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Abstract

The inherent low contrast of electron microscopy (EM) datasets presents a significant challenge
for rapid segmentation of cellular ultrastructures from EM data. This challenge is particularly
prominent when working with high resolution big-datasets that are now acquired using electron
tomography and serial block-face imaging techniques. Deep learning (DL) methods offer an
exciting opportunity to automate the segmentation process by learning from manual
annotations of a small sample of EM data. While many DL methods are being rapidly adopted
to segment EM data no benchmark analysis has been conducted on these methods to date. We
present EM-stellar, a Jupyter Notebook platform that is hosted on google Colab that can be
used to benchmark the performance of a range of state-of-the-art DL methods on user-provided
datasets. Using EM-Stellar we show that the performance of any DL method is dependent on
the properties of the images being segmented. It also follows that no single DL method
performs consistently across all performance evaluation metrics.

Main

Electron microscopy is a fundamentally important modality for basic biomedical science
research. In recent years we have seen significant advances in electron microscopy
technologies with the advent of , first, electron tomography and, more recently, serial block-
face scanning electron microscopy [1]. These technologies generate giga- and tera-bytes of
high-resolution images of sub-cellular architecture which must be segmented manually or using
image segmentation algorithms. The inherent low contrast in electron microscopy has
motivated the use of crowd-sourcing platforms, and image segmentation challenges such as to
reduce the image post-processing time. Deep learning is a powerful approach to image
segmentation that is being widely explored as a way to segment high-throughput biological
datasets, including electron microscopy (EM) images [2]. In recent years, there have been
several efforts to streamline the usage of such technologies for the community [3-6]. One
crucial question that arises is whether we can use such platforms to segment all types of electron
microscopy data and whether they have inherent limitations in segmenting particular types of
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ultrastructures. Typically, these platforms utilise one unique or a limited number of available
deep neural network architectures. No study has investigated the relationship between the
choice of the DL method and the segmentation performance. Moreover, segmentation
performance evaluation remains under investigated as current studies use a limited number of
the evaluation metrics, and the impact of the choice of evaluation metric has not been
investigated.

One of the other challenges that the community faces when using such methods is the
lack of sophisticated DL utilities and functionalities as the current platforms often resort to
demo-based DL applications. For example, such platforms opt for one single optimisation
method or use a limited set of evaluation criteria as the inbuilt evaluation metrics of the popular
application programming interfaces (API) are often limited. Or the segmentation objective
function or loss function is constrained to a limited number of inbuilt functions that such APIs
provide. However, we have witnessed in recent years that successful DL applications in
computer vision problems rely on a strategic blend of data processing, network architecture,
optimisation method, loss function, validation method, validation criteria and hyperparameter
tuning. We have also seen how the choice of network architecture, loss function or optimisation
method can affect the DL performance [7-13]. In addition to the above, the cost-effectiveness
or the computational efficiency of DL applications have not been investigated before.

We present EM-stellar (the official implementation is provided as a Colab Notebook on
GitHub'), a comprehensive interface between the user and the DL application that is dedicated
to EM image segmentation. Figure 1 represents the workflow of EM-stellar and the analysis
that we have investigated in this study. EM-stellar provides a wide range of DL network
architectures, evaluation metrics, and easy to use utilities. Such utilities involve a wide range
of custom loss functions, validation criteria, state-of-the-art optimisation methods that
minimise the hyper-parameter tuning, and K-fold cross-validation. Moreover, it enables the
user to benchmark the performances of a diverse set of DL algorithms and use the desired
methods as the ensemble of models for the final inference stage. EM-stellar is provided as the
self-explanatory Jupyter Notebook for Google Colab which simplifies the use of such
sophisticated technologies and utilities to a set of simple user clicks. This approach will save
lots of time as the user will not face problems with software dependencies instalment, and they
do not need to learn the workflow of applications as EM-stellar is ready to use interface with
guidelines of the usage for the users.

! https://github.com/CellSMB/EM-stellar
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Figure 1. Overview of the EM-stellar. Top of the figure shows the workflow of the EM-stellar.
The user uploads raw data to the Google Drive, uses the networks including EM-net and U-
net to segment the raw data. A wide range of metrics can be used to monitor the validation or
to assess the inference performance. Moreover, in this study we have addressed a wide range
of analysis including complexity analysis, convergence times, effect of the batch size on the
segmentation performance and the computational demand. Moreover, we have also compared
the DL performance with the previously developed machine learning software packages
including ilastik and Weka.
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Results

Overview of deep learning methods

We performed an extensive survey of the literature to identify state-of-the-art deep neural
networks that have been utilised for EM image segmentation. We chose CDeep3M [3], EM-
net [4], PReLU-net [14], ResNet-50 [15], SegNet [16], U-net [17] and VGG-16 [18] for our
experiments. Among these methods, we have experimented EM-net with all of its seven base
classifiers bringing the total number of networks and methods to a maximum of thirteen. We
used two publicly available focused ion-beam scanning electron microscopy (FIB-SEM)
datasets for our experiments and evaluation purposes. We utilised a wide range of segmentation
evaluation metrics to compare the results including Fl-score, Foreground-restricted Rand
Scoring after border thinning (VRa"d(thinned)) Foreground-restricted Information-Theoretic

Scoring after border thinning (V™ ° (thinnea)) [19]. More details about datasets and evaluation

metrics are highlighted in methods section.

EM-net variants demonstrate reliable learning capacity on both small and large
datasets

We trained and evaluated chosen networks with two FIB-SEM datasets, including one
small cardiac dataset comprising 24 serial sections each of pixel size 512 x 512, and another
large neuronal dataset consisting of 320 serial sections with the same image size as the cardiac
dataset. Mitochondria were manually annotated on both datasets. Figure 2 illustrates the results
of evaluating networks on the test datasets that were held out randomly and not used for
training. The result values have been normalised using min-max normalisation per metric
category for comparison.

As shown, despite the difference in size between these two datasets, EM-net variants
(grouped within a box on both heatmaps) demonstrate competitive evaluation metric values
when compared to other methods. The ensemble of top EM-net base classifiers outperforms
other methods majority of the metrics on the cardiac dataset; however, the segmentation
performance metric values were not as high performing on the neuronal dataset based on
average voting.

