

1 Evolutionary history determines
2 population spread rate in a stochastic,
3 rather than in a deterministic way

4 Authors: Mortier Frederik^{1,*}, Masier Stefano¹, Bonte Dries¹

5 ¹ : Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium

6 * : Corresponding author, fremorti.mortier@ugent.be

7

8 **Abstract**

9 Fragmentation of natural landscapes results in habitat and connectedness loss, making it one of the
10 most impactful avenues of anthropogenic environmental degradation. Populations living in a
11 fragmented landscape can adapt to this context, as witnessed in changing dispersal strategies, levels
12 of local adaptation and changing life-history traits. This evolution, however, can have ecological
13 consequences beyond a fragmented range. Since invasive dynamics are driven by the same traits
14 affected by fragmentation, the question arises whether fragmented populations evolve to be
15 successful invaders.

16 In this study we assess population spread during three generations of two-spotted spider mite
17 (*Tetranychus urticae*) population in a replicated experiment. Experimental populations evolved
18 independently in replicated experimental metapopulations differing only in the level of habitat
19 connectedness as determined by the inter-patch distance.

20 We find that habitat connectedness did not meaningfully explain variation in population spread rate.
21 Rather, variation within experimental populations that shared the same level of connectedness during
22 evolution was larger than the one across these levels. Therefore, we conclude that experimental
23 populations evolved different population spread capacities as a result of their specific evolutionary
24 background independent but of the connectedness of the landscape. While population spread
25 capacities may be strongly affected by aspects of a population's evolutionary history, predicting it from
26 identifiable aspects of the evolutionary history may be hard to achieve.

27

28

29 **Introduction**

30 Movement is integral to the life of all organisms and a principle driver of species distributions, spread
31 and eventually the dynamics of ecosystems (Jeltsch et al., 2013). Environmental change and habitat
32 loss put a heavy pressure on population persistence. One way to manage this pressure is to move to
33 other locations with more suitable and benign environmental conditions (O'Connor, Selig, Pinsky, &
34 Altermatt, 2012; Parmesan, 2006). Effective conservation policy requires knowledge on how fast and
35 how likely a particular population can keep up with a changing landscape. These insights can similarly
36 inform agricultural pest and infectious disease management. Many organisms are also deliberately or
37 accidentally introduced outside their ancestral range. They sometimes manage to establish and spread
38 further (Renault, Laparie, McCauley, & Bonte, 2018). In the past, this has spawned a series of invasive
39 species that replaced their native counterparts (Mckinney & Lockwood, 1999). Predicting species
40 invasion risk has therefore become a major theme in invasion biology.

41 The predictability of evolutionary change or ecological dynamics has historically been rather poor
42 (Pigliucci, 2002). As such, predictability in population spread has gathered some interest but has been
43 strongly debated as well (Giometto, Rinaldo, Carrara, & Altermatt, 2014; Melbourne & Hastings, 2009).
44 Central to an accurate forecasting is the availability of reliable predictors. Population spread is affected
45 by characteristics of the landscape but also by traits that determine movement and population growth
46 (Angert et al., 2011; Fisher, 1937). Movement will determine how efficiently the landscape can be
47 crossed while other life-history traits will determine the build-up of populations and eventually the
48 number of the potentially spreading individuals. Spread itself induces a non-random distribution of
49 these traits within the range that as a result accelerates spread. Dispersive phenotypes accumulate at
50 the edge through spatial sorting and more reproductive phenotypes are selected for at the range's
51 edge by a process termed spatial selection (Burton, Phillips, & Travis, 2010; Fronhofer & Altermatt,
52 2015; Shine, Brown, & Phillips, 2011; Szücs et al., 2017). Whereas selection can act on the evolution of
53 these traits, they are equally conditional non-adaptive processes such as genetic drift or linkage
54 disequilibrium with adaptive traits. Moreover, a population's historical context greatly influences its

55 ecology in the present (Maris et al., 2018). Selection pressures and other evolutionary forces of past
56 environments shaped the current traits of each population. The population's historical environmental
57 background is therefore expected to leave a signature on the population spread dynamics that may be
58 predictable to a certain extent.

59 An important feature of the environment affecting the evolution of demography and movement is its
60 overall level of habitat fragmentation (Cheptou, Hargreaves, Bonte, & Jacquemyn, 2017).

61 Fragmentation usually is the direct result of habitat loss. But habitat fragmentation results in further
62 stresses on natural populations, one of them being the increasing distance between patches of habitat.

63 We will call this connectedness henceforth. Populations living in these increasingly less connected
64 habitat patches will experience elevated dispersal costs (Bonte et al. 2012). As a consequence, less
65 dispersal is expected to evolve, which leads to a decreased connectivity as expressed by a decreased
66 amount of successful dispersers between spatially separated patches (Tischendorf & Lenore, 2001).

67 Because changes in connectivity directly feedback with changes in local densities (Cheptou et al.,
68 2017), growth rates and stress resistance can evolve as well (De Roissart, Wang, & Bonte, 2015; Bonte
69 et al. 2018). While selection should lead to convergence in traits among populations experiencing the

70 same spatial context, other factors may lead to more stochasticity in trait changes and the emerging
71 population dynamics. First, connectedness loss predominantly coincides with a decrease in patch size.

72 The resulting smaller populations experience an increased genetic drift and can lead to the loss of
73 adaptive traits. Second, lower connectivity directly decreases gene flow among populations, leading
74 to a direct loss of genetic variation (Lenormand, 2002) and an increased genetic load within
75 populations (Ingvarsson, 2001).

76

77 Based on the above, we could expect populations inhabiting strongly connected benign landscapes to
78 spread overall faster relative to those from less connected ones because of their higher dispersal
79 abilities. On the other hand, evolution of stress-related traits may substantially lower the costs of
80 dispersal in the less connected landscapes (Bonte et al., 2012; Cheptou et al., 2017). This may lead to

81 an equal or even faster population spread for populations that share an evolutionary history in the
82 poorly connected landscapes. Independently of the exact direction and magnitude of these effects, we
83 hypothesize that population spread should be predictable in relation to the spreading population's
84 evolutionary history.

