

1 Definition and Signatures of Lung Fibroblast Populations in Development and Fibrosis in Mice
2 and Men

3
4 Xue Liu^{1&}, Simon C. Rowan^{1&}, Jiurong Liang¹, Changfu Yao¹, Guanling Huang¹, Nan Deng²,
5 Ting Xie¹, Di Wu², Yizhou Wang², Ankita Burman¹, Tanyalak Parimon¹, Zea Borok³, Peter Chen¹,
6 William C. Parks¹, Cory M. Hogaboam¹, S. Samuel Weigt⁴, John Belperio⁴, Barry R. Stripp¹, Paul
7 W. Noble^{1*}, and Dianhua Jiang^{1,5*}

8
9 ¹Department of Medicine and Women's Guild Lung Institute, ²Genomics Core, Cedars-Sinai
10 Medical Center, Los Angeles, CA 90048, USA. ³Division of Pulmonary and Critical Care
11 Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033,
12 USA. ⁴Department of Medicine, David Geffen School of Medicine, University of California Los
13 Angeles, Los Angeles, CA 90095, USA. and ⁵Department of Biomedical Sciences, Cedars-Sinai
14 Medical Center, Los Angeles, CA 90048, USA.

15
16 *Correspondence should be addressed to Paul W. Noble (paul.noble@cshs.org) or Dianhua Jiang
17 (dianhua.jiang@cshs.org).

18
19 &These authors contributed equally.

20
21 **One Sentence Summary:** Lung mesenchymal cell subsets were defined longitudinally and in
22 fibrotic condition.

23 **Abstract**

24 The heterogeneity of fibroblasts in the murine and human lung during homeostasis and disease is
25 increasingly recognized. It remains unclear if the different phenotypes identified to date are
26 characteristic of unique subpopulations with unique progenitors or whether they arise by a process
27 of differentiation from common precursors. Our understanding of this ubiquitous cell type is
28 limited by an absence of well validated, specific, markers with which to identify each cell type and
29 a clear consensus on the distinct populations present in the lung. Here we describe single cell RNA
30 sequencing (scRNA-seq) analysis on mesenchymal cells from the murine lung throughout
31 embryonic (E) development (E9.5 – 17.5), at post-natal day (P1 – 15), as well as in the adult and
32 the aged murine lungs before and after bleomycin-induced fibrosis. We carried out complementary
33 scRNA-seq on human lung tissue from a P1 lung, a month 21 lung and lung tissue from healthy
34 donors and patients with idiopathic pulmonary fibrosis (IPF). The murine and human data were
35 supplemented with publicly available scRNA-seq datasets. We consistently identified
36 lipofibroblasts, myofibroblasts, pericytes, mesothelial cells and smooth muscle cells. In addition,
37 we identified a novel population delineated by *Ebf1* (early B-cell factor 1) expression and an
38 intermediate subtype. Comparative analysis with human mesenchymal cells revealed homologous
39 mesenchymal subpopulations with remarkably conserved transcriptomic signatures. Comparative
40 analysis of changes in gene expression in the fibroblast subpopulations from age matched non-
41 fibrotic and fibrotic lungs in the mouse and human demonstrates that many of these subsets
42 contribute to matrix gene expression in fibrotic conditions. Subtype selective transcription factors
43 were identified and putative divergence of the clusters during development were delineated.
44 Prospective isolation of these fibroblast subpopulations, localization of signature gene markers,
45 and lineage-tracing each cluster are under way in the laboratory. This analysis will enhance our
46 understanding of fibroblast heterogeneity in homeostasis and fibrotic disease conditions.

47

48 **Keywords:** lung fibroblasts, scRNA-seq, lipofibroblasts, myofibroblasts, *Ebf1*⁺ fibroblasts,
49 Smooth muscle cells (SMCs), pericytes

50

51 **Introduction**

52 The adult pulmonary mesenchyme includes multiple distinct cell lineages and is centrally involved
53 in the pathogenesis and progression of debilitating respiratory conditions like idiopathic
54 pulmonary fibrosis (IPF)¹. Pulmonary mesenchymal cells, including specific and unspecific
55 fibroblast subtypes; like myofibroblasts, lipofibroblasts or parenchymal fibroblasts respectively,
56 smooth muscle cells (SMCs) of both airway and vascular, pericytes, and mesothelial cells, undergo
57 dynamic structural, biochemical, and functional changes during organ development and disease.
58 This is particularly true in IPF where dysfunctional tissue repair response by mesenchymal cells
59 is believed to be a critical factor¹.

60 Recent studies utilizing single cell omics technologies, including scRNA-seq, have focused
61 on defining the transcriptome of different cell types including lung mesenchymal cells²⁻⁶. The use
62 of different databases, cells of divergent developmental or disease stages has been confounding,
63 resulting in a range of different transcriptomic signatures being attributed to the same cell
64 population^{2,3,5,7-9}. An array of cell “specific” markers has been reported. However highly
65 discriminative markers, especially for fibroblast subpopulations, remain elusive and the majority
66 of markers are non-specific and expressed by multiple cell types.

67 Major studies, many unpublished and released as preprints, of lung cell types in IPF,
68 interstitial lung disease, chronic obstructive pulmonary disease, sarcoidosis, non-specific
69 interstitial pneumonia and chronic hypersensitivity pneumonitis, have identified anywhere
70 between six and 11 distinct mesenchymal subpopulations^{4,6,10-13}. While lipofibroblasts,
71 myofibroblasts, SMCs, pericytes and mesothelial cells are commonly reported in these studies, but
72 the transcriptomic signatures differ. Frequently publications identify subtypes by a mixture of
73 location and/or discriminative gene expression^{4,6,10-13}. To add the confusion, clusters identified by
74 high expression of a delineating gene, for example *WIF1*, in one publication are subsequently
75 identified by others as a predefined mesenchymal cell type, like myofibroblasts in which *WIF1* is
76 reported as a delineating marker gene^{4,12}. The current approach likely leads to overlap of distinct
77 clusters and does little to resolve the controversies regarding the definitive transcriptomic signature
78 of the pulmonary mesenchymal populations.

79 Of the known mesenchymal subpopulations, myofibroblasts have been of singular interest
80 given their role as the prominent producers of extracellular matrix (ECM), ability to restore tissue
81 integrity after injury and as the postulated effector cell of pulmonary fibrosis¹⁴. However,

82 commonly reported marker genes, such as *Acta2*, are expressed prominently by SMCs or other
83 mesenchymal cells making fractionation and further study difficult¹⁵⁻¹⁷. Similarly the description
84 of lipofibroblasts, a fibroblast subtype prominent in the developing rodent lung characterized by
85 lipid inclusions, and even their presence in the human lung remains controversial¹⁸⁻²¹. The lack of
86 specificity of reported markers for other known mesenchymal lung components is true also for
87 SMCs, pericytes and mesothelial cells. Further, whether these mesenchymal subpopulations
88 transition or acquire a myofibroblast like phenotype is yet to be determined. To date, no
89 consistently reported signature for the different mesenchymal subtypes has been reported. A better
90 definition of specific markers and detailed genetic lineage of these mesenchymal cell subtypes is
91 needed to better understand lung development and disease.

92 Therefore, in this study we undertook a longitudinal scRNA-seq analysis of mesenchymal
93 cells from murine and human lungs at different developmental stages, adult and aged murine lungs
94 following bleomycin induced fibrosis, and lung tissue from healthy donors and patients with IPF.
95 We accessed and re-analyzed scRNA-seq data from relevant published studies. We identified the
96 genetic programs of murine and human lung mesenchymal cells from embryonic development to
97 adulthood and in disease. We examined mesenchymal subtypes for known marker gene expression
98 and specification and identified novel markers genes that were more specific for each
99 mesenchymal subtype than those in the literature. Comparative analysis of the genetic profiles of
100 the mesenchymal cell subtypes in the non-fibrotic and fibrotic lung was performed. These data
101 provide a longitudinal and comprehensive genetic definition of murine and human lung
102 mesenchymal subtypes and suggest all mesenchymal subtypes may contribute to pulmonary
103 fibrosis. These findings contribute to the study and understanding of lung development and may
104 aid the development of targeted therapies for the treatment of pulmonary fibrosis.

105

106 **Results**

107 **scRNA-seq on E17.5 murine lung identified six fibroblast subpopulations.**

108 Myofibroblasts are essential components of the growing secondary septa, and most prominent
109 during alveolarization in late embryogenesis; when lipofibroblasts also emerge, and postnatal
110 stages of lung development in mice¹⁸. The transcriptome and specific markers for neither
111 myofibroblasts nor lipofibroblasts have been clearly described. Therefore, in order to identify a
112 clear transcriptomic profile for lipofibroblasts and myofibroblasts we first performed scRNA-seq
113 on E17.5 embryonic murine lungs. We collected live cells from three E17.5 murine lungs (Fig.
114 S1A). Sequencing libraries were prepared from FACS sorted cells using the 10x Genomics
115 Chromium system. After quality control (QC) (Fig. S1B, C), samples were integrated (Fig. 1A).
116 The cells were visualized in two dimensions according to their gene expression profiles using
117 Uniform Manifold Approximation and Projection (UMAP). Mesenchymal, immune, epithelial and
118 endothelial cell clusters were well separated by distinct gene expression profiles (Fig. 1B, S1D-F).
119 The mesenchymal fraction was subset from epithelial, immune and endothelial cells and the
120 fraction purity was confirmed (Fig. S2A-C, Supplementary Table 1). Lipofibroblasts (*Plin2* and
121 *Tcf21*⁺), myofibroblasts (*Acta2* and *Pdgfra*⁺), proliferative fibroblasts (*Hmmr* and *Mki67*⁺) and
122 mesothelial cells (*Wt1* and *Upk3b*⁺) were identified by discrete expression of widely reported
123 marker genes (Fig. 1C)^{2,7,8,17,22}. Two major populations could not be identified using any known
124 markers in the literature. One subpopulation was identified as *Ebf1*⁺ fibroblasts due to the
125 condensed and specific expression of this transcription factor. The remaining cluster, after all
126 others had been identified, were named intermediate fibroblasts due to the low expression of genes
127 from multiple other populations (Fig. 1C).

128 To validate the subpopulation identification, linear dimensional reduction was performed
129 using two further assays. Firstly, the cells were visualized using t-Distributed Stochastic Neighbor
130 Embedding (t-SNE) with the proliferative fibroblasts and mesothelial cells groups excluded (Fig.
131 S2D). Secondly, principal component analysis (PCA) was visualized using Independent
132 Component Analysis on module data (k-means) and metagene data. In both instances the
133 remaining mesenchymal cells separated into four clear clusters in both two and three dimensions
134 (Fig. S2E). *Pdgfrb* expression was present in all subpopulations and highest in the *Ebf1*⁺
135 population (Fig. 1E, S2F, G) visualized by violin plot, t-SNE and UMAP analysis, suggesting that
136 *Ebf1*⁺ fibroblast cluster might include pericytes. Heatmap visualization of the top 15 differentially

137 expressed genes of each cluster revealed a distinct pattern of gene expression in each identified
138 cluster (Fig. 1D) and a selection of the top specific genes for each subpopulation were visualized
139 by dot plots (Fig. S2H). The expression of eight specific genes from each subpopulation were
140 visualized by violin plots (Fig. 1E).

141 To further validate the definition of the mesenchymal subpopulation, we performed another
142 unbiased analysis – single cell ATAC-seq (scATAC-seq) on E17.5 mouse lung. After QC (Fig.
143 S3A-B) and clustering major cell types (Fig. S3C-F), mesenchymal cells were extracted and
144 clustered mesenchymal cells. By checking the mesenchymal cell cluster specific genes identified
145 above, we defined similar mesenchymal cell clusters, lipofibroblast, *Ebf1*⁺ fibroblast,
146 myofibroblast, intermediate fibroblast and mesothelial cell (Fig. S3G-I) and similar cluster-
147 specific growth factors and transcriptional factors were confirmed (Fig. S3J).

148 Self-organizing maps (SOM) were used to visualize coincidental gene sets in each
149 subpopulation of E17.5 fibroblasts (Supplementary Methods). Multiple subtype-specific gene
150 signatures were determined, including extracellular space, collagen-containing extracellular
151 matrix, structural constituent of ribosome, ribosome, DNA-binding transcription activator activity,
152 RNA polymerase, nucleus, cell adhesion, plasma me, extracellular region, extracellular space,
153 stress fiber, plasma membrane, Golgi cisterna membrane and protein glycosylation. Notably,
154 lipofibroblasts displayed opposite gene signatures to that of myofibroblasts (Fig. S4A).

155 A customizable suite of single-cell R-analysis tools (SCRAT) based on SOM machine
156 learning was used to analyze for sample similarity and perform pseudo-time analysis
157 (Supplementary Methods). The correlation-spanning tree and trajectory report suggested a directed
158 hierarchical relationship between the fibroblast subpopulations. The correlation-spanning tree and
159 k-nearest neighbor graph began from the lipofibroblast cluster, bifurcated to intermediate
160 fibroblasts and finally bifurcated to *Ebf1*⁺ fibroblasts and myofibroblasts (Fig. S4B-E). The top 15
161 activated and inhibited regulators among the differentially expressed genes of each subpopulation
162 are reported in Fig. S5 by Ingenuity Pathway Analysis (IPA).

163
164 **Identification of murine lung fibroblast subpopulations throughout lung development and**
165 **following bleomycin induced fibrosis.**

166 scRNA-seq datasets from earlier developmental stages (E9.5, 10.5, 11.5, 12.5, 14.5, 16.5) were
167 examined for the conserved expression of the transcriptomic profiles of each subpopulation

168 identified in the E17.5 dataset. The mesenchymal cells from E9.5, E10.5 and E11.5 datasets were
169 extracted and combined²³ (Fig. S6A). Distinct endoderm and mesoderm clusters were identified
170 by visualizing known markers, endoderm specific transcription factors, *Nkx2-1* and *Foxa2*, and
171 mesoderm specific transcription factors, *Tbx5* and *Osr1* (Fig. 2A, B, S6B-C). However, the
172 fibroblast subtype-specific transcriptomic profiles identified in the E17.5 dataset were not distinct
173 in the combined E9.5-11.5 datasets. This suggests the differentiation fate of the mesodermal cells
174 at E9.5-E11.5 lung was not yet determined.

175 CD45⁻ lung cells from an E12.5 murine lung dataset and all cells from an E14.5 murine
176 lung dataset were extracted from recently published studies^{24,25}. The mesenchymal cells were
177 subset from the data following QC (Fig. S7A-E, S8A-E, Supplementary Table 1). Mesenchymal
178 subpopulations were identified using known markers and the transcriptomic profiles identified at
179 E17.5 (Fig. 2C-F). Each cluster had a distinct gene expression profile (Fig. 2D, 2F, S7F, S8F).
180 α SMA-GFP; *Tbx4*-Cre; Rosa26-tdTomato (*Tbx4*-lineage⁺, α SMA⁺) fibroblasts were sorted from
181 E16.5 murine lungs using the same FACS strategy reported in our previous study (Fig. S9A)².
182 scRNA-seq analysis was carried out on the sorted E16.5 cells (Fig. S9B-G, Supplementary Table
183 1). The subpopulations were identified as described previously (Fig. 2G, H). The gene profile of
184 each cluster was homologous to the corresponding mesenchymal cluster in the E17.5 murine lung
185 (Fig. S9H). scRNA-seq data from P1 lungs, *Pdgfra*-GFP⁺ mesenchymal cells from P7 and P15
186 murine lungs, were accessed from published studies^{3,17}. QC and data integration, if necessary, were
187 performed as described previously (Fig. S10A). The major cell types were identified, and the
188 mesenchymal cells extracted from the P1 mouse lung (Fig. S10B-E, Supplementary Table 1). After
189 removing the endothelial and immune cells in the P15 mouse lung dataset (Fig. S12A-D) and
190 confirming the purity of the subset mesenchymal population (Fig. S10E, 11B, 12E), the
191 mesenchymal cells were clustered, and the subpopulations identified (Fig. 2I, K and M) and each
192 cluster had a distinct gene expression profile (Fig. 2J, L, N, S10F, S11C and S12F).

193 scRNA-seq data from adult normal murine lungs were accessed from our and others'
194 previously published studies (Fig. S13A-H, Supplementary Table 1)^{5,15,26-28}. The mesenchymal
195 cells were extracted, integrated, clustered and the purity of the mesenchymal fraction was
196 confirmed (Fig. S14A-C). The transcriptomic profile of the identified subpopulations was
197 homologous to that observed in earlier datasets (Fig. 2O-P, S14D). Adult murine lung
198 mesenchymal cells, 21 days after bleomycin induced injury, from two of our previously reported

199 studies were extracted, integrated and clustered as described above^{15,28} (Fig. S15A-D). After
200 clustering, corresponding mesenchymal subpopulations to the non-fibrotic controls were identified
201 (Fig. 2Q-R, S15E).

202 As IPF is a disease of aging, to further investigate pulmonary fibroblast lineage and the
203 fibroblast subtypes present during development and disease, mesenchymal cells
204 (EPCAM/CD31/CD45⁻) were collected from three control aged mouse lungs and aged matched
205 lungs 14 days after bleomycin injury. QC, integration, mesenchymal fraction extraction and purity
206 confirmation were performed as described previously (Fig. S16A-I, S17A-B, S18A-I and S19A-
207 B). The mesenchymal cell subpopulations identified in the aged normal and fibrotic lungs were
208 similar to those identified in adult mouse lungs (Fig. 2S and U) and each cluster showed a distinct
209 gene expression profile (Fig. 2T and V, S17C and S19C).

210

211 **Lipofibroblast specific and timepoint specific signature genes**

212 We identified a distinct lipofibroblast cluster in murine lungs at each developmental and disease
213 stage. We determined the differentially expressed genes of lipofibroblasts at each stage and
214 visualized the top genes from representative developmental stages using volcano plots (Fig. S20A).
215 An extended selection of time point-specific lipofibroblast genes were visualized by dot plots (Fig.
216 S2F, S7F, S8F, S9H, S10F, S11C, S12F, S14D, S15E, S17C, S19C). Several genes are commonly
217 used to identify lipofibroblasts, including *Tcf21*, *Plin2*, *Fgf10* and *G0s2* (G0/G1 Switch 2)^{7,8,29}. To
218 address the specification and expression of these genes, we examined the transcript level of these
219 four representative genes and top four time point-specific genes using violin plots (Fig. 3A-B). We
220 found either high background or very low transcript of these four known genes in some time points.
221 Among the top differentially expressed genes in murine lung lipofibroblasts; *Limch1* (LIM and
222 calponin homolog domains 1), *Gyg* (glycogenin), *Macf1* (Microtubule actin cross-linking factor
223 1), *Mfap4* (microfibril associated protein 4), *Npnt* (nephronectin), *Wnt2*, *Col13a1* (collagen type
224 XIII alpha 1 chain), and *Inmt* (indoleethylamine N-methyltransferase) were consistently expressed,
225 and discriminative in the lipofibroblast clusters at all time points (Fig 3B). *Gyg* encodes a member
226 of the glycogenin family and showed very specific expression patterns in pre-lipofibroblasts and
227 lipofibroblasts (Fig. 3C, S20B). Among all the novel lipofibroblast specific genes identified, *Gyg*,
228 *Macf1*, *Wnt2* and *Co13a1* were the most specific and consistently expressed compared to canonical
229 markers (Fig. 3C).

