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Abstract
Fragmentation of natural landscapes results in habitat and connectedness loss, making it one of the

most impactful avenues of anthropogenic environmental degradation. Populations living in a
fragmented landscape can adapt to this context, as witnessed in changing dispersal strategies, levels
of local adaptation and changing life-history traits. This evolution, however, can have ecological
consequences beyond a fragmented range. Since invasive dynamics are driven by the same traits
affected by fragmentation, the question arises whether fragmented populations evolve to be

successful invaders.

In this study we assess population spread during three generations of two-spotted spider mite
(Tetranychus urticae) population in a replicated experiment. Experimental populations evolved
independently in replicated experimental metapopulations differing only in the level of habitat

connectedness as determined by the inter-patch distance.

We find that habitat connectedness did not meaningfully explain variation in population spread rate.
Rather, variation within experimental populations that shared the same level of connectedness during
evolution was larger than the one across these levels. Therefore, we conclude that experimental
populations evolved different population spread capacities as a result of their specific evolutionary
background independent but of the connectedness of the landscape. While population spread
capacities may be strongly affected by aspects of a population’s evolutionary history, predicting it from

identifiable aspects of the evolutionary history may be hard to achieve.
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Introduction

Movement is integral to the life of all organisms and a principle driver of species distributions, spread
and eventually the dynamics of ecosystems (Jeltsch et al., 2013). Environmental change and habitat
loss put a heavy pressure on population persistence. One way to manage this pressure is to move to
other locations with more suitable and benign environmental conditions (O’Connor, Selig, Pinsky, &
Altermatt, 2012; Parmesan, 2006). Effective conservation policy requires knowledge on how fast and
how likely a particular population can keep up with a changing landscape. These insights can similarly
inform agricultural pest and infectious disease management. Many organisms are also deliberately or
accidentally introduced outside their ancestral range. They sometimes manage to establish and spread
further (Renault, Laparie, McCauley, & Bonte, 2018). In the past, this has spawned a series of invasive
species that replaced their native counterparts (Mckinney & Lockwood, 1999). Predicting species

invasion risk has therefore become a major theme in invasion biology.

The predictability of evolutionary change or ecological dynamics has historically been rather poor
(Pigliucci, 2002). As such, predictability in population spread has gathered some interest but has been
strongly debated as well (Giometto, Rinaldo, Carrara, & Altermatt, 2014; Melbourne & Hastings, 2009).
Central to an accurate forecasting is the availability of reliable predictors. Population spread is affected
by characteristics of the landscape but also by traits that determine movement and population growth
(Angert et al., 2011; Fisher, 1937). Movement will determine how efficiently the landscape can be
crossed while other life-history traits will determine the build-up of populations and eventually the
number of the potentially spreading individuals. Spread itself induces a non-random distribution of
these traits within the range that as a result accelerates spread. Dispersive phenotypes accumulate at
the edge through spatial sorting and more reproductive phenotypes are selected for at the range’s
edge by a process termed spatial selection (Burton, Phillips, & Travis, 2010; Fronhofer & Altermatt,
2015; Shine, Brown, & Phillips, 2011; Sziics et al., 2017). Whereas selection can act on the evolution of
these traits, they are equally conditional non-adaptive processes such as genetic drift or linkage

disequilibrium with adaptive traits. Moreover, a population’s historical context greatly influences its
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ecology in the present (Maris et al., 2018). Selection pressures and other evolutionary forces of past
environments shaped the current traits of each population. The population’s historical environmental
background is therefore expected to leave a signature on the population spread dynamics that may be

predictable to a certain extent.

An important feature of the environment affecting the evolution of demography and movement is its
overall level of habitat fragmentation (Cheptou, Hargreaves, Bonte, & Jacquemyn, 2017).
Fragmentation usually is the direct result of habitat loss. But habitat fragmentation results in further
stresses on natural populations, one of them being the increasing distance between patches of habitat.
We will call this connectedness henceforth. Populations living in these increasingly less connected
habitat patches will experience elevated dispersal costs (Bonte et al. 2012). As a consequence, less
dispersal is expected to evolve, which leads to a decreased connectivity as expressed by a decreased
amount of successful dispersers between spatially separated patches (Tischendorf & Lenore, 2001).
Because changes in connectivity directly feedback with changes in local densities (Cheptou et al.,
2017), growth rates and stress resistance can evolve as well (De Roissart, Wang, & Bonte, 2015; Bonte
et al. 2018). While selection should lead to convergence in traits among populations experiencing the
same spatial context, other factors may lead to more stochasticity in trait changes and the emerging
population dynamics. First, connectedness loss predominantly coincides with a decrease in patch size.
The resulting smaller populations experience an increased genetic drift and can lead to the loss of
adaptive traits. Second, lower connectivity directly decreases gene flow among populations, leading
to a direct loss of genetic variation (Lenormand, 2002) and an increased genetic load within

populations (Ingvarsson, 2001).

