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Abstract 
The inherent low contrast of electron microscopy (EM) datasets presents a significant challenge 
for rapid segmentation of cellular ultrastructures from EM data. This challenge is particularly 
prominent when working with high resolution big-datasets that are now acquired using electron 
tomography and serial block-face imaging techniques. Deep learning (DL) methods offer an 
exciting opportunity to automate the segmentation process by learning from manual 
annotations of a small sample of EM data. While many DL methods are being rapidly adopted 
to segment EM data no benchmark analysis has been conducted on these methods to date. We 
present EM-stellar, a Jupyter Notebook platform that is hosted on google Colab that can be 
used to benchmark the performance of a range of state-of-the-art DL methods on user-provided 
datasets. Using EM-Stellar we show that the performance of any DL method is dependent on 
the properties of the images being segmented. It also follows that no single DL method 
performs consistently across all performance evaluation metrics. 

 

Main 
Electron microscopy is a fundamentally important modality for basic biomedical science 

research. In recent years we have seen significant advances in electron microscopy 
technologies with the advent of , first, electron tomography and, more recently, serial block-
face scanning electron microscopy [1]. These technologies generate giga- and tera-bytes of 
high-resolution images of sub-cellular architecture which must be segmented manually or using 
image segmentation algorithms. The inherent low contrast in electron microscopy has 
motivated the use of crowd-sourcing platforms, and image segmentation challenges such as to 
reduce the image post-processing time. Deep learning is a powerful approach to image 
segmentation that is being widely explored as a way to segment high-throughput biological 
datasets, including electron microscopy (EM) images [2]. In recent years, there have been 
several efforts to streamline the usage of such technologies for the community [3-6]. One 
crucial question that arises is whether we can use such platforms to segment all types of electron 
microscopy data and whether they have inherent limitations in segmenting particular types of 
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ultrastructures. Typically, these platforms utilise one unique or a limited number of available 
deep neural network architectures. No study has investigated the relationship between the 
choice of the DL method and the segmentation performance. Moreover, segmentation 
performance evaluation remains under investigated as current studies use a limited number of 
the evaluation metrics, and the impact of the choice of evaluation metric has not been 
investigated. 

One of the other challenges that the community faces when using such methods is the 
lack of sophisticated DL utilities and functionalities as the current platforms often resort to 
demo-based DL applications. For example, such platforms opt for one single optimisation 
method or use a limited set of evaluation criteria as the inbuilt evaluation metrics of the popular 
application programming interfaces (API) are often limited. Or the segmentation objective 
function or loss function is constrained to a limited number of inbuilt functions that such APIs 
provide. However, we have witnessed in recent years that successful DL applications in 
computer vision problems rely on a strategic blend of data processing, network architecture, 
optimisation method, loss function, validation method, validation criteria and hyperparameter 
tuning. We have also seen how the choice of network architecture, loss function or optimisation 
method can affect the DL performance [7-13]. In addition to the above, the cost-effectiveness 
or the computational efficiency of DL applications have not been investigated before.  

We present EM-stellar (the official implementation is provided as a Colab Notebook on 
GitHub1), a comprehensive interface between the user and the DL application that is dedicated 
to EM image segmentation. Figure 1 represents the workflow of EM-stellar and the analysis 
that we have investigated in this study. EM-stellar provides a wide range of DL network 
architectures, evaluation metrics, and easy to use utilities. Such utilities involve a wide range 
of custom loss functions, validation criteria, state-of-the-art optimisation methods that 
minimise the hyper-parameter tuning, and K-fold cross-validation. Moreover, it enables the 
user to benchmark the performances of a diverse set of DL algorithms and use the desired 
methods as the ensemble of models for the final inference stage. EM-stellar is provided as the 
self-explanatory Jupyter Notebook for Google Colab which simplifies the use of such 
sophisticated technologies and utilities to a set of simple user clicks. This approach will save 
lots of time as the user will not face problems with software dependencies instalment, and they 
do not need to learn the workflow of applications as EM-stellar is ready to use interface with 
guidelines of the usage for the users.  

 

 

 
1 https://github.com/CellSMB/EM-stellar 
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Figure 1. Overview of the EM-stellar. Top of the figure shows the workflow of the EM-stellar. 
The user uploads raw data to the Google Drive, uses the networks including EM-net and U-
net to segment the raw data. A wide range of metrics can be used to monitor the validation or 
to assess the inference performance. Moreover, in this study we have addressed a wide range 
of analysis including complexity analysis, convergence times, effect of the batch size on the 
segmentation performance and the computational demand. Moreover, we have also compared 
the DL performance with the previously developed machine learning software packages 
including ilastik and Weka.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.07.15.203836doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.203836
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 

Overview of deep learning methods 

We performed an extensive survey of the literature to identify state-of-the-art deep neural 
networks that have been utilised for EM image segmentation. We chose CDeep3M [3], EM-
net [4], PReLU-net [14], ResNet-50 [15], SegNet [16], U-net [17] and VGG-16 [18] for our 
experiments. Among these methods, we have experimented EM-net with all of its seven base 
classifiers bringing the total number of networks and methods to a maximum of thirteen. We 
used two publicly available focused ion-beam scanning electron microscopy (FIB-SEM) 
datasets for our experiments and evaluation purposes. We utilised a wide range of segmentation 
evaluation metrics to compare the results including F1-score, Foreground-restricted Rand 
Scoring after border thinning (𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) Foreground-restricted Information-Theoretic 
Scoring after border thinning (𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) [19]. More details about datasets and evaluation 
metrics are highlighted in methods section. 

EM-net variants demonstrate reliable learning capacity on both small and large 
datasets 

We trained and evaluated chosen networks with two FIB-SEM datasets, including one 
small cardiac dataset comprising 24 serial sections each of pixel size 512 × 512, and another 
large neuronal dataset consisting of 320 serial sections with the same image size as the cardiac 
dataset. Mitochondria were manually annotated on both datasets. Figure 2 illustrates the results 
of evaluating networks on the test datasets that were held out randomly and not used for 
training. The result values have been normalised using min-max normalisation per metric 
category for comparison. 

As shown, despite the difference in size between these two datasets, EM-net variants 
(grouped within a box on both heatmaps) demonstrate competitive evaluation metric values 
when compared to other methods. The ensemble of top EM-net base classifiers outperforms 
other methods majority of the metrics on the cardiac dataset; however, the segmentation 
performance metric values were not as high performing on the neuronal dataset based on 
average voting. 

