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Highlights 

- Healthy aging is linked to deterioration in executive functions (EFs) 

- ALE meta-analyses examined consistent age differences in brain activity linked to EFs 

- In a larger set of EF regions, only left IFJ and (pre)cuneus were sensitive to age 

- Advanced age was linked to weaker functional coupling within EF-related networks 

- Our findings question earlier meta-analytic findings  
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Abstract 

Healthy aging is associated with changes in cognitive performance including executive functions 

(EFs) and their associated brain activation patterns. However, it has remained unclear which EF-

related brain regions are affected consistently, because the results of pertinent neuroimaging 

studies and earlier meta-analyses vary considerably. We, therefore, conducted new rigorous me-

ta-analyses of published age differences in EF-related brain activity. Out of a larger set of re-

gions associated with EFs, only left inferior frontal junction (IFJ) and left anterior 

cuneus/precuneus (aC/PrC) were found to show consistent age differences. To further character-

ize these two age-sensitive regions, we performed seed-based resting-state functional connectivi-

ty (RS-FC) analyses using fMRI data from a large adult sample with a wide age range. We also 

assessed associations of the two regions’ whole-brain RS-FC patterns with age and EF perfor-

mance. Although functional profiling and RS-FC analyses point towards a domain-general role 

of left IFJ in EFs, the pattern of individual study contributions to the meta-analytic results sug-

gests process-specific modulations by age. Our analyses further indicate that left aC/PrC is re-

cruited differently by older (compared to younger) adults during EF tasks, potentially reflecting 

inefficiencies in switching the attentional focus. Overall, our findings question earlier meta-

analytic results and suggest a larger heterogeneity of age-related differences in brain activity 

associated with EFs. Hence, they encourage future research that pays greater attention to 

replicability, investigates age-related differences in deactivation, and focuses on more narrowly 

defined EF subprocesses, combining multiple behavioral assessments with multi-modal imaging.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204941
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

1.  Introduction 

1.1. Executive Functions 

Executive functions (EFs) are a loosely defined set of cognitive control processes that are 

taken to be critical for goal-directed thought and behavior in complex environments. Despite the 

lack of a clear formal definition of EFs as well as their ambiguous mapping on typical EF-tasks, 

there is relative agreement on their importance for regulating human behavior through modulat-

ing cognition in a top-down fashion (Diamond, 2013; Jurado & Rosselli, 2007). Different lines 

of research on how EFs might be best fractionated into subcomponents suggest models that argue 

for the existence of three core EFs: inhibitory control, working memory, and cognitive set shift-

ing (e.g., Lehto, 1996; Miyake et al., 2000; for reviews see: Alvarez & Emory, 2006; Diamond, 

2013). We acknowledge, however, that this differentiation is not undisputed (Baddeley & Hitch, 

1974; Engle & Kane, 2004; Norman & Shallice, 1986; Stuss, 2006). 

For a long time, it was thought that EFs were exclusively based on frontal lobe function-

ing as patients with frontal lesions often showed deficits in EFs leading to the interchangeable 

use of the terms “executive dysfunction” and “frontal lobe dysfunction” (e.g., Duncan, 1986; 

Owen et al., 1990; Shallice et al., 1982). However, patients with frontal lesions can perform 

within a normal range on EF tasks (e.g., Eslinger & Damasio, 1985; Shallice & Burgess, 1991) 

and patients with non-frontal lesions can show similar deficits like patients with frontal lesions 

(e.g., Anderson et al., 1991; Mountain & Snow, 1993). Years of research led Don Stuss and his 

collaborators ( 1995; 2006; 2011) to the assumption that there is a substantial fractionation of 

frontal lobe functions and that EFs represent only one functional category within the frontal 

lobes. Previous neuroimaging studies have revealed notable differences in the brain regions in-

volved in EFs, which may be partly due to the elusive conceptualization of EFs (Collette et al., 
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2006) as well as the wealth of different perspectives, operationalizations, and traditions in this 

research, which have resulted in a co-existence of rather diverse labels for the brain networks and 

regions associated with EFs (Camilleri et al., 2018). Although there are differences between dif-

ferent tasks probing EFs, there also seem to be core regions consistently involved, like left infe-

rior frontal junction (IFJ; e.g., Emery et al., 2008; Milham et al., 2002; Zysset et al., 2007). Dun-

can and collaborators (Duncan, 2010; Duncan & Owen, 2000; Fedorenko et al., 2013) investigat-

ed and defined these core regions and proposed that a “multiple-demand” (MD) brain system 

was consistently recruited during all kinds of cognitively demanding tasks.  

Müller et al. (2015) used a similar approach: They integrated results from three neuroim-

aging meta-analyses investigating working memory (Rottschy et al., 2012), vigilant attention 

(Langner & Eickhoff, 2013), and inhibitory control (Cieslik et al., 2015), highly discussed sub-

components of EFs (Alvarez & Emory, 2006; Miyake et al., 2000), to define a common core 

network for EFs. This network was similar to Duncan’s MD system and comprised seven re-

gions: mid-cingulate cortex/supplementary motor area (MCC/SMA), bilateral IFJ/inferior frontal 

gyrus (IFG), right middle frontal gyrus (MFG), bilateral anterior insula (aIns), right inferior pari-

etal cortex (IPC), and intraparietal sulcus (IPS). Camilleri et al. ( 2018) went on to propose an 

extended MD network (eMDN) based on task-dependent and task-independent functional con-

nectivity (FC) analyses seeded from the regions of the meta-analytically defined MD network by 

Müller and colleagues, to consider the perspective of a more widely distributed network. 

Camilleri et al. reported 17 regions as part of the eMDN (bilateral IFJ, aIns, SMA/pre-SMA, IPS, 

putamen, thalamus, MFG extending into the inferior frontal sulcus, dorsal premotor cortex 

[dPMC], and left inferior temporal gyrus). While the current paper focuses on EF-related activa-

tions, for the sake of completeness, we consider it necessary to briefly mention the functional 
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relevance of the default-mode network (DMN) as it is assumed to be activated during stimulus-

independent or spontaneous cognition and deactivated during externally focused cognition. The 

DMN comprises a network of brain regions that includes the precuneus (PrC)/posterior cingulate 

cortex (PCC), anterior medial prefrontal cortex (mPFC), and lateral inferior parietal cortex 

(Shulman et al., 1997; for reviews see: Anticevic et al., 2012; Raichle, 2015). In the interest of 

space, we did not go into more detail and referred to reviews on this topic. 

Taken together, EFs seem to be a macro-construct rather than a single process, which in-

volves distributed networks instead of any particular region, with a core network and more spe-

cific regions that are recruited depending on certain task demands (Camilleri et al., 2018; Miyake 

& Friedman, 2012; Teuber, 1972).  

 

1.2. Healthy Aging 

Healthy aging is associated with altered cognitive performance and brain activation pat-

terns in several cognitive domains, especially non-routine tasks that tax executive control pro-

cesses (Drag & Bieliauskas, 2010; Park et al., 2002; Stuss & Craik, 2019). Although the aging 

brain faces unfavorable changes, such as the decline of dopaminergic receptors (Li et al., 2001; 

Yang et al., 2003), volumetric shrinkage of many grey-matter structures (Raz et al., 2005; 

Resnick et al., 2003; Salat et al., 2004), and reduced white-matter density (Head et al., 2004; 

Wen & Sachdev, 2004), it also seems to aim for an allostatic maintenance of cognitive functions 

through functional reorganization. This indicates that the neurobiological substrates of our cogni-

tive system are highly dynamic and adaptive across the lifespan (Greenwood, 2007; Park & 

Reuter-Lorenz, 2008).  
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A common finding is the reduced lateralization of brain activation in older adults, which 

is thought to be compensatory as it is correlated with better performance in older adults (“hemi-

spheric asymmetry reduction in older adults” [HAROLD]; Cabeza, 2002). Furthermore, brain 

activation shifts from posterior to more anterior brain regions have been observed (“posterior–

anterior shift in aging” [PASA]; Davis et al., 2007), which might be caused by older adults’ need 

for exerting executive control for previously automated operations. Additionally, it has been hy-

pothesized that age-related cognitive and behavioral changes are associated with less specialized 

brain responses and a decrease in FC with age, in the context of structural and neurobiological 

changes as well as external experiences (Baltes & Lindenberger, 1997; Goh, 2011; Li & 

Sikström, 2002; Park et al., 2001; 2004). Reuter-Lorenz and Cappell ( 2008) postulated that the 

oft-reported increase in task-related lateral PFC activity with age compensates for less efficient 

neural circuits (“compensation-related utilization of neural circuits hypothesis” [CRUNCH]). 

Finally, Park and Reuter-Lorenz (2008) attempted to unite previous theories in their “scaffolding 

theory of aging and cognition” (STAC). In this context, “scaffolds” describe a supportive 

framework that helps maintain cognitive and behavioral performance at a relatively high level 

through advanced age via the strengthening of existing connections, development of new con-

nections, and disuse of connections that have become fragile or deficient. These changes, in turn, 

are assumed to lead to increased bilateral and/or frontal activation in older adults. 

Results from neuroimaging studies on age-related changes in the EF subcomponents 

working memory, inhibitory control, and cognitive flexibility are rather ambiguous. While some 

studies reported an increase in bilateral prefrontal activity (e.g., Emery et al., 2008; Madden et 

al., 1999) and a decrease in occipital activity (e.g., Ansado et al., 2012; Madden et al., 2002, 

2010), other studies reported occipital activity increase (e.g., Bloemendaal et al., 2016; Van Impe 
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et al., 2011) and frontal activity decrease in older adults (e.g., Bloemendaal et al., 2016; Schulte 

et al., 2011). Moreover, the age-related reduction in hemispheric asymmetry of brain activity is 

not found consistently (e.g., Carp et al., 2010; Toepper et al., 2014). This large amount of heter-

ogeneous, partly contradictory findings illustrates the need for a quantitative data synthesis by 

means of meta-analysis in combination with taking a systems-level perspective, which includes 

identifying the connectional profiles of the identified regions with respect to the rest of the brain. 

So far, three quantitative neuroimaging meta-analyses investigating cognitive aging in 

EFs have been published, each with their own limitations as discussed below: Spreng et al. 

(2010) performed an analysis across all then available experiments probing EFs in age, such as 

working memory, task switching, and inhibitory control. The authors found consistent EF-related 

increases in activity with age in bilateral dorsolateral prefrontal cortex (DLPFC), right posterior 

MFG/frontal eye field (FEF), left SMA, and left rostrolateral PFC as well as consistent decreases 

in activity with age in right ventrolateral PFC. Next, Turner and Spreng (2012) conducted sepa-

rate meta-analyses for the EF subcomponents working memory and inhibition and found do-

main-specific patterns of across-experiment convergence. For working memory, consistent in-

creases in activity with age were found in bilateral SMA, right MFG, left IFG, and left IPS; con-

sistently lower activity in older adults was found in right IPS, left aIns/frontal operculum, and 

left FEF. For inhibition-related brain activity, consistent increases in activity with age was found 

in right MFG/IFG and left superior frontal gyrus, whereas consistent decreases in activity with 

age was found in right inferior occipital gyrus. Finally, a third meta-analysis by Di et al. (2014) 

found consistent increases in EF-related activation with age in bilateral IFG, left anterior cerebel-

lum, left fusiform gyrus (FG), right MFG, and right parahippocampal gyrus. Consistently lower 
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EF-related activation with age was found in bilateral Ins, left MFG, left medial frontal gyrus, and 

right MCC.  

Taken together, the picture produced by these meta-analyses is largely inconclusive. This 

inconsistency across meta-analyses might result from methodological differences, such as the in- 

or exclusion of region-of-interest (ROI) contrasts, the particular selection of tasks included, or 

the approach to testing for age-related differences. Furthermore, all previous meta-analyses cor-

rected for multiple comparisons by controlling the voxel-level false discovery rate (FDR), which 

has recently been shown to feature low sensitivity and a high susceptibility for false-positive 

findings in Activation Likelihood Estimation (ALE) meta-analysis (Eickhoff et al., 2016). In 

light of these inconsistencies and limitations of earlier efforts as well as the continued growth of 

the pertinent literature since 2014, a fresh meta-analysis on age-related differences in brain activ-

ity associated with EFs appeared much warranted. 

