land-use categories - is more easily transferable than indices
269 of land-use intensity heterogeneity. Strategies for knowledge transfer also need to be developed.
270 We suggest that apps like the one presented here provide a useful demonstration tool for
271 communicating land-use options to land managers and policy makers, as they could be used to
272 explore options, understand the causes of conflicts and trigger discussions, thus helping to
273 support decision-making among different groups of stakeholders. However, full application of
274 findings such as those presented here also requires the existence of structures that aim to
275 identify landscape strategies and operationalise them at a community level, such as the
276 'landscape approach' (DeFries & Rosenzweig, 2010; Sayer et al., 2013). This aims to balance
277 competing land-use demands to promote environmental conservation and human well-being
278 based on a participatory approach (e.g. the African Forest Landscape Restoration Initiative).
279 Government and corporate policies can also implement such strategies, e.g. via agri-
280 environment schemes that may guide the allocation of different land-use types or land-use
281 intensities to different parts of the landscape (Whittingham, 2011). We suggest that
282 demonstrating of management options via apps such as that presented here, can foster
283 understanding and aid decision making in both of these settings.

284

285 Overall, this study shows that landscape strategies are highly sensitive to the identity of the
286 services desired and the type of multifunctionality demanded by stakeholders, making
287 participatory approaches to the development of land management strategies essential. When
288 high levels of all services are required, we show that optimising landscape composition is usually
289 possible for two services. However, when there are strong trade-offs among services or
290 significant effects of other environmental drivers, successful options become increasingly limited
291 unless stakeholders are willing to accept moderate service levels, which can be delivered by
292 strategies akin to land sparing. Across the world, landscapes are increasingly required to provide

293 a wide range of services. This study stresses the need for both theoretical studies and applied
294 social and ecological research into which services are required, at what scale, and how they are
295 affected by environmental drivers. Such knowledge is essential if we are to identify land-use
296 strategies that minimise conflict between stakeholders, and promote the sustainable use of all
297 ecosystem services.

298

299 Material and methods

300 Study design

301 We used data from 150 grassland plots (hereafter sites) studied within the large-scale and long-
302 term Biodiversity Exploratories project in Germany (<https://www.biodiversity-exploratories.de/>).
303 The sites were located in three regions including the UNESCO Biosphere Area Schwäbische Alb
304 (South-West region), in and around the National Park Hainich (Central region; both are hilly
305 regions with calcareous bedrock), and the UNESCO Biosphere Reserve Schorfheide-Chorin
306 (North of Germany: flat, with a mixture of sandy and organic soils, see Fischer et al. (2010) for
307 details). Sites measured 50 x 50m and were selected to be representative of the whole field they
308 were in, spanning the full range of land-use intensity within the region, while minimising variation
309 in potentially confounding environmental factors.

310 Land-use intensity

311 Data on site management was collected annually from site owners using a questionnaire. We
312 quantified grazing intensity as the number of livestock units \times the number of days of grazing
313 (cattle younger than 1 year corresponded to 0.3 livestock units (LU), cattle 2 years to 0.6 LU,
314 cattle older than 2 years to 1 LU, sheep and goat younger than 1 year to 0.05 LU, sheep and
315 goat older than 1 year to 0.1 LU, horse younger than 3 years to 0.7 LU, and horse older than 3
316 years to 1.1 LU; Fischer et al. 2010), fertilisation intensity as the amount of nitrogen addition
317 excluding on-site animal droppings during grazing events ($\text{kg N ha}^{-1}\text{y}^{-1}$), and mowing frequency
318 as the annual number of mowing events. For each site these three land-use intensity (LUI)
319 components were standardised, square-root transformed, summed, and then averaged between
320 2007 and 2012 to obtain an overall LUI value (Blüthgen et al., 2012). We then classified all sites
321 as low-, medium- or high-intensity based on whether their LUI index belonged to the lower,
322 middle or top third (0-33%, 33-66%, 66-100% quantiles) of all LUI indices within the considered

323 region. Confidence intervals for grazing and fertilization intensities for each LUI class in the three
324 regions are presented in Table 2.

Table 2 Description of the variations of land-use intensity components. Confidence intervals for fertilisation and grazing intensities in each region, for each land-use intensity (LUI) class. 95% confidence intervals were calculated based on fertilisation and grazing values of individual plots on the period 2007-2012

	LUI class	South-West	Central	North
LUI index	Low	1 (0.9-1.2)	1 (0.9-1.1)	1.2 (1.1-1.3)
	Medium	1.7 (1.6-1.7)	1.7 (1.6-1.8)	1.5 (1.4-1.5)
	High	2.2 (2-2.4)	2.2 (2.1-2.4)	2.3 (2.1-2.5)
Grazing intensity (Livestock units. days.ha ⁻¹)	Low	82.2 (49.2-115.3)	86.5 (64.4-108.6)	103.4 (52.2-154.6)
	Medium	97.6 (34.5-160.7)	102.5 (48.3-156.6)	239.5 (140.9-338.1)
	High	156.7 (24.6-288.8)	160.7 (39.6-281.8)	215.9 (80.4-351.4)
Mowing intensity (Cut.yr ⁻¹)	Low	0.5 (0.1-0.8)	0.3 (0-0.6)	0.8 (0.6-1.1)
	Medium	1.4 (0.9-1.8)	1.2 (0.9-1.5)	0.8 (0.4-1.2)
	High	1.8 (1.3-2.3)	1.6 (1.2-2)	1.2 (0.8-1.7)
Fertilisation (kg.N.ha ⁻¹)	Low	1.1 (-0.6-2.8)	1.4 (-1.6-4.4)	0.4 (-0.4-1.2)
	Medium	38 (23.4-52.7)	34.9 (18-51.8)	0.6 (-0.7-2)
	High	95 (67.4-122.6)	91.1 (65.4-116.9)	42.8 (25.8-59.7)

325

326 Ecosystem services demand

327 A preliminary social survey was conducted among representatives of the main stakeholder
328 groups within each region to identify the most demanded ecosystem services. The participants,
329 one representative per stakeholder group per region, were asked to rank their demand for all
330 possible ecosystem services provided in their region at the landscape level between 1 and 5 (1
331 being not important and 5 very important). The rankings were then re-normalised by the total
332 number of points attributed by each individual. Of the services identified, we then selected the
333 four most demanded services that are provided by grasslands: biodiversity conservation, fodder
334 production, aesthetic value and climate change mitigation (Figure S 1).

335 Ecosystem services

336 We estimated these services from several indicators (Table 1), measured in each site of the
337 regions. Before estimating the landscape-level services, we imputed missing values for individual
338 indicators using predictive mean matching on the dataset comprising all services (98 out of 1200
339 values, R mice package). The missing values were mostly found for flower cover, and some for
340 butterfly abundance, but they were equally distributed among regions and land-use intensities.
341 In all following analyses, we used environment-corrected indicators. These were quantified as
342 the residuals from linear models, conducted separately within each region. The four ecosystem
343 service indicators were the response variable and predictors were: pH, soil depth, sand and clay
344 content, topographic wetness index, mean annual temperature and annual rainfall (see Allan et
345 al. (2015) and Hijmans et al. (2005) for details on these measurements) and a topographic
346 wetness index (see supplementary methods). To account for a site's surroundings, we also used
347 the proportion of grassland in a 1km radius as a predictor, as surrounding grassland habitat may
348 act as a source of colonization for local biodiversity (e.g. Henckel et al., 2015; Le Provost et al.,
349 2017; Tscharntke et al., 2012). It was obtained from land-use covers obtained in 2008 data that
350 were mapped QGIS v 3.6 and classified into five broad categories: croplands, grasslands,
351 forests, water bodies, roads and urban areas.

352

353 The 'biodiversity conservation' service at the site-level was based on total plant species richness
354 as plant alpha-diversity and the sum of the ground cover of regional red list plant species. Plant
355 species richness has been shown to be a good proxy for diversity at multiple trophic levels at
356 these sites (correlation of 0.67 and 0.68 between the whole ecosystem multidiversity index (Allan
357 et al 2014) and the richness of asterids and rosids respectively, for instance (Manning et al.,
358 2015)). We chose not to include other taxa to prevent co-linearity with the other service measures
359 (see below). Red list plant species included species classified in the following threat categories:

360 1 (threatened with extinction); 2 (critically endangered); 3 (endangered), by Breunig & Demuth
361 (1999), Korsch & Westhus (2001) and Ristow et al. (2006) (Table S 1). The values of these two
362 indicators were re-calculated at the landscape level (i.e. gamma diversity and the sum of red list
363 species cover in all sites) and then scaled and averaged to calculate the landscape-level service.

364 The fodder production service was calculated as total fodder protein production, a common
365 agronomical indicator (Lee, 2018) that we calculated based on grassland aboveground biomass
366 production and shoot protein content. Between mid-May and mid-June each year, aboveground
367 biomass was harvested by clipping the vegetation 2 - 3 cm above ground in four randomly placed
368 quadrats of 0.5 m × 0.5 m in each subplot. The plant biomass was dried at 80°C for 48 hours,
369 weighed and summed over the four quadrats. Biomass was then averaged between 2008 and
370 2012. In order to convert this one-time biomass measurements into estimates of annual field
371 productivity, we used the information on the number of cuts and the number of livestock units in
372 a site to estimate the total biomass production used by farming activities, i.e. converted into
373 fodder or consumed directly by livestock. Details of this estimation process can be found in
374 Simons & Weisser (2017). We then multiplied this productivity by plant shoot protein levels, a
375 common indicator of forage quality (Lee, 2018). Total nitrogen concentrations in ground samples
376 of aboveground biomass were determined using an elemental auto-analyser (NA1500,
377 CarloErba, Milan, Italy), and multiplied by 6.25 to obtain protein content (Lee, 2018). The
378 landscape-scale protein production was then calculated as the sum of the production of all
379 individual sites in the landscape.

380 Climate change mitigation was quantified as soil organic carbon stocks in the top 10 cm, as
381 deeper stocks are unlikely to be affected strongly by management actions. We sampled
382 composite samples for each plot, prepared by mixing 14 mineral surface soil samples per plot.
383 Soil samples were taken along two 18 m transects in each plot using a split tube auger, 40 cm
384 long and 5 cm wide (Eijkelkamp, Giesbeek, The Netherlands). Composite samples were
385 weighed, homogenized, air-dried and sieved (<2 mm). We then measured total carbon (TC)
386 contents by dry combustion in a CN analyser "Vario Max" (Elementar Analysensysteme GmbH,
387 Hanau, Germany) on ground subsamples. We determined inorganic carbon (IC) contents after
388 combustion of organic carbon in a muffle furnace (450°C for 16 h). We then calculated the soil
389 organic carbon (SOC) content as the difference between TC and IC, and the SOC concentration
390 based on the weight of the dry fine-earth (105°C) and its volume. SOC concentration was then
391 multiplied by soil bulk density to obtain plot-level carbon stock values. The landscape-scale soil
392 carbon stock was calculated as the sum of the soil carbon stock of all individual sites.

393 The aesthetic value measure integrated flower cover, the number of bird families and abundance
394 of butterflies. The choice of these indicators was led by studies showing people's preference for
395 bird richness over abundance (Cox & Gaston, 2015), including song diversity (Hedblom et al.,
396 2014); and for flower-rich landscapes (Graves et al., 2017). Flowering units were counted
397 between May and September 2009 for all flowering plant species (excluding grasses and
398 sedges) on transects along the four edges of each plot, in a total area of 600m². For abundant
399 species, the number of flowering units was extrapolated to the whole plot from a smaller area of
400 112 m². The total flower cover was calculated at the plot scale as the sum of the individual flower
401 cover of all plant species (see Binkenstein et al. (2013) for details). Butterfly and day-active
402 moths (hereafter termed as Lepidoptera) abundance was measured in 2008 and averaged
403 among sites within each landscape (Börschig et al., 2013). We conducted surveys of Lepidoptera
404 from early May to mid-August. We sampled Lepidoptera during 3 surveys, each along one fixed
405 300m transect of 30min in each site. Each transect was divided in 50m sections of 5min intervals
406 and we recorded all Lepidoptera within a 5 m corridor. Birds were surveyed by standardized
407 audio-visual point-counts and all birds exhibiting territorial displays (singing and calling) were
408 recorded. We used fixed-radius point counts and recorded all males of each bird species during
409 a five-minute interval per plot. Each plot was visited five times between 15 March and 15 June
410 each year. The data was then aggregated by family. Landscape-scale bird richness was
411 calculated as the total number of bird families found in the landscape (i.e. in at least one site and
412 one year) between 2009 and 2012. These three indicators were then scaled and averaged to
413 estimate landscape-scale aesthetic value. Richness and abundance were usually highly
414 correlated for the three groups (correlation of 0.75 for butterflies, 0.72 for birds, and 0.52 for
415 plants), and the number of families for birds was highly correlated (0.96) to species richness;
416 thus other selections of indicators would have led to similar results (Figure S 2).

417 Plot-level analyses

418 We first analysed the relationship between all plot-level service indicators and land-use intensity
419 class. Within each region, we scaled the services between 0 and 1 and fitted ANOVAs with the
420 land-use class as an explanatory variable; followed by a pairwise mean comparison.

421 Landscape simulations

422 We conducted the simulations separately within each region, as each displayed different
423 relationships between land use and ecosystem services (Figure 2).

424 We simulated artificial landscapes within each region. Each artificial landscape was composed
425 of ten sites to avoid the high similarity among landscapes composed of more sites. Across the
426 triangular space, and for landscapes made up of 10 plots, there are 66 possible landscape
427 compositions that differ in their proportions of low, medium and high intensity sites; ranging from
428 100% low intensity to 100% medium or high intensity with all possible intermediates. For each of
429 these compositions, we generated 15 unique artificial landscapes by randomly drawing sites
430 from the regional pool, resulting in $15 \times 66 = 990$ landscapes. In each simulated landscape, we
431 then calculated landscape-scale ecosystem service indicators, as described above.

432 Finally, we calculated landscape-scale ecosystem service multifunctionality as described below.
433 We fitted binomial linear models with multifunctionality as a response and with a second-degree
434 polynom of the proportions of low and high land-use intensity as explanatory variables.

435 Landscape-level ecosystem multifunctionality

436 Different multifunctionality scenarios were investigated, corresponding to all the possible
437 combinations of the four main ecosystem services (i.e. single benefits, all the pairs and triplets,
438 or including all four benefits). In each combination, we calculated two measures of
439 multifunctionality. To represent a scenario where high levels of some services are required,
440 multifunctionality was assessed by scoring each final benefit as 1 if it passed a given threshold,
441 equal to the median of the values of the service obtained on all landscapes within the considered
442 region. Multifunctionality was then calculated as the number of services reaching this threshold,
443 divided by the number of services included in the analysis, so that it ranged between 0 and 1.
444

445 We also considered an alternative scenario, in which land governors compromise between the
446 needs of multiple stakeholders by maintaining at least intermediate levels of all ecosystem
447 services. Here, we scored the multifunctionality as 1 if all the services were above a 25%
448 threshold (i.e. above the 25% quantile of the service distribution in all landscapes within the
449 region), and 0 otherwise.

450 Dependence of multifunctionality range to the number of services included 451 and to environmental covariates

452 The response of multifunctionality to landscape composition became increasingly complex as
453 more services were added (see Results). Therefore, we performed additional analyses to
454 investigate which factors affected the responsiveness of multifunctionality to landscape
455 composition, which corresponds strength of the colour gradient in the triangle plots presented

456 (Figure 4 and Figure 5). Multifunctionality responsiveness was calculated as the range (2.5% to
457 97.5% quantiles) of the fitted values of the models described above (binomial GLMs with the
458 proportion of high and low intensity sites as explanatory variables) over all the possible
459 landscape compositions. Thus, while overall the range of multifunctionality was always 1
460 (existence of plots with none or all of the services above the threshold), the range of fitted values
461 depended on the fit of the model, i.e. whether the value of multifunctionality depended primarily
462 on landscape composition.

463

464 To investigate the relationship between multifunctionality responsiveness and the number of
465 ecosystem services included in its calculation, we regressed it upon the number of ecosystem
466 services included in the landscape-scale assessment (ranging from 1 for individual final benefits
467 to 4 for the multifunctionality measure with all benefits).