Based on the above, we could expect populations inhabiting strongly connected benign landscapes to
spread overall faster relative to those from less connected ones because of their higher dispersal
abilities. On the other hand, evolution of stress-related traits may substantially lower the costs of

dispersal in the less connected landscapes (Bonte et al., 2012; Cheptou et al., 2017). This may lead to
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81 an equal or even faster population spread for populations that share an evolutionary history in the
82 poorly connected landscapes. Independently of the exact direction and magnitude of these effects, we
83 hypothesize that population spread should be predictable in relation to the spreading population’s

84  evolutionary history.

85 Eco-evolutionary dynamics predominantly show how the dynamic interplay between trait evolution
86  and ecological dynamics in the same environment (Hendry, 2016). Quantifying the impact of trait-
87 changes in one kind of environment on the dynamics in another environment are key to invasion
88 theory (e.g. Bonte & Bafort 2018), but to date virtually unknown from an empirical or natural
89  perspective. We therefore quantified dispersal propensity and reproductive rate prior to the
90 experiments to compare how informative this trait perspective is compared to the evolutionary
91  background of populations. Building on a long-term experimental evolution experiment (Masier &
92 Bonte 2020), we quantified population spread dynamics of two-spotted spider mite (Tetranychus
93  urticae) populations for 2-3 generation, thereby simulating the take-off of an invasion. By using
94  replicated mesocosms that experienced the same or another level connectedness, as well as replicated
95 range spread tests for each of these experimental mesocosms, we are able to quantify the
96  predictability of early population spread (Giometto et al., 2014; Melbourne & Hastings, 2009), and
97  thereby to estimate the importance of evolution for spread dynamics in a new environment. Overall,
98  ourresults show that evolution affects population spread rate to a sizable extent but that the historical

99 level of habitat fragmentation is an unconvincing predictor.

100
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101  Methods

102 Experimental system

103 We tested population spread in Tetranychus urticae Koch (two-spotted spider mite) populations. The
104  species is a cosmopolitan phytophagous herbivore known from >900 plant species (Navajas et al.,
105 2002). This species is used as a model in ecology and evolutionary biology. The rapid population
106  growth, ease of maintaining populations in a lab and the known genomics (Grbic¢ et al., 2011) are all
107  advantages for performing such research. For this experiment, we used an in-house lab population
108  which had been used in other experiments (Alzate, Bisschop, Etienne, & Bonte, 2017; Bisschop,

109 Mortier, Etienne, & Bonte, 2019; De Roissart, Wang, & Bonte, 2015; Van Petegem et al., 2018)

110  We maintained mites on Phaseolus vulgaris L. Prelude (bean) plants and leaf patches at all times. Bean
111  is an optimal host for the spider mites, with little in the way of defense. Mites are never found to
112 perform better on other hosts compared to bean, even when the mites locally adapted to that host
113  foraprolonged period (Alzate et al., 2017). We created optimal resource conditions in the evolutionary

114  and population spread setups for dynamics to not be affected by resource maladaptation.

115 Evolutionary history
116  We evolved mites in lab-controlled mesocosms in a metapopulation spatial . . .

117  composition for 18 months. Mesocosms differed in the interpatch distance.
118  The replicated mesocosms are described in more detail in Masier et al. . . .
119  (2019). In short, each evolutionary arena consisted of a 3x3 grid of bean leaf . . .

e s .
120  patches (5cmx5cm) that were connected by parafilm® bridges of 0.5cm wide Figure 1: spatial configuration

of the mesocosm landscape
121  toall adjacent patches (fig. 1). Horizontal and vertical bridges were all 4 cm,

122 8 cm or 16 cm long, determining the connectedness treatment of the mesocosm. The distance
123  between bean patches mostly determined the dispersal mortality risk of a mite moving between
124  patches. Each inter-patch distance treatment was replicated five times. During the 18 months of
125  experimental evolution, leaf patches in each mesocosm were refreshed weekly. (Masier & Bonte,

126  2019) reported the evolution of the same dispersal propensity in the different connectedness
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127  treatments. However, the more connected mesocosms evolved a later dispersal timing and a greater

128 starvation resistance.