 

1.3. Current Study 

 In a first step, coordinate-based ALE meta-analysis (Eickhoff et al., 2009, 2012; 

Turkeltaub et al., 2002, 2012) was used to synthesize results from neuroimaging studies investi-

gating EFs in young and old participants. We started with a meta-analysis of within-group find-

ings, pooling across experimental results obtained in young or old participants, respectively. This 

approach should test for consistent general EF-related brain activity in our sample of experi-

ments, without regard to age-related differences. It was aimed at replicating previous findings of 

brain regions involved in EFs. Subsequently, we conducted further meta-analyses of published 

between-group contrasts, investigating consistent age differences in EF-related brain activity. As 

a methodological improvement over previous ALE meta-analyses on this topic, we used cluster-
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level family-wise error (FWE) correction for multiple comparisons (rather than FDR-based cor-

rection) and a minimum number of n = 17 experiments per analysis, following the recommenda-

tions by Eickhoff et al. (2016).  

 In a second step, task-independent whole-brain FC patterns of resulting age-sensitive 

regions were analyzed using resting-state (RS) functional magnetic resonance imaging (fMRI) 

data of healthy adults. Finally, we assessed the associations of the regions’ whole-brain FC with 

age and performance scores representing EF and its subcomponents in order to gain further in-

sights into the mechanisms underlying cognitive aging. 

 In summary, this study aimed to investigate (i) which brain regions show consistent age 

differences in EF-related activity at the meta-analytic level, (ii) the connectional profiles of these 

age-sensitive regions, and (iii) how the connectivity profiles of these regions are affected by ag-

ing and EF-capacity. 

 

2.  Methods 

2.1.  ALE Meta-Analysis 

2.1.1. Sample 

2.1.1.1.Search for Studies  

Pertinent studies were searched for in the databases Web of Science, PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed/), PsycINFO (http://ovidsp.tx.ovid.com), and Google 

Scholar (http://scholar.google.de) using the following search strings: (1) title: “age” or “aging” or 

“ageing” or “age-related” or “older adults” or “old adults” or “life-span” or “elderly adults”; and 

(2) title: “executive functions” or “working memory” or “inhibition” or “cognitive flexibility”; 

and (3) abstract: “fMRI” or “functional magnetic resonance imaging” or “PET” or “positron 
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emission tomography” or “neuroimaging” or “cerebral blood flow.” Subsequently, specific EF-

related task labels were included in the search string as follows: for working memory, “n-back” 

or “Sternberg” or “delayed match* to sample” or “delayed simple matching”; for inhibitory con-

trol, “Stroop” or “flanker” or “Simon” or “stimulus-response compatibility” or “stop signal” or 

“go/no-go” or “stimulus detection” or “stimulus discrimination” or “selective attention”; and for 

cognitive flexibility, “task switching” or “dual task” or “set shifting.” The search criteria were 

partially motivated by previous meta-analyses regarding aging and EFs (Di et al., 2014; Spreng 

et al., 2010; Turner & Spreng, 2012). The decision on which tasks to include in the extended 

search string was made based on Diamond’s (2013) definition of typical tasks for each of the 

subcategories. Finally, earlier meta-analyses on this topic, reviews, and the reference lists of 

identified studies were inspected for additional studies to be included.  

2.1.1.2.Inclusion and Exclusion Criteria  

We included only peer-reviewed publications of fMRI or positron emission tomography 

(PET) experiments performed in healthy young and old participants without any pharmacologi-

cal manipulations or other extraneous interventions. Results of group analyses needed to be re-

ported as coordinates of a standard reference space, that is, MNI (Montreal Neurological Insti-

tute) or Talairach (Talairach & Tournoux, 1988) space. Studies were only included if the whole 

brain was covered (i.e. coverage of at least 8 cm in the z-dimension). Consequently, no ROI-

based results were included. However, some of the experiments we included reported masking of 

the between-group contrast with the task-positive main effect to restrict group differences to 

task-related regions (these studies are marked in Tables A1 and A2). We included results from 

contrasts between task and sensorimotor control or resting-baseline conditions, contrasts between 

different levels of task difficulty, as well as correlations between age and task-related activity. 
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Thus, deactivation data, results from connectivity analyses, or correlations and interactions with 

other variables (e.g., group × performance interactions, correlations with reaction time, etc.) were 

not considered. In case of uncertainty as to any of these criteria, the corresponding author of the 

given study was contacted for clarification (these studies are marked in Tables A1 and A2).  

To minimize the risk that meta-analytic results were unduly biased by a particular publi-

cation, the contribution from any given study was limited to one experiment. If a study reported 

several experiments eligible for inclusion, their findings (i.e., reported coordinates) were pooled 

to constitute a single experiment, as suggested by Turkeltaub et al. (2012). Further, if contrasts 

for both transient and sustained brain activity were available, the contrast reflecting transient 

activity was chosen as it typically allows for a more process-specific interpretation. For the cur-

rent approach, coordinates of within-group (i.e., main task effect per group) and between-group 

(i.e., contrast of task effects between groups: [young > old, old > young]) contrasts as well as 

correlations between task performance and age were included. 

2.1.1.3.Studies Included 

After an initial screening of publication abstracts for topicality, 147 studies were retrieved 

in total. Applying the above criteria left us with 31 eligible studies reporting within-group task 

effects: 11 for working memory, 12 for inhibition, and 9 for cognitive flexibility. Of note, the 

study by Townsend et al. (2006) contributed results to two subdomains (inhibition and cognitive 

flexibility). 

In the meta-analyses of age-related differences, 46 eligible studies were included in total: 

15 for working memory, 19 for inhibition, 14 for cognitive flexibility, and 1 not clearly assigna-

ble to any subdomain. For clarification, not all studies included both within- and between-group 

contrasts, leading to somewhat different numbers of studies included in the within- and between-
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group meta-analyses, respectively. Of note, Eich et al. (2016) and Townsend et al. (2006) were 

included for inhibition and cognitive flexibility, and Lamar et al. (2004) for inhibition and work-

ing memory. Studies reporting different tasks (i.e., experiments that contribute to different sub-

domains) were pooled by the respective subdomain (vs. by subject group) and may thus contrib-

ute with two data points. To make sure that this pooling by subcomponent would not have an 

effect on the results, we additionally computed the meta-analyses with solely one point of data 

per study, i.e., pooling by subject group. The results were the same. For the sake of interpretabil-

ity, we therefore decided to pool the aforementioned studies by subcomponent. See Figure 1 for 

an overview of the different analysis steps conducted. 

For further information about the studies included, please see Tables A1 and A2. A 

checklist for neuroimaging meta-analyses as recommended by Müller et al. (2018) can be found 

in Table A3. 

2.1.2. Activation Likelihood Estimation  

2.1.2.1. ALE Algorithm 

All meta-analyses were conducted using the revised version of the ALE algorithm for co-

ordinate-based meta-analysis of neuroimaging results (Eickhoff et al., 2009, 2012; Turkeltaub et 

al., 2002, 2012) implemented as in-house MATLAB tools. This algorithm aims to identify areas 

with across-experiment convergence of activity foci that is higher than expected from random 

spatial association. Before analysis, any coordinates reported in Talairach space were trans-

formed into MNI space (Lancaster et al., 2007). Because the standard brain templates used in 

SPM (statistical parametric mapping) since version SPM96 and in FSL (FMRIB Software Li-

brary) are given in MNI space, reported results from analyses using SPM or FSL were treated as 
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MNI coordinates unless the authors explicitly mentioned a transformation from MNI to Talairach 

space or the use of an alternative brain template.  

In a first step, important content of the included studies was coded and recorded. In a se-

cond step, the reported coordinates of each experiment’s peak activations (“foci”) were projected 

on a brain template, acknowledging the spatial uncertainty associated with each coordinate by 

modeling Gaussian probability distributions around each focus. Third, the probability distribu-

tions of all activation foci were combined for each voxel, resulting in a modeled activation map. 

The union of these modeled activation maps then yielded voxel-wise ALE scores, which were 

compared to a null distribution reflecting a random spatial association between experiments. The 

p-value of a “true” ALE score was then given by the proportion of equal or higher values ob-

tained under the null distribution. The resulting non-parametric p values for each meta-analysis 

were cut off at a threshold of p < .05 (family-wise error corrected at cluster level; cluster inclu-

sion threshold at voxel level: p < .001).  

2.1.2.2. Meta-Analyses Conducted 

 First, a meta-analysis pooling across within-group task effects (i.e., main task effects for 

both age groups) was conducted on all experiments to examine the main effect of performing EF 

tasks on brain activity independent of age. Second, for examining age-related effects, we per-

formed three different meta-analyses of between-group contrasts: (1) pooled, (2) old > young, 

and (3) young > old. We also aimed to conduct separate meta-analyses for each EF subcompo-

nent, but only for inhibition more than 17 experiments were found to be eligible. Hence, a com-

parison between EF subcomponents was not possible. The results of the inhibition-specific meta-

analyses can be found in Tables A5 and A6. 
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Pooled analyses search for consistent group differences in EF-related brain activity, inde-

pendent of the direction of the between-group effect. For neuroimaging findings, pooled meta-

analyses may provide the best summary because the directions of group differences in individual 

experiments depend on how exactly these differences were calculated, which varies widely be-

tween studies: Some authors compute task versus control contrasts at the individual-subject lev-

el, which are then compared between old and young adults at group level, whereas others com-

pute group (old versus young) by task (task versus control or baseline) interactions at the second 

level. As control conditions strongly vary between experiments (from resting baseline to high-

level control tasks), effects of between-group activation differences in these control conditions 

may influence the overall direction of group differences unpredictably (Müller et al., 2017).  

 

2.2. Resting-State Functional Connectivity 

 To further characterize EF-related brain regions consistently affected by aging (i.e., re-

gions with significant convergence in the pooled age-related meta-analysis), we investigated 

their RS-FC patterns. Therefore, whole-brain RS-FC analyses were conducted. RS-fMRI images 

of 413 healthy adults were obtained from the publicly available enhanced Nathan Kline Institute 

- Rockland Sample (eNKI-RS; Nooner et al., 2012; age range = 18 – 80; mean age = 44.85; SD = 

18.51; 272 females). The re-analysis of the data was approved by the local ethics committee of 

the Heinrich Heine University Düsseldorf. Images were obtained with a Siemens TimTrio 3T 

scanner using BOLD (blood-oxygen-level-dependent) contrast [gradient-echo EPI (echo planar 

imaging) pulse sequence, TR = 1.4 s, TE = 30 ms, flip angle = 65°, voxel size = 2.0 × 2.0 × 2.0 

mm3, 64 slices]. 404 volumes were acquired. Participants were instructed to keep their eyes open 

and maintain fixation on a central dot. Physiological and movement artifacts were removed from 
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RS data by using FIX (FMRIB’s ICA-based Xnoiseifier, version 1.061 as implemented in FSL 

5.0.9; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), which decomposes the data into inde-

pendent components and identifies noise components using a large number of distinct spatial and 

temporal features via pattern classification. Unique variance related to the identified artifactual 

components is then regressed from the data. Data were further preprocessed using SPM12 (Well-

come Trust Centre Neuroimaging, London) and in-house Matlab scripts. After removing the first 

four dummy scans of each time series, the remaining EPI volumes were then corrected for head 

movement by a two-pass affine registration procedure: first, images were aligned to the initial 

volume and, subsequently, to the mean of all volumes. The mean EPI image was then co-

registered to the gray-matter probability map provided by SPM12 using normalized mutual in-

formation and keeping all EPI volumes aligned. Next, the mean EPI image of each subject was 

spatially normalized to MNI-152 space using the “unified segmentation” approach (Ashburner & 

Friston, 2000). The resulting deformation parameters were then applied to all other EPI volumes. 

Finally, data were spatially smoothed with a 5-mm FWHM (full width at half maximum) Gauss-

ian kernel to improve the signal-to-noise ratio and to compensate for residual anatomic varia-

tions.  

The BOLD signal time-courses of all voxels within each seed region, expressed as the first 

eigenvariate, were extracted for each subject. To reduce spurious correlations, variance explained 

by the mean white-matter and cerebrospinal-fluid signal were removed from the time series to-

gether with 24 movement parameters (including derivatives and 2nd-order effects; cf. 

Satterthwaite et al., 2013), which was subsequently band-pass filtered with the cut-off frequen-

cies of .01 and .08 Hz. Linear (Pearson) correlations between the time series of the seed regions 

and all other grey-matter voxels in the brain were computed to quantify RS-FC. The resulting 
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voxel-wise correlation coefficients were then transformed into Fisher’s Z-scores and entered in a 

group-level analysis of variance. The results of this random-effects analysis were masked with 

the subjects’ mean Z-scores >= .1 and thresholded at a voxel-level FWE-corrected threshold of 

one-sided p < .05. Here, we chose one-sided testing, as our hypotheses were directed (i.e., we 

were only interested in the positive coupling between our seed regions and the rest of the brain). 