No one network can fit them all 

Figure 2 shows how the underlying texture and intensity distribution of different datasets, 
and the target ultrastructures can affect the performance of a deep neural network in segmenting 
a dataset. One network cannot achieve high performance for all datasets – one network cannot 
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fit them all. Considering U-net BN and EM-net V2 4X, both methods demonstrate only above-
average performance on segmenting the cardiac dataset in terms of the 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) score, 

Figure 2. Heatmap of evaluation metrics for different methods based on the test datasets. The 
values are normalised using min-max normalisation per metric category. The black boxes 
correspond to EM-net base classifiers, including the ensemble methods. Top: cardiac, bottom: 
neuronal data. 
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however, they achieve top performance based on the same metric for the neuronal data. 
Additionally, almost all of the methods represent relatively similar performance based on 
specificity metric for the cardiac dataset, whereas they have dropped below 50% on the 
neuronal dataset. CDeep3M demonstrates above-average performance for the cardiac dataset, 
whereas it provides inferior performance on the neuronal dataset. However, figure 2 implies 
that an ensemble of top classifiers may lead to reliable performance across different datasets. 

Evaluation metrics remain subjective and probably unique to the deep neural 
network 

Choosing the right evaluation metric for segmenting EM data is a critical and still 
challenging step as depending on the objective of the segmentation, the user might prefer a 
specific set of segmentation metrics [19]. In other words, there is no one universal evaluation 
metric for such tasks. The choice of such metrics might even depend on the segmentation task; 
for example, 2D or 3D segmentation may require different evaluation metrics. One previous 
study [20] has investigated benchmarking segmentation metrics for biomedical images in the 
3D setting. Still, most of the studies have opted for F1-score and Jaccard index as the 
segmentation metric of choice. In one other research [21], the same metrics have been utilised 
as the main evaluation metrics for nucleus segmentation. 

We extended our analysis to monitor the response of the neural networks to different 
evaluation metrics. We followed this aim as the evaluation metrics reported for electron 
microscopy image segmentation remains sparse in the literature, and no study has investigated 
such a broad range of analysis on evaluation metrics. Our analysis shows that performances of 
these networks are subject to change depending on the evaluation criteria. Take the result of 
U-net BN on neuronal test dataset as an example shown in figure 2. This network achieved top 
performing 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) score, however, it demonstrated average performance when using 
other metrics, including accuracy, for example. Moreover, our analysis shows that the Jaccard 
similarity index and F1-score are mostly correlated for those instances that have achieved top 
Jaccard index scores. 

In addition to the above, we found that some methods demonstrate unique behaviour 
when applied to different datasets. As shown in figure 2, CDeep3M demonstrates the same 
performance for specificity and PPV, meaning that this network has the nature of producing 
minimal false-negative segmentation instances. However, the performance of the VGG implies 
that this network delivers low specificity and high sensitivity on both neuronal and cardiac 
datasets. These findings suggest that the architecture of the deep neuronal networks and the 
underlying layers can affect the performance of the networks when evaluated with different 
metrics. In summary, the users might prefer one network over another depending on the 
desirable evaluation metrics, and they should not expect that one method will be the top 
performer for all the metrics. 
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Convergence times vary depending on the size of the dataset or the underlying 
data structures 

Figure 3 shows the convergence times of the networks on both cardiac and neuronal 
datasets according to the validation metrics that we have chosen during the training. The 
convergence times imply that the large ground-truth datasets (in this case, neuronal dataset), 
and potentially diverse structural variations in the data will impact the convergence time of the 
network. However, this does not necessarily mean that the convergence times are positively 
correlated with the data size only.  

Take EM-net V1 BN and V1 BN 2X as an example shown in figure 3. Based on a 
comparison between the convergence times of these two networks for the cardiac dataset, one 
user might expect that V1 BN 2X will demonstrate lower mean and median values for the 
convergence times relative to the V1 BN on the neuronal dataset as well. However, figure 3 

Figure 3. Convergence times (hours) of different networks for cardiac and neuronal data based 
on the different evaluation metrics. These times have been reported based on our runnings on 
four parallelly pooled Nvidia Tesla P100 GPUs. 
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Figure 4. Ball chart reporting complexity of networks based on Giga FLOPs and the 
corresponding performances in terms of the 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) score. This figure also illustrates 
the number of trainable parameters for individual networks (millions). 

shows precisely the opposite. On the other hand, U-net and U-net BN demonstrate relatively 
similar convergence times based on their mean and median values for the neuronal dataset; 
however, U-net BN has converged faster than U-net on the cardiac dataset. Our analysis shows 
that convergence times does not only depend on the ground-truth data size but is also affected 
by underlying data structures and the feature bank of the network used for the training. In 
general, EM-net V1 2X and EM-net V2 show less sensitivity to the data size or data structures, 
as shown in figure 3. 

Complex networks might not perform well and might also exhaust resources 

Figure 4 illustrates the ball chart reporting the complexity of the networks in terms of 
Giga FLOPs, the associated number of parameters and top 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) score (thresholded 
to above 0.90) on the corresponding test datasets. The operations are reported for one iteration 
based on an input tensor with the shape of (1, 512, 512, 1) representing a single batch of 
monochromic image. As shown, ResNet and CDeep3M required the lowest and highest FLOPs, 
respectively. 

Firstly, the number of parameters does not directly reflect the complexity. Considering 
EM-net V2 4X and U-Net BN, Both these networks have a relatively similar number of 
parameters; however, EM-net V2 4X required less computational resources to perform the 
same job as compared to U-Net BN. Secondly, this figure shows that the high number of 
parameters or complexity of the networks do not necessarily yield top test performances. This 
figure shows how EM-net V1 2X and V1 BN 2X have achieved top 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑛𝑛𝑒𝑒𝑒𝑒) score on 
the cardiac dataset despite their very low complexity and the number of parameters. However, 
we can observe that their performances have been not as good when tested on the neuronal 
dataset but they are still competitive when compared to the VGG and CDeep3M results.  
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Finally, we can observe that U-Net BN demonstrates similar performance in terms of 
𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) score for both cardiac and neuronal datasets.  

Visualisation of the intermediate layers reveals the redundancy of the feature 
channels 

We visualised over 140,000 intermediate feature channels for U-net BN, VGG and EM-
net V2 4X on the test datasets. We analysed the 2D correlation between each of the individual 
channels leading to over than 9 billion feature correlation maps. Figure 5 illustrates the 
distributions of the correlation maps between each block of the networks. Each of these blocks 
shares the same characteristic as the underlying feature channels, which have the same 
resolutions. For example, B1 represents the distributions of the feature correlation maps for 
these three networks within their corresponding block one, and they all have the same feature 
resolutions in this case (512, 512) in x and y as we have used for training datasets. We have 
also visualised the inter-block feature correlation maps by which we can analyse the 
relationships of the feature maps within each of the blocks of these networks. For example, 
take B4 and B3 in y- and x-axes, respectively. This location corresponds to 2D contours of the 
feature correlation distributions between these blocks. It suggests that U-net represents similar 
feature correlation distributions in blocks three and four; however, VGG and EM-net show 
much spread distributions which means they extract less redundant feature maps. We have also 
visualised the scatter plots of these feature correlation maps distributions in the upper-diagonal 
plots.  

