

1 Immature dendritic cells promote high-avidity tuning of 2 vaccine T cell response

3
4 **Adarsh Kumbhari^{1,3}, Colt A. Egelston^{2,3}, Peter P. Lee^{2,4}, and Peter S. Kim^{1,4,*}**

5 ¹School of Mathematics and Statistics, Faculty of Science, University of Sydney, Sydney, NSW,
6 Australia

7 ²Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA

8 ³Co-first authors

9 ⁴Both authors contributed comparably

10 Correspondence*:

11 Peter S. Kim

12 peter.kim@sydney.edu.au

15 KEYWORDS

16 T-cell avidity, DC vaccines, cancer vaccines, neoantigens, immature DCs

18 ABSTRACT

19 Therapeutic vaccines can elicit tumor-specific cytotoxic T lymphocytes (CTLs), but durable reductions
20 in tumor burden require vaccines that stimulate high-avidity CTLs. Recent advances in
21 immunotherapy responses have led to renewed interest in vaccine approaches, including dendritic
22 cell vaccine strategies. However, dendritic cell requirements for vaccines that generate potent anti-
23 tumor T-cell responses are unclear. Here we use mathematical modeling to
24 show that counterintuitively, increasing levels of immature dendritic cells may lead to selective
25 expansion of high-avidity CTLs. This finding contrasts with traditional dendritic cell vaccine
26 approaches that have sought to harness ex vivo generated mature dendritic cells. We show that the
27 injection of vaccine antigens in the context of increased numbers of immature dendritic cells results in
28 a decreased overall peptide:MHC complex load that favors high-avidity CTL activation and expansion.
29 Overall, our results provide a firm basis for further development of this approach, both alone and in
30 combination with other immunotherapies such as checkpoint blockade.

32 INTRODUCTION

33 In principle, the immune system can eliminate cancer cells by the activation and expansion of cancer-
34 specific cytotoxic T lymphocytes (CTLs). Immune checkpoint blockade (ICB) immunotherapies, which
35 release T cells from various negative regulatory pathways, have demonstrated impressive clinical
36 successes and have become standard-of-care for many malignancies (1). However, the response to
37 ICB seems to require the pre-existence of anti-tumor T cells (2). Vaccine approaches to generate
38 tumor-specific T cells offer a potential solution towards generating a sufficient anti-tumor T cell
39 response. Dendritic cell (DC) vaccines in particular, offer a means to activate and expand tumor-
40 specific T cells (3). Here we discuss the impact of dendritic cell maturation status on vaccine design
41 strategies.

42 CTLs detect cancer cells by T cell receptor (TCR) recognition of peptides displayed by a major
43 histocompatibility complex (pMHC) on the surface of target cancer cells. Each TCR-pMHC interaction
44 occurs at a particular strength – *affinity* – with multiple TCR-pMHC interactions occurring for each
45 CTL-target cell interaction. While affinity is a measure of individual TCR-pMHC bonds, *avidity* is an
46 overall measure of the strength of the TCR-pMHC interaction and more importantly determines the
47 likelihood of successful lysis (4).

48 Therapeutic peptide vaccines aim to capitalize on the cancer-killing ability of CTLs. Initial results of
49 peptide-based vaccines showed the ability to elicit significant numbers of antigen-specific CTLs, but
50 often lacked measurable clinical successes (5-7). Recent progress in vaccine construction and
51 combinatorial strategies with other immunotherapy agents have shown renewed promise for
52 therapeutic peptide vaccines (3). Our work suggests that the dose and modality of peptide vaccines
53 are key considerations for the design of future clinical interventions.

57 Early studies of cancer-specific CTLs showed that high-avidity TCRs are necessary to effectively
58 lyse cancer cells that express native antigens at low levels (8). Preferentially selecting for high-avidity
59 CTLs, however, is difficult. Regarding vaccines targeting cancer-associated antigens (CAA), thymic
60 education of CTLs may likely have removed high-avidity T cells from the T-cell repertoire via negative
61 selection (9). As a result, primarily low-avidity CTLs are left to respond to CAA-targeting vaccines.
62 Beyond CAA, recent therapeutic vaccine efforts have focused on targeting somatic mutation
63 derived neo-antigens (10, 11). As yet, neo-antigen vaccines have largely focused on the strength of
64 peptide binding to MHC but have not yet explored the impact of dosage on T-cell repertoire response
65 to the vaccine (12). For both CAA and neo-antigen targeting vaccines, standard dosages typically
66 involve high antigen loads that may non-discriminately favor the expansion of both high and low
67 avidity CTLs. However, lowering the dosage of peptides for vaccination yields sub-therapeutically
68 relevant levels of CTL (13). Together, this highlights the need for further understanding of antigen
69 dosage and context for efficacious vaccine design.
70

71 We previously showed that therapeutic vaccine designs were sensitive to dendritic cell-associated
72 parameters (14). Given that DCs, which present antigen on their cell surface along with co-stimulatory
73 molecules, facilitate CTL activation, we hypothesized that modulation of dendritic cell and peptide
74 dosing could enhance an anti-cancer immune response. We show that by increasing the number of
75 immature DCs, the average DC antigen load is lowered, which in turn selects for the expansion of
76 high-avidity CTLs. This observation suggests traditional DC vaccine approaches that utilize ex vivo
77 matured DCs may need to be reconsidered (3, 15). Our work suggests that combinatorial therapy with
78 vaccine antigens and increased immature DCs, either by ex vivo generation or stimulated in vivo, may
79 have efficacy. Thus, our findings suggest an approach that could improve already existing immune-
80 based cancer therapies for increased and more durable clinical responses.
81

82 MATERIAL AND METHODS

83 We previously developed a mathematical model to study how vaccine-induced avidity selection
84 affects tumor clearance (14). This model was calibrated to ex vivo human data from Chung et al. (16)
85 and then validated against data from (17, 18). Here, we extend this model to show that induction of
86 immature DCs may improve current treatments by eliciting high-avidity CTLs. What follows is a brief
87 description of our previously published model. We primarily use parameter estimates from the
88 literature (see Table 1 and the references therein) and estimates generated from our prior analysis of
89 ex vivo human data.
90

91 Basic model

92 The model consists of three major components: the activation and maturation of dendritic cells
93 (Equations 1 to 6); the activation and proliferation of T cells (Equations 7 to 12); and the lysis and
94 trogocytosis-mediated MHC stripping of cancer cells by effector CTLs (Equations 17 to 19). Figure 1
95 depicts a schematic of these interactions.
96

97 Dendritic Cells

98 To model the activation and maturation of dendritic cells (DCs) at the tissue site (the volume of which
99 is V_{tissue}), we consider several populations: P , the concentration of vaccine peptides; I , the
100 concentration of immature DCs; and M_j , the concentration of maturing DCs presenting j vaccine-
101 associated pMHCs, where j can vary between zero and N . In modelling the interactions between
102 these populations, we assume that immature DCs mature in the presence of peptide antigen and
103 extracellular maturation signals. Dendritic cell maturation may occur in the presence of vaccine
104 adjuvant, various danger signals, tissue derived immunogenic signals (19, 20). DC maturation signals
105 may in turn affect T-cell priming and activation (17). As a simplifying assumption, we assume that the
106 strategy to optimize DC maturation is successful. Next, we model the interactions between these
107 populations with an ODE system:

$$\frac{dP}{dt} = u(t) - d_p P - k_p P \left(I + \sum_{j=0}^N M_j \right), \quad (1)$$

$$\frac{dI}{dt} = s_D - \delta_D I - k_D \frac{P}{\chi + P} I, \quad (2)$$

$$\frac{dM_0}{dt} = -k_D \frac{P}{\chi + P} M_0 + d_m M_1 - d_D M_0, \quad (3)$$

$$\frac{dM_1}{dt} = k_D \frac{P}{\chi + P} (I + M_0 - M_1) + d_m (2M_2 - M_1) - d_D M_1, \quad (4)$$

$$\frac{dM_j}{dt} = k_D \frac{P}{\chi + P} (M_{j-1} - M_j) + d_m ((j+1)M_{j+1} - jM_j) - d_D M_j \text{ for } j = 2, \dots, N-1, \quad (5)$$

$$\frac{dM_N}{dt} = k_D \frac{P}{\chi + P} M_{N-1} - N d_m M_N - d_D M_N. \quad (6)$$

108

109 In Equation 1, vaccine peptides are injected at rate $u(t)$, decay at rate d_p , and as a simplifying
 110 assumption, taken up by both immature DCs and mature DCs at rate k_p . In Equation 2, immature
 111 DCs are supplied at rate s_D , and decay at rate δ_D . Because of adjuvant, immature DCs are assumed
 112 to mature and acquire vaccine peptides at rate $k_D \frac{P}{\chi + P}$. Here, k_D is the rate of peptide presentation, χ
 113 is the concentration of non-vaccine peptides, and $\frac{P}{\chi + P}$ is the proportion of peptides presented that are
 114 vaccine specific.