129  After 18 months, we transferred 45 mature females to a bean leaf from each mesocosm: five from
130  each local patch. In the few cases of low local population sizes, less than five mites were sampled to
131  not compromise the viability of that local population. This bean leaf with transferred mites rested on
132  wet cotton wool in a petri dish (150mm diameter) aligned with paper towel strips (30°C, 16:8h L:D
133  photoperiod). We let these mature females lay eggs for 24h to form a synchronized next generation
134  to perform the dispersal propensity and reproductive success tests with. Afterwards, all females from
135 a mesocosm were transferred to a bean plant to breed a large enough number of individuals in the
136  next generation for the population spread assessments. Both the leaf in the petri dish and bean plant
137  provided a common garden for the mites used in their respective tests in order to control for maternal

138  effects and effects of developmental plasticity.

139 Population spread

140  We sampled 40 individuals from the common garden plant of

141  each mesocosm and placed them in a population spread
142  arena. We replicated this three time to have three
143  independent population spread assessments per evolved
144  mesocosm. Some of the whole plants used as common

145  gardens did not provide enough mites for three replicates.

12
146  Therefore, we only started 37 out of 45 planned population .

147  spread assessments with every mesocosm tested at least

1 = — |

148  once. We used similar population spread arenas as the ones

149  in Mortier et al. (2020). A population spread arena consisted  Frigure 2: spatial configuration of the
population spread arenas. The mites were

150  of a clean plastic crate (26.5cmx36.5cm) covered in three /ntroduced at patch 1, with possibility to
spread beyond the 12t patch

151  layers of cotton wool (Rolta®soft) that was kept wet and on

152  which patches of bean leaves (1.5cmx2.5cm) were placed. Bean patches were sequentially connected
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153 by a parafilm® bridge (1x8cm) touching both leaves (fig. 2). The remaining leaf’s edges were aligned

154  with paper towel strips (25°C, 16:8h L:D photoperiod).

155  The 40 starting mites were transferred to the first patch with two additional connected empty patches.
156 Every day, if needed, we provided additional empty patches in front as to always ensure two
157 unoccupied patches in front of the furthest occupied patch. This built up the sequence of patches (fig.
158  2) over the duration of the test. Every two days we replaced the still unoccupied patches at the front
159  tokeepthe new patches fresh and attractive to arriving mites. This linear patch system snaked through
160  our crates for twelve possible patches. In case of further patches, the first patches and their connection
161  to the next were removed as to provide space for the expanding sequence of patches. We mostly
162  focused on the leading edge of the population distribution and therefore choose to give up trailing
163  patches. In all cases, the removed patch was already withered and did not house any living mites. We
164  kept the population spread arenas at around 25°C for a 16:8h L:D photoperiod. We recorded the

165  furthest occupied patch daily.

166

167 Life history trait tests

168  We measured dispersal propensity by placing 40 females in their first day of maturity from each
169 common garden, each belonging to a mesocosm, on the first patch in a two-patch dispersal test. The
170  starting bean leaf patch (1.5cmx2.5cm) was connected by a parafilm® bridge (1cmx8cm) to a second
171  patch (25°C, 16:8h L:D photoperiod). This setup tested the number and timing of mites successfully
172  crossing the bridge to the other patch. Every day the destination patch was removed with all successful
173  dispersers of that day to prevent them from going back. A fresh patch is placed to provide an empty
174  destination for the following day. For four days we counted how many individuals still lived and how
175  many successfully dispersed to the second patch to give us a proportion of successfully dispersed
176  individuals. Groups of mites with on average more dispersive traits should have a bigger proportion of

177  the tested mites disperse successfully.
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178  We measured reproductive success by transferring four times a female from each common garden,
179 each belonging to a mesocosm, in the first day of turning adult to a bean leaf patch (1.5cmx2.5cm) on
180  wet cotton wool aligned with paper towel strips (25°C, 16:8h L:D photoperiod). After ten days, we
181 counted the number of adults and deutonymphs (last life stage before adulthood) produced by that

182  female as a measure for her reproductive success.