230 Lipofibroblasts were sorted by FACS from adult murine lungs using the top differentially
231 expressed genes that encoded cell surface proteins in the scRNA-seq dataset, represented by Cd249
232 (aka *Enpep*, Glutamyl aminopeptidase) (Fig. S21A-C). The top differentially expressed genes in
233 bulk-sequenced Cd249⁺ fibroblasts in comparison to Cd249⁻ fibroblasts overlapped substantially
234 with the highly discriminative lipofibroblast genes in the scRNA-seq analysis, like *Limch1*,
235 *Coll3a1*, *Fgf10*, and *Tcf21* (Fig. S21D). Cultured fibroblasts in which a lipofibroblast-like
236 phenotype had been induced using conventional methods displayed pronounced lipid inclusions
237 (Fig. 3D-G). scRNA-seq analysis of lipofibroblast-like cells demonstrated that stimulated
238 lipofibroblast-like cells displayed high transcript expression of canonical makers, like *Plin2*, as
239 reported by others (Fig. 3H-J, S21D). However, the *in vivo* lipofibroblast transcriptomic signature
240 was not localized to the *Plin2*^{high} population that emerged in the stimulated cells (Fig. S21E).
241 Colony forming assays using lipofibroblast-like cells demonstrated that they were more supportive
242 of AEC2 colony formation than unstimulated cells (Fig. 3K, L).

243

244 **Delineation of SMCs and myofibroblasts**

245 The transcriptomic profiles of myofibroblasts and SMCs have not yet been definitively determined
246 and these populations are yet to be clearly distinguished from each other at the mRNA level
247 without localization. *Acta2*, *Myh11* (myosin-11), *Tagln* (transgelin) and *Pdgfra* are widely
248 reported myofibroblast marker genes but are highly expressed in other mesenchymal
249 subtypes^{16,17,22,30-32}. In the current study, we identified clear myofibroblast clusters in embryonic
250 and postnatal, adult and aged normal and bleomycin injured mouse lung and also identified clear
251 SMC clusters in adult and aged normal and bleomycin injured mouse lung (Fig. 2O-V). We
252 examined the differentially expressed genes of the SMC and myofibroblasts subpopulations and
253 visualized them using volcano (Fig. 4A) and dot plots (Fig. S2F, S7F, S8F, S9H, S10F, S11C,
254 S12F, S14D, S15E, S17C, S19C). *Acta2*, *Myh11* and *Tagln* were preferentially expressed in the
255 myofibroblast cluster in E12.5, E14.5, E16.5, E17.5, P7 and P15 murine lungs with limited
256 expression in other clusters (Fig. 4B, S22A). In the P1 mouse lung, these genes showed little
257 transcript expression in the myofibroblast cluster (Fig. 4B). *Tgfb1* (transforming growth factor beta
258 induced), *Hhip* (hedgehog interacting protein), *Enpp2* (ectonucleotide
259 pyrophosphatase/phosphodiesterase 2), *Egfem1* (EGF-like and EMI domain-containing protein 1),
260 *P2ry14* (P2Y purinoceptor 14), *Wnt5a*, *Nnat* (neuronatin), *Mustn1* (musculoskeletal, embryonic

261 nuclear protein 1), *Actg2* (actin gamma 2, smooth muscle) and *Cnn1* (calponin 1) were among the
262 top differentially expressed genes. These genes were found to be highly discriminative and
263 conserved between time points in myofibroblasts (Fig. 4A-B, S22B). SMC related gene expressing
264 clones were detected in some datasets but a separate SMC cluster in the embryonic and early
265 postnatal lung datasets could not be detected (Fig. 2C-N, S23). These data suggest that SMCs in
266 the embryonic and early postnatal day lung cannot be definitively distinguished from
267 myofibroblasts at the mRNA level. In the adult and aged normal and fibrotic murine lung, distinct
268 SMC clusters were identified (Fig. 2O-V). *Acta2*, *Myh11*, *Actg2* and *Actc1* (Actin alpha cardiac
269 muscle 1), commonly reported SMC marker genes, were among the top DE genes from the adult
270 and aged SMC clusters (Fig. 4C-D, S22I). In the mature adult and aged murine lungs, SMC
271 clusters were identifiable but were not clearly separated from myofibroblast clusters (Fig. 2O-V
272 and 4D). Myofibroblasts showed similar gene profiles with embryonic lungs and we visualized
273 four of the most specific and highly expressed genes, *Tgfb1*, *Hhip*, *Enpp2* and *Wnt5a* in all the
274 mouse lungs of different timepoints (Fig. 4B-D, S22C-H, J). We did not observe increased
275 myofibroblast cell number in fibrotic lungs compared to control lungs (Fig. 2O-V and 4D). More
276 time point-specific myofibroblast and SMC genes were visualized by dot plots (Fig. S2F, S7F,
277 S8F, S9H, S10F, S11C, S12F, S14D, S15E, S17C, S19C).

278

279 **Identification of an *Ebf1*⁺ fibroblast subtype and pericytes**

280 A distinct, previously unidentified cluster of mesenchymal cells delineated by *Ebf1* expression,
281 emerged at E14.5 and was identified at all time points examined (Fig. 2E-N). Differential
282 expression analysis revealed time point-specific genes for the *Ebf1*⁺ cluster in each dataset (Fig.
283 5A). The transcriptomic profile of embryonic *Ebf1*⁺ fibroblasts represented by *Ebf1*, *Gucy1a3*
284 (Guanylate cyclase soluble subunit alpha-3), *Pdzd2* (PDZ Domain Containing 2), *Postn* (Periostin),
285 *Pdgfrb*, *Higd1b* (HIG1 Hypoxia Inducible Domain Family Member 1b), *Cox4i2* (Cytochrome C
286 Oxidase Subunit 4i2) and *Notch3* was consistent up to P1 (Fig. 5B, S24A, C-H). From P7 onwards
287 the transcriptomic profile was better represented by *Ebf1*, *Serpinf1* (Serpine Family F Member 1),
288 *Postn*, *Col14a1* and *Pi16* (Peptidase Inhibitor 16) (Fig. 5C and S24B, I, J). In adult and aged
289 mesenchymal cells, two *Ebf1*⁺ clusters were identified (Fig. 2O-V). One *Ebf1*⁺ cluster we
290 identified as pericytes due to condensed expression of known pericyte markers *Cspg4* (*Ng2*) and
291 *Pdgfrb* (Fig. 2O-V, 5D-E, S24K). The other distinct cluster was also *Ebf1*⁺ and expressed the novel

292 transcriptomic signature identified from P7 onwards (Fig. 5D-E, S24K). Discriminative marker
293 genes for the *Ebf1*⁺ cluster in the E14.5-P1 lungs included genes, for example *Higd1b*, *Cox4i2* and
294 *Notch3*, subsequently identified among the top differentially expressed genes of adult/aged lung
295 pericytes (Fig. 5E, S24K). These data suggest that pericytes and adult *Ebf1*⁺ fibroblasts diverge
296 during early post-natal development but may share a common lineage.

297 Traditional pericyte markers, like *Cspg4*, displayed low transcript expression while *Pdgfrb*
298 was condensed in pericytes but with high background in other clusters. *Foxd1*, a common marker
299 of pericyte lineage, was weakly expressed in *Ebf1*⁺ fibroblasts and undetectable in any pericyte
300 cluster in the murine lung (Fig. 5E)³³. Novel pericyte markers identified in our analysis were
301 expressed at a greater level, with greater specification than commonly used pericyte marker genes
302 (Fig. 5D, E, S24K). More timepoint-specific *Ebf1*⁺ fibroblast and pericyte genes were visualized
303 by dot plots (Fig. S2F, S7F, S8F, S9H, S10F, S11C, S12F, S14D, S15E, S17C, S19C).

304 At protein level, co-staining for *Ebf1*, the endothelial cell marker, vWF (von Willebrands
305 factor), and α SMA, indicated that *Ebf1*⁺ cells were not only perivascular but also in interstitial
306 lung tissue (Fig. 5F-G). This further suggests that the *Ebf1*⁺ population consists of both pericytes
307 and a distinct fibroblast subtype.

308
309

310 **Matrix gene expression in normal and bleomycin-injured murine lungs.**

311 As significant increased myofibroblast number was not detected in our analysis, which denied the
312 well-known hypothesis of mesenchymal cells transition into myofibroblasts in fibrotic lung. To
313 determine the possible mechanism, age matched non-fibrotic and fibrotic mesenchymal cells were
314 combined for further analysis (Fig. 6A, 6G). Major ECM associated genes in fibrosis, represented
315 by *Colla1* and *Fn1* displayed an increased expression in the fibrotic mesenchymal cells compared
316 to mesenchymal cells from non-fibrotic aged matched controls (Fig. 6C-F, I-L, S25). The presence
317 of all previously identified fibroblast subtypes in the integrated datasets was confirmed (Fig. 6B,
318 H). UMAP visualization confirmed increased expression of the known matrix related genes and
319 the expression of novel myofibroblast markers we had identified in all the mesenchymal clusters
320 (Fig. S26). These data suggest that bleomycin-induced fibrotic injury increases the expression of
321 the ECM related genes in all mesenchymal cell subtypes.

322 *Coll4a1* and *Coll3a1*, which we previously reported as matrix fibroblast² were found
323 specific expressed in lipofibroblast or *Ebf1*⁺ clusters specific genes at different timepoints (Fig.
324 S27A). Vim (Vimentin) is an often used as mesenchymal cell marker and in some instances
325 reportedly a gene specific for myofibroblast²², however, here we found that *Vim* transcript
326 expression was highest in endothelial cells and was detectable in mesenchymal and immune cells.
327 It was rarely detected in epithelial cells (Fig. S27B). This suggests that *Vim* should not be used as
328 mesenchymal cell marker. We also checked commonly used mesenchymal cell marker, *Pdgfra*
329 and *Pdgfrb*, and found *Pdgfrb* expression overlapped with *Pdgfra* expression in some datasets
330 while in others the expression of these two genes was well separated with high background overall
331 (Fig. S28). In adult and fibrotic mouse lungs, *Pdgfra* was well separated from *Acta2*⁺ cells and
332 *Pdgfrb*⁺ cells, but showed good overlap with *Tcf21* (Fig. S29A, C, D, E, G, H). *Pdgfrb* showed
333 some overlap with one of the *Ebf1* expressing fibroblast cluster, pericytes (Fig. S29B and F).

334

335 **Differentiation potential of the embryonic mesenchymal cell clusters**

336 To investigate the differentiation potential of the mesenchymal cell clusters at different embryonic
337 stages, the identified mesoderm cells from the E9.5-E11.5 datasets were integrated with the E12.5
338 and E17.5 mesenchymal cell clusters. The integrated data was projected onto SCRAT for sample
339 similarity and pseudo-time analysis². The major fibroblast clusters were identified (Fig. 6M). The
340 mesodermal cells were dispersed throughout the other clusters suggesting that the mesodermal
341 cells may be pluripotent progenitor cells. E12.5 pre-lipofibroblasts and E17.5 lipofibroblasts were
342 closely associated but did not integrate (Fig. 6M). This implies a direct hierarchical relation
343 between these two clusters. This was confirmed by pseudotime analysis (Fig. 6N). Myofibroblasts
344 and intermediate fibroblasts from E12.5 integrated with the corresponding subpopulation from the
345 E17.5 dataset (Fig. 6M-N). This may suggest that these cell types were terminally differentiated
346 cells at the earlier embryonic stage. E17.5 *Ebf1*⁺ fibroblasts were separated into two sub-clusters
347 and showed greater differentiation potential compared to myofibroblasts and intermediate
348 fibroblasts (Fig. 6M-N). This supports our observation that *Ebf1*⁺ fibroblasts and pericytes in the
349 adult lung may be related and it is possible that these two populations, at E17.5, are the progenitors
350 of the corresponding population in the adult lung.

351 Furthermore, the genetic programs in mesenchymal subpopulations were confirmed with
352 scATAC-seq analysis (Fig. S3J). Transcription factors and growth factors were identified from
353 single cell RNA-seq were confirmed with scATAC-seq analysis (Fig. S3J).

354 To summarize the genetic program of the mesenchymal subpopulations we identified
355 transcription factors and growth factors specific for each cluster that were conserved between time
356 points. The conserved transcription factors and growth factors identified are illustrated in Fig. 6O.
357

358 **scRNA-seq on human lungs identified up to eight fibroblast subtypes**

359 Single cell lung suspensions of explanted healthy and IPF donor lung tissue were generated. All
360 live cells were sorted by FACS and scRNA-seq performed, as described for the murine lung data,
361 on the *EPCAM* negative population. After QC, the mesenchymal cells were identified using
362 canonical markers and subset for further analysis (Fig. S30A-E). The results of scRNA-seq on P1,
363 month 21, healthy and IPF donor human lung tissue from publicly available datasets were re-
364 analysed and integrated, where appropriate, with the scRNA-seq data generated in our laboratory
365 (Fig. S30F)^{4,10,13,27}. Patient sample characteristics and human scRNA-seq dataset details are
366 summarised in Supplementary Table 2. Up to eight mesenchymal subpopulations in each data set
367 were identified (Fig. 7A-D). We consistently identified lipofibroblasts, myofibroblasts, SMCs,
368 pericytes, a population with a homologous transcriptomic profile of the murine *Ebf1*⁺ fibroblasts,
369 an intermediate fibroblast subtype and mesothelial cells. The human mesenchymal subpopulations
370 had a distinct and highly conserved transcriptomic profile that was remarkably similar to the
371 corresponding murine lung subpopulation (Fig. 7E-H).

372

373 **Lipofibroblasts in the human lung**

374 As we observed in the murine lung, canonical lipofibroblasts markers with the exception of *TCF21*,
375 were found to poorly discriminate the lipofibroblast cluster identified in the human lung (Fig. 8A,
376 B). Novel marker genes represented by *A2M* (alpha-2-macroglobulin), *RARRES2* (retinoic acid
377 receptor responder 2, chimerin) and *GPC3* (Glypican 3), and those identified in the murine
378 lipofibroblasts represented by *LIMCH1*, *MACF1*, better delineated the human lipofibroblast cluster
379 than canonical markers (Fig. 8B, C). The top differentially expressed genes in human
380 lipofibroblasts in each dataset, in comparison to all other mesenchymal cells, were determined
381 using the MAST statistical framework. These genes were visualised using volcano plots and

382 consistently included *TCF21*, *LIMCH1*, *A2M*, *RGCC* (regulator of cell cycle) and genes related to
383 reported lipofibroblast functions, for example lipid/retinoic acid processing and/or storage (Fig.
384 8D). Comparative analysis of lipofibroblasts from control and IPF donor lungs identified that
385 collagen and ECM related genes were among the most differentially expressed (Fig. 8E). The most
386 highly expressed and specific transcription factors in lipofibroblasts conserved between datasets
387 were *TCF21*, *NR2F1* (nuclear receptor subfamily 2 group F member 1, also known as COUP-TF
388 1) and *LMO4* (LIM domain only 4) (Fig. 8F). The complete differentially expressed transcriptomic
389 profile of human lipofibroblasts in each dataset is available in Supplementary Table 3.

390

391 **Myofibroblasts and SMCs in human lungs**

392 Myofibroblasts and SMCs were closely associated and had a homologous transcriptomic profile
393 with common markers, for instance *ACTA2* and *TAGLN*, prominently expressed in both
394 populations (Fig. 9A-C). In the P1 and healthy donor lung datasets the SMC and myofibroblast
395 clusters were distinct (Fig. 9A, B). In the IPF lung myofibroblasts also prominently expressed
396 myosin heavy chain genes, like *MHY11*, and increased their expression of other genes traditionally
397 associated exclusively with SMCs (Fig. 9C, D). Specific, delineating, marker genes to differentiate
398 the human myofibroblast cluster from SMCs could not be identified. SMCs could be discriminated
399 from myofibroblasts using some commonly reported marker genes represented by *CNN1*, *SYNPO2*
400 (synaptopodin-2), *ACTG2*, in the non-fibrotic datasets (Figure 9D, E). In addition to commonly
401 used SMC markers, the P1 dataset expressed the reported human airway SMC marker *HHIP* while
402 other datasets expressed reported vascular SMC markers, *NTRK3* (Neurotrophic Receptor
403 Tyrosine Kinase 3) and *MEF2C* (myocyte enhancer factor 2C) (Fig. 9D)³⁴. In the adult human
404 lung two myofibroblast subpopulations were identified (Fig. 7C-D). The first (Myo1), highly
405 expressed commonly reported myofibroblast marker genes. The second (Myo2), was distinct,
406 expressed *ACTA2*, and increased expression of *TGFBI* in IPF. Myo2 had a gene profile
407 homologous to that of “Classical Myofibroblasts” in a recent pre-print publication¹². The top
408 differentially expressed genes determined using MAST in the myofibroblast clusters were
409 visualized by volcano plot (Fig. 9F, G). Commonly reported SMC marker genes, for example
410 *CNN1*, *SYNPO2*, were consistently among the top differentially expressed genes determined using
411 the MAST statistical framework in the SMC clusters (Figure. 9D, E, H).

412 Comparative analysis of the differentially expressed genes in the myofibroblast and SMC
413 clusters from healthy and IPF donor lungs identified genes related to ECM production (for example
414 *VIM*, *COL2A1*, *COL3A1*), matrix metalloproteinase genes (for example, *MMP2*) and IGF binding
415 proteins (for example *IGFBP4*, 6) (Fig. 9I). The top differentially expressed genes transcription
416 factors conserved between datasets were *MEF2C* (myocyte-specific enhancer factor 2C), *ID4*
417 (inhibitor of differentiation 4), *TSC22D1* (TSC22 domain family member 1), *NR2F2* (nuclear
418 receptor subfamily 2 group F member 2) and *EPAS1* (endothelial PAS domain-containing protein
419 1 (Fig. 9J). The complete, differentially expressed, transcriptomic profile of human myofibroblasts
420 and SMCs in each dataset is available in Supplementary Table 3.

421

422 **Pericytes and *Ebf1* fibroblasts in the human lung**

423 Discrete expression of genes commonly associated with pericytes were identified in three of the
424 four datasets (Fig. 10A, C). Conserved expression of a further list of possible novel pericyte marker
425 genes in these clusters represented by *NDUFA4L2* (NADH dehydrogenase 1 alpha subcomplex,
426 4-like 2), *PAG1* (phosphoprotein associated with glycosphingolipid-enriched microdomains 1) and
427 *FAM162B* (family with sequence similarity 162 member B) among others were identified (Fig.
428 10C). The top differentially expressed genes, determined using MAST, in the pericyte cluster were
429 visualised using volcano plots and included known pericyte marker genes and genes identified as
430 potential novel markers (Fig. 10E).