115 In Equations 3 to 6, immature DCs initially enter the mature DC population presenting one vaccine
 116 peptide with subsequent peptides presented at rate $k_D \frac{P}{\chi + P}$ as described above. Additionally, surface
 117 peptides degrade at rate d_m , which is proportional to the number of presented peptides, j . Finally,
 118 mature DCs decay at rate d_D . Here, we assume that mature DCs decay faster than iDCs (21).

119

T Cells

120 To model the activation and proliferation of T cells both at the lymph node (the volume of which is V_{LN})
 121 and at the tissue site, we first model avidity as a spectrum that varies from $j=1$ to $j=J$, corresponding to
 122 the lowest and highest avidity states respectively. We then consider several populations: N_j , the
 123 concentration of naive CTLs of avidity j ; N_j^H , the concentration of naive helper T cells of avidity j ; T_j ,
 124 the concentration of effector CTLs of avidity j ; H_j , the concentration of effector helper T cells of avidity
 125 j ; R , the concentration of induced regulatory T cells; and G , the concentration of positive growth
 126 factors. The interactions between these populations are then modelled with an ODE system:

$$\frac{dN_j}{dt} = \rho_j s_T - d_N N_j - \frac{V_{tissue}}{V_{LN}} k_{DC} e^{-d_D \tau_m} \sum_{k=1}^N p_{j,k} N_j M_k (t - \tau_m), \quad (7)$$

$$\frac{dN_j^H}{dt} = \rho_j s_H - d_{NH} N_j^H - \frac{V_{tissue}}{V_{LN}} k_{DC} e^{-d_D \tau_m} \sum_{k=1}^N p_{j,k} N_j^H M_k (t - \tau_m), \quad (8)$$

$$\frac{dT_j}{dt} = e^{-d_N \tau_a} \varphi(P) 2^{n_T} k_{DC} e^{-d_D \tau_m} \sum_{k=1}^N p_{j,k} N_j (t - \tau_a) M_k (t - \tau_m - \tau_a) - d_T T_j - \mu R T_j + k_G G T_j, \quad (9)$$

$$\frac{dH_j}{dt} = e^{-d_{NH} \tau_a} 2^{n_H} k_{DC} e^{-d_D \tau_m} \sum_{k=1}^N p_{j,k} N_j^H (t - \tau_a) M_k (t - \tau_m - \tau_a) - k_R H_j - d_H H_j, \quad (10)$$

$$\frac{dR}{dt} = k_R \sum_{j=1}^J H_j - d_R R, \quad (11)$$

$$\frac{dG}{dt} = r_1 \sum_{j=1}^J T_j + r_2 \sum_{j=1}^J H_j - k_G G \sum_{j=1}^J T_j - d_G G. \quad (12)$$

127

128 In Equation 7, naive CTLs in the lymph node of avidity j are supplied at rate $\rho_j s_T$, where ρ_j is the
 129 proportion supplied that have avidity j . These naive CTLs also exit the lymph node at rate d_N . The
 130 rate at which naive CTLs are activated by mature DCs that have migrated into the lymph node is

131

$$\frac{V_{tissue}}{V_{LN}} \sum_{k=1}^N p_{j,k} k_{DC} N_j (e^{-d_D \tau_m} M_k (t - \tau_m)). \quad (13)$$

132 Migration is modelled with a fixed delay of τ_m , with $e^{-d_D\tau_m}$ being the proportion that survives
 133 migration. The kinetic interaction rate between naive CTLs of avidity j and mature DCs presenting k
 134 vaccine-peptides is k_{DC} with $p_{j,k}$ being the probability of an interaction leading to successful activation.
 135 Finally, the leading term $\frac{V_{\text{tissue}}}{V_{\text{LN}}}$ accounts for the volume change between the tissue site and the lymph
 136 node. In Equation 8, which is similar to Equation 7, naive helper T cells of avidity j are supplied at rate
 137 $\rho_j s_H$, decay at rate d_{NH} , and are activated at the net rate of

$$138 \quad \frac{V_{\text{tissue}}}{V_{\text{LN}}} \sum_{k=1}^N p_{j,k} k_{DC} N_j^H (e^{-d_D\tau_m} M_k(t - \tau_m)). \quad (14)$$

139 Equations 9 to 12 describe interactions within the tissue site. In Equation 9, naive CTLs undergo n_T
 140 divisions. The division program is modelled with a fixed delay of τ_a , with $e^{d_N\tau_a}$ being the proportion
 141 that survives the division program, which equates to a net supply rate of

$$142 \quad e^{-d_N\tau_a} 2^{n_T} k_{DC} e^{-d_D\tau_m} \sum_{k=1}^N p_{j,k} N_j(t - \tau_a) M_k(t - \tau_m - \tau_a). \quad (15)$$

143 To account for T-cell hyporesponsiveness, we multiply Equation 15 by $\varphi(P) = \frac{\varphi_0}{\varphi_0 + \int_0^t P(s) ds}$. This
 144 ensures that antigen accumulation results in diminished effector CTL expansion. We also assume
 145 effector CTLs: decay at rate d_T ; expand due to interactions with positive growth factors at rate k_G ; and
 146 are suppressed by interactions with induced regulatory T cells at rate μ .

147 In Equation 10, naive helper T cells undergo n_H divisions. Following a similar argument to that in
 148 Equation 9, the net supply rate of effector helper T cells is

$$149 \quad e^{-d_N\tau_a} 2^{n_H} k_{DC} e^{-d_D\tau_m} \sum_{k=1}^N p_{j,k} N_j(t - \tau_a) M_k(t - \tau_m - \tau_a). \quad (16)$$

150 These effector helper T cells decay at rate d_H and differentiate into induced regulatory T cells at rate
 151 k_R .

152 In Equation 11, regulatory T cells enter the system as differentiated effector helper T cells and decay
 153 at rate d_R . Finally, in Equation 12, effector CTLs and helper T cells secrete growth factors such as
 154 IL-2 at rates r_1 and r_2 . These growth factors are assumed to decay at rate d_G .

155 *Cancer cells*

156 To model the lysis of cancer cells and trogocytosis of cancer cell MHC by effector CTLs, we consider
 157 a population of cancer cells presenting k vaccine-associated peptides, C_k , where k varies from zero to
 158 K . The interactions between these cancer cells and effector CTLs are modelled with an ODE system:

$$\frac{dC_0}{dt} = \gamma(1 - C_{\text{total}}/\kappa)(C_0 + C_1) - \alpha C_0 + k_T \left(\sum_{j=1}^N T_j \right) \left(\sum_{m=1}^K C_m q_{m,m} \right) \quad (17)$$

$$\begin{aligned} \frac{dC_k}{dt} &= \frac{\gamma(1 - C_{\text{total}}/\kappa)(-C_k + 2C_{2k} + C_{2k-1} + C_{2k+1}) + \alpha(C_{k-1} - C_k)}{\text{Growth} \quad \text{pMHC regeneration}} \\ &\quad + k_T \left(\sum_{j=1}^N T_j \right) \left(\left(\sum_{m=k+1}^K C_m q_{m-k,m} \right) - C_k(1 - q_{0,k}) \right) - k_T \sum_{j=1}^N \lambda_{j,k} T_j C_k, \quad \text{for } k = 1, \dots, K-1, \quad (18) \end{aligned}$$

$$\frac{dC_K}{dt} = -\gamma C_K(1 - C_{\text{total}}/\kappa) + \alpha C_{K-1} - k_T \left(\sum_{j=1}^N T_j \right) C_K(1 - q_{0,K}) - k_T \sum_{j=1}^N \lambda_{j,K} T_j C_k. \quad (19)$$

160 In Equations 17 to 19, the total cancer population, $C_{\text{total}} = \sum_{k=0}^K C_k$, grows logistically at rate γ and with
 161 carrying capacity κ . As a simplifying assumption, we assume that the number of surface peptides is
 162 halved after mitosis, resulting in a net compartmental growth rate of

163
$$\gamma \left(1 - \frac{C_{\text{total}}}{\kappa}\right) (-C_k + C_{2k} + C_{2k-1} + C_{2k+1}), \quad (20)$$

