

Constancy and Change in the 5'UTR of Yellow Fever Virus

Stephen J. Seligman, MD
The Rockefeller University
New York, NY USA
and
New York Medical College
Valhalla, NY USA

Corresponding author:
Stephen J. Seligman, MD
sseligman@rockefeller.edu
48 Locust Road
Briarcliff Manor, NY 10510
Telephone: 914-944-4647

Abstract

The nucleotide composition of the 5'UTR of the yellow fever virus (YFV) has been reported to be the most constant sequence in the viral genome, but a comprehensive analysis of this constancy has not been presented. The current report is an analysis of the 5'UTRs from 48 sequences deposited in GenBank representing the seven described genotypes, five in Africa and two in the Americas. The YFV 5'UTRs consist of 118-120 nucleotides, 92% (110/119) of which are constant in all sequences. The constancy is impressive and suggests that many participate in significant viral functions. Remarkably, analysis of the non-constant nucleotides revealed that in some instances the non-constant nucleotide changes persisted in one or a restricted number of related genotypes and were from sequences isolated over a considerable span of years. This constant feature of non-constant nucleotides is consistent with the concept that the changes were in response to different environmental features such as changes in mosquito hosts or animal reservoirs, particularly as a consequence of spread of YFV from Africa to the New World. Constancy of 5'UTR in general may be helpful in distinction of viral species. Lastly, the presence of sequences of constant nucleotides greater than 19 nucleotides suggests regions of the 5'UTR that may be exploited for use as non-codon RNA as treatment and diagnostic agents in a variety of viral diseases.

Importance

The 5'UTR is arguably the most neglected portion of the viral genome. It is frequently incomplete in the sequences deposited as otherwise complete sequences in GenBank. The current report is an analysis of complete 5'UTR sequences selected from those deposited in GenBank and indicates that the 5'UTR is 92% conserved confirming that it is a highly conserved portion of the viral genome and suggesting that each conserved nucleotide may be functionally significant. Repeated occurrences of even non-constant nucleotides belong to a restricted number of genotypes raising the possibility that adaptation to new mosquito hosts and animal reservoirs such as those that accompanied spread of yellow fever virus from Africa to the Western Hemisphere are relevant. Knowledge of prolonged strings of invariable nucleotides in the 5'UTR

has been used in designing a method for detecting YFV and may also be relevant for designing sequences for viral control of a variety of viruses.

Introduction

YFV is the eponymous virus for the genus Flavivirus. Originally isolated in 1927 from a patient in what is now Ghana, the nucleotide sequence of the vaccine virus derived from YFV was reported in 1985 (1). YFV persists as the cause jungle yellow fever transmitted by various mosquito species (*Anopheles* sp. in Africa and by *Haemagogus* sp. and *Sabathes* sp. in the Americas). Although detailed observations have not been presented, non-human primates (NHPs) in Africa are thought to be resistant to fatal infection (2). In the Americas, some NHPs succumb to the virus (e.g. *Alouatta* sp. (howler monkeys) (3) and *Sapajus* sp (capuchins) (4), but others are usually resistant to lethal infection (e.g. *Callithrix* sp (marmosets) (5) and *Leontopithecus* sp (golden lion tamarins) (6)). In both Africa and the Americas, the feared complication of yellow fever is the development of urban yellow fever in which the virus is rapidly spread amongst humans by *Aedes aegypti* and is associated with a high human mortality rate.

YFV has a 5'UTR, a sequence (cds) encoding three structural and seven non-structural proteins, and a 3'UTR. The virus originated in Africa and spread to the Americas in the 17th century in ships bearing slaves (7). Currently the virus persists in sub-Saharan Africa and in South America. Five genotypes are recognized in Africa and two in S. America (8). The genotypes are associated with different geographical regions. More recently sub-clade lineages of the S. American genotypes have become recognized (9). As with other viruses that lack a proof-reading mechanism in their RNA polymerases, mutations are common. Accordingly, considerable sequence diversity is anticipated.

The current report is an analysis of the YFV 5'UTR sequences deposited in GenBank. They were isolated from the seven genotypes (Table 1). Three aspects are evaluated: 1) Nucleotide constancy, 2) an analysis of constant features of non-constant nucleotides, and 3) suggestions are presented for further exploration. The results demonstrate that YFV 5'UTR consists of 118-120 highly conserved (92%) nucleotides and is much more conserved than nucleotides in the cds or the 3'UTR (10, 11), Seligman, S.J. unpublished).