183 Statistical inference

184  We analyzed all results of our experiment using multilevel modelling and Bayesian estimation
185  methods. The ‘brms’ (Birkner, 2018) package makes use of ‘Stan’ (Carpenter et al.,, 2017) as a
186  framework in R in order to estimate posterior parameter distributions using Hamiltonian Monte Carlo
187  (HMC). Replication at multiple levels of the experiment enabled us to estimate the uncertainty on the
188  population spread introduced at the level of the connectedness treatment, the level of the different
189  mesocosms or the replicated assessments of a single mesocosms. This gives us an idea on the relative

190 impact of each level of the experiment on the outcome.

191 First, we analyzed population spread, the furthest occupied patch, as being dependent on the
192 connectedness treatment the tested mesocosm experienced, time and their interaction with a variable
193  interceptand slope in time for each mesocosm. Second, we modelled population spread the same way
194  but with reproductive success being the focal predictor instead of the historical connectedness
195 treatment. Lastly, we modelled population spread with dispersal propensity as the focal predictor
196 instead of the historical connectedness treatment. In all models we fitted a Gaussian error distribution

197  and used weakly regularizing priors (see supplementary materials).

198  With the first model, we also calculate the variances accounted for by each predictor or interaction of
199  predictors. In a way we are performing an ANalysis Of VAriance (ANOVA), but in a broad sense. For
200 that, we adapted the method described by Gelman [2007]. The idea is that we can compare the relative
201  impact of predictors and interactions on the outcome by looking at the variation among the predictor’s

202 effect on the outcome, as estimated by the model. We calculated, for each predictor or interaction of
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203 predictors, the standard deviation of the estimated marginal effect of that predictor or interaction of
204 predictors on each recorded outcome, so on each data point. We also calculated the estimated residual
205  variation, i.e. the standard deviation in the part of the outcome that is not explained by any predictor

206  orinteraction for each data point.

207 We adapted the method described by (Gelman & Hill, 2007), which calculates the standard deviation
208  of estimated coefficients. Their method has the caveat that estimating the standard deviation among
209  coefficients of an interaction including a continuous variable is affected by the variation in the
210 continuous variables involved. Therefore, this standard deviation is not comparable with standard
211  deviation from main categorical effects. Our method considers the proportional occurrence of each
212 value of a predictor and scales the effect of each predictor and interaction, and the variation therein,

213 to the scale of the outcome.

214  The data and the script to analyze can be found on https://github.com/fremorti/Evolutionary_history

215
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216  Results

217
sources of variation in population edge
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219 Figure 3: Sources of variation for each parameter, estimated by the HMC model that predicts population spread from the

220 connectedness treatment.

221  When assessing the different sources of variation estimated by the HMC model that predicts
222 population spread from the connectedness treatment, we first notice that the residuals amount to the
223 highest standard deviation (resid, fig. 3). This means that the furthest occupied patch in a test is still
224  varies among observation due to factors not considered. The residual standard deviation is accurately
225  estimated compared the other sources. Furthermore, the time (day) component is an expected source
226  of variation in the spread dynamics. Since mites are obviously introduced in all spread arenas on the
227  starting patch, they could only advance their population edge over time resulting in variation in de

228  furthest occupied patch among different points in time.

229 More interestingly, we can compare the variances attributed to the connectedness treatment (con)
230  and to the replicated mesocosms within those treatments (mesoc, fig. 3). The model estimates little

231  variation at the connectedness treatment intercept and mesocosm intercept. Note that all population
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232 spread arenas started at the same location, the first patch. In comparison, we see that the estimated
233 interaction with time accounts for a more sizable amount of variance (con:day, mesoc:day; fig.3). We
234  estimate that the slope of the connectedness treatment explains half as much variance in population
235 spread as the slope of the replicated mesocosm itself (fig. 4). The evolutionary history treatment of
236  connectedness is thus accounting for some variation in spread, but differences in the general
237 evolutionary history of the separate mesocosm replicates have a higher impact on spread rate

238  irrespective of their connectedness background.

proportional differences in sources of variance: slopes

-
&

=
mn

proportional difference standard deviation of parameters

0.0
sd_conday/sd_mesocday sd_conday/sd_resid sd_mesocday/ sd_resid
contrasted levels

239

240 Figure 4: Proportional differences between the estimated variation captured by the connectedness effect on the slope of
241 population spread in time and the mesocosm effect on the slope of population spread in time (left), the proportional difference
242 between the estimated variation captured by the connectedness effect on the slope of population spread in time and the
243 residual variation (middle) and variation captured by the mesocosm effect on the slope of population spread in time and the

244 residual variation (right).