164 for the population of cancer cells presenting k peptides, C_k . We also assume that surface peptides are
 165 regenerated at rate α . To model trogocytosis-mediated MHC stripping, we assume that CTLs and
 166 cancer cells presenting k peptides interact at rate k_T and additionally assume the number of peptides
 167 stripped during this interaction is binomially distributed with probability p_T . For brevity we let $q_{m,n} =$
 168 $\binom{n}{m} p_T^m (1 - p_T)^{n-m}$ denote the probability that a CTL will trogocytose m MHC:peptides off a cancer
 169 cell presenting n surface peptides. This allows us to describe the trogocytosis rate as

170
$$k_T \left(\sum_{j=1}^N T_j \right) \left(\left(\sum_{m=k+1}^K C_m q_{m-k,m} \right) - C_k (1 - q_{0,k}) \right). \quad (21)$$

171 Finally, to model lysis, we let $\lambda_{j,k}$ denote the lysis probability between a cancer cell presenting k
 172 peptides and an effector CTL of avidity j , and assume these interactions occur at rate k_T . To model
 173 the lysis probability, we assume that the probability of lysis increases with cognate pMHCs but is also
 174 modulated by CTL avidity. This can be modelled by assuming a probability function of the form

175
$$1 - e^{-r_j k},$$

176 where r_j is an avidity-dependent rate parameter chosen so that the lysis probability at maximal levels
 177 of cognate pMHC expression, i.e., $\lambda_{j,K}$ varies linearly from ω_1 for the lowest avidity CTL to ω_J for the
 highest avidity CTL.

179 Functional forms

180 Peptide vaccine injection rate

181 Here, we assume that the vaccine is injected systemically at a fixed dose, u_0 , and at a regular interval
 182 of ζ , which corresponds to the functional form

183
$$u(t) = u_0 \sum_{a=0}^{\infty} \delta(t - \zeta a).$$

184 Activation probability

185 The probability of a mature DC presenting k vaccine-associated pMHCs activating a naive T cell of
 186 avidity j , $p_{j,k}$, is modelled with a switch:

187
$$p_{j,k} = \begin{cases} 1, & \text{if } \left| \frac{j-1}{J-1} - \left(1 - \frac{k-1}{N_c - 1} \right) \right| \leq \nu \text{ and } k < N_c \\ 1, & \text{if } j = 1 \text{ and } k \geq N_c \\ 0, & \text{otherwise.} \end{cases} \quad (22)$$

188 Here, $1/(N_c - 1)$ and $1/(J - 1)$ map j and k from their respective domains to $[0,1]$. The dimensionless
 189 parameter $\nu = 0.05$ determines how sensitive our switching function is to pMHC expression. This
 190 characterization ensures that low pMHC levels on DCs stimulate high-avidity CTLs, and high pMHC
 191 levels on DCs stimulate both high- and low-avidity CTLs (18, 22-26). In contrast, low pMHC
 192 expression stimulates mostly low-avidity CTLs (9, 27-29). To reflect this, we assumed that beyond a
 193 critical number of pMHCs, N_c , only low-avidity CTLs were stimulated. We set $N_c = N/2 = 350$,
 194 implying that DCs must have *at least* a surface antigen density below 50% to stimulate high-avidity
 195 CTLs.

196 Initial Conditions

197 We assume that the vaccine is first administered at $t = 0$, i.e., $P(0) = u_0$, where u_0 is the vaccine
 198 dose. To determine the initial DC populations, we assume that the system is at steady state when
 199 there is no vaccine, which implies $I(0) = M_{\text{total}}$, and $M_j(0) = 0$, where M_{total} is the total DC population
 200 at steady-state conditions.

201 To model the scarcity of high-avidity naive T cells, we assume that their availability decreases
 202 exponentially. Specifically, we assume $N_j(0) = \rho_j N(0)$ and $N_j^H(0) = \rho_j N^H(0)$, where $\rho_j = a e^{-b j}$. Here,
 203 the model parameters a and b are chosen so that $\sum_{j=1}^J \rho_j = 1$ and ρ_1/ρ_J , i.e., the ratio low-avidity to
 204 high-avidity T cells, equates to the model parameter R_{LH} . In our simulations, we set R_{LH} to 100, which
 205 means that for one high-avidity T cell there are 100 low-avidity T cells.

206 For simplicity, we assume that initially there are zero vaccine-associated effector T cells, i.e., $T_j(0) = 0$,
207 $H_j(0) = 0$, and $R(0) = 0$. As there are no vaccine-associated effector T cells present initially, we also
208 set the concentration of growth factor to be $G(0) = 0$.

209 Finally, we assume that the total cancer cell concentration is C_{init} , with cognate pMHC being normally
210 distributed with mean $\mu = 148$ and variance $\sigma^2 = 49$. Mathematically, if $f_k = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(k-\mu)^2}{2\sigma^2}\right)$, then
211 $C_k(0) = C_{\text{init}} \times \frac{f_k}{\sum_{k=1}^K f_k}$.

212 Sensitivity analysis

213 To understand how DC maturation status affects parameter sensitivity, we conduct sensitivity analysis
214 on our modified model. We account for non-linear interactions between parameters by varying all
215 parameters simultaneously using Latin hypercube sampling ($n=250$) over the ranges shown in Table
216 2, and measure sensitivity by calculating Spearman's rank correlation coefficient (SRCC), ρ , for each
217 parameter against the fold decrease. Table 2 shows SRCC ρ for each parameter.

218 In our previous model, a sensitivity analysis identified antigen presentation by DCs as a key variable
219 for the beneficial therapeutic value of vaccines. Here, we amend our model with the induction of
220 immature DCs, resulting in supraphysiological levels of DCs. The resulting scale difference reduces
221 the power of DC-associated parameters. Additionally, the model is now sensitive to the tumor growth
222 rate, γ , suggesting that characteristics such as proliferative and apoptotic cell rates may affect the
223 clinical response to the therapeutic vaccine.

224 RESULTS

225 Modified mathematical model

226 We previously found that the rate of antigen presentation by DCs determined the therapeutic value of
227 an anti-tumor CTL response (14). Here, we hypothesize that inducing high levels of immature DCs
228 would preferentially stimulate naive high-avidity CTLs by increasing the total concentration of mature
229 DCs while lowering the average antigen density per DC. To test this proposed approach, we change
230 Equation 2 in our original model (see Materials and Methods) to include a source term, $v(t)$, which
231 describes the elicitation of immature DCs, either by injection of ex vivo derived DCs or by recruitment
232 of DC progenitors from the bone marrow via cytokine stimulation:

$$233 \frac{dI}{dt} = s_D + v(t) - \delta_D I - k_D \frac{P}{\chi + P} I. \quad (23)$$

234 As a simplifying assumption, we assume that induced immature DCs (iDCs) are given at a fixed dose
235 v_0 , and at dosing intervals of ξ hours *after* the injection of the peptide vaccine, which leads to the
236 functional form:

$$237 v(t) = v_0 \sum_{a=0}^{\infty} \delta(t - \xi a). \quad (24)$$

238 Figure 1 uses a block diagram to depict the key interactions of our model.

239 Increased immature DC levels yields lower peptide:MHC levels and tumor cell reduction

240 In our example, we assume our tumor is a melanoma and assume that our vaccine either targets
241 either neo-antigen peptides or classical antigens such as MART1. Initially, we simulate the DC
242 context of the vaccine while leaving the peptide dosage fixed at the previously optimized value of
243 100 ng daily. Using this low peptide dosing, we effectively fix the pMHC levels on DCs to be low. To
244 assess the robustness of our modified model, we next simulated iDC doses ranging from 10^3 cells/ μ L
245 to 10^{12} cells/ μ L, with dosing intervals that range from 0 to 24 hours after a peptide injection. A global
246 sweep of iDC dosages within these ranges revealed an optimal iDC induction magnitude to be
247 5×10^5 cells/ μ L of iDCs that induced a 98% decrease in tumor burden (Figure 2A). Importantly, the
248 substantial reduction in tumor concentration we observed is neither dose dependent nor time
249 dependent within our parameters, with a wide range of iDC concentrations and dosing intervals
250 achieving a high degree of tumor reduction. Indeed, for iDC doses greater than 5×10^6 cells/ μ L, the

251 fold decrease in tumor concentration varies at most by 5% from the local optimum regardless of the
252 dosing interval used. We thus find that the temporal robustness of this system centered around iDC
253 induction and high-avidity T cell induction potentially allows for the possibility of introducing other
254 combinatorial therapeutic strategies that may synergize with vaccine strategies, including checkpoint
255 blockade and inducers of immunogenic cell death.