The relative constancy of YFV 5'UTR has been used in the development of a method to detect the YFV genome in point of care facilities and reference laboratories (11). Since YFV and other flaviviruses are noted for their nucleotide variability, the constant nucleotides in the 5'UTR suggest that each may have a *raison d'être*. Analysis of some of the few non-constant YFV nucleotides reveals that they can persist for prolonged periods and be associated with a single genotype suggesting that there is a survival advantage for them as well to the mutation possibly related to different species of mosquito hosts and/or NHPs associated with particular geographic areas in which they propagate in South America (Table 2).

To evaluate the extent to which constant yellow fever 5'UTR nucleotides remained constant in other flaviviruses, a similar analysis was done of 40 Zika virus 5'UTR sequences (data not shown). The Zika sequences contained 106-107 nucleotides, 90 of which were constant (84%).

In contrast with the non-constant 5'UTR YFV nucleotides, those of Zika virus were found in more recent isolates reflecting the explosive Zika epidemic. Whether the non-constant Zika nucleotides persist depends on future propagation of the virus.

The current analysis of constant and non-constant YFV 5'UTR nucleotides has the potential for yielding clues relating to the definition of virus species, the phenotypic implications of specific nucleotides, and the identification of stretches of conserved viral nucleotides helpful for the development of treatment non-coding RNAs.

Methods

A search for suitable YFV sequences were made in GenBank, (<https://www.ncbi.nlm.nih.gov/genbank/>), an annotated collection of all publicly available DNA sequences. Search was made for sequences originating from different countries in Africa or Latin America in which yellow fever is or had been occurring. Sequences in which the 5' end of the 5'UTR was incomplete were omitted. An alignment of 48 sequences was done. Aligned columns were evaluated in an effort to evaluate whether unique instances of non-constant nucleotides represented sequencing error or failure of these mutations to persist. Two such instances were found, a 1935 Brazilian isolate (U52389) and a Chinese isolate from a case acquired in Angola (KU921608) in 2016. In U52389 two different non-constant nucleotides and in KU921608 three occurred. A search using Blastn (<https://blast.ncbi.nlm.nih.gov/>) confirmed that the nucleotide changes in these two isolates were unique. The lack of repeat instances of these nucleotides in the relevant positions is consistent with either sequencing error or failure of the mutation to persist on subsequent viral replication thereby indicating that it is not an essential 5'UTR nucleotide, at least under the condition in which the virus was propagating.

Results

Alignment of the 5'UTRs from 48 yellow fever strains including representatives from all of the seven recognized genotypes (8, 12, 13) indicates that their lengths varied from 118-120 nucleotides, 110 of which remained constant (92%) (Table 1). In contrast, 65% (6655/10230) of cds and 58% (266/459) of 3'UTR nucleotides were invariable (data not shown). In the case of cds variations, an increase in nucleotide constancy was noted with increasing size of the predicted viral protein (data not shown). The 3'UTR estimate is based on 22 isolates (14)). Sub-genomic stratification of repeated nucleotide sequence elements in the 3'UTR found in some YFV genotypes was not included in the calculations. Consequently more nuanced evaluations using sub-genomic sequences of the 3'UTR might increase the prevalence of constant nucleotides. The results do not necessarily establish all of the 19 or so consecutive conserved nucleotides necessary for viral growth inhibition by potential varieties of interfering RNA. The establishment of the combination of such nucleotides for the entire viral genome is beyond the scope of this manuscript.

Analysis of the non-constant nucleotides revealed two distinct patterns (Tables 1 and 2). In some instances (nucleotides 81, 89, 118, and 119), the non-constant nucleotides persisted for many decades in a single genotype suggesting a survival advantage of the relevant YFV in a particular geographic region that contained a specific mosquito species and/or non-human primate host.

Instances of the occurrence of a given nucleotide change or changes in one or two sequences could be the result sequencing error. In any event failure of the nucleotide change to persist suggests minimal effect of their ability to confer a significant advantage to viral propagation.

Conclusions

Analysis of constant and non-constant nucleotides in the 5'UTR of yellow fever virus that their persistence over the course of decades suggests that at least some nucleotides play a significant role in viral defense. Restraints in nucleotide changes in this region are likely to be of considerable interest. What mechanisms might be involved? In recent years considerable attention has been placed investigating the role of non-coding RNA in viral infections.