Our analysis shows that in general, VGG and EM-net demonstrate fewer feature 
correlations within each block and even between the individual blocks as compared to U-net. 
The distributions of these feature channel correlation maps reach their maximum between 
blocks three and four in VGG, implying that features are less correlated within these two 
blocks. However, EM-net demonstrates less correlation between the feature channels within 
the block five called “the bottleneck” (where almost 30-50% of the features are concentrated 
here) as compared to the two others.  

From the inter-block feature correlation map perspective, we can observe that U-net 
demonstrates a high correlation between the correlation map distributions of the different 
blocks as these distributions are centred or peaked. This implies that feature maps extracted by 
the U-net could potentially lead to redundant feature maps, especially in the bottleneck as 
almost all of the blocks represent the same level of feature correlation map distributions. One 
study [22] has investigated this phenomenon by tweaking the U-net architecture where they 
have substituted the encoder of the U-net to the encoder of the VGG-11, and the authors have 
obtained better performance in terms of Jaccard similarity index. 
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Figure 5. Block-wise feature correlation map distributions for EM-net, U-net and VGG. B1 corresponds to the 
first block (maximum feature resolution), B5 represents the bottleneck of the networks (minimum resolution), 
and B9 represents the block corresponding to the output node. The upper-diagonal plots show the scatter plots 
of the feature correlation maps, the bottom-diagonal plots represent the 2D contours of the block-wise 
distributions and diagonal plots correspond to uni-variate feature correlation distributions of individual blocks. 

Visualisation of the segmentation masks reveals that CDeep3M is less prone to 
false-negative 

We have visualised the overlays of the segmentation results on the sample cardiac and 
neuronal test datasets. Figure 6 illustrates the overlay of binary masks on the sample neuronal 
test dataset based on the results of EM-net (average and majority voting), CDeep3M and U-net 
BN. As shown, CDeep3M provides minimal false-negative or missing mitochondria on these 
images; however, the number of false-positives is higher than EM-net and U-net. U-net and 
EM-net offer a higher number of false-negative instances in comparison with CDeep3M as 
they are more prone to missing mitochondria. 

We have used a threshold value of 0.5 to obtain binary masks of the segmentation 
probability maps resulted from the networks in these visualisations, as illustrated in figure 6. 
However, metrics like 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) and 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) handle such a limitation by thinning 
the border or using a threshold step value of 0.1. As a result, we can monitor the desired 
performance metric and finally determine the best performing threshold value.  
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Figure 6. Comparison of mitochondria segmentation results on sample neuronal test dataset. 
Yellow, green, red and blue correspond to true-positive, true-negative, false-negative (missing 
mitochondria) and false-positive. EM-net ensembles and U-net are less prone to false 
positives; however; CDeep3M demonstrates minimum false-negative segmentation errors. 
The left column represents the sample test serial block-face scanning electron microscopy 
(SBEM) images of mice brain cells. Other columns correspond to the overlay of result masks 
for EM-net ensembles based on average and majority voting, CDeep3M and U-net.  
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Discussion 
We have presented EM-stellar, a framework for benchmarking deep learning methods 

for electron microscopy image segmentation that is hosted on Google Colab. Although a couple 
of reviews of using deep learning methods for microscopy image analysis and segmentation 
have been reported [2, 23], a comprehensive evaluation of the segmentation methods has not 
been conducted to date. In this paper, we have compared seven different deep convolutional 
neural networks for electron microscopy image segmentation. Most of the studies reported in 
the literature are limited to one tissue type such as neuronal microscopy datasets; however, we 
report our analysis not only using a neuronal dataset but also using cardiac electron microscopy 
data. We also have extended our study to analyse the performance of these methods using a 
wide range of segmentation metrics. Moreover, we report the computational complexity of 
these algorithms and their associated computational demand. This is the first study in the 
literature that reports such analysis in the context of electron microscopy image segmentation, 
which is implemented in the cloud for persistent reusability by biologists. Our Colab notebook 
enables the users to benefit from state-of-the-art software and hardware resources in the context 
of deep learning to achieve the maximum segmentation performance. 

We found considerable variation in the segmentation performance metrics across 
individual algorithms. Our study shows that different deep neural networks perform differently 
when using a single segmentation metric. Among many validation performance monitoring 
criteria, high validation F1-score and Jaccard similarity index are associated with high test 
Jaccard, F1-sore, and 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) scores. In terms of the objective function, we have found 
that using binary cross-entropy for highly imbalanced binary segmentation tasks will not 
necessarily lead to best inference results and using focal loss [7] is highly recommended in 
such cases. In terms of the optimisation methods, using warm-up strategy [24] has led to best 
inference performance in ISBI challenge and mitochondria segmentation in both cardiac and 
neuronal datasets. For small and limited training datasets, complex networks tend to overfit 
more often; however, they show reliable performance as exposure to an abundant training 
dataset. Convergence times and computational resource expense depend on both variations of 
structures in image data and changes across serial sections. Moreover, our experiments suggest 
that training these networks on GPUs in parallel mode with increased batch size boost the 
segmentation performance and minimise the convergence times. 

Finally, we highlight the importance of ensemble learning in electron microscopy image 
segmentation. Our experiments show that using only one type of classifier or deep neural 
network, or even one randomly chosen validation dataset will not lead to maximum test 
segmentation performance. Hence, we have equipped EM-stellar with ensemble learning which 
enables the user to select the inference model based on majority or average voting. Moreover, 
EM-stellar allows the user to benefit from K-fold cross-validation, which maximises the chance 
of obtaining maximum inference performance.  

To summarise, EM-stellar is a cloud-based platform hosted on Google Colab which gives 
free access to GPU and TPU resources and enables to user to use state-of-the-art deep learning 
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methods across a wide range of segmentation performance metrics. It is equipped with several 
machine-learning strategies including K-fold cross-validation, different loss functions and 
optimisation methods. It enables the user to choose top-performing models for ensemble 
learning based on report insights that are provided at the end of the training. We recommend 
the users to use U-Net BN and EM-net V2 4X for segmentation when a large training dataset 
is available; otherwise, they may use EM-net V1 2X. However, the users might opt for arbitrary 
networks if they aim at using an ensemble of different models. We plan to utilise TPUs in the 
future as part of EM-stellar release versions and integrate other state-of-the-art networks such 
as EfficientNet [10] to deliver maximum performance and efficiency.  

Methods 

Deep convolutional neural networks 

Here we briefly outline the deep neural networks that we have included in this study. The 
methods have been ordered chronologically by year and month. Software packages used in this 
study had open-source licenses. We use modified versions of the mentioned networks to test 
their performance on experimental datasets, and the corresponding architectures were correctly 
implemented to the best of our knowledge as validated with the literature. 