468

469 Multifunctionality was also hypothesised to depend on contrasting responses to land-use
470 intensity of the different services included in the assessment. In a second analysis we estimated
471 the slope coefficients of the linear regressions between each service and land-use intensity, and
472 calculated the 'service response variance' of the considered services as the variance of their
473 slope coefficients (see van der Plas et al., 2019 for details). We then fitted a linear model of
474 multifunctionality range against the service response variance. Finally, we examined the linear
475 relationship between multifunctionality and the relative strength of LUI effect compared to other
476 environmental covariates. For each single ecosystem service and each region, we quantified the
477 relative strength of the effect of land-use intensity (RS_{LUI}) as:

$$478 \quad RS_{LUI} = \left[\frac{corr(ES, LUI)}{max_j(corr(ES, EC_j))} \right]$$

479 Where $corr$ is the correlation, ES the ecosystem service, LUI the value of land-use intensity, and
480 EC_j the environmental covariates (see below). These three models were fitted for all regions
481 together.

482 Sensitivity analyses

483 We complemented the main analyses by extensive sensitivity analyses, which are detailed in the
484 supplementary material of this article as well as in the online app.

485

486 We ran the same analyses using indicators that were not corrected for environmental variables.
487 Other sensitivity analyses included changing the number and identity of plots selected to build
488 the landscapes: using only sites with the lowest 20%, highest 20% and medium 20% land-use
489 intensity (i.e. removing sites that are intermediate between two intensity classes) and by

490 including 7, or 13, sites per landscape. We calculated multifunctionality using other threshold
491 values. For the threshold multifunctionality metric, we also run the analysis by setting the
492 threshold at the 40th or 60th percentile, and at 60% of the maximum. For the compromise metric,
493 we investigated thresholds of 20% and 30% in addition to the 25% threshold.

494 Finally, multifunctionality at the landscape level was also considered as the maximum level
495 observed in the landscape, rather than the sum of all the plots present in the landscape.

496 Author contributions

497 M.N., P.M. and M.F. conceived the study, M.N. and P.M. designed and performed the analyses,
498 M.N. and P.M. wrote the manuscript with significant contributions from E.A., N.H., V.H.K., T.K.,
499 J.K., G.L.P., S.P., N.S., N.K.S. and F.v.d.P.

500 Data was contributed by M.F., G.L.P., E.A., J.B., C. B., N. H., K. J., V.H.K., T. K., S. P., D. P., M.
501 S., D. S., N.S., I. S., M. S., N. K. S., M.T. and C. W. Authorship order was determined as follows:
502 (1) core authors; (2) other major contributors (alphabetical); (3) other authors contributing data
503 (alphabetical).

504

505 Acknowledgements

506

507 We thank the managers of the three Exploratories Konstanz Wells, Swen Renner, Kirsten
508 Reichel-Jung, Sonja Gockel, Kerstin Wiesner, Katrin Lorenzen, Andreas Hemp, Martin
509 Gorke and all former managers for their work in maintaining the plot and project infrastructure;
510 Simone Pfeiffer, Maren Gleisberg and Christiane Fischer for giving support through the central
511 office, Jens Nieschulze and Michael Owonibi for managing the central data base, and Markus
512 Fischer, Eduard Linsenmair, Dominik Hessenmöller, Daniel Prati, Ingo Schöning, François
513 Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in
514 setting up the Biodiversity Exploratories project.

515 The work has been funded by the DFG Priority Program 1374 "Infrastructure-Biodiversity-
516 Exploratories". Field work permits were issued by the responsible state environmental offices of
517 Baden-Württemberg, Thüringen, and Brandenburg.

518

519 References

520 Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services—A global review. *Geoderma*,
521 262, 101–111.

522 Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Blüthgen, N., Böhm, S., Grassein, F., Hölzel, N.,
523 Klaus, V. H., Kleinebecker, T., Morris, E. K., Oelmann, Y., Prati, D., Renner, S. C., Rillig, M. C., Schaefer,
524 M., Schloter, M., Schmitt, B., ... Fischer, M. (2015). Land use intensification alters ecosystem
525 multifunctionality via loss of biodiversity and changes to functional composition. *Ecology Letters*, 18(8),
526 834–843. <https://doi.org/10.1111/ele.12469>

527 Anderson, B. J., Armsworth, P. R., Eigenbrod, F., Thomas, C. D., Gillings, S., Heinemeyer, A., Roy, D. B.,
528 & Gaston, K. J. (2009). Spatial covariance between biodiversity and other ecosystem service priorities.
529 *Journal of Applied Ecology*, 46(4), 888–896.

530 Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O'Connor, T., O'Farrell, P. J., Smith, H.
531 G., & Lindborg, R. (2019). Grasslands—More important for ecosystem services than you might think.

532 *Ecosphere*, 10(2), e02582.

533 Bennett, E. M. (2017). Changing the agriculture and environment conversation. *Nature Ecology and*
534 *Evolution*, 1(1), 1–2.

535 Bennett, E. M., Peterson, G. D., & Gordon, L. J. (2009). Understanding relationships among multiple
536 ecosystem services. *Ecology Letters*, 12(12), 1394–1404.

537 Binkenstein, J., Renoult, J. P., & Schaefer, H. M. (2013). Increasing land-use intensity decreases floral
538 colour diversity of plant communities in temperate grasslands. *Oecologia*, 173(2), 461–471.
539 <https://doi.org/10.1007/s00442-013-2627-6>

540 Blüthgen, N., Dormann, C. F., Prati, D., Klaus, V. H., Kleinebecker, T., Hölzel, N., Alt, F., Boch, S., Gockel,
541 S., & Hemp, A. (2012). A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing
542 and fertilization. *Basic and Applied Ecology*, 13(3), 207–220.

543 Börschig, C., Klein, A.-M., von Wehrden, H., & Krauss, J. (2013). Traits of butterfly communities change
544 from specialist to generalist characteristics with increasing land-use intensity. *Basic and Applied Ecology*,
545 547–554. <https://doi.org/10.1016/j.baae.2013.09.002>

546 Bradford, J. B., & D'Amato, A. W. (2012). Recognizing trade-offs in multi-objective land management.
547 *Frontiers in Ecology and the Environment*, 10(4), 210–216.

548 Breunig, T., & Demuth, S. (1999). *Rote Liste der Farn—Und Samenpflanzen Baden—Württembergs*
549 (Landesanstalt für Umweltschutz Baden-Württemberg. Naturschutz-Praxis, No. 2; Artenschutz, p. 247).

550 Butsic, V., & Kuemmerle, T. (2015). Using optimization methods to align food production and biodiversity
551 conservation beyond land sharing and land sparing. *Ecological Applications*, 25(3), 589–595.

552 Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G.
553 M., Tilman, D., & Wardle, D. A. (2012). Biodiversity loss and its impact on humanity. *Nature*, 486(7401),
554 59.

555 Carpenter, S. R., Mooney, H. A., Agard, J., Capistrano, D., DeFries, R. S., Díaz, S., Dietz, T., Duraiappah,
556 A. K., Oteng-Yeboah, A., & Pereira, H. M. (2009). Science for managing ecosystem services: Beyond the
557 Millennium Ecosystem Assessment. *Proceedings of the National Academy of Sciences*, 106(5), 1305–
558 1312.

559 Clec'h, L., Finger, R., Buchmann, N., Gosal, A., Hörtnagl, L., Huguenin-Elie, O., Jeanneret, P., Lüscher,
560 A., Schneider, M. K., & Huber, R. (2019). Assessment of spatial variability of multiple ecosystem services
561 in grasslands of different intensities. *Journal of Environmental Management*.

562 Cordingley, J. E., Newton, A. C., Rose, R. J., Clarke, R. T., & Bullock, J. M. (2016). Can landscape-scale
563 approaches to conservation management resolve biodiversity–ecosystem service trade-offs? *Journal of*
564 *Applied Ecology*, 96–105.

565 Cox, D. T. C., & Gaston, K. J. (2015). Likeability of Garden Birds: Importance of Species Knowledge &
566 Richness in Connecting People to Nature. *PLOS ONE*, 10(11), e0141505.
567 <https://doi.org/10.1371/journal.pone.0141505>

568 DeFries, R., & Rosenzweig, C. (2010). Toward a whole-landscape approach for sustainable land use in
569 the tropics. *Proceedings of the National Academy of Sciences*, 107(46), 19627–19632.
570 <https://doi.org/10.1073/pnas.1011163107>

571 Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C., & Paglia, A. P. (2018). The effects of
572 landscape patterns on ecosystem services: Meta-analyses of landscape services. *Landscape Ecology*,
573 33(8), 1247–1257. <https://doi.org/10.1007/s10980-018-0673-5>

574 Eastburn, D. J., O'Geen, A. T., Tate, K. W., & Roche, L. M. (2017). Multiple ecosystem services in a
575 working landscape. *PLOS ONE*, 10. <https://doi.org/10.1371/journal.pone.0166595>

576 Feniuk, C., Balmford, A., & Green, R. E. (2019). Land sparing to make space for species dependent on
577 natural habitats and high nature value farmland. *Proceedings of the Royal Society B: Biological Sciences*,
578 286(1909), 20191483. <https://doi.org/10.1098/rspb.2019.1483>

579 Fischer, J., Abson, D. J., Butsic, V., Chappel, M. J., Ekoos, J., Hanspach, J., Kuemmerle, T., Smith, H.
580 G., & von Wehrden, H. (2014). Land sparing versus land sharing: Moving forward. *Conservation Letters*,
581 7(3), 149–157.

582 Fischer, M., Bossdorf, O., Gockel, S., Hänsel, F., Hemp, A., Hessenmöller, D., Korte, G., Nieschulze, J.,
583 Pfeiffer, S., Prati, D., Renner, S., Schöning, I., Schumacher, U., Wells, K., Buscot, F., Kalko, E. K. V.,
584 Linsenmair, K. E., Schulze, E.-D., & Weisser, W. W. (2010). Implementing large-scale and long-term
585 functional biodiversity research: The Biodiversity Exploratories. *Basic and Applied Ecology*, 11(6), 473–
586 485. <https://doi.org/10.1016/j.baae.2010.07.009>

587 Fisher, B., & Turner, R. K. (2008). Ecosystem services: Classification for valuation. *Biological
588 Conservation*, 141(5), 1167–1169.

589 Foley, J. A. (2005). Global Consequences of Land Use. *Science*, 309(5734), 570–574.
590 <https://doi.org/10.1126/science.1111772>

591 Goldstein, J. H., Caldarone, G., Duarte, T. K., Ennaanay, D., Hannahs, N., Mendoza, G., Polasky, S.,
592 Wolny, S., & Daily, G. C. (2012). Integrating ecosystem-service tradeoffs into land-use decisions.
593 *Proceedings of the National Academy of Sciences*, 109(19), 7565–7570.

594 Graves, R. A., Pearson, S. M., & Turner, M. G. (2017). Species richness alone does not predict cultural
595 ecosystem service value. *Proceedings of the National Academy of Sciences*, 114(14), 3774–3779.
596 <https://doi.org/10.1073/pnas.1701370114>

597 Green, R. E. (2005). Farming and the Fate of Wild Nature. *Science*, 307(5709), 550–555.
598 <https://doi.org/10.1126/science.1106049>

599 Hedblom, M., Heyman, E., Antonsson, H., & Gunnarsson, B. (2014). Bird song diversity influences young
600 people's appreciation of urban landscapes. *Urban Forestry & Urban Greening*, 13(3), 469–474.
601 <https://doi.org/10.1016/j.ufug.2014.04.002>

602 Henckel, L., Borger, L., Meiss, H., Gaba, S., & Bretagnolle, V. (2015). Organic fields sustain weed
603 metacommunity dynamics in farmland landscapes. *Proceedings of the Royal Society B: Biological
604 Sciences*, 282(1808), 20150002–20150002.

605 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution
606 interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25(15), 1965–
607 1978. <https://doi.org/10.1002/joc.1276>

608 IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem
609 services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S.
610 Díaz, J. Settele, E. S. Brondízio E.S., H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A.
611 Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F.
612 Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R.
613 Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis, and C. N. Zayas (eds.). IPBES
614 secretariat, Bonn, Germany. 56 pages. <https://doi.org/10.5281/zenodo.3553579>

615

616 Kamp, J., Urazaliev, R., Balmford, A., Donald, P. F., Green, R. E., Lamb, A. J., & Phalan, B. (2015).
617 Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: A
618 comparison of land-sparing and land-sharing approaches. *Journal of Applied Ecology*, 52(6), 1578–1587.

619 Knocke, T. (2020). Accounting for multiple ecosystem services in a simulation of land-use decisions: Does
620 it reduce tropical deforestation? TO DO.

621 Korsch, H., & Westhus, W. (2001). Rote Liste der Farn- und Blütenpflanzen (Pteridophyta et
622 Spermatophyta) Thüringens. *Naturschutzreport*, 18, 273–296.

623 Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.-P., Garden, D., Girel, J., Pellet, G., & Douzet, R. (2011).
624 Using plant functional traits to understand the landscape distribution of multiple ecosystem services.
625 *Journal of Ecology*, 99(1), 135–147. <https://doi.org/10.1111/j.1365-2745.2010.01753.x>

626 Le Provost, G., Gross, N., Börger, L., Deraison, H., Roncoroni, M., & Badenhausser, I. (2017). Trait-
627 matching and mass effect determine the functional response of herbivore communities to land-use
628 intensification. *Functional Ecology*, 31(8), 1600–1611. <https://doi.org/10.1111/1365-2435.12849>

629 Lee, M. A. (2018). A global comparison of the nutritive values of forage plants grown in contrasting
630 environments. *Journal of Plant Research*, 131(4), 641–654. <https://doi.org/10.1007/s10265-018-1024-y>

631 Lindborg, R., Gordon, L. J., Malinga, R., Bengtsson, J., Peterson, G., Bommarco, R., Deutsch, L., Gren,
632 Å., Rundlöf, M., & Smith, H. G. (2017). How spatial scale shapes the generation and management of

633 multiple ecosystem services. *Ecosphere*, 8(4), e01741. <https://doi.org/10.1002/ecs2.1741>

634 Mace, G. M., Norris, K., & Fitter, A. H. (2012). Biodiversity and ecosystem services: A multilayered
635 relationship. *Trends in Ecology & Evolution*, 27(1), 19–26.

636 Manning, Pete, Gossner, M. M., Bossdorf, O., Allan, E., Zhang, Y.-Y., Prati, D., Blüthgen, N., Boch, S.,
637 Böhm, S., Börschig, C., Hözel, N., Jung, K., Klaus, V. H., Klein, A. M., Kleinebecker, T., Krauss, J., Lange,
638 M., Müller, J., Pašalić, E., ... Fischer, M. (2015). Grassland management intensification weakens the
639 associations among the diversities of multiple plant and animal taxa. *Ecology*, 96(6), 1492–1501.
640 <https://doi.org/10.1890/14-1307.1>

641 Manning, Peter, van der Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G., Whittingham, M. J., &
642 Fischer, M. (2018). Redefining ecosystem multifunctionality. *Nature Ecology & Evolution*, 2(3), 427–436.
643 <https://doi.org/10.1038/s41559-017-0461-7>

644 Mitchell, M. G. E., Bennett, E. M., & Gonzalez, A. (2014). Forest fragments modulate the provision of
645 multiple ecosystem services. *Journal of Applied Ecology*, 51(4), 909–918. <https://doi.org/10.1111/1365-2664.12241>

647 Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J.,
648 Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverría-Londoño, S., Edgar, M. J., Feldman,
649 A., Garon, M., Harrison, M. L. K., Alhusseini, T., ... Purvis, A. (2015). Global effects of land use on local
650 terrestrial biodiversity. *Nature*, 520(7545), 45–50. <https://doi.org/10.1038/nature14324>

651 Phalan, B. (2018). What have we learned from the land sparing-sharing model? *Sustainability*, 10(6), 1760.

652 Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity
653 conservation: Land sharing and land sparing compared. *Science*, 333(6047), 1289–1291.

654 Raudsepp-Hearne, C., Peterson, G. D., & Bennett, E. M. (2010). Ecosystem service bundles for analyzing
655 tradeoffs in diverse landscapes. *Proceedings of the National Academy of Sciences*, 107(11), 5242–5247.