431 A mesenchymal population with a homologous transcriptomic signature to the novel *Ebf1*⁺
432 subpopulation in the murine lung was identified in three of four human datasets (Fig. 10B, D). The
433 top differentially expressed genes in this cluster, determined using MAST, in each dataset were
434 visualised using volcano plots (Fig. 10F). The most significant genes in this cluster were also
435 prominent in the corresponding murine population, such as *SCARA5* (scavenger receptor class A
436 member 5) and *SERPINF1* (serpin family F member 1), but also included genes prominent in
437 humans but not mice, for example *CCDC80* (coiled-coil domain containing 80) (Fig. 10D, F).
438 Comparative analysis of differentially expressed genes in pericytes and *EBF1* fibroblasts from
439 healthy and IPF donor lungs included CXCL chemokine and ECM related genes (for example
440 *COL1A2*, *COL14A1*) (Fig. 10G). *EPAS1* and *ID3*, were the only transcription factors with a
441 relatively discrete expression among the differentially expressed pericyte genes (Fig. 10I).
442 *ZFP36L2* (zinc finger protein 36 C3H1 type-Like 2), *TSHZ2* (teashirt zinc finger homeobox 2),

443 *NFIA* (nuclear factor 1A) and *PRRX1* (paired related homeobox 1) were consistently identified
444 among the top genes in the *EBF1* clusters (Fig. 10J). The complete, differentially expressed,
445 transcriptomic profile of human pericytes and the *EBF1* sub-population in each dataset is available
446 in Supplementary Table 3.

447

448 **Expression of ECM related genes in the IPF lung**

449 All healthy and IPF donor lung mesenchymal cells were integrated (Fig. 11A, B). The major
450 subpopulations were identified (Fig. 11C). ECM related gene expression was significantly
451 increased in mesenchymal cells from IPF lungs in comparison to the cells from healthy donors
452 (Fig. 11D). Consistent with our data in the murine lung, all mesenchymal subpopulations identified,
453 not solely myofibroblasts, increased their expression of major ECM related genes as represented
454 by *COL1A1*, *COL1A2*, *COL3A1* and *FNI* (Fig. 11E).

455 **Discussion**

456 Due to recent advances in omic technologies, and the application of techniques like scRNA-seq
457 and scATAC-seq to the lung, we have begun to appreciate that mesenchymal cells are a
458 conglomeration of distinct subpopulations and not a homogenous population delineated by
459 collagens, such as *Colla1*, *Col3a1* etc., or *Pdgfr- α* or *- β* expression. Despite this marker genes
460 with which to indicate distinct cell types, a lack of information on subpopulation origin(s) and
461 functions remain. To date there is surprisingly little information on the molecular identity,
462 localization and relative abundance of different stromal populations³⁵. There is little if any
463 consensus in the literature on differential expression, by these cells, of widely reported markers in
464 health and disease. Therefore, in this comprehensive longitudinal study, we have addressed this
465 gap in our understanding of mesenchymal cells in the healthy and fibrotic lung by analyzing the
466 transcriptome of all mesenchymal cells as they emerged in the lung during embryonic development,
467 tracked the identified populations to adulthood and examined the changes in gene expression in
468 the fibrotic lung. We have systematically investigated the expression of all commonly reported
469 mesenchymal markers and demonstrated that many of these markers are poorly discriminative for
470 the target population. Our comparative analysis of the changes in gene expression in each
471 mesenchymal subpopulation in the fibrotic lung of both mice and humans suggests all
472 mesenchymal subtypes contribute to ECM production in fibrosis. Further, these data suggest that
473 there is little evidence of trans-differentiation of fibroblast subtypes and that fibroblast fate is
474 determined early in lung development.

475 **Pulmonary lipofibroblasts in lungs.** Lipofibroblasts have been consistently reported in
476 the rodent lung but rarely in the human lung leading to controversy in the literature regarding their
477 existence, identification, and relevance to human disease^{20,21}. Traditionally lipofibroblasts have
478 been identified histologically by the presence of intracellular lipid droplets, markers of an adipose
479 like phenotype, enzymatic properties, characteristic cytokines, and canonical marker genes like
480 *Plin2*, *Lpl*, and *Fgf10* among others^{20,36}. In recent lineage tracing studies, *Tcf21* was demonstrated
481 to be preferentially expressed in adult murine lung lipofibroblasts²⁷. Previously, both the *Pdgfra*⁺
482 and the *Fgf10*⁺ lineage lung stromal cell population were reported to include lipofibroblasts^{7,37,38}.
483 The use of lipid dyes, and/or associated genes like *PLIN2*, to distinguish and quantitate
484 lipofibroblasts in the lung is not ideal. Lipid droplets exist in virtually all normal cells and closely
485 associated resident lung cell types like macrophages, endothelial cells, mast cells and AEC2s

486 express canonical lipofibroblast marker genes like *PLIN2*³⁹⁻⁴⁴. Further PPRA γ signaling,
487 traditionally associated with lipofibroblasts, is prominent in both macrophages and epithelial cells
488 and proteins related to lipid metabolism and handling are also expressed prominently by alveolar
489 macrophages⁴³⁻⁴⁸. *In vitro* studies, in which an overt lipofibroblast like phenotype has been induced
490 in cultured fibroblasts, typically using PPAR γ agonists have likely contributed to the use of these
491 markers. Traditional lipofibroblast markers can be readily detected at both the mRNA and protein
492 level in stimulated fibroblasts in which a lipofibroblast-like phenotype has been induced.

493 In the present study, we found that canonical lipofibroblast marker genes delineated a
494 population of fibroblasts clearly in the rodent lung between E16.5-E17.5, when lipofibroblasts
495 emerge and are readily detectable, and P15, reportedly when the prevalence of lipofibroblasts in
496 the rodent lung peaks^{49,50}. These genes were less effective at later developmental stages in the
497 rodent lung and, other than *TCF21*, ineffective at identifying the lipofibroblast cluster in humans.
498 Our novel lipofibroblast signature, in keeping with the recent lineage tracing study, included
499 *Tcf21/TCF21* and was consistently discriminative for the associated, transcriptomically distinct,
500 cluster of cells in all datasets⁸. The top differentially expressed genes in bulk sequenced fibroblasts
501 sorted using the novel lipofibroblast cell surface markers (Cd249) identified in the scRNA-seq
502 analysis overlapped substantially with the transcriptomic signature of lipofibroblasts we
503 consistently identified. The postulated lipofibroblast lineage marker *Fgf10* was expressed in
504 murine, but not human, lipofibroblasts supporting the findings of a previous publication⁷.
505 *Pdgfra/PDGFR*A expression was not consistently expressed in any single cluster in mouse or
506 human mesenchymal cells. A limited proportion of human lipofibroblasts were *PDGFR*A⁺ and
507 supporting the notion that *Pdgfra*⁺ fibroblasts include lipofibroblasts in the adult murine lung
508 lipofibroblast cluster *Pdgfra* expression was prominent³⁷. Fibroblasts, in which a lipofibroblast-
509 like phenotype had been induced using conventional methods reported in the literature, displayed
510 an overt lipofibroblast phenotype, prominent lipid inclusions, and significant expression of
511 canonical marker genes. These cells were supportive of AEC2 3D organoid growth as reported for
512 *Pdgfra*⁺ lipofibroblasts³⁷. However, these *in vitro* cells did not display a similar transcriptomic
513 profile to lipofibroblasts *in vivo*.

514 These data suggest that the canonical markers are only efficacious at identifying
515 lipofibroblasts in the murine lung at specific developmental stages and ineffective at delineating
516 lipofibroblasts in the human post-natal lung. Traditional marker genes are a prominent feature of

517 *in vitro* lipofibroblast like cells but the transcriptomic signature of cultured lipofibroblast like cells
518 is not similar to lipofibroblasts *in vivo*. Our findings may explain the difficulty in identifying
519 human lung lipofibroblasts *in vivo* using conventional marker genes and support the recent lineage
520 tracing study documenting *Tcf21* as a lipofibroblast lineage marker.

521 **Myofibroblasts and SMCs.** Myofibroblasts have long been considered the primary
522 drivers of ECM deposition in fibrosis, and the key effector cells in IPF combining of the
523 synthesizing features of fibroblasts with the cytoskeletal contractile characteristics of SMCs^{1,9,16,22}.
524 The definition of myofibroblasts however has been almost entirely dependent on α SMA (*Acta2*)
525 expression. As noted repeatedly in the literature myofibroblasts and SMCs express a number of
526 common cell selective markers like α SMA (*Acta2*), SM22 α (*Tagln*), desmin (*Des*) and vimentin
527 (*Vim*) among others^{16,22,51-53}. As myofibroblasts are also reportedly capable of producing calponin,
528 encoded by *Cnn1*, and numerous other putative SMC markers it has been virtually impossible to
529 distinguish myofibroblasts from true SMCs. In our analysis we also found this to be the case when
530 using commonly reported myofibroblast/SMC markers. Even reportedly SMC “specific” markers
531 like myosin heavy chain genes, for instance *Mhy11/MYH11*, were prominently expressed in both
532 cell types^{16,54}. Widely used markers were not discriminative for either population or the expression
533 of these genes was comparable in both populations. This was particularly evident in the IPF lung,
534 and aged fibrotic murine lung, where gene expression in these populations was highly homologous.

535 In the adult, healthy, lungs of both mice and humans we found that myofibroblasts and
536 SMCs clustered distinctly. We successfully identified discriminative marker genes for
537 myofibroblasts in the murine lung. This was not the case in the human lung where the
538 transcriptomic differences between myofibroblasts and SMCs were either very subtle or non-
539 existent as suggested by others⁵³. The distinct myofibroblast clusters were *Thy1/THY1*⁻ as
540 suggested by Sanders et al. but the postulated myofibroblast marker S100A4 was expressed by all
541 mesenchymal subtypes^{22,52,54}. Neither *Pdgfra* nor *Pdgfrb* expression were discriminative for
542 myofibroblasts in mice in keeping with the observations of previous publication, which both
543 reported that *Acta2*⁺ cells were *Pdgfra*⁻^{22,30,55}. Similarly, in the human lung *PDGFRA* and
544 *PDGFRB* expression was not discriminative for myofibroblasts. However, the expression of these
545 genes did increase in IPF myofibroblasts. This phenomenon not observed in the fibrotic murine
546 lung.

547 We identified a number of SMC associated genes that displayed discrete expression in the
548 SMC clusters, like *Actg2/ATCG2* in both species, *Actc1* in mice, or *NTRK3/MEF2C* in
549 humans^{16,34,56}. Therefore, it was possible, using a select number of reported SMC markers, to
550 distinguish SMCs from myofibroblasts. It should be noted that some of these genes, for instance
551 *Hhip/HHIP* appear to be species specific. *Hhip* displayed discrete expression in murine
552 myofibroblasts. In humans, as previously reported, *HHIP* displayed discrete expression in the
553 SMC cluster alongside traditional SMC markers³⁴.

554 SMCs and myofibroblasts are believed to share common lineage(s) with *Fgf10*, *Axin2*, *Gli1*
555 and *Wt1* lineages all suggested to include myofibroblasts⁵⁶⁻⁵⁹. The contribution of these lineages
556 to the distinct subsets is yet to be definitively resolved with reports leaning towards *Fgf10/Wt1*⁺
557 cells as predominantly fibroblast/mesothelial and *Gli1/Axin2* as the predominantly giving rise to
558 myofibroblast/SMCs^{7,56,59}. These studies are frequently limited by the dependence on α SMA or
559 *Acta2* as the marker for myofibroblasts and/or SMCs. As discussed, this marker is not
560 discriminative. Authors have long equated the increase in α SMA⁺ cells with contractile
561 myofibroblasts⁶⁰. We noted increased *Acta2/ACTA2* expression in the fibrotic murine and human
562 lung as reported by others. However, our data does not support the hypothesis that this increase
563 can be attributed to an expansion of the myofibroblast population²². We observed an increase in
564 *Acta2/ACTA2* expression in multiple mesenchymal subtypes without an associated increase in
565 myofibroblast number.

566 Our findings highlight that continued reliance on traditional myofibroblast/SMC markers
567 is likely to yield ambiguous data, as expression of any one marker, like α SMA⁺, is likely to be
568 dynamic or species specific. SMCs can be discriminated from myofibroblasts if the correct
569 markers are selected. These data advocate for a strategy of using multiple markers for
570 subpopulation discrimination, as conducted by a recent publication, which combined fluorescence
571 *in situ* hybridization (FISH) co-localization of a traditional marker (*ACTA2*) with novel subtype
572 specific markers. Using this approach in future lineage tracing studies will likely yield a more
573 definitive answer on myofibroblast/SMC lineage. Further, spatial transcriptomics studies may be
574 required to definitively determine a myofibroblast specific signature with which fractionate these
575 cells.

576 ***Ebf1*⁺ mesenchymal cells and pericytes.** We identified a novel mesenchymal
577 subpopulation delineated by *Ebf1* in the E17.5 murine lung with a transcriptomic signature that

578 could not be attributed to any known mesenchymal subtype. In the embryonic lung, this population
579 co-expressed markers for pericytes. In the post-natal lung, the *Ebf1*⁺ populations diverged and
580 became distinct. The first *Ebf1*⁺ population displayed discrete expression of known pericyte
581 markers. The second, was closely associated with the other fibroblast subtypes, had a unique
582 transcriptomic signature, and could be delineated in most datasets. These data suggest that the
583 novel *Ebf1*⁺ fibroblast population and pericytes may share a common developmental lineage.
584 Alternatively, in the embryonic datasets pericytes and *Ebf1*⁺ fibroblasts were indivisible due to a
585 common transcriptomic and therefore clustered together. In the human post-natal lung, a
586 mesenchymal population with a highly homologous transcriptomic signature to the murine *Ebf1*⁺
587 fibroblasts were identified along with a distinct pericyte cluster. As embryonic human data was
588 unavailable for this study it was not possible to determine if the divergence of the *EBF1* and
589 pericyte populations was also evident in the human lung.

590 There is little in the literature on the role of *Ebf1* in fibroblasts. However, in a recent study
591 an *Ebf1*^{high} fibroblast population was identified as a distinct cluster in a scRNA-seq analysis of
592 wound fibroblasts⁶¹. Recent pre-print publications identified an “adventitial fibroblast” subtype
593 with a similar transcriptomic signature to the *Ebf1/EBF1* population in our study^{11,12}. The *in-situ*
594 hybridization localization of *SFRP2*, *SERPINF1*, *PII6* prominent genes in the *Ebf1/EBF1* cluster
595 we identify in a recent study are compatible with the results of our *Ebf1* immunofluorescence
596 localizing a proportion of *Ebf1*⁺ fibroblasts to the adventitia¹². *Ebf1* deletion was demonstrated to
597 have critical effects on *Foxd1*⁺ stromal progenitors, a lineage that includes pericytes^{62,63}. Further
598 reports document that cells expressing the pericyte marker *Ng2*⁺ (aka *Cspg4*) require *Ebf1* for their
599 function and a recent study reported an *Rgs5*⁺ subgroup of *PDGFR β* pericytes with a
600 transcriptomic signature characterized by *Ebf1*, as well as *Ndufa4l2*, *Cox4i2* and *Higd1* all genes
601 we identify as discrete pericyte markers^{64,65}. These reports are supportive of our identification of
602 an *Ebf1*⁺/*EBF1* fibroblast population as a distinct subtype and our hypothesis that this subtype and
603 pericytes may share a common lineage.

604 **Pericytes in fibrotic lungs.** We found that commonly reported pericyte markers identified
605 a distinct cluster of cells in the adult murine and human lungs. However, transcript expression of
606 *Cspg4/CSPG4* and *Rgs5/RGS5*, prototypical pericyte marker genes, were low in both murine and
607 human lung mesenchymal cells while *Pdgfrb/PDGFRB* had high background expression in almost
608 all other mesenchymal subtypes^{22,55,66}. More novel markers were expressed at greater levels and

609 were more discriminative for pericytes. We did not observe a *Pdgfra/PDGFR α* ⁺ pericyte
610 population as reported by a previous study⁶⁶. It has been reported that pericytes (for example *Gli1*⁺,
611 *Foxd1*⁺ lineage, *Ng2*⁺ and *Foxj1*⁺ cells) may give rise to alpha-SMA⁺ myofibroblasts during
612 fibrosis and/or acquire a myofibroblast like phenotype^{22,33,55,63,66}. In our analysis transcript
613 expression of myofibroblast like genes, like *Acta2* and *Myh11*, increased in the adult and aged
614 fibrotic murine lung pericyte cluster consistent with these reports. This increase in “myofibroblast”
615 gene expression was not clear in the distinct human pericyte cluster. However, expression of
616 pericyte markers, like *RGS5*, *PDGFRB*, and *NOTCH3*, became pronounced in the IPF
617 myofibroblast/SMC clusters. It is possible that some pericytes may have acquired a myofibroblast
618 like phenotype, as described by others, and therefore have clustered with myofibroblasts in our
619 human analysis.

620 **ECM in fibrotic lungs.** Myofibroblasts have long been reported as the driver of ECM
621 deposition in the fibrotic lung^{1,9,22}. The present study demonstrates that all identified fibroblast
622 subpopulations, not just myofibroblasts, increase their expression of transcripts for ECM
623 components; collagens (*COL1A1*, *COL1A2*, *COL3A1*) and fibronectin (*FNI*), in both the fibrotic
624 murine and IPF lung. These data are supportive of the previous work, which reported a dramatic
625 expansion of Col-EGFP⁺ cells in the bleomycin injured lung, with only a minority of cells
626 expressing both Col-EGFP and Acta2-RFP⁶⁰. They are also in keeping with a growing body of
627 research challenging the assumption that α SMA is a consistent marker of collagen producing cells,
628 and the focus on the myofibroblast as the major pathological cell type in IPF^{22,57,60}.

629 **Commonly used markers.** We previously reported that *Coll4a1* and *Coll3a1* represented
630 distinct matrix fibroblast clusters in adult and fibrosis mouse lungs². Here, in all murine lung
631 mesenchymal cells, we found that *Coll3a1* was expressed alongside the known and novel
632 lipofibroblast specific genes at all timepoints and *Coll4a1* was mostly expressed in lipofibroblast
633 clusters in embryonic and P1 lungs and in *Ebf1*⁺ clusters in later postnatal, adult and aged lungs.
634 *Coll4a1* and *Coll3a1*, previously reported as matrix fibroblast markers, have been demonstrated
635 in this comprehensive analysis as discriminative for distinct mesenchymal subtypes. While these
636 findings is at odds with our previous report², this analysis benefits from a greater number of cells
637 in the adult dataset, integration with independent datasets, and a longitudinal analysis. PDGFRA
638 and PDGFRB are commonly used to differentiate distinct mesenchymal subtypes. In our study,
639 *Pdgfrb* expression was well overlapped with *Pdgfra* expression in some datasets in the murine

640 lung while in others the expression of these two genes was well separated with high background
641 overall. In adult and fibrotic mouse lungs, *Pdgfra* was well separated from *Acta2*⁺ cells and
642 *Pdgfrb*⁺ cells, but showed good overlap with *Tcf21*⁺ lipofibroblasts, which denied that it as a
643 marker of myofibroblasts in adult lungs. *Pdgfrb* showed some overlap with one of the *Ebf1*
644 expressing fibroblast clusters, pericytes, with high background in other clusters. This suggested
645 that *Pdgfrb* could be used as a pericyte marker, but its specification at protein level needs to be
646 further validated. Vimentin is an often used as mesenchymal cell marker and in some instances
647 reportedly a gene specific for myofibroblast²². However, in out scRNA-seq datasets, *Vim* transcript
648 expression was highest in endothelial cells and was detectable in mesenchymal and immune cells.
649 It was rarely detected in epithelial cells. This suggests that *Vim* should not be used as mesenchymal
650 cell marker. More comprehensive lineage tracing experiments using subpopulation-specific
651 transcription factors for each population are needed to verify these definitions.