256 Our initial results demonstrated that increased iDC levels, rather than increased mDC levels, favor
257 robust tumor clearing. We next set to determine if similar results could be recapitulated with clinically
258 relevant vaccine dosages, rather than the 100 ng daily peptide dose identified by our model. We first
259 compared pMHC levels in three therapeutic variations: peptide with either no DCs, induction of iDCs,
260 or induction of mDCs with DC concentrations set to 6×10^3 cells/ μ L, a dosing concentration previously
261 used in a clinical setting and within optimal concentrations found in our global sweep above (30). We
262 assume that within this population of ex vivo matured DCs (mDCs), pMHCs are normally distributed
263 with mean $\mu=100$ and variance $\sigma^2=25$ (31). Additionally, we compare peptide dosing concentrations
264 for both an ideal 100 ng daily and a clinically relevant 7×10^5 ng every three weeks (18). Our model
265 shows that at both peptide doses, induction of iDCs results in increased pMHC-low mature DCs as
266 compared to no DC or mDC conditions (Figure 2B). This reduced antigen density in the context of the
267 same peptide injection concentrations is due to the significantly increased numbers of mDCs
268 generated by inducing iDCs (Figure 2C). These increased numbers are due to the longer half-life of
269 iDCs as compared to mDCs, which are thought to rapidly decay upon maturation. As a result, the
270 same peptide concentration dispensed over a larger number of DCs results in lower pMHC levels per
271 DC.

272 **Immature DCs promote high-avidity T cells and tumor clearance in clinically relevant dosing 273 schemes**

274 Previously, we showed lower levels of pMHC competitively favor the expansion of high-avidity T cells
275 rather than low-avidity T cells (14). As expected, we find that at both peptide dosing schemes
276 induction of iDCs significantly favors the generation of high-avidity T cells compared to mDCs (Figure
277 3A). The optimal low dose of 100 ng daily of peptide significantly favors the development of high-
278 avidity T cells, but even with the clinically relevant dosing of 7×10^5 ng every three weeks, the
279 induction of iDCs significantly shifts the balance of T cell composition to favor high-avidity T cells. This
280 highlights that while traditional mDC or peptide-only vaccination strategies do increase T-cell
281 induction, they do so at the expense of high-avidity T cells. In reflection of increased expansion of
282 high-avidity T cells, our simulations further demonstrate that iDC induction results in improved cancer
283 cell lysis (Figure 3B). Together, this suggests our iDC approach can be applied to current protocols to
284 promote the expansion of high-avidity T cells and tumor clearance.

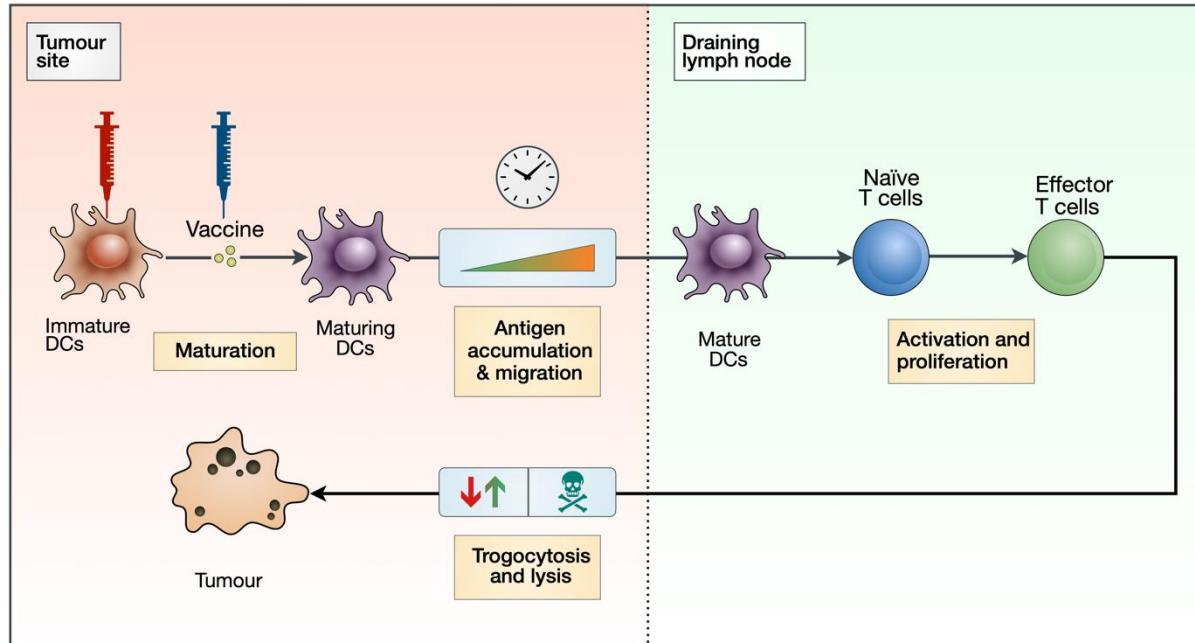
285 **DISCUSSION**

286 Cancer immunotherapy is now a routine means of successfully treating tumors of various types in the
287 clinic. However, improved immunotherapies to benefit greater numbers of patients with increased
288 durability are still needed. Despite its tremendous successes, ICB therapy only benefits less than the
289 majority of patients treated (32-34) and presents significant risks for adverse side-effects (35-37).
290 Therapeutic peptide vaccines can robustly induce a tumor-specific CTL response with limited side
291 effects due to induction of an antigen-specific immune response rather than broad immune activation
292 (18). Preferential development of high avidity anti-tumor CTLs enables enhanced tumor cell killing (8,
293 16). Previously, we showed that vaccine dosages could be optimized to preferentially elicit high-
294 avidity CTLs, unlike standard dosages that elicit low-avidity CTLs (14). In that study, we showed that
295 the efficacy of a dosage-optimized approach depended on DC-related parameters, which motivated
296 us to explore how we could harness immature DCs to boost anti-tumor activity.

297 We hypothesized that increasing the magnitude of iDCs given with a dosage-optimized peptide
298 vaccine may enhance CTL responses. It is important to stress that this approach is conceptually
299 different from traditional DC vaccines in which ex vivo matured DCs are injected (3, 15). To assess
300 this approach, we extended our previous model to account for a hypothetical induction of iDCs. We
301 show that induction of iDCs, and not mDCs, can significantly reduce tumor burden, improving upon
302 the performance of a peptide vaccine. A key assumption of our model is that iDCs will have a longer
303 half-life and inducing iDCs will result in a larger overall pool of DCs as compared to the injection of
304 mDCs, which are known to have a shorter half-life (21). Our simulations show that these effects are
305 tied to the increased half-life of iDCs and therefore increased DC levels in general, which results in a

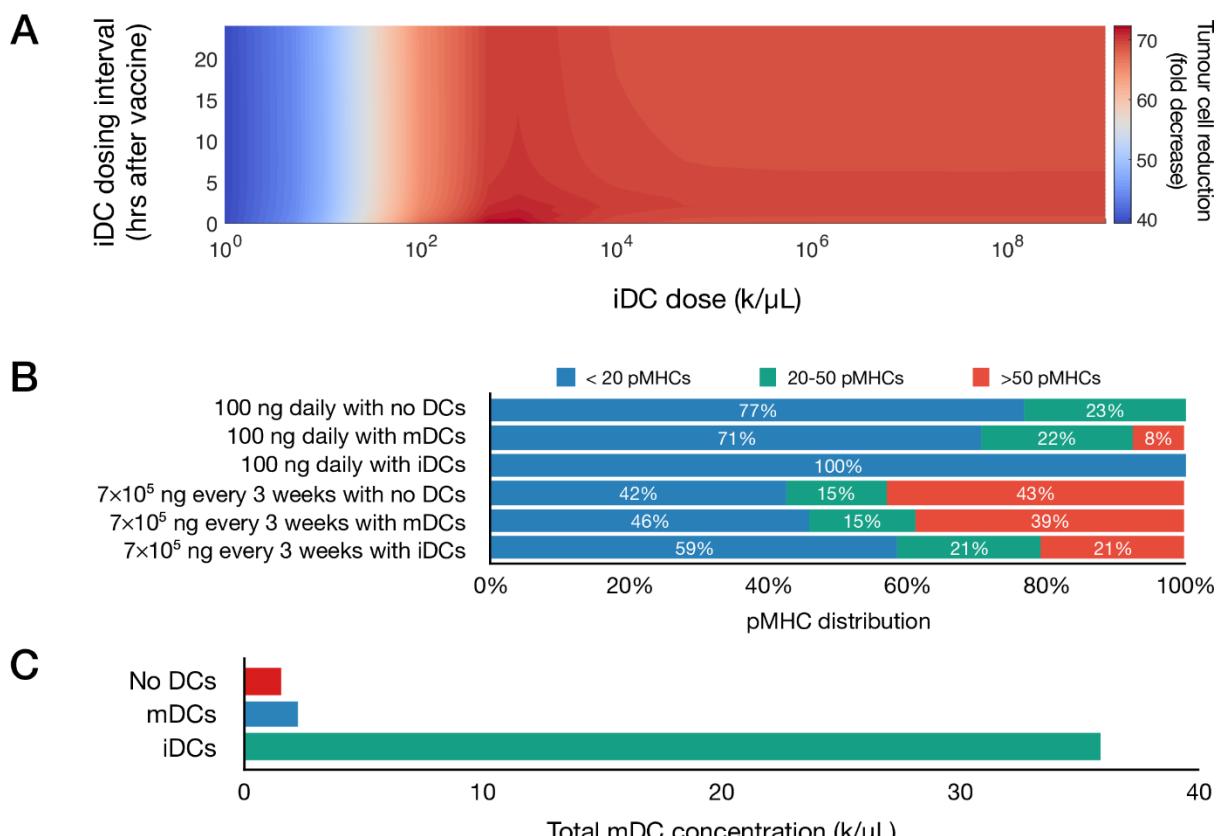
306 lower average antigen density per DC. As such, induction of iDCs favors the preferential stimulation of
307 high-avidity CTLs and tumor cell clearance.