656 Ristow, M., Herrmann, A., Illig, H., Klemm, G., Kummer, V., Kläge, H.-C., Machatz, B., Rätzel, S.,
657 Schwarz, R., & Zimmermann, F. (2006). Rote Liste der etablierten Gefäßpflanzen Brandenburgs.
658 *Naturschutz Und Landschaftspflege in Branden- Burg* 15, 15(4), 12.

659 Sayer, J., Sunderland, T., Ghazoul, J., Pfund, J.-L., Sheil, D., Meijaard, E., Venter, M., Boedihartono, A.
660 K., Day, M., Garcia, C., van Oosten, C., & Buck, L. E. (2013). Ten principles for a landscape approach to
661 reconciling agriculture, conservation, and other competing land uses. *Proceedings of the National
662 Academy of Sciences*, 110(21), 8349–8356. <https://doi.org/10.1073/pnas.1210595110>

663 Simons, N. K., & Weisser, W. W. (2017). Agricultural intensification without biodiversity loss is possible in
664 grassland landscapes. *Nature Ecology & Evolution*. <https://doi.org/10.1038/s41559-017-0227-2>

665 Slade, E. M., Kirwan, L., Bell, T., Philipson, C. D., Lewis, O. T., & Roslin, T. (2017). The importance of
666 species identity and interactions for multifunctionality depends on how ecosystem functions are valued.
667 *Ecology*, 98(10), 2626–2639.

668 Soliveres, S., van der Plas, F., Manning, P., & Prati, D. (2016). Biodiversity at multiple trophic levels is
669 needed for ecosystem multifunctionality. *Nature*, 536. <https://doi.org/doi:10.1038/nature19092>

670 Triviño, M., Pohjanmies, T., Mazziotta, A., Juutinen, A., Podkopaev, D., Le Tortorec, E., & Mönkkönen, M.
671 (2017). Optimizing management to enhance multifunctionality in a boreal forest landscape. *Journal of
672 Applied Ecology*, 54(1), 61–70. <https://doi.org/10.1111/1365-2664.12790>

673 Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives
674 on agricultural intensification and biodiversity – ecosystem service management. *Ecology Letters*, 8(8),
675 857–874. <https://doi.org/10.1111/j.1461-0248.2005.00782.x>

676 Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough,
677 Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn,
678 D., Kremen, C., Landis, D. A., Laurance, W., ... Westphal, C. (2012). Landscape moderation of biodiversity
679 patterns and processes—Eight hypotheses. *Biological Reviews*, 87(3), 661–685.
680 <https://doi.org/10.1111/j.1469-185X.2011.00216.x>

681 van der Plas, F., Allan, E., Fischer, M., Alt, F., Arndt, H., Binkenstein, J., Blaser, S., Blüthgen, N., Böhm,
682 S., Hözel, N., Klaus, V. H., Kleinebecker, T., Morris, K., Oelmann, Y., Prati, D., Renner, S. C., Rillig, M.
683 C., Schaefer, H. M., Schloter, M., ... Manning, P. (2019). Towards the development of general rules

684 describing landscape heterogeneity-multipfunctionality relationships. *Journal of Applied Ecology*, 56(1),
685 168–179. <https://doi.org/10.1111/1365-2664.13260>

686 Whittingham, M. J. (2011). The future of agri-environment schemes: Biodiversity gains and ecosystem
687 service delivery?: Editorial. *Journal of Applied Ecology*, 48(3), 509–513. <https://doi.org/10.1111/j.1365->
688 2664.2011.01987.x

689

690

691 Landscape management for grassland 692 multifunctionality

693 Neyret M., Fischer M., Allan E., Hözel N., Klaus V. H., Kleinebecker T., Krauss J., Le Provost
694 G., Peter. S, Schenk N., Simons N.K., van der Plas F., Binkenstein J., Börshig C., Jung K.,
695 Prati D., Schäfer M., Schäfer D., Schöning I., Schrumpf M., Tschapka M., Westphal C. &
696 Manning P.

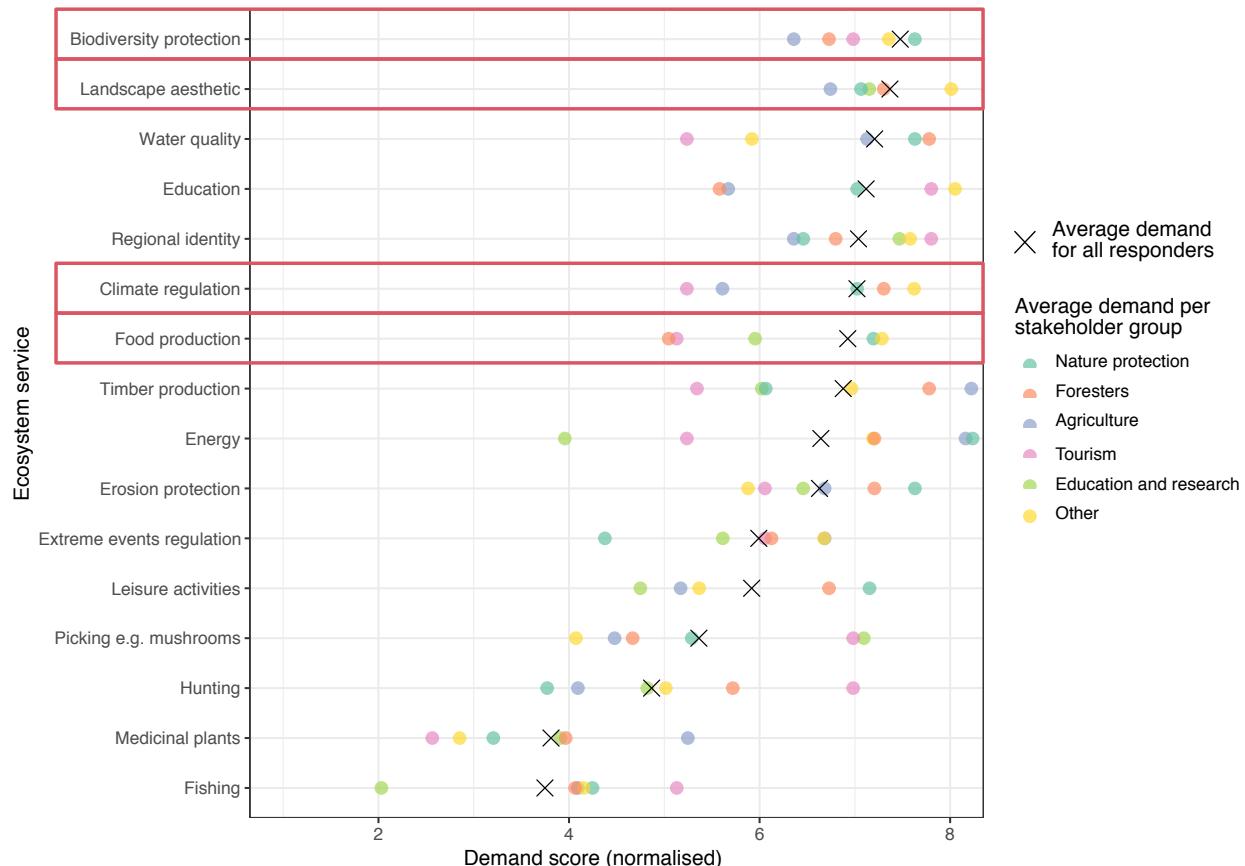
697 Supplementary information

698

Appendix 1. Additional information

Table S 1 List of threatened species per region. Lists compiled from Breunig and Demuth (1999); Korsch and Westhus (2001) and Ristow et al. (2006).

South-West region (Baden-Württemberg)	Central region (Thuringen)	North region (Brandenburg)
<i>Anchusa officinalis</i>	<i>Anchusa officinalis</i>	<i>Alchemilla vulgaris</i> aggr.
<i>Antennaria dioica</i>	<i>Antennaria dioica</i>	<i>Antennaria dioica</i>
<i>Anthemis tinctoria</i>	<i>Betonica officinalis</i>	<i>Arabis hirsuta</i> aggr.
<i>Botrychium lunaria</i>	<i>Botrychium lunaria</i>	<i>Asperula cynanchica</i>
<i>Bunium bulbocastanum</i>	<i>Bunium bulbocastanum</i>	<i>Betonica officinalis</i>
<i>Eryngium campestre</i>	<i>Calamagrostis canescens</i>	<i>Bistorta officinalis</i>
<i>Gagea pratensis</i>	<i>Campanula glomerata</i>	<i>Botrychium lunaria</i>
<i>Gentiana verna</i>	<i>Euphorbia verrucosa</i>	<i>Briza media</i>
<i>Koeleria macrantha</i>	<i>Euphrasia rostkoviana</i> aggr.	<i>Carex flacca</i>
<i>Lathyrus nissolia</i>	<i>Galium verum</i>	<i>Carex montana</i>
<i>Muscaria neglectum</i> aggr.	<i>Gentiana verna</i>	<i>Carum carvi</i>
<i>Myosotis discolor</i>	<i>Gentianella germanica</i>	<i>Centaurium erythraea</i>
<i>Myosurus minimus</i>	<i>Helianthemum nummularium</i>	<i>Chaerophyllum aureum</i>
<i>Ophioglossum vulgatum</i>	<i>Koeleria macrantha</i>	<i>Cirsium acaule</i>
<i>Orobanche caryophyllacea</i>	<i>Lathyrus nissolia</i>	<i>Colchicum autumnale</i>
<i>Phyteuma orbiculare</i>	<i>Myosotis discolor</i>	<i>Cruciata laevipes</i>
<i>Pseudolysimachion spicatum</i>	<i>Myosurus minimus</i>	<i>Cynosurus cristatus</i>
<i>Pulsatilla vulgaris</i>	<i>Odontites vernus</i> aggr.	<i>Eryngium campestre</i>
<i>Selinum carvifolia</i>	<i>Ophioglossum vulgatum</i>	<i>Euphrasia rostkoviana</i> aggr.
<i>Seseli annuum</i>	<i>Orchis militaris</i>	<i>Fragaria viridis</i>
<i>Stachys arvensis</i>	<i>Orobanche caryophyllacea</i>	<i>Galium pumilum</i>
<i>Teucrium montanum</i>	<i>Phyteuma orbiculare</i>	<i>Geranium dissectum</i>
<i>Trifolium montanum</i>	<i>Platanthera bifolia</i>	<i>Geranium pratense</i>
	<i>Pseudolysimachion spicatum</i>	<i>Geranium sylvaticum</i>
	<i>Pulsatilla vulgaris</i>	<i>Helictotrichon pratense</i>
	<i>Sedum telephium</i>	<i>Koeleria macrantha</i>
	<i>Seseli annuum</i>	<i>Lathyrus nissolia</i>
	<i>Stachys arvensis</i>	<i>Listera ovata</i>
	<i>Vicia lathyroides</i>	
	<i>Viola collina</i>	


701 **Table S 2 Variation of the final benefits and service indicators, with the land-use intensity class in each region.** Values were first corrected for the environment (see Methods). Different letters indicate differences significant at 5%.

Final benefits or service indicator	Land-use intensity	South-West	Central	North
Conservation value	Low	5 ± 4.5 ^b	4 ± 7.9 ^b	-0.1 ± 1.8 ^a
	Medium	-1.2 ± 4.4 ^a	-0.9 ± 3.7 ^a	0.6 ± 2.5 ^a
	High	-3.9 ± 5.1 ^a	-3.1 ± 4.5 ^a	-0.4 ± 1.7 ^a
Plant species richness	Low	8.5 ± 7.8 ^b	7.9 ± 15.6 ^b	0.1 ± 3.2 ^a
	Medium	-2 ± 6.8 ^a	-1.8 ± 7.3 ^a	0.3 ± 2.9 ^a
	High	-6.6 ± 9.5 ^a	-6.2 ± 9 ^a	-0.4 ± 3.3 ^a
Cover by redlist species	Low	1.4 ± 3 ^b	0.1 ± 0.7 ^a	-0.4 ± 0.8 ^a
	Medium	-0.3 ± 2.5 ^{ab}	0 ± 0.5 ^a	0.8 ± 4.8 ^a
	High	-1.1 ± 1.5 ^a	-0.1 ± 0.9 ^a	-0.4 ± 0.8 ^a
Fodder production	Low	-313.5 ± 301.5 ^a	-244.8 ± 279.9 ^a	-181.8 ± 305.6 ^a
	Medium	16 ± 488.3 ^b	-47.5 ± 329.4 ^a	28.2 ± 257 ^{ab}
	High	298.4 ± 554.8 ^b	289.5 ± 431.6 ^b	155.3 ± 452.1 ^b
Biomass production	Low	-24.7 ± 19.7 ^a	-17.6 ± 20.2 ^a	-11.9 ± 21.7 ^a
	Medium	0.9 ± 24.2 ^b	-3.9 ± 22 ^a	3.3 ± 16.5 ^{ab}
	High	23.9 ± 37.7 ^c	21.3 ± 29.3 ^b	8.7 ± 22 ^b
Plant protein content	Low	0 ± 0.2 ^a	0 ± 0.2 ^a	0 ± 0.5 ^a
	Medium	0 ± 0.3 ^a	0 ± 0.2 ^a	-0.1 ± 0.4 ^a
	High	0 ± 0.3 ^a	0 ± 0.3 ^a	0 ± 0.6 ^a
Aesthetic value	Low	11.4 ± 28.8 ^b	6.2 ± 18.9 ^a	3.1 ± 9.6 ^a
	Medium	-0.9 ± 19.3 ^{ab}	-0.8 ± 8.5 ^a	-0.1 ± 5.4 ^a
	High	-10.5 ± 10.7 ^a	-5.5 ± 8.6 ^a	-3 ± 4.9 ^a
Flower cover	Low	-0.2 ± 3.5 ^a	0.6 ± 3.8 ^a	-0.3 ± 1.1 ^a
	Medium	0.2 ± 5 ^a	1.1 ± 4.9 ^a	0.3 ± 2.5 ^a
	High	0.1 ± 2.9 ^a	-1.6 ± 3.9 ^a	-0.1 ± 2.2 ^a
Butterfly abundance	Low	33.5 ± 84.8 ^b	17.5 ± 53.9 ^a	9.3 ± 28.3 ^a
	Medium	-2.5 ± 52.9 ^a	-3.4 ± 26.7 ^a	-0.8 ± 15.3 ^a
	High	-31.1 ± 31.6 ^a	-14.3 ± 23.2 ^a	-8.5 ± 14.7 ^a
Bird family richness	Low	0.8 ± 1.9 ^a	0.6 ± 3.2 ^a	0.4 ± 1.8 ^a
	Medium	-0.2 ± 2.6 ^a	0.1 ± 3 ^a	0.2 ± 1.8 ^a
	High	-0.6 ± 1.6 ^a	-0.7 ± 2 ^a	-0.6 ± 2.2 ^a
C stock	Low	1.9 ± 10.1 ^a	0.3 ± 11.5 ^a	18.4 ± 26.9 ^b
	Medium	-0.9 ± 11.3 ^a	1.4 ± 8.7 ^a	-10.1 ± 60.6 ^a
	High	-1.1 ± 9.2 ^a	-1.6 ± 12.8 ^a	-9 ± 36.7 ^a