No one network can fit them all

Figure 2 shows how the underlying texture and intensity distribution of different datasets,
and the target ultrastructures can affect the performance of a deep neural network in segmenting
a dataset. One network cannot achieve high performance for all datasets — one network cannot
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Figure 2. Heatmap of evaluation metrics for different methods based on the test datasets. The
values are normalised using min-max normalisation per metric category. The black boxes
correspond to EM-net base classifiers, including the ensemble methods. Top: cardiac, bottom:
neuronal data.

fit them all. Considering U-net BN and EM-net V2 4X, both methods demonstrate only above-
average performance on segmenting the cardiac dataset in terms of the VR“"d(thinned) score,
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however, they achieve top performance based on the same metric for the neuronal data.
Additionally, almost all of the methods represent relatively similar performance based on
specificity metric for the cardiac dataset, whereas they have dropped below 50% on the
neuronal dataset. CDeep3M demonstrates above-average performance for the cardiac dataset,
whereas it provides inferior performance on the neuronal dataset. However, figure 2 implies
that an ensemble of top classifiers may lead to reliable performance across different datasets.

Evaluation metrics remain subjective and probably unique to the deep neural
network

Choosing the right evaluation metric for segmenting EM data is a critical and still
challenging step as depending on the objective of the segmentation, the user might prefer a
specific set of segmentation metrics [19]. In other words, there is no one universal evaluation
metric for such tasks. The choice of such metrics might even depend on the segmentation task;
for example, 2D or 3D segmentation may require different evaluation metrics. One previous
study [20] has investigated benchmarking segmentation metrics for biomedical images in the
3D setting. Still, most of the studies have opted for Fl-score and Jaccard index as the
segmentation metric of choice. In one other research [21], the same metrics have been utilised
as the main evaluation metrics for nucleus segmentation.

We extended our analysis to monitor the response of the neural networks to different
evaluation metrics. We followed this aim as the evaluation metrics reported for electron
microscopy image segmentation remains sparse in the literature, and no study has investigated
such a broad range of analysis on evaluation metrics. Our analysis shows that performances of
these networks are subject to change depending on the evaluation criteria. Take the result of
U-net BN on neuronal test dataset as an example shown in figure 2. This network achieved top
performing VRa"d(thinned) score, however, it demonstrated average performance when using
other metrics, including accuracy, for example. Moreover, our analysis shows that the Jaccard
similarity index and F1-score are mostly correlated for those instances that have achieved top
Jaccard index scores.

In addition to the above, we found that some methods demonstrate unique behaviour
when applied to different datasets. As shown in figure 2, CDeep3M demonstrates the same
performance for specificity and PPV, meaning that this network has the nature of producing
minimal false-negative segmentation instances. However, the performance of the VGG implies
that this network delivers low specificity and high sensitivity on both neuronal and cardiac
datasets. These findings suggest that the architecture of the deep neuronal networks and the
underlying layers can affect the performance of the networks when evaluated with different
metrics. In summary, the users might prefer one network over another depending on the
desirable evaluation metrics, and they should not expect that one method will be the top
performer for all the metrics.
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Figure 3. Convergence times (hours) of different networks for cardiac and neuronal data based
on the different evaluation metrics. These times have been reported based on our runnings on
four parallelly pooled Nvidia Tesla P100 GPUs.

Convergence times vary depending on the size of the dataset or the underlying
data structures

Figure 3 shows the convergence times of the networks on both cardiac and neuronal
datasets according to the validation metrics that we have chosen during the training. The
convergence times imply that the large ground-truth datasets (in this case, neuronal dataset),
and potentially diverse structural variations in the data will impact the convergence time of the
network. However, this does not necessarily mean that the convergence times are positively
correlated with the data size only.

Take EM-net V1 BN and V1 BN 2X as an example shown in figure 3. Based on a
comparison between the convergence times of these two networks for the cardiac dataset, one
user might expect that V1 BN 2X will demonstrate lower mean and median values for the
convergence times relative to the V1 BN on the neuronal dataset as well. However, figure 3
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shows precisely the opposite. On the other hand, U-net and U-net BN demonstrate relatively
similar convergence times based on their mean and median values for the neuronal dataset;
however, U-net BN has converged faster than U-net on the cardiac dataset. Our analysis shows
that convergence times does not only depend on the ground-truth data size but is also affected
by underlying data structures and the feature bank of the network used for the training. In
general, EM-net V1 2X and EM-net V2 show less sensitivity to the data size or data structures,
as shown in figure 3.

Complex networks might not perform well and might also exhaust resources

Figure 4 illustrates the ball chart reporting the complexity of the networks in terms of
Giga FLOPs, the associated number of parameters and top VR"d (thinned) Score (thresholded
to above 0.90) on the corresponding test datasets. The operations are reported for one iteration
based on an input tensor with the shape of (1, 512, 512, 1) representing a single batch of
monochromic image. As shown, ResNet and CDeep3M required the lowest and highest FLOPs,
respectively.

Firstly, the number of parameters does not directly reflect the complexity. Considering
EM-net V2 4X and U-Net BN, Both these networks have a relatively similar number of
parameters; however, EM-net V2 4X required less computational resources to perform the
same job as compared to U-Net BN. Secondly, this figure shows that the high number of
parameters or complexity of the networks do not necessarily yield top test performances. This
figure shows how EM-net V1 2X and V1 BN 2X have achieved top VRa"d(thinned) score on
the cardiac dataset despite their very low complexity and the number of parameters. However,
we can observe that their performances have been not as good when tested on the neuronal
dataset but they are still competitive when compared to the VGG and CDeep3M results.
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Figure 4. Ball chart reporting complexity of networks based on Giga FLOPs and the
corresponding performances in terms of the VR“"d(thinned) score. This figure also illustrates
the number of trainable parameters for individual networks (millions).
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Finally, we can observe that U-Net BN demonstrates similar performance in terms of
VRa"d(thinned) score for both cardiac and neuronal datasets.

Visualisation of the intermediate layers reveals the redundancy of the feature
channels

We visualised over 140,000 intermediate feature channels for U-net BN, VGG and EM-
net V2 4X on the test datasets. We analysed the 2D correlation between each of the individual
channels leading to over than 9 billion feature correlation maps. Figure 5 illustrates the
distributions of the correlation maps between each block of the networks. Each of these blocks
shares the same characteristic as the underlying feature channels, which have the same
resolutions. For example, B1 represents the distributions of the feature correlation maps for
these three networks within their corresponding block one, and they all have the same feature
resolutions in this case (512, 512) in x and y as we have used for training datasets. We have
also visualised the inter-block feature correlation maps by which we can analyse the
relationships of the feature maps within each of the blocks of these networks. For example,
take B4 and B3 in y- and x-axes, respectively. This location corresponds to 2D contours of the
feature correlation distributions between these blocks. It suggests that U-net represents similar
feature correlation distributions in blocks three and four; however, VGG and EM-net show
much spread distributions which means they extract less redundant feature maps. We have also
visualised the scatter plots of these feature correlation maps distributions in the upper-diagonal
plots.