652 **Conclusion.** This study is the first definitive description of the transcriptome of all
653 mesenchymal subtypes from embryonic development, to adulthood and in the fibrotic lung. We
654 have demonstrated that mesenchymal fate decisions occur during embryonic development and the
655 identified transcriptomic signatures remain distinct into adulthood and in the aged lung. We did
656 not find evidence of trans-differentiation between mesenchymal subtypes even in the diseased lung.
657 Comparative analysis between the murine and human lung demonstrated that the transcriptomic
658 signature of the subtypes is remarkably conserved between species. Canonical markers, in general,
659 were poorly discriminative for their associated mesenchymal subtype. Novel markers we have
660 identified were consistently discriminative for each subtype irrespective of developmental stage.
661 This comprehensive analysis provides a wealth of new markers and transcriptomic information
662 with which to study these cell types and will enhance the study of mesenchymal cells in health and
663 disease.

664

665 **Materials and Methods**

666

667 **Study approval**

668 The use of human tissues for research were approved by the Institutional Review Board (IRB) of
669 Cedars-Sinai Medical Center and were under the guidelines outlined by the IRB (Pro00032727).
670 All animal experiments performed in this study were approved by Cedars-Sinai Medical Center
671 Institutional Animal Care and Use Committee (IACUC008529).

672

673 **Bleomycin instillation**

674 Detailed methods can be found in Supplementary Methods.

675

676 **Mouse lung tissue isolation**

677 Wild-type C57/Bl6J mice from an in-house colony were used in all experiments. Animals were
678 randomly assigned to treatment groups. Animals of both genders were used without bias. Mice
679 were considered adult at 8- to 12-weeks-old and aged at between 82- to 95-weeks-old. All mice
680 had access to autoclaved water and pelleted mouse diet *ad libitum* were housed in a pathogen free
681 facility at Cedars-Sinai Medical Center. For the isolation of embryonic murine lung tissues
682 breeding cages; containing a male and two female mice, were monitored intensively following the
683 addition of the male to the breeding cage. The presence of a female with a vaginal plug was
684 considered embryonic day 0.5 (E0.5). Adult (12-16 weeks old), aged (82-95 weeks old), or
685 pregnant mice were deeply anaesthetized by intraperitoneal injection (I.P.) of Ketamine (100mg/kg)
686 and Xylazine (10 mg/kg) followed by exsanguination. Adequate depth of anesthesia was
687 determined by lack of a withdrawal reflex to paw, followed by tail pinch, prior to the start of any
688 surgical intervention. In adult mice the lungs were cleared of blood by flushing phosphate buffered
689 saline (#10010023, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) through the pulmonary
690 artery via cardiac puncture prior to isolation. Pregnant mice were euthanized at the indicated time
691 and the embryos were quickly isolated after removal of the uterus, and the lungs of the embryos
692 were resected. The lungs of embryos, adult, and aged mice were transferred to a 15ml tube
693 containing ice-cold PBS and processed immediately.

694

695 **Murine lung dissociation and cell isolation**

696 Murine lung tissues were dissociated using a standard protocol in our laboratory that we have
697 reported previously⁶⁷. Isolated tissues were taken immediately to a sterile laminar flow tissue
698 culture hood where they were, rinsed in fresh PBS and then minced finely using a scissors in a
699 100mm² Petri dish. The minced lung tissue was then suspended in a digestion media containing
700 0.125% vol/vol Trypsin-EDTA (#25300056, Gibco, Thermo Fisher Scientific, Waltham, MA,
701 USA), 1mg/ml Bovine Serum Albumin (#15260037, Gibco, Thermo Fisher Scientific, Waltham,
702 MA, USA), 100 U/ml DNase 1 (#DN25, Sigma Aldrich, St. Louis, MO, USA), 1 mg/ml
703 Collagenase IV (#LS004209, Worthington Biochemical, Lakewood, NJ, USA) and transferred a
704 tissue culture incubator at 37°C for 30 minutes. At 10-minute intervals the lung digestion solution
705 was titurated 10 times using a 10 ml glass pipette. Following the incubation period, the supernatant
706 and remaining tissue was passed through a 100 µm strainer into a 50ml tube. The strainer was
707 washed with Dulbecco's Modified Eagle Medium (#11995065, Gibco, Thermo Fisher Scientific,
708 Waltham, MA, USA) containing 10% vol/vol fetal bovine serum (#SH3062601, HyClone, GE
709 Healthcare, Chicago, IL USA). The tube was then centrifuged at 1600 rpm for 10 minutes at 4°C
710 and the pellet resuspended in Hank's Buffered Saline Solution (#14175095, Gibco, Thermo Fisher
711 Scientific, Waltham, MA, USA) containing 0.2 mM EGTA, 10mM HEPES (#15630106, Gibco,
712 Thermo Fisher Scientific, Waltham, MO, USA), 2% vol/vol FBS and 1% vol/vol antibiotic-
713 antimycotic (#15240062, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) referred to
714 hereafter as HBSS⁺. Red blood cells were preferentially lysed by treating the isolated cells with
715 1X RBC lysis buffer (# 00-4333-57, eBiosceinces, Thermo Fisher Scientific, Waltham, MA, USA)
716 for 45 seconds, followed by immediate dilution in 20 ml HBSS⁺. Cells were centrifuged again and
717 resuspended in fresh HBSS⁺ prior to fluorescence-activated cell sorting (FACS).

718

719 ***In vitro* culture of murine lung fibroblasts**

720 Detailed methods can be found in Supplementary Methods.

721

722 ***In vitro* 3D organoid culture with cultured lipofibroblast like cells**

723 Detailed methods can be found in Supplementary Methods.

724

725 **Fluorescence activated cell sorting (FACS)**

726 Detailed methods can be found in Supplementary Methods.

727

728 **Human lung dissociation and cell isolation**

729 Freshly isolated human lung tissues were obtained from Cedars-Sinai Medical Center and UCLA
730 and were dissociated using a standard protocol in our laboratory⁶⁷. Lung tissue was taken to a
731 sterile tissue culture hood, transferred to a Petri dish and rinsed in PBS. Airways >2 mm were
732 resected from the surrounding tissues and discarded along with the visceral pleura. The remaining
733 tissue was finely minced with a scissors and then a straight razor blade. The minced lung tissue
734 was then washed in Ham's/F12 media (#11320033, Gibco, Thermo Fisher Scientific, Waltham,
735 MO, USA) at 4°C for 20 minutes to remove blood and then centrifuged at 600 rpm for 5 minutes
736 in a pre-cooled centrifuge. The media was removed, and the tissue transferred to a 50 ml conical
737 tube containing 2 mg/ml Dispase II (Thermo Fisher Scientific, Waltham, MA, USA) in
738 DMEM/F12 overnight at 4°C with gentle agitation. The next day the suspension was heated to
739 37°C for 30 minutes, and the centrifuged for 5 minutes at 4°C. The supernatant was removed, and
740 any large pieces of tissue finely minced again with a straight razor blade. The tissue was then
741 titurated in a digestion media containing 10 U/ml elastase (#LS002280, Worthington Biochemical,
742 Lakewood, NJ, USA) and incubated for 30 minutes at 37°C. An equal volume of HBSS⁺ was then
743 added, the solution titurated and then centrifuged at (600 g, 5 minutes, 4°C). The supernatant was
744 removed, and the tissue incubated at 37°C for 15 minutes with DNase I solution. The suspension
745 was titurated and transferred to a 70 m cell strainer over a new 50 ml tube. The strainer was rinsed
746 three times with 10 ml HBSS⁺. The suspension was centrifuged (600 g, 5 minutes, 4°C) and the
747 cells resuspended in 1 X RBS lysis buffer for 2 minutes on ice, the solution diluted with HBSS
748 then centrifuged (600 g, 5 minutes, 4°C). The supernatant was removed, and the cells resuspended
749 in appropriate solution for further analysis.

750

751 **scRNA-sequencing**

752 mRNA from single cells sorted from lung into lysis plates was reverse transcribed to
753 complementary DNA (cDNA) and amplified as previously described. Library preparation and
754 sequencing were performed as described previously. Sequencing libraries for cDNA from single
755 cells were prepared as per the Single Cell 3' v2 Reagent Kits User Guide (10x Genomics,
756 Pleasanton, CA, USA). Cellular suspensions were loaded on a Chromium Controller instrument
757 (10x Genomics) to generate single-cell Gel Bead-In-EMulsions (GEMs). GEM-reverse

758 transcription (RT) was performed in a Veriti 96-well thermal cycler (Thermo Fisher Scientific,
759 Waltham, MA, USA). GEMs were collected and the cDNA was amplified and purified with
760 SPRIselect Reagent Kit (Beckman Coulter, Brea, CA, USA). Indexed sequencing libraries were
761 constructed using Chromium Single-Cell 3' Library Kit for enzymatic fragmentation, end-repair,
762 A-tailing, adapter ligation, ligation cleanup, sample index PCR, and PCR cleanup. The barcoded
763 sequencing libraries were quantified by quantitative PCR using the KAPA Library Quantification
764 Kit for Illumina platforms (KAPA Biosystems, Roche Holding AG, Basel, Switzerland).
765 Sequencing libraries were loaded on a NextSeq500 (Illumina, San Diego, CA, USA) with a custom
766 sequencing setting (26bp for Read 1 and 98bp for Read 2) to obtain a sequencing depth of ~200K
767 reads per cell.

768

769 **scRNA-seq data analysis**

770 Detailed scRNA-seq analysis could be found in Supplementary Methods. The demultiplexed raw
771 reads were aligned to the transcriptome using STAR (version 2.5.1) with default parameters, using
772 human GRCh38 (or mouse mm10) transcriptome reference from Ensembl version 84 annotation,
773 containing all protein coding and long non-coding RNA genes. Expression counts for each gene
774 in all samples were collapsed and normalized to unique molecular identifier (UMI) counts using
775 Cell Ranger software version 3.0 (10X Genomics). The result is a large digital expression matrix
776 with cell barcodes as rows and gene identities as columns. Seurat suite version 3.0 was used for
777 downstream analysis. Quality control before analysis on each individual sample were performed
778 on the number of genes detected in each cell (“nFeature_RNA”),, number of transcripts detected
779 in each cell (“nCount_RNA”), and percentage of mitochondria related genes (“percent_mt”) in
780 each cell. For clustering, principal-component analysis (PCA), T-distributed Stochastic Neighbor
781 Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) were
782 performed for dimension reduction. Batch correction was performed if sample integration was
783 needed. Trajectory analysis was performed by package monocle3 as previously described². The
784 bioinformatics methodology is described in full in the Supplementary Methods. Details on the cell
785 numbers pre- and post-QC and the proportion of cells in each of the major factions (Immune,
786 Endothelial, Epithelial, Mesenchymal) in murine and human lung datasets can be seen in
787 Supplementary Table 1 and 2 respectively.

788

789 **scATAC-seq and data analysis**

790 Cells from E17.5 murine lung were isolated in the same way as for scRNA-seq. Cell nuclei
791 isolation was optimized from 10x genomics protocols (<https://support.10xgenomics.com/single->
792 [cell-atac/sample-prep/doc/demonstrated-protocol-nuclei-isolation-from-mouse-brain-tissue-for-](https://support.10xgenomics.com/single-cell-atac/sample-prep/doc/demonstrated-protocol-nuclei-isolation-from-mouse-brain-tissue-for-)
793 [single-cell-atac-sequencing](https://support.10xgenomics.com/single-cell-atac/sequencing)) and previous publication⁶⁸. Library preparation was perform
794 following 10x genomics protocols⁶⁸ (<https://support.10xgenomics.com/single-cell-atac/library->
795 [prep/doc/user-guide-selecting-the-correct-single-cell-atac-user-guide](https://support.10xgenomics.com/single-cell-atac/sequencing)) and sequencing was
796 performed on Illumina® HiSeq 3000/4000. Raw sequencing data is demultiplexed and converted
797 to fastq format by using bcl2fastq v2.20. Cell Ranger ATAC software v1.1.0 (10X Genomics) is
798 used for barcodes identification, reads alignment, duplicate marking, peak calling and cell calling
799 with default parameter. Briefly, each barcode sequence is checked against a ‘whitelist’ of correct
800 barcode sequences, and the frequency of each whitelist barcode is counted. Raw reads are aligned
801 to the human reference genome GRCm38 using BWA-MEM⁶⁹ with default parameters, then
802 duplicated reads that have identical mapping positions on the reference are marked. For peak
803 calling, the number of transposition events at each base-pair along the genome is counted, then
804 signal above a threshold are determined as peak signal after modeling. For cell calling, barcodes
805 with high fraction of fragments overlapping called peak are selected, then odds ratio of 100000 is
806 used to separate the barcodes that correspond to real cells from the non-cell barcodes. Finally, a
807 count matrix is generated consisting of the counts of fragments ends within each peak region for
808 each barcode. For further QC, clustering and gene accessibility visualization were performed
809 following online vignette⁷⁰ (https://satijalab.org/signac/articles/mouse_brain_vignette.html).
810 Briefly, a Seurat object was generated on count matrix and fragments, and QC was performed by
811 removing cells that are outliers for QC metrics: pct_reads_in_peaks, peak_region_fragments,
812 blacklist_ratio, nucleosome_signal. After normalization and linear dimensional reduction, non-
813 linear dimension reduction and clustering, gene accessibilities were visualized by UMAP. Cell
814 types and mesenchymal cell sub-clusters were defined by checking unknown cell type markers.
815

816 **Bulk RNA-seq analysis**

817 Detailed methods can be found in Supplementary Methods.

818

819 **Histology and Immunofluorescence staining**

820 Detailed methods can be found in Supplementary Methods.

821

822 **Bioinformatics Methods**

823 Detailed methods including Read alignments, Quality control, cell clustering, doublet calling and
824 annotation can be found in Supplementary Methods.

825

826

827 **Statistics**

828 The statistical difference between groups in the bioinformatics analysis was calculated using the
829 Wilcoxon Signed-rank test. For the scRNA-seq data the lowest p-value calculated in Seurat was p
830 $< 2.2\text{e-}16$. For all other data the statistical difference between groups was calculated using
831 GraphPad and the exact value was shown.

832

833 **Data availability**

834 The GEO accession numbers for mouse lung raw and processed scRNA-seq and scATAC-seq data
835 accessed and reported in this paper are listed below: E16.5 mouse lung Tbx4-lineage⁺, a-SMA⁺
836 cells, GSEXXXXXX (in submission); E17.5 mouse lung, GSEXXXXXX (in submission); aged
837 mouse lung and aged fibrosis mouse lung sorted mesenchymal cells, GSEXXXXXX (in submission);
838 E9.5-E11.5 mouse lung, GSE87038; E12.5 mouse lung CD45⁻ cells, GSE119228; E14.5 mouse
839 lung, GSE108097; P1 mouse lung, GSE122332; P7 and P15 mouse lung Pdgfra-GFP⁺ cells,
840 GSE118555; adult mouse lung, GSE111664, GSE133747, GSE121611, GSE131800 and
841 GSE104154; adult fibrosis lung, GSE131800 and GSE104154.

842 The GEO accession numbers for human lung raw and processed scRNA-seq data accessed
843 and reported in this paper are listed below: adult human lung, GSEXXXXXX (in submission) and
844 IPF human lung, GSEXXXXXX (in submission); P1 and M21 human lung, LungMAP:
845 <https://lungmap.net/>; published adult human lung, GSE135893, GSE128033, GSE122960 and
846 GSE128169; published IPF human lung, GSE135893, GSE128033 and GSE122960. Codes for
847 data procession and analysis are in submission to GitHub at <https://github.com/jiang-fibrosis-lab>.

848

849

850

851 **Acknowledgments**

852 The authors thank the members of Noble and Jiang laboratory for support and helpful discussion
853 during the course of the study. This work was supported by National Institutes of Health grants
854 R35-HL150829, R01-HL060539, R01-AI052201, R01-HL077291 (PWN), and R01-HL122068
855 (DJ and PWN), and P01- HL108793 (PWN and DJ). SCR was supported by European Union's
856 Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant
857 agreement 797209. We thank the lung research community for the open sharing of datasets
858 available.

859

860 **Author contributions**

861 JL, PWN, and DJ conceived the study. DJ, JL, PWN, XL, and SR designed the study. XL and SR
862 performed most of the experiments and analyzed the data. JL, GH, XL, CY, ND, YW, and DJ
863 analyzed single cell RNA transcriptome data. GH analyzed single cell RNA transcriptome data,
864 performed flow cytometry analysis, and prepared figures. GH, XL, FT, AB, NL, TX, TP, and SR
865 took part in mouse, cell culture, and biological experiments. PC, CH, WCP, and BS analyzed and
866 interpreted data. SSW and JB provided human samples and interpreted data. XL, SR, PWN, and
867 DJ wrote the paper.

868

869

870 **Reference**

871

872 1 Noble, P. W., Barkauskas, C. E. & Jiang, D. Pulmonary fibrosis: patterns and
873 perpetrators. *J Clin Invest* **122**, 2756-2762, doi:10.1172/JCI60323 (2012).

874 2 Xie, T. *et al.* Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary
875 Fibrosis. *Cell Rep* **22**, 3625-3640, doi:10.1016/j.celrep.2018.03.010 (2018).

876 3 Guo, M. *et al.* Single cell RNA analysis identifies cellular heterogeneity and adaptive
877 responses of the lung at birth. *Nat Commun* **10**, 37, doi:10.1038/s41467-018-07770-1
878 (2019).

879 4 Valenzi, E. *et al.* Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts
880 in systemic sclerosis-associated interstitial lung disease. *Ann Rheum Dis* **78**, 1379-1387,
881 doi:10.1136/annrheumdis-2018-214865 (2019).

882 5 Raredon, M. S. B. *et al.* Single-cell connectomic analysis of adult mammalian lungs. *Sci
883 Adv* **5**, eaaw3851, doi:10.1126/sciadv.aaw3851 (2019).

884 6 Reyfman, P. A. *et al.* Single-Cell Transcriptomic Analysis of Human Lung Provides
885 Insights into the Pathobiology of Pulmonary Fibrosis. *American journal of respiratory
886 and critical care medicine* **199**, 1517-1536, doi:10.1164/rccm.201712-2410OC (2019).

887 7 Al Alam, D. *et al.* Evidence for the involvement of fibroblast growth factor 10 in
888 lipofibroblast formation during embryonic lung development. *Development* **142**, 4139-
889 4150, doi:10.1242/dev.109173 (2015).

890 8 Park, J. *et al.* The Tcf21 lineage constitutes the lung lipofibroblast population. *Am J
891 Physiol Lung Cell Mol Physiol* **316**, L872-L885, doi:10.1152/ajplung.00254.2018 (2019).