85 Eco-evolutionary dynamics predominantly show how the dynamic interplay between trait evolution
86 and ecological dynamics in the same environment (Hendry, 2016). Quantifying the impact of trait-
87 changes in one kind of environment on the dynamics in another environment are key to invasion
88 theory (e.g. Bonte & Bafort 2018), but to date virtually unknown from an empirical or natural
89 perspective. We therefore quantified dispersal propensity and reproductive rate prior to the
90 experiments to compare how informative this trait perspective is compared to the evolutionary
91 background of populations. Building on a long-term experimental evolution experiment (Masier &
92 Bonte 2020), we quantified population spread dynamics of two-spotted spider mite (*Tetranychus*
93 *urticae*) populations for 2-3 generation, thereby simulating the take-off of an invasion. By using
94 replicated mesocosms that experienced the same or another level connectedness, as well as replicated
95 range spread tests for each of these experimental mesocosms, we are able to quantify the
96 predictability of early population spread (Giometto et al., 2014; Melbourne & Hastings, 2009), and
97 thereby to estimate the importance of evolution for spread dynamics in a new environment. Overall,
98 our results show that evolution affects population spread rate to a sizable extent but that the historical
99 level of habitat fragmentation is an unconvincing predictor.

100

101 **Methods**

102 **Experimental system**

103 We tested population spread in *Tetranychus urticae* Koch (two-spotted spider mite) populations. The
104 species is a cosmopolitan phytophagous herbivore known from >900 plant species (Navajas et al.,
105 2002). This species is used as a model in ecology and evolutionary biology. The rapid population
106 growth, ease of maintaining populations in a lab and the known genomics (Grbić et al., 2011) are all
107 advantages for performing such research. For this experiment, we used an in-house lab population
108 which had been used in other experiments (Alzate, Bisschop, Etienne, & Bonte, 2017; Bisschop,
109 Mortier, Etienne, & Bonte, 2019; De Roissart, Wang, & Bonte, 2015; Van Petegem et al., 2018)

110 We maintained mites on *Phaseolus vulgaris* L. Prelude (bean) plants and leaf patches at all times. Bean
111 is an optimal host for the spider mites, with little in the way of defense. Mites are never found to
112 perform better on other hosts compared to bean, even when the mites locally adapted to that host
113 for a prolonged period (Alzate et al., 2017). We created optimal resource conditions in the evolutionary
114 and population spread setups for dynamics to not be affected by resource maladaptation.

115 **Evolutionary history**

116 We evolved mites in lab-controlled mesocosms in a metapopulation spatial
117 composition for 18 months. Mesocosms differed in the interpatch distance.
118 The replicated mesocosms are described in more detail in Masier et al.
119 (2019). In short, each evolutionary arena consisted of a 3x3 grid of bean leaf
120 patches (5cmx5cm) that were connected by parafilm® bridges of 0.5cm wide
121 to all adjacent patches (fig. 1). Horizontal and vertical bridges were all 4 cm,
122 8 cm or 16 cm long, determining the connectedness treatment of the mesocosm. The distance
123 between bean patches mostly determined the dispersal mortality risk of a mite moving between
124 patches. Each inter-patch distance treatment was replicated five times. During the 18 months of
125 experimental evolution, leaf patches in each mesocosm were refreshed weekly. (Masier & Bonte,
126 2019) reported the evolution of the same dispersal propensity in the different connectedness

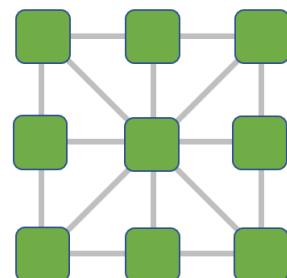


Figure 1: spatial configuration of the mesocosm landscape

127 treatments. However, the more connected mesocosms evolved a later dispersal timing and a greater
128 starvation resistance.

129 After 18 months, we transferred 45 mature females to a bean leaf from each mesocosm: five from
130 each local patch. In the few cases of low local population sizes, less than five mites were sampled to
131 not compromise the viability of that local population. This bean leaf with transferred mites rested on
132 wet cotton wool in a petri dish (150mm diameter) aligned with paper towel strips (30°C, 16:8h L:D
133 photoperiod). We let these mature females lay eggs for 24h to form a synchronized next generation
134 to perform the dispersal propensity and reproductive success tests with. Afterwards, all females from
135 a mesocosm were transferred to a bean plant to breed a large enough number of individuals in the
136 next generation for the population spread assessments. Both the leaf in the petri dish and bean plant
137 provided a common garden for the mites used in their respective tests in order to control for maternal
138 effects and effects of developmental plasticity.

139 Population spread

140 We sampled 40 individuals from the common garden plant of
141 each mesocosm and placed them in a population spread
142 arena. We replicated this three time to have three
143 independent population spread assessments per evolved
144 mesocosm. Some of the whole plants used as common
145 gardens did not provide enough mites for three replicates.
146 Therefore, we only started 37 out of 45 planned population
147 spread assessments with every mesocosm tested at least
148 once. We used similar population spread arenas as the ones
149 in Mortier et al. (2020). A population spread arena consisted
150 of a clean plastic crate (26.5cmx36.5cm) covered in three
151 layers of cotton wool (Rolta®soft) that was kept wet and on
152 which patches of bean leaves (1.5cmx2.5cm) were placed. Bean patches were sequentially connected

