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Abstract 8 

Fragmentation of natural landscapes results in habitat and connectedness loss, making it one of the 9 

most impactful avenues of anthropogenic environmental degradation. Populations living in a 10 

fragmented landscape can adapt to this context, as witnessed in changing dispersal strategies, levels 11 

of local adaptation and changing life-history traits. This evolution, however, can have ecological 12 

consequences beyond a fragmented range. Since invasive dynamics are driven by the same traits 13 

affected by fragmentation, the question arises whether fragmented populations evolve to be 14 

successful invaders. 15 

In this study we assess population spread during three generations of two-spotted spider mite 16 

(Tetranychus urticae) population in a replicated experiment. Experimental populations evolved 17 

independently in replicated experimental metapopulations differing only in the level of habitat 18 

connectedness as determined by the inter-patch distance.  19 

We find that habitat connectedness did not meaningfully explain variation in population spread rate. 20 

Rather, variation within experimental populations that shared the same level of connectedness during 21 

evolution was larger than the one across these levels. Therefore, we conclude that experimental 22 

populations evolved different population spread capacities as a result of their specific evolutionary 23 

background independent but of the connectedness of the landscape. While population spread 24 

capacities may be strongly affected by aspects of a population’s evolutionary history, predicting it from 25 

identifiable aspects of the evolutionary history may be hard to achieve. 26 

 27 
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Introduction 29 

Movement is integral to the life of all organisms and a principle driver of species distributions, spread 30 

and eventually the dynamics of ecosystems (Jeltsch et al., 2013). Environmental change and habitat 31 

loss put a heavy pressure on population persistence. One way to manage this pressure is to move to 32 

other locations with more suitable and benign environmental conditions (O’Connor, Selig, Pinsky, & 33 

Altermatt, 2012; Parmesan, 2006). Effective conservation policy requires knowledge on how fast and 34 

how likely a particular population can keep up with a changing landscape. These insights can similarly 35 

inform agricultural pest and infectious disease management. Many organisms are also deliberately or 36 

accidentally introduced outside their ancestral range. They sometimes manage to establish and spread 37 

further (Renault, Laparie, McCauley, & Bonte, 2018). In the past, this has spawned a series of invasive 38 

species that replaced their native counterparts (Mckinney & Lockwood, 1999). Predicting species 39 

invasion risk has therefore become a major theme in invasion biology. 40 

The predictability of evolutionary change or ecological dynamics has historically been rather poor 41 

(Pigliucci, 2002). As such, predictability in population spread has gathered some interest but has been 42 

strongly debated as well (Giometto, Rinaldo, Carrara, & Altermatt, 2014; Melbourne & Hastings, 2009). 43 

Central to an accurate forecasting is the availability of reliable predictors. Population spread is affected 44 

by characteristics of the landscape but also by traits that determine movement and population growth 45 

(Angert et al., 2011; Fisher, 1937). Movement will determine how efficiently the landscape can be 46 

crossed while other life-history traits will determine the build-up of populations and eventually the 47 

number of the potentially spreading individuals. Spread itself induces a non-random distribution of 48 

these traits within the range that as a result accelerates spread. Dispersive phenotypes accumulate at 49 

the edge through spatial sorting and more reproductive phenotypes are selected for at the range’s 50 

edge by a process termed spatial selection (Burton, Phillips, & Travis, 2010; Fronhofer & Altermatt, 51 

2015; Shine, Brown, & Phillips, 2011; Szücs et al., 2017). Whereas selection can act on the evolution of 52 

these traits, they are equally conditional non-adaptive processes such as genetic drift or linkage 53 

disequilibrium with adaptive traits. Moreover, a population’s historical context greatly influences its 54 
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ecology in the present (Maris et al., 2018). Selection pressures and other evolutionary forces of past 55 

environments shaped the current traits of each population. The population’s historical environmental 56 

background is therefore expected to leave a signature on the population spread dynamics that may be 57 

predictable to a certain extent. 58 

An important feature of the environment affecting the evolution of demography and movement is its 59 

overall level of habitat fragmentation (Cheptou, Hargreaves, Bonte, & Jacquemyn, 2017). 60 

Fragmentation usually is the direct result of habitat loss. But habitat fragmentation results in further 61 

stresses on natural populations, one of them being the increasing distance between patches of habitat. 62 