308 Early cancer vaccines targeting over-expressed CAAs such as MART-1, MAGE, NYE-ESO-1, HER2,
309 and MUC-1 demonstrated mediocre clinical results. Evidence suggests that the T cell repertoire
310 capable of responding to these antigens are primarily composed of low-avidity T cells due to central
311 tolerance of T cells specific for self-antigens (38). Recently, there has been renewed interest in
312 cancer vaccines due to promising results for those targeting neoantigens (39-42). Additionally,
313 encouraging preliminary clinical results have recently been observed in therapeutic approaches
314 combining DC vaccines with checkpoint blockade (43). Our findings suggest that inducing increased
315 iDC levels would benefit vaccines targeting either over-expressed CAAs or neoantigens, as the
316 expansion of high-avidity CTLs would favor clinical responses in both scenarios.


317 Initial DC vaccines, such as Sipuleucel-T, were major milestones for immunotherapy-based
318 treatments of cancer and demonstrated modest, but meaningful, clinical results (44). While DC
319 vaccines have not achieved widespread therapeutic success, it is unclear if this is a result of targeting
320 TAAs, the influence of previously unknown immunosuppression mechanisms in the tumor
321 microenvironment, or difficult in manufacturing cell products (45). An exciting consequence of our
322 findings is the concept that ex vivo maturation of autologous dendritic cells is an unnecessary, and
323 possibly detrimental, step in vaccine design. Rather, in vivo induction of increased iDC levels, via
324 strategies such as mobilization of bone marrow DC precursors, is an attractive possibility. Indeed,
325 dosing with cytokines such as Fms-like tyrosine kinase 3 ligand (Flt3L) has demonstrated efficacy in
326 increasing levels of circulating DCs (46-48). Finally, in support of our findings, increased circulating
327 DC levels have been associated with increased survival in certain malignancies (49-51). Our model
328 suggests that elevated levels of iDCs, rather than mDCs, favors a longer half-life of the circulating DC
329 compartment and results in lower average pMHC levels that would then favor high-avidity T cell
330 generation. Thus, induction of iDCs followed by peptide vaccination would favor tumor clearance.
331 While we accept that maturation of iDCs is likely critical for tumor-specific T cell expansion, we
332 suggest that in vivo maturation approaches may yield improved therapeutic results (52).

333 Our work addresses an important and less appreciated element of cancer vaccines – how vaccine
334 design and administration can select for and enhance the proliferation of high-avidity CTLs. However,
335 there remain many barriers to efficacy with a combination strategy that our model does not consider.
336 For example, we do not account for potential intra-tumoral heterogeneity of antigen expression,
337 factors influencing CTL trafficking to tumor sites, or a multitude of potential immune suppression
338 mechanisms found within tumor microenvironments. Defining the minimum complexity of the immune
339 system is challenging, and the model used in this study does not, nor does it aim to account for all
340 known immune interactions.

341 The mathematical model presented here proposes that increasing the magnitude of immature DCs
342 with an optimized peptide vaccine may improve tumor clearance. The model highlights the relative
343 importance of antigen loads on dendritic cells, which facilitate the selective expansion of high-avidity
344 CTLs. While pre-clinical experimental validation of our findings are necessary, our model suggests
345 previously unappreciated aspects of vaccine design that may be necessary for the development of
346 effective cancer treatments.

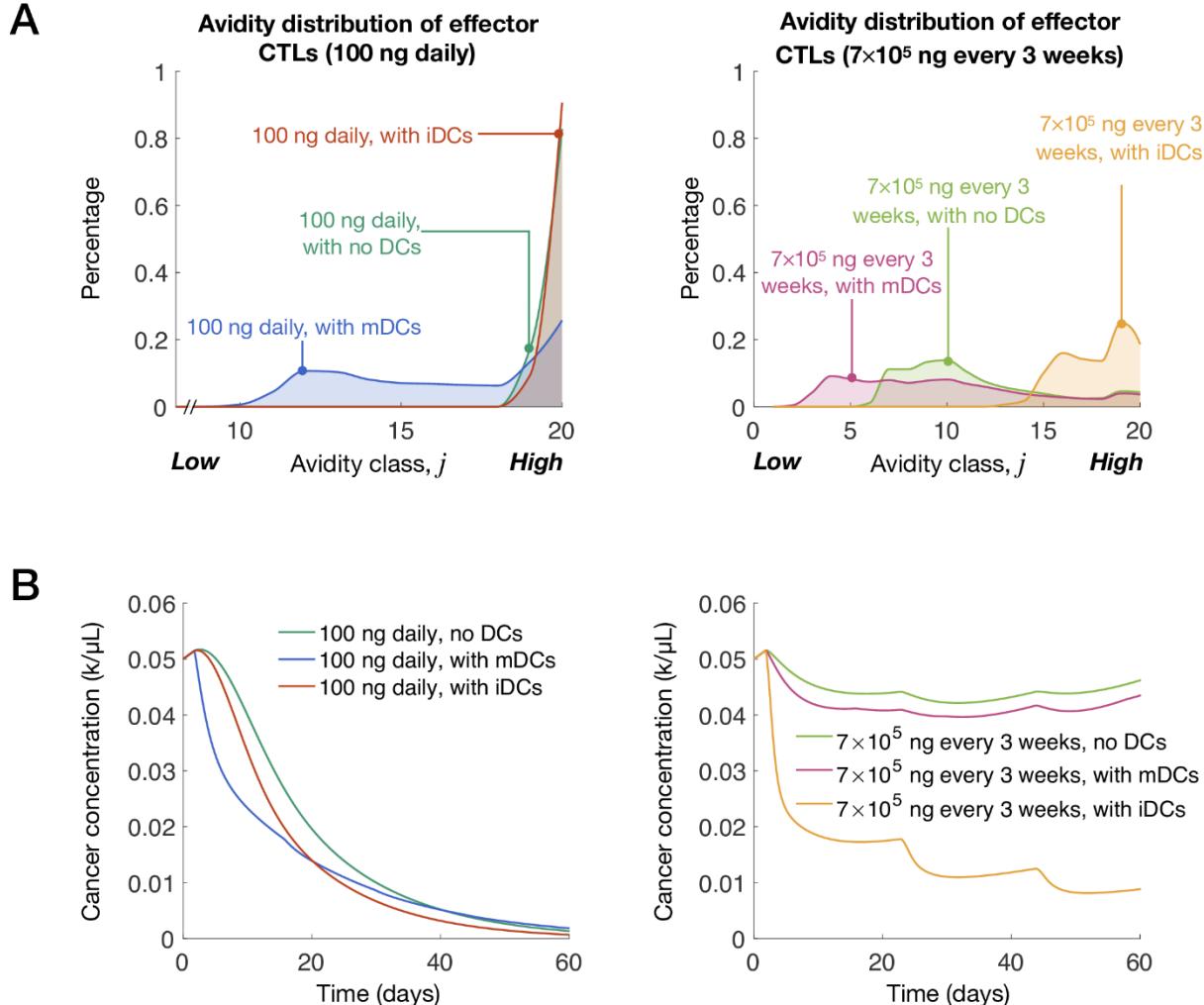

347

FIGURES

348

Figure 1. Block diagram depicting key aspects of our vaccination model. An injection of peptide vaccine activates immature DCs (which are also injected), prompting an accumulation of antigen by maturing DCs. These maturing DCs then migrate and activate naïve T cells in the lymph node, which then proliferate into effector T cells. Effector T cells can both strip peptides off the surface of cancer cells via trogocytosis and kill cancer cells.