Our analysis shows that in general, VGG and EM-net demonstrate fewer feature
correlations within each block and even between the individual blocks as compared to U-net.
The distributions of these feature channel correlation maps reach their maximum between
blocks three and four in VGG, implying that features are less correlated within these two
blocks. However, EM-net demonstrates less correlation between the feature channels within
the block five called “the bottleneck™ (where almost 30-50% of the features are concentrated
here) as compared to the two others.

From the inter-block feature correlation map perspective, we can observe that U-net
demonstrates a high correlation between the correlation map distributions of the different
blocks as these distributions are centred or peaked. This implies that feature maps extracted by
the U-net could potentially lead to redundant feature maps, especially in the bottleneck as
almost all of the blocks represent the same level of feature correlation map distributions. One
study [22] has investigated this phenomenon by tweaking the U-net architecture where they
have substituted the encoder of the U-net to the encoder of the VGG-11, and the authors have
obtained better performance in terms of Jaccard similarity index.
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Visualisation of the segmentation masks reveals that CDeep3M is less prone to
false-negative

We have visualised the overlays of the segmentation results on the sample cardiac and
neuronal test datasets. Figure 6 illustrates the overlay of binary masks on the sample neuronal
test dataset based on the results of EM-net (average and majority voting), CDeep3M and U-net
BN. As shown, CDeep3M provides minimal false-negative or missing mitochondria on these
images; however, the number of false-positives is higher than EM-net and U-net. U-net and
EM-net offer a higher number of false-negative instances in comparison with CDeep3M as
they are more prone to missing mitochondria.

We have used a threshold value of 0.5 to obtain binary masks of the segmentation
probability maps resulted from the networks in these visualisations, as illustrated in figure 6.
However, metrics like VRa"d(thinned) and VIV ? (thinnea) handle such a limitation by thinning

the border or using a threshold step value of 0.1. As a result, we can monitor the desired
performance metric and finally determine the best performing threshold value.
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of the feature correlation maps, the bottom-diagonal plots represent the 2D contours of the block-wise
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Comparison of mitochondria segmentation results on sample neuronal images

,EMNET Average Voting _EMNET Majority Voting | _ CDeep3M
: -,: = : BN a -,: = : \-‘, p
A J\\~\ K (‘ f\\’\\ fe ] 6‘8
SN b wl oy oAy
Sa RN
A \ E L r
& S N é’ <
:E;u » \
r S o Ve
\ L who O %ﬁj SN
L d s
)
- = — - —
| R ) R R A
,EMNET Average Voting L EMNET Majority Voting CDeep3M
] SN IR ] SN . N e . U "
A ¥ | e | & ‘-_\’) f'l
2 - @ . 0 20 - <o b 10 é:) ’1 \
L) \ N N 3
n _\_J:; . s '; ‘:’ _\_J'y [} 256 Q K/_{ » [ §
3 - (0 - s (7 - -
(4 O Cenld (s LA
Siasm b G e e L \1%»:./ AL De ) L
- 2 - o - j
wl Sy B Ty wl o3, SO T
o 7 e ] (1 . e
w00 (I - w0 [ o) o] o T 7 L - .
EMNET Average Voting ~ EMNET Majority Voting | CDeep3M , U-NET
L RN L e N — ~ -y SN
- N TaN = \\ TN
10 D w D w AN S
iy \ 9 |
00 0 2 c 2
a s Ya A
v 300 [ [ 300 20 mf i
L i P " J} i
o) 150 /7 0 / 00 P - /
< i/ 1
E L i s s . ol
= )nn T I R I B W e h ik a
Q EMNET Average Voting EMNET Majority Voting CDIE_eJﬂM U-NET
v—Ql-. o SN e e ow o TNy e st w o - -~ - o ATy e e
o b = T
. oy O & o -~ /
g - Eeo - T e fomi G0 Y L el
< —S R, o= \
(7o 00 P 200y e =y iy =
< (5] o ()
a0 a0 a0 {70 a0 |
SR NN ey iy,
wf = R P R el N
M [ M [ [ [
5w om0 ow e s W o awm w0 s T Wz e w0 v i e s ae
EMNET Average Voling JEMNET Majority Votin ) CDeep3M U-NET
—w A **J—Ltg A v AN, - -
. o, g LS 2 N s |
NN U NN O SR NN -
700 Y - a0 N - 200 L 200 o -
e T\ g TN Cy S ¥ iy T
o Ny RN DD [
00 200 0 0 .
Ay AN A\ A
w00 N | N - o N | )
N - N e C 2 Z
500 50 E 3y 550 .
EMNET Average Voting EMNET Majority Voting CDeep3M i U-NET
. . . .
). /
) y
100 100 100 (%4 bt
oo { p
00 00 Ee 2
<
o (e
w20 =00 a0 @ EE R S
( TN
400 00 a0 \ 00
el @ C ;
A} N O hl
” 100 200 300 400 00 . 100 200 300 00 500 " I x 200 ano 500 o 10 x ann 00
True positive M Falsc positive
I False negative True negative
Methods ¢ s

Figure 6. Comparison of mitochondria segmentation results on sample neuronal test dataset.
Yellow, green, red and blue correspond to true-positive, true-negative, false-negative (missing
mitochondria) and false-positive. EM-net ensembles and U-net are less prone to false
positives; however; CDeep3M demonstrates minimum false-negative segmentation errors.
The left column represents the sample test serial block-face scanning electron microscopy
(SBEM) images of mice brain cells. Other columns correspond to the overlay of result masks
for EM-net ensembles based on average and majority voting, CDeep3M and U-net.
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Discussion

We have presented EM-stellar, a framework for benchmarking deep learning methods
for electron microscopy image segmentation that is hosted on Google Colab. Although a couple
of reviews of using deep learning methods for microscopy image analysis and segmentation
have been reported [2, 23], a comprehensive evaluation of the segmentation methods has not
been conducted to date. In this paper, we have compared seven different deep convolutional
neural networks for electron microscopy image segmentation. Most of the studies reported in
the literature are limited to one tissue type such as neuronal microscopy datasets; however, we
report our analysis not only using a neuronal dataset but also using cardiac electron microscopy
data. We also have extended our study to analyse the performance of these methods using a
wide range of segmentation metrics. Moreover, we report the computational complexity of
these algorithms and their associated computational demand. This is the first study in the
literature that reports such analysis in the context of electron microscopy image segmentation,
which is implemented in the cloud for persistent reusability by biologists. Our Colab notebook
enables the users to benefit from state-of-the-art software and hardware resources in the context
of deep learning to achieve the maximum segmentation performance.