We will call this connectedness henceforth. Populations living in these increasingly less connected 63 

habitat patches will experience elevated dispersal costs (Bonte et al. 2012). As a consequence, less 64 

dispersal is expected to evolve, which leads to a decreased connectivity as expressed by a decreased 65 

amount of successful dispersers between spatially separated patches (Tischendorf & Lenore, 2001). 66 

Because changes in connectivity directly feedback with changes in local densities (Cheptou et al., 67 

2017), growth rates and stress resistance can evolve as well (De Roissart, Wang, & Bonte, 2015; Bonte 68 

et al. 2018). While selection should lead to convergence in traits among populations experiencing the 69 

same spatial context, other factors may lead to more stochasticity in trait changes and the emerging 70 

population dynamics. First, connectedness loss predominantly coincides with a decrease in patch size. 71 

The resulting smaller populations experience an increased genetic drift and can lead to the loss of 72 

adaptive traits. Second, lower connectivity directly decreases gene flow among populations, leading 73 

to a direct loss of genetic variation (Lenormand, 2002) and an increased genetic load within 74 

populations (Ingvarsson, 2001).  75 

 76 

Based on the above, we could expect populations inhabiting strongly connected benign landscapes to 77 

spread overall faster relative to those from less connected ones because of their higher dispersal 78 

abilities. On the other hand, evolution of stress-related traits may substantially lower the costs of 79 

dispersal in the less connected landscapes (Bonte et al., 2012; Cheptou et al., 2017). This may lead to 80 
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an equal or even faster population spread for populations that share an evolutionary history in the 81 

poorly connected landscapes. Independently of the exact direction and magnitude of these effects, we 82 

hypothesize that population spread should be predictable in relation to the spreading population’s 83 

evolutionary history.  84 

Eco-evolutionary dynamics predominantly show how the dynamic interplay between trait evolution 85 

and ecological dynamics in the same environment (Hendry, 2016). Quantifying the impact of trait-86 

changes in one kind of environment on the dynamics in another environment are key to invasion 87 

theory (e.g. Bonte & Bafort 2018), but to date virtually unknown from an empirical or natural 88 

perspective. We therefore quantified dispersal propensity and reproductive rate prior to the 89 

experiments to compare how informative this trait perspective is compared to the evolutionary 90 

background of populations. Building on a long-term experimental evolution experiment (Masier & 91 

Bonte 2020), we quantified population spread dynamics of two-spotted spider mite (Tetranychus 92 

urticae) populations for 2-3 generation, thereby simulating the take-off of an invasion. By using 93 

replicated mesocosms that experienced the same or another level connectedness, as well as replicated 94 

range spread tests for each of these experimental mesocosms, we are able to quantify the 95 

predictability of early population spread (Giometto et al., 2014; Melbourne & Hastings, 2009), and 96 

thereby to estimate the importance of evolution for spread dynamics in a new environment. Overall, 97 

our results show that evolution affects population spread rate to a sizable extent but that the historical 98 

level of habitat fragmentation is an unconvincing predictor. 99 
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Methods 101 

Experimental system 102 

We tested population spread in Tetranychus urticae Koch (two-spotted spider mite) populations. The 103 

species is a cosmopolitan phytophagous herbivore known from >900 plant species (Navajas et al., 104 

2002). This species is used as a model in ecology and evolutionary biology. The rapid population 105 

growth, ease of maintaining populations in a lab and the known genomics (Grbić et al., 2011) are all 106 

advantages for performing such research. For this experiment, we used an in-house lab population 107 

which had been used in other experiments (Alzate, Bisschop, Etienne, & Bonte, 2017; Bisschop, 108 

Mortier, Etienne, & Bonte, 2019; De Roissart, Wang, & Bonte, 2015; Van Petegem et al., 2018) 109 

We maintained mites on Phaseolus vulgaris L. Prelude (bean) plants and leaf patches at all times. Bean 110 

is an optimal host for the spider mites, with little in the way of defense. Mites are never found to 111 

perform better on other hosts compared to bean, even when the mites locally adapted to that host 112 

for a prolonged period (Alzate et al., 2017). We created optimal resource conditions in the evolutionary 113 

and population spread setups for dynamics to not be affected by resource maladaptation. 114 

Evolutionary history  115 

We evolved mites in lab-controlled mesocosms in a metapopulation spatial 116 

composition for 18 months. Mesocosms differed in the interpatch distance. 117 

The replicated mesocosms are described in more detail in Masier et al. 118 

(2019). In short, each evolutionary arena consisted of a 3x3 grid of bean leaf 119 

patches (5cmx5cm) that were connected by parafilm® bridges of 0.5cm wide 120 

to all adjacent patches (fig. 1). Horizontal and vertical bridges were all 4 cm, 121 