245  Fragmentation

246  The small variation accounted to the fragmentation treatment compared to the mesocosm and

247  residual variation is also nicely illustrated by the unconvincing differences in population spread (fig. 6,
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left). All treatments show convincingly positive estimated slopes, i.e. population spread rate, but with

unconvincing differences between the different connectedness regimes (fig. 5, bottom right).

connectedness effect on spread
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Figure 5: left) The effect on population spread of the connectedness treatment in the evolutionary mesocosms with 4cm

(green), 8cm (orange) and 16cm (purple) interpatch distances. Upper right) estimated population spread rate (slope in time)

for each connectedness treatment. Lower right) estimated difference in population spread rate between each pair of

connectedness treatments.

Role of traits

A portion of the differences in population spread can be attributed to the mesocosm the tested mites

originated from. Whether or not this was because of differences in connectedness in the historical

environment, it means that the spread rate of a sample of mites resembled that of a different sample

of mites from the same mesocosm compared to that of other mesocosms. Therefore, we expect some

inherited trait differences that evolved in mesocosms during the evolutionary part of the experiment.

We considered two traits that likely affect population spread: reproductive success and dispersal.
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Figure 7: The estimated population spread rate (slope in  Figure 9: The estimated population spread rate (slope in
time) conditional on reproductive success of that population  time) conditional on dispersal propensity of that population

264

265 Reproductive success
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267 Figure 6: Sources of variation for each parameter, estimated by the HMC model that predicts population spread from the

268 measured reproductive success.

269  We estimate a lower amount of variation explained by the interaction of reproductive success and
270  time (repr:day) then for the interaction of the mesocosm and time (mesoc:day). This variation
271  explained is approximately half the residual variation (resid, fig. 6) and is similar to the variation

272  explained by the interaction of connectedness and time (fig. 3). Spread rate, the estimated increase of
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273 population edge in time, on average decreases with a higher reproduction but does so unconvincingly

274 (fig. 7).

275 Dispersal propensity
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277 Figure 8: Sources of variation for each parameter, estimated by the HMC model that predicts population spread from the

278 measured dispersal propensity.

279  We estimate a similar amount of variation explained by the interaction of dispersal propensity and
280 time (disp:day) as by the interaction of the mesocosm and time (mesoc:day). Both variance
281  components are only slightly lower than the residual variation (resid, fig. 8) and relatively higher than

282  the variation explained by the interaction of connectedness and in that model (fig. 3). Paradoxically,

283  spread rate is convincingly lower in populations that evolved a higher dispersal rate (fig. 9).

284
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285 Discussion

286  As is often the case in ecological studies, a large component of variation in population spread is left
287  unexplained by our studied predictors. Individual variability and a high level in stochasticity drive
288 individual behavior independent of treatments or other factors on the group level. However, many
289 definable sources of variance contribute considerably to the observed population spread in our
290  experimental population spread. The temporal dimension is here a more trivial source of variation. In
291  time, our mites increased their occupied number of patches when spreading away from the starting

292  patch.

293  Contrary to our expectations, the evolutionary connectedness treatment encapsulates a rather small
294  amount of variation in population spread dynamics. The mild effect of this deemed relevant
295  evolutionary treatment implies that a population’s ability to outrun environmental change and risk of
296  becoming an invasive species is nevertheless almost impossible to predict from its level of
297  connectedness prior to the population spread. We observe a slight trend of populations from less
298  connected mesocosms to spread faster. This is seemingly at odds with the evolved delayed dispersal
299  at the end of the experimental evolution period (Masier & Bonte, 2019), but we will discuss possible
300 mismatches between dispersal and population spread further below. However, the variation captured
301 by the differences in interpatch distances in the ancestral landscape pales in comparison to the

302  variation captured the variation left unexplained in the analysis.