1. VGG [18]: VGG was proposed in 2014 as one of the first deep convolutional neural 
networks used for ImageNet challenge [25] where the authors had proposed to push the 
depth to 16 or even 19 layers. The network uses tiny 3 × 3 convolution filters and 
rectified linear units as the main activation function. We have used VGG-16 in this 
study as the encoder, then we have employed two dimensional upsampling with skip 
connections to retrieve the feature channels back to the original resolution. Batch 
normalisation [26] has been used in the network to stabilise the training. The kernels 
were initialised using He-normal initialisation method [14].  

2. PReLU-net [14]: Parametric Rectified Linear Unit (PReLU) was proposed in 2015  to 
generalise Rectified Linear Units (ReLU). The authors had also proposed a novel 
initialisation method (He-normal) for kernels which improved the classification 
performance on ImageNet challenge. PReLU-net was used in this study where we have 
followed the same architecture as U-net, but we have employed PReLU as the main 
activation function throughout the network layers. Batch normalisation has been used 
to stabilise the training.  

3. U-net [17]: U-net was proposed in 2015 for medical and biological image 
segmentation. The network uses two symmetric paths, namely called contractive and 
expansive paths to enhance capturing context and localisation, respectively. The same 
3 × 3 convolution filters have been used throughout the network layers, and two 
dimensional upsampling has been used in the decoder architecture. Rectified linear 
units have been used as the primary activation function across the convolutional layers 
of the network. The authors had also proposed a data augmentation strategy to 
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overcome the problem of limited annotated samples. In this study, we have 
implemented U-net in two versions: in the first version, we have used batch 
normalisation across all the layers; however, the second version lacks batch 
normalisation layers. 

4. ResNet [15]: Deep residual learning was proposed in 2016 to ease the training deep 
neural networks by reducing their complexities. The authors had evaluated a 152 layer 
residual network which had eight times more depth than VGG, but representing lower 
complexity as compared to VGG. The proposed network was evaluated on ImageNet 
challenge where an ensemble of three such networks had won as the 1st place. In this 
study, we have used ResNet-50 as the encoder, and a U-net like decoder with skip 
connections have been utilised to retrieve the feature channels back to the original input 
resolution. Batch normalisation has been used to stabilise the training and rectified 
linear unit had been used as the main activation function throughout the network layers. 

5. SegNet [16]: SegNet was proposed in 2017 as a deep, fully convolutional neural 
network for semantic pixel-wise segmentation. The network consists of an encoder 
network followed by a decoder network and subsequently pixel-wise classification 
layer. The encoder is identical to 13 convolutional layers in the VGG-16, and the 
decoder uses upsampling to retrieve the feature channels back to the original input 
resolution. The novelty of the SegNet was to use indices of the max-pooling layers to 
perform nonlinear upsampling, which resulted in memory-efficient training and 
inference. The network uses rectified linear units as the main activation function, and 
batch normalisation has been used to stabilise the training. We have used SegNet in this 
study to segment the EM images; however, we have modified the output layer to suit 
the binary classification task.  

6. CDeep3M [3]: CDeep3M was proposed in 2018 to facilitate access to complex 
computational environments and high-performance computational resources for the 
community. The authors had implemented InceptionResnetV2 [27] using Caffe on 
Amazon Web Services (AWS) EC2 instance. Access to these facilities requires the user 
to pay for the resources on an hourly rate basis for both training and inference. 
CDeep3M offers 2D and 3D segmentation pipelines, where three different training 
models are aggregated using an ensemble in the 3D segmentation setting. The authors 
have evaluated the proposed method using a variety of datasets including MicroCT X-
ray electron microscopy, SBEM, electron tomography and fluorescence microscopy to 
segment vesicles, membrane, mitochondria and nuclei. 

7. EM-net [4]: EM-net was proposed in 2020 for 2D segmentation of EM images. The 
authors have proposed trainable linear units (TLUs) which generalise PReLU and 
ReLU and have evaluated the proposed network and the base classifiers on a FIB-SEM 
cardiac dataset and ISBI challenge for neuronal stacks segmentation. EM-net represents 
lower computational complexity in terms of the number of trainable parameters and 
FLOPs and ensemble of top EM-net base classifiers have outperformed the above 
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methods. In this study, we have used the seven EM-net base classifiers to compare the 
segmentation performance with the methods mentioned earlier. 

Data 

We used two publicly available datasets in this study. The first dataset includes left 
ventricular myocyte FIB-SEM image datasets collected from mice, as described previously 
[28]. We extracted 24 random patches from this dataset each having 512 × 512 pixels for 
training, testing and validation. After we manually annotated mitochondria on this sample, we 
split data randomly into training, validation and testing by 16

24� , 4 24� , and 4 24� , respectively. 
The second dataset involves mice lateral habenula SBEM 1024 × 1024 × 80 voxels, as 
described previously [3]. We extracted 320 random patches from this dataset and the 
corresponding binary mitochondria masks that had already been annotated for training, 
validation and testing. We split data randomly into training, validation and testing by 80%, 
10% and 10%, respectively. All the random data splits were performed using K-fold cross-
validation, and the inference performance is reported based on the best fold model.  

Training and testing 

All the experiments in this study except CDeep3M were implemented using TensorFlow 
GPU 1.8.0 CUDA 9.0 [29] and KERAS 2.2.4 [30]. These experiments were performed on a 
GPU cluster, HPC Spartan [31] as described in [4]. A stack of 100GB GPU instance was 
launched on AWS p3.2xlarge in the US West (Oregon) region to train CDeep3M. CDeep3M 
is implemented in Caffe, and we utilised the default settings for training as described in [3, 4]. 

1. Pre-processing and augmentation: Images were augmented using random rotation, 
shearing, zooming, shifting in x and y and flipping for both training and validation. 
Augmented data were generated on the fly to minimise memory utilisation. After the data 
were augmented, we used min-max normalisation to normalise the input data. 

2. Kernel initialisation, dropout layers: All convolutional kernels were initialised using He-
normal, and we used zeros and ones initialisation for TLUs. In some experiments, we used 
spatial dropout [32] layers in the bottlenecks to monitor the tendency of overfitting.  

3. Step and batch size: we parallelised the experiments by pooling 4 GPUs and used batch 
sizes of 4, 8, and 16. Step sizes were chosen as 500, 1000 and 2000 per epoch.  

4. Loss functions: we used a variety of loss functions in our experiments ranging from binary 
cross-entropy, Jaccard coefficient log-loss and focal loss, to dice loss. 

4.1. Binary cross-entropy:  

Binary cross-entropy loss is used to measure the classification performance based on 
the class membership probabilities. Let’s assume 𝑌𝑌 = 1 and 𝑌𝑌 = 0 represent the True 
and False classes, respectively. Assuming the network output node generates the 
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probability masks using a sigmoid function, then binary cross-entropy loss (CE loss) 
is defined as follows for binary image segmentation task: 

𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝, 𝑝̂𝑝) = �−(𝑝𝑝𝑖𝑖 log(𝑝̂𝑝𝑖𝑖) + (1 − 𝑝𝑝𝑖𝑖) log(1 − 𝑝̂𝑝𝑖𝑖))
𝑖𝑖

                              (1) 

where subscript 𝑖𝑖 represents the id of the pixels in probability mask, 𝑝𝑝 represents the 
ground-truth probability and 𝑝̂𝑝 =  1

1+ 𝑒𝑒−𝑥𝑥
 represents the probability of the predicted 

class given that sigmoid function is used as an activation function in the output layer. 