354


Figure 2. Induction of immature dendritic cells favors tumor reduction. **(A)** Heatmap depicts tumor cell reduction (fold change) for different iDC dosages when given with 100 ng of peptide daily. Here, the unit 'k' denotes 10^3 cells. **(B)** Average distribution of antigen on mature DCs for various

355

356

357

358 vaccine protocols. **(C)** Total concentration of mature DCs for various vaccine protocols using 7×10^5 ng
 359 of peptide given every 3 weeks.

Figure 3. Induction of immature dendritic cells at clinically relevant vaccination doses yields significant tumor cell clearance. (A) Avidity distribution of effector T cells for various vaccine protocols. **(B)** Cancer concentrations over time for various vaccine protocols. The unit 'k' denotes 10^3 cells.

360
 361
 362
 363
 364

TABLES

Table 1. Estimates that are characterized by human data are marked with a superscript H, while estimates based on murine data are marked with a superscript M. Additionally, estimates that are based on cell culture data are marked with a superscript V. Finally, the unit 'k' denotes 10^3 cells.

PARAMETER	DESCRIPTION	ESTIMATE	REFERENCE
d_p	Peptide decay rate ^V	6.16/day	(53)
k_p	DC uptake rate ^{HV}	$3 \times 10^{-2} (\text{k}/\mu\text{L})^{-1}/\text{day}$	(54)
δ_D	Immature DC decay rate ^{HV}	$5 \times 10^{-2}/\text{day}$	(55)
s_D	Immature DC supply rate	$\delta_D M_{\text{total}}$	Steady state
M_{total}	Total DC population ^H	$23.4 \text{ k}/\mu\text{L}$	(56)
d_D	Mature DC decay rate ^{HV}	0.33/day	(55)
χ	Concentration of non-vaccine-associated proteins ^H	$6.72 \times 10^7 \text{ ng/mL}$	(57)
k_D	Mature DC presentation rate ^{MV}	$2.4 \times 10^5 \text{ pMHCs/day}$	(58, 59)
d_m	pMHC degradation rate ^{MV}	2.9/day	(60)
N	(Computational) maximum number of vaccine-associated pMHCs on a maturing DC	700	(14)

J	Number of avidity levels	20	(14)
s_T	Naive CTL supply rate	$d_N N(0)$	Steady state
s_H	Naive helper T cell supply rate	$d_{NH} N^H(0)$	Steady state
d_N	Naive CTL egress rate ^M	1.2/day	(61)
d_{NH}	Naive helper T cell egress rate ^M	2.2/day	(61)
$N(0)$	Initial naive CTL concentration ^M	7.6×10^{-3} k/μL	(62-65)
$N^H(0)$	Initial naive helper T cell concentration ^M	0.0571 k/μL	(62, 66)
R_{LH}	Ratio of low-high avidity naive CTLs	100	Assumption
k_{DC}	Naive CTL-DC interaction rate ^M	0.4 (k/μL) ⁻¹ /day	(62)
τ_m	DC migration time ^M	0.75 days	(62)
V_{tissue}	Volume of tissue site	1000 μL	(14)
V_{LN}	Volume of lymph node ^M	4.2 μL	(62)
n_H	Number of helper T cell divisions ^{HV}	10	(67)
τ_a	T cell division time ^M	1 day	(66, 68)
d_H	Effector helper T cell decay rate ^H	0.008/day	(69)
n_T	Number of CTL divisions ^M	15	(68, 70-73)
d_T	Effector CTL decay rate ^H	0.009/day	(69)
φ_0	Antigen saturation constant	5×10^3 ng/mL	(14)
r_1	Secretion rate of growth signal by CTLs	0.1/day	(14)
r_2	Secretion rate of growth signal by helper T cells	1/day	(14)
d_G	Growth factor decay rate ^H	144.4/day	(74)
k_G	CTL-growth factor interaction rate	0.1 (k/μL) ⁻¹ /day	(14)
k_R	Treg differentiation rate	0.2/day	(14)
d_R	Treg decay rate ^H	0.083/day	(75, 76)
μ	CTL-Treg interaction rate ^H	5 (k/μL) ⁻¹ /day	(14)
K	(Computational) maximum number of cognate pMHCs expressed on cancer cell	295	(14)
γ	Growth rate of melanomas ^H	0.0185/day	(77-79)
κ	Carrying capacity of melanomas ^M	736 k/μL	(80)
α	pMHC regeneration rate ^{MV}	8.4/day	(81, 82)
k_T	Tumor-CTL interaction rate ^{HV}	16.1 (k/μL) ⁻¹ /day	Estimate
p_T	Probability of phagocytosis ^{HV}	0.7	Estimate
ω_1	Lysis likelihood for lowest avidity ($j=1$) CTL ^{HV}	0.28	Estimate
ω_J	Lysis likelihood for highest avidity ($j=J$) CTL ^{HV}	0.96	Estimate
C_{init}	Initial cancer concentration	0.05 k/μL	(14, 16)

369

370 **Table 2.** Spearman's rank correlation coefficient between modified model parameters and fold
371 decreases of simulations when varied simultaneously.

PARAMETER	DESCRIPTION	RANGE	SRCC
d_p	Peptide decay rate	±50%	-0.0083
k_p	DC uptake rate	±50%	-0.0462
δ_D	Immature DC decay rate	±50%	0.0096
M_{total}	Total DC population	±50%	0.0508
d_D	Mature DC decay rate	±50%	-0.0341
χ	Concentration of non-vaccine-associated proteins	±50%	0.0596
k_D	Mature DC presentation rate	±50%	-0.0357
d_m	pMHC degradation rate	±50%	0.0047
d_N	Naive CTL egress rate	±50%	-0.0176
d_{NH}	Naive helper T cell egress rate	±50%	-0.0096
$N(0)$	Initial naive CTL concentration	±50%	0.0884
$N^H(0)$	Initial naive helper T cell concentration	±50%	0.0801
R_{LH}	Ratio of low-high avidity naive CTLs	10-500	-0.1091
k_{DC}	Naive CTL-DC interaction rate	±50%	0.0545
τ_m	DC migration time	±50%	0.0483

V_{tissue}	Volume of tissue site	$\pm 50\%$	-0.0067
V_{LN}	Volume of lymph node	$\pm 50\%$	0.0529
n_H	Number of helper T cell divisions	4-10	-0.1187
d_H	Effector helper T cell decay rate	$\pm 50\%$	0.0527
τ_a	T cell division time	$\pm 50\%$	-0.0395
n_T	Number of CTL divisions	10-20	0.4848
d_T	Effector CTL decay rate	$\pm 50\%$	-0.0442
d_G	Growth factor decay rate	$\pm 50\%$	0.0461
d_R	Treg decay rate	$\pm 50\%$	-0.0241
k_G	CTL-growth factor interaction rate	$\pm 50\%$	0.0454
k_R	Treg differentiation rate	$\pm 50\%$	-0.0149
r_1	Secretion rate of growth signal by CTLs	$\pm 50\%$	-0.0561
r_2	Secretion rate of growth signal by helper T cells	$\pm 50\%$	0.0028
μ	CTL-Treg interaction rate	$\pm 50\%$	-0.0662
γ	Growth rate of melanomas	0.003- 0.087/d	-0.5958
κ	Carrying capacity of melanomas	48.7-2360 k/ μ L	0.1457
α	pMHC regeneration rate	$\pm 50\%$	0.1189
k_T	Tumor-CTL interaction rate	$\pm 50\%$	0.1761
p_T	Probability of trogocytosis	$\pm 50\%$	-0.1905
ω_1	Lysis likelihood for lowest avidity ($j=1$) CTL	$\pm 50\%$	-0.0416
ω_J	Lysis likelihood for highest avidity ($j=J$) CTL	$\pm 50\%$	0.3595

372

373 CONFLICT OF INTEREST STATEMENT

374 The authors declare that the research was conducted in the absence of any commercial or financial
375 relationships that could be construed as a potential conflict of interest.

376

377 AUTHOR CONTRIBUTIONS

378 All authors contributed to the conception and design of the study; AK performed the simulations and
379 formal analysis; AK and CAE wrote the first draft of the manuscript.

380

381 FUNDING

382 This work was supported by an Australian Government Research Training Program Scholarship; an
383 Australian Research Council Discovery Project [DP180101512]; and by the US Department of
384 Defense Breast Cancer Research Program [W81XWH-11-1-0548].