An additional extent threshold of 10 contiguous voxels was applied to exclude smaller, potential-

ly spurious clusters. 

 

2.3. Association of RS-FC with Age and EF Abilities 

 In the same sample of 413 adults, we also examined the association of the seed region’s 

whole-brain RS-FC with age as well as EF abilities using analysis of covariance (ANCOVA). 

For assessing EF abilities, we computed four compound scores: a total score and three subscores, 

each representing a particular EF subcomponent (i.e., working memory, inhibitory control, and 

cognitive flexibility). The cognitive tasks used were also obtained from the eNKI-RS. Perfor-

mance raw scores were z-transformed - outliers > |3| standard deviations were removed - and 

added up to calculate EF subcomponent scores as follows: The working memory compound 

score consisted of reaction time (RT) and error rate (ER) of the 2-back and 1-back conditions of 

the Short Letter-N-Back Test, which is part of Penn’s Computerized Neurocognitive Battery 

(CNB; Gur et al., 2010). The inhibition compound score consisted of (i) the conflict effect of the 

Attention Network Task (ANT; Fan et al., 2002), (ii) RT and ER of the Color-Word Interference 

Test, which is part of the Delis-Kaplan Executive Function System (D-KEFS; Delis et al., 2004), 

and (iii) RT and ER of the Short Penn Continuous Performance Test (Number and Letter Ver-

sions), which is also part of Penn’s CNB. The cognitive flexibility compound score consisted of 
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RT of the Trail Making Test, which is part of the D-KEFS, as well as of RT and ER of the Penn 

Conditional Exclusion Task, part of Penn’s CNB. Finally, for the total EF score, all single scores 

were added up and divided by the absolute number of scores. All compound scores were multi-

plied by -1. Hence, higher scores represent higher performance. The results of the ANCOVA 

were masked with the RS-FC map of the respective seed region (as described above, see section 

2.2.) and thresholded at a voxel-level FWE-corrected threshold of two-sided p < .00625 (addi-

tional extent threshold of 10 contiguous voxels). The p-value was adjusted for multiple compari-

sons as we tested four models, and adjusted for two-sided testing as recommended by Chen et al. 

(2018). All results were anatomically labeled by reference to probabilistic cytoarchitectonic 

maps of the human brain using the SPM Anatomy Toolbox version 3 (Eickhoff et al., 2005, 

2007) and visualized with the BrainNet Viewer (Xia et al., 2013). 

 

3. Results 

3.1. Meta-Analyses 

3.1.1. Analysis of EF-related Effects Across Age 

A meta-analysis across both age groups and all experiments (reflecting all three EF sub-

components) was conducted to examine the general main effect of taxing EFs on regional brain 

activity. Significant convergence across experiments was found in left IFJ, left pre-SMA, left 

IPS/SPL, left mid-FG, left central Ins, and right frontal pole/MFG (see Table 1 and Figure 2).  

 

3.1.2. Analyses of Age-related Differences  

We performed three different meta-analyses of contrasts between age groups: (1) pooled, 

(2) old > young, and (3) young > old. The pooled meta-analysis, which included all experiments 
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(n = 49) that probed age differences in EF-related brain activity irrespective of the contrast’s 

direction, revealed only two regions with significant convergence of such age differences: left 

IFJ and left anterior cuneus/precuneus (aC/PrC; see Table 1 and Figure 3A). Convergence in left 

IFJ was almost equally driven by experiments probing working memory (32.95%), inhibition 

(28.54%), and cognitive flexibility (38.41%). Furthermore, it was more strongly driven by exper-

iments contrasting old > young (60.24%) than by experiments contrasting young > old (39.7%). 

Convergent activity in left aC/PrC was also driven by experiments on working memory (24.9%), 

inhibition (41.91%), and cognitive flexibility (32.45%). In contrast to left IFJ, however, it was 

almost exclusively driven by old > young contrasts (91.68%). Please see Table A4 for a full 

overview of the study contributions. 

The meta-analysis testing for consistently lower brain activity across EF experiments in 

older (vs. younger) adults (n = 31) did not yield any significant convergence. Conversely, the 

meta-analysis testing for consistently higher activity across EFs experiments in older (vs. young-

er) adults (n = 42) revealed significant convergence in left aC/PrC (see Table 1 and Figure 3B).  

We also aimed to conduct separate meta-analyses for each EF subcomponent, but only for 

inhibition more than 17 experiments were found to be eligible. The results of the inhibition-

specific meta-analyses can be found in Tables A5 and A6. 

 

3.2. Connectional Characterization 

 The two age-sensitive regions resulting from the pooled meta-analysis (i.e., left IFJ and 

left aC/PrC) were connectionally characterized by conducting whole-brain RS-FC analyses. The 

RS-FC map obtained for left IFJ comprised 14 clusters of significant coupling: the seed region 

extending into DLPFC, MFG, FEF, dPMC, SMA/pre-SMA, frontal pole, and aIns; left caudate 
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nucleus; left IPS extending into FG and SPL; two clusters in left cerebellum VII; right IFJ ex-

tending into DLPFC, FEF, dPMC, and frontal pole; right cerebellum VI and VII; right 

IPS/angular gyrus; right FG extending into Wernicke’s region; right SMA/pre-SMA; right aIns, 

right primary somatosensory cortex (S1); and bilateral anterior cingulate cortex (ACC; see Table 

2 and Figure 4A).  

The RS-FC analysis of left aC/PrC yielded 13 clusters: the seed region extending into bi-

lateral PCC, FG, subiculum, calcarine gyrus, and left IPL; left frontal pole extending into 

subgenual area, FEF, and bilateral frontopolar cortex; left posterior Insula (pIns) extending into 

parietal operculum; left cerebellum VII; two clusters in right cerebellum IX and VII; bilateral 

temporoparietal junction (TPJ); and four clusters in bilateral IFG pars orbitalis (see Table 2 and 

Figure 4B).  

 

3.3. Association of RS-FC with Age and EF Abilities 

3.3.1. Age  

An ANCOVA was performed to examine the association between the seed regions’ RS-

FC patterns and age. We observed significant negative associations with age for RS-FC between 

left IFJ and 10 clusters: left aIns, left FEF, left TPJ, bilateral IFJ/DLPFC, bilateral FG, and bilat-

eral aCC (see Table 3 and Figure 5A). 

 Age was also significantly negatively associated with RS-FC between left aC/PrC and 5 

regions: the seed region extending into bilateral visual cortex, left Heschl’s gyrus extending into 

planum temporale, left SPL, left S1, and left thalamus (see Table 3 and Figure 5B). Finally, age 

was significantly positively associated with RS-FC between left aC/PrC and 3 regions: left IPL, 

left PrC, and left TPJ (see Table 3 and Figure 6). 
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3.3.2. EF Abilities 

Finally, we performed an ANCOVA to assess the association between the seed regions’ 

RS-FC patterns and EF abilities. RS-FC between left aC/PrC and the seed region extending into 

bilateral visual cortices was significantly positively associated with the total EF score (see Table 

4 and Figure 7).  

We found a significant negative association of the cognitive flexibility score with RS-FC 

between left aC/PrC and 3 regions: bilateral IPL and right middle temporal gyrus (MTG; see 

Table 4 and Figure 8A), whereas RS-FC between left aC/PrC and the seed region extending into 

bilateral visual cortices was significantly positively associated with the cognitive flexibility score 

(see Table 4 and Figure 8B). 

Neither for working memory nor for inhibitory control was there any significant associa-

tion between performance (compound scores) and RS-FC of either seed region with the rest of 

the brain. 

 

4.  Discussion 

Coordinate-based ALE meta-analyses were used to synthesize the neural correlates of 

age-related changes in EFs. In particular, we first ran a meta-analysis across all age groups and 

all three EF subcomponents followed by a pooled and two directed meta-analyses examining age 

differences in EF-related brain activity. The initial global analysis corroborated a set of regions 

well-known for being involved in EFs. Consistent activation differences between young and old 

adults, however, were restricted to left IFJ and left aC/PrC. Subsequently, we assessed the con-

nectional profiles of these two age-sensitive regions and how their RS-FC profiles are modulated 
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by age and EF abilities. Left IFJ was found to be linked to regions involved in executive func-

tioning, whereas left aC/PrC was connectionally linked to regions involved in attentional pro-

cesses and the DMN. Furthermore, RS-FC between left IFJ and EF-related regions decreased 

with increasing age. Similarly, RS-FC between left aC/PrC and regions involved in perceptual 

processes decreased with increasing age, while RS-FC between left aC/PrC and DMN-related 

regions increased with age. Finally, only very few associations of seed-based RS-FC with EF 

abilities were observed: RS-FC between left aC/PrC and bilateral visual cortex was positively 

associated with the total EF score and cognitive flexibility, whereas RS-FC between left aC/PrC 

and DMN-related regions was inversely associated with cognitive flexibility.  

 

4.1. Comparison to Previous Meta-Analyses 

 The current results of between-group contrasts deviate quite noticeably from previous 

meta-analyses of age differences in EF-related brain activity (Di et al., 2014; Spreng et al., 2010; 

Turner & Spreng, 2012). The only two regions consistently found across these earlier meta-

analyses are left IFJ and pre-SMA. Thus, there is substantial disagreement between all meta-

analyses devoted to this topic. 

These discrepancies might be explained by several methodological differences: First, all 

previous meta-analyses included several reports of ROI analyses, which biases ALE whole-brain 

tests for significance towards convergence in the given ROIs (Müller et al., 2017). The null dis-

tribution in ALE reflects a random spatial association between findings across the entire brain 

assuming that each voxel has the same a priori chance of being activated (Eickhoff et al., 2012). 

The inclusion of ROI analyses would obviously violate this assumption, leading to inflated sig-

nificance estimations for regions supported by ROI analyses (Müller et al., 2017). Second, all 
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previous meta-analyses attempted to correct for multiple comparisons by controlling the voxel-

level FDR, which is considered invalid for topographic inference on smoothed data (Chumbley 

& Friston, 2009), features low sensitivity, and leads to inflated positive findings (Eickhoff et al., 

2016). FWE correction for ALE meta-analyses on the other hand provides good sensitivity and 

low susceptibility to false positives. Third, previous meta-analyses were partly based on rather 

small samples, rendering them prone to yielding clusters of “convergence” driven by very few or 

even single experiments (Eickhoff et al., 2016). Fourth, earlier analyses included some tasks that, 

according to our definition, would not constitute clear-cut operationalizations of EFs (e.g., sen-

tence comprehension or word generation tasks). Taken together, the inclusion of ROI studies, 

heterogeneity in the tasks included, limited sample sizes, and FDR-corrected thresholding may 

have rendered previous meta-analyses very liberal, leading to more widespread but potentially 

spurious convergence across published results. 

 

4.2. Left IFJ 

 The pooled meta-analysis of age differences in EF-related brain activity yielded conver-

gence in left IFJ. Our data indicate that left IFJ is recruited to a different degree by younger ver-

sus older adults. The sign of this difference, however, appears to depend on the type of task: For 

tasks taxing working memory, many studies report an age-related decrease in IFJ activation (e.g., 

Bäckman et al., 2011; Podell et al., 2012; Prakash et al., 2012). Podell et al. (2012) argued that 

deficits in working memory updating in older adults are accompanied by a reduced utilization of 

efficient neurocognitive strategies, relative to younger adults. This is in line with the dedifferen-

tiation hypothesis of cognitive aging, stating that brain regions showing specialized responses to 

specific cognitive tasks become less specialized with increasing age (Baltes & Lindenberger, 
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1997; Goh, 2011; Li & Sikström, 2002; Park et al., 2001; 2004). In the context of inhibitory con-

trol and attention shifting, however, studies report an age-related increase in left IFJ activity 

(e.g., Korsch et al., 2014; Townsend et al., 2006; Zysset et al., 2007). According to Townsend et 

al. (2006), the more extensive activation patterns observed in older adults may be due to (i) the 

failure of within-channel inhibition of irrelevant visual information, or (ii) compensatory neural 

recruitment caused by the attempt to increase relevant and decrease irrelevant information pro-

cessing. This is in line with Korsch et al.’s (2014) conclusion that increased age-related IFJ acti-

vation is caused by the use of different strategies when irrelevant information interferes with 

correct response selection. Looking at the individual study contributions to our cluster, our re-

sults support these findings. For experiments on cognitive flexibility or inhibition that contribut-

ed to the cluster, convergence in left IFJ was mainly driven by the contrast old > young (rather 

than young > old). In contradistinction, for experiments on working memory, convergence was 

mainly driven by the contrast young > old (rather than old > young; see Table A4). These find-

ings, although purely descriptive, point to a shared cognitive mechanism in the context of inhibi-

tion and cognitive flexibility, possibly leading to the observed similar aging effects on IFJ activi-

ty. 