4.2. Jaccard coefficient-log loss: 

Jaccard distance, also known as intersection over union (IoU) score, can be adapted to 
obtain Jaccard loss which is useful for unbalanced datasets. Given that Jaccard distance 
is defined as equation 2, Jaccard log loss (JL loss) can be obtained as equation 3: 

𝐼𝐼𝐼𝐼𝐼𝐼 =
|𝑋𝑋 & 𝑌𝑌|

|𝑋𝑋| + |𝑌𝑌| − |𝑋𝑋 & 𝑌𝑌| =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
                                        (2) 

𝐽𝐽𝐽𝐽 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝, 𝑝̂𝑝) = −log�
∑ 𝑝𝑝𝑖𝑖𝑝̂𝑝𝑖𝑖𝑖𝑖 + 𝛿𝛿

∑ 𝑝̂𝑝𝑖𝑖𝑖𝑖 +∑ 𝑝𝑝𝑖𝑖𝑖𝑖 − ∑ 𝑝𝑝𝑖𝑖𝑝̂𝑝𝑖𝑖𝑖𝑖 + 𝛿𝛿�
                                    (3) 

where 𝑋𝑋 and 𝑌𝑌 represent the variables that we aim at measuring the Jaccard distance 
between them and TP, FP, and FN represent the true-positive, false-positive and false-
negative, respectively. 𝑖𝑖, 𝑝𝑝 and 𝑝̂𝑝 are defined as the same as above, and 𝛿𝛿 is established 
to avoid the zero-gradients or vanishing gradients problem.  

4.3. Focal loss: 

Focal loss [7] reduces the relative loss for well-classified examples by putting more 
focus on hard or misclassified instances. Equation 4 represents the focal loss (F loss) 
as follows: 

𝐹𝐹 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝, 𝑝̂𝑝) = �−(𝛼𝛼(1 − 𝑝̂𝑝𝑖𝑖)𝛾𝛾𝑝𝑝𝑖𝑖 log(𝑝̂𝑝𝑖𝑖) + (1 − 𝛼𝛼)(𝑝̂𝑝𝑖𝑖)𝛾𝛾(1− 𝑝𝑝𝑖𝑖) log(1 − 𝑝̂𝑝𝑖𝑖)) 
𝑖𝑖

    (4) 

where we have used 𝛼𝛼 = 0.25 and 𝛾𝛾 = 2 as described in [7]. 

4.4. Dice loss: 

Dice coefficient (DC) is a metric similar to the Jaccard index, which measures the 
overlap between two instances. It can be adapted to obtain dice loss (D loss) defined 
as follows: 

𝐷𝐷𝐷𝐷 =
2|𝑋𝑋 & 𝑌𝑌|
|𝑋𝑋| + |𝑌𝑌| =

2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

                                           (5) 

𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝, 𝑝̂𝑝) = −
∑ 𝑝𝑝𝑖𝑖𝑝̂𝑝𝑖𝑖𝑖𝑖 + 𝛿𝛿

∑ 𝑝̂𝑝𝑖𝑖𝑖𝑖 + ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 + 𝛿𝛿
                                            (6) 
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where 𝑝𝑝, 𝑝̂𝑝𝑖𝑖, 𝛿𝛿, 𝑖𝑖, TP, FP and FN are defined as mentioned earlier in the above. 

5. Optimisation: we have used Rectified Adam (RAdam) [9] as the primary optimisation 
method throughout this study as it demonstrates less sensitivity to the learning rate 
variance. We have used 10% ratio as the warm-up coefficient. However, we trained the 
networks with other optimisers, including stochastic gradient descent [33] and Adam [34] 
to analyse the behaviour the inference performance. We used a variety of learning rate 
setups with the optimisers mentioned above; however, the improvements were insignificant 
as compared to the results of RAdam. 

6. Validation criteria and model checkpoints: we used validation data as described above 
to validate the networks during the training. We used a variety of validation metrics during 
the training to obtain an optimal inference model. Model checkpoints were chosen based 
on models meeting the best validation criteria. Here we briefly outline the validation 
metrics used in this study. TP, TN, FP and FN represent true-positive, true-negative, false-
positive and false-negative, respectively. 

6.1. Validation loss:  

We monitored validation loss to obtain the best inference model. We found that 
different validation losses lead to different inference measures and performances. Our 
experiments show that the Jaccard coefficient log loss provided better inference 
performance compared to other loss functions that were used in this study. 

6.2. Validation accuracy:  

We monitored validation accuracy across all our experiments; however, our results 
show that higher validation accuracy cannot solely determine the best inference model, 
especially when the classes of segmentation are imbalanced. 

6.3. Validation AUC-ROC:  

Receiver operator characteristic (ROC) curves show how the true-positive instances 
vary with false-negative classification results. More details can be found in [35]. We 
have used the area under the ROC curve (AUC-ROC) to monitor validation during the 
training [36]. Our experiments show that higher validation AUC-ROC does not 
necessarily lead to the best inference results. This is in line with the findings of this 
study [35] where authors have suggested that the precision-recall (PR) curve may be 
preferred over AUC-ROC, especially when dealing with imbalanced datasets. 
However, AUC-ROC was positively and negatively correlated with F1-score and loss, 
respectively. 

6.4. Validation F1-score:  

F1-score is one of the critical performance measures used widely in machine-learning. 
It is defined as a harmonic mean between precision and recall as follows: 
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𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

                                                (7) 

where precision and recall are defined as equations (8) and (9), respectively. 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                             (8) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                                 (9) 

We have used f1-score as one of the primary performance measures throughout this 
study during the training and inference. 

7. Inference measures: After the models were trained, we obtained the predicted 
segmentation masks using the best snapshots of the models based on validation criteria, 
including the validation loss. We set the inference batch size equal to the batch size used 
during the training. In addition to F1-score and Jaccard similarity index as defined above, 
we used a wide range of other metrics to compare the segmentation performances as briefly 
outlined below. 