892 9 Peyser, R. *et al.* Defining the Activated Fibroblast Population in Lung Fibrosis Using
893 Single-Cell Sequencing. *Am J Respir Cell Mol Biol* **61**, 74-85, doi:10.1165/rcmb.2018-
894 0313OC (2019).

895 10 Habermann, A. C. *et al.* Single-cell RNA-sequencing reveals profibrotic roles of distinct
896 epithelial and mesenchymal lineages in pulmonary fibrosis. *bioRxiv*, 753806,
897 doi:10.1101/753806 (2019).

898 11 Mayr, C. H. *et al.* Integrated single cell analysis of human lung fibrosis resolves cellular
899 origins of predictive protein signatures in body fluids. *medRxiv*,
900 2020.2001.2021.20018358, doi:10.1101/2020.01.21.20018358 (2020).

901 12 Travaglini, K. *et al.* A molecular cell atlas of the human lung from single cell RNA
902 sequencing. *bioRxiv*, 742320, doi:10.1101/742320 (2019).

903 13 Morse, C. *et al.* Proliferating SPP1/MERTK-expressing macrophages in idiopathic
904 pulmonary fibrosis. *European Respiratory Journal*, 1802441,
905 doi:10.1183/13993003.02441-2018 (2019).

906 14 Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for
907 fibrotic disease. *Nature medicine* **18**, 1028-1040, doi:10.1038/nm.2807 (2012).

908 15 Xie, T. *et al.* Transcription factor TBX4 regulates myofibroblast accumulation and lung
909 fibrosis. *J Clin Invest* **126**, 3063-3079, doi:10.1172/JCI85328 (2016).

910 16 Hinz, B. *et al.* The myofibroblast: one function, multiple origins. *Am J Pathol* **170**, 1807-
911 1816, doi:10.2353/ajpath.2007.070112 (2007).

912 17 Li, R. *et al.* Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts
913 in lung maturation and injury response. *eLife* **7**, doi:10.7554/eLife.36865 (2018).

914 18 Chao, C. M., El Agha, E., Tiozzo, C., Minoo, P. & Bellusci, S. A breath of fresh air on
915 the mesenchyme: impact of impaired mesenchymal development on the pathogenesis of
916 bronchopulmonary dysplasia. *Front Med (Lausanne)* **2**, 27,
917 doi:10.3389/fmed.2015.00027 (2015).

918 19 McGowan, S. E. & Torday, J. S. The pulmonary lipofibroblast (lipid interstitial cell) and
919 its contributions to alveolar development. *Annu Rev Physiol* **59**, 43-62,
920 doi:10.1146/annurev.physiol.59.1.43 (1997).

921 20 Rehan, V. K. *et al.* Evidence for the presence of lipofibroblasts in human lung. *Exp Lung
922 Res* **32**, 379-393, doi:10.1080/01902140600880257 (2006).

923 21 Tahedl, D., Wirkes, A., Tschanz, S. A., Ochs, M. & Muhlfeld, C. How common is the
924 lipid body-containing interstitial cell in the mammalian lung? *Am J Physiol Lung Cell
925 Mol Physiol* **307**, L386-394, doi:10.1152/ajplung.00131.2014 (2014).

926 22 Rock, J. R. *et al.* Multiple stromal populations contribute to pulmonary fibrosis without
927 evidence for epithelial to mesenchymal transition. *Proc Natl Acad Sci U S A* **108**, E1475-
928 1483, doi:10.1073/pnas.1117988108 (2011).

929 23 Pijuan-Sala, B. *et al.* A single-cell molecular map of mouse gastrulation and early
930 organogenesis. *Nature* **566**, 490-495, doi:10.1038/s41586-019-0933-9 (2019).

931 24 Cohen, M. *et al.* Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in
932 Macrophage Imprinting. *Cell* **175**, 1031-1044 e1018, doi:10.1016/j.cell.2018.09.009
933 (2018).

934 25 Han, X. *et al.* Mapping the Mouse Cell Atlas by Microwell-Seq. *Cell* **172**, 1091-1107
935 e1017, doi:10.1016/j.cell.2018.02.001 (2018).

936 26 Aran, D. *et al.* Reference-based analysis of lung single-cell sequencing reveals a
937 transitional profibrotic macrophage. *Nat Immunol* **20**, 163-172, doi:10.1038/s41590-018-
938 0276-y (2019).

939 27 Reyfman, P. A. *et al.* Single-Cell Transcriptomic Analysis of Human Lung Provides
940 Insights into the Pathobiology of Pulmonary Fibrosis. *Am J Respir Crit Care Med* **199**,
941 1517-1536, doi:10.1164/rccm.201712-2410OC (2019).

942 28 Parimon, T. *et al.* Syndecan-1 promotes lung fibrosis by regulating epithelial
943 reprogramming through extracellular vesicles. *JCI Insight* **5**,
944 doi:10.1172/jci.insight.129359 (2019).

945 29 McGowan, S. E. & McCoy, D. M. Regulation of fibroblast lipid storage and
946 myofibroblast phenotypes during alveolar septation in mice. *Am J Physiol Lung Cell Mol
947 Physiol* **307**, L618-631, doi:10.1152/ajplung.00144.2014 (2014).

948 30 Hsia, L. T. *et al.* Myofibroblasts are distinguished from activated skin fibroblasts by the
949 expression of AOC3 and other associated markers. *Proc Natl Acad Sci U S A* **113**,
950 E2162-2171, doi:10.1073/pnas.1603534113 (2016).

951 31 Robin, Y. M. *et al.* Transgelin is a novel marker of smooth muscle differentiation that
952 improves diagnostic accuracy of leiomyosarcomas: a comparative immunohistochemical
953 reappraisal of myogenic markers in 900 soft tissue tumors. *Mod Pathol* **26**, 502-510,
954 doi:10.1038/modpathol.2012.192 (2013).

955 32 Murgai, M. *et al.* KLF4-dependent perivascular cell plasticity mediates pre-metastatic
956 niche formation and metastasis. *Nat Med* **23**, 1176-1190, doi:10.1038/nm.4400 (2017).

957 33 Chen, F. & Fine, A. Stem Cells in Lung Injury and Repair. *The American journal of
958 pathology* **186**, 2544-2550, doi:10.1016/j.ajpath.2016.05.023 (2016).

959 34 Danopoulos, S., Bhattacharya, S., Mariani, T. J. & Al Alam, D. Transcriptional
960 characterisation of human lung cells identifies novel mesenchymal lineage markers. *Eur
961 Respir J* **55**, doi:10.1183/13993003.00746-2019 (2020).

962 35 Phan, S. H. Biology of fibroblasts and myofibroblasts. *Proc Am Thorac Soc* **5**, 334-337,
963 doi:10.1513/pats.200708-146DR (2008).

964 36 El Agha, E. *et al.* Fgf10-positive cells represent a progenitor cell population during lung
965 development and postnatally. *Development* **141**, 296-306, doi:10.1242/dev.099747
966 (2014).

967 37 Barkauskas, C. E. *et al.* Type 2 alveolar cells are stem cells in adult lung. *J Clin Invest*
968 **123**, 3025-3036, doi:10.1172/JCI68782 (2013).

969 38 Chen, L., Acciani, T., Le Cras, T., Lutzko, C. & Perl, A. K. Dynamic regulation of
970 platelet-derived growth factor receptor alpha expression in alveolar fibroblasts during
971 realveolarization. *Am J Respir Cell Mol Biol* **47**, 517-527, doi:10.1165/rcmb.2012-
972 0030OC (2012).

973 39 Besnard, V. *et al.* Deletion of Scap in alveolar type II cells influences lung lipid
974 homeostasis and identifies a compensatory role for pulmonary lipofibroblasts. *J Biol*
975 *Chem* **284**, 4018-4030, doi:10.1074/jbc.M805388200 (2009).

976 40 Dvorak, A. M. *et al.* Ultrastructural immunogold localization of prostaglandin
977 endoperoxide synthase (cyclooxygenase) to non-membrane-bound cytoplasmic lipid
978 bodies in human lung mast cells, alveolar macrophages, type II pneumocytes, and
979 neutrophils. *J Histochem Cytochem* **40**, 759-769, doi:10.1177/40.6.1316915 (1992).

980 41 Mochizuki, I., Kubo, K. & Honda, T. Relationship between mitochondria and the
981 development of specific lipid droplets in capillary endothelial cells of the respiratory tract
982 in patients with sarcoidosis. *Mitochondrion* **11**, 601-606, doi:10.1016/j.mito.2011.03.009
983 (2011).

984 42 Ochs, M., Fehrenbach, H. & Richter, J. Occurrence of lipid bodies in canine type II
985 pneumocytes during hypothermic lung ischemia. *Anat Rec A Discov Mol Cell Evol Biol*
986 **277**, 287-297, doi:10.1002/ar.a.20013 (2004).

987 43 Zhang, L. & Chawla, A. Role of PPARgamma in macrophage biology and
988 atherosclerosis. *Trends Endocrinol Metab* **15**, 500-505, doi:10.1016/j.tem.2004.10.006
989 (2004).

990 44 Ntokou, A. *et al.* A novel mouse Cre-driver line targeting Perilipin 2-expressing cells in
991 the neonatal lung. *Genesis* **55**, doi:10.1002/dvg.23080 (2017).

992 45 Simon, D. M. *et al.* Epithelial cell PPAR[gamma] contributes to normal lung maturation.
993 *FASEB J* **20**, 1507-1509, doi:10.1096/fj.05-5410fje (2006).

994 46 Schneider, C. *et al.* Induction of the nuclear receptor PPAR-gamma by the cytokine GM-
995 CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. *Nat*
996 *Immunol* **15**, 1026-1037, doi:10.1038/ni.3005 (2014).

997 47 Kopf, M., Schneider, C. & Nobs, S. P. The development and function of lung-resident
998 macrophages and dendritic cells. *Nat Immunol* **16**, 36-44, doi:10.1038/ni.3052 (2015).

999 48 Gautier, E. L. *et al.* Gene-expression profiles and transcriptional regulatory pathways that
1000 underlie the identity and diversity of mouse tissue macrophages. *Nat Immunol* **13**, 1118-
1001 1128, doi:10.1038/ni.2419 (2012).

1002 49 Vaccaro, C. & Brody, J. S. Ultrastructure of developing alveoli. I. The role of the
1003 interstitial fibroblast. *Anat Rec* **192**, 467-479, doi:10.1002/ar.1091920402 (1978).

1004 50 Kaplan, N. B., Grant, M. M. & Brody, J. S. The lipid interstitial cell of the pulmonary
1005 alveolus. Age and species differences. *Am Rev Respir Dis* **132**, 1307-1312,
1006 doi:10.1164/arrd.1985.132.6.1307 (1985).

1007 51 Gan, Q., Yoshida, T., Li, J. & Owens, G. K. Smooth muscle cells and myofibroblasts use
1008 distinct transcriptional mechanisms for smooth muscle alpha-actin expression. *Circ Res*
1009 **101**, 883-892, doi:10.1161/CIRCRESAHA.107.154831 (2007).

1010 52 Sanders, Y. Y., Kumbla, P. & Hagood, J. S. Enhanced myofibroblastic differentiation and
1011 survival in Thy-1(-) lung fibroblasts. *Am J Respir Cell Mol Biol* **36**, 226-235,
1012 doi:10.1165/rcmb.2006-0178OC (2007).

1013 53 Yoshida, T. & Owens, G. K. Molecular determinants of vascular smooth muscle cell
1014 diversity. *Circ Res* **96**, 280-291, doi:10.1161/01.RES.0000155951.62152.2e (2005).

1015 54 Niessen, P. *et al.* Biochemical evidence for interaction between smoothelin and
1016 filamentous actin. *Exp Cell Res* **292**, 170-178, doi:10.1016/j.yexcr.2003.09.005 (2004).

1017 55 Crnkovic, S. *et al.* Resident cell lineages are preserved in pulmonary vascular
1018 remodeling. *J Pathol* **244**, 485-498, doi:10.1002/path.5044 (2018).

1019 56 Moiseenko, A. *et al.* Origin and characterization of alpha smooth muscle actin-positive
1020 cells during murine lung development. *Stem Cells* **35**, 1566-1578, doi:10.1002/stem.2615
1021 (2017).

1022 57 Xie, T. *et al.* Transcription factor TBX4 regulates myofibroblast accumulation and lung
1023 fibrosis. *J Clin Invest* **126**, 3626, doi:10.1172/JCI89968 (2016).

1024 58 El Agha, E. *et al.* Two-Way Conversion between Lipogenic and Myogenic Fibroblastic
1025 Phenotypes Marks the Progression and Resolution of Lung Fibrosis. *Cell Stem Cell* **20**,
1026 261-273 e263, doi:10.1016/j.stem.2016.10.004 (2017).

1027 59 Zepp, J. A. *et al.* Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-
1028 Renewal and Myofibrogenesis in the Lung. *Cell* **170**, 1134-1148 e1110,
1029 doi:10.1016/j.cell.2017.07.034 (2017).

1030 60 Sun, K. H., Chang, Y., Reed, N. I. & Sheppard, D. alpha-Smooth muscle actin is an
1031 inconsistent marker of fibroblasts responsible for force-dependent TGFbeta activation or
1032 collagen production across multiple models of organ fibrosis. *Am J Physiol Lung Cell
1033 Mol Physiol* **310**, L824-836, doi:10.1152/ajplung.00350.2015 (2016).

1034 61 Guerrero-Juarez, C. F. *et al.* Single-cell analysis reveals fibroblast heterogeneity and
1035 myeloid-derived adipocyte progenitors in murine skin wounds. *Nat Commun* **10**, 650,
1036 doi:10.1038/s41467-018-08247-x (2019).

1037 62 Nelson, T., Velazquez, H., Troiano, N. & Fretz, J. A. Early B Cell Factor 1 (EBF1)
1038 Regulates Glomerular Development by Controlling Mesangial Maturation and
1039 Consequently COX-2 Expression. *J Am Soc Nephrol* **30**, 1559-1572,
1040 doi:10.1681/ASN.2018070699 (2019).

1041 63 Humphreys, B. D. *et al.* Fate tracing reveals the pericyte and not epithelial origin of
1042 myofibroblasts in kidney fibrosis. *Am J Pathol* **176**, 85-97,
1043 doi:10.2353/ajpath.2010.090517 (2010).

1044 64 Duan, L. *et al.* PDGFRbeta Cells Rapidly Relay Inflammatory Signal from the
1045 Circulatory System to Neurons via Chemokine CCL2. *Neuron* **100**, 183-200 e188,
1046 doi:10.1016/j.neuron.2018.08.030 (2018).

1047 65 Derecka, M. *et al.* EBF1-deficient bone marrow stroma elicits persistent changes in HSC
1048 potential. *Nat Immunol* **21**, 261-273, doi:10.1038/s41590-020-0595-7 (2020).

1049 66 Wilson, C. L. *et al.* Characterization of human PDGFR-beta-positive pericytes from IPF
1050 and non-IPF lungs. *Am J Physiol Lung Cell Mol Physiol* **315**, L991-L1002,
1051 doi:10.1152/ajplung.00289.2018 (2018).

1052 67 Liang, J. *et al.* Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar
1053 progenitor cell renewal and prevent severe pulmonary fibrosis in mice. *Nat Med* **22**,
1054 1285-1293, doi:10.1038/nm.4192 (2016).

1055 68 Cusanovich, D. A. *et al.* A Single-Cell Atlas of In Vivo Mammalian Chromatin
1056 Accessibility. *Cell* **174**, 1309-1324 e1318, doi:10.1016/j.cell.2018.06.052 (2018).

1057 69 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
1058 transform. *Bioinformatics* **25**, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).

1059 70 Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902
1060 e1821, doi:10.1016/j.cell.2019.05.031 (2019).

1061

1062

1063

1064 **Figure Legends**

1065 **Figure 1. scRNA-sequencing on E17.5 lung identified fibroblast subtypes.** UMAP
1066 visualization of cell origin, grouping (**A**) and cell type clustering (**B**) in E17.5 mouse lung total
1067 cell scRNA-seq data. (**C**) Six fibroblast clusters were defined. (**D**) Heat map of lung fibroblasts
1068 normalized signal show fibroblast subtypes changes by top 15 genes (rows) for individual subtype
1069 cells (columns). (**E**) Violin plot representation showing relative expression of the fibroblasts
1070 cluster signature genes. Genes in bold and normal text represent the classical and novel signature
1071 genes, respectively. Lipo, lipofibroblasts, Myo, myofibroblasts, *Ebf1*⁺, *Ebf1*⁺ fibroblasts, Inter,
1072 intermediate fibroblasts, Proli, proliferative fibroblasts, Meso, Mesothelial cells.

1073

1074 **Figure 2. Identification of lung fibroblast subtypes in different time points.** UMAP
1075 visualization of E9.5-E11.5 lung endoderm and mesoderm (**A**) and the expression of specific
1076 transcription factors (**B**). Fibroblast subtype classification and heatmaps based on top 15 genes in
1077 E12.5 (**C, D**), E14.5 (**E, F**), E16.5 (**G, H**), P1 (**I, J**), P7 (**K, L**) and P15 (**M, N**) mouse lung. Lung
1078 fibroblast subtype classification and heatmaps based on top 15 genes in young (**O, P, Q, R**) and
1079 aged (**S, T, U, V**) mice before (**Q, P, S, T**) and after (**Q, R, U, V**) bleomycin injury. Pre-lipo, Pre-
1080 lipofibroblasts, Lipo, lipofibroblasts, Myo, myofibroblasts, *Ebf1*⁺, *Ebf1*⁺ fibroblasts, Inter,
1081 intermediate fibroblasts, Meso, Mesothelial cells, Chon, Chondrocytes.