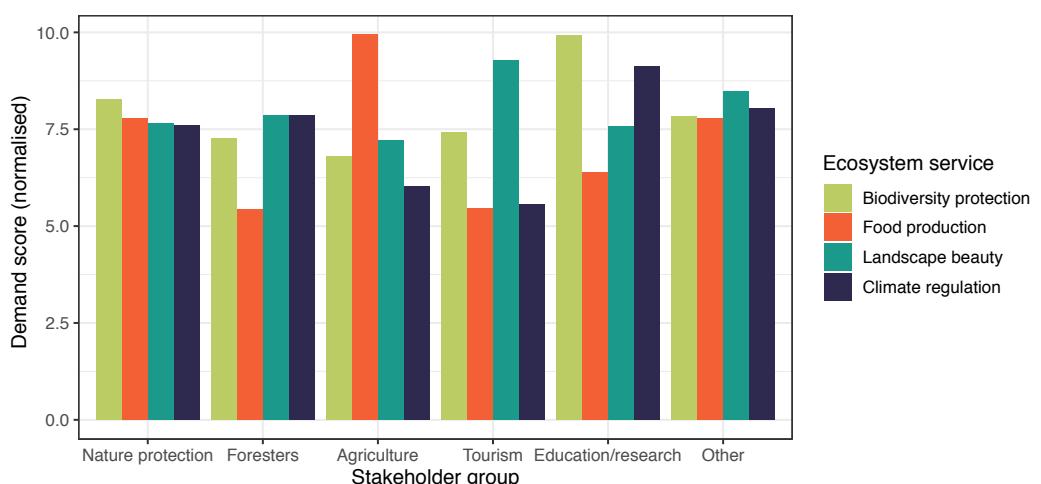
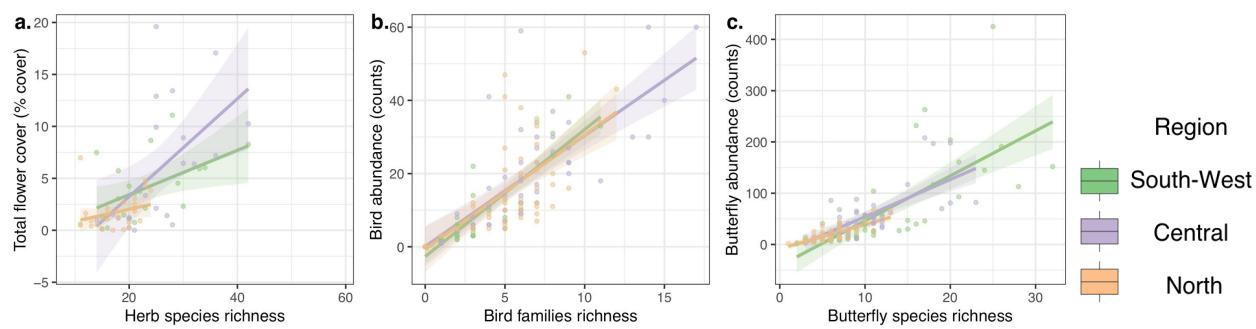
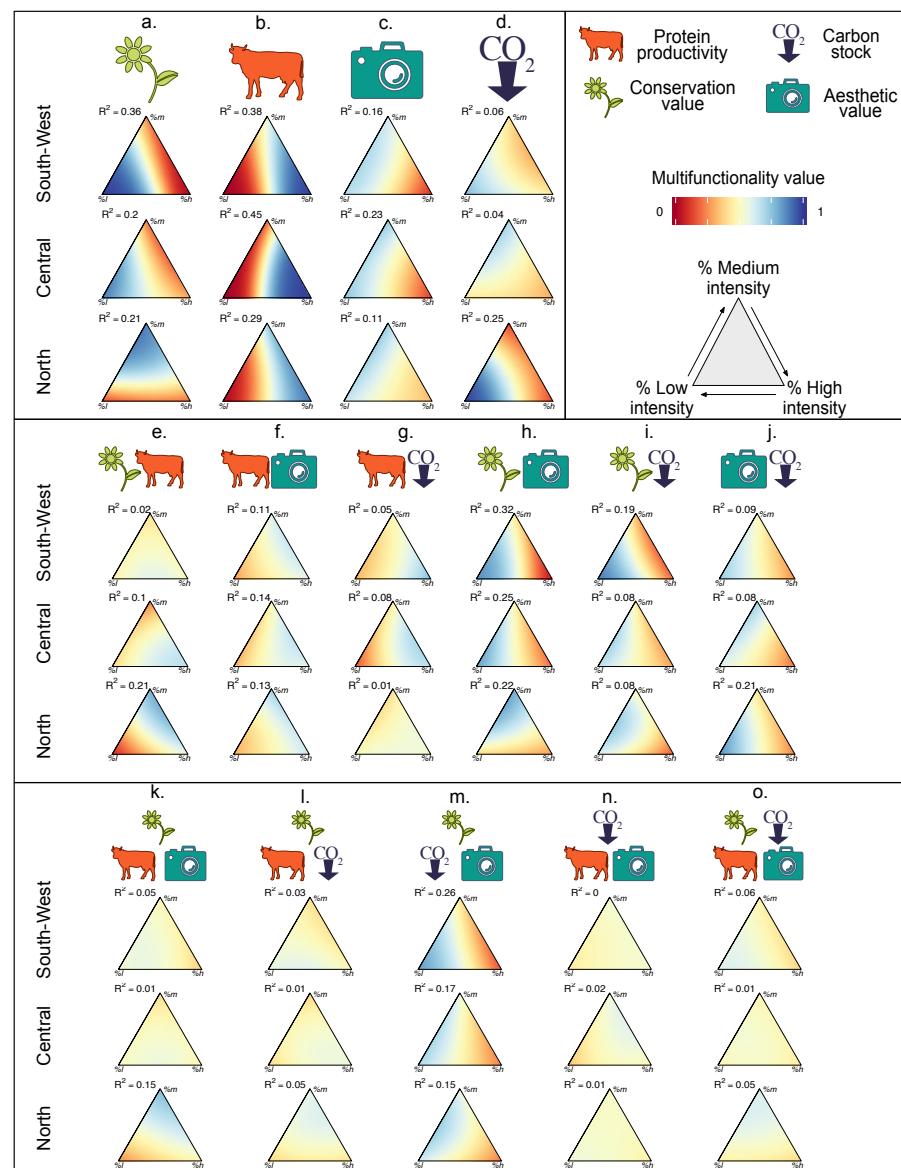

702

Figure S 1. Stakeholder groups' ecosystem preferences. Over a series of group interviews, 29 responders from multiple stakeholder groups in the three regions of interest were presented with a list of 16 services. For each service, they were asked to quantify their demand for the corresponding service, from 1 (the service is not important) to 5 (very important). The obtained scores were normalised by the total number of points given by each responder, then averaged by stakeholder group. a. Mean demand score for all considered services, per stakeholder group (coloured dots) or all groups considered (crosses). We then retained for the analysis only the four main services that can be delivered by grasslands (marked with boxes). b. Mean demand scores for the services included in the analysis of the current paper, per stakeholder group; the demand scores were normalised by the number of points given by responders to only those four services.


a.

b.

Figure S 2 Correlations among potential service indicators



703
704
705
706

Figure S 3 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). **This figure shows all the service combinations for the ‘threshold’ approach, partly shown in Figure 4.**

For single ecosystem services (top row), the value presented corresponds to the probability of the given service to be above the median. For combinations of multiple services (middle and bottom rows), multifunctionality is the expected proportion of services above the median. Blue indicates higher multifunctionality values, orange lower.

The specific shape of the response of single services to landscape composition in the region led to slightly different responses for the corresponding combination of services. For example, when considering conservation and production (panel. e), no optimum that maximizes both services could be found when the response of the services to land-use intensity were perfectly opposed and responded with similar intensity to landscape composition ($R^2 = 36\%$ and 38% respectively), as was the case in the South-West. However, a partial optimum could be found when the responses of services to intensification differed, such as in the Central region, where fodder production responded much more strongly to landscape composition ($R^2 = 45\%$) than conservation ($R^2 = 20\%$), resulting in slightly higher multifunctionality in landscapes dominated by high-intensity sites.

708

709 Supplementary methods: Topographical Wetness Index calculation

710

711 We calculated the Topographic Wetness Index (TWI) of each plot, defined as $\ln(a/\tan B)$ where
712 a is the specific catchment area (cumulative upslope area which drains through a Digital
713 Elevation Model (DEM, <http://www.bkg.bund.de>) cell, divided by per unit contour length) and
714 $\tan B$ is the slope gradient in radians calculated over a local region surrounding the cell of interest
715 (Gessler et al. 1995; Sørensen et al. 2006). TWI therefore combines both upslope contributing
716 area (determining the amount of water received from upslope areas) and slope (determining the
717 loss of water from the site to downslope areas). TWI was calculated from raster DEM data with
718 a cell size of 25 m for all plots, using ArcGIS tools (flow direction and flow accumulation tools of
719 the hydrology toolset and raster calculator). The TWI measure used was the average value for
720 a 4×4 window centred on the plot, i.e. 16 DEM cells corresponding to an area of 100 m \times 100
721 m.

722

723

724

725 Supplementary references

726

727 Gessler PE, Moore ID, McKenzie NJ, Ryan PJ Soil-landscape modelling and spatial prediction
728 of soil attributes. *Int J Geogr Inf Syst* 9:421–432

729

730 Sørensen R, Zinko U, Seibert J (2006) On the calculation of the topographic wetness index:
731 evaluation of different methods based on field observations. *Hydrol Earth Syst Sci* 10:101–112.
732 <https://doi.org/10.5194/hess-10-101-2006>

733

734

735 **Appendix 2. Details on sensitivity analyses**

736

737 We explored how multiple choices in the simulations and calculation of multifunctionality could
738 affect the results of our analyses. In the first part of this appendix, we first list all the different
739 sensitivities that we identified and detail how their implementation modified the methodology
740 detailed in the main text. In the second part, we consider in turn each of the main results
741 presented in the paper and describe the potential variations highlighted by the analyses. We
742 describe only analyses departing from the main analysis by one parameter – further
743 combinations can be explored in the online tool.

744

745 **1. Methods**

746 The sensitivities we identified were the following:

747 a. Analysis on non-environmentally corrected data.

748 The main analysis was conducted on service indicator values that were first corrected at the plot
749 level by environmental covariates (see Methods). In these sensitivity analyses we also conduct
750 the analyses using raw data.

751 b. Classification into classes of low, medium and high land-use intensity.

752 In the main analyses, the plots are classified in the three intensity categories based on 33%
753 quantiles of the intensity values (e.g. lowest, medium and highest thirds) within the regions. In
754 these sensitivity analyses we remove the “intermediate”, potentially confounding plots by using
755 plots within the lowest, medium and highest 20% quantiles (e.g. lowest, medium and highest
756 fifths) of the intensities within each region. This reduced the number of plots available during the
757 landscape simulations, and to avoid running the analysis on identical landscapes we adapted
758 the analyses by lowering the number of landscape replicates for each combination (*).

759 c. Number of plots per landscape.

760 In the main analysis, each landscape was composed of 10 sites. We also run similar analyses
761 with 7 and 13 sites per landscapes. This also affected the number of possible landscape
762 combinations, and we consequently adapted the number of landscape replicates for each
763 combination (*).

764 d. Calculation of landscape-scale service indicator values.

765 In the main analysis, landscape-scale service indicator values consisted either of gamma
766 diversity (plant and bird diversity) or of the sum of the services provided by all plots in the
767 landscape (other services). We also considered a situation in which high level of each service is
768 expected in only part of the landscape, and calculated the landscape indicator value as the
769 maximum of the indicator in all plots of the landscape.

770 e. Calculation of landscape-scale multifunctionality

771 In the main analysis, landscape scale multifunctionality was calculated as the number of services
772 above the median or as 1 if all services were over 25%, 0 otherwise. We also calculated
773 multifunctionality as the number of services above the 40th or 60th quantiles of the distribution of
774 the values in all landscapes; or as 75% of the maximum (measured as 95th quantile to avoid
775 outliers).

776 We also measured multifunctionality as the average of the (scaled) values for all considered
777 services.

778

779 (*) In the main analysis, there were 66 possible landscape compositions (from 0 to 10 sites of
780 each intensity), and 15 random landscape replicates per composition, hence 990 different
781 landscapes. Changing the number of sites per landscapes changed the number of possible
782 combinations (36 possible combinations for 7 sites, 105 for 13 sites) and to keep the total number
783 of simulated landscapes approximately similar, we used 1000/(number of combinations)
784 landscape replicates per combination (i.e. 10 for 13 plots, 28 for 7 plots).

785 When using only the 20% lowest, medium and highest intensity sites decreased the size of the
786 regional pool from which to build landscapes. In that case we used only 7 sites per landscape
787 and the extreme compositions (e.g. 100% of one intensity) were represented by slightly less
788 landscape replicates.

789

790 2. Results

791

792 a. Plot-level correlations among indicators and variation of service indicator values with
793 land-use intensity and.

794

795 When correcting for the environment, there were positive correlations between flower cover,
796 butterfly abundance, plant species richness and cover of red list plants. These indicators were
797 usually positively correlated with bird richness and negatively correlated with biomass
798 production. Most of these relationships were similar when considering raw, non environmentally-
799 corrected data (Table S 3).

800

801 As shown in Table S 4, the variation of plot-level service indicators with land-use intensity was
802 not strongly affected by using raw data instead of environmentally corrected residuals (as is
803 shown in Figure 2 and Table S 2), except that the response of some services (e.g. plant richness)
804 to intensity was more linear (no apparent “threshold”) when it was corrected for the environment.

805

806 b. Landscape-level correlations among final benefits.

807 Correlations among landscape-scale services was similar when considering services calculated
808 as the maximum value of each service (instead of the sum) in the landscape (4), when changing
809 the number of plots per landscape (Figure S 5, Figure S 6) or using data not corrected for the
810 environment (Figure S 7).

811

812 c. Multifunctionality response to landscape composition

813

814 The following figures present the multifunctionality response to landscape composition as
815 affected by the parameters of the model.

816

817 Calculating the landscape-scale services as the maximum instead of the sum (Figure S 9) did
818 not change the direction of the response. It led to weaker responses of single services (top row)
819 and marginally stronger variability when including all services, with slightly higher
820 multifunctionality in landscapes composed of mostly low-intensity plots in the Central and South-
821 West region.

822

823 Decreasing (Figure S 10) or increasing (Figure S 11) the number of plots per landscape
824 respectively weakened and strengthened the response of single services to landscape
825 composition, possibly because including more sites made for a higher chance to select sites with
826 very high or low values, especially in the extreme compositions (e.g. 100% low intensity, 100%
827 high intensity). When considering multiple services, including more sites did not change the
828 response of multifunctionality.

829

830 For multifunctionality counted as the proportion of services above a given threshold, changing
831 the threshold from the median to the 40th or 60th quantile of the distribution slightly switched the
832 multifunctionality to higher or, respectively, lower values (Figure S 12 and Figure S 13) but the
833 general form of the response was not affected.

834

835 The same was observed in the “compromise” scenario, when multifunctionality was calculated
836 as 1 when all services were above a threshold, and 0 otherwise. Changing the threshold from
837 the 25th quantile of the distribution to the 15th or 35th quantiles (Figure S 14 and Figure S 15)
838 made it easier (respectively, more difficult) to provide all services at the required level, resulting
839 in overall higher (resp. lower) multifunctionality values but without affecting the form of the
840 response.

841

842 Calculating multifunctionality as the average of all services gave similar results as the main
843 thresholding approach (Figure S 16).

844

845 Conversely, changing the threshold from a value based on the distribution of the service (e.g.
846 the median, as was used in the text) to a proportion of the maximum (e.g. 50% in Figure S 17)
847 completely changed the response of individual services, due to different shapes of the
848 distribution among services.

849

850 d. Effect of other drivers on the responsivity of multifunctionality to landscape composition

851

852 Table S 5 presents the result of the model with the responsivity (i.e. range) of multifunctionality
853 over all landscape compositions as a response, and the ratio of the effect of land-use intensity
854 and other environmental variables; the number of services included; or the service response
855 variance as explanatory variables.

856 The relative effect of land-use intensity compared to other environmental variables was
857 calculated as the ratio between the slope coefficient between individual services and land-use
858 intensity over the maximum slope coefficient between the service and all other environmental
859 covariates. It was thus calculated only for raw (non environmentally-corrected) values of
860 ecosystem services. It was significantly positive regardless of the model parameters, except
861 when landscape-scale services were calculated based on the maximum of the sites.

862

863 The multifunctionality range decreased with the number of services considered in 19 out of the
864 23 scenarios considered, supporting our main conclusions. However, it increased with the
865 number of services when multifunctionality was calculated as 1 if all the services were above the
866 15th percentile, and did not change when multifunctionality was calculated as 1 if all the services
867 were above the 25th percentile. This is because for low thresholds such as these,
868 multifunctionality is expected to be high everywhere if too few services are considered.

869

870 Finally, the responsiveness of multifunctionality significantly decreased with the service response
871 variance in 14 of the 23 considered scenarios. There was no positive relationship.