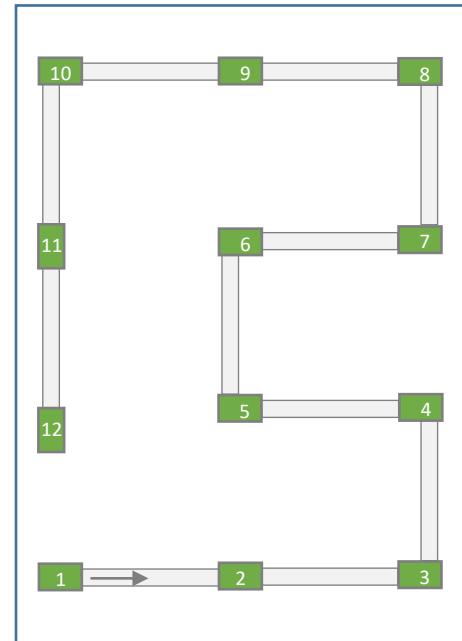


Figure 2: spatial configuration of the population spread arenas. The mites were introduced at patch 1, with possibility to spread beyond the 12th patch

153 by a parafilm® bridge (1x8cm) touching both leaves (fig. 2). The remaining leaf's edges were aligned
154 with paper towel strips (25°C, 16:8h L:D photoperiod).

155 The 40 starting mites were transferred to the first patch with two additional connected empty patches.
156 Every day, if needed, we provided additional empty patches in front as to always ensure two
157 unoccupied patches in front of the furthest occupied patch. This built up the sequence of patches (fig.
158 2) over the duration of the test. Every two days we replaced the still unoccupied patches at the front
159 to keep the new patches fresh and attractive to arriving mites. This linear patch system snaked through
160 our crates for twelve possible patches. In case of further patches, the first patches and their connection
161 to the next were removed as to provide space for the expanding sequence of patches. We mostly
162 focused on the leading edge of the population distribution and therefore choose to give up trailing
163 patches. In all cases, the removed patch was already withered and did not house any living mites. We
164 kept the population spread arenas at around 25°C for a 16:8h L:D photoperiod. We recorded the
165 furthest occupied patch daily.

166

167 Life history trait tests

168 We measured dispersal propensity by placing 40 females in their first day of maturity from each
169 common garden, each belonging to a mesocosm, on the first patch in a two-patch dispersal test. The
170 starting bean leaf patch (1.5cmx2.5cm) was connected by a parafilm® bridge (1cmx8cm) to a second
171 patch (25°C, 16:8h L:D photoperiod). This setup tested the number and timing of mites successfully
172 crossing the bridge to the other patch. Every day the destination patch was removed with all successful
173 dispersers of that day to prevent them from going back. A fresh patch is placed to provide an empty
174 destination for the following day. For four days we counted how many individuals still lived and how
175 many successfully dispersed to the second patch to give us a proportion of successfully dispersed
176 individuals. Groups of mites with on average more dispersive traits should have a bigger proportion of
177 the tested mites disperse successfully.

178 We measured reproductive success by transferring four times a female from each common garden,
179 each belonging to a mesocosm, in the first day of turning adult to a bean leaf patch (1.5cmx2.5cm) on
180 wet cotton wool aligned with paper towel strips (25°C, 16:8h L:D photoperiod). After ten days, we
181 counted the number of adults and deutonymphs (last life stage before adulthood) produced by that
182 female as a measure for her reproductive success.

183 Statistical inference

184 We analyzed all results of our experiment using multilevel modelling and Bayesian estimation
185 methods. The ‘brms’ (Bürkner, 2018) package makes use of ‘Stan’ (Carpenter et al., 2017) as a
186 framework in R in order to estimate posterior parameter distributions using Hamiltonian Monte Carlo
187 (HMC). Replication at multiple levels of the experiment enabled us to estimate the uncertainty on the
188 population spread introduced at the level of the connectedness treatment, the level of the different
189 mesocosms or the replicated assessments of a single mesocosms. This gives us an idea on the relative
190 impact of each level of the experiment on the outcome.

191 First, we analyzed population spread, the furthest occupied patch, as being dependent on the
192 connectedness treatment the tested mesocosm experienced, time and their interaction with a variable
193 intercept and slope in time for each mesocosm. Second, we modelled population spread the same way
194 but with reproductive success being the focal predictor instead of the historical connectedness
195 treatment. Lastly, we modelled population spread with dispersal propensity as the focal predictor
196 instead of the historical connectedness treatment. In all models we fitted a Gaussian error distribution
197 and used weakly regularizing priors (see supplementary materials).

198 With the first model, we also calculate the variances accounted for by each predictor or interaction of
199 predictors. In a way we are performing an ANalysis Of VAriance (ANOVA), but in a broad sense. For
200 that, we adapted the method described by Gelman [2007]. The idea is that we can compare the relative
201 impact of predictors and interactions on the outcome by looking at the variation among the predictor’s
202 effect on the outcome, as estimated by the model. We calculated, for each predictor or interaction of

203 predictors, the standard deviation of the estimated marginal effect of that predictor or interaction of
204 predictors on each recorded outcome, so on each data point. We also calculated the estimated residual
205 variation, i.e. the standard deviation in the part of the outcome that is not explained by any predictor
206 or interaction for each data point.