1082

1083 **Figure 3. Identification and induction of lung lipofibroblast specific markers.** Visualization
1084 of 4 known lipofibroblast markers (**A**) and top 4 timepoint specific genes (**B**) by violin plots. (**C**)
1085 Comparison of known and novel lipofibroblast markers in each developmental timepoints, normal
1086 and fibrosis lungs. (**D**) Representative Oil Red O staining and of murine lung fibroblasts and a
1087 lipofibroblast like phenotype was induced by stimulation by different conditions. (**E**)
1088 Morphologies of the stimulated lipofibroblast like cells and control cells were visualized by
1089 representative phase contrast images. Immunofluorescent images of the neutral lipid stained by
1090 BODPIY 493/503 (**F**) or the lipid stained Nile Red (**G**) in control and stimulated cells to confirm
1091 the presence of lipid droplets in the stimulated lipofibroblast like cells. Sample integration and cell
1092 distribution (**H, I**) of the control and stimulated cells by scRNA-seq and transcript of lipofibroblast

1093 common marker, Plin2 (**J**), were visualized by UMAP. (**K-L**) Colony formation assays were
1094 performed to examine the supporting potentials of the control and stimulated fibroblasts. Pre-lipo,
1095 Pre-lipofibroblasts, Lipo, lipofibroblasts, Myo, myofibroblasts, *Ebf1*+, *Ebf1*+ fibroblasts, Inter,
1096 intermediate fibroblasts, SMC, smooth muscle cells, Peri, Pericytes, proli, proliferative fibroblasts,
1097 Meso, Mesothelial cells, Chon, Chondrocytes. Scale bar, 20 μ m (**D, E, F, G**) and 1 mm (**K**).
1098

1099 **Figure 4. Identification of murine lung myofibroblast and SMC cluster.** (**A**) Visualization of
1100 differentially expressed genes of myofibroblasts at each time point by Volcano plots. Genes in red,
1101 p-value $< 10^{-5}$, fold-change (logFC) > 1 , genes in black, p-value $< 10^{-5}$, logFC < 1 , genes in grey,
1102 p-value $> 10^{-5}$, logFC > 1 . (**B**) Comparison of known and novel myofibroblast markers in
1103 embryonic and postnatal mouse lungs. Visualization of myofibroblasts and SM cells in adult and
1104 aged normal and fibrosis mouse lung by dot plots (**C**) and UMAPs (**D**). Pre-lipo, Pre-
1105 lipofibroblasts, Lipo, lipofibroblasts, Myo, myofibroblasts, *Ebf1*+, *Ebf1*+ fibroblasts, Inter,
1106 intermediate fibroblasts, SM, smooth muscle cells, Peri, Pericytes, proli, proliferative fibroblasts,
1107 Meso, Mesothelial cells, Chon, Chondrocytes.
1108

1109 **Figure 5. Identification of mouse lung pericytes and *Ebf1*+ fibroblasts.** (**A**) Visualization of
1110 differentially expressed genes of *Ebf1*+ fibroblasts at each time point by Volcano plots. Genes in
1111 red, p-value $< 10^{-5}$, fold-change (logFC) > 1 , genes in black, p-value $< 10^{-5}$, logFC < 1 , genes in
1112 grey, p-value $> 10^{-5}$, logFC > 1 . Visualization of *Ebf1*+ fibroblast specific genes in embryonic (**B**)
1113 and postnatal (**C**) mouse lungs, and *Ebf1*+ fibroblasts and pericytes in adult and aged normal and
1114 fibrosis lung (**D**) by dot plots. Top 3 specific genes of *Ebf1*+ fibroblasts and 5 known genes of
1115 pericytes were visualized by UMAP (**E**). (**F-G**) aSMA, VWF and *Ebf1* staining on E17.5 mouse
1116 lung section to visualize *Ebf1* protein localization. Pre-lipo, Pre-lipofibroblasts, Lipo,
1117 lipofibroblasts, Myo, myofibroblasts, *Ebf1*+, *Ebf1*+ fibroblasts, Inter, intermediate fibroblasts, SM,
1118 smooth muscle cells, Peri, Pericytes, proli, proliferative fibroblasts, Meso, Mesothelial cells, Chon,
1119 Chondrocytes. Scale bar, 50 μ m.
1120

1121 **Figure 6. Lineage graph of mouse lung mesenchymal cell subtypes.** Cell integration of adult
1122 and fibrosis mesenchymal cells (**A**), aged and aged fibrosis mesenchymal cells (**G**). Cell subtype
1123 definition of integrated adult and fibrosis (**B**), aged and aged fibrosis (**H**) mesenchymal cells.

1124 Comparison of Col1a1 (**C**, **D**, **I** and **J**) and Fn1 (**E**, **F**, **K** and **L**) expression in total mesenchymal
1125 cells (**C**, **E**, **I** and **K**) and mesenchymal cell subtypes (**D**, **F**, **J** and **L**) of adult and fibrosis lungs,
1126 aged and aged fibrosis lungs. (**M** and **N**) Lineage bifurcation and differentiation potentials of
1127 mesenchymal cell subtypes in embryonic lungs. (**O**) Lineage graph of mouse lung mesenchymal
1128 cell subtypes labelled by specific transcription factors and growth factors. Lipo, lipofibroblasts,
1129 Myo, myofibroblasts, *Ebf1*⁺, *Ebf1*⁺ fibroblasts, Inter, intermediate fibroblasts, Proli, proliferative
1130 fibroblasts, Meso, Mesothelial cells

1131
1132 **Figure 7. Identification of lung fibroblast subtypes in the human lung.** UMAP visualization of
1133 mesenchymal subtypes in P1 (**A**), M21 (**B**), healthy control (**C**) and IPF donor (**D**) lungs. Heatmap
1134 of scaled gene expression of the top 15 differentially expressed genes (rows) in each cluster of
1135 cells (columns) in P1 (**E**), M21 (**F**), control (**G**) and IPF (**H**) dataset. Lipo, lipofibroblasts, Myo,
1136 myofibroblasts, *EBF1*, *EBF1* subpopulation, Inter, intermediate fibroblasts, SMC, smooth muscle
1137 cells, Peri, pericytes, Meso, mesothelial cells.

1138

1139

1140 **Figure 8. Identification of human lung lipofibroblasts and lipofibroblast specific markers.**

1141 (**A**) UMAP visualization of *TCF21* (lipofibroblast cluster circled). Dot plot visualization of
1142 canonical (**B**) and novel (**C**) lipofibroblast marker genes. Dot size corresponds to the percentage
1143 of cells expressing the gene and color to average expression level. (**D**) Volcano plot visualization
1144 of differentially expressed lipofibroblast genes. Genes in red, $p < 10^{-5}$; average log fold-change
1145 (Avg_logFC) > 1 , Genes in black, $p < 10^{-5}$; $\text{Avg_logFC} < 1$, Genes in grey, $p > 10^{-5}$; $\text{Avg_logFC} >$
1146 1. (**E**) Comparative analysis of changes in gene expression in lipofibroblasts from healthy vs IPF
1147 donor lungs. (**F**) Violin plot representation of conserved transcription factors in the lipofibroblast
1148 cluster. Lipo, lipofibroblasts, M, month, P, post-natal day.

1149

1150 **Figure 9. Identification of human lung myofibroblast and SMC clusters.** UMAP visualization
1151 of *TAGLN* (myofibroblast clusters circled) (**A**) and *ACTG2* (**B**) (SMC cluster circled). Dot plot
1152 representation of myofibroblast (**C**) and SMC (**D**) markers. Dot size corresponds to percentage of
1153 cells expressing the gene and color to average expression level. (**E**) Violin plot representation of
1154 widely reported SMC genes. Volcano plot visualization of differentially expressed myofibroblast
1155 (**F**, **G**) and SMC (**H**) cluster genes. Genes in red, $p < 10^{-5}$; average log fold-change (Avg_logFC) $>$

1156 1. Genes in black $p < 10^{-5}$; Avg_logFC < 1. Genes in grey, $p > 10^{-5}$; Avg_logFC > 1. (I)
1157 Comparative analysis of changes in gene expression in myofibroblast and SMC subpopulations
1158 from healthy vs IPF donor lungs. (J) Violin plot representation of conserved transcription factors
1159 in the SMC/myofibroblasts clusters. Myo, myofibroblasts, M, month, P, post-natal day, SMC,
1160 smooth muscle cell.

1161

1162 **Figure 10. Identification of human lung pericytes and *EBF1* fibroblasts.** UMAP visualization
1163 of *PDGFRB* (pericyte cluster circled) (A) and *SCARA5* (*EBF1* subpopulation circled) (B). Dot plot
1164 representation of canonical and novel pericyte genes (C) and the *EBF1* subpopulation
1165 transcriptomic signature (D). Dot size corresponds to percentage of cells expressing the gene and
1166 color to average expression level. Volcano plot visualization of differentially expressed pericyte
1167 (E) and *EBF1* (F) cluster genes. Genes in red: $p < 10^{-5}$; average log fold-change (Avg_logFC) >
1168 1. Genes in black, $p < 10^{-5}$; Avg_logFC < 1. Genes in grey, $p > 10^{-5}$; Avg_logFC > 1. Comparative
1169 analysis of changes in gene expression in pericytes (G) and *EBF1* (H) fibroblasts from healthy vs
1170 IPF donor lungs. Violin plot representation of conserved transcription factors in the pericyte (I)
1171 and *EBF1* (J) clusters. M, month, Peri, pericyte, P, post-natal day.

1172

1173 **Figure 11. Expression of extracellular matrix associated genes in the human lung. (A, B, C)**
1174 UMAP visualization of the integrated and clustered mesenchymal cells from normal/IPF donor
1175 lungs and published data. Violin plot representation of representative ECM related genes in healthy
1176 vs. IPF donor lung mesenchymal cells (D) and the change in expression of these genes in each
1177 identified cluster (E). Wilcoxon, $p < 2.2e-16$ per comparison. Lipo, lipofibroblasts, Myo,
1178 myofibroblast subpopulation, *EBF1*, *EBF1* subpopulation, Inter, intermediate fibroblasts, SMC,
1179 smooth muscle cells, Peri, pericytes, Meso, mesothelial cells.

1180

1181 **Supplementary Figure Legends**

1182 **Figure S1. scRNA-sequencing on E17.5 mouse lung.** Violin plot showing the number of genes
1183 (nFeature_RNA), number of read counts (nCount_RNA) and percentage of mitochondria genes
1184 (percent.mt) detected in each cell before (A) and after QC (B). (C) Heatmap of top 15 differential
1185 expression genes comparing each cell types. (D) Dot plot visualization of relative expression of
1186 known cell type specific markers of each cell type. (E) UMAP visualization of relative expression
1187 of known cell type specific markers used for cell type clustering. Mesen, mesenchymal cell, Epi,
1188 epithelial cell, Immu, immune cell, Endo, endothelial cell.

1189

1190 **Figure S2. Clustering of E17.5 mouse lung fibroblasts.** UMAP visualization of mesenchymal
1191 cell integration (A) and clustering (B) of the fibroblasts from E17.5 mouse lung. (C) UMAP
1192 visualization of relative expression of known cell type specific markers to validate the purity of
1193 fibroblasts. Visualization of mesenchymal cell clustering (D) by t-SNE from E17.5 mouse lung.
1194 (E) 3-D and 2-D visualization of PCA analysis on the E17.5 lung mesenchymal cells to validate
1195 the clustering. Visualization of Pdgfrb transcript by t-SNE (F) and UMAP (G) from E17.5 mouse
1196 lung. (F) Dot plot visualization of specific genes of each subpopulation.

1197

1198 **Figure S3. scATAC-seq on E17.5 mouse lung.** Cell quality of the nuclei before (A) and after (B)
1199 QC. Distribution (C), cell type gene accessibilities (D) and cell types (E) of the nuclei visualized
1200 by UMAP. (F) Heatmap of top 50 genes of each cell type. (G) Cluster specific gene accessibilities
1201 were visualized by UMAP. (H) Mesenchymal cell sub-clusters were defined. (I) Heatmap of top
1202 15 genes of each mesenchymal cell cluster. (J) Cluster specific growth factors and transcription
1203 factors. Lipo, lipofibroblast, Myo, myofibroblast, *Ebf1*⁺, *Ebf1*⁺ fibroblast, Inter, intermediate
1204 fibroblast, Meso, mesothelial cell.

1205

1206 **Figure S4. Differentiation potential of the E17.5 lung fibroblast subtypes.** (A) Metagene
1207 profile for each subtype in E17.5 mouse lung fibroblasts. Lineage bifurcation of E17.5 mouse lung
1208 fibroblast subtypes by Correlation Spanning Tree (B-C) and group (D-E) and k-nearest neighbour
1209 graph (k=30) (F). Lipo, lipofibroblast, Myo, myofibroblast, *Ebf1*⁺, *Ebf1*⁺ fibroblast, Inter,
1210 intermediate fibroblast, Proli, proliferative fibroblast.

1211

1212 **Figure S5. Visualization of IPA analysis of each clusters of E17.5 fibroblasts.** Top 15 activated
1213 and inhibited regulators of lipofibroblast (A), myofibroblast (B), *Ebf1*⁺ fibroblast (C) and
1214 intermediate fibroblast (D) of E17.5 mouse lung. Scale bar, 50 μ m.

1215

1216 **Figure S6. Clustering of E9.5-E11.5 mouse lung single cells.** (A) Cell integration of E9.5, E10.5
1217 and E11.5 mouse lung single cells. (B) Heatmap of top 30 genes of endoderm and mesoderm cells.
1218 (C) Cell type markers were visualized by UMAP.

1219

1220 **Figure S7. Clustering of E12.5 mouse lung single cells.** (A) Cell type definition of E12.5 mouse
1221 lung single cell. (B) Heatmap of top 15 gene of E12.5 mouse lung cell type. (C) Visualization of
1222 cell type markers by UMAP. (D) Clustering of mesenchymal cells and (E) purity of mesenchymal
1223 cells. (F) Visualization of specific genes of each cluster by dot plots. Mesen, mesenchymal cell,
1224 Epi, epithelial cell, Immu, immune cell, Endo, endothelial cell, Unkn, unknown cell type.

1225

1226 **Figure S8. Clustering of E14.5 mouse lung single cells.** (A) Cell type definition of E14.5 mouse
1227 lung single cell. (B) Heatmap of top 15 gene of E14.5 mouse lung cell type. (C) Visualization of
1228 cell type markers by UMAP. (D) Clustering of mesenchymal cells and (E) purity of mesenchymal
1229 cells. (F) Visualization of specific genes of each cluster by dot plots. Mesen, mesenchymal cell,
1230 Epi, epithelial cell, Immu, immune cell, Eryth, erythroid cell.

1231

1232 **Figure S9. scRNA-seq on α -SMA-GFP⁺, Tbx4-lineage fibroblasts from E16.5 mouse lung.** (A)
1233 Flow sorting for α -SMA-GFP⁺, Tbx4-lineage fibroblasts. Violin plot showing nFeature_RNA and
1234 percent.mt detected in each cell before (B) and after QC (C). (D) UMAP visualization of lung cell
1235 types. (E) UMAP visualization of cell type markers. Clustering (F) and purity (G) of mesenchymal
1236 cells. (H) Visualization of cluster specific genes by dot plots.

1237

1238 **Figure S10. scRNA-sequencing on P1 mouse lung.** (A) Data integration of two batches of
1239 scRNA-seq data. (B) Cell type definition of P1 lung single cells. (C) Heatmap of top 15 differential
1240 expression genes comparing each cell types. (D) UMAP visualization of relative expression of cell
1241 type specific markers. (E) UMAP visualization of relative expression of known cell type specific
1242 markers to validate the purity of fibroblasts. (F) Visualization of specific genes of each cluster by

1243 dot plots. Mesen, mesenchymal cell, Epi, epithelial cell, Immu, immune cell, Endo, endothelial
1244 cell.

1245

1246 **Figure S11. Clustering of P7 mouse lung fibroblasts.** (A) UMAP visualization of clustering of
1247 the Pdgfra-GFP fibroblasts from P7 mouse lung. (B) UMAP visualization of relative expression
1248 of known cell type specific markers to confirm the purity of fibroblasts. (C) Visualization of
1249 mesenchymal subpopulation specific gene expression in P7 mouse lung mesenchymal cells by dot
1250 plots.

1251

1252 **Figure S12. Clustering Pdgfra-GFP cells of P15 mouse lung.** (A-B) UMAP visualization of
1253 clustering and cell type clustering in P15 mouse lung single cell. (C) UMAP visualization of
1254 relative expression of known cell type specific markers. Clustering (D) and purity (E) of
1255 mesenchymal cells in P15 mouse lung. (F) Specific genes of each mesenchymal cell clusters
1256 visualized by dot plots. Mesen, mesenchymal cell, Immu, immune cell, Endo, endothelial cell.

1257

1258 **Figure S13. Identification of adult mouse lung mesenchymal cells.** UMAP visualization of
1259 sample integration from published data by Aran (A), Raredon (C) and Reyfman (E). (C) UMAP
1260 visualization of mesenchymal cell identification from published data by Aran (B), Raredon (D),
1261 Reyfman (F), Parimon (G) and Xie (H). Mesenchymal cells were circled by dotted lines. Mesen,
1262 mesenchymal cell, Immu, immune cell, Epi, epithelial cell, Endo, endothelial cell.

1263

1264 **Figure S14. Clustering of adult mouse lung fibroblasts.** UMAP visualization of mesenchymal
1265 cell integration (A) and clustering (B) of the fibroblasts from adult mouse lung. (C) UMAP
1266 visualization of relative expression of known cell type specific markers to validate the purity of
1267 fibroblasts. (D) Specific genes of each mesenchymal cell cluster visualized by dot plots.

1268

1269 **Figure S15. Clustering of fibrosis mouse lung fibroblasts.** Cell types of fibrosis mouse lung
1270 from published papers were defined (A-B). Mesenchymal cells were circled by dotted lines. (C)
1271 UMAP visualization of mesenchymal cell integration and clustering of the fibroblasts from fibrosis
1272 mouse lung. (D) UMAP visualization of relative expression of known cell type specific markers
1273 to validate the purity of fibroblasts. (E) Specific genes of each mesenchymal cell cluster visualized

1274 by dot plots. Mesen, mesenchymal cell, Immu, immune cell, Epi, epithelial cell, Endo, endothelial
1275 cell.

1276

1277 **Figure S16. scRNA-seq on aged mouse lung.** Violin plot showing nFeature_RNA, nCount_RNA
1278 and percent.mt detected in each cell of each sample before (**A-C**) and after QC (**D-F**). UMAP
1279 visualization of mesenchymal cell integration (**G**) and cell types (**H**) of the single cells from aged
1280 mouse lung. (**I**) UMAP visualization of relative expression of known cell type specific markers.

1281

1282 **Figure S17. Clustering of aged lung mesenchymal cells.** (**A**) UMAP visualization of
1283 mesenchymal cell clustering from aged mouse lung. (**B**) UMAP visualization of relative
1284 expression of known cell type specific markers to validate the purity of fibroblasts. (**C**) Specific
1285 genes of each mesenchymal cell cluster visualized by dot plot.

1286

1287 **Figure S18. scRNA-seq on aged fibrosis mouse lung.** Violin plot showing nFeature_RNA,
1288 nCount_RNA and percent.mt detected in each cell of each sample before (**A-C**) and after QC (**D-**
1289 **F**). UMAP visualization of mesenchymal cell integration (**G**) and cell types (**H**) of the single cells
1290 from fibrosis mouse lung. (**I**) UMAP visualization of relative expression of known cell type
1291 specific markers.

1292

1293 **Figure S19. Clustering of aged fibrosis lung mesenchymal cells.** (**A**) UMAP visualization of
1294 mesenchymal cell clustering from aged fibrosis mouse lung. (**B**) UMAP visualization of relative
1295 expression of known cell type specific markers to confirm the purity of fibroblasts. (**C**) Specific
1296 genes of each mesenchymal cell cluster visualized by dot plot.

1297

1298 **Figure S20. Visualization of novel lipofibroblast marker expression in mouse lung**
1299 **lipofibroblasts of different timepoints.** (**A**) Visualization of differentially expressed genes of
1300 lipofibroblasts at each time point by Volcano plots. Genes in red, p-value < 10^{-5} , fold-change
1301 ($\log_{2}FC$) > 1, genes in black, p-value < 10^{-5} , $\log_{2}FC$ < 1, genes in grey, p-value > 10^{-5} , $\log_{2}FC$ > 1.
1302 (**B**) Visualization of Gyg, Macf1, Wnt2 and Col13a1 expression in mouse lung mesenchymal cells
1303 of different timepoints.