8 cm or 16 cm long, determining the connectedness treatment of the mesocosm. The distance 122 

between bean patches mostly determined the dispersal mortality risk of a mite moving between 123 

patches. Each inter-patch distance treatment was replicated five times. During the 18 months of 124 

experimental evolution, leaf patches in each mesocosm were refreshed weekly. (Masier & Bonte, 125 

2019) reported the evolution of the same dispersal propensity in the different connectedness 126 

Figure 1: spatial configuration 
of the mesocosm landscape 
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treatments. However, the more connected mesocosms evolved a later dispersal timing and a greater 127 

starvation resistance. 128 

After 18 months, we transferred 45 mature females to a bean leaf from each mesocosm: five from 129 

each local patch. In the few cases of low local population sizes, less than five mites were sampled to 130 

not compromise the viability of that local population. This bean leaf with transferred mites rested on 131 

wet cotton wool in a petri dish (150mm diameter) aligned with paper towel strips (30°C, 16:8h L:D 132 

photoperiod). We let these mature females lay eggs for 24h to form a synchronized next generation 133 

to perform the dispersal propensity and reproductive success tests with. Afterwards, all females from 134 

a mesocosm were transferred to a bean plant to breed a large enough number of individuals in the 135 

next generation for the population spread assessments. Both the leaf in the petri dish and bean plant 136 

provided a common garden for the mites used in their respective tests in order to control for maternal 137 

effects and effects of developmental plasticity. 138 

Population spread 139 

We sampled 40 individuals from the common garden plant of 140 

each mesocosm and placed them in a population spread 141 

arena. We replicated this three time to have three 142 

independent population spread assessments per evolved 143 

mesocosm. Some of the whole plants used as common 144 

gardens did not provide enough mites for three replicates. 145 

Therefore, we only started 37 out of 45 planned population 146 

spread assessments with every mesocosm tested at least 147 

once. We used similar population spread arenas as the ones 148 

in Mortier et al. (2020). A population spread arena consisted 149 

of a clean plastic crate (26.5cmx36.5cm) covered in three 150 

layers of cotton wool (Rolta®soft) that was kept wet and on 151 

which patches of bean leaves (1.5cmx2.5cm) were placed. Bean patches were sequentially connected 152 

1 2 3 

5 4 

6 7 

10 9 8 

11 

12 

Figure 2: spatial configuration of the 
population spread arenas. The mites were 
introduced at patch 1, with possibility to 
spread beyond the 12th patch 
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by a parafilm® bridge (1x8cm) touching both leaves (fig. 2). The remaining leaf’s edges were aligned 153 

with paper towel strips (25°C, 16:8h L:D photoperiod).  154 

The 40 starting mites were transferred to the first patch with two additional connected empty patches. 155 

Every day, if needed, we provided additional empty patches in front as to always ensure two 156 

unoccupied patches in front of the furthest occupied patch. This built up the sequence of patches (fig. 157 

2) over the duration of the test. Every two days we replaced the still unoccupied patches at the front 158 

to keep the new patches fresh and attractive to arriving mites. This linear patch system snaked through 159 

our crates for twelve possible patches. In case of further patches, the first patches and their connection 160 

to the next were removed as to provide space for the expanding sequence of patches. We mostly 161 

focused on the leading edge of the population distribution and therefore choose to give up trailing 162 

patches. In all cases, the removed patch was already withered and did not house any living mites. We 163 

kept the population spread arenas at around 25°C for a 16:8h L:D photoperiod. We recorded the 164 

furthest occupied patch daily.  165 

 166 

 Life history trait tests  167 

We measured dispersal propensity by placing 40 females in their first day of maturity from each 168 

common garden, each belonging to a mesocosm, on the first patch in a two-patch dispersal test. The 169 

starting bean leaf patch (1.5cmx2.5cm) was connected by a parafilm® bridge (1cmx8cm) to a second 170 

patch (25°C, 16:8h L:D photoperiod). This setup tested the number and timing of mites successfully 171 

crossing the bridge to the other patch. Every day the destination patch was removed with all successful 172 

dispersers of that day to prevent them from going back. A fresh patch is placed to provide an empty 173 

destination for the following day. For four days we counted how many individuals still lived and how 174 

many successfully dispersed to the second patch to give us a proportion of successfully dispersed 175 

individuals. Groups of mites with on average more dispersive traits should have a bigger proportion of 176 