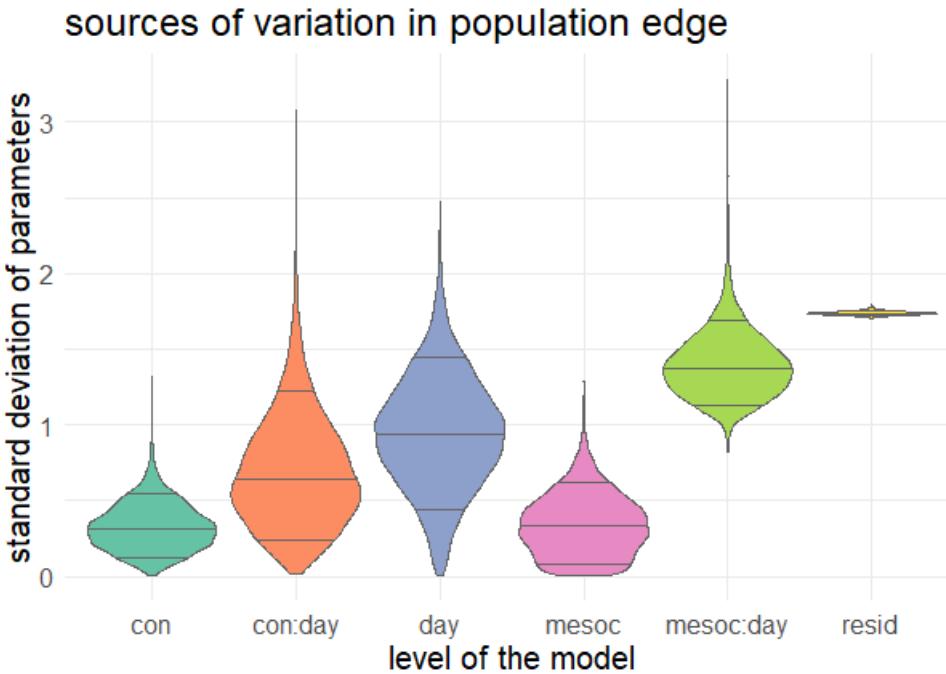
207 We adapted the method described by (Gelman & Hill, 2007), which calculates the standard deviation
208 of estimated coefficients. Their method has the caveat that estimating the standard deviation among
209 coefficients of an interaction including a continuous variable is affected by the variation in the
210 continuous variables involved. Therefore, this standard deviation is not comparable with standard
211 deviation from main categorical effects. Our method considers the proportional occurrence of each
212 value of a predictor and scales the effect of each predictor and interaction, and the variation therein,
213 to the scale of the outcome.

214 The data and the script to analyze can be found on https://github.com/fremorti/Evolutionary_history

215

216 Results

217



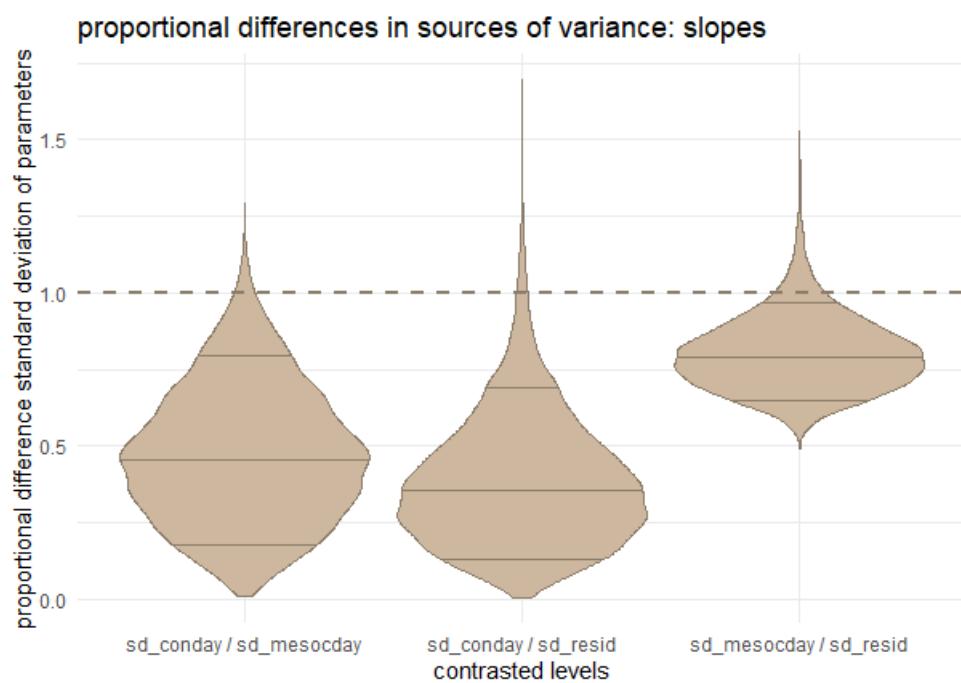
218

219 *Figure 3: Sources of variation for each parameter, estimated by the HMC model that predicts population spread from the*
220 *connectedness treatment.*

221 When assessing the different sources of variation estimated by the HMC model that predicts
222 population spread from the connectedness treatment, we first notice that the residuals amount to the
223 highest standard deviation (resid, fig. 3). This means that the furthest occupied patch in a test is still
224 varies among observation due to factors not considered. The residual standard deviation is accurately
225 estimated compared the other sources. Furthermore, the time (day) component is an expected source
226 of variation in the spread dynamics. Since mites are obviously introduced in all spread arenas on the
227 starting patch, they could only advance their population edge over time resulting in variation in de
228 furthest occupied patch among different points in time.

229 More interestingly, we can compare the variances attributed to the connectedness treatment (con)
230 and to the replicated mesocosms within those treatments (mesoc, fig. 3). The model estimates little
231 variation at the connectedness treatment intercept and mesocosm intercept. Note that all population

232 spread arenas started at the same location, the first patch. In comparison, we see that the estimated
233 interaction with time accounts for a more sizable amount of variance (con:day, mesoc:day; fig.3). We
234 estimate that the slope of the connectedness treatment explains half as much variance in population
235 spread as the slope of the replicated mesocosm itself (fig. 4). The evolutionary history treatment of
236 connectedness is thus accounting for some variation in spread, but differences in the general
237 evolutionary history of the separate mesocosm replicates have a higher impact on spread rate
238 irrespective of their connectedness background.



240 *Figure 4: Proportional differences between the estimated variation captured by the connectedness effect on the slope of*
241 *population spread in time and the mesocosm effect on the slope of population spread in time (left), the proportional difference*
242 *between the estimated variation captured by the connectedness effect on the slope of population spread in time and the*
243 *residual variation (middle) and variation captured by the mesocosm effect on the slope of population spread in time and the*
244 *residual variation (right).*

245 Fragmentation

246 The small variation accounted to the fragmentation treatment compared to the mesocosm and
247 residual variation is also nicely illustrated by the unconvincing differences in population spread (fig. 6,

248 left). All treatments show convincingly positive estimated slopes, i.e. population spread rate, but with
249 unconvincing differences between the different connectedness regimes (fig. 5, bottom right).