We found considerable variation in the segmentation performance metrics across
individual algorithms. Our study shows that different deep neural networks perform differently
when using a single segmentation metric. Among many validation performance monitoring
criteria, high validation Fl-score and Jaccard similarity index are associated with high test
Jaccard, F1-sore, and VRa"d(thinned) scores. In terms of the objective function, we have found
that using binary cross-entropy for highly imbalanced binary segmentation tasks will not
necessarily lead to best inference results and using focal loss [7] 1s highly recommended in
such cases. In terms of the optimisation methods, using warm-up strategy [24] has led to best
inference performance in ISBI challenge and mitochondria segmentation in both cardiac and
neuronal datasets. For small and limited training datasets, complex networks tend to overfit
more often; however, they show reliable performance as exposure to an abundant training
dataset. Convergence times and computational resource expense depend on both variations of
structures in image data and changes across serial sections. Moreover, our experiments suggest
that training these networks on GPUs in parallel mode with increased batch size boost the
segmentation performance and minimise the convergence times.

Finally, we highlight the importance of ensemble learning in electron microscopy image
segmentation. Our experiments show that using only one type of classifier or deep neural
network, or even one randomly chosen validation dataset will not lead to maximum test
segmentation performance. Hence, we have equipped EM-stellar with ensemble learning which
enables the user to select the inference model based on majority or average voting. Moreover,
EM-stellar allows the user to benefit from K-fold cross-validation, which maximises the chance
of obtaining maximum inference performance.

To summarise, EM-stellar is a cloud-based platform hosted on Google Colab which gives
free access to GPU and TPU resources and enables to user to use state-of-the-art deep learning
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methods across a wide range of segmentation performance metrics. It is equipped with several
machine-learning strategies including K-fold cross-validation, different loss functions and
optimisation methods. It enables the user to choose top-performing models for ensemble
learning based on report insights that are provided at the end of the training. We recommend
the users to use U-Net BN and EM-net V2 4X for segmentation when a large training dataset
is available; otherwise, they may use EM-net V1 2X. However, the users might opt for arbitrary
networks if they aim at using an ensemble of different models. We plan to utilise TPUs in the
future as part of EM-stellar release versions and integrate other state-of-the-art networks such
as EfficientNet [10] to deliver maximum performance and efficiency.

Methods

Deep convolutional neural networks

Here we briefly outline the deep neural networks that we have included in this study. The
methods have been ordered chronologically by year and month. Software packages used in this
study had open-source licenses. We use modified versions of the mentioned networks to test
their performance on experimental datasets, and the corresponding architectures were correctly
implemented to the best of our knowledge as validated with the literature.

1. VGG [18]: VGG was proposed in 2014 as one of the first deep convolutional neural
networks used for ImageNet challenge [25] where the authors had proposed to push the
depth to 16 or even 19 layers. The network uses tiny 3 X 3 convolution filters and
rectified linear units as the main activation function. We have used VGG-16 in this
study as the encoder, then we have employed two dimensional upsampling with skip
connections to retrieve the feature channels back to the original resolution. Batch
normalisation [26] has been used in the network to stabilise the training. The kernels
were initialised using He-normal initialisation method [14].

2. PReLU-net [14]: Parametric Rectified Linear Unit (PReLU) was proposed in 2015 to
generalise Rectified Linear Units (ReLU). The authors had also proposed a novel
initialisation method (He-normal) for kernels which improved the classification
performance on ImageNet challenge. PReLU-net was used in this study where we have
followed the same architecture as U-net, but we have employed PReLU as the main
activation function throughout the network layers. Batch normalisation has been used
to stabilise the training.

3. U-net [17]: U-net was proposed in 2015 for medical and biological image
segmentation. The network uses two symmetric paths, namely called contractive and
expansive paths to enhance capturing context and localisation, respectively. The same
3 X 3 convolution filters have been used throughout the network layers, and two
dimensional upsampling has been used in the decoder architecture. Rectified linear
units have been used as the primary activation function across the convolutional layers
of the network. The authors had also proposed a data augmentation strategy to
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overcome the problem of limited annotated samples. In this study, we have
implemented U-net in two versions: in the first version, we have used batch
normalisation across all the layers; however, the second version lacks batch
normalisation layers.

4. ResNet [15]: Deep residual learning was proposed in 2016 to ease the training deep
neural networks by reducing their complexities. The authors had evaluated a 152 layer
residual network which had eight times more depth than VGG, but representing lower
complexity as compared to VGG. The proposed network was evaluated on ImageNet
challenge where an ensemble of three such networks had won as the 1% place. In this
study, we have used ResNet-50 as the encoder, and a U-net like decoder with skip
connections have been utilised to retrieve the feature channels back to the original input
resolution. Batch normalisation has been used to stabilise the training and rectified
linear unit had been used as the main activation function throughout the network layers.

5. SegNet [16]: SegNet was proposed in 2017 as a deep, fully convolutional neural
network for semantic pixel-wise segmentation. The network consists of an encoder
network followed by a decoder network and subsequently pixel-wise classification
layer. The encoder is identical to 13 convolutional layers in the VGG-16, and the
decoder uses upsampling to retrieve the feature channels back to the original input
resolution. The novelty of the SegNet was to use indices of the max-pooling layers to
perform nonlinear upsampling, which resulted in memory-efficient training and
inference. The network uses rectified linear units as the main activation function, and
batch normalisation has been used to stabilise the training. We have used SegNet in this
study to segment the EM images; however, we have modified the output layer to suit
the binary classification task.

6. CDeep3M |[3]: CDeep3M was proposed in 2018 to facilitate access to complex
computational environments and high-performance computational resources for the
community. The authors had implemented InceptionResnetV2 [27] using Caffe on
Amazon Web Services (AWS) EC2 instance. Access to these facilities requires the user
to pay for the resources on an hourly rate basis for both training and inference.
CDeep3M offers 2D and 3D segmentation pipelines, where three different training
models are aggregated using an ensemble in the 3D segmentation setting. The authors
have evaluated the proposed method using a variety of datasets including MicroCT X-
ray electron microscopy, SBEM, electron tomography and fluorescence microscopy to
segment vesicles, membrane, mitochondria and nuclei.