the tested mites disperse successfully. 177 
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We measured reproductive success by transferring four times a female from each common garden, 178 

each belonging to a mesocosm, in the first day of turning adult to a bean leaf patch (1.5cmx2.5cm) on 179 

wet cotton wool aligned with paper towel strips (25°C, 16:8h L:D photoperiod). After ten days, we 180 

counted the number of adults and deutonymphs (last life stage before adulthood) produced by that 181 

female as a measure for her reproductive success. 182 

Statistical inference  183 

We analyzed all results of our experiment using multilevel modelling and Bayesian estimation 184 

methods. The ‘brms’ (Bürkner, 2018) package makes use of ‘Stan’ (Carpenter et al., 2017) as a 185 

framework in R in order to estimate posterior parameter distributions using Hamiltonian Monte Carlo 186 

(HMC). Replication at multiple levels of the experiment enabled us to estimate the uncertainty on the 187 

population spread introduced at the level of the connectedness treatment, the level of the different 188 

mesocosms or the replicated assessments of a single mesocosms. This gives us an idea on the relative 189 

impact of each level of the experiment on the outcome. 190 

First, we analyzed population spread, the furthest occupied patch, as being dependent on the 191 

connectedness treatment the tested mesocosm experienced, time and their interaction with a variable 192 

intercept and slope in time for each mesocosm. Second, we modelled population spread the same way 193 

but with reproductive success being the focal predictor instead of the historical connectedness 194 

treatment. Lastly, we modelled population spread with dispersal propensity as the focal predictor 195 

instead of the historical connectedness treatment. In all models we fitted a Gaussian error distribution 196 

and used weakly regularizing priors (see supplementary materials). 197 

With the first model, we also calculate the variances accounted for by each predictor or interaction of 198 

predictors. In a way we are performing an ANalysis Of VAriance (ANOVA), but in a broad sense. For 199 

that, we adapted the method described by Gelman [2007]. The idea is that we can compare the relative 200 

impact of predictors and interactions on the outcome by looking at the variation among the predictor’s 201 

effect on the outcome, as estimated by the model. We calculated, for each predictor or interaction of 202 
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predictors, the standard deviation of the estimated marginal effect of that predictor or interaction of 203 

predictors on each recorded outcome, so on each data point. We also calculated the estimated residual 204 

variation, i.e. the standard deviation in the part of the outcome that is not explained by any predictor 205 

or interaction for each data point.  206 

We adapted the method described by (Gelman & Hill, 2007), which calculates the standard deviation 207 

of estimated coefficients. Their method has the caveat that estimating the standard deviation among 208 

coefficients of an interaction including a continuous variable is affected by the variation in the 209 

continuous variables involved. Therefore, this standard deviation is not comparable with standard 210 

deviation from main categorical effects. Our method considers the proportional occurrence of each 211 

value of a predictor and scales the effect of each predictor and interaction, and the variation therein, 212 

to the scale of the outcome. 213 

The data and the script to analyze can be found on https://github.com/fremorti/Evolutionary_history 214 
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Results 216 

 217 

 218 

Figure 3: Sources of variation for each parameter, estimated by the HMC model that predicts population spread from the 219 

connectedness treatment. 220 

When assessing the different sources of variation estimated by the HMC model that predicts 221 

population spread from the connectedness treatment, we first notice that the residuals amount to the 222 

highest standard deviation (resid, fig. 3). This means that the furthest occupied patch in a test is still 223 

varies among observation due to factors not considered. The residual standard deviation is accurately 224 

estimated compared the other sources. Furthermore, the time (day) component is an expected source 225 

of variation in the spread dynamics. Since mites are obviously introduced in all spread arenas on the 226 

starting patch, they could only advance their population edge over time resulting in variation in de 227 

furthest occupied patch among different points in time. 228 

More interestingly, we can compare the variances attributed to the connectedness treatment (con) 229 

and to the replicated mesocosms within those treatments (mesoc, fig. 3). The model estimates little 230 

variation at the connectedness treatment intercept and mesocosm intercept. Note that all population 231 
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spread arenas started at the same location, the first patch. In comparison, we see that the estimated 232 

interaction with time accounts for a more sizable amount of variance (con:day, mesoc:day; fig.3). We 233 

estimate that the slope of the connectedness treatment explains half as much variance in population 234 

spread as the slope of the replicated mesocosm itself (fig. 4). The evolutionary history treatment of 235 

connectedness is thus accounting for some variation in spread, but differences in the general 236 