303 Interestingly, the experimental mesocosm level encapsulates approximately double the amount of
304  variation compared to the connectedness treatment. We recall that the mesocosm level refers to the
305 replicated mesocosms nested within each connectedness treatment, and each mesocosm in their turn
306 has replicated measurements of population spread. This indicates that populations that experience a
307 similarlevel of connectedness in their evolutionary history, differ consistently from each other in terms
308  of their potential spread rate. Since all these mesocosms were initialized from the same stock, they

309 must have diverged during the eighteen months of experimental evolution. Since all populations


https://doi.org/10.1101/2020.07.16.206268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206268; this version posted July 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

310 evolved under the same laboratory conditions, with exception of the connectedness treatment, we
311 reason that the relatively large amount of variation attributed to the mesocosm level is predominantly
312  the result of stochastic evolution. This stochastic evolution is as much part of the evolutionary history
313 as the difference in connectedness but is useless when trying to predict future ecological dynamics

314 fromit.

315  While earlier research showed diverging evolution of multiple life history traits in relation to the
316 connectedness background, quite some variation remains within each of these treatments (Masier &
317 Bonte 2020). Hence, evolved traits within each experimental mesocosm might explain variation in the
318  population spread much better. We therefore tested two candidate traits and found dispersal
319  propensity, but not reproductive success, to show a moderately higher predictive power. The direction
320  of the effects was however surprising, as evolved dispersal decreased the rate at which populations
321  spread in time. This counter-intuitive results can only be explained by the presence of trade-offs not
322  tested here. For instance, earlier research using these model organisms found that individuals with a
323 lower tendency to disperse were able to disperse further at the same time (Fronhofer, Stelz, Lutz,

324 Poethke, & Bonte, 2014).

325  Our study reveals the consistent difficulty to accurately predict the success and extent of population
326  spread (Melbourne & Hastings, 2009). As is often the case in ecological or evolutionary research, the
327  outcome of an experiment or any other repeated observation varies due to stochasticity as a result of
328 sampling or timing of individual events (Cleland, 2001; Pigliucci, 2010). It is the balance between
329 stochastic, chaotic factors and deterministic factors related to the encoding and use of information
330 that determine to what extent we can describe and predict the order in a natural system (O’Connor et
331  al. 2019). Ecological and evolutionary patterns are also hard to predict a priori but many times more
332  manageable to explain a posteriori when this stochasticity ‘collapses’ into an observation. This
333  ‘asymmetry of overdetermination’ (Cleland, 2001) makes that many patterns of population spread and

334  successful invasions could be explained or rather correlated to features of the organism and
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335 environment but that very few generalizations in terms of forecasting can be made (Clark, Lewis,
336 McLachlan, & HilleRisLambers, 2003; Melbourne & Hastings, 2009). We here show that even under
337 standardized laboratory conditions, stochasticity rather than contingency in relation to the
338  environment of origin or expected trait evolution, remains a dominant factor for the eventual outcome

339 of spread dynamics.

340 Inspired by the predictive power of many physics disciplines and molecular biology, ecologist seek to
341  develop robust forecasting approaches, especially in the field of biodiversity change and invasion
342  biology (Giometto et al., 2014; Melbourne & Hastings, 2009). Our study is another reminder that this
343  will not be easily found as stochasticity and historicity have a big impact on ecological outcome relative
344  to identified tangible drivers of these ecological dynamics (Maris et al., 2018; Pigliucci, 2002). We
345  would like to stress that this incapability of making predictions does not make the field of ecology
346  scientifically any worse at describing reality, the general goal of a science. Hedges (1987) studied
347  replicability, a measure which is thought to be higher in sciences that more successfully describe the
348 world, in the social sciences. Social sciences lend themselves even less to prediction due to the same
349  sources of unpredictability. They nicely revealed that social sciences get on average as consistent
350 results as physics. The difference lies in how variation in results are attributed exclusively to
351  experimental error in physics compared to a myriad of sources of variation in social sciences, usually
352  referred to as the context. Such a context appears to be as important in ecology and evolutionary
353  biology. Instead of trying to achieve generally perfect forecasting, we think it will be more useful to
354  gather insights into the relative magnitude of the sources of variation in ecological and evolutionary
355  dynamics in order to identify in which context determinism dominates and in which contexts

356  forecasting may prove impossible.
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