Table S 3 Plot-level correlation among ecosystem services. a. corrected for the environment, and b. raw service values. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.

a. Data corrected for the environment	Flower cover	Butterfly abundance	Biomass production	Nitrogen content	Organic C stock	Plant species richness	Bird family richness
Butterfly abundance	0.43 ***						
Biomass production	-0.04	-0.38 ***					
Nitrogen content	-0.21 **	-0.14	0.13				
Organic C stock	-0.01	-0.06	-0.04	0.17 *			
Plant richness	0.32 ***	0.49 ***	-0.54 ***	-0.1	-0.04		
Bird richness	0.11	0.24 **	-0.24 **	-0.12	0	0.4 ***	
Cover by redlist species	0.24 **	0.37 ***	-0.15	-0.2 *	-0.2 *	0.24 **	0.11

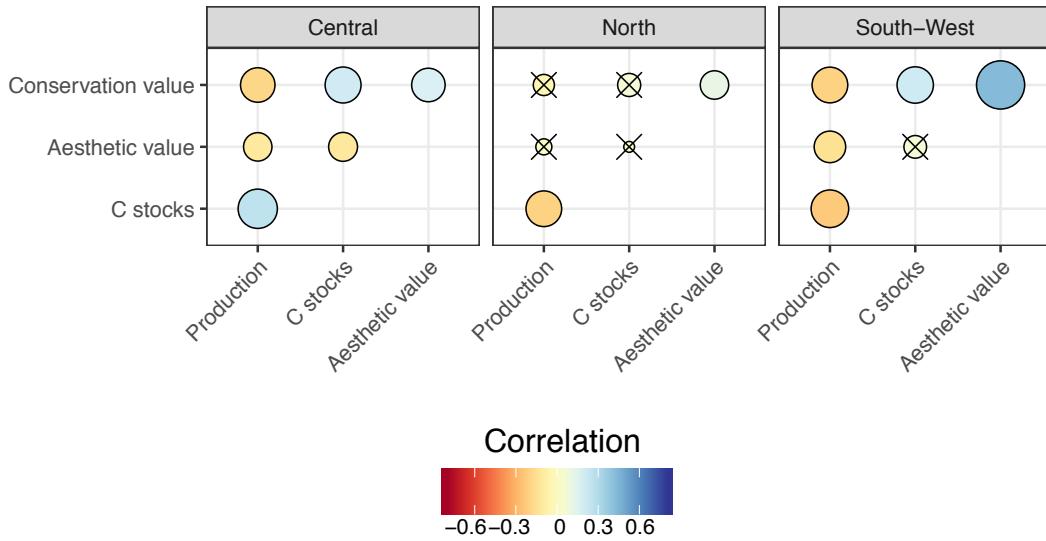
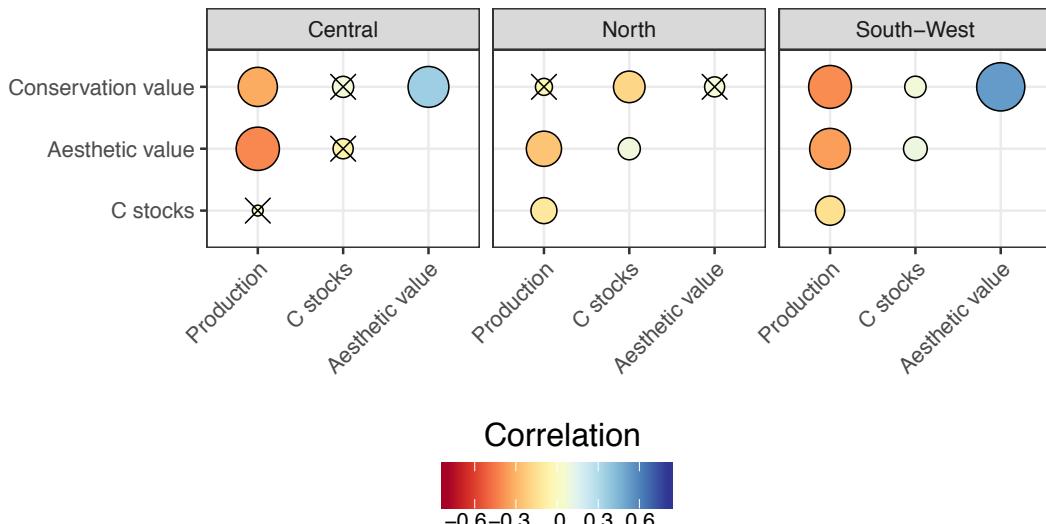

b. Raw service indicator values	Flower cover	Butterfly abundance	Biomass production	Nitrogen content	Organic C stock	Plant species richness	Bird family richness
Butterfly abundance	0.32 ***						
Biomass production	-0.07	-0.48 ***					
Nitrogen content	-0.1	-0.22 **	0.19 *				
Organic C stock	-0.21 *	-0.17 *	-0.02	0.08			
Plant richness	0.35 ***	0.52 ***	-0.53 ***	-0.17 *		-0.33	
Bird richness	0.12	0.26 **	-0.29 ***	-0.11	-0.03	0.31 ***	
Cover by redlist species	0.1	0.36 ***	-0.2 *	-0.19 *	-0.08	0.2 *	0.1

Table S 4 Variation of the final benefits and service indicators with the land-use intensity class in each region (mean \pm sd). Indicators were not corrected for the environment (see Methods). Different letters indicate differences significant at 5%.

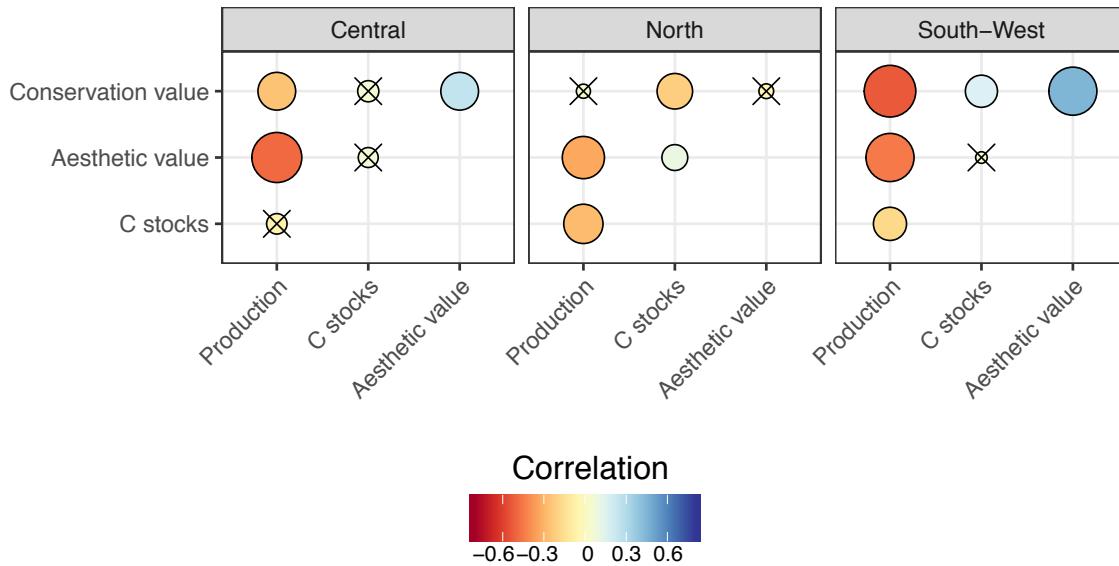
Final benefits or service indicator	Land-use intensity	South-West	Central	North
Conservation value	Low	29.1 \pm 5.8 ^b	30.2 \pm 9.2 ^b	13.6 \pm 2.3 ^a
	Medium	18.6 \pm 4.6 ^a	22.4 \pm 3.3 ^a	16.4 \pm 3 ^a
	High	18.7 \pm 4.2 ^a	19.1 \pm 3.5 ^a	14.7 \pm 3.3 ^a
Plant species richness	Low	55.1 \pm 9.2 ^b	59.9 \pm 18 ^b	27.1 \pm 4.7 ^a
	Medium	36.5 \pm 7.2 ^a	44.7 \pm 6.5 ^a	31 \pm 4.4 ^a
	High	37.4 \pm 8.5 ^a	38 \pm 6.9 ^a	29.3 \pm 6.5 ^a
Cover by redlist species	Low	3.2 \pm 5.1 ^b	0.4 \pm 1 ^a	0.1 \pm 0.3 ^a
	Medium	0.6 \pm 2.3 ^a	0.1 \pm 0.4 ^a	1.8 \pm 5 ^a
	High	0 \pm 0.1 ^a	0.2 \pm 1 ^a	0 \pm 0.1 ^a
Fodder production	Low	325.4 \pm 263.5 ^a	318.2 \pm 293.8 ^a	661.9 \pm 299.9 ^a
	Medium	1045 \pm 595.8 ^b	612.8 \pm 342.7 ^a	882.5 \pm 331.4 ^{ab}
	High	1182.2 \pm 511.8 ^b	1020.4 \pm 427.3 ^b	1056.5 \pm 500.5 ^b
Biomass production	Low	23.7 \pm 17.1 ^a	25.8 \pm 21.4 ^a	48 \pm 21.3 ^a
	Medium	73 \pm 31.1 ^b	46.4 \pm 23.5 ^a	64.8 \pm 20.8 ^{ab}
	High	88.7 \pm 34.5 ^b	78.4 \pm 28.6 ^b	72.7 \pm 25.2 ^b
Plant protein content	Low	2.1 \pm 0.2 ^a	2 \pm 0.3 ^a	2.2 \pm 0.6 ^a
	Medium	2.2 \pm 0.4 ^a	2.1 \pm 0.3 ^a	2.2 \pm 0.5 ^a
	High	2.1 \pm 0.3 ^a	2.1 \pm 0.3 ^a	2.3 \pm 0.6 ^a
Aesthetic value	Low	45.2 \pm 36.7 ^b	31.2 \pm 22.3 ^b	7.6 \pm 3.2 ^a
	Medium	14.9 \pm 17.1 ^a	17.3 \pm 6.6 ^a	8.8 \pm 5 ^a
	High	8.9 \pm 5.7 ^a	11.8 \pm 9.4 ^a	8.8 \pm 6.7 ^a
Flower cover	Low	4.1 \pm 2.8 ^a	4.9 \pm 5.4 ^{ab}	2 \pm 2.5 ^a
	Medium	2.5 \pm 3.3 ^a	7 \pm 5.6 ^b	1.9 \pm 1.9 ^a
	High	3.9 \pm 3.8 ^a	2.5 \pm 3.3 ^a	1.4 \pm 1.5 ^a
Butterfly abundance	Low	126.9 \pm 108.2 ^b	82.2 \pm 62 ^b	15.9 \pm 9.6 ^a
	Medium	39.2 \pm 47.7 ^a	38.6 \pm 19.8 ^a	20.1 \pm 14.4 ^a
	High	20.3 \pm 14.5 ^a	28.2 \pm 27 ^a	20.8 \pm 19.2 ^a
Bird family richness	Low	4.6 \pm 2.6 ^b	6.5 \pm 3.7 ^a	5.1 \pm 1.7 ^a
	Medium	2.9 \pm 2.5 ^{ab}	6.2 \pm 3.1 ^a	4.6 \pm 2.1 ^a
	High	2.5 \pm 1.8 ^a	4.6 \pm 2.2 ^a	4.1 \pm 2.4 ^a
C stock	Low	63 \pm 17.5 ^a	46.2 \pm 13.4 ^a	152.7 \pm 107 ^b
	Medium	65.2 \pm 13.6 ^a	46.1 \pm 9.1 ^a	69.9 \pm 87.4 ^a
	High	67.2 \pm 10.1 ^a	44.6 \pm 13.8 ^a	92.7 \pm 94.9 ^a

Figure S 4 Trade-offs between landscape-scale ecosystem service measures. This figure differs from Figure 3 as the landscape-scale services were calculated based on the maximum (instead of sum) of the services provided by all sites in the landscape.


The colour and size of the circles denote the strength of the correlation between pairs of variables, within each region. Crosses indicate no significant correlations at 5% (Holm correction for multiple testing).

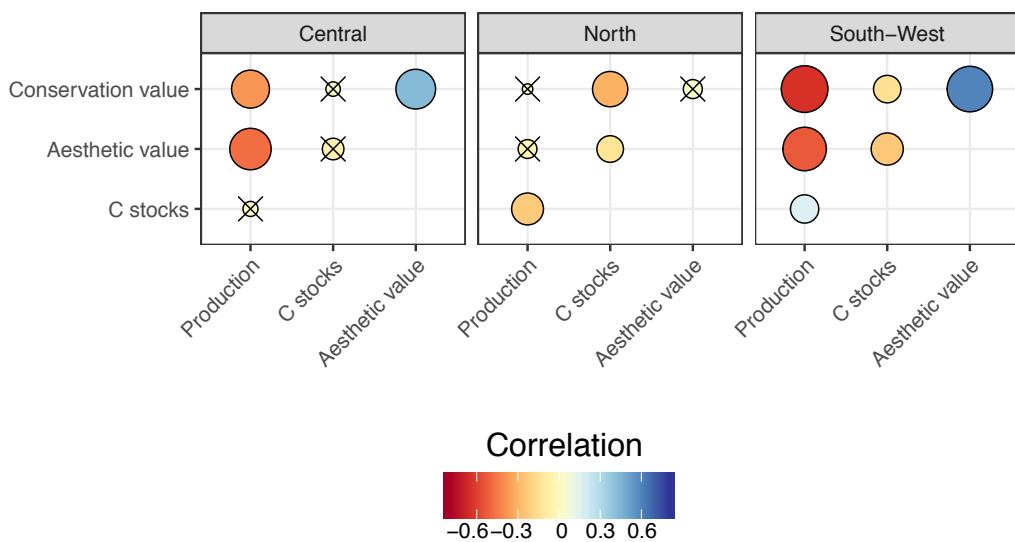
874
875

Figure S 5 Trade-offs between landscape-scale ecosystem service measures. This figure differs from Figure 3 as the landscapes included 7 (instead of 10) sites.


The colour and size of the circles denote the strength of the correlation between pairs of variables, within each region. Crosses indicate no significant correlations at 5% (Holm correction for multiple testing).

876

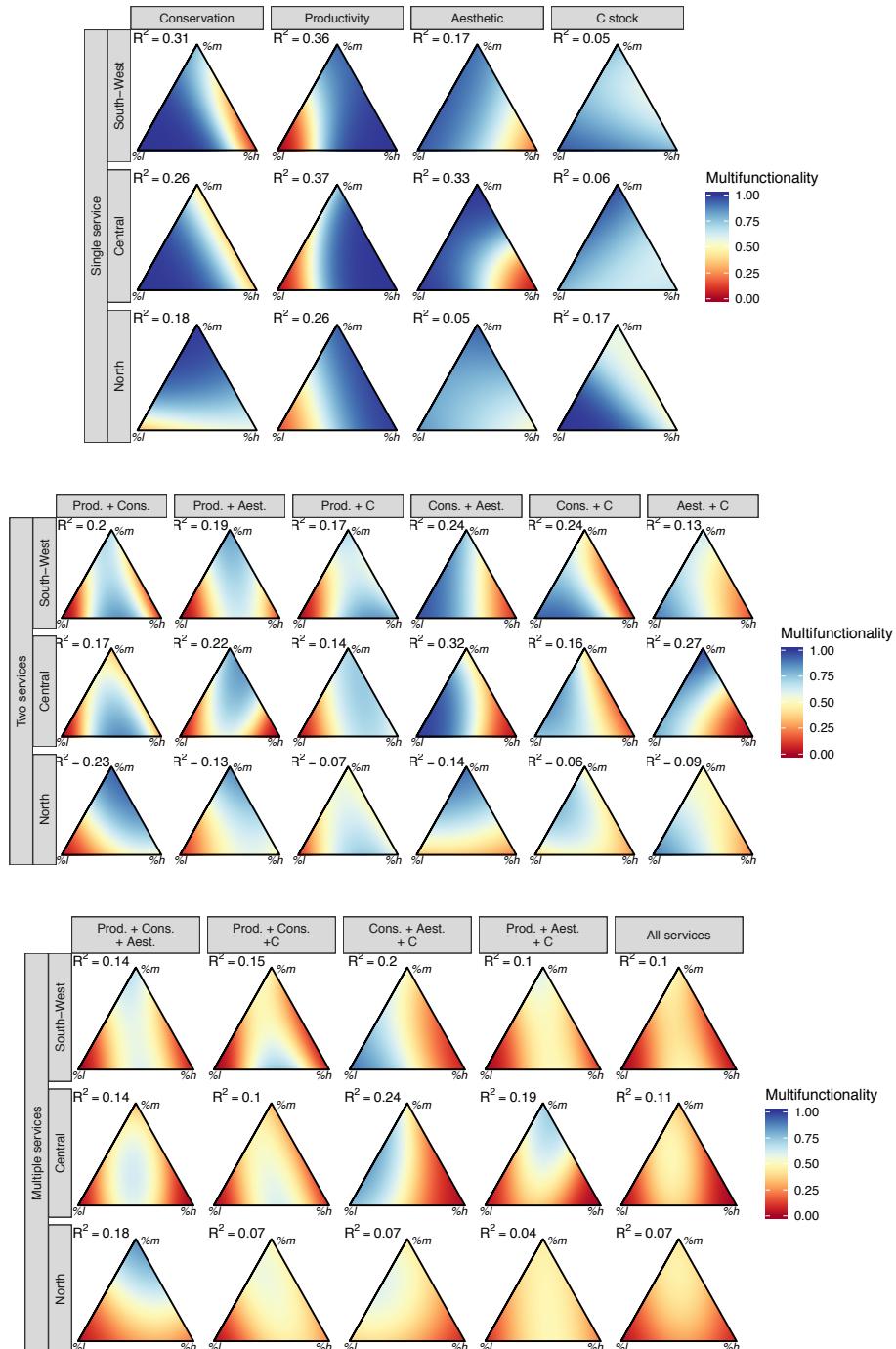
Figure S 6 Trade-offs between landscape-scale ecosystem service measures. This figure differs from Figure 3 as the landscapes included 13 (instead of 10) sites.