evolutionary history of the separate mesocosm replicates have a higher impact on spread rate 237 

irrespective of their connectedness background. 238 

 239 

Figure 4: Proportional differences between the estimated variation captured by the connectedness effect on the slope of 240 

population spread in time and the mesocosm effect on the slope of population spread in time (left), the proportional difference 241 

between the estimated variation captured by the connectedness effect on the slope of population spread in time and the 242 

residual variation (middle) and variation captured by the mesocosm effect on the slope of population spread in time and the 243 

residual variation (right). 244 

Fragmentation 245 

The small variation accounted to the fragmentation treatment compared to the mesocosm and 246 

residual variation is also nicely illustrated by the unconvincing differences in population spread (fig. 6, 247 
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left). All treatments show convincingly positive estimated slopes, i.e. population spread rate, but with 248 

unconvincing differences between the different connectedness regimes (fig. 5, bottom right). 249 

 250 

 251 

Figure 5: left) The effect on population spread of the connectedness treatment in the evolutionary mesocosms with 4cm 252 

(green), 8cm (orange) and 16cm (purple) interpatch distances. Upper right) estimated population spread rate (slope in time) 253 

for each connectedness treatment. Lower right) estimated difference in population spread rate between each pair of 254 

connectedness treatments. 255 

Role of traits 256 

A portion of the differences in population spread can be attributed to the mesocosm the tested mites 257 

originated from. Whether or not this was because of differences in connectedness in the historical 258 

environment, it means that the spread rate of a sample of mites resembled that of a different sample 259 

of mites from the same mesocosm compared to that of other mesocosms. Therefore, we expect some 260 

inherited trait differences that evolved in mesocosms during the evolutionary part of the experiment. 261 

We considered two traits that likely affect population spread: reproductive success and dispersal. 262 
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 263 

 264 

Reproductive success 265 

 266 

Figure 6: Sources of variation for each parameter, estimated by the HMC model that predicts population spread from the 267 

measured reproductive success. 268 

We estimate a lower amount of variation explained by the interaction of reproductive success and 269 

time (repr:day) then for the interaction of the mesocosm and time (mesoc:day). This variation 270 

explained is approximately half the residual variation (resid, fig. 6) and is similar to the variation 271 

explained by the interaction of connectedness and time (fig. 3). Spread rate, the estimated increase of 272 

Figure 7: The estimated population spread rate (slope in 
time) conditional on reproductive success of that population 

Figure 9: The estimated population spread rate (slope in 
time) conditional on dispersal propensity of that population 
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population edge in time, on average decreases with a higher reproduction but does so unconvincingly 273 

(fig. 7). 274 

Dispersal propensity 275 

 276 

Figure 8: Sources of variation for each parameter, estimated by the HMC model that predicts population spread from the 277 

measured dispersal propensity. 278 

We estimate a similar amount of variation explained by the interaction of dispersal propensity and 279 

time (disp:day) as by the interaction of the mesocosm and time (mesoc:day). Both variance 280 

components are only slightly lower than the residual variation (resid, fig. 8) and relatively higher than 281 

the variation explained by the interaction of connectedness and in that model (fig. 3). Paradoxically, 282 

spread rate is convincingly lower in populations that evolved a higher dispersal rate (fig. 9).  283 

  284 
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Discussion 285 

As is often the case in ecological studies, a large component of variation in population spread is left 286 

unexplained by our studied predictors. Individual variability and a high level in stochasticity drive 287 

individual behavior independent of treatments or other factors on the group level. However, many 288 

definable sources of variance contribute considerably to the observed population spread in our 289 

experimental population spread. The temporal dimension is here a more trivial source of variation. In 290 

time, our mites increased their occupied number of patches when spreading away from the starting 291 

patch. 292 

Contrary to our expectations, the evolutionary connectedness treatment encapsulates a rather small 293 

amount of variation in population spread dynamics. The mild effect of this deemed relevant 294 

evolutionary treatment implies that a population’s ability to outrun environmental change and risk of 295 

becoming an invasive species is nevertheless almost impossible to predict from its level of 296 

connectedness prior to the population spread. We observe a slight trend of populations from less 297 

connected mesocosms to spread faster. This is seemingly at odds with the evolved delayed dispersal 298 

at the end of the experimental evolution period (Masier & Bonte, 2019), but we will discuss possible 299 

mismatches between dispersal and population spread further below. However, the variation captured 300 