7.1. Foreground-restricted Rand Scoring after border thinning (𝑽𝑽𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)):  

Boundary maps can be adapted to obtain a segmentation mask by finding the connected 
components. Assuming 𝑆𝑆 represents the predicted mask and 𝑇𝑇 is the ground-truth 
mask, we define 𝑝𝑝𝑖𝑖𝑖𝑖 as the probability that randomly chosen pixel belongs to the 
segment 𝑖𝑖 in 𝑆𝑆 and segment 𝑗𝑗 in 𝑇𝑇. this joint probability distribution satisfies the 
normalisation condition as ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1. Given the marginal distributions defined as 
𝑠𝑠𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑗𝑗  and 𝑡𝑡𝑗𝑗 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖  (𝑠𝑠𝑖𝑖 represents the probability that a randomly chosen pixel 
belongs to segment 𝑖𝑖 in 𝑆𝑆 and 𝑡𝑡𝑗𝑗 represents the probability that a randomly chosen pixel 
belongs to segment 𝑗𝑗 in 𝑇𝑇), the 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) is defined as follows (more details can 
be found in [19]): 

𝑉𝑉𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ 𝑝𝑝𝑖𝑖𝑖𝑖2𝑖𝑖𝑖𝑖

𝛼𝛼 ∑ 𝑠𝑠𝑘𝑘2𝑘𝑘 + (1 − 𝛼𝛼)∑ 𝑡𝑡𝑘𝑘2𝑘𝑘
                                                (10) 

where 𝛼𝛼 is a hyper-parameter, as described in [19]. 

7.2. Foreground-restricted Information-Theoretic Scoring after border thinning 
(𝑽𝑽𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)):  

We can measure the similarity between the predicted mask and ground-truth mask by 
using mutual information as defined in equation (11): 

𝐼𝐼(𝑆𝑆;𝑇𝑇) = � 𝑝𝑝𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖

log𝑝𝑝𝑖𝑖𝑖𝑖 −� 𝑠𝑠𝑖𝑖
𝑖𝑖

log 𝑠𝑠𝑖𝑖 −� 𝑡𝑡𝑗𝑗
𝑗𝑗

log 𝑡𝑡𝑗𝑗                              (11) 
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Dividing 𝐼𝐼(𝑆𝑆;𝑇𝑇) by entropies of the masks yields the information-theoretic split and 
merge score [19]. 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) is defined as the weighted harmonic mean of these 
scores as follows: 

𝑉𝑉𝛼𝛼
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝐼𝐼(𝑆𝑆;𝑇𝑇)
(1 − 𝛼𝛼)𝐻𝐻(𝑆𝑆) + 𝛼𝛼𝛼𝛼(𝑇𝑇)

                                                     (12) 

7.3. Accuracy:  

Accuracy is widely used as one of the primary metrics to evaluate the performance of 
machine learning methods as defined below: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
                                                   (13) 

7.4. Sensitivity:  

Sensitivity, also known as true-positive rate or the recall score is one of the statistical 
indicators to measure the performance of binary classification tasks: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                            (14) 

7.5. Specificity:  

Specificity, also known as the true-negative rate is one of the other performance 
measures that is widely used along with sensitivity: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                            (15) 

7.6. Positive and negative predictive values:  

Positive predictive value (PPV) and negative predictive value (NPV) are defined as 
equations (16) and (17), and these measures depend on the prevalence: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                            (16) 

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                                                            (17) 
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Supplementary text 

Using ilastik and Weka to segment mitochondria on the cardiac dataset 

We extended our experiments to segment mitochondria on the cardiac dataset using 
ilastik and Weka to compare their performances with the deep neural networks. We performed 
a variety of tests with these two open-source software packages to ensure that we report the 
maximum segmentation performances. We used ilastik 1.3.2 and Weka trainable segmentation 
plugin on ImageJ for the segmentation. The image size used for the training and testing on 
ilastik and Weka was set to 1024 × 1024 in x and y. We performed more than 30 experiments 
in total with ilastik and Weka using a wide range of modules and parameters that these packages 
provide. In ilastik, we used “object + pixel classification” and “pixel classification” modules 
where we chose different possible combinations of the standard object, 2D skeleton, edge, 
intensity, texture, low, medium and high standard deviations of the underlying features. 
Moreover, we used two and three images for the training to monitor the performance sensitivity 
to the available ground-truth data. In Weka, we used standard and full sets of features to 
segment mitochondria on the cardiac data. The related figures are shown in the supplementary 
figures section. 

Image augmentation 

Image augmentation plays a crucial task in training deep neural networks when ground-
truth data is limited. Electron microscopy images are inherent in noise and low contrast which 
makes the manual annotation a laborious task. Hence, using image augmentation enables 
training the deep neural networks with sufficient image data. In addition to the zooming, 
random horizontal and vertical flipping, we used a variety of image augmentation techniques 
as implemented in KERAS 2.2.4 as follows: 

• Random rotation by angle 𝛽𝛽: image rotation can be interpreted as a 2D transformation 
where individual pixels at locations 𝑋𝑋 and 𝑌𝑌 are transformed to new locations 𝑋𝑋∗ and 
𝑌𝑌∗ as follows: 

� 𝑋𝑋
∗

𝑌𝑌∗ � = �cos𝛽𝛽 − sin𝛽𝛽
sin𝛽𝛽 cos𝛽𝛽 � . � 𝑋𝑋𝑌𝑌 �                                           (18) 

• Shearing: shear mapping is a linear displacement of a plane in a fixed direction. In 
image shearing, such 2D transformation is performed as the pixels at locations 𝑋𝑋 and 
𝑌𝑌 are transformed into new locations 𝑋𝑋∗ and 𝑌𝑌∗ as follows: 

� 𝑋𝑋
∗

𝑌𝑌∗ � = �1 𝜆𝜆
0 1� . � 𝑋𝑋𝑌𝑌 �                                                     (19) 

� 𝑋𝑋
∗

𝑌𝑌∗ � = �1 0
𝜆𝜆 1� . � 𝑋𝑋𝑌𝑌 �                                                     (20) 
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• Random shifting: we randomly shifted the images in 𝑋𝑋 and 𝑌𝑌. Given the random 
shifting factor 0 < 𝛼𝛼, the transformed image is obtained as follows: 

� 𝑋𝑋
∗

𝑌𝑌∗ � = � 𝑋𝑋 + 𝛼𝛼𝛼𝛼
𝑌𝑌 + 𝛼𝛼𝛼𝛼

�                                                     (21) 

where 𝑀𝑀 and 𝑁𝑁 represent the dimensions of the input image of size 𝑀𝑀 × 𝑁𝑁 pixels in 
𝑋𝑋 and 𝑌𝑌, respectively. We chose 𝛼𝛼 = 0.2 across all our experiments and padded the 
shifted pixels with zeros. 

K-fold cross-validation 

Cross-validation is one of the resampling methods that is used for evaluating machine 
learning methods when training data is limited. In K-fold cross-validation, data is first split into 
the K disjoint subgroups; then, the machine learning method is trained and evaluated in K steps 
using K-1 folds for the training and one fold for the validation at once. We first shuffled the 
images randomly and then split to 6 folds for the training and validation. We used the model 
selection module of the scikit-learn 0.23.0 to implement K-fold cross-validation both in our 
experiments and in EM-stellar.  