250

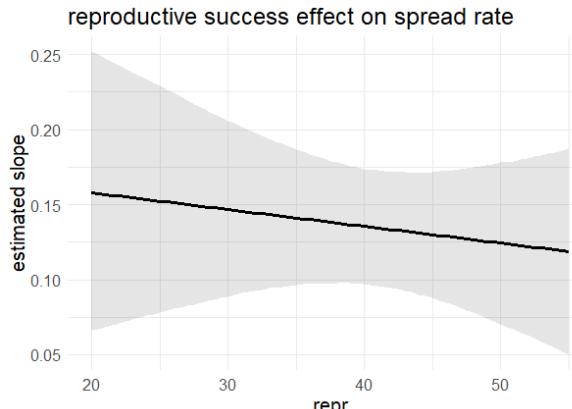


251

252 *Figure 5: left) The effect on population spread of the connectedness treatment in the evolutionary mesocosms with 4cm
253 (green), 8cm (orange) and 16cm (purple) interpatch distances. Upper right) estimated population spread rate (slope in time)
254 for each connectedness treatment. Lower right) estimated difference in population spread rate between each pair of
255 connectedness treatments.*

256 Role of traits

257 A portion of the differences in population spread can be attributed to the mesocosm the tested mites
258 originated from. Whether or not this was because of differences in connectedness in the historical
259 environment, it means that the spread rate of a sample of mites resembled that of a different sample
260 of mites from the same mesocosm compared to that of other mesocosms. Therefore, we expect some
261 inherited trait differences that evolved in mesocosms during the evolutionary part of the experiment.
262 We considered two traits that likely affect population spread: reproductive success and dispersal.



263

Figure 7: The estimated population spread rate (slope in time) conditional on reproductive success of that population

264

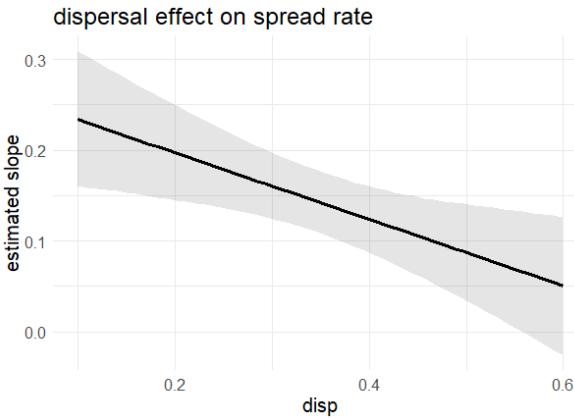
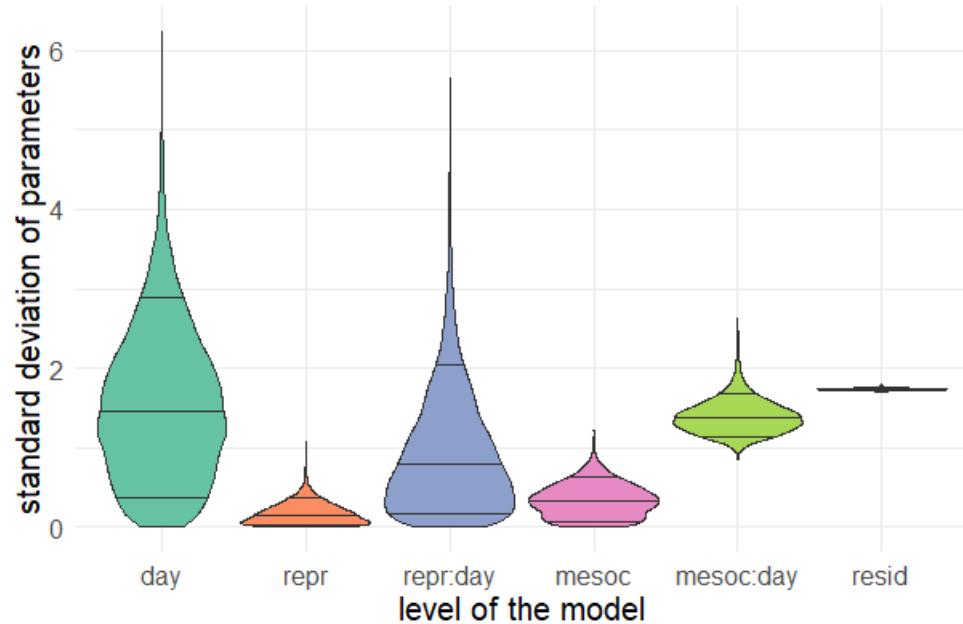


Figure 9: The estimated population spread rate (slope in time) conditional on dispersal propensity of that population

265

Reproductive success

sources of variance in population edge



266

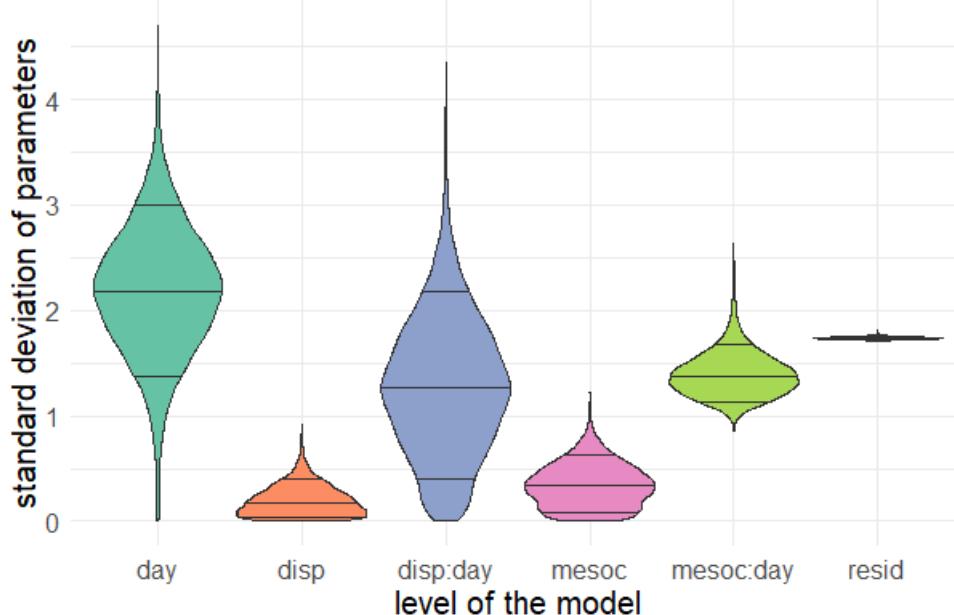
267 Figure 6: Sources of variation for each parameter, estimated by the HMC model that predicts population spread from the
268 measured reproductive success.