by the differences in interpatch distances in the ancestral landscape pales in comparison to the 301 

variation captured the variation left unexplained in the analysis.  302 

Interestingly, the experimental mesocosm level encapsulates approximately double the amount of 303 

variation compared to the connectedness treatment. We recall that the mesocosm level refers to the 304 

replicated mesocosms nested within each connectedness treatment, and each mesocosm in their turn 305 

has replicated measurements of population spread. This indicates that populations that experience a 306 

similar level of connectedness in their evolutionary history, differ consistently from each other in terms 307 

of their potential spread rate. Since all these mesocosms were initialized from the same stock, they 308 

must have diverged during the eighteen months of experimental evolution. Since all populations 309 
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evolved under the same laboratory conditions, with exception of the connectedness treatment, we 310 

reason that the relatively large amount of variation attributed to the mesocosm level is predominantly 311 

the result of stochastic evolution. This stochastic evolution is as much part of the evolutionary history 312 

as the difference in connectedness but is useless when trying to predict future ecological dynamics 313 

from it. 314 

While earlier research showed diverging evolution of multiple life history traits in relation to the 315 

connectedness background, quite some variation remains within each of these treatments (Masier & 316 

Bonte 2020). Hence, evolved traits within each experimental mesocosm might explain variation in the 317 

population spread much better. We therefore tested two candidate traits and found dispersal 318 

propensity, but not reproductive success, to show a moderately higher predictive power. The direction 319 

of the effects was however surprising, as evolved dispersal decreased the rate at which populations 320 

spread in time. This counter-intuitive results can only be explained by the presence of trade-offs not 321 

tested here. For instance, earlier research using these model organisms found that individuals with a 322 

lower tendency to disperse were able to disperse further at the same time (Fronhofer, Stelz, Lutz, 323 

Poethke, & Bonte, 2014). 324 

Our study reveals the consistent difficulty to accurately predict the success and extent of population 325 

spread (Melbourne & Hastings, 2009). As is often the case in ecological or evolutionary research, the 326 

outcome of an experiment or any other repeated observation varies due to stochasticity as a result of 327 

sampling or timing of individual events (Cleland, 2001; Pigliucci, 2010). It is the balance between 328 

stochastic, chaotic factors and deterministic factors related to the encoding and use of information 329 

that determine to what extent we can describe and predict the order in a natural system (O’Connor et 330 

al. 2019). Ecological and evolutionary patterns are also hard to predict a priori but many times more 331 

manageable to explain a posteriori when this stochasticity ‘collapses’ into an observation. This 332 

‘asymmetry of overdetermination’ (Cleland, 2001) makes that many patterns of population spread and 333 

successful invasions could be explained or rather correlated to features of the organism and 334 
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environment but that very few generalizations in terms of forecasting can be made (Clark, Lewis, 335 

McLachlan, & HilleRisLambers, 2003; Melbourne & Hastings, 2009). We here show that even under 336 

standardized laboratory conditions, stochasticity rather than contingency in relation to the 337 

environment of origin or expected trait evolution, remains a dominant factor for the eventual outcome 338 

of spread dynamics. 339 

Inspired by the predictive power of many physics disciplines and molecular biology, ecologist seek to 340 

develop robust forecasting approaches, especially in the field of biodiversity change and invasion 341 

biology (Giometto et al., 2014; Melbourne & Hastings, 2009). Our study is another reminder that this 342 

will not be easily found as stochasticity and historicity have a big impact on ecological outcome relative 343 

to identified tangible drivers of these ecological dynamics (Maris et al., 2018; Pigliucci, 2002). We 344 

would like to stress that this incapability of making predictions does not make the field of ecology 345 

scientifically any worse at describing reality, the general goal of a science. Hedges (1987) studied 346 

replicability, a measure which is thought to be higher in sciences that more successfully describe the 347 

world, in the social sciences. Social sciences lend themselves even less to prediction due to the same 348 

sources of unpredictability. They nicely revealed that social sciences get on average as consistent 349 

results as physics. The difference lies in how variation in results are attributed exclusively to 350 

experimental error in physics compared to a myriad of sources of variation in social sciences, usually 351 

referred to as the context. Such a context appears to be as important in ecology and evolutionary 352 

biology. Instead of trying to achieve generally perfect forecasting, we think it will be more useful to 353 

gather insights into the relative magnitude of the sources of variation in ecological and evolutionary 354 

dynamics in order to identify in which context determinism dominates and in which contexts 355 

forecasting may prove impossible. 356 

 357 
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