𝑽𝑽𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) and 𝑽𝑽𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) 

ImageJ provides a variety of image segmentation evaluation metrics including adjusted 
Rand error, clustered warping mismatches, pixel and Rand error, the variation of information 
and warping error. We used Rand error and variation of information to obtain 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 
and 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). We used script editor in BeanShell mode to implement these evaluation metrics in 
ImageJ. Moreover, we used pyimagj on EM-stellar to obtain the evaluation metrics report, which 
provides a set of wrappers to integrate between python and ImageJ. 

Network complexity analysis and summary reporting 

The network architectures were defined in TensorFlow GPU 1.8.0 CUDA 9.0; then the 
corresponding graph was frozen to obtain the floating-point operations using TensorFlow 
profiler. We established a tensor placeholder of shape (1, 512, 512, 1) to obtain the floating-
point operations summary which represents a single monochrome image of size 512 pixels in 
x and y. All the floating-point operations summary report elements were used and aggregated 
to report the network complexities, including 2D-convolutions, additions, multiplications, bias 
additions, max-pooling, division, and square roots.  

Feature correlation maps for EM-net, U-net and VGG 

We extracted all the feature channels embedded in the input, hidden and output layers of 
the above networks, which resulted in more than 140,000 feature channels. We used the 
correlation coefficient as defined in equation 22 to obtain the feature correlation maps of these 
networks between feature channels 𝑋𝑋 and 𝑌𝑌:  
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2𝐷𝐷 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
∑ ∑ (𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑌𝑌�)𝑗𝑗𝑖𝑖

��∑ ∑ (𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋�)2𝑗𝑗𝑖𝑖 ��∑ ∑ (𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑌𝑌�)2𝑗𝑗𝑖𝑖 �
                                     (22) 

where 𝑖𝑖 and 𝑗𝑗 represent the pixels of the feature channels 𝑋𝑋 and 𝑌𝑌. The results are shown in the 
supplementary figures section. We downsampled feature channels to obtain 2D correlation 
scores between the feature channels across different network blocks.  

The ensemble of the models and ensemble learning 

EM-stellar utilises an ensemble of the top models based on the inference criteria. This is 
slightly different to ensemble learning, where a super-model or meta-classifier is formed of 
base classifiers, and the resulted model is trained or finely tuned to perform segmentation or 
classification task. Two methods are used in EM-stellar to acquire the ensemble of models, 
including average and majority voting for binary classification tasks as described in equations 
(23) and (24), respectively: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  
∑ 𝑃𝑃𝑖𝑖𝑁𝑁

𝑁𝑁
                                                                    (23) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 = arg max(1𝑐𝑐(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖))                                                 (24) 

where 𝑁𝑁 is the number of models used for the ensemble, and 𝑃𝑃𝑖𝑖 represents the corresponding 
predicted probability masks of the model 𝑖𝑖 in equation (23). In equation (24), 1𝑐𝑐 is the indicator 
function as it is equal to 0 when the class of the pixel 𝑖𝑖𝑗𝑗 in the predicted mask (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) is 0 and 
the value of 1𝑐𝑐  is equal to 1 otherwise. 
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Supplementary figures and tables 
 

 

  

 

 

 

 

Figure 1. Comparison of mitochondria segmentation for test data on the cardiac images using 
ilastik and WEKA. Yellow, green, red and black correspond to true-positive, false-positive, 
false-negative (missing mitochondria) and true-negative, respectively. Left column represents 
the raw images, and the other columns represent the segmentation results. As shown, 
segmenting mitochondria using ilastik “object + pixel classification” module results in a fewer 
false-positive error (second column from the left) as compared with the pixel classification 
module (third column from the left). WEKA is more prone to both false positives and false 
negatives, as shown in the 4th column from the left. 
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Figure 2. Comparison of mitochondria segmentation for test data on the cardiac images using 
EM-net V1 2X, 4X, BN and BN 2X. Yellow, green, red and black correspond to true-positive, 
false-positive, false-negative (missing mitochondria) and true-negative, respectively. The left 
column represents the raw images, and the other columns represent the segmentation results. 
BN represents that batch-normalisation is utilised in the encoder as well as the decoder. 4X 
means that the network has a double depth as 2X in all the blocks. As shown, EM-net V1 BN 
2X has led to more false-positive instances as compared to the other methods. 
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Figure 3. Comparison of mitochondria segmentation for test data on the cardiac images using 
EM-net V2, V2 2X, V2 4X and majority voting. Yellow, green, red and black correspond to 
true-positive, false-positive, false-negative (missing mitochondria) and true-negative, 
respectively. The left column represents the raw images, and the other columns represent the 
segmentation results. As shown, EM-net majority voting has minimised the false-negative 
instances as compared to the other three methods. 
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Figure 4. Comparison of mitochondria segmentation for test data on the cardiac images using 
EM-net average voting, CDeep3M, U-net BN and VGG. Yellow, green, red and black 
correspond to true-positive, false-positive, false-negative (missing mitochondria) and true-
negative, respectively. The left column represents the raw images, and the other columns 
represent the segmentation results. As shown, CDeep3M is more prone to false positives and 
demonstrates minimum missing mitochondria in segmentations. VGG and U-net BN are more 
prone to missing mitochondria. 
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Figure 5. Comparison of mitochondria segmentation for test data on the cardiac images using 
ResNet, SegNet and U-net. Yellow, green, red and black correspond to true-positive, false-
positive, false-negative (missing mitochondria) and true-negative, respectively. The left 
column represents the raw images, and the other columns represent the segmentation results. 
As shown, SegNet and U-net are more prone to missing mitochondria or false-negative 
instances as compared to the ResNet. 
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Figure 6. Comparison of mitochondria segmentation results on sample neuronal test dataset. 
Yellow, green, red and blue correspond to true-positive, true-negative, false-negative (missing 
mitochondria) and false-positive. The left column represents the sample test serial block-face 
scanning electron microscopy (SBEM) images of mice brain cells. Other columns correspond 
to the overlay of result masks for EM-net V1 2X, 4X, BN, BN 2X and V2.  
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Figure 7. Comparison of mitochondria segmentation results on sample neuronal test dataset. 
Yellow, green, red and blue correspond to true-positive, true-negative, false-negative (missing 
mitochondria) and false-positive. The left column represents the sample test serial block-face 
scanning electron microscopy (SBEM) images of mice brain cells. Other columns correspond 
to the overlay of result masks for EM-net V2 2X, 4X, ResNet, SegNet and VGG.  
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Figure 8. Error bars of results for segmenting mitochondria on the cardiac dataset using ilastik. 
Cyan represents the results for two training images, and purple illustrates the results where we 
have used three training images. As shown, F1-score and accuracy demonstrate relatively 
similar performances across different experiments (29 different experiments had been 
performed on ilastik); however, other metrics show lots of variabilities. Top F1-score, 
accuracy, sensitivity, specificity, positive predictive rate and negative predictive rate for 
cardiac data were 0.96147, 0.9526, 0.9919, 0.9857, 0.9898 and 0.9847, respectively. 
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Figure 9. Feature correlation map for the EM-net. We have visualised the 2D correlation scores 
between more than 40,000 feature channels in the figure above. 