7. EM-net [4]: EM-net was proposed in 2020 for 2D segmentation of EM images. The
authors have proposed trainable linear units (TLUs) which generalise PReLU and
ReLU and have evaluated the proposed network and the base classifiers on a FIB-SEM
cardiac dataset and ISBI challenge for neuronal stacks segmentation. EM-net represents
lower computational complexity in terms of the number of trainable parameters and
FLOPs and ensemble of top EM-net base classifiers have outperformed the above
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methods. In this study, we have used the seven EM-net base classifiers to compare the
segmentation performance with the methods mentioned earlier.

Data

We used two publicly available datasets in this study. The first dataset includes left
ventricular myocyte FIB-SEM image datasets collected from mice, as described previously
[28]. We extracted 24 random patches from this dataset each having 512 x 512 pixels for
training, testing and validation. After we manually annotated mitochondria on this sample, we
split data randomly into training, validation and testing by 16/2 4 4/ 24 and 4/2 4 respectively.

The second dataset involves mice lateral habenula SBEM 1024 x 1024 x 80 voxels, as
described previously [3]. We extracted 320 random patches from this dataset and the
corresponding binary mitochondria masks that had already been annotated for training,
validation and testing. We split data randomly into training, validation and testing by 80%,
10% and 10%, respectively. All the random data splits were performed using K-fold cross-
validation, and the inference performance is reported based on the best fold model.

Training and testing

All the experiments in this study except CDeep3M were implemented using TensorFlow
GPU 1.8.0 CUDA 9.0 [29] and KERAS 2.2.4 [30]. These experiments were performed on a
GPU cluster, HPC Spartan [31] as described in [4]. A stack of 100GB GPU instance was
launched on AWS p3.2xlarge in the US West (Oregon) region to train CDeep3M. CDeep3M
is implemented in Caffe, and we utilised the default settings for training as described in [3, 4].

1. Pre-processing and augmentation: Images were augmented using random rotation,
shearing, zooming, shifting in x and y and flipping for both training and validation.
Augmented data were generated on the fly to minimise memory utilisation. After the data
were augmented, we used min-max normalisation to normalise the input data.

2. Kernelinitialisation, dropout layers: All convolutional kernels were initialised using He-
normal, and we used zeros and ones initialisation for TLUs. In some experiments, we used
spatial dropout [32] layers in the bottlenecks to monitor the tendency of overfitting.

3. Step and batch size: we parallelised the experiments by pooling 4 GPUs and used batch
sizes of 4, 8, and 16. Step sizes were chosen as 500, 1000 and 2000 per epoch.

4. Loss functions: we used a variety of loss functions in our experiments ranging from binary
cross-entropy, Jaccard coefficient log-loss and focal loss, to dice loss.

4.1. Binary cross-entropy:

Binary cross-entropy loss is used to measure the classification performance based on
the class membership probabilities. Let’s assume Y = 1 and Y = 0 represent the True
and False classes, respectively. Assuming the network output node generates the
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probability masks using a sigmoid function, then binary cross-entropy loss (CE loss)
is defined as follows for binary image segmentation task:

CE loss(p,p) = ) —(pi10g@0) + (1 — p))log(1 - ) (1)

where subscript i represents the id of the pixels in probability mask, p represents the

ground-truth probability and p = represents the probability of the predicted

1+e™*
class given that sigmoid function is used as an activation function in the output layer.

4.2. Jaccard coefficient-log loss:

Jaccard distance, also known as intersection over union (IoU) score, can be adapted to
obtain Jaccard loss which is useful for unbalanced datasets. Given that Jaccard distance
is defined as equation 2, Jaccard log loss (JL loss) can be obtained as equation 3:

X &Y B TP ,
|X|+|Y|—|X&Y| TP+FP+FN (2)
Xipipi + 0 >
Yibi+Xipi — Xipibi + 96

IoU =

JL loss(p,p) = —1og< (3)

where X and Y represent the variables that we aim at measuring the Jaccard distance
between them and TP, FP, and FN represent the true-positive, false-positive and false-
negative, respectively. i, p and p are defined as the same as above, and § is established
to avoid the zero-gradients or vanishing gradients problem.

4.3. Focal loss:

Focal loss [7] reduces the relative loss for well-classified examples by putting more
focus on hard or misclassified instances. Equation 4 represents the focal loss (F loss)
as follows:

F loss(p,p) = z —(a(1 = p)"pilog(py) + (1 = a)B)" (1 —p)log(1 =p)) (4

1

where we have used @ = 0.25 and y = 2 as described in [7].
4.4. Dice loss:

Dice coefficient (DC) is a metric similar to the Jaccard index, which measures the
overlap between two instances. It can be adapted to obtain dice loss (D loss) defined

as follows:
e - 21X &Y| 2TP :
" |X|+|Y] 2TP+FP+FN ®)
b + 8
D loss(p,p) = — 2iPiP: (6)

2ibi+Xipi+6
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where p, p;, 6, i, TP, FP and FN are defined as mentioned earlier in the above.

5. Optimisation: we have used Rectified Adam (RAdam) [9] as the primary optimisation
method throughout this study as it demonstrates less sensitivity to the learning rate
variance. We have used 10% ratio as the warm-up coefficient. However, we trained the
networks with other optimisers, including stochastic gradient descent [33] and Adam [34]
to analyse the behaviour the inference performance. We used a variety of learning rate
setups with the optimisers mentioned above; however, the improvements were insignificant
as compared to the results of RAdam.

6. Validation criteria and model checkpoints: we used validation data as described above
to validate the networks during the training. We used a variety of validation metrics during
the training to obtain an optimal inference model. Model checkpoints were chosen based
on models meeting the best validation criteria. Here we briefly outline the validation
metrics used in this study. TP, TN, FP and FN represent true-positive, true-negative, false-
positive and false-negative, respectively.

6.1. Validation loss:

We monitored validation loss to obtain the best inference model. We found that
different validation losses lead to different inference measures and performances. Our
experiments show that the Jaccard coefficient log loss provided better inference
performance compared to other loss functions that were used in this study.

6.2. Validation accuracy:

We monitored validation accuracy across all our experiments; however, our results
show that higher validation accuracy cannot solely determine the best inference model,
especially when the classes of segmentation are imbalanced.