In the literature, there also is a well-established link between left IFJ and task switching, 

set shifting, or updating task representations (Brass & Cramon, 2004; Derrfuss et al., 2005; 

Worringer et al., 2019), that is, processes that allow adjusting behavior to new external demands 

in a top-down fashion (i.e., cognitive flexibility). This notion is also supported by repetitive 

transcranial magnetic stimulation studies (Higo et al., 2011; Zanto et al., 2011), pointing to IFJ’s 

causal participation in updating task representations and regulating neural excitability in visual 

areas according to the task goal. Supporting the broad involvement of left IFJ across EF do-
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mains, Derrfuss et al. (2004) mapped the activity from experiments investigating working 

memory, task switching, and inhibitory control and found a significant overlap in IFJ for all task 

types. The almost equal contribution of working memory, inhibition, and cognitive flexibility 

experiments to the IFJ cluster in the pooled EF meta-analysis also points to its importance for all 

EF subcomponents. Further indirect evidence is provided by IFJ’s location at the junction of the 

inferior frontal and inferior precentral sulci, and thus at the intersection of three functional neu-

roanatomical domains: premotor, language, and working memory. Although our study cannot 

clarify the precise functional role of left IFJ, this region may integrate information from these 

three domains (Brass et al., 2005). In particular, it is thought to (re)activate and implement rele-

vant stimulus–response mappings, connecting stimulus information with motor output according 

to behavioral goals (Hartstra et al., 2012; Worringer et al., 2019).  

 Our RS-FC results further stress left IFJ’s important role in EFs, as its RS-FC map is 

highly overlapping with Camilleri et al.’s (2018) eMDN, the proposed neural correlate of EFs 

and with the frontoparietal control network (FPCN; Cole & Schneider, 2007), that is, bilateral 

ACC/pre-SMA, DLPFC, IFJ, aIns, dPMC, PPC. The negative association between RS-FC of left 

IFJ and age (see Figure 5A) indicates that age-related connectivity changes are not regionally 

specific (e.g. prefrontal) but rather wide-spread, including the dorsal attention network (DAN), 

the FPCN as well as the eMDN. An age-related RS-FC decline in these networks has been re-

ported previously (Campbell et al., 2012; He et al., 2014). The frequently reported age-related 

decline in EF performance might thus be associated with decreased FC between regions and 

networks important for executive functioning. Through its functional role, that is, stimulus–

response mapping and its importance for all EF subcomponents, left IFJ seems to be operating as 
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a key node for executive functioning and thus showing domain-general recruitment as well as 

intrinsic correlations to multiple task positive networks.  

Summing up, our meta-analytic and connectional findings suggest a pivotal role of left 

IFJ in EFs. While its involvement in EFs may mostly be domain-general, its recruitment appears 

to change with age depending on the type of task. As older adults seem to rely more on left IFJ in 

the context of cognitive flexibility and inhibition, younger adults recruit it more strongly in the 

context of working memory. Decreased RS-FC with age of left IFJ and regions associated with 

different task positive networks points to (i) generalized age-related changes across the brain 

rather than degradation in a particular region, as well as (ii) a possible underlying neural corre-

late for EF performance decline with age.  

 

4.3. Left anterior Cuneus/Precuneus 

Convergence in left aC/PrC was found in the meta-analyses EF pooled and EF old > young. 

To account for the difficulties in accurately comparing anatomical locations across individuals 

and studies due to individual differences as well as differences in spatial processing and brain 

templates (Brett et al., 2002) we chose to label the region of convergence aC/PrC instead of de-

ciding on just one region and thus neglecting important functional implications. Taking the con-

tribution of our region into account, convergence in the pooled meta-analysis was mainly driven 

by the contrast old > young. Consequently, consistent increased activation in aC/PrC was specif-

ic to older compared to younger adults. Furthermore, it has been associated with initiating shifts 

of attentional focus (Bzdok et al., 2015; Langner & Eickhoff, 2013; Worringer et al., 2019). This 

is in accordance with our finding of activity convergence in left aC/PrC being driven by the sub-

components inhibition and cognitive flexibility, where shifting the attentional focus and thus 
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inhibiting irrelevant input plays a key role (see Table A4). Previous studies (DiGirolamo et al., 

2001; Kuptsova et al., 2016; Townsend et al., 2006) testing age-related differences in attention 

shifting suggest that younger and older adults relied on the same regions during shift conditions, 

that is, frontoparietal regions including PrC. Older adults, however, also recruited these regions 

during the control condition, (i.e. attentional focusing). The authors suggested that older adults 

relied more on executive networks, even in the non-shift task condition, to compensate for re-

duced efficiency of sensory and cognitive processing. Another explanation might be that older 

adults had difficulties inhibiting the alternate task even during the non-shift condition. By in-

specting the study contributions to the left aC/PrC cluster in the pooled EF meta-analysis, one 

can see that 92% of the studies leading to a convergence in left aC/PrC result from the contrast 

old > young. 83% of these studies did not report any inclusive masking with a task-positive ef-

fect, and 68% tested against an active control condition, rather than rest. While we did not direct-

ly investigate deactivations – due to the lack of studies available that matched our inclusion crite-

ria – one could argue, based on these numbers, that convergence in left aC/PrC might be mainly 

driven by consistently greater aC/PrC deactivation in older adults during the control (vs. task) 

condition and/or consistently greater deactivation in younger adults during the experimental (vs. 

control) task, rather than a higher task-induced aC/PrC activation in older adults. A greater age-

related deactivation during control (vs. task) and deactivation difficulties (compared to younger 

adults) in task (vs. control) could lead to inefficiencies in attentional switching in older adults. 

Together with PCC, PrC is assumed to be one of the central and specialized hubs of the DMN, 

being intrinsically connected to the DMN as well as to attentional networks, in line with our RS-

FC findings (see Figure 4B). Its role might be controlling the dynamic interaction between these 

networks for an efficient distribution of attention (Leech et al., 2011). Furthermore, PrC appears 
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to be in a special position within the DMN as it is coupled with the DMN at rest, and with task 

positive networks during task performance (Leech et al., 2011; Utevsky et al., 2014). Its wide-

spread FC pattern, involving higher association regions, corroborates an important role in inte-

grating internally and externally driven stimulus processing (Cavanna & Trimble, 2006). 

 While PrC’s RS-FC with sensorimotor regions decreased in older adults, its RS-FC with 

regions associated with the DMN and DAN increased with age. Previous studies found that older 

adults failed to deactivate the DMN during a range of cognitive tasks (e.g., Grady et al., 2006; 

Lustig et al., 2003; Park et al., 2010; Persson et al., 2007). Spreng and Schacter (2011) assumed 

that this is due to a reduction of large-scale network flexibility in the context of changing task 

demands. These differences might also be due to differences during fixation, as older adults have 

a reduced susceptibility to mind wandering (Giambra, 1989; Jackson & Balota, 2012). Further-

more, it might be more difficult for older adults to fixate the cross, possibly explaining an age-

related RS-FC increase of left PrC with the DAN. Additionally, it has been proposed that func-

tional networks become less specific with age (Geerligs, Maurits, et al., 2014; Geerligs, Renken, 

et al., 2014). Thus, there might be a dedifferentiation in activation patterns – in accordance with 

the aforementioned dedifferentiation hypothesis of neural aging – and a compensatory recruit-

ment of further brain regions. The latter has also been proposed by the cognitive aging theories 

CRUNCH (Reuter-Lorenz & Cappell, 2008) and STAC (Park & Reuter-Lorenz, 2008), which 

state that in older adults, to maintain cognitive and behavioral performance, connections that 

have become fragile or deficient are weakened, existing connections are strengthened, and new 

connections are developed. 

RS-FC between left aC/PrC and bilateral visual cortices showed a positive association 

with the total EF and cognitive flexibility score, whereas RS-FC between left aC/PrC and both 
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bilateral IPL and right MTG revealed negative associations with the latter score. While larger 

RS-FC of PrC and visual areas seems to support cognitive flexibility, RS-FC of PrC and regions 

associated with the DMN and DAN is linked to worse performance in cognitive flexibility tasks. 

Taking our previous findings into account, a similar RS-FC map was positively associated with 

age,  which could be because of a dedifferentiation in activation patterns as proposed in the de-

differentiation theory of neural aging (Baltes & Lindenberger, 1997; Goh, 2011; Li & Sikström, 

2002; Park et al., 2001; 2004) or compensatory activations as postulated in CRUNCH (Reuter-

Lorenz & Cappell, 2008), and STAC (Park & Reuter-Lorenz, 2008). However, given the nature 

of the available data and the methods applied, we cannot draw firmer and more theory-specific 

conclusions. 

Summing up, our findings suggest that left aC/PrC is specifically recruited by older (vs. 

younger) adults, possibly to compensate for difficulties in shifting their attentional focus. Con-

versely, our results indicate an age-related increase in relative aC/PrC deactivation during the 

control task and/or an age-related decrease in relative aC/PrC deactivation during the experi-

mental task, rising an alternative hypothesis for the higher task-induced aC/PrC activation in 

older adults. Left aC/PrC’s intrinsic coupling with the DMN and DAN supports its proposed role 

as a specialized hub, involved in internally as well as externally oriented information processing. 

The age-related decrease in RS-FC between aC/PrC and sensorimotor networks suggests some 

decoupling with age that is detrimental to action-related, externally oriented processing; the con-

current increase in RS-FC between DMN and DAN, in turn, suggests age-related difficulties in 

decoupling aC/PrC from the DMN during task states and from DAN-related regions during rest. 

Taking left aC/PrC’s often reported covariation with left IFJ during rest into account which was 

not found in the current study, our findings might reflect (and possibly contribute to) a dediffer-
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entiation in functional network patterns in older adults, potentially undermining the special role 

this region plays in shifting between internally and externally directed attention.  

 

4.4. Limitations and Outlook 

Although ALE is a well validated and widely used coordinate-based meta-analytic ap-

proach, it stands to reason that image-based meta-analyses may have provided greater sensitivity 

(Salimi-Khorshidi et al., 2009). However, as imaging data have previously been rarely shared, it 

would have been difficult to impossible to find a sufficient number of experiments with whole-

brain images of effect estimates and standard errors.  

Further, we were not able to conduct domain-specific meta-analyses for working memory 

and cognitive flexibility, since too few experiments were eligible for inclusion. More individual 

fMRI studies would be necessary to separately investigate the three EF subcomponents. The in-

clusion of more experiments would furthermore allow for testing a domain-specific account of 

EFs by directly contrasting the subcomponents with each other and testing additional or different 

EF subdivisions including even more fine-grained EF subprocesses. As previously discussed in 

the context of left IFJ and left aC/PrC, it seems that there is a process-specific sensitivity to ag-

ing. This process specificity may strongly contribute to the observed small to nonexistent across-

experiment convergence of age differences in regional EF-related brain activity. In the context of 

inhibitory control, Korsch et al. (2014) found different age effects for different conflict tasks. In 

particular, there was overlap in brain activation during a flanker task between the two age groups 

and additional age-related activity in parietal and frontal regions. In contrast, during a stimulus–

response compatibility task, no overlap in brain activation between the two groups was observed. 

Hence, age differences in EF-related brain activity appear to be task-specific to a substantial de-
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gree. This, in turn, would then lead to a heterogeneous distribution of age-related effects across 

studies, even within EF subdomains, which severely limits the chances for meta-analytic conver-

gence and would argue for changing the focus of future research away from attempting to local-

ize common, (sub)domain-general activation differences between age groups toward identifying 

process-specific mechanisms of age-related activity modulations. As discussed earlier, another 

explanation could be age-related regional changes in grey-matter volume (i.e. atrophy). Thus, we 

recommend that future studies on this topic investigate (i) domains and even subdomains, (ii) 

compare age-related differences in EFs across different modalities, and (iii) incorporate compu-

tational cognitive modeling (Kriegeskorte & Douglas, 2018). 

Additionally, due to the small number of studies that reported deactivations, we were on-

ly able to investigate activation effects. As our results indicate age-related difficulties in deac-

tivating left aC/PrC in the context of EF-tasks, we call for future studies investigating both direc-

tions of task-induced brain activity changes. 