Figure 10. Feature correlation map for the U-net. We have visualised the 2D correlation scores 
between more than 50,000 feature channels in the figure above. 
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Figure 11. Feature correlation map for the VGG. We have visualised the 2D correlation scores 
between more than 50,000 feature channels in the figure above. 

Figure 12. The plot of validation AUC-ROC for the cardiac dataset. As shown, EM-net V1 
BN 2X has achieved the maximum validation AUC-ROC score and has converged faster as 
compared to the other networks. However, this network does not provide the optimal test score.  
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Figure 13. The plot of validation F1-score for the cardiac dataset. As shown, EM-net V1 BN 
and 4X have achieved the maximum validation F1-score score. However, EM-net V1 4X does 
not provide the optimal test F1-score.  

Figure 14. The plot of validation AUC-ROC for the neuronal dataset. As shown, EM-net V1 
2X has achieved the maximum validation AUC-ROC score, followed by EM-net V2 4X and 
U-net. 
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Figure 15. The plot of validation F1-score for the neuronal dataset. As shown, EM-net V1 BN, 
V1 BN 2X, V2 4X and U-net have achieved the maximum and relatively similar validation 
F1-score scores. However, these networks provide different test F1-scores. 

  

 

 

 

 

 

 

 

Method Module F1-score 𝑽𝑽𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑽𝑽𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 Accuracy Sensitivity Specificity PPV NPV Jaccard 

CDEEP3M - 0.9795 0.96485 0.96845 0.9745 0.9638 0.993 0.9958 0.9405 0.9344 

VGG - 0.9801 0.96452 0.96347 0.9745 0.9889 0.9494 0.9714 0.9802 0.9315 

SEGNET - 0.9815 0.95414 0.95408 0.9764 0.9864 0.9592 0.9767 0.9759 0.937 

RESNET - 0.9785 0.96219 0.96593 0.9729 0.9735 0.9717 0.9836 0.9548 0.929 

EM-NET V1 4X 0.9846 0.92822 0.95021 0.9804 0.9894 0.9647 0.9798 0.9813 0.9472 

EM-NET V1 2X 0.9852 0.97893 0.97674 0.9811 0.99 0.9657 0.9804 0.9823 0.9491 

EM-NET V1 BN 0.9854 0.95894 0.96294 0.9815 0.9867 0.9725 0.9842 0.9769 0.9506 

EM-NET V1 BN 2X 0.9788 0.98188 0.97739 0.9799 0.9854 0.9561 0.9723 0.9768 0.946 

EM-NET V2 0.9801 0.96833 0.96057 0.9745 0.9911 0.9457 0.9694 0.984 0.9313 

EM-NET V2 2X 0.9842 0.97172 0.96854 0.9798 0.989 0.9639 0.9794 0.9806 0.9459 

EM-NET V2 4X 0.9849 0.97294 0.97439 0.9808 0.9892 0.9661 0.9806 0.981 0.9484 

U-NET BN 0.9811 0.96182 0.94929 0.9758 0.9875 0.9554 0.9747 0.9778 0.9352 

U-NET - 0.9611 0.91642 0.93644 0.9521 0.9713 0.922 0.9511 0.9536 0.8824 

PReLU-NET - 0.9745 0.92302 0.94799 0.9688 0.9789 0.953 0.9702 0.9665 0.9225 

ENSEMBLE Majority Voting  0.9869 0.98728 0.98803 0.9833 0.991 0.97 0.9828 0.9842 0.9551 

ENSEMBLE Average Voting 0.9872 0.98692 0.98792 0.9839 0.985 0.982 0.9895 0.9743 0.9572 

TABLE 1. COMPARISON OF RESULTS ON SEGMENTING MITOCHONDRIA USING THE CARDIAC TEST DATASET. THE ENSEMBLE OF THE TOP 5 EM-NET 
BASE CLASSIFIERS OUTPERFORMS OTHER METHODS IN TERMS OF EVALUATION METRICS INVESTIGATED IN THIS STUDY. BN, PPV AND NPV REPRESENT 
BATCH-NORMALISATION, POSITIVE PREDICTIVE VALUE AND NEGATIVE PREDICTIVE VALUE, RESPECTIVELY. 
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Method Module F1-score 𝑽𝑽𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑽𝑽𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 Accuracy Sensitivity Specificity PPV NPV Jaccard 

CDEEP3M - 0.9840 0.9234 0.9637 0.9708 0.9722 0.9561 0.9960 0.7528 0.7277 

VGG - 0.9908 0.9429 0.9719 0.9803 0.9938 0.8616 0.9878 0.9247 0.8014 

SEGNET - 0.9901 0.9409 0.9689 0.9818 0.9939 0.8459 0.9864 0.9248 0.7915 

RESNET - 0.9895 0.9386 0.9699 0.9806 0.9928 0.8440 0.9863 0.9119 0.7803 

EM-NET V1 4X 0.9908 0.9461 0.9740 0.9831 0.9932 0.8691 0.9884 0.9193 0.8075 

EM-NET V1 2X 0.9905 0.9455 0.9736 0.9825 0.9911 0.8855 0.9899 0.8983 0.8048 

EM-NET V1 BN 0.9905 0.9487 0.9742 0.9825 0.9919 0.8773 0.9891 0.9053 0.8035 

EM-NET V1 BN 2X 0.9908 0.9512 0.9767 0.9832 0.9898 0.9088 0.9919 0.8879 0.8153 

EM-NET V2 0.9902 0.9367 0.9720 0.9819 0.9944 0.8409 0.9860 0.9304 0.7911 

EM-NET V2 2X 0.9900 0.9500 0.9727 0.9816 0.9909 0.8766 0.9891 0.8952 0.7950 

EM-NET V2 4X 0.9904 0.9624 0.9781 0.9823 0.9909 0.8876 0.9900 0.8942 0.8033 

U-NET BN 0.9896 0.9611 0.9768 0.9809 0.9883 0.8985 0.9910 0.8716 0.7935 

ENSEMBLE Majority Voting  0.9911 0.9500 0.9748 0.9837 0.9919 0.8913 0.9904 0.9067 0.8165 

ENSEMBLE Average Voting 0.9914 0.9555 0.9794 0.9842 0.9924 0.8915 0.9904 0.9125 0.8213 

TABLE 2. COMPARISON OF RESULTS ON SEGMENTING MITOCHONDRIA USING THE NEURONAL TEST DATASET. BN, PPV AND NPV REPRESENT BATCH-
NORMALISATION, POSITIVE PREDICTIVE VALUE AND NEGATIVE PREDICTIVE VALUE, RESPECTIVELY. 
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