The colour and size of the circles denote the strength of the correlation between pairs of variables, within each region. Crosses indicate no significant correlations at 5% (Holm correction for multiple testing).

877
878
879

Figure S 7 Trade-offs between landscape-scale ecosystem service measures. This figure differs from Figure 3 as the ecosystem service indicators were not corrected for the environment before analysis.

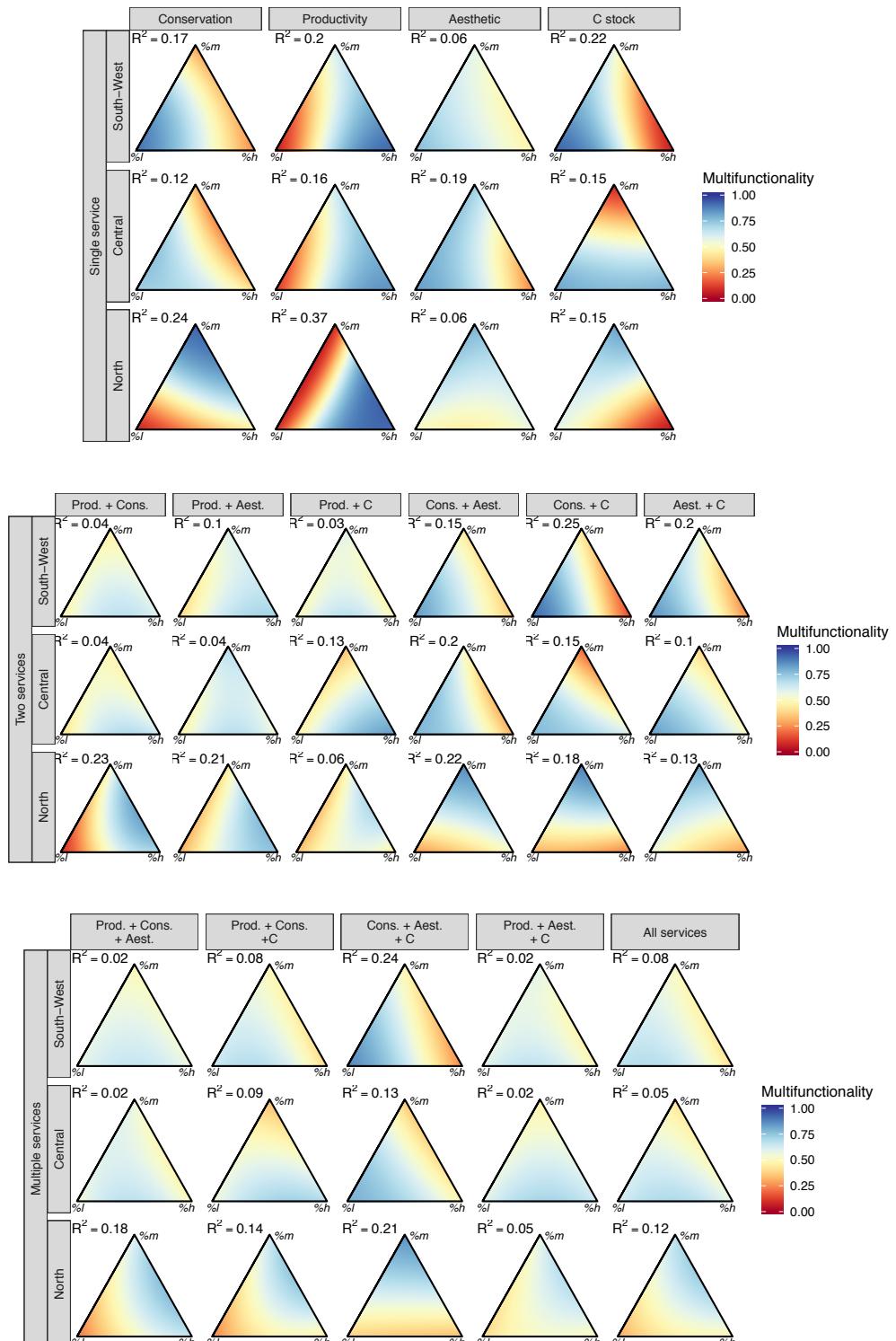
The colour and size of the circles denote the strength of the correlation between pairs of variables, within each region. Crosses indicate no significant correlations at 5% (Holm correction for multiple testing).



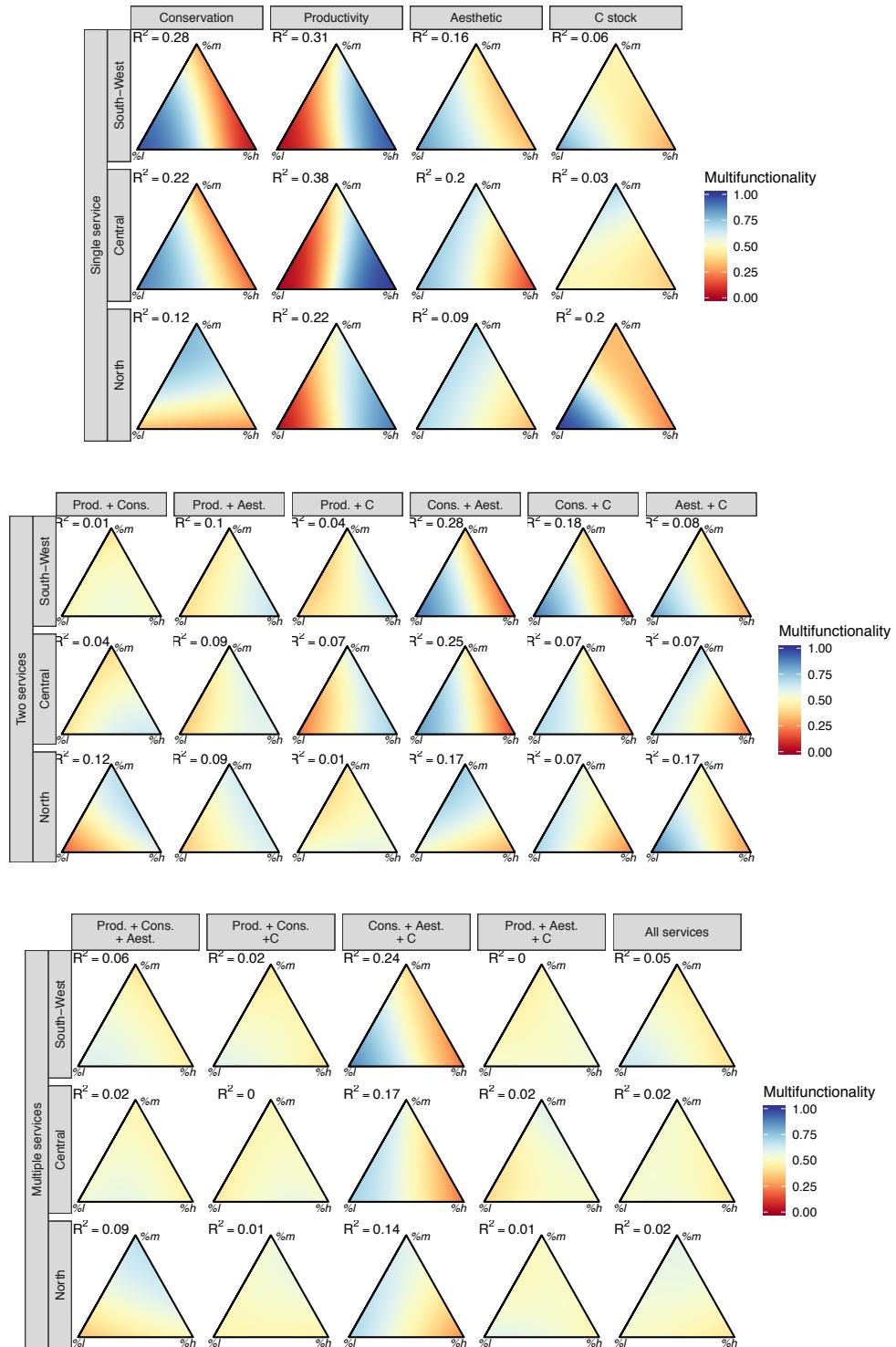
880
881

882
883
884

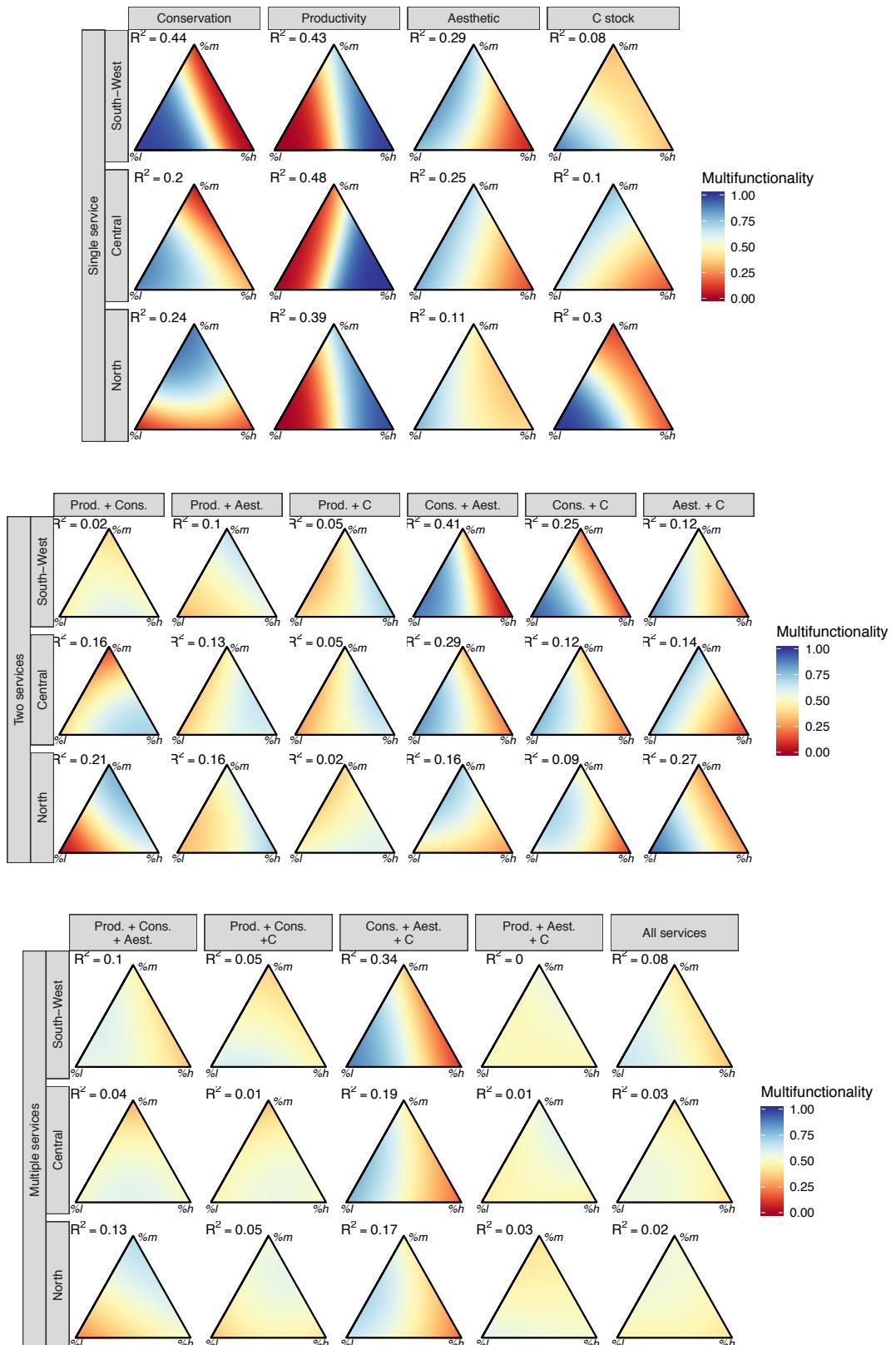
Figure S 8 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure shows all the service combinations for the 'compromise' approach, partly shown in Figure 5.


For single ecosystem services (top row), the value presented corresponds to the probability of the given service to be above the median for combinations of multiple services (middle and bottom rows), multifunctionality is the expected proportion of services above the median. Blue indicates higher multifunctionality values, orange lower.

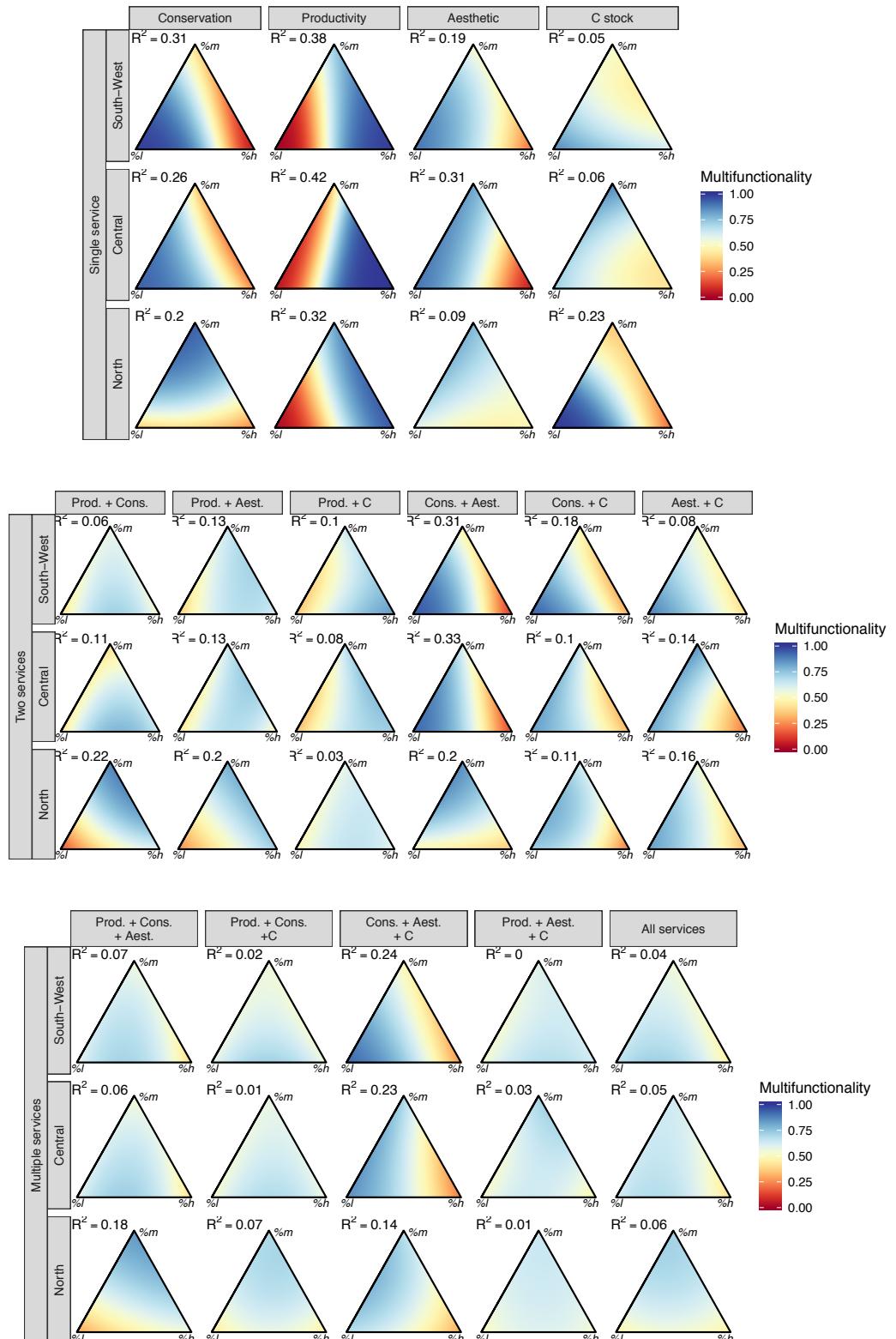
885


Figure S 9 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure differs from Figure 4 in that landscape-scale ecosystem service values were calculated as the maximum, not the sum, of site-level ecosystem services.