Nucleotide sequences longer than 200 are usually considered as long non-coding RNA and have been found to be important both in host cell response and virus defense mechanisms (15, 16). In addition small non-coding RNA's (RNAi) have a variety of formulations including both single-stranded RNA (micro (mi)RNA) (17) and double-stranded RNA (siRNA). Their actions may be promulgated either in *cis* or in *trans* (sfRNA) (18). Piwi-interacting (pi)RNA are found only in the testes and are involved in suppressing transposons (19).

Which, if any of these non-codon RNAs, are present in the 5'UTR is conjectural. Although 5'UTR nucleotides in alphaviruses have been implicated in host defense (20), the composition of RNAs in the 5'UTR that might be involved needs to be investigated systematically. Modern editing techniques changing selected 5'UTR nucleotides should be explored to investigate phenotypic changes in viral properties. Of particular interest is the possibility that nucleotide sequences from the 5'UTR are crucial in enabling YFV to propagate in primates and/or mosquitoes. Although no experiments have thus far reported systematically investigating the constancy of nucleotides in the 5'UTR, the effectiveness of the varieties of small interfering RNA in the control of virus infection is a field of active investigation (21-25). Should suitable conditions be found in which 5'UTR nucleotide sequences are determined to be inhibitory to YFV, parenteral delivery methods of the relevant inhibitory nucleotides would need to be developed to achieve a therapeutic effect. Most intriguing is the possibility that these concepts may also be applicable to other viruses such as coronaviruses, an idea of special significance in the control of rapidly emerging pandemics.

Supplemental Material

none

Acknowledgements

This work was initially stimulated by discussions with Charlie Rice

Funding

none

References

- 1 (Rice CM, Lenes EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH. 1985. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. *Science* **229**:726-733.)
- 2 (Monath TP, Vasconcelos PF. 2015. Yellow fever. *J Clin Virol* **64**:160-173.)
- 3 (Abreu FVS, Delatorre E, Dos Santos AAC, Ferreira-de-Brito A, de Castro MG, Ribeiro IP, Furtado ND, Vargas WP, Ribeiro MS, Meneguete P, Bonaldo MC, Bello G, Lourenco-de-Oliveira R. 2019. Combination of surveillance tools reveals that Yellow Fever virus can remain in the same Atlantic Forest area at least for three transmission seasons. *Mem Inst Oswaldo Cruz* **114**:e190076.)
- 4 (de Oliveira-Filho EF, Oliveira RAS, Ferreira DRA, Laroque PO, Pena LJ, Valenca-Montenegro MM, Mota RA, Gil L. 2018. Seroprevalence of selected flaviviruses in free-living and captive capuchin monkeys in the state of Pernambuco, Brazil. *Transbound Emerg Dis* **65**:1094-1097.)
- 5 (Cunha MS, da Costa AC, de Azevedo Fernandes NCC, Guerra JM, Dos Santos FCP, Nogueira JS, D'Agostino LG, Komninakis SV, Witkin SS, Ressio RA, Maeda AY, Vasami FGS, Kaigawa UMA, de Azevedo LS, de Souza Facioli PA, Macedo FLL, Sabino EC, Leal E, de Souza RP. 2019. Epizootics due to Yellow Fever Virus in Sao Paulo State, Brazil: viral dissemination to new areas (2016-2017). *Sci Rep* **9**:5474.)
- 6 (Dietz JM, Hankerson SJ, Alexandre BR, Henry MD, Martins AF, Ferraz LP, Ruiz-Miranda CR. 2019. Yellow fever in Brazil threatens successful recovery of endangered golden lion tamarins. *Sci Rep* **9**:12926.)
- 7 (Bryant JE, Holmes EC, Barrett AD. 2007. Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. *PLoS Pathog* **3**:e75.)
- 8 (von Lindern JJ, Aroner S, Barrett ND, Wicker JA, Davis CT, Barrett AD. 2006. Genome analysis and phylogenetic relationships between east, central and west African isolates of Yellow fever virus. *J Gen Virol* **87**:895-907.)
- 9 (Delatorre E, de Abreu FVS, Ribeiro IP, Gomez MM, Dos Santos AAC, Ferreira-de-Brito A, Neves M, Bonelly I, de Miranda RM, Furtado ND, Raphael LMS, da Silva LFF, de Castro MG, Ramos DG, Romano APM, Kallas EG, Vicente ACP, Bello G, Lourenco-de-Oliveira R, Bonaldo MC. 2019. Distinct YFV Lineages Co-circulated in the Central-Western and Southeastern Brazilian Regions From 2015 to 2018. *Front Microbiol* **10**:1079.)
- 10 (Pisano MR, Mercier V, Deubel V, Tolou H. 1999. Complete nucleotide sequence and phylogeny of an American strain of yellow fever virus, TRINID79A. *Arch Virol* **144**:1837-1843.)
- 11 (Domingo C, Patel P, Yillah J, Weidmann M, Mendez JA, Nakoune ER, Niedrig M. 2012. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories. *J Clin Microbiol* **50**:4054-4060.)
- 12 (Mutebi JP, Wang H, Li L, Bryant JE, Barrett AD. 2001. Phylogenetic and evolutionary relationships among yellow fever virus isolates in Africa. *J Virol* **75**:6999-7008.)
- 13 (Barrett AD, Monath TP. 2003. Epidemiology and ecology of yellow fever virus. *Adv Virus Res* **61**:291-315.)
- 14 (Mutebi JP, Rijnbrand RC, Wang H, Ryman KD, Wang E, Fulop LD, Titball R, Barrett AD. 2004. Genetic relationships and evolution of genotypes of yellow fever virus and