1304

1305 **Figure S21. Cd249⁺ fibroblast FACS and scRNA-seq of lipofibroblast-like cells. (A)** Enpep
1306 (Cd249) transcript in mouse lung mesenchymal cell. **(B)** FACS gating strategy to obtain Cd249⁺
1307 fibroblasts with concentration match isotype control overlay. **(C)** Mean (\pm SD) percentage Cd249⁺
1308 fibroblasts vs Cd249⁻ fibroblasts obtained in each mouse lung. **(D)** Heatmap and volcano plot
1309 representation of the differentially expressed genes identified in bulk RNA-seq analysis of Cd249⁺
1310 in comparison to Cd249⁻ fibroblasts. **(E)** UMAP visualization and violin plot representation of
1311 canonical lipofibroblast marker genes in cultured lipofibroblast-like cells and controls. Wilcoxon,
1312 $p < 2.2\text{e-}16$ per comparison. **(F)** UMAP visualization of the top differentially expressed genes
1313 identified in the scRNA-seq analysis of the in vivo lipofibroblast cluster in in vitro stimulated
1314 lipofibroblasts-like cells.

1315

1316 **Figure S22. Identification of myofibroblasts and SMC markers.** Visualization of known **(A)**
1317 and timepoint specific genes for myofibroblasts **(B)** by violin plots in embryonic and postnatal
1318 mouse lung mesenchymal cells. UMAP visualization of novel myofibroblast markers in embryonic
1319 and postnatal mouse lung mesenchymal cells **(C-H)**. Visualization of SMC specific markers **(I)**
1320 and novel myofibroblasts markers **(J)** in adult and aged normal and fibrosis mouse lung
1321 mesenchymal cells.

1322

1323 **Figure S23. SMC specific gene expression in embryonic and postnatal lung mesenchymal**
1324 **cells.** SMC specific gene expression in E9.5-E11.5 **(A)**, E12.5 **(B)**, E14.5 **(C)**, E16.5 **(D)**, E17.5
1325 **(E)**, P1 **(F)**, P7 **(G)** and P15 **(H)** mouse lung mesenchymal cells. Broad or rare expression of these
1326 genes indicated no distinct SMC clusters in these mesenchymal cell datasets of these timepoints

1327

1328 **Figure S24. Identification of *Ebf1*⁺ and pericyte subtypes.** **(A-B)** Visualization of timepoint
1329 specific genes for *Ebf1*⁺ fibroblasts by violin plots in embryonic and postnatal mouse lung
1330 mesenchymal cells. **(C-J)** UMAP visualization of *Ebf1*⁺ fibroblast specific markers in embryonic
1331 and postnatal mouse lung mesenchymal cells. **(K)** violin plot visualization of *Ebf1*⁺ fibroblast and
1332 pericyte specific genes in adult and aged normal and fibrosis mouse lung mesenchymal cells.

1333

1334 **Figure S25. ECM related genes expression in normal and fibrosis lung total mesenchymal**
1335 **cells and mesenchymal cell subtypes.** *Acta2* **(A, B, G and H)**, *Colla2* **(C, D, I and J)**, and *Col3a1*

1336 (E, F, K and L) transcripts in total normal and fibrosis lung mesenchymal cell (A, C, E, G, I and
1337 K) and mesenchymal cell subtypes (B, D, F, H, J and L) of adult (A-F) and aged (G-L) mouse
1338 were visualized by violin plots.

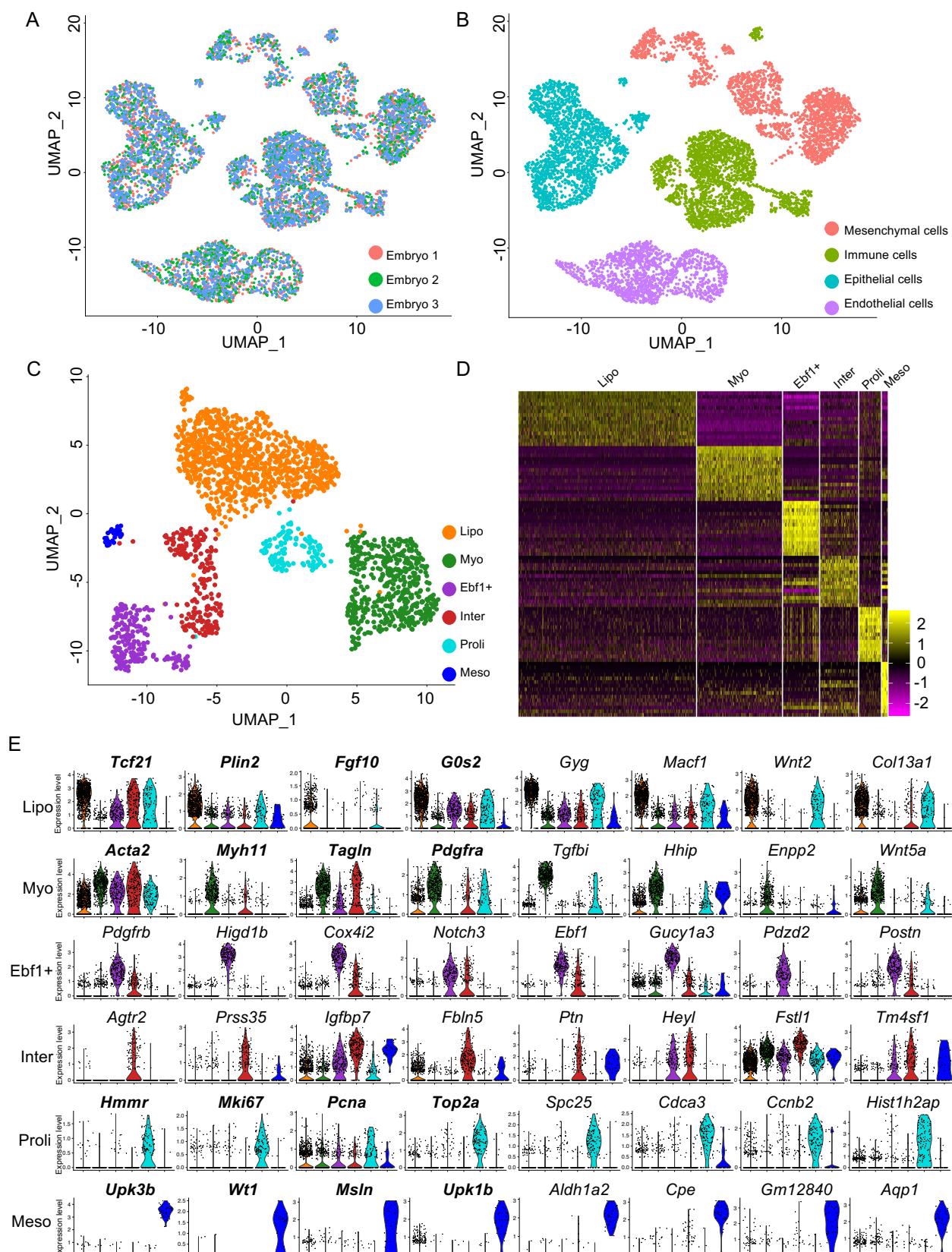
1339

1340 **Figure S26. Expression of fibrotic related gene and novel myofibroblast genes.** Transcript of
1341 known fibrotic related genes, *Colla1*, *Colla2*, *Acta2*, *Fn1* and myofibroblast specific genes,
1342 *Enpp2*, *Hhip*, *Tgfb1*, *Wnt5a* in adult (A), fibrosis (B), aged (C) and aged fibrosis (D) mesenchymal
1343 cells.

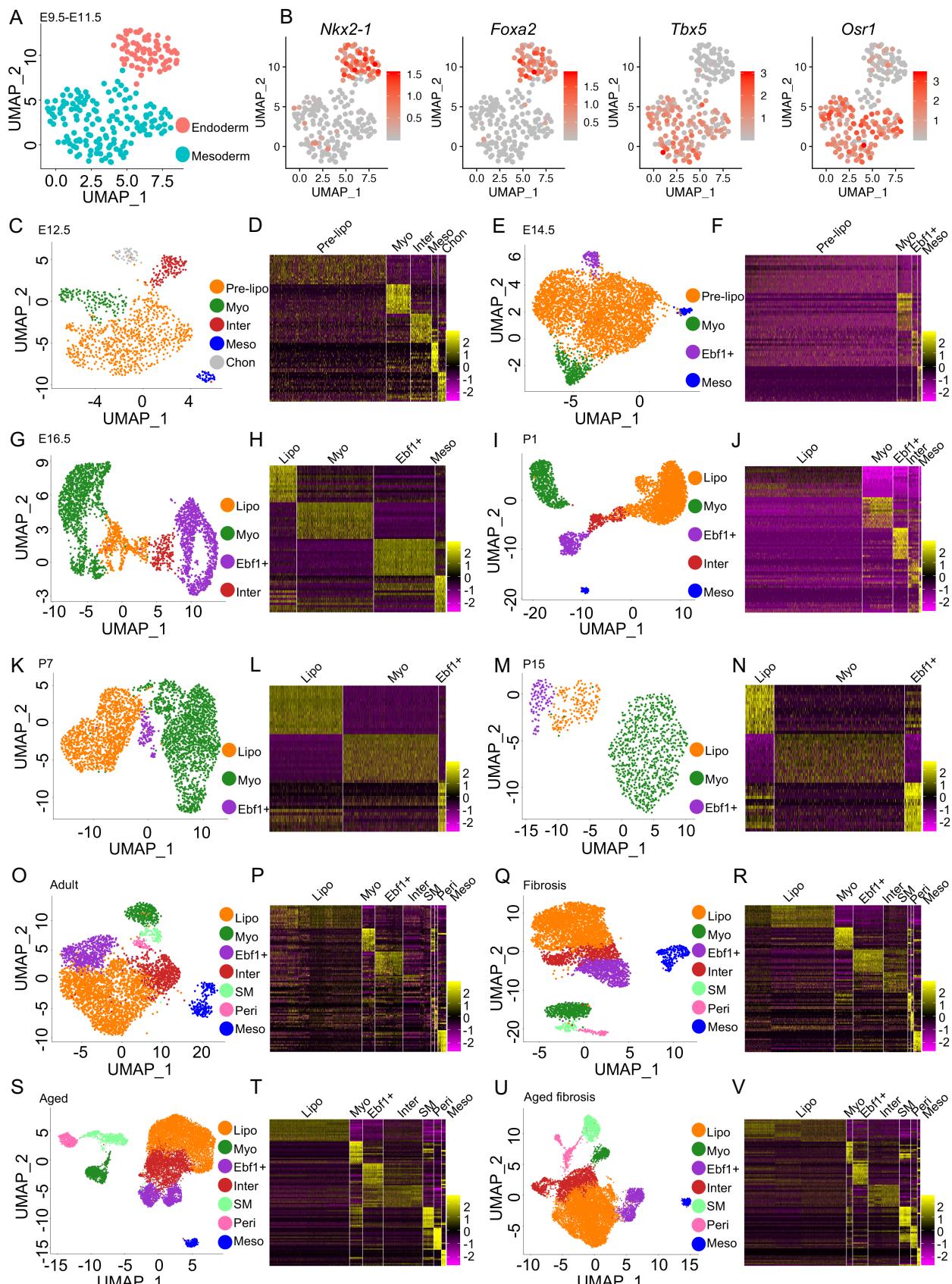
1344

1345 **Figure S27. Transcript of Col14a1 in lung mesenchymal cells and Vim in lung total cells of
1346 different timepoints.** (A) In embryonic stages, *Col14a1* was mainly expressed in pre-
1347 lipofibroblasts/lipofibroblasts, however, after birth, *Col14a1* expression switched to *Ebf1*⁺
1348 fibroblasts and in adult and aged lungs *Col14a1* kept its transcripts in *Ebf1*⁺ fibroblasts. (B) In
1349 early embryonic stages (E9.5-E11.5), *Vim* showed transcripts in both mesoderm and endoderm
1350 cells. In later embryonic, postnatal, adult and fibrosis stages, *Vim* showed highest transcripts in
1351 endothelial cells, showed weakened transcripts in immune cells and mesenchymal cells and was
1352 rarely detectable in epithelial cells. Endo, endoderm, Meso, mesoderm, Mesen, mesenchymal cells,
1353 Immu, immune cells, Epi, epithelial cells, Endo, endothelial cells, Unkn, unknown.

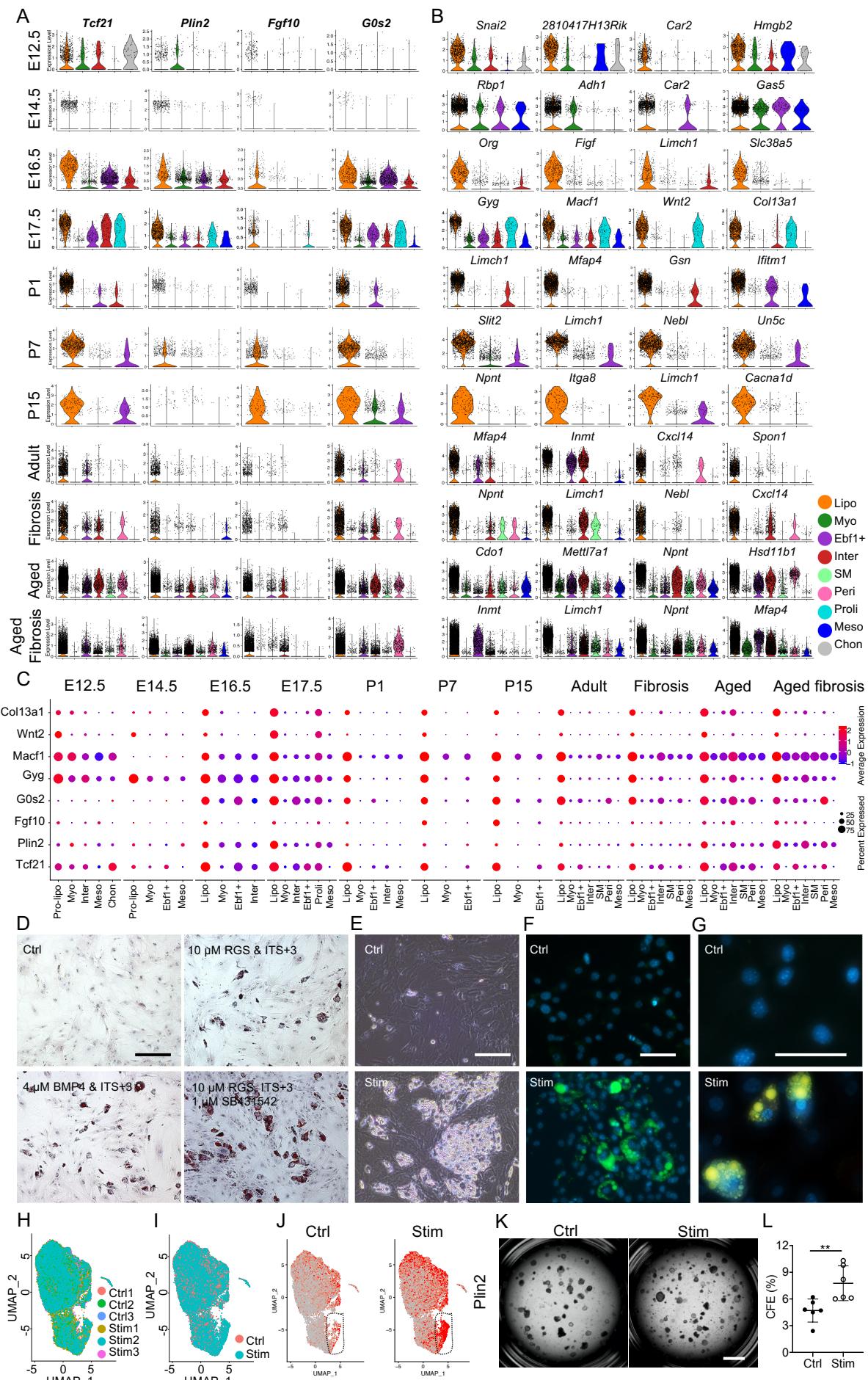
1354

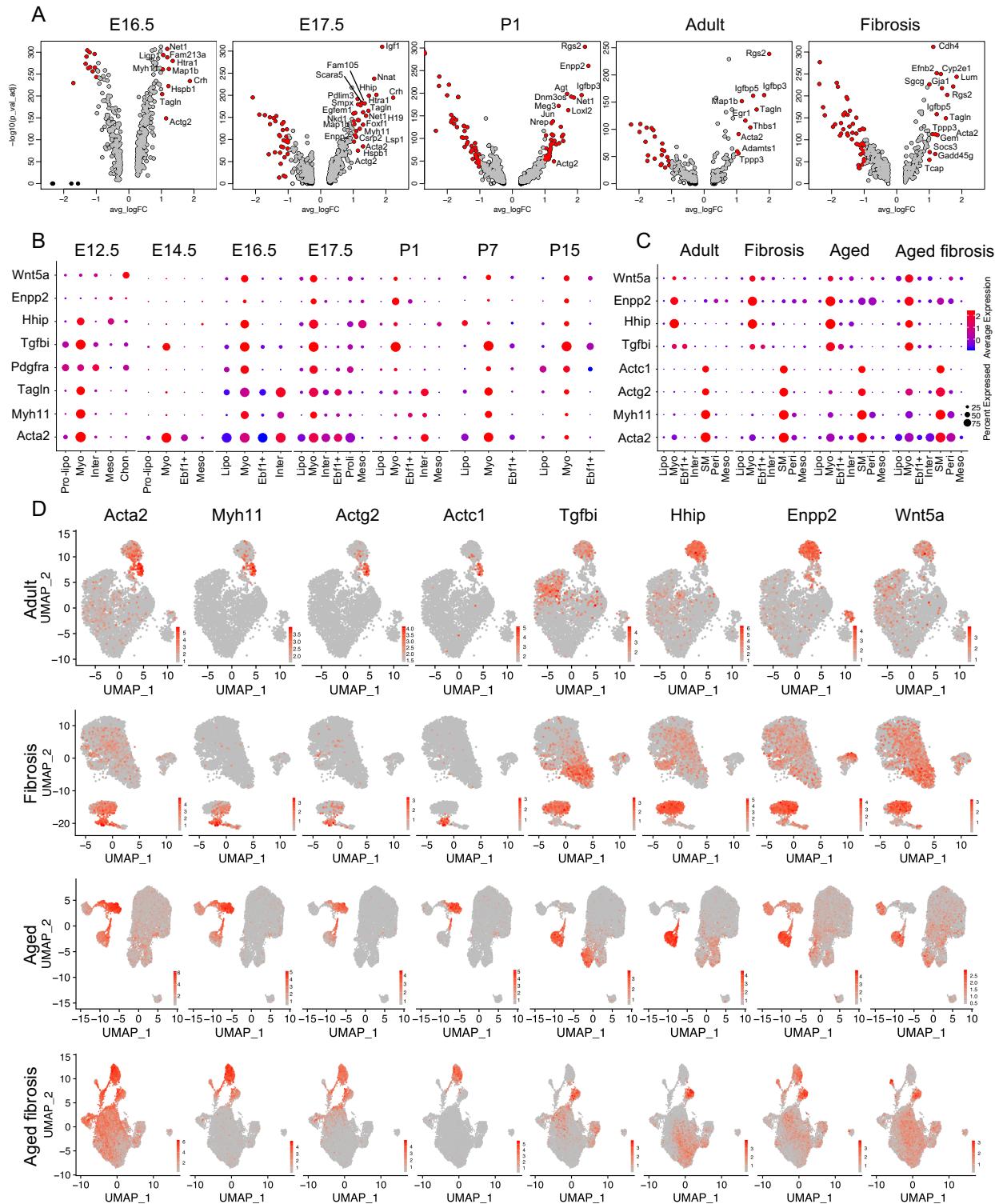

1355 **Figure S28. Expression of *Pdgfra* and *Pdgfrb* in mouse lung mesenchymal cells of different
1356 timepoints.** (A) *Pdgfra* transcripts in mesenchymal cells of different time points. *Pdgfra*
1357 expression was mainly in myofibroblasts in embryonic and postnatal lung mesenchymal cells and
1358 switched to lipofibroblasts in adult and aged normal and fibrosis mesenchymal cells with high
1359 background in other subtypes. (B) *Pdgfrb* showed higher expression in *Ebf1*⁺ fibroblasts and
1360 pericytes with some background in other subtypes.