Somewhat surprisingly, no significant correlations between the two seeds’ whole-brain 

RS-FC patterns and the EF subcomponents working memory and inhibition were found. As there 

is ample evidence for RS-FC correlations with EF abilities in the literature (e.g., Hampson et al., 

2006; Markett et al., 2013), a possible explanation could be that the tests used to assess EF do-

main-related abilities (via compound scores) were not sufficiently representative of the rather 

broad EF subdomains to yield a valid assessment of individual abilities or, the breadth of the 

subdomains prevented the scores from sufficiently reflecting particular subprocesses and age 

modulations thereof. The latter notion is supported by the fact that age correlated only moderate-

ly with the combined EF score (r = -.44, p < .001), the cognitive flexibility score (r = -.41, p < 

.001), and the inhibitory control score (r = -.31, p < .001). It did only weakly correlate with the 
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working memory score (r = -.15, p < .05). For future studies on these questions it may be benefi-

cial to incorporate various psychometric assessments of a particular cognitive function, which 

would allow isolating function- and test- specific variance in order to elucidate brain–behavior 

relationships (and their changes across the lifespan) at a more commensurate level of “granulari-

ty”. 

Comparing our results to those of earlier neuroimaging meta-analyses of age-related dif-

ferences in EFs underlines the importance of (i) transparently reporting the analysis choices 

made, (ii) providing a detailed description of inclusion and exclusion criteria and their motiva-

tion, and (iii) precisely reporting the papers and contrasts included as well as whether further 

information was received from the authors of the original study (for guidelines see Müller et al., 

2018). Otherwise, even meta-analyses lack comparability and reproducibility. 

 

4.5. Conclusion 

 The current study suggests that left IFJ and left aC/PrC play an important role in age-

related differences in EFs as they were found the only two brain regions that showed consistent 

age differences in their recruitment during EF tasks across three major domains (working 

memory, inhibitory control, and cognitive flexibility). Although RS-FC analyses point towards a 

domain-general role of left IFJ in EFs, the pattern of contributions to the meta-analytic results 

also suggests process-specific modulations by age. In particular, older adults appear to rely more 

on left IFJ in the context of cognitive flexibility and inhibition, whereas younger adults recruited 

it more strongly in the context of working memory. Our findings further indicate that left aC/PrC 

is specifically recruited by older adults during EF tasks, potentially reflecting inefficiencies in 

switching the attentional focus. Overall, our results question earlier meta-analytic findings that 
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suggested different and more comprehensive sets of brain regions as showing consistent age 

modulations of their EF-related activity. Rather, our findings attest to the substantial heterogenei-

ty of such age-related differences and call for research that pays more attention to replicability 

and focuses on more narrowly and precisely defined EF subprocesses by combining multiple 

behavioral assessments, computational cognitive modelling, and multi-modal imaging.  
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9. Appendix 

Table A1 

Overview of All Studies Included in the Meta-Analysis of Within-Group Contrasts Comprising Information About the Mean Age, Number of Ac-

tivation Foci for Each Age Group, Masking with Task-Positive Effect, and Correction 

Study # First author Year n Age 
Younga 

Foci 
Young 

Page # Age 
Olda 

Foci 
Old 

Page # Task Masking Correction 

Working 
Memory 

            

1 Anguera 2011 16 21.1 
(2.5) 

- - 71.4 
(4.2) 

13 p. 19 table 3 Spatial WM masked uncorrected 

2 Bäckman 2011 20 25.2 
(22-30) 

4 p. 1852, text 3.3 70.3 
(65-75) 

- - Spatial Delayed 
Matching 

unmasked uncorrected 

3 Emeryb 2008 10 21.9 
(2.6) 

5 p. 1582 table 1 71.2 
(6.2) 

11 p. 1582 table 
1 

Letter-Number 
Sequencing 

unmasked corrected 

4 Grady 1998 13 25 (3) 8 p. 413, table 2 66 (4) 12 p. 413, table 2 Delayed Match-
to-sample 

unmasked uncorrected 

5 Haut 2005 8 23.3 
(1.6) 

6 p. 222, table 3 67.3 
(10.4) 

5 p. 222, table 3 Number-Letter 
Sequencing 

unmasked uncorrected 

6 Madden 1999 12 23.17 
(2.86) 

5 p. 126, table 2 71 
(4.67) 

13 p. 126, table 2 Recognition 
Memory 

unmasked uncorrected 

7 Oren 2017 22 29 (3.7) 10 p. 96, table 2 71.8 
(4.6) 

4 p. 96, table 2 n-back unmasked corrected 

8 Piefke 2012 14 23.6 
(3.3) 

18 p. 1291 table 3b, 
p. 1293 table 4b 

65.1 
(6.3) 

26 p. 1291 table 
3b, p. 1293 

table 4b 

n-back, Delayed 
Match to Sample 

unmasked uncorrected 

9 Raye 2008 14 20 (18-
26) 

2 p. 857 table 1D 75 (70-
83) 

2 p. 857 table 
1E 

Refreshing unmasked uncorrected 

10 Smith 2001 12 22.9 2 p. 2098, table 1c 66.6 3 p. 2099, table Operation Span unmasked corrected 
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(18-29) (65-72) 2c 
11 Vellage 2016 38 25.7 

(21-32) 
8 p. 7 table 2 65.8 

(58-74) 
18 p. 7 table 2 Filter and Storage unmasked uncorrected 

Inhibition             
1 Ansado 2012 16 23.31 

(3.42) 
24 p. 17, table 2 and 

3, p. 18, table 4 
67.82 
(3.21) 

22 p. 17, table 2 
and 3, p. 18, 

table 4 

Letter-name 
matching 

unmasked uncorrected 

2 Chee 2006 17 21 (20-
24) 

4 p. 500, table 2 67 (60-
75) 

- - Object Processing unmasked uncorrected 

3 Colcombe 2005 20 23.5 
(19-28) 

2 p. 369, table 3 67.5 
(52-87) 

3 p. 369, table 3 Flanker Task masked corrected 

4 Huangb 2012 15 25.53 
(3.48) 

31 - 66.07 (4.15) 27 - Stroop like unmasked uncorrected 

5 Korsch 2014 19 22.95 
(2.72) 

9 p. 5, table 2 70.26 (3.49) 15 p. 5, table 2 Mixed Flanker-
Stimulus-
Response-
Conflict 

masked uncorrected 

6 Lamar 2004 16 27.9 
(5.6) 

9 p. 1371, 
table 3 

69.1 (5.6) 14 p. 1372, table 
4 

Delayed Non-
match to Sample 

unmasked uncorrected 

7 Lee 2006 9 29.8 
(6.2) 

- - 65.2 (4.2) 9 p. 174, table 2 Response Regula-
tion 

unmasked uncorrected 

8 Madden 2002 7 23 
(2.13) 

12 p. 30, table 
2 

66.5 (4.96) 19 p. 30, table 2 Visual Search masked corrected 

9 Milham 2002 10 23 7 p. 10, table 
2 

68 10 p. 11, table 3 Stroop unmasked uncorrected 

10 O’Connellb 2012 14 22 
(3.3) 

5 - 70.6 (4.2) 20 - Oddball unmasked corrected 

11 Townsend 2006a 10 27.9 
(18-41) 

- - 70.7 (65-89) 4 p. 8/9 text Sustained Atten-
tion 

masked corrected 

12 Zhu 2010 22 20 (17-
23) 

8 p. 18, table 
2 

74 (68-80) 9 p. 18, table 2 Flanker Task unmasked corrected 

Cognitive             
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Flexibility 
1 Anderson 2000 12 24.4 

(3.0) 
5 p. 783, table 

5 
68.5 (4.0) 5 p. 783, table 5 Divided Attention unmasked uncorrected 

2 Chmielewski 2014 14 24.37 
(2.89) 

16 p.5, table 2 60.51 (3.34) 33 p. 5, table 2  Dual-Tasking unmasked uncorrected 

3 DiGirolamo 2001 8 25 (20-
30) 

17 p. 2069, 
table 2 

69 (63-75) 22 p. 2069, table 
2 

Task Switching unmasked uncorrected 

4 Eich 2016 62 25.82 
(20-30) 

2 p. 217, table 
1 

64.84 (60-70) 3 p. 217, table 1 Task Switching unmasked uncorrected 

5 Kuptsovab 2016 19 20-30 11 - 51-65 4 - Task Switching unmasked corrected 
6 Madden 1997 12 24.33 

(2.01) 
9 p. 400, table 

2 
65.5 (5.2) 13 p. 400, table 2 Visual Search unmasked uncorrected 

7 Meinzer 2009 16 26.1 
(3.7) 

10 p. 20, table 
2 

69.3 (5.6) 10 p. 20, table 2 Verbal Fluency unmasked corrected 

8 Townsend 2006b 10 27.9 
(18-41) 

15 p. 17, table 
1 

70.7 (65-89) 3 p. 17, table 1 Attention Shifting masked corrected 

9 Van Impe 2011 20 25.2 
(3) 

- - 68 
(4.19) 

19 p. 2405 table 
5 

Dual-Tasking unmasked corrected 

Note. # = number, n = number of subjects for the smaller group, which is used in ALE to model the Gaussian kernel. 
aAge in mean and standard deviation as retrieved from the original study. bFurther material was derived from the author of the original study.  
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Table A2 

Overview of All Studies Included in the Meta-Analyses of Between-Group Contrasts Comprising Information About the Mean Age, Number of 

Activation Foci for Each Age Group, Masking with Task-Positive Effect, and Correction 

Study # First author Year n Age 
Younga 

Foci 
Y>O 

Page # Age 
Olda 

Foci 
O>Y 

Page # Task Masking Correction 

Working 
Memory 

            

1 Anguera 2011 16 21.1 
(2.5) 

1 p. 20 table 5 71.4 
(4.2) 

10 p. 20 table 5 Spatial WM masked uncorrected 

2 Bäckman 2011 20 25.2 
(22-30) 

3 p. 1852 text 3.3 70.3 
(65-75) 

4 p. 1852 text 
3.3 

Spatial De-
layed Matching 

unmasked uncorrected 

3 Bennett 2013 20 21.8 
(2.5) 

1 supplementary 
table 3 

65.3 
(5.3) 

3 supplementary 
table 2 

Delayed Item 
Recognition 

masked corrected 

4 Emeryb 2008 10 21.9 
(2.6) 

- - 71.2 
(6.2) 

37 supplementary 
table 1 

Letter-Number 
Sequencing 

unmasked corrected 

5 Fakhri 2012 16 21 (3.7) 5 p. 358 table 3 68 (7.9) 5 p. 358 table 3 Probe Recogni-
tion 

unmasked corrected 

6 Grady 1998 13 25 (3) 4 p. 413 table 2, p. 
418 figure 4C, p. 

419 table 4 

66 (4) 2 p. 413 table 2, 
p. 418 figure 

5C 

Delayed 
Match-to-

sample 

unmasked uncorrected 

7 Grady 2007 16 26.1 
(3.7) 

- - 65.8 
(4.5) 

8 p. 196 table 4 N-back unmasked uncorrected 

8 Haut 2005 8 23.3 
(1.6) 

1 p. 222 table 4 67.3 
(10.4) 

- - Number-Letter 
Sequencing 

unmasked uncorrected 

9 Kurth 2016 20 23.4 
(8.7) 

2 p. 89 table 4 74.4 
(5.6) 

10 p. 89 table 4, 
p. 90 table 5 

Probe Recogni-
tion 

unmasked corrected 

10 Lamar 2004a 16 27.9 
(5.6) 

13 p. 1372 table 5 69.1 
(5.6) 

4 p. 1372 table 
5 

Delayed 
Match-to-

sample 

unmasked uncorrected 
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11 LeCouvey 2015 34 46.79 
(18.82) 

3 p. 7 table 4A 46.79 
(18.82) 

- - Binding Task masked uncorrected 

12 Paxtonb 2007a 20 22.8 
(3.7) 

9 p. 34 table 2, 
supplementary 

table 2b 

73 (5.7) 22 p. 34 table 2, 
supplementary 

table 2b 

AX-CPT unmasked uncorrected 

13 Podell 2012 11 < 35 16 supplementary 
table 2 

> 65 - - Updating WM masked corrected 

14 Prakash 2012 25 23.4 
(3.3) 

4 p. 195 table 2 72.16 
(4.6) 

- - N-back masked corrected 

15 Raye 2008 14 20 (18-
26) 

2 p. 857 table 1D 75 (70-
83) 

2 p. 857 table 
1E 

Refreshing unmasked uncorrected 

Inhibition             
1 Ansado 2012 16 23.31 

(3.42) 
4 p. 17 table 3 and 

4 
67.82 
(3.21) 

9 p. 17 table 2 
and 3 

Letter-name 
matching 

unmasked uncorrected 

2 Bloemen-
daal 

2016 23 22.7 
(0.6) 