other members of the yellow fever virus group within the Flavivirus genus based on the 3' noncoding region. *J Virol* **78**:9652-9665.)

15 (Liu S, Liu X, Li J, Zhou H, Carr MJ, Zhang Z, Shi W. 2019. Long noncoding RNAs: Novel regulators of virus-host interactions. *Rev Med Virol* **29**:e2046.)

16 (Wang P. 2018. The Opening of Pandora's Box: An Emerging Role of Long Noncoding RNA in Viral Infections. *Front Immunol* **9**:3138.)

17 (Bhaskaran M, Mohan M. 2014. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. *Vet Pathol* **51**:759-774.)

18 (Fan YH, Nadar M, Chen CC, Weng CC, Lin YT, Chang RY. 2011. Small noncoding RNA modulates Japanese encephalitis virus replication and translation in trans. *Virol J* **8**:492.)

19 (Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. 2019. PIWI-interacting RNAs: small RNAs with big functions. *Nat Rev Genet* **20**:89-108.)

20 (Hyde JL, Gardner CL, Kimura T, White JP, Liu G, Trobaugh DW, Huang C, Tonelli M, Paessler S, Takeda K, Klimstra WB, Amarasinghe GK, Diamond MS. 2014. A viral RNA structural element alters host recognition of nonself RNA. *Science* **343**:783-787.)

21 (Blair CD, Olson KE. 2015. The role of RNA interference (RNAi) in arbovirus-vector interactions. *Viruses* **7**:820-843.)

22 (Levin AA. 2019. Treating Disease at the RNA Level with Oligonucleotides. *N Engl J Med* **380**:57-70.)

23 (Villegas PM, Ortega E, Villa-Tanaca L, Barron BL, Torres-Flores J. 2018. Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions. *Arch Virol* **163**:1331-1335.)

24 (Wong RR, Abd-Aziz N, Affendi S, Poh CL. 2020. Role of microRNAs in antiviral responses to dengue infection. *J Biomed Sci* **27**:4.)

25 (Zandi K, Bassit L, Amblard F, Cox BD, Hassandarvish P, Moghaddam E, Yueh A, Libanio Rodrigues GO, Passos I, Costa VV, AbuBakar S, Zhou L, Kohler J, Teixeira MM, Schinazi RF. 2019. Nucleoside Analogs with Selective Antiviral Activity against Dengue Fever and Japanese Encephalitis Viruses. *Antimicrob Agents Chemother* **63**.)