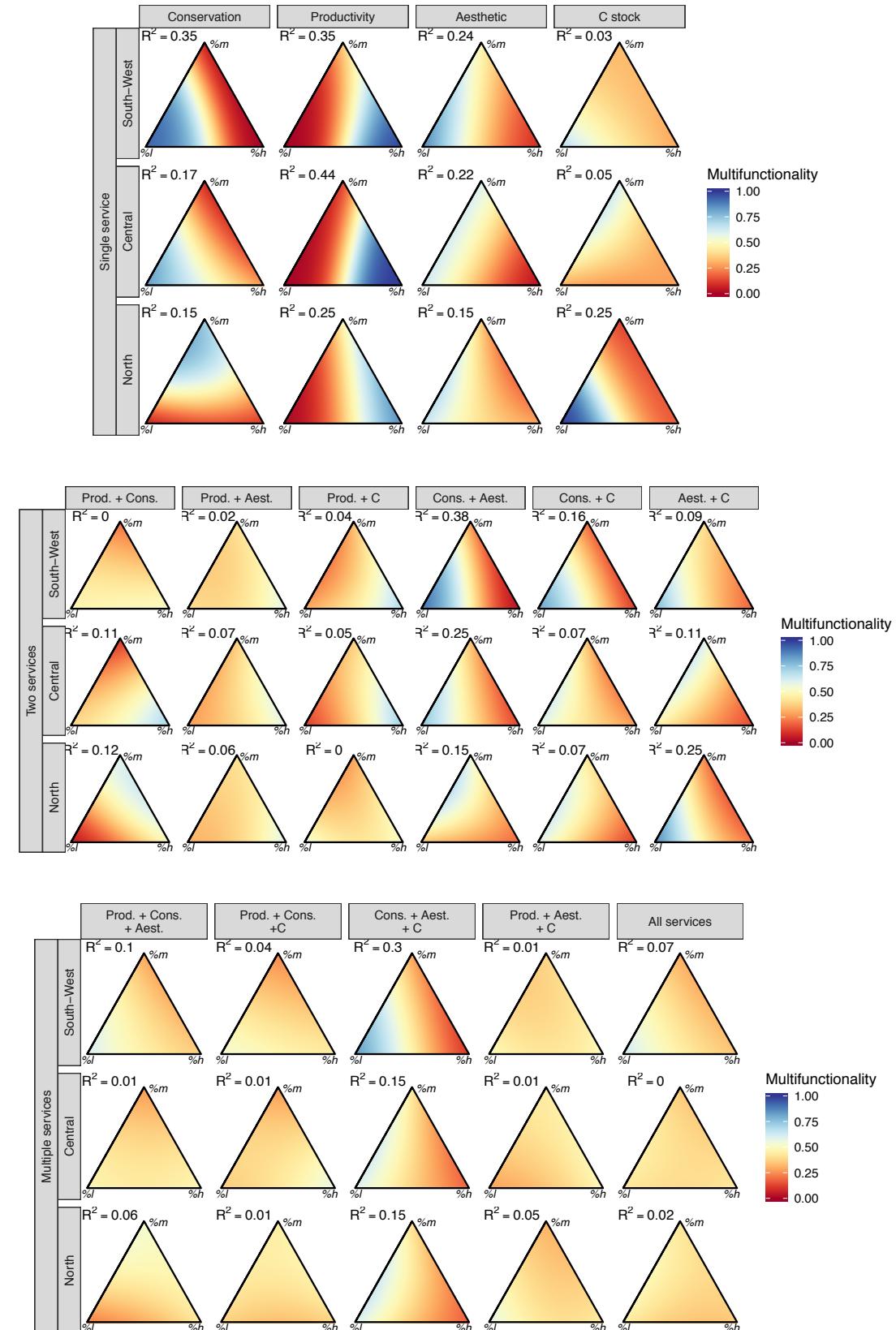
For single ecosystem services (top row), the value presented corresponds to the probability of the given service to be above the median. For combinations of multiple services (middle and bottom rows), multifunctionality is the expected proportion of services above the median. Blue indicates higher multifunctionality values, orange lower.


Figure S 10 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure differs from Figure 4 in that landscapes were composed of 7 sites, instead of 10.

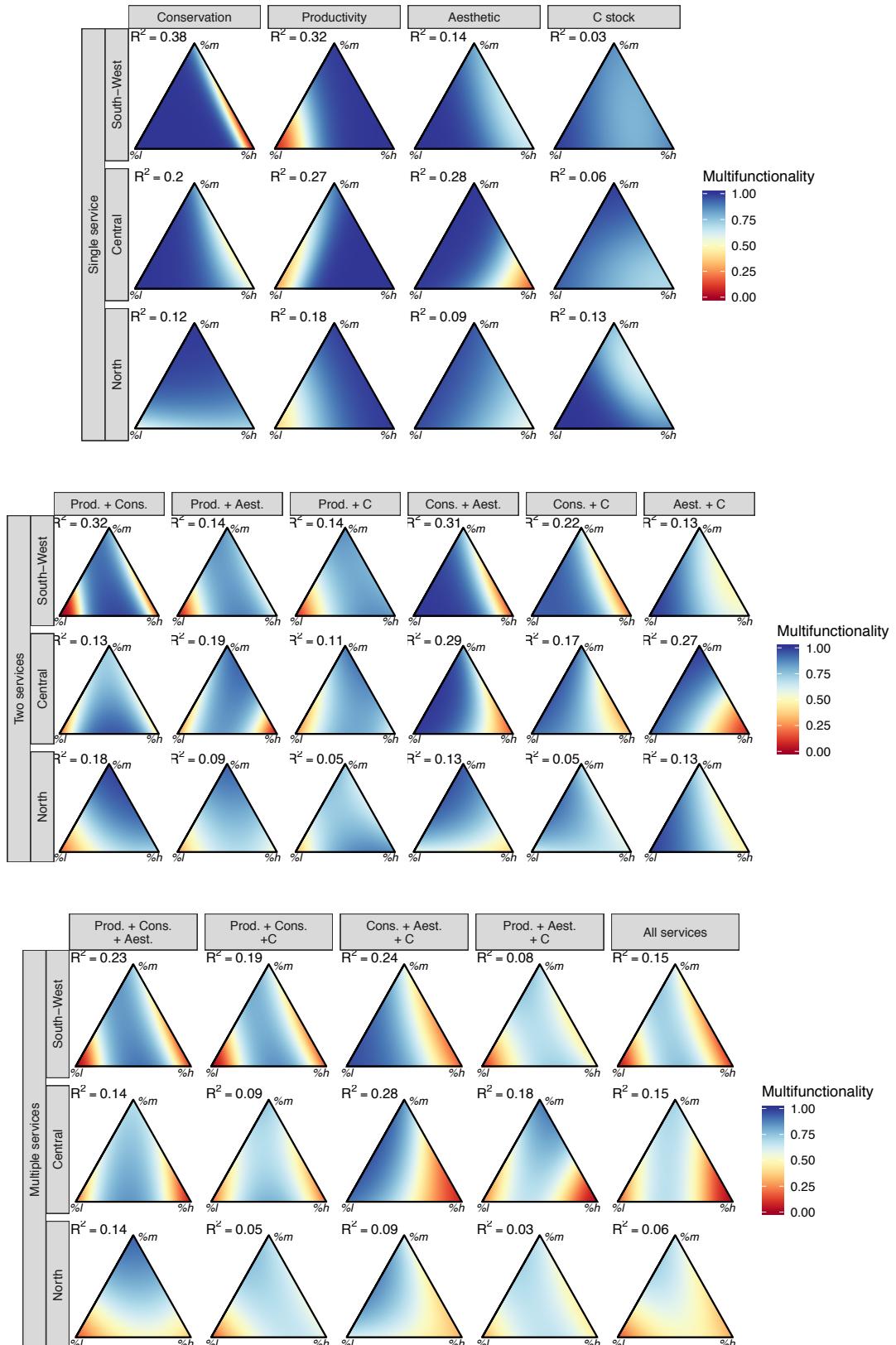
For single ecosystem services (top row), the value presented corresponds to the probability of the given service to be above the median. For combinations of multiple services (middle and bottom rows), multifunctionality is the expected proportion of services above the median. Blue indicates higher multifunctionality values, orange lower.


Figure S 11 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure differs from Figure 4 in that landscapes were composed of 13 sites, instead of 10.

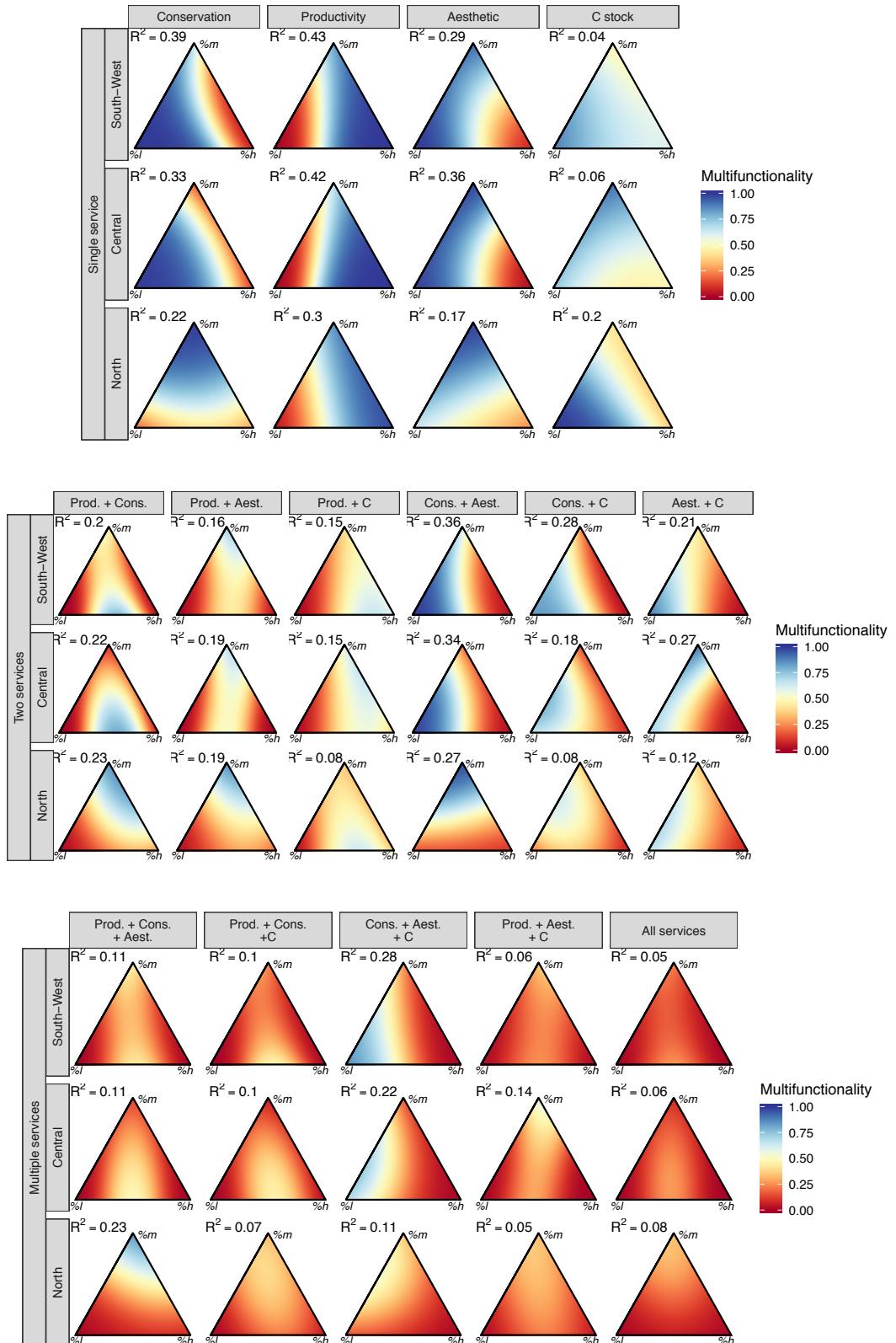
For single ecosystem services (top row), the value presented corresponds to the probability of the given service to be above the median. For combinations of multiple services (middle and bottom rows), multifunctionality is the expected proportion of services above the median. Blue indicates higher multifunctionality values, orange lower.


Figure S 12 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure differs from Figure 4 in that the threshold was set to the 40th percentile instead of the median.