2 supplementary 
figure 7 

67.6 
(0.7) 

9 supplementary 
table 5 

Load Depend-
ent Stop-signal 

Anticipation 
 

unmasked uncorrected 

3 Dørum 2016 21 24.42 
(5.06) 

6 p. 7 table 2 64.67 
(7.44) 

- - Multiple Ob-
ject Tracking 

unmasked corrected 

4 Eich 2016a 62 25.82 
(20-30) 

- - 64.84 
(60-70) 

6 p. 218 table 3, 
p. 219 table 4 

Task switching 
with go/no-go 

component 

unmasked uncorrected 

5 Grady 2010 10 25 (3) 10 p. 173 table 3 66 (4) 18 p. 173 table 3 Face Discrimi-
nation 

unmasked uncorrected 

6 Huang 2012 15 25.53 
(3.48) 

- - 66.07 
(4.15) 

16 p. 26 table 4 Stroop like unmasked uncorrected 

7 Korsch 2014 19 22.95 
(2.72) 

1 p. 7 table 3 70.26 
(3.49) 

3 p. 7 table 3 Mixed Flanker-
Stimulus-
Response-
Conflict 

masked uncorrected 

8 Lamar 2004 16 27.9 6 p. 1372 table 69.1 8 p. 1372 table Delayed Non- unmasked uncorrected 
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b (5.6) 5 (5.6) 5 match to Sam-
ple 

9 Lange-
necker 

2004 13 26.3 
(5.5) 

- - 71.1 
(5.4) 

22 p. 196 table 4 
and 5 

Stroop unmasked corrected 

10 Lee 2006 9 29.8 
(6.2) 

- - 65.2 
(4.2) 

3 p. 174 table 2 Response 
Regulation 

unmasked uncorrected 

11 Madden 2002 7 23 
(2.13) 

5 p. 30 table 2 66.5 
(4.96) 

- - Visual Search masked corrected 

12 Milham 2002 10 23 6 p. 10 table 2 68 4 p. 11 table 3 Stroop unmasked uncorrected 
13 O’Connell 2012 14 22 (3.3) - - 70.6 

(4.2) 
2 p. 9 table 4 Oddball unmasked corrected 

14 Paxtonb 2007
b 

16 21.56 
(3.14) 

1 supplemen-
tary table 5b 

72.38 
(6.51) 

29 p. 36 table 3, 
supplementary 

table 5b 

AX-CPT unmasked uncorrected 

15 Perssonb 2007 28 21.7 
(2.5) 

- - 68.1 
(5.8) 

4 received from 
author 

Verb Genera-
tion 

masked corrected 

16 Schulte 2011 14 23.6 
(19-30) 

9 p. 2083 table 
2, p. 2084 

table 3 

71 (58-
85) 

16 p. 2083 table 
2, p. 2084 

table 3 

Stroop Match-
to-sample 

unmasked uncorrected 

17 Sebastian 2013 49 39.96 
(17.14) 

8 p. 2188 table 
3 

39.96 
(17.14) 

12 p. 2188 table 
3 

 masked corrected 

18 Townsend 2006a 10 27.9 
(18-41) 

- - 70.7 
(65-89) 

4 p. 9 text Sustained At-
tention 

masked corrected 

19 Zysset 2007 23 26.6 
(3.6) 

- - 57.1 
(6.49) 

7 p. 941 table 2 Stroop unmasked uncorrected 

Cognitive 
Flexibil-

ity 

            

1 Chmielews
ki 

2014 14 24.37 
(2.89) 

- - 60.51 
(3.34) 

2 p. 193 text  Dual-Tasking unmasked uncorrected 

2 Eich 2016
b 

62 25.82 
(20-30) 

7 p. 217 table 1 64.84 
(60-70) 

21 p. 217 table 1 Task Switching unmasked uncorrected 
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3 Fernandes 2006 11 26.33 
(3.36) 

2 p. 2459 table 
5 

71.18 
(4.07) 

8 p. 2459 table 
5 

Divided Atten-
tion 

masked uncorrected 

4 Hubert 2009 12 22.4 
(2.5) 

- - 65 (4.5) 6 p. 15 table 5 Task of To-
ronto 

masked uncorrected 

5 Kunimi 2016 20 23.85 
(5.43) 

- - 67.35 
(4.27) 

22 p. 23 table 2 Task Switching unmasked corrected 

6 Kuptsova 2016 19 20-30 - - 51-65 29 p. 367 table 3 Task Switching unmasked corrected 
7 Madden 1997 12 24.33 

(2.01) 
5 p. 400 and 

401 table 2 
65.5 
(5.2) 

5 p. 400 and 
401 table 2 

Visual Search unmasked uncorrected 

8 Madden 2010 20 22.4 
(2.5) 

1 p. 36 table 3 69.6 
(6.05) 

17 p. 36 table 3 Task Switching masked uncorrected 

9 Meinzer 2009 16 26.1 
(3.7) 

- - 69.3 
(5.6) 

5 p. 8 text Verbal Fluency unmasked corrected 

10 Steffenerb 2016 63 25.79 
(2.7) 

- - 65.47 
(2.89) 

13 received from 
author 

Task Switching masked uncorrected 

11 Townsend 2006
b 

10 27.9 
(18-41) 

3 p. 18 table 2 70.7 
(65-89) 

20 p. 18 table 2 Attention 
Shifting 

masked corrected 

12 Van Impe 201
1 

20 25.2 (3) - - 68 
(4.19) 

19 p. 2405 table 
5 

Dual-Tasking unmasked corrected 

13 Zhu 201
6 

28 32 (3.8) - - 68.4 
(5.4) 

18 p. 141 table 3 Task Switching unmasked corrected 

14 Worthy 201
6 

18 23.61 
(18-31) 

6 p. 18 table 2 67 (61-
79) 

- - Decision Mak-
ing 

unmasked corrected 

Miscalle-
neous 

            

1 Esposito 199
9 

41 45.5 
(19.7) 

13 p. 969 table 1, 
p.970 table 2 

45.5 
(19.7) 

11 p. 969 table 1, 
p.970 table 2 

WCST, RPM unmasked uncorrected 

Note. # = number, n = number of subjects for the smaller group, which is used in ALE to model the uncertainty of coordinates, Y>O = young > 
old, O>Y = old > young.  
aAge in mean and standard deviation as retrieved from the original study. bFurther material was obtained from the authors of the original study. 
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Table A3 

Checklist for Neuroimaging Meta-Analyses by Müller et al. (2018) 

The research question was specifically defined  

YES, and it included the following contrasts:  
 

1) Within-group contrasts for young 
2) Within-group contrasts for old 
3) Between-group contrasts young > old  
4) Between-group contrasts for old > young 

 
The specific contrasts are reports in Tables 1 and 2 

  

The literature search was systematic  

YES, it included the following keywords in the following databases: 

1) (1) title: “age” or “aging” or “ageing” or “age-related” or “older adul
adults” or “life-span” or “elderly adults”; and (2) title: “executive fun
“working memory” or “inhibition” or “cognitive flexibility”; and (3) 
“fMRI” or “functional magnetic resonance imaging” or “PET” or “po
emission tomography” or “neuroimaging” or “cerebral blood flow” 

2) For working memory “n-back” or “sternberg” or “delayed match to s
“delayed simple matching” or “stimulus-response-compatibility”; for
tion “stroop” or “flanker” or “simon” or “stop signal” or “go/no-go” 
lus detection” or “stimulus discrimination” or “selective attention”; f
tive flexibility “task switching” or “dual task” or “set shifting” 

3) Databases: Web of Science (http://apps.webofknowledge.com), PubM
(https://www.ncbi.nlm.nih.gov/pubmed/), PsycINFO 
(http://ovidsp.tx.ovid.com), and Google Scholar (http://scholar.googl

Detailed inclusion and exclusion criteria were applied  
YES, and reasons of non-standard criteria were:  

Inclusion of: 

56

ults” or “old 
functions” or 
3) abstract: 
“positron 

 
o sample” or 
for inhibi-
o” or “stimu-
; for cogni-

bMed 

ogle.de) 
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- fMRI and PET studies 
- Healthy young and old participants without any pharmacological man

tions 
- Masking of the between-group contrast with task-positive effect 
- Activation data 
- For meta-analysis of within-group contrast: main task effect per grou
- For meta-analysis of between-group contrast: group comparison, pos

relation with age (old > young), negative correlation with age (young
- No correlation or interaction with other variables (e.g., RT) 
- Task > sensorimotor control, task > resting-baseline, task difficult > 
- The difficult task condition was included, if contrasts representing ea

difficult conditions were available 
- The contrast reflecting transient brain activity was included when con

sustained and transient activity were available 

Sample overlap was taken into account  

 

YES, using the following method:  

- Contribution from a study was limited to one experiment per study 
- If a study reported several experiments eligible for inclusion, the repo

ordinates were pooled to constitute a single experiment 

All experiments used the same search coverage 
(state how brain coverage was assessed and how small 
volume corrections and conjunctions were taken into 
account)  

YES, the search coverage was the following:  

- Only whole-brain coverage 
- Exclusion of ROI studies 
- Inclusion of masking of the between-group contrast with task-positiv

 

Studies are converted to a common reference space  

 

YES, using the following conversion(s):  
 

- Coordinates reported in Talairach space were converted to MNI spac
ter et al., 2007). 

Data extraction was conducted by two investigators (ide- YES, the following authors: 

57

anipula-

roup 
ositive cor-
ng > old) 

 > task easy 
 easy and 

contrasts for 

eported co-

tive effect 

ace (Lancas-
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al case) or double-checked by the same investigator (state 
how double-checking was performed)  

 

 
- Marisa Heckner, Edna Cieslik, and Robert Langner checked inclusio
- Marisa Heckner extracted coordinates 
- Marisa Heckner extracted other info: Number and age of subjects inc

task, contrast, space, modality, masking of between-group contrast w
positive effect, level of performance between age groups, correction 

- Edna Cieslik double-checked the following data: Coordinates extract
ber and age of subjects included, task, contrast, space, modality, mas
between-group contrast with task-positive effect, level of performanc
age groups, correction of results 

The paper includes a table with at least the references, 
basic study description (e.g., for fMRI tasks, stimuli), 
contrasts and basic sample descriptions (e.g., size, mean 
age and gender distribution, specific characteristics) of 
the included studies, source of information (e.g., contact 
with authors), reference space  

YES, and also the following data:  

- If further information was received by the authors 
- How coordinates were treated (MNI or Talairach) when space was no

specified in original study 
- If the between-group contrast was masked with the task-positive effe
- If results were corrected for multiple comparisons 
- Level of performance between age groups 

The study protocol and all analyses was planned before-
hand, including the methods and parameters used for 
inference, correction for multiple testing, etc.  

 

YES:  

1) No non-planned or post-hoc analyses.  

 2) The meta-analysis used the default methods and parameters of our group.