6.3. Validation AUC-ROC:

Receiver operator characteristic (ROC) curves show how the true-positive instances
vary with false-negative classification results. More details can be found in [35]. We
have used the area under the ROC curve (AUC-ROC) to monitor validation during the
training [36]. Our experiments show that higher validation AUC-ROC does not
necessarily lead to the best inference results. This is in line with the findings of this
study [35] where authors have suggested that the precision-recall (PR) curve may be
preferred over AUC-ROC, especially when dealing with imbalanced datasets.
However, AUC-ROC was positively and negatively correlated with F1-score and loss,
respectively.

6.4. Validation F1-score:

F1-score is one of the critical performance measures used widely in machine-learning.
It is defined as a harmonic mean between precision and recall as follows:


https://doi.org/10.1101/2020.07.15.203836
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.15.203836; this version posted July 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

precision X recall
F1 —score = 2 X — 7N
precision + recall

where precision and recall are defined as equations (8) and (9), respectively.

... TP .
precision = TP L FP (8)
= e 9
Tt = TP FN )

We have used fl-score as one of the primary performance measures throughout this
study during the training and inference.

7. Inference measures: After the models were trained, we obtained the predicted
segmentation masks using the best snapshots of the models based on validation criteria,
including the validation loss. We set the inference batch size equal to the batch size used
during the training. In addition to F1-score and Jaccard similarity index as defined above,
we used a wide range of other metrics to compare the segmentation performances as briefly
outlined below.

7.1. Foreground-restricted Rand Scoring after border thinning (VR“”d(thinned)):

Boundary maps can be adapted to obtain a segmentation mask by finding the connected
components. Assuming S represents the predicted mask and T is the ground-truth
mask, we define p;; as the probability that randomly chosen pixel belongs to the
segment i in S and segment j in T. this joint probability distribution satisfies the
normalisation condition as Y;; p;; = 1. Given the marginal distributions defined as
s; = X;pij and t; = X; p;j (s; represents the probability that a randomly chosen pixel
belongs to segment i in § and ¢; represents the probability that a randomly chosen pixel
belongs to segment j in T), the VRan

be found in [19]):

d(thmned) is defined as follows (more details can

TP 2
L —— L _ (10)
aYesip + (1 —a) Xty

where « is a hyper-parameter, as described in [19].

7.2. Foreground-restricted Information-Theoretic Scoring after border thinning

V™ thinneay):

We can measure the similarity between the predicted mask and ground-truth mask by
using mutual information as defined in equation (11):

I($;T) = Z”pij logp;; — Z,Si logs; — z tlogt; (1D
ij 4 ]
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Dividing I(S; T) by entropies of the masks yields the information-theoretic split and
merge score [19]. VI ® (thinnea) is defined as the weighted harmonic mean of these
scores as follows:

info _ I(S5;T)
* T (1—-a)H(S) + aH(T)

(12)

7.3. Accuracy:

Accuracy is widely used as one of the primary metrics to evaluate the performance of
machine learning methods as defined below:

~ TP + TN
aceuracy = b Y TN + FP + FN

(13)
7.4. Sensitivity:

Sensitivity, also known as true-positive rate or the recall score is one of the statistical
indicators to measure the performance of binary classification tasks:

TP

TP+ FN 14

sensitivity =

7.5. Specificity:

Specificity, also known as the true-negative rate is one of the other performance
measures that is widely used along with sensitivity:

TN

TN + FP (15)

specificity =

7.6. Positive and negative predictive values:

Positive predictive value (PPV) and negative predictive value (NPV) are defined as
equations (16) and (17), and these measures depend on the prevalence:

PPV (16)

“ TP+ FP

TN

NPV = o8 T FN

17)
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Supplementary text

Using ilastik and Weka to segment mitochondria on the cardiac dataset

We extended our experiments to segment mitochondria on the cardiac dataset using
ilastik and Weka to compare their performances with the deep neural networks. We performed
a variety of tests with these two open-source software packages to ensure that we report the
maximum segmentation performances. We used ilastik 1.3.2 and Weka trainable segmentation
plugin on ImageJ for the segmentation. The image size used for the training and testing on
ilastik and Weka was set to 1024 x 1024 in x and y. We performed more than 30 experiments
in total with ilastik and Weka using a wide range of modules and parameters that these packages
provide. In ilastik, we used “object + pixel classification” and “pixel classification” modules
where we chose different possible combinations of the standard object, 2D skeleton, edge,
intensity, texture, low, medium and high standard deviations of the underlying features.
Moreover, we used two and three images for the training to monitor the performance sensitivity
to the available ground-truth data. In Weka, we used standard and full sets of features to
segment mitochondria on the cardiac data. The related figures are shown in the supplementary
figures section.

Image augmentation

Image augmentation plays a crucial task in training deep neural networks when ground-
truth data is limited. Electron microscopy images are inherent in noise and low contrast which
makes the manual annotation a laborious task. Hence, using image augmentation enables
training the deep neural networks with sufficient image data. In addition to the zooming,
random horizontal and vertical flipping, we used a variety of image augmentation techniques
as implemented in KERAS 2.2.4 as follows:

e Random rotation by angle f: image rotation can be interpreted as a 2D transformation
where individual pixels at locations X and Y are transformed to new locations X* and
Y™ as follows:

[X1=[ans cosa)-[2] (18)

e Shearing: shear mapping is a linear displacement of a plane in a fixed direction. In
image shearing, such 2D transformation is performed as the pixels at locations X and
Y are transformed into new locations X* and Y™* as follows:

1=l 2] 19)

1=l 1] @20)
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e Random shifting: we randomly shifted the images in X and Y. Given the random
shifting factor 0 < «, the transformed image is obtained as follows:
[X *] _ [X + aM]

Y* Y +aN 2D

where M and N represent the dimensions of the input image of size M x N pixels in
X and Y, respectively. We chose @ = 0.2 across all our experiments and padded the
shifted pixels with zeros.