269 We estimate a lower amount of variation explained by the interaction of reproductive success and
270 time (repr:day) then for the interaction of the mesocosm and time (mesoc:day). This variation
271 explained is approximately half the residual variation (resid, fig. 6) and is similar to the variation
272 explained by the interaction of connectedness and time (fig. 3). Spread rate, the estimated increase of

273 population edge in time, on average decreases with a higher reproduction but does so unconvincingly
274 (fig. 7).

275 *Dispersal propensity*

sources of variance in population edge



276

277 *Figure 8: Sources of variation for each parameter, estimated by the HMC model that predicts population spread from the*
278 *measured dispersal propensity.*

279 We estimate a similar amount of variation explained by the interaction of dispersal propensity and
280 time (disp:day) as by the interaction of the mesocosm and time (mesoc:day). Both variance
281 components are only slightly lower than the residual variation (resid, fig. 8) and relatively higher than
282 the variation explained by the interaction of connectedness and in that model (fig. 3). Paradoxically,
283 spread rate is convincingly lower in populations that evolved a higher dispersal rate (fig. 9).

284

285 Discussion

286 As is often the case in ecological studies, a large component of variation in population spread is left
287 unexplained by our studied predictors. Individual variability and a high level in stochasticity drive
288 individual behavior independent of treatments or other factors on the group level. However, many
289 definable sources of variance contribute considerably to the observed population spread in our
290 experimental population spread. The temporal dimension is here a more trivial source of variation. In
291 time, our mites increased their occupied number of patches when spreading away from the starting
292 patch.

293 Contrary to our expectations, the evolutionary connectedness treatment encapsulates a rather small
294 amount of variation in population spread dynamics. The mild effect of this deemed relevant
295 evolutionary treatment implies that a population's ability to outrun environmental change and risk of
296 becoming an invasive species is nevertheless almost impossible to predict from its level of
297 connectedness prior to the population spread. We observe a slight trend of populations from less
298 connected mesocosms to spread faster. This is seemingly at odds with the evolved delayed dispersal
299 at the end of the experimental evolution period (Masier & Bonte, 2019), but we will discuss possible
300 mismatches between dispersal and population spread further below. However, the variation captured
301 by the differences in interpatch distances in the ancestral landscape pales in comparison to the
302 variation captured the variation left unexplained in the analysis.

303 Interestingly, the experimental mesocosm level encapsulates approximately double the amount of
304 variation compared to the connectedness treatment. We recall that the mesocosm level refers to the
305 replicated mesocosms nested within each connectedness treatment, and each mesocosm in their turn
306 has replicated measurements of population spread. This indicates that populations that experience a
307 similar level of connectedness in their evolutionary history, differ consistently from each other in terms
308 of their potential spread rate. Since all these mesocosms were initialized from the same stock, they
309 must have diverged during the eighteen months of experimental evolution. Since all populations

310 evolved under the same laboratory conditions, with exception of the connectedness treatment, we
311 reason that the relatively large amount of variation attributed to the mesocosm level is predominantly
312 the result of stochastic evolution. This stochastic evolution is as much part of the evolutionary history
313 as the difference in connectedness but is useless when trying to predict future ecological dynamics
314 from it.

315 While earlier research showed diverging evolution of multiple life history traits in relation to the
316 connectedness background, quite some variation remains within each of these treatments (Masier &
317 Bonte 2020). Hence, evolved traits within each experimental mesocosm might explain variation in the
318 population spread much better. We therefore tested two candidate traits and found dispersal
319 propensity, but not reproductive success, to show a moderately higher predictive power. The direction
320 of the effects was however surprising, as evolved dispersal decreased the rate at which populations
321 spread in time. This counter-intuitive results can only be explained by the presence of trade-offs not
322 tested here. For instance, earlier research using these model organisms found that individuals with a
323 lower tendency to disperse were able to disperse further at the same time (Fronhofer, Stelz, Lutz,
324 Poethke, & Bonte, 2014).

325 Our study reveals the consistent difficulty to accurately predict the success and extent of population
326 spread (Melbourne & Hastings, 2009). As is often the case in ecological or evolutionary research, the
327 outcome of an experiment or any other repeated observation varies due to stochasticity as a result of
328 sampling or timing of individual events (Cleland, 2001; Pigliucci, 2010). It is the balance between
329 stochastic, chaotic factors and deterministic factors related to the encoding and use of information
330 that determine to what extent we can describe and predict the order in a natural system (O'Connor et
331 al. 2019). Ecological and evolutionary patterns are also hard to predict *a priori* but many times more
332 manageable to explain *a posteriori* when this stochasticity 'collapses' into an observation. This
333 'asymmetry of overdetermination' (Cleland, 2001) makes that many patterns of population spread and
334 successful invasions could be explained or rather correlated to features of the organism and

335 environment but that very few generalizations in terms of forecasting can be made (Clark, Lewis,
336 McLachlan, & HilleRisLambers, 2003; Melbourne & Hastings, 2009). We here show that even under
337 standardized laboratory conditions, stochasticity rather than contingency in relation to the
338 environment of origin or expected trait evolution, remains a dominant factor for the eventual outcome
339 of spread dynamics.