The paper includes meta-analytic diagnostics  Contributions from individual experiments to each cluster of significant conv
were provided for each meta-analysis performed. 
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sion criteria 

included, 
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n of results  

acted, num-
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Table A4 

Single Experiments Contributing to the Clusters of Convergence 

Analysis Studies Contribution in % 

Executive Functions   
within-group   
across age   

L occipital FG Emery 2008 
Grady 1998 
Madden 2002 
Ansado 2012 
Madden 1997 
Townsend 2006 
Van Impe 2011 
Korsch 2014 
Madden 1999 
Smith 2001 
Zhu 2010 
DiGirolamo 2001 
Chee 2006 
Huang 2012 
Kuptsova 2016 

2.40 
10.24 
12.63 
0.11 
5.77 

12.62 
0.17 
7.26 
1.40 

12.81 
12.42 
8.96 
5.83 
0.31 
7.06 

L Ins Grady 1998 
Madden 2002 
Ansado 2012 
Townsend 2006 
Madden 1999 
Oren 2017 
DiGirolamo 2001 
Anderson 2000 
Lee 2006 
Anguera 2011 
Huang 2012 
O’Connell 2012 

8.95 
11.84 
13.77 
2.11 

10.27 
11.38 
6.88 
0.15 
4.26 
6.76 
9.13 

14.49 
R frontal pole Emery 2008 

Milham 2002 
Grady 1998 
Madden 2002 
Van Impe 2011 
Chmielewski 2014 
Oren 2017 
Haut 2005 
Lamar 2004 
Anguera 2011 
Huang 2012 
Kuptsova 2016 

6.48 
10.69 
0.16 

10.17 
7.14 
0.51 

11.84 
0.99 

15.66 
9.60 

13.39 
13.22 

L IFJ Emery 2008 7.26 
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Milham 2002 
Grady 1998 
Ansado 2012 
Madden 1997 
Townsend 2006a 
Townsend 2006b 
Chmielewski 2014 
Smith 2001 
Oren 2017 
DiGirolamo 2001 
Bäckman 2011 
Piefke 2012 
Anguera 2011 
Meinzer 2009 
Huang 2012 
Kuptsova 2016 
Colcombe 2005 

4.53 
6.19 
0.08 
9.13 
2.20 
4.43 
3.98 
2.07 
2.10 
6.25 
1.21 
7.66 
8.26 
8.34 

11.72 
7.48 
7.09 

L pre-SMA Milham 2002 
Madden 2002 
Ansado 2012 
Madden 1997 
Korsch 2014 
Madden 1999 
DiGirolamo 2001 
Lee 2006 
Piefke 2012 
Meinzer 2009 
Huang 2012 
Kuptsova 2016 
Colcombe 2005 

4.66 
3.45 

12.54 
9.64 
8.72 
4.19 

11.33 
0.11 
7.20 

11.28 
16.81 
7.87 
2.19 

L IPS/lateral occipital cor-
tex 

Grady 1998 
Madden 2002 
Ansado 2012 
Madden 1997 
Townsend 2006b 
Van Impe 2011 
Korsch 2014 
Madden 1999 
Smith 2001 
Oren 2017 
DiGirolamo 2001 
Haut 2005 
Piefke 2012 
Anguera 2011 
Meinzer 2009 
Huang 2012 
Kuptsova 2016 

3.40 
11.20 
8.15 
9.77 
2.78 
6.10 
8.16 
0.36 
5.94 
0.23 
5.98 
1.28 
9.52 
3.11 
8.64 
8.35 
6.93 

between-group   
pooled   
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L aC/PrC Emery 2008  
Paxton 2007b  
Anguera 2011 
Zysset 2007  
Fakhri 2012  
Kunimi 2016 
Madden 2010  
Lamar 2004b 
Lamar 2004a 
Schulte 2011  
Eich 2016b 
Eich 2016a 
Kuptsova 2016  
Bäckman 2011  
Grady 2010  
Esposito 1999  

0.63 
10.36 
8.87 
4.39 
7.81 
5.35 
8.00 

14.05 
0.46 
7.53 
8.11 
2.92 

10.99 
7.12 
2.65 
0.71 

L IFJ Emery 2008 
Milham 2002 
Zysset 2007 
Grady 1998 
Madden 1997 
Townsend 2006b 
Fernandes 2006 
Prakash 2012 
Madden 2010 
Langenecker 2004 
Korsch 2014 
Zhu 2015 
Kuptsova 2016 
Podell 2012 
Bäckman 2011 
Grady 2010 
Esposito 1999 

7.43 
14.73 
4.48 
0.95 
6.77 
7.08 
0.33 

19.03 
0.16 
1.41 
7.61 

13.46 
10.61 
4.63 
0.87 
0.28 
0.11 

old > young   
L aC/PrC Emery 2008  

Paxton 2007b  
Anguera 2011  
Zysset 2007  
Kunimi 2016  
Madden 2010  
Lamar 2004b 
Schulte 2011  
Eich 2016b 
Eich 2016a 
Kuptsova 2016  
Bäckman 2011  
Grady 2010  
Esposito 1999  

1.08 
10.80 
10.05 
5.27 
6.95 
6.74 

14.43 
8.24 

10.86 
3.22 

10.33 
7.65 
3.58 
0.78 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204941
http://creativecommons.org/licenses/by-nc-nd/4.0/


 62

Table A5 

Brain Regions Showing Significant Convergence of Activity in Inhibition 

ALE-Analysis Cluster Voxel MNI Coordi-
nates 

Zmax Cytoarchitecture (Over-
lap in %) 

   x y z   
pooled L aC/PrC 113 -16 -70 12 4.35 Area hOc6 (V6; 72.1) 

Area hOc3d (V3d; 13.8) 
Area hOc2 (V2; 3.5) 
Area hOc1 (V1; 1.3) 

   -6 -66 10 3.92 Area hOc1 (V1; 35.7) 
Area hOc2 (V2; 18.9) 

old > young L aC/PrC 138 -16 -70 12 4.53 Area hOc6 (V6; 72.1) 
Area hOc3d (V3d; 13.8) 
Area hOc2 (V2; 3.5) 
Area hOc1 (V1; 1.3) 

   -6 -66 10 4.1 Area hOc1 (V1; 35.7) 
Area hOc2 (V2; 18.9) 

Note. L = left hemisphere, R = right hemisphere. Zmax = maximum z-score of the local maxi-
ma.  
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Table A6 

Single Experiments Contributing to the Inhibition Cluster of Convergence 

Analysis Studies Contribution in % 

pooled   
L aC/PrC Paxton 2007b 

Zysset 2007 
Lamar 2004b 
Schulte 2011 
Eich 2016a 

20.97 
18.65 
30.08 
14.39 
15.90 

old > young   
L aC/PrC Paxton 2007b 

Zysset 2007 
Lamar 2004b 
Schulte 2011 
Eich 2016a 

21.83 
17.01 
29.46 
16.32 
15.37 
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Table 1 

Brain Regions Showing Significant Convergence of Activity in Executive Functions 

ALE-Analysis Cluster Voxel MNI Coordi-
nates 

Zmax Cytoarchitecture (Overlap 
in %) 

   x y z   
Executive Func-
tions 

       

Within-Group        
Across Age L IFJ 355 -46 8 28 5.15 Area 44 (46.6) 
   -48 6 34 4.96 Area 44 (39.7) 
 L pre-

SMA 
333 -4 20 46 4.74 Area 6mr/pre-SMA (1.2) 

   -2 30 38 4.08 - 
   6 26 36 3.75 - 
   6 26 38 3.75 - 
   -6 32 28 3.32 - 
   -6 26 32 3.21 - 
 L IPS 335 -26 -62 46 5.66 Area hIP3 (IPS; 32.5) 

Area hIP6(IPS; 3.9) 
   -18 -70 46 4.50 Area hIP8 (IPS; 57.6) 

Area 7A (SPL; 38.5) 
   -22 -64 58 3.99 Area 7A (SPL; 63.3) 

Area hIP3 (IPS; 10.5) 
 L FG 285 -34 -84 -4 4.84 Area hOc41a (39.9] 

Area hOc4v (V4(v); 29.6) 
Area hOc41p (19.2) 
Area FG1 (10.6) 

   -38 -72 -14 4.41 Area FG2 (52.9) 
Area FG1 (40.1) 
Area hOc4v (V4(v); 1.9) 
Area hOc41a (1.3) 

 L aIns 173 -34 22 2 4.30 Area Id7 (97.2) 
 R frontal 

pole 
137 44 38 28 4.28 - 

Between-Group        
Pooled L aC/PrC 198 -8 -66 12 4.45 Area hOc2 (V2; 7.7) 

Area hOc1 (V1; 5.9) 
   -4 -58 30 3.76 - 
   -6 -58 26 3.52 - 
   -6 -56 26 3.52 - 
 L IFJ 119 -44 18 28 4.15 Area 45 (3.9) 
old > young L aC/PrC 225 -8 -66 10 4.61 Area hOc1 (V1; 34.8) 

Area hOc2 (V2; 12.5) 
   -4 -58 30 3.97 - 
   -6 -56 26 3.78 - 

Note. L = left hemisphere, R = right hemisphere, Zmax = maximum z-score of the local maxi-
ma.  
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Table 2 

RS-FC Analyses 

Seed Cluster Voxel MNI Coordi-
nates 

T Cytoarchitecture (Overlap 
in %) 

   x y z   
L IFJ L IFJ/DLPFC 9071 -46 16 28 104.00 Area 44 (20.9) 

Area 45 (17.9) 
   -50 10 32 48.90 Area 44 (40.8) 
   -42 46 -4 40.10 - 
   -46 42 2 39.60 Area 45 (2.4) 
   -40 2 56 34.90 - 
   -4 20 48 34.80 Area 6mr/preSMA (4.8) 
   -4 30 42 34.70 - 
   -42 4 54 34.70 - 
   -44 6 52 34.50 - 
   -30 22 -4 32.90 Id7 (11.9) 
 L IPS 8083 -32 -60 42 36.20 Area hIP3 (IPS; 55.2) 

Area hIP1 (IPS; 23.1) 
Area hIP6 (IPS; 21.6) 

   -44 -46 44 33.10 Area hIP2 (IPS; 44.0) 
Area hIP1 (IPS; 34.6) 
Area hIP3 (IPS; 18.6) 

   -54 -56 -18 33.19 Area FG4 (14.3) 
Area FG2 (4.0) 

   -60 -50 -12 30.60 - 
   -24 -76 48 18.60 Area hIP8 (IPS; 35.8) 

Area hIP5 (IPS; 26.3) 
Area hPO1 (IPS; 12.5) 
Area 7A (SPL; 8.3) 

   -22 -72 50 17.50 - 
   -40 -50 56 16.60 Area hIP3 (IPS; 38.4) 

Area 7A (SPL; 23.7) 
Area 7PC (SPL; 21.5) 
Area PGa (IPL; 7.6) 
Area hIP2 (IPS; 7.0) 

   -24 -70 56 16.50 Area hIP6 (IPS; 45.9) 
Area 7A (SPL; 40.4) 

   -34 -40 -22 15.10 Area FG3 (61.3) 
Area FG4 (1.4) 

   -46 -50 16 13.70 - 
 R IFJ/DLPFC 3429 46 18 28 36.70 Area 45 (21.0) 
   46 32 18 32.50 Area 45 (48.8) 
   30 36 -14 17.60 Area Fo3 (24.5) 
   34 38 -14 17.60 Area Fo3 (10.6) 
   30 12 50 16.50 Area 6d3 (39.0 
   48 46 -14 15.30 - 
   52 38 -14 14.70 - 
   38 6 62 14.50 - 
   50 8 48 13.70 - 
   46 12 50 12.50 - 
 R cerebellum 1477 12 -76 -28 34.50 - 
   30 -72 -50 30.30 - 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204941
http://creativecommons.org/licenses/by-nc-nd/4.0/


 66
   28 -64 -32 28.80 - 
 R IPS 1439 34 -60 42 24.00 Area hIP6 (IPS; 39.1) 

Area hIP3 (IPS; 2.0) 
   46 -38 42 16.30 Area hIP2 (IPS; 56.0) 

Area hIP1 (IPS; 8.5) 
 R FG 750 62 -48 -16 22.20 - 
   70 -36 -8 14.50 - 
   70 -22 4 12.10 Area TE 3 (65.1) 
 R SMA/pre-SMA 303 4 26 46 20.40 - 
   4 32 44 19.80 - 
 R aIns 129 30 24 -4 22.30 Area Id7 (3.1) 
 L caudate  40 -12 10 6 19.70 - 
   -14 6 12 18.90 - 
 L cerebellum 36 -10 -76 -30 19.40 - 
 L cerebellum 33 -32 -70 -50 18.00 - 
 L aCC 23 -4 4 28 24.90 Area 33 (18.4) 
 R aCC 21 6 6 28 22.60 Area 33 (42.6) 
 R S1 20 68 -8 22 12.50 Area 1 (15.0) 

Area OP4 (PV; 12.3) 
Area 3b (2.6) 
Area PFop (IPL; 1.9) 

   66 -4 28 10.60 Area 1 (22.7) 
Area 3b (2.0) 

L aC/PrC L aC/PrC/pCC 29870 -6 -64 16 68.00 - 
   -8 -60 12 67.20 - 
   8 -58 14 56.40 - 
   2 -66 24 50.70 - 
   -24 -42 -12 35.50 Subiculum (10.7) 

CA1 (Hippocampus; 4.5) 
   24 -38 -14 32.80 CA1 (Hippocampus; 5.9) 

Subiculum (5.2) 
   -2 -58 42 32.30 - 
   -44 -72 30 30.00 Area PGp (IPL; 58.9) 

Area PGa (IPL; 23.1) 
   -18 -16 -26 28.50 CA1 (Hippocampus; 42.7) 

Subiculum (17.4) 
Entorhinal Cortex (13.2) 
DG (Hippocampus; 11.5) 
HATA Region (3.0) 

   -20 -18 -24 28.40 CA1 (Hippocampus; 38.0) 
Subiculum (32.0) 
DG (Hippocampus; 22.5) 
Entorhinal Cortex (7.2) 

 L frontal pole 6434 -4 50 -14 32.60 Area Fp2 (46.3) 
Area p32 (24.2) 