K-fold cross-validation

Cross-validation is one of the resampling methods that is used for evaluating machine
learning methods when training data is limited. In K-fold cross-validation, data is first split into
the K disjoint subgroups; then, the machine learning method is trained and evaluated in K steps
using K-1 folds for the training and one fold for the validation at once. We first shuffled the
images randomly and then split to 6 folds for the training and validation. We used the model
selection module of the scikit-learn 0.23.0 to implement K-fold cross-validation both in our
experiments and in EM-stellar.

vRand o inneay and V0 pinoay

Imagel provides a variety of image segmentation evaluation metrics including adjusted
Rand error, clustered warping mismatches, pixel and Rand error, the variation of information
and warping error. We used Rand error and variation of information to obtain VR .00
and VI"™/ ? (thinned)- We used script editor in BeanShell mode to implement these evaluation metrics in

ImageJ. Moreover, we used pyimagj on EM-stellar to obtain the evaluation metrics report, which
provides a set of wrappers to integrate between python and ImageJ.

Network complexity analysis and summary reporting

The network architectures were defined in TensorFlow GPU 1.8.0 CUDA 9.0; then the
corresponding graph was frozen to obtain the floating-point operations using TensorFlow
profiler. We established a tensor placeholder of shape (1, 512, 512, 1) to obtain the floating-
point operations summary which represents a single monochrome image of size 512 pixels in
x and y. All the floating-point operations summary report elements were used and aggregated
to report the network complexities, including 2D-convolutions, additions, multiplications, bias
additions, max-pooling, division, and square roots.

Feature correlation maps for EM-net, U-net and VGG

We extracted all the feature channels embedded in the input, hidden and output layers of
the above networks, which resulted in more than 140,000 feature channels. We used the
correlation coefficient as defined in equation 22 to obtain the feature correlation maps of these
networks between feature channels X and Y:
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2D — corr = 22X —X)(Y; —Y) 22)

J (53,0 — K)2)(5i 8, (Y, — 1)?)

where i and j represent the pixels of the feature channels X and Y. The results are shown in the
supplementary figures section. We downsampled feature channels to obtain 2D correlation
scores between the feature channels across different network blocks.

The ensemble of the models and ensemble learning

EM-stellar utilises an ensemble of the top models based on the inference criteria. This is
slightly different to ensemble learning, where a super-model or meta-classifier is formed of
base classifiers, and the resulted model is trained or finely tuned to perform segmentation or
classification task. Two methods are used in EM-stellar to acquire the ensemble of models,
including average and majority voting for binary classification tasks as described in equations
(23) and (24), respectively:

P;
Output = Zn P (23)
N
Output;; = arg max(1.(mask;;)) (24)

where N is the number of models used for the ensemble, and P; represents the corresponding
predicted probability masks of the model i in equation (23). In equation (24), 1. is the indicator
function as it is equal to 0 when the class of the pixel ij in the predicted mask (mask) is 0 and
the value of 1. is equal to 1 otherwise.
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Supplementary figures and tables

Comparison of mitochondria segmentation results on sample cardiac images
Raw data

ilastik Object | Pixel

-

Sample images

war ara Lot - BIO FET
True positive False positive
B False negative HEEM True nepative

Figure 1. Comparison of mitochondria segmentation for test data on the cardiac images using
ilastik and WEKA. Yellow, green, red and black correspond to true-positive, false-positive,
false-negative (missing mitochondria) and true-negative, respectively. Left column represents
the raw images, and the other columns represent the segmentation results. As shown,
segmenting mitochondria using ilastik “object + pixel classification” module results in a fewer
false-positive error (second column from the left) as compared with the pixel classification
module (third column from the left). WEKA is more prone to both false positives and false
negatives, as shown in the 4th column from the left.
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Comparison of mitochondria segmentation results on sample cardiac images
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Figure 2. Comparison of mitochondria segmentation for test data on the cardiac images using
EM-net V1 2X, 4X, BN and BN 2X. Yellow, green, red and black correspond to true-positive,
false-positive, false-negative (missing mitochondria) and true-negative, respectively. The left
column represents the raw images, and the other columns represent the segmentation results.
BN represents that batch-normalisation is utilised in the encoder as well as the decoder. 4X
means that the network has a double depth as 2X in all the blocks. As shown, EM-net V1 BN
2X has led to more false-positive instances as compared to the other methods.
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Comparison of mitochondria segmentation results on sample cardiac images
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Figure 3. Comparison of mitochondria segmentation for test data on the cardiac images using
EM-net V2, V2 2X, V2 4X and majority voting. Yellow, green, red and black correspond to
true-positive, false-positive, false-negative (missing mitochondria) and true-negative,
respectively. The left column represents the raw images, and the other columns represent the
segmentation results. As shown, EM-net majority voting has minimised the false-negative
instances as compared to the other three methods.
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Comparison of mitochondria segmentation results on sample cardiac images
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Figure 4. Comparison of mitochondria segmentation for test data on the cardiac images using
EM-net average voting, CDeep3M, U-net BN and VGG. Yellow, green, red and black
correspond to true-positive, false-positive, false-negative (missing mitochondria) and true-
negative, respectively. The left column represents the raw images, and the other columns
represent the segmentation results. As shown, CDeep3M is more prone to false positives and
demonstrates minimum missing mitochondria in segmentations. VGG and U-net BN are more
prone to missing mitochondria.
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Comparison of mitochondria segmentation results on sample cardiac images
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Figure 5. Comparison of mitochondria segmentation for test data on the cardiac images using
ResNet, SegNet and U-net. Yellow, green, red and black correspond to true-positive, false-
positive, false-negative (missing mitochondria) and true-negative, respectively. The left
column represents the raw images, and the other columns represent the segmentation results.
As shown, SegNet and U-net are more prone to missing mitochondria or false-negative
instances as compared to the ResNet.
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Comparison of mitochondria segmentation results on sample neuronal images
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Figure 6. Comparison of mitochondria segmentation results on sample neuronal test dataset.
Yellow, green, red and blue correspond to true-positive, true-negative, false-negative (missing
mitochondria) and false-positive. The left column represents the sample test serial block-face
scanning electron microscopy (SBEM) images of mice brain cells. Other columns correspond
to the overlay of result masks for EM-net V1 2X, 4X, BN, BN 2X and V2.
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Comparison of mitochondria segmentation results on sample neuronal images
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Figure 7. Comparison of mitochondria segmentation results on sample neuronal test dataset.
Yellow, green, red and blue correspond to true-positive, true-negative, false-negative (missing
mitochondria) and false-positive. The left column represents the sample test serial block-face
scanning electron microscopy (SBEM) images of mice brain cells. Other columns correspond
to the overlay of result masks for EM-net V2 2X, 4X, ResNet, SegNet and VGG.
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Test data results on ilastik