340 Inspired by the predictive power of many physics disciplines and molecular biology, ecologists seek to
341 develop robust forecasting approaches, especially in the field of biodiversity change and invasion
342 biology (Giometto et al., 2014; Melbourne & Hastings, 2009). Our study is another reminder that this
343 will not be easily found as stochasticity and historicity have a big impact on ecological outcome relative
344 to identified tangible drivers of these ecological dynamics (Maris et al., 2018; Pigliucci, 2002). We
345 would like to stress that this incapability of making predictions does not make the field of ecology
346 scientifically any worse at describing reality, the general goal of a science. Hedges (1987) studied
347 replicability, a measure which is thought to be higher in sciences that more successfully describe the
348 world, in the social sciences. Social sciences lend themselves even less to prediction due to the same
349 sources of unpredictability. They nicely revealed that social sciences get on average as consistent
350 results as physics. The difference lies in how variation in results are attributed exclusively to
351 experimental error in physics compared to a myriad of sources of variation in social sciences, usually
352 referred to as the context. Such a context appears to be as important in ecology and evolutionary
353 biology. Instead of trying to achieve generally perfect forecasting, we think it will be more useful to
354 gather insights into the relative magnitude of the sources of variation in ecological and evolutionary
355 dynamics in order to identify in which context determinism dominates and in which contexts
356 forecasting may prove impossible.

357

358 [Acknowledgements](#)

359 We thank Eliane Van der Cruyssen, Kaat Mertens and Noémie Van den Bon by partaking in the
360 population spread assessments as a part of their bachelor's dissertation. Additionally, FM thanks the
361 Special Research Fund (BOF) of Ghent University for a PhD scholarship. SM thanks Fonds
362 Wetenschappelijk Onderzoek (FWO) of Flanders for a PhD scholarship. DB, FM and SM are additionally
363 supported by FWO research grant G018017N.

364 [Data transparency](#)

365 We provide the data and scripts to analyze at https://github.com/fremorti/Evolutionary_history

366

367

368

369 Alzate, A., Bisschop, K., Etienne, R. S., & Bonte, D. (2017). Interspecific competition counteracts
370 negative effects of dispersal on adaptation of an arthropod herbivore to a new host. *Journal of
371 Evolutionary Biology*, 30(11), 1966–1977. <https://doi.org/10.1111/jeb.13123>

372 Angert, A. L., Crozier, L. G., Rissler, L. J., Gilman, S. E., Tewksbury, J. J., & Chumco, A. J. (2011). Do
373 species' traits predict recent shifts at expanding range edges ? *Ecology Letters*, 14, 677–689.
374 <https://doi.org/10.1111/j.1461-0248.2011.01620.x>

375 Bisschop, K., Mortier, F., Etienne, R. S., & Bonte, D. (2019). Transient local adaptation and source–
376 sink dynamics in experimental populations experiencing spatially heterogeneous environments.
377 *Proceedings of the Royal Society B: Biological Sciences*, 286(1905), 20190738.
378 <https://doi.org/10.1098/rspb.2019.0738>

379 Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., ... Travis, J. M. J. (2012). sts
380 of dispersal. *Biological Reviews of the Cambridge Philosophical Society*, 87(2), 290–312.
381 <https://doi.org/10.1111/j.1469-185X.2011.00201.x>

382 Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. *The R
383 Journal*, 10(1), 395. <https://doi.org/10.32614/RJ-2018-017>

384 Burton, O. J., Phillips, B. L., & Travis, J. M. J. (2010). Trade-offs and the evolution of life-histories
385 during range expansion. *Ecology Letters*, 13, 1210–1220. [0248.2010.01505.x](https://doi.org/10.1111/j.1461-
386 0248.2010.01505.x)

387 Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... Riddell, A. (2017).
388 Stan : A Probabilistic Programming Language. *Journal of Statistical Software*, 76(1).
389 <https://doi.org/10.18637/jss.v076.i01>

390 Cheptou, P. O., Hargreaves, A. L., Bonte, D., & Jacquemyn, H. (2017). Adaptation to fragmentation:
391 Evolutionarydynamics driven by human influences. *Philosophical Transactions of the Royal
392 Society B: Biological Sciences*, 372(1712). <https://doi.org/10.1098/rstb.2016.0037>

393 Clark, J. S., Lewis, M., McLachlan, J. S., & HilleRisLambers, J. (2003). Estimating population spread:
394 What can we forecast and how well? *Ecology*, 84(8), 1979–1988. <https://doi.org/10.1890/01-0618>

395

396 Cleland, C. E. (2001). Historical science, experimental science, and the scientific method. *Geology*,
397 29(11), 987–990. [https://doi.org/10.1130/0091-7613\(2001\)029<0987:HSESAT>2.0.CO;2](https://doi.org/10.1130/0091-7613(2001)029<0987:HSESAT>2.0.CO;2)

398 De Roissart, A., Wang, S., & Bonte, D. (2015). Spatial and spatiotemporal variation in metapopulation
399 structure affects population dynamics in a passively dispersing arthropod. *Journal of Animal*
400 *Ecology*, n/a-n/a. <https://doi.org/10.1111/1365-2656.12400>

401 Fisher, R. A. (1937). The wave of advance of advantageous genes. *Annals of Eugenics*, 7, 355–369.

402 Fronhofer, E. A., & Altermatt, F. (2015). Eco-evolutionary feedbacks during experimental range
403 expansions. *Nature Communications*, 6, 6844. <https://doi.org/10.1038/ncomms7844>

404 Fronhofer, E. A., Stelz, J. M., Lutz, E., Poethke, H. J., & Bonte, D. (2014). SPATIALLY CORRELATED
405 EXTINCTIONS SELECT FOR LESS EMIGRATION BUT LARGER DISPERSAL DISTANCES IN THE SPIDER
406 MITE *TETRANYCHUS URTICAE*. *Evolution*, 68(6), 1838–1844. <https://doi.org/10.1111/evo.12339>

407 Gelman, A., & Hill, J. (2007). *Data analysis using regression and multilevel/hierarchical models*.
408 Cambridge University Press.