385

386 REFERENCES

1. Zappasodi R, Merghoub T, Wolchok JD. Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. *Cancer Cell*. 2018;33(4):581-98.
2. Trujillo JA, Sweis RF, Bao R, Luke JJ. T Cell-Inflamed versus Non-T Cell-Inflamed Tumors: A Conceptual Framework for Cancer Immunotherapy Drug Development and Combination Therapy Selection. *Cancer Immunol Res*. 2018;6(9):990-1000.
3. Saxena M, Bhardwaj N. Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. *Trends Cancer*. 2018;4(2):119-37.
4. Abbas AK, Lichtman AHH, Pillai S. *Cellular and Molecular Immunology*: Elsevier Health Sciences; 2014.
5. Slingluff CL. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? *Cancer Journal*. 2011;17(5):343-50.
6. Lollini PL, Cavallo F, Nanni P, Forni G. Vaccines for tumour prevention. *Nature Reviews Cancer*. 2006;6(3):204-16.
7. Mougel A, Terme M, Tanchot C. Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade. *Front Immunol*. 2019;10:467.
8. Stuge TB, Holmes SP, Saharan S, Tuettenberg A, Roederer M, Weber JS, et al. Diversity and recognition efficiency of T cell responses to cancer. *PLoS Medicine*. 2004;1(2):e28.
9. McMahan RH, Slansky JE. Mobilizing the low-avidity T cell repertoire to kill tumors. *Seminars in Cancer Biology*. 2007;17(4):317-29.
10. Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. *Nat Rev Immunol*. 2018;18(3):168-82.

407

408 11. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. *Science*.
409 2015;348(6230):69-74.

410 12. Pan RY, Chung WH, Chu MT, Chen SJ, Chen HC, Zheng L, et al. Recent Development and
411 Clinical Application of Cancer Vaccine: Targeting Neoantigens. *J Immunol Res*. 2018;2018:4325874.

412 13. Kittlesen DJ, Thompson LW, Gulden PH, Skipper JC, Colella TA, Shabanowitz J, et al.
413 Human melanoma patients recognize an HLA-A1-restricted CTL epitope from tyrosinase containing
414 two cysteine residues: implications for tumor vaccine development. *J Immunol*. 1998;160(5):2099-
415 106.

416 14. Kumbhari A, Kim PS, Lee PP. Optimisation of anti-cancer peptide vaccines to preferentially
417 elicit high-avidity T cells. *Journal of Theoretical Biology*. 2019.

418 15. Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer
419 immunotherapy. *Nat Commun*. 2019;10(1):5408.

420 16. Chung B, Stuge TB, Murad JP, Beilhack G, Andersen E, Armstrong BD, et al. Antigen-
421 specific inhibition of high-avidity T cell target lysis by low-avidity T cells via trogocytosis. *Cell Reports*.
422 2014;8(3):871-82.

423 17. Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang X-F, et al. Persistent antigen at
424 vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. *Nature
425 Medicine*. 2013;19(4):465-72.

426 18. Rezvani K, Yong ASM, Mielke S, Jafarpour B, Savani BN, Le RQ, et al. Repeated PR1 and
427 WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific
428 CD8+ T cells in myeloid malignancies. *Haematologica*. 2011;96(3):432-40.

429 19. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work.
430 *Immunity*. 2010;33(4):492-503.

431 20. Gardner A, Ruffell B. Dendritic Cells and Cancer Immunity. *Trends Immunol*.
432 2016;37(12):855-65.

433 21. De Smedt T, Pajak B, Muraille E, Lespagnard L, Heinen E, De Baetselier P, et al. Regulation
434 of dendritic cell numbers and maturation by lipopolysaccharide in vivo. *J Exp Med*. 1996;184(4):1413-
435 24.

436 22. Alexander-Miller MA, Leggatt GR, Berzofsky JA. Selective expansion of high- or low-avidity
437 cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. *Proceedings of the National
438 Academy of Sciences*. 1996;93(9):4102-7.

439 23. Bullock TNJ, Mullins DW, Colella TA, Engelhard VH. Manipulation of Avidity to Improve
440 Effectiveness of Adoptively Transferred CD8+ T Cells for Melanoma Immunotherapy in Human MHC
441 Class I-Transgenic Mice. *Journal of Immunology*. 2001;167(10):5824-31.

442 24. Kedl RM, Schaefer BC, Kappler JW, Marrack P. T cells down-modulate peptide-MHC
443 complexes on APCs in vivo. *Nature Immunology*. 2002;3(1):27.

444 25. Kedl RM, Rees WA, Hildeman DA, Schaefer B, Mitchell T, Kappler J, et al. T cells compete
445 for access to antigen-bearing antigen-presenting cells. *Journal of Experimental Medicine*.
446 2000;192(8):1105-14.

447 26. Kroger CJ, Amoah S, Alexander-Miller MA. Cutting edge: Dendritic cells prime a high avidity
448 CTL response independent of the level of presented antigen. *Journal of Immunology*.
449 2008;180(9):5784-8.

450 27. Sandberg JK, Franksson L, Sundback J, Michaelsson J, Petersson M, Achour A, et al. T cell
451 tolerance based on avidity thresholds rather than complete deletion allows maintenance of maximal
452 repertoire diversity. *Journal of Immunology*. 2000;165(1):25-33.

453 28. van den Boorn JG, Le Poole IC, Luiten RM. T-cell avidity and tuning: the flexible connection
454 between tolerance and autoimmunity. *International Reviews of Immunology*. 2006;25(3-4):235-58.

455 29. Vigano S, Utzschneider DT, Perreau M, Pantaleo G, Zehn D, Harari A. Functional avidity: a
456 measure to predict the efficacy of effector T cells? *Clinical and Developmental Immunology*.
457 2012;2012:153863.

458 30. Schreibelt G, Bol KF, Westdorp H, Wimmers F, Aarntzen EH, Duiveman-de Boer T, et al.
459 Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid
460 Dendritic Cells. *Clin Cancer Res*. 2016;22(9):2155-66.

461 31. Walseng E, Furuta K, Bosch B, Weih KA, Matsuki Y, Bakke O, et al. Ubiquitination regulates
462 MHC class II-peptide complex retention and degradation in dendritic cells. *Proc Natl Acad Sci U S A*.
463 2010;107(47):20465-70.

464 32. Camacho LH. CTLA-4 blockade with ipilimumab: biology, safety, efficacy, and future
465 considerations. *Cancer Medicine*. 2015;4(5):661-72.

466 33. Mahoney KM, Freeman GJ, McDermott DF. The Next Immune-Checkpoint Inhibitors: PD-
467 1/PD-L1 Blockade in Melanoma. *Clinical Therapeutics*. 2015;37(4):764-82.

468 34. Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic
469 modalities with durable clinical benefit in melanoma patients. *Clinical Cancer Research*.
470 2013;19(19):5300-9.

471 35. Bertrand A, Kostine M, Barnetche T, Truchetet ME, Schaeverbeke T. Immune related
472 adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. *BMC*
473 *Medicine*. 2015;13:211.

474 36. Corsello SM, Barnabei A, Marchetti P, De Vecchis L, Salvatori R, Torino F. Endocrine side
475 effects induced by immune checkpoint inhibitors. *Journal of Clinical Endocrinology and Metabolism*.
476 2013;98(4):1361-75.

477 37. Gelao L, Criscitiello C, Esposito A, Goldhirsch A, Curigliano G. Immune checkpoint blockade
478 in cancer treatment: a double-edged sword cross-targeting the host as an "innocent bystander".
479 *Toxins (Basel)*. 2014;6(3):914-33.

480 38. Pedersen SR, Sorensen MR, Buus S, Christensen JP, Thomsen AR. Comparison of vaccine-
481 induced effector CD8 T cell responses directed against self- and non-self-tumor antigens: implications
482 for cancer immunotherapy. *J Immunol*. 2013;191(7):3955-67.

483 39. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. Cancer
484 immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-
485 specific T cells. *Science*. 2015;348(6236):803-8.

486 40. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal
487 neoantigen vaccine for patients with melanoma. *Nature*. 2017;547(7662):217-21.

488 41. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. Personalized RNA
489 mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. *Nature*.
490 2017;547(7662):222-6.

491 42. Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting
492 mutant IDH1 induces antitumour immunity. *Nature*. 2014;512(7514):324-7.