1.0 1.0
males
5 s} . —_ @ o o
0.9 1 - 0.9
* o
(D)
)
o) 'S
S *
m *
0.8 1 - 0.8
C_125%~75%
T Range within 1.51QR
— Median Line
o Mean
0.7 ¢ OQutliers . 07
' 2 | 3 2 1 3| 2|3 2 | 3|1 2|3 2 | 3 '
Fl-score | Accuracy | Sensitivity | Specificity PPV NPV

Figure 8. Error bars of results for segmenting mitochondria on the cardiac dataset using ilastik.
Cyan represents the results for two training images, and purple illustrates the results where we
have used three training images. As shown, Fl-score and accuracy demonstrate relatively
similar performances across different experiments (29 different experiments had been
performed on ilastik); however, other metrics show lots of variabilities. Top Fl-score,
accuracy, sensitivity, specificity, positive predictive rate and negative predictive rate for
cardiac data were 0.96147, 0.9526, 0.9919, 0.9857, 0.9898 and 0.9847, respectively.
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Figure 9. Feature correlation map for the EM-net. We have visualised the 2D correlation scores
between more than 40,000 feature channels in the figure above.
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Figure 10. Feature correlation map for the U-net. We have visualised the 2D correlation scores
between more than 50,000 feature channels in the figure above.
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Figure 11. Feature correlation map for the VGG. We have visualised the 2D correlation scores
between more than 50,000 feature channels in the figure above.
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Figure 12. The plot of validation AUC-ROC for the cardiac dataset. As shown, EM-net V1
BN 2X has achieved the maximum validation AUC-ROC score and has converged faster as
compared to the other networks. However, this network does not provide the optimal test score.
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Figure 13. The plot of validation F1-score for the cardiac dataset. As shown, EM-net V1 BN
and 4X have achieved the maximum validation F1-score score. However, EM-net V1 4X does
not provide the optimal test F1-score.
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Figure 14. The plot of validation AUC-ROC for the neuronal dataset. As shown, EM-net V1
2X has achieved the maximum validation AUC-ROC score, followed by EM-net V2 4X and
U-net.
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Figure 15. The plot of validation F1-score for the neuronal dataset. As shown, EM-net V1 BN,
V1 BN 2X, V2 4X and U-net have achieved the maximum and relatively similar validation
F1-score scores. However, these networks provide different test F1-scores.

TABLE 1. COMPARISON OF RESULTS ON SEGMENTING MITOCHONDRIA USING THE CARDIAC TEST DATASET. THE ENSEMBLE OF THE TOP 5 EM-NET
BASE CLASSIFIERS OUTPERFORMS OTHER METHODS IN TERMS OF EVALUATION METRICS INVESTIGATED IN THIS STUDY. BN, PPV AND NPV REPRESENT
BATCH-NORMALISATION, POSITIVE PREDICTIVE VALUE AND NEGATIVE PREDICTIVE VALUE, RESPECTIVELY.

Method Module Fl-score  VRand yinfo Accuracy Sensitivity Specificity PPV NPV Jaccard
T AT TR T T
VGG - 0.9801 0.96452 0.96347 0.9745 0.9889 0.9494 0.9714 0.9802 0.9315
SEGNET - 0.9815 0.95414 0.95408 0.9764 0.9864 0.9592 0.9767 0.9759 0.937

RESNET - 09785 096219  0.96593 09720 [IN08788 0 09717 09836 | 09548 | 0929

EM-NET V14X 09846 | 092822 095021  0.9804 0.9894 0.9647 09798 09813 09472

EM-NET V12X 0.9852 0.97893 0.97674 0.9811 0.99 0.9657 0.9804 | 0.9823 0.9491
EM-NET V1 BN 0.9854 0.95894 0.96294 0.9815 0.9867 0.9725 0.9842  0.9769 0.9506
EM-NET V1 BN 2X 0.9788 | 0.98188 0.97739 0.9799 0.9854 0.9561 0.9723  0.9768 0.946
EM-NET V2 0.9801 0.96833 0.96057 0.9745 _ 0.9457 0.9694 - 0.9313
EM-NET V22X 0.9842 0.97172 0.96854 0.9798 0.989 0.9639 0.9794 = 0.9806 0.9459
EM-NET V24X 0.9849 0.97294 0.97439 0.9808 0.9892 0.9661 0.9806 0.981 0.9484
U-NET BN 0.9811 0.96182 0.9758 0.9554 0.9747 0.9352
U-NET -
PReLU-NET - 0.9702  0.9665 0.9225

ENSEMBLE Majority Voting

0.97 0.9828
0.982 0.9895 0.9743

ENSEMBLE Average Voting
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TABLE 2. COMPARISON OF RESULTS ON SEGMENTING MITOCHONDRIA USING THE NEURONAL TEST DATASET. BN, PPV AND NPV REPRESENT BATCH-
NORMALISATION, POSITIVE PREDICTIVE VALUE AND NEGATIVE PREDICTIVE VALUE, RESPECTIVELY.

Method Module F1-score pRand yinfo Accuracy  Sensitivity  Specificity PPV NPV Jaccard
CDEEP3M -
VGG - 0.9908 0.9429 0.9719 0.9803

SEGNET - 0.9901 0.9409 - 0.9818 0.7915
RESNET - 0.9895 0.9386 0.9699 0.9806 0.7803
EM-NET V14X 0.9908 0.9461 0.9740 0.9831 0.9932 0.8691 0.9884 0.9193 0.8075
EM-NET V12X 0.9905 0.9455 0.9736 0.9825 0.9911 0.8855 0.9899 0.8983 0.8048
EM-NET V1 BN 0.9905 0.9487 0.9742 0.9825 0.9919 0.8773 0.9891 0.9053 0.8035
EM-NET V1 BN 2X 0.9908 0.9512 0.9767 0.9832 0.9898 0.9088 0.9919 0.8879 0.8153
EM-NET V2 0.9902 - 0.9720 0.9819 _ 0.7911
EM-NET V22X 0.9900 0.9500 0.9727 0.9816 0.9909 0.8766 0.9891 0.8952 0.7950

EM-NET V24X 0.9904 0.9823 0.9909 0.8876 0.9900 0.8942 0.8033
U-NET BN 0.9896 0.9768 0.9809 0.9883 0.8985 0.9910 0.8716 0.7935

ENSEMBLE  Majority Voting 0.9500 0.9748 0.9919 0.8913 0.9904 0.9067
ENSEMBLE  Average Voting 0.9555 0.9924 0.8915 0.9904 0.9125
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