409 Giometto, A., Rinaldo, A., Carrara, F., & Altermatt, F. (2014). Emerging predictable features of
410 replicated biological invasion fronts. 111(1), 297–301.
411 <https://doi.org/10.1073/pnas.1321167110>

412 Grbić, M., Van Leeuwen, T., Clark, R. M., Rombauts, S., Rouzé, P., Grbić, V., ... Van de Peer, Y. (2011).
413 The genome of *Tetranychus urticae* reveals herbivorous pest adaptations. (V).
414 <https://doi.org/10.1038/nature10640>

415 Hedges, L. V. (1987). How Hard Is Hard Science, How Soft Is Soft Science?: The Empirical
416 Cumulativeness of Research. *American Psychologist*, 42(5), 443–455.
417 <https://doi.org/10.1037/0003-066X.42.5.443>

418 Hendry, A. P. (2016). *Eco-evolutionary dynamics*. Princeton university Press.

419 Ingvarsson, P. K. (2001). Restoration of genetic variation lost - The genetic rescue hypothesis. *Trends*
420 *in Ecology and Evolution*, 16(2), 62–63. [https://doi.org/10.1016/S0169-5347\(00\)02065-6](https://doi.org/10.1016/S0169-5347(00)02065-6)

421 Jeltsch, F., Bonte, D., Pe'er, G., Reineking, B., Leimgruber, P., Balkenhol, N., ... Bauer, S. (2013).
422 Integrating movement ecology with biodiversity research - exploring new avenues to address
423 spatiotemporal biodiversity dynamics. *Movement Ecology*, 1(1), 6.
424 <https://doi.org/10.1186/2051-3933-1-6>

425 Lenormand, T. (2002). Gene flow and the limits to natural selection. *Trends in Ecology and Evolution*,
426 Vol. 17, pp. 183–189. [https://doi.org/10.1016/S0169-5347\(02\)02497-7](https://doi.org/10.1016/S0169-5347(02)02497-7)

427 Maris, V., Huneman, P., Coreau, A., Kéfi, S., Pradel, R., & Devictor, V. (2018). Prediction in ecology:
428 promises, obstacles and clarifications. *Oikos*, 127(2), 171–183.
429 <https://doi.org/10.1111/oik.04655>

430 Masier, S., & Bonte, D. (2019). Spatial connectedness imposes local- and metapopulation-level
431 selection on life history through feedbacks on demography. *Ecology Letters*.
432 <https://doi.org/10.1111/ele.13421>

433 McKinney, M. L., & Lockwood, J. L. (1999). *Biotic homogenization : a few winners replacing many*
434 *losers in the next mass extinction*. 5347(Table 1), 450–453.

435 Melbourne, B. A., & Hastings, A. (2009). Highly variable spread rates in replicated biological
436 invasions: fundamental limits to predictability. *Science*, 325(September), 1536–1540.

437 Navajas, M., Perrot-Minnot, M., Lagnel, J., Migeon, A., Bourse, T., & Cornuet, J. M. (2002). Genetic
438 structure of a greenhouse population of the spider mite *Tetranychus urticae* : spatio-temporal
439 analysis with microsatellite markers. *Insect Molecular Biology*, 11, 157–165.

440 O'Connor, M. I., Selig, E. R., Pinsky, M. L., & Altermatt, F. (2012). Toward a conceptual synthesis for
441 climate change responses. *Global Ecology and Biogeography*, 21(7), 693–703.
442 <https://doi.org/10.1111/j.1466-8238.2011.00713.x>

443 Parmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. *Annual
444 Review of Ecology, Evolution, and Systematics*, 37(1), 637–669.
445 <https://doi.org/10.1146/annurev.ecolsys.37.091305.110100>

446 Pigliucci, M. (2002). Are ecology and evolutionary biology “soft” sciences? *Annales Zoologici Fennici*,
447 39(June), 87–98.

448 Pigliucci, M. (2010). Hard science, soft science. In *Nonsense on stilts* (pp. 6–23). The University of
449 Chicago Press.

450 Renault, D., Laparie, M., McCauley, S. J., & Bonte, D. (2018). Environmental Adaptations, Ecological
451 Filtering, and Dispersal Central to Insect Invasions. *Annual Review of Entomology*, 63(1), 345–
452 368. <https://doi.org/10.1146/annurev-ento-020117-043315>

453 Shine, R., Brown, G. P., & Phillips, B. L. (2011). An evolutionary process that assembles phenotypes
454 through space rather than through time. *Proceedings of the National Academy of Sciences of
455 the United States of America*, 108(14), 5708–5711. <https://doi.org/10.1073/pnas.1018989108>

456 Szücs, M., Vahsen, M. L., Melbourne, B. A., Hoover, C., Weiss-Lehman, C., Hufbauer, R. A., &
457 Schoener, T. W. (2017). Rapid adaptive evolution in novel environments acts as an architect of
458 population range expansion. *Proceedings of the National Academy of Sciences of the United
459 States of America*, 114(51), 13501–13506. <https://doi.org/10.1073/pnas.1712934114>

460 Tischendorf, L., & Lenore, G. (2001). On the Use of Connectivity Measures in Spatial Ecology. A Reply.
461 *Oikos*, 95(1), 152–155.

462 Van Petegem, K., Moerman, F., Dahirel, M., Fronhofer, E. A., Vandegehuchte, M. L., Van Leeuwen, T.,
463 ... Bonte, D. (2018). Kin competition accelerates experimental range expansion in an arthropod
464 herbivore. *Ecology Letters*, 21, 225–234. <https://doi.org/10.1111/ele.12887>

465