493 43. Wilgenhof S, Corthals J, Heirman C, van Baren N, Lucas S, Kvistborg P, et al. Phase II Study
494 of Autologous Monocyte-Derived mRNA Electroporated Dendritic Cells (TriMixDC-MEL) Plus
495 Ipilimumab in Patients With Pretreated Advanced Melanoma. *J Clin Oncol*. 2016;34(12):1330-8.

496 44. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T
497 immunotherapy for castration-resistant prostate cancer. *N Engl J Med*. 2010;363(5):411-22.

498 45. Mastelic-Gavillet B, Balint K, Boudousque C, Gannon PO, Kandalaft LE. Personalized
499 Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. *Front Immunol*.
500 2019;10:766.

501 46. Anandasabapathy N, Breton G, Hurley A, Caskey M, Trumpheller C, Sarma P, et al. Efficacy
502 and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic
503 stem cells in healthy human volunteers. *Bone Marrow Transplant*. 2015;50(7):924-30.

504 47. Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, et al. In vivo generation
505 of human dendritic cell subsets by Flt3 ligand. *Blood*. 2000;96(3):878-84.

506 48. Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, et al. Flt3-ligand
507 and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. *J*
508 *Immunol*. 2000;165(1):566-72.

509 49. Della Bella S, Gennaro M, Vaccari M, Ferraris C, Nicola S, Riva A, et al. Altered maturation of
510 peripheral blood dendritic cells in patients with breast cancer. *Br J Cancer*. 2003;89(8):1463-72.

511 50. Hirooka S, Yanagimoto H, Satoi S, Yamamoto T, Toyokawa H, Yamaki S, et al. The role of
512 circulating dendritic cells in patients with unresectable pancreatic cancer. *Anticancer Res*.
513 2011;31(11):3827-34.

514 51. Pinzon-Charry A, Ho CS, Maxwell T, McGuckin MA, Schmidt C, Furnival C, et al. Numerical
515 and functional defects of blood dendritic cells in early- and late-stage breast cancer. *Br J Cancer*.
516 2007;97(9):1251-9.

517 52. Sittig SP, de Vries IJM, Schreibelt G. Primary Human Blood Dendritic Cells for Cancer
518 Immunotherapy-Tailoring the Immune Response by Dendritic Cell Maturation. *Biomedicines*.
519 2015;3(4):282-303.

520 53. Harndahl M, Rasmussen M, Roder G, Dalgaard Pedersen I, Sorensen M, Nielsen M, et al.
521 Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. *Eur J*
522 *Immunol*. 2012;42(6):1405-16.

523 54. Sallusto F, Celli M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the
524 mannose receptor to concentrate macromolecules in the major histocompatibility complex class II
525 compartment: downregulation by cytokines and bacterial products. *Journal of Experimental Medicine*.
526 1995;182(2):389-400.

527 55. Kaplan G, Nusrat A, Witmer MD, Nath I, Cohn ZA. Distribution and turnover of Langerhans
528 cells during delayed immune responses in human skin. *J Exp Med.* 1987;165(3):763-76.

529 56. Bauer J, Bahmer FA, Worl J, Neuhuber W, Schuler G, Fartasch M. A strikingly constant ratio
530 exists between Langerhans cells and other epidermal cells in human skin. A stereologic study using
531 the optical disector method and the confocal laser scanning microscope. *Journal of Investigative
532 Dermatology.* 2001;116(2):313-8.

533 57. Krebs HA. Chemical composition of blood plasma and serum. *Annual Review of
534 Biochemistry.* 1950;19:409-30.

535 58. Delamarre L, Holcombe H, Mellman I. Presentation of exogenous antigens on major
536 histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during
537 dendritic cell maturation. *Journal of Experimental Medicine.* 2003;198(1):111-22.

538 59. Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN, Zheng H, et al. T cell sensing of
539 antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation.
540 *Nature Immunology.* 2008;9(3):282-91.

541 60. Wilson NS, El-Sukkari D, Villadangos Je, A. Dendritic cells constitutively present self antigens
542 in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class
543 II synthesis and endocytosis. *Blood.* 2004;103(6):2187-95.

544 61. Mandl JN, Liou R, Klauschen F, Vrisekoop N, Monteiro Ja, o P., Yates AJ, et al.
545 Quantification of lymph node transit times reveals differences in antigen surveillance strategies of
546 naive CD4+ and CD8+ T cells. *Proceedings of the National Academy of Sciences.*
547 2012;109(44):18036-41.

548 62. Catron DM, Itano AA, Pape KA, Mueller DL, Jenkins MK. Visualizing the first 50 hr of the
549 primary immune response to a soluble antigen. *Immunity.* 2004;21(3):341-7.

550 63. Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, Lejeune F, et al. High frequencies of
551 naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility
552 leukocyte antigen (HLA)-A2 individuals. *Journal of Experimental Medicine.* 1999;190(5):705-16.

553 64. Williams H, Sarapata E, Caldwell T, dePillis L. Mathematical modeling of regulatory T cell
554 effects on renal cell carcinoma treatment. *Discrete and Continuous Dynamical Systems - Series B.*
555 2013;18(4):915-43.

556 65. Speiser DE, Colonna M, Ayyoub M, Cella M, Pittet MJ, Batard P, et al. The activatory
557 receptor 2B4 is expressed in vivo by human CD8+ effector alpha beta T cells. *Journal of Immunology.*
558 2001;167(11):6165-70.

559 66. Homann D, Teyton L, Oldstone MBA. Differential regulation of antiviral T-cell immunity results
560 in stable CD8+ but declining CD4+ T-cell memory. *Nature Medicine.* 2001;7(8):913-9.

561 67. Geiger R, Duhen T, Lanzavecchia A, Sallusto F. Human naive and memory CD4+ T cell
562 repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. *J
563 Exp Med.* 2009;206(7):1525-34.

564 68. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, et al. Counting
565 antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. *Immunity.*
566 1998;8(2):177-87.

567 69. Hellerstein M, Hanley MB, Cesar D, Siler S, Papageorgopoulos C, Wieder E, et al. Directly
568 measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. *Nature
569 Medicine.* 1999;5(1):83-9.

570 70. Obst R. The Timing of T Cell Priming and Cycling. *Frontiers in Immunology.* 2015;6:563.

571 71. Butz EA, Bevan MJ. Massive expansion of antigen-specific CD8+ T cells during an acute
572 virus infection. *Immunity.* 1998;8(2):167-75.

573 72. Gerlach C, Rohr JC, Perie L, van Rooij N, van Heijst JW, Velds A, et al. Heterogeneous
574 differentiation patterns of individual CD8+ T cells. *Science.* 2013;340(6132):635-9.

575 73. Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B, Graf P, et al. Disparate
576 individual fates compose robust CD8+ T cell immunity. *Science.* 2013;340(6132):630-5.

577 74. Lotze MT, Matory YL, Ettinghausen SE, Rayner AA, Sharow SO, Seipp CA, et al. In vivo
578 administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of
579 peripheral lymphoid cells in vivo with recombinant IL 2. *Journal of Immunology.* 1985;135(4):2865-75.

580 75. Borghans J, A. M., Tesselaar K, de Boer RJ. Current best estimates for the average lifespans
581 of mouse and human leukocytes: reviewing two decades of deuterium-labeling experiments.
582 *Immunological Reviews.* 2018;285(1):233-48.

583 76. Vukmanovic-Stojic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, et al. Human
584 CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo.
585 *Journal of Clinical Investigation.* 2006;116(9):2423-33.

586 77. Carlson JA. Tumor doubling time of cutaneous melanoma and its metastasis. *American*
587 *Journal of Dermatopathology*. 2003;25:291-9.

588 78. Eskelin S, Pyrhonen S, Summanen P, Hahka-Kemppinen M, Kivela T. Tumor doubling times
589 in metastatic malignant melanoma of the uvea: tumor progression before and after treatment.
590 *Ophthalmology*. 2000;107:1443-9.

591 79. Ollila DW, Stern SL, Morton DL. Tumor doubling time: a selection factor for pulmonary
592 resection of metastatic melanoma. *Journal of Surgical Oncology*. 1998;69:206-11.

593 80. Sarapata EA, de Pillis LG. A comparison and catalog of intrinsic tumor growth models.
594 *Bulletin of Mathematical Biology*. 2014;76(8):2010-24.

595 81. Carreno BM, Hansen TH. Exogenous peptide ligand influences the expression and half-life of
596 free HLA class I heavy chains ubiquitously detected at the cell surface. *European Journal of*
597 *Immunology*. 1994;24(6):1285-92.

598 82. Christinck ER, Luscher MA, Barber BH, Williams DB. Peptide binding to class I MHC on living
599 cells and quantitation of complexes required for CTL lysis. *Nature*. 1991;352(6330):67-70.

600