   4 54 -14 31.90 Area Fp2 (56.3) 
   4 46 -16 31.30 Area p32 (21.4) 

Area Fp2 (16.5) 
Area s32 (12.8) 

   -2 10 -10 24.60 Area 25 (53.4) 
Area 33 (46.6) 

   4 24 -14 23.00 Area s24 (74.6) 
Area s32 (25.1) 

   -22 30 40 22.60 - 
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   4 8 -12 21.60 Area 33 (29.7) 

Area 25 (27.7) 
BF (Ch 1-3; 4.1) 

   -4 54 6 21.40 Area p32 (70.8) 
Area Fp2 (5.7) 

   2 8 -8 21.20 Area 33 (46.8) 
Area 25 (13.8) 
BF (Ch 1-3; 12.3) 

   6 58 8 21.10 Area p32 (51.8) 
Area Fp2 (44.0) 

 R TPJ 2392 58 -8 -22 24.20 - 
   42 18 -36 18.00 - 
   36 -22 16 17.60 Area OP2 (PIVC; 50.3) 

Area Ig1 (16.3) 
Area OP1 (SII; 16.1) 
Area OP3 (VS; 11.1) 
Area Ig2 (4.1) 

   50 10 -34 15.30 - 
   50 -20 8 14.20 Area TE 1.0 (21.4) 

Area OP1 (SII; 11.0) 
Area TE 1.1 (1.3) 

   42 -32 16 11.60 Area PFcm (IPL; 41.1) 
Area OP1 (SII; 8.8) 
Area TE 1.1 (5.5) 

   70 -18 4 8.93 Area TE 3 (69.9) 
   70 -22 0 8.20 Area TE 3 (59.5) 
 L TPJ 2190 -62 -10 -18 25.30 - 
   -38 16 -32 15.70 - 
   -40 14 -40 15.50 - 
   -36 20 -38 15.10 - 
   -50 8 -34 13.50 - 
 R FEF 754 24 32 42 22.50 - 
 L pIns 719 -36 -20 18 17.50 Area OP2 (PIVC; 36.8) 

Area OP3 (VS; 31.2) 
Area Ig2 (3.7) 

   -32 -24 12 17.10 Area Ig1 (52.2) 
Area OP2 (PIVC; 1.6) 

   -42 -28 10 16.40 Area TE 1.1 (64.4) 
Area TE 1.0 (34.6) 

 R cerebellum 403 8 -52 -46 26.20 - 
   2 -58 -46 26.10 - 
 R cerebellum 67 12 -84 -42 17.80 - 
 L IFG pars orbitalis 47 -28 12 -22 17.60 Area Fo3 (27.2) 
 L IFG pars orbitalis 44 -30 28 -18 13.90 Area Fo3 (79.9) 
 R IFG pars orbitalis 38 30 30 -16 14.60 Area Fo3 (37.3) 
 R IFG pars orbitalis 22 28 14 -22 15.60 Area Fo3 (16.8) 
 L cerebellum 21 -10 -84 -42 15.20 - 

Note. L = left hemisphere, R = right hemisphere. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204941
http://creativecommons.org/licenses/by-nc-nd/4.0/


 68

Table 3 
Association of RS-FC and Age 

 
 

Cluster Voxel MNI Coordinates T Cytoarchitecture (Overlap in 
%) 

   x y z   
L IFJ - R IFJ/DLPFC 392 48 18 24 7.80 Area 45 (26.0) 

Area 44 (6.5) 
   56 32 18 6.82 Area 45 (69.9) 
   52 18 34 6.81 Area 45 (36.6) 

Area 44 (29.0) 
   54 36 12 6.61 Area 45 (53.7) 
   50 36 4 6.39 Area 45 (43.3) 
   54 38 6 6.27 Area 45 (39.5) 
   56 36 4 6.18 Area 45 (41.6) 
   50 24 16 5.63 Area 45 (35.9) 

Area 44 (1.1) 
 L IFJ/DLPFC 206 -52 16 28 9.53 Area 45 (39.7) 

Area 44 (36.4) 
   -44 20 20 7.51 Area 44 (2.5) 

Area 45 (1.9) 
   -54 26 24 6.39 Area 45 (59.4) 
   -50 14 34 6.22 Area 44 (7.6) 
 L TPJ 168 -54 -28 0 6.95 - 
   -62 -30 4 6.68 - 
   -52 -40 6 6.60 - 
   -58 -42 10 6.49 - 
 L aIns 65 -32 24 -4 7.42 Area Id7 (43.5) 
   -36 24 -8 6.16 Area Id7 (9.5) 
 L FG 33 -38 -44 -22 5.97 Area FG4 (56.3) 

Area FG3 (43.7) 
   -46 -44 -20 5.85 Area FG4 (80.5) 
   -40 -46 -20 5.75 Area FG4 (66.3) 

Area FG3 (33.3) 
 R aCC 21 6 6 28 9.12 Area 33 (42.6) 
 R FG 20 50 -56 -18 5.84 Area FG4 (29.3) 

Area FG2 (19.1) 
 L aCC 18 -4 6 28 7.67 Area 33 (18.9) 
 R STG 12 70 -24 4 5.80 Area TE 3 (64.4) 
 L FEF 10 -32 8 36 5.67 - 
L aC/PrC - L aC/PrC 8267 -4 -64 4 10.60 Area hOc1 (V1; 55.0) 
   -16 -68 10 9.63 Area hOc2 (V2; 52.0) 

Area hOc6 (V6; 52.0) 
Area hOc1 (V1; 4.7) 

   8 -62 10 9.20 Area hOc1 (V1; 29.9) 
Area hOc2 (V2; 15.7) 

   20 -44 -6 9.10 CA1 (Hippocampus; 1.3) 
   -14 -44 -6 8.83 Subiculum (28.2) 
   14 -46 -4 8.82 Subiculum (10.1) 
   12 -68 16 8.79 hOc6 (3V6; 52.4) 

hOc2 (V2; 16.7) 
hOc1 (V1; 11.9) 
hOc3d (V3d; 2.9) 
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   -8 -78 2 8.70 Area hOc1 (V1; 52.5) 

Area hOc2 (V2; 44.2) 
Area hOc3v (V3v; 2.9) 

   -6 -82 6 8.69 Area hOc1 (V1; 71.5) 
   -20 -48 -6 8.69 - 
 L Heschl’s 

gyrus 
27 -44 -28 6 6.19 Area TE 1.1 (40.4) 

Area TE 1.0 (15.5) 
 L SPL 21 -12 -42 48 6.49 Area 5M (SPL; 32.8) 

Area 5Ci (SPL; 23.5) 
 L thalamus 12 -16 -30 -4 6.01 - 
 L S1 10 -20 -32 60 5.84 Area 4p (26.2) 

Area 4p (22.7) 
Area 4a (21.9) 

L aC/PrC + L IPL 49 -48 -68 28 5.71 Area PGp (IPL; 34.3) 
Area PFm (IPL; 21.7) 
Area PGa (IPL; 17.4) 

   -50 -64 24 5.65 Area PGp (IPL; 30.0) 
Area PFm (IPL; 28.6) 
Area PGa (IPL; 12.5) 

 L TPJ 21 -62 -22 -28 6.70 - 
   -64 -30 -24 6.23 - 
   -66 -32 -22 6.22 - 
 L PrC 10 -4 -56 30 5.87 - 

Note. L = left hemisphere, R = right hemisphere, - negative association with age, + positive association with 
age.   
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Table 4 

Association of RS-FC and Combined Total Executive Functions and Cognitive Flexibility Com-

pound Scores 

 
 

Cluster Voxel MNI Coordinates T Cytoarchitecture (Overlap in %)

   x y z   
Executive Functions        
L aC/PrC + L aC/PrC 121 -8 -66 12 6.65 Area hOc2 (V2; 7.7) 

Area hOc1 (V1; 5.9) 
   -18 -72 12 6.02 Area hOc6 (V6; 72.8) 

Area hOc1 (V1; 13.2) 
Area hOc2 (V2; 1.1) 

Cognitive Flexibility        
L aC/PrC - R IPL 81 50 -68 22 6.37 Area PGp (IPL; 54.0) 

Area hOc4la (11.7) 
   46 -70 30 5.86 Area PGp (IPL; 51.1) 

Area PGa (IPL; 4.5) 
Area hIP5 (IPS; 1.7) 

   48 -72 32 5.77 Area PGp (IPL; 69.6) 
 L IPL 79 -36 -82 34 6.23 Area hIP5 (IPS; 36.6) 

Area PGp (IPL; 26.6) 
Area PGa (IPL; 8.5) 
Area hIP4 (IPS; 5.0) 

   -46 -80 28 5.92 Area PGp (IPL; 57.1) 
Area PGa (IPL; 12.0) 

 R MTG 20 52 -12 -26 6.75 - 
L aC/PrC + L+R visual 

cortices 
834 -10 -68 10 7.15 Area hOc2 (V2; 32.1) 

Area hOc1 (V1; 30.4) 
   -2 -70 12 6.73 Area hOc1 (V1; 20.3) 

Area hOc2 (V2; 7.6) 
   22 -64 2 6.72 Area hOc1 (V1; 74.8) 
   2 -70 10 6.61 Area hOc1 (V1; 40.7) 

Area hOc2 (V2; 20.6) 
   12 -70 8 5.93 Area hOc1 (V1; 69.8) 

Area hOc2 (V2; 19.7) 
   -14 -70 -6 5.92 Area hOc3v (V3v; 53.4) 

Area hOc4v (V4(v); 24.0) 
Area hOc2 (V2; 22.6) 

   -8 -68 -4 5.91 Area hOc2 (V2; 46.4) 
Area hOc3v (V3v; 31.3) 
Area hOc4v (V4(v); 17.2) 
Area hOc1 (V1; 5.0) 

   -12 -68 -4 5.91 Area hOc3v (V3v; 43.0) 
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Area hOc2 (V2; 41.2) 
Area hOc4v (V4(v); 14.6) 
Area hOc1 (V1; 1.1) 

   -8 -76 -12 5.81 Area hOc3v (V3v; 10.7) 
Area hOc4v (V4(v); 2.5) 

   -6 -78 -10 5.76 Area hOc3v (V3v; 35.8) 
Area hOc1 (V1; 32.0) 
Area hOc4v (V4(v); 1.8) 
Area hOc2 (V2; 1.2) 

Note. L = left hemisphere, R = right hemisphere, - negative association with age, + positive asso-
ciation with age.
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Figure 1. Flowchart of the meta-analysis steps conducted.
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Figure 2. Foci of brain activity showing significant convergence of activity for EFs across 

age (cluster-level p < .05, family-wise error-corrected for multiple comparisons, cluster-

forming threshold at voxel level: p < .001). The scale bar reflects the maximum z-score of the 

local maxima. 
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Figure 3. Foci of brain activity showing significant convergence of activity for (A) EFs 

pooled, (B) EFs old > young (cluster-level p < .05, family-wise error-corrected for multiple 

comparisons, cluster-forming threshold at voxel level: p < .001). The scale bar reflects the 

maximum z-score of the local maxima. 
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Figure 4. Whole-brain RS-FC analyses of (A) left IFJ and (B) left aC/PrC (voxel-level fami-

ly-wise error corrected threshold of one-sided p < .05, extent threshold = 20, masked with the 

subjects’ mean Z-scores >= .1). The scale bar reflects t-scores.  
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Figure 5. Significant negative association between whole-brain RS-FC of (A) left IFJ and age 

and (B) aC/PrC and age, (voxel-level family-wise error-corrected threshold of two-sided p < 

.00625, extent threshold = 10, masked with RS-FC map of left IFJ and aC/PrC, respectively). 

The scale bar reflects t-scores.  
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Figure 6. Significant positive association between whole-brain RS-FC of left aC/PrC and 

age, (voxel-level family-wise error-corrected threshold of two-sided p < .00625, extent 

threshold = 20, masked with RS-FC map of left aC/PrC). The scale bar reflects t-scores.
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Figure 7. Significant positive association between whole-brain RS-FC of left aC/PrC and execu-

tive functions, (voxel-level family-wise error-corrected threshold at two-sided p < .00625, extent 

threshold = 10, masked with RS-FC map of left aC/PrC). The scale bar reflects t-scores. 
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Figure 8. (A) Significant negative and (B) positive association between whole-brain RS-FC of 

left aC/PrC and cognitive flexibility, (voxel-level family-wise error-corrected threshold at two-

sided p < .00625, extent threshold = 10, masked with RS-FC map of left aC/PrC). The scale bar 

reflects t-scores. 
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