Table 1. Alignment of yellow fever virus 5'UTR

YF_14PA_AY968064_von_Lindern_Angola_human_1971	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	60
YF_CIC1_KX010994_Pan_China_exAngola_human_blood_2016	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	60
YF_CIC4_KX027336_Cui_China_exAngola_human_urine_2016	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	60
YF_Uganda-2010_JN620362_McMullan_Uganda_East-Central-Africa_human_2010	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_AT094AZ_AY968065_Von_Lindern_East-Africa_Uganda48a_1948	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_M_90-5_TVP_3230_MF004383_Baronti_Sudan_East-Africa_human_serum<2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_Couma_DQ235229_Von_Lindern_Ethiopia_East-Central-Africa_human_1961	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_Uga48_U52422_Wang_Uganda_East-Africa_1948	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_AT17294_U52395_Wang_Central-African-Republic_East/Central-Africa_1977	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_Car77(883)_U52392_Wang_Central-African-Republic_East/Central-Africa_1977	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_85-82H_U54798_Pisano_Ivory-Coast_West-Africa-I_human_1982	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_Ivory-Coast-1599_AV603338_Bae_Ivory-Coast_West-Africa-I_1999	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_DakArAmt7_JX898669_Stock_Ivory-Coast_West-Africa_II_1973	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_Ar181439_JX898681_Stock_Senegal_West-Africa-II_2005	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_ArD181564_JX898680_Stock_Senegal_West-Africa-II_2005	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_HD117294_JX898868_Stock_Senegal_West-Africa-II_human_1995	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_Gambia01_AY72535_Bae_Gambia_West-Africa-II_human_2001	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_Asibi_AY640589_McElroy_Ghana_West-Africa-II_human_1927	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_Trinidad79P_AF094612_Pisano_Trinidad_West_African-II_1979	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_VL2926_MK333809_Delatorre_Brazil-Valencia-RJ_S_America_I_2018	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_BeAR513008_JF912185_Nunes_Brazil_S_America_I_Sabettos_sp_1992	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_H191_MF538784_Gomez_Brazil_S-American-1_Porciuncula-RJ_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_GO21_MK728873_Delatorre_Brazil_S-American-I_Amorinopolis_GO_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_BeH622020_JF912187_Nunes_Brazil_S-American-I_2000	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_Panama74_U52404_Wang_Panama_S_America_I_1974	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_RJ-155_MK533792_Abreu_Brazil_Casimiro-de-Abreu_S_America_I_2019	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_RJ97_MF538785_Gomez_Brazil_Araras_S_America_I_marmoset_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_PA196_MF423374_Gomez_Brazil_Paraju_S_America_I_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_RJPR4867_MF370548_Filippis_Brazil_S_America_I_liver_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_PA193_MF423373_Gomez_Brazil_Paraju_S_America_I_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_ES-504_KY885000_Bonaldo_Brazil-Domingos-Martins-ES_S_America_I_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_H191_MF538783_Gomez_Brazil_Casimiro-de-Abreu-RJ_S_America_I_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_H189_MG550109_Gomez_Brazil-Bananal-Marica-RJ_S_America_I_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59
YF_H190_MF538782_Gomez_Brazil-Sao-Fidelis-RJ_S_America_I_human_2017	agtaaaatccctgggtgctaattgggtgcattgggtgcataatcgagttcttagggcaata	59

YF PR5925-BEan845405 MF370544 Cruz Brazil_S America_I liver_2017
YF PR5937-BEan845130 MF370543 Cruz Brazil_S America_I liver_2017
YF MG3155 MK333808 Delatorre_Brazil_Belmiro-Braga-MG_S America_I_2018
YF MG3121 MK333807 Delatorre_Brazil_Belmiro-Braga-MG_S America_I_2018
YF IG3036 MK333805 Delatorre_Brazil-Ilha-Grande-RJ_S America_I_2018
YF BeAr646356 JF912189 Nunes_Brazil_S_America_I_2001
YF BeAr378600 JF912179 Nunes_Brazil_S_America_I_1980
YF ES2750 MK333802 Delatorre_Brazil-Santa-Leopoldina-ES_S America_I 2017
YF 88/1999 MF004382 Baronti_Bolivia_S America_II_human_serum_1999
YF Trinidad79_W52419 Wang_Trinidad_S America_II_1979
YF Peru95(153) U52410 Wang_Brazil_S America_I_1995
YF Peru95(149) U52409 Wang_Brazil_S America_II_1995
YF Trinidad54 U52416 Wang_Trinidad_S America_I_1954
YF Ecuador79_U52398 Wang_Ecuador_S_America_I_1979