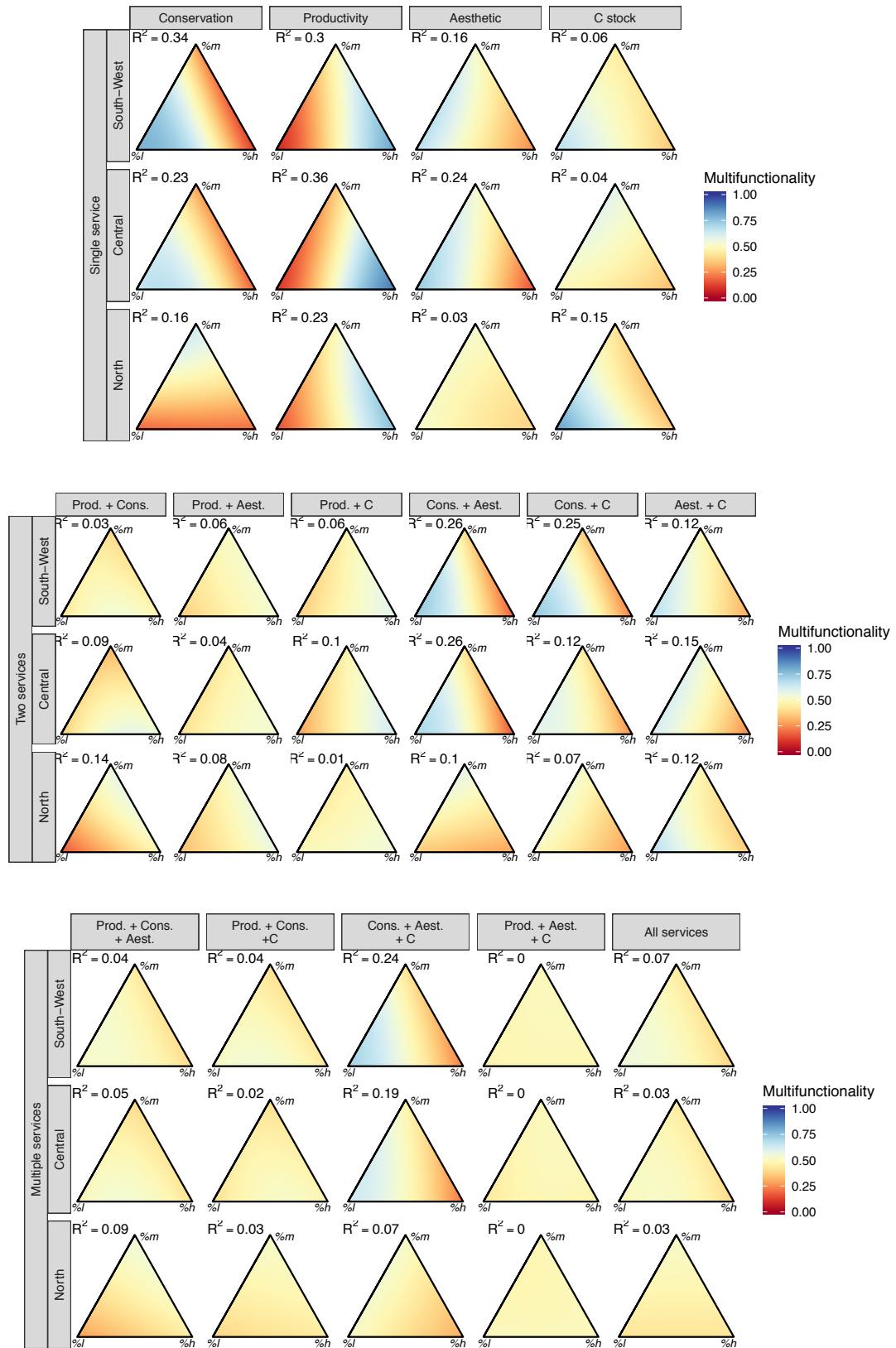
For single ecosystem services (top row), the value presented corresponds to the probability of the given service to be above the threshold. For combinations of multiple services (middle and bottom rows), multifunctionality is the expected proportion of services above the threshold. Blue indicates higher multifunctionality values, orange lower.


Figure S 13 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure differs from Figure 4 in that the threshold was set to the 60th percentile instead of the median.

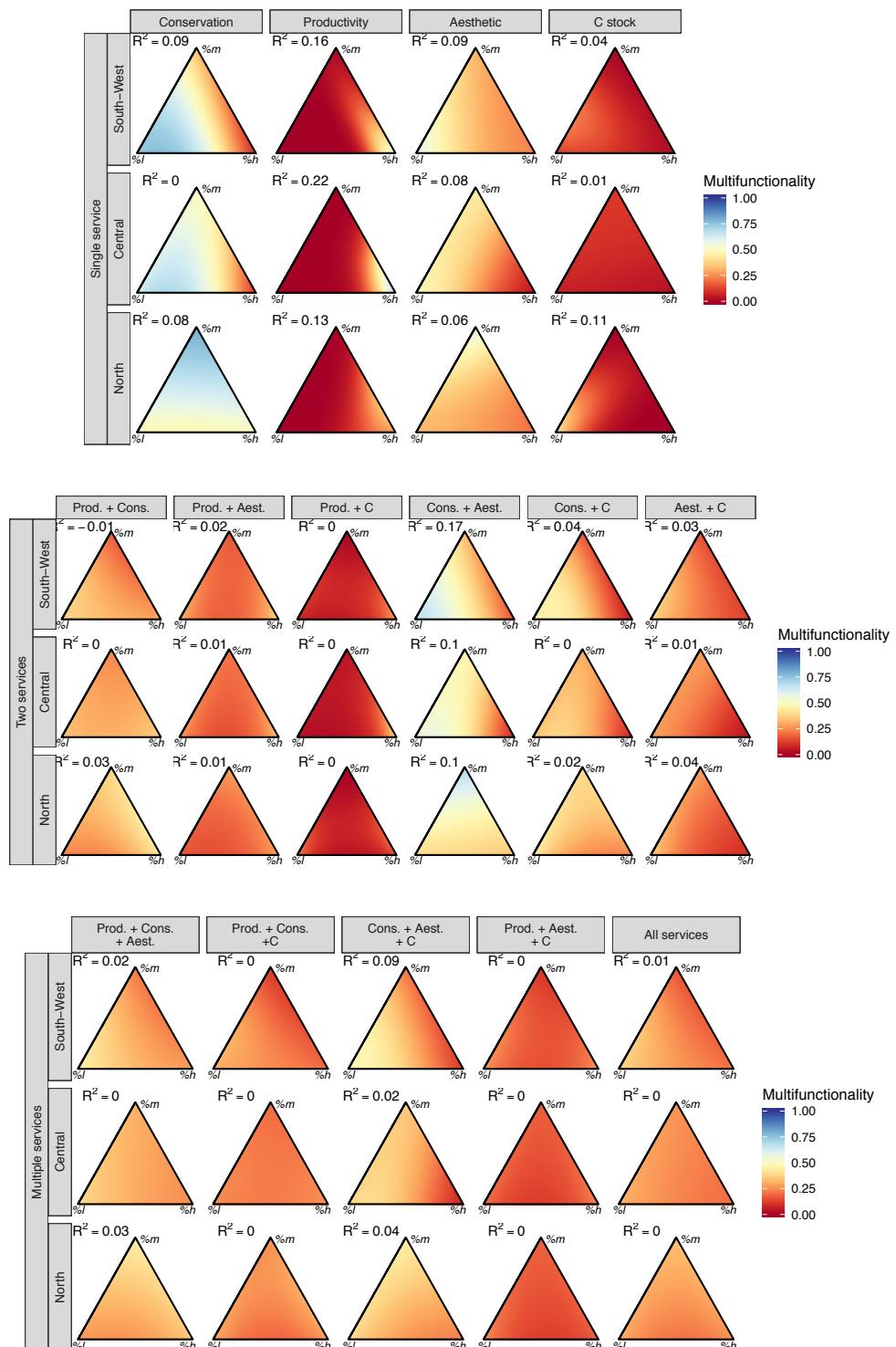
For single ecosystem services (top row), the value presented corresponds to the probability of the given service to be above the threshold. For combinations of multiple services (middle and bottom rows), multifunctionality is the expected proportion of services above the threshold. Blue indicates higher multifunctionality values, orange lower.


Figure S 14 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure differs from Figure 4 and Figure 5 that the multifunctionality was calculated as 1 if all the services were above a 15th percentile threshold, and 0 otherwise (instead of a 25th percentile threshold).

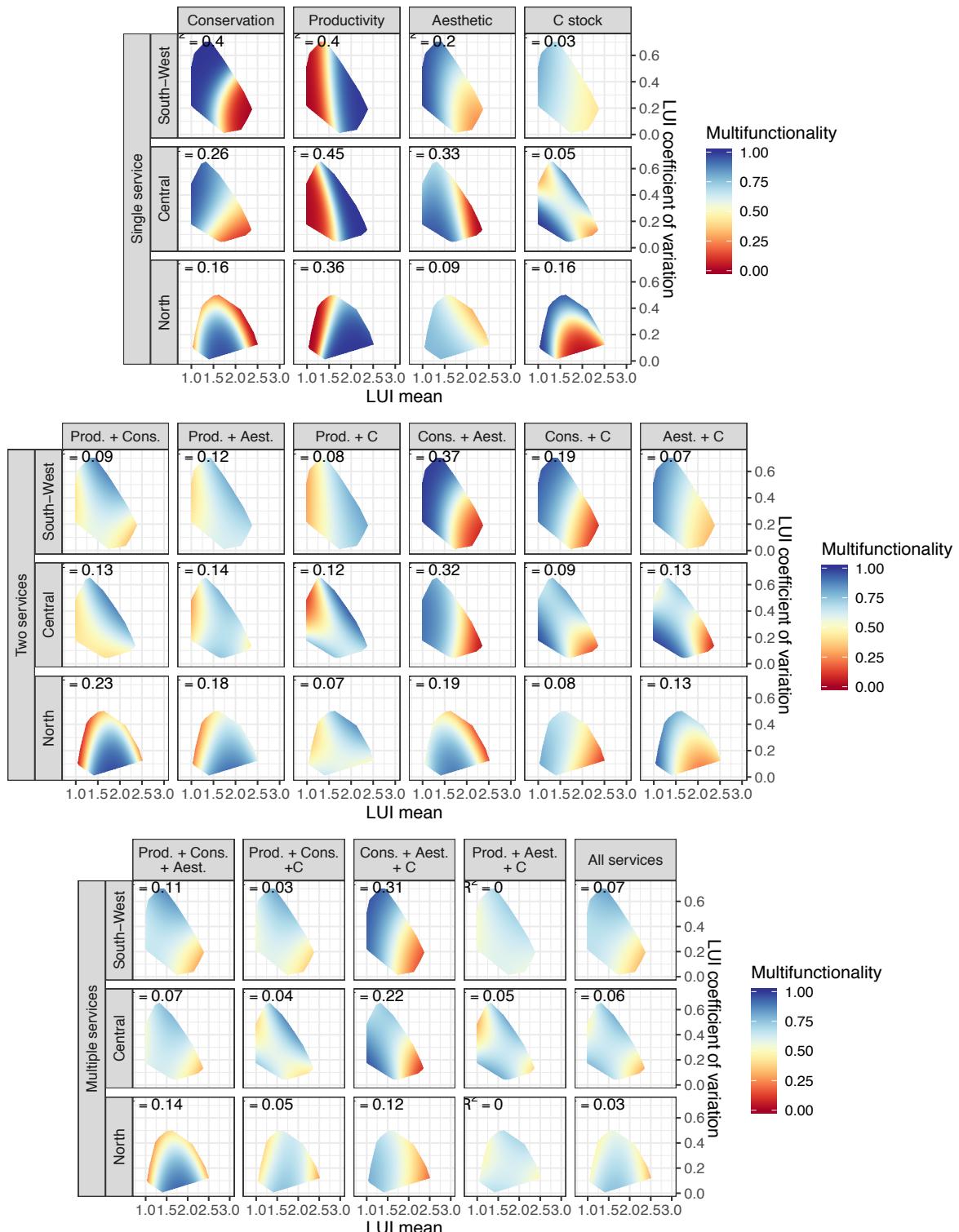
The value presented corresponds to the probability that all given services are above the threshold. Blue indicates higher multifunctionality values, orange lower.


Figure S 15 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure differs from Figure 4 and Figure 5 that the multifunctionality was calculated as 1 if all the services were above a 35th percentile threshold, and 0 otherwise (instead of a 25th percentile threshold).

The value presented corresponds to the probability that all given services are above the threshold. Blue indicates higher multifunctionality values, orange lower.


Figure S 16 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure differs from Figure 4 in that landscapes multifunctionality was calculated as the average of the (scaled) values of all considered services, instead of the number of services above a threshold.

Blue indicates higher multifunctionality values, orange lower.


Figure S 17 Estimated multifunctionality values depending on landscape composition (in proportions of low, medium and high-intensity sites). This figure differs from Figure 4 in that multifunctionality was calculated as the number of services above a threshold equal to 70% of the maximum (97.5% quantile) observed.

Blue indicates higher multifunctionality values, orange lower.

Figure S 18 Estimated multifunctionality values depending on the mean (x-axis) and coefficient of variation (y-axis) of the land-use intensity in the landscape. The area outside the coloured represent combinations of intensity mean and variation that were not observed within the region.

Blue indicates higher multifunctionality values, orange lower.

Table S 5 Variability of multifunctionality responsiveness with the ratio of the effect of intensity and other environmental variables ("Ratio"), the service response variance ("SRV"), and the number of services included in the analysis, depending on model parameters. Model results are presented as slope of the relationship \pm standard deviation (* $P > 0.05$, ** $P < 0.01$, *** $P < 0.001$). Sensitivity analyses include whether site were classified into low-, medium- and high intensity plots using all intensity values (quantile:30%) or only the lowest, middle and highest fifths (quantile: 20%); the number of sites per landscape (7, 10 or 13); the calculation of services at the landscape scale (either sum or max of the values observed at the site-level). Are also considered the different methodology to measure multifunctionality (number of services above a given threshold, either based on quantiles of the distribution of percentage of the maximum observed values; or as 1 if all services are above a threshold, 0 otherwise). (†) The ratio of the effect of land-use intensity and other environmental covariate is only relevant when the indicators have NOT been previously corrected for the environment.

Env. correction	Intensity classes	N° of sites	Landscape -scale ES	Multifunctionality	Thres hold	Ratio	SRV	N° of services
no	30% quantile	7	mean	Threshold based on quantiles	0,5	0,232 \pm 0,062**	-0,339 \pm 0,171n.s.	-0,139 \pm 0,034**
no	30% quantile	10	mean	Threshold based on quantiles	0,4	0,252 \pm 0,073**	-0,222 \pm 0,163n.s.	-0,119 \pm 0,034**
no	30% quantile	10	mean	Threshold based on quantiles	0,5	0,217 \pm 0,07*	-0,405 \pm 0,174*	-0,144 \pm 0,035***
no	30% quantile	10	mean	Threshold based on quantiles	0,6	0,197 \pm 0,068*	-0,277 \pm 0,17n.s.	-0,132 \pm 0,033***
no	"Compromise"	10	mean	"Compromise"	0,15	0,261 \pm 0,04***	0,565 \pm 0,122***	0,068 \pm 0,032*
no	"Compromise"	10	mean	"Compromise"	0,25	0,221 \pm 0,049**	0,195 \pm 0,128n.s.	-0,017 \pm 0,029n.s.
no	"Compromise"	10	mean	"Compromise"	0,35	0,188 \pm 0,047**	-0,002 \pm 0,157n.s.	-0,11 \pm 0,028***
no	Average	/		Average	/	0,192 \pm 0,051**	-0,316 \pm 0,128*	-0,112 \pm 0,028***
no	30% quantile	10	mean	maximum	70%	0,259 \pm 0,091*	-0,087 \pm 0,128n.s.	-0,119 \pm 0,032***
no	30% quantile	10	max	Threshold based on quantiles	0,5	-0,003 \pm 0,075n.s.	-0,31 \pm 0,143*	-0,124 \pm 0,028***
no	30% quantile	13	mean	Threshold based on quantiles	0,5	0,187 \pm 0,064*	-0,482 \pm 0,174**	-0,144 \pm 0,035***
yes	30% quantile	7	mean	Threshold based on quantiles	0,5	(†)	-0,686 \pm 0,224**	-0,145 \pm 0,03***
yes	30% quantile	10	mean	Threshold based on quantiles	0,4	(†)	-0,623 \pm 0,218**	-0,117 \pm 0,031***
yes	30% quantile	10	mean	Threshold based on quantiles	0,5	(†)	-0,834 \pm 0,239**	-0,141 \pm 0,033***
yes	30% quantile	10	mean	Threshold based on quantiles	0,6	(†)	-0,557 \pm 0,236*	-0,134 \pm 0,03***
yes	30% quantile	10	mean	"Compromise"	0,15	(†)	0,544 \pm 0,153**	0,067 \pm 0,026*
yes	30% quantile	10	mean	"Compromise"	0,25	(†)	0,15 \pm 0,169n.s.	-0,025 \pm 0,026n.s.
yes	30% quantile	10	mean	"Compromise"	0,35	(†)	-0,274 \pm 0,231n.s.	-0,096 \pm 0,029**
yes	30% quantile	10	mean	Average	/	(†)	-0,439 \pm 0,17*	-0,101 \pm 0,024***
yes	30% quantile	10	mean	Threshold based on % of maximum	70%	(†)	-0,204 \pm 0,154n.s.	-0,066 \pm 0,02**
yes	30% quantile	10	max	Threshold based on quantiles	0,5	(†)	-0,741 \pm 0,157***	-0,111 \pm 0,026***
yes	30% quantile	13	mean	Threshold based on quantiles	0,5	(†)	-0,688 \pm 0,257*	-0,154 \pm 0,032***
no	20% quantile	7	mean	Threshold based on quantiles	0,5	0,231 \pm 0,033***	-0,421 \pm 0,196*	-0,145 \pm 0,037***