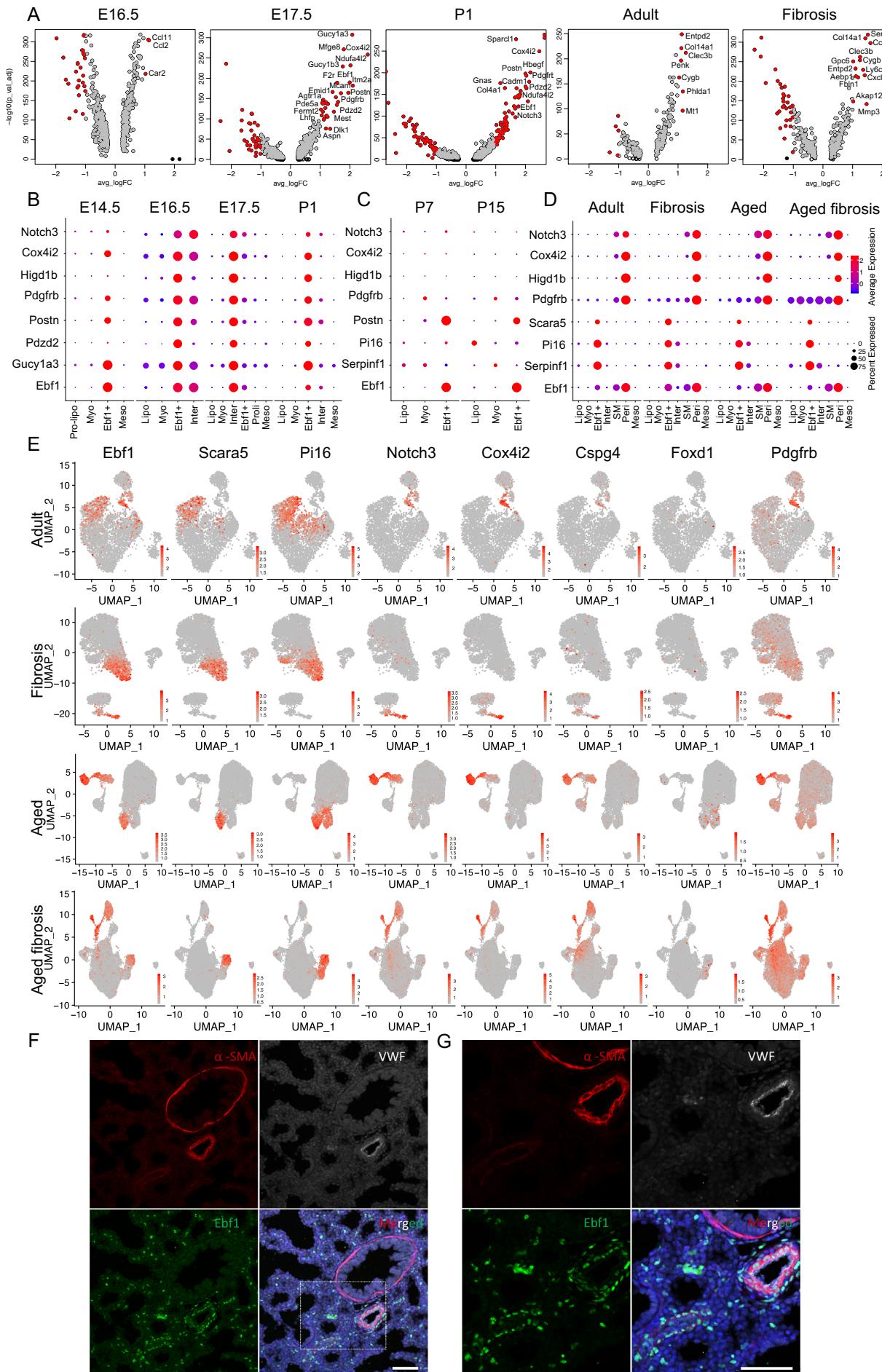
1361

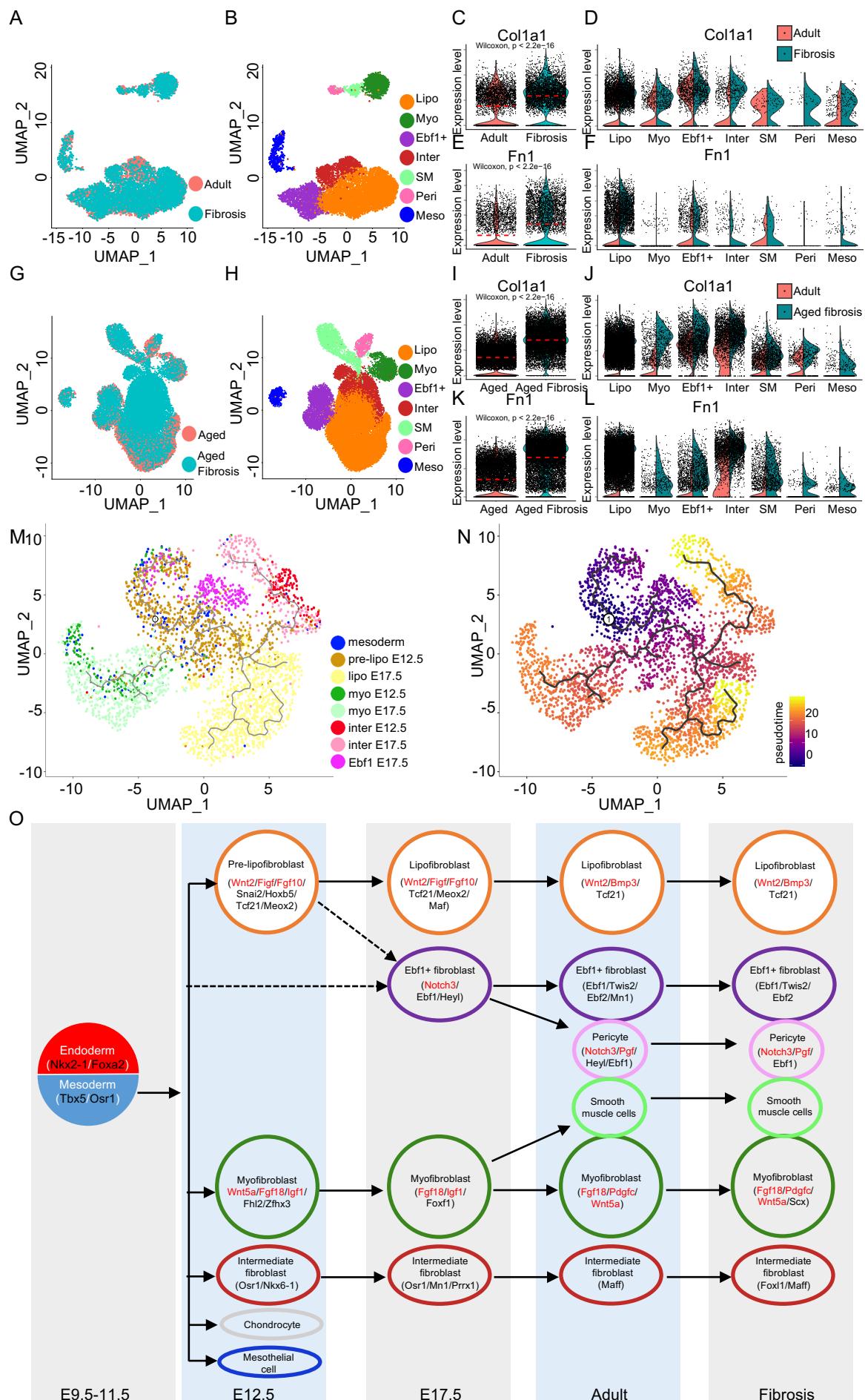

1362 **Figure S29. Co-expression of genes in normal and fibrosis lung mesenchymal cells.**
1363 Visualization of blend expression of *Acta2* and *Pdgfra* (A and E), *Pdgfrb* and *Ebf1* (B and F),
1364 *Pdgfrb* and *Pdgfra* (C and G), *Tcf21* and *Pdgfra* (D and H) in normal (A - E) and fibrosis (E - H)
1365 mouse lung mesenchymal cells.

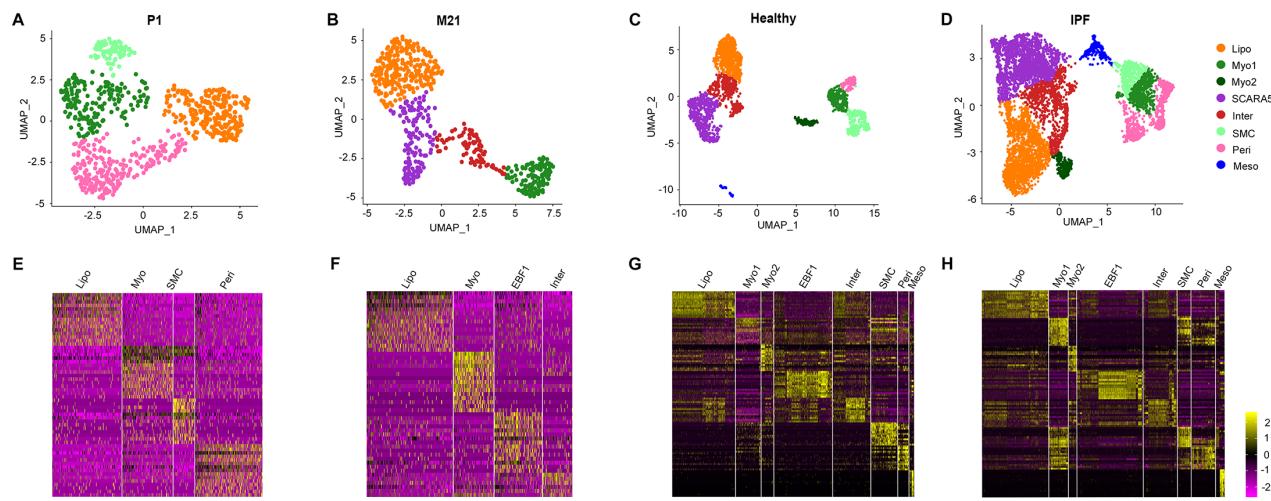
1366

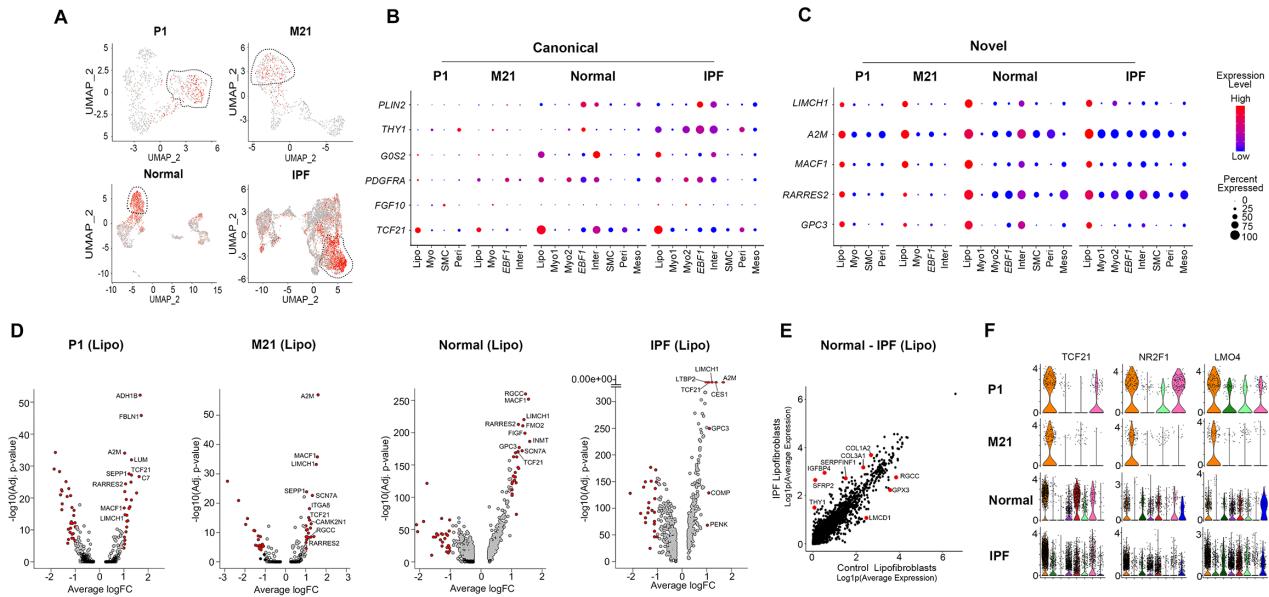

1367 **Figure S30. Representative quality control, sub-setting and integration of human scRNA-seq**
1368 **data.** Violin plot showing number of genes (nFeature_RNA), number of read counts
1369 (nCount_RNA) and the percentage of transcripts mapping to mitochondrial genes (percent.MT)
1370 detected in each cell before (**A, C**) and after (**B, D**) QC. (**E**) Dot plot representation of common
1371 marker genes used to identify and subset mesenchymal from epithelial, endothelial and immune
1372 cells in each dataset. Dot size corresponds to percentage of cells in a cluster expressing the gene
1373 and color to expression level. (**F**) UMAP visualization to the integration of scRNA-seq data sets
1374 of healthy and IPF donor lung mesenchymal cells. Mesen, Mesenchymal, Epi, Epithelial, Immu,
1375 Immune, Endo, Endothelial.

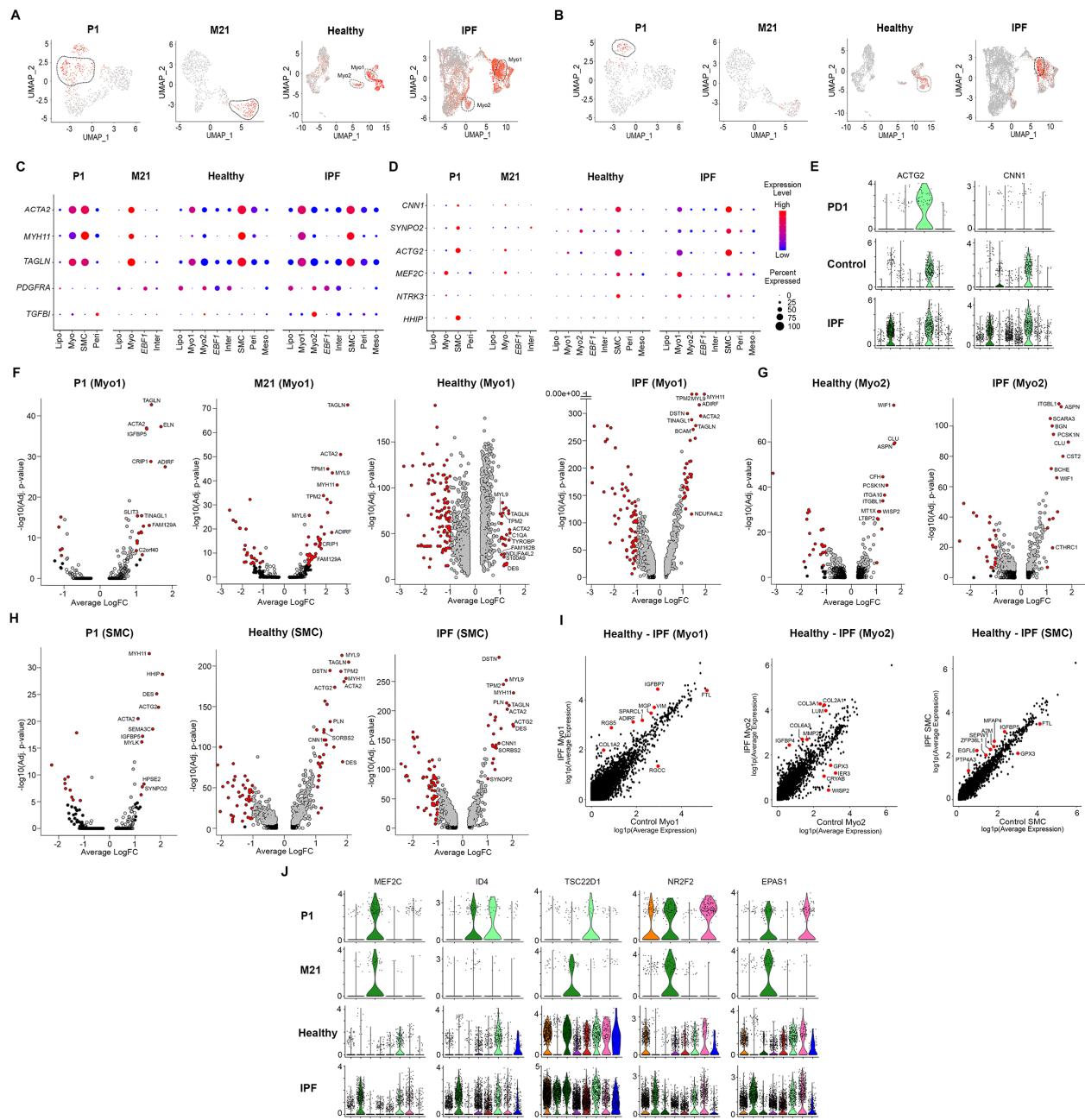

Figure 1 Single cell RNA-seq on E17.5 lung identified fibroblast subtypes. UMAP visualization of cell origin, grouping (A) and cell type clustering (B) in E17.5 mouse lung total cell RNA-seq data. (C) Six fibroblast clusters were defined. (D) Heat map of lung fibroblasts normalized signal show fibroblast subtypes changes by top 15 genes (rows) for individual subtype cells (columns). (E) Violin plot representation showing relative expression of the fibroblasts cluster signature genes. Genes in bold and normal text represent the classical and novel signature genes, respectively. Lipo, lipofibroblasts, Myo, myofibroblasts, Ebf1+, Ebf1+ fibroblasts, Inter, intermediate fibroblasts, Proli, proliferative fibroblasts, Meso, Mesothelial cells.