YF_1A94 1FA9Y68064 von Lindern Angola human 1971
YF_C1C1_KX010994_Pan_China_exAngola_human_blood_2016
YF_C1C4_KX027336_Cui_Cui_China_exAngola_human_urine_2016
YF_Audange_2010_JN620362 McMullan Uganda East/Central-Africa human_2010
YF_A70944Z_AY86058 Von Lindern_East-Africa_Uganda48a_1948
YF_M_90-5_TVE_3230_MFO00432 Baronti Sudan_East-Africa_human_serum<2017
YF_Couma_DQ235229 von Lindern Ethiopia East/Central-Africa human 1961
YF_Ug4ar_U52422_Wang_Uganda_East-Africa_1948
YF_Car77(900)_U52395 Wang Central-African-Republic East/Central-Africa 1977
YF_Car77(883)_U52392 Wang Central-African-Republic East/Central-Africa_1977
YF_85-82H_U54798 Pisano Ivory-Coast West-Africa-I_human_1982
YF_Ivory-Coast_1999_AF603338_Bae_Ivory-Coast_West-Africa-I_1999
YF_DakArant77_JX988969_Stock_Ivory-Coast_West-Africa_II_1973
YF_Arb181439_JX988881 Stock Senegal West-Africa-II 2005
YF_Arb181564_JX988880_Stock Senegal West-Africa-II_2005
YF_HD17294_JX988688 Stock Senegal West-Africa-II human 1995
YF_Gambia01_AY572535_Bae Gambia West-Africa-II human_2001
YF_Asibi_AY640589 McElroy Ghana West-Africa-II human 1927
YF_Trinidad79P_AY94612_Pisano Trinidad West African II_1979
YF_VL2926_MK333809 Delatorre_Brazil-Valenca-RJ_S America_I_2018
YF_BeAr513008_JF912185 Nunes_Brazil_S America_I_Sabethes-sp_1992
YF_H196_M537874_Gomez_Brazil_S-American-I_Porciuncula-RJ_2017
YF_G021_MK28873 Delatorre_Brazil_S-American_I_Amorinopolis-GO 2017
YF_BeH622025_JF912187_Nunes_Brazil_S-American-I_2000
YF_Panama74_U52404 Wang Panama S America I 1974
YF_RJ-155_MK333792_Abreu_Brazil_Casimiro-de-Abreu_S_America_I_2019
YF_RJ97_MF378583 Gomez_Brazil_Arauca S America I marmoset 2017
YF_PA196_MF423374 Gomez_Brazil_Paraju_S_America_I_2017
YF_RJF84867_MF370548_Filippis_Brazil_S_America_I_liver_2017
YF_PA193_MF423373 Gomez_Brazil_Paraju_S_America_I_2017
YF_ES-504_KY885000_Bonaldo_Brazil-Domingos-Martins-ES_S_America_2017
YF_H191_MF538783 Gomez_Brazil-Casimiro-de-Abreu-RJ_S America I 2017
YF_H188_MG50109 Gomez_Brazil-Bananal-Carapeba-RJ_S America_I_2017
YF_H190_MF538782 Gomez_Brazil-Sao-Fidelis-RJ_S America I human 2017
YF_PR5952-BEan845405_MF370543_Cruz_Brazil_S_America_I_liver_2017
YF_PR5937-BEan845130_MF370543 Cruz_Brazil_S America I_liver 2017
YF_MG3155_MK333808_Delatorre_Brazil_Belmiro-Braga-MG_S America_I_2018
YF_MG3121_MK333807 Delatorre_Brazil_Belmiro-Braga-MG_S America_I_2018
YF_IG306_MK333805 Delatorre_Brazil_Ilha-Grande-RJ_S_America_I_2018
YF_BeAr645635_JF912189_Nunes_Brazil_S_America_I_2001
YF_BeAr378600_JF912179_Nunes_Brazil_S_America_I_1980
YF_ES2750_MK333802 Delatorre_Brazil-Santa-Leopoldina-ES_S America_I_2017
YF_88/1999_MFO04382 Baronti Bolivia S American II human serum 1999
YF_Trinidad795_U52419_Wang_Trinidad_S_America_II_1979
YF_Peru95(153)_U52410 Wang Brazil S America II 1995
YF_Peru95(149)_U52409 Wang Brazil S America II 1995
YF_Trinidad654_U52416 Wang Trinidad S America I_1954
YF_Ecuador79_U52398_Wang_Ecuador_S_America_I_1979

Table 2. Non-constant 5'UTR nucleotides in 48 yellow fever virus sequences

Nucleotide number	Nucleotide change	Genotypes with changed nucleotide
9	a insertion	Angolan
13	g13t	Angolan
81	g81a	S. American I, Angolan
89	g89t	East Central Africa
109	c109t	S. American I
117	a117c	2 sequences S. American I From 1954 and 1971
118	t118c	S. American II and 1 sequence from S. American I
119	a119c	West Africa II, 2 sequences from East/Central-Africa_1977, and 1 sequence from S_America_I_1954
119	a119t	1 sequence from East/Central-Africa_human_2010 and 1 sequence from West-Africa-I_1982

120	a 120 deletion	An artifact of the alignment program. The deleted “a” is more reasonably considered to be the initial “a” in atg in the ensuing cds.		
-----	----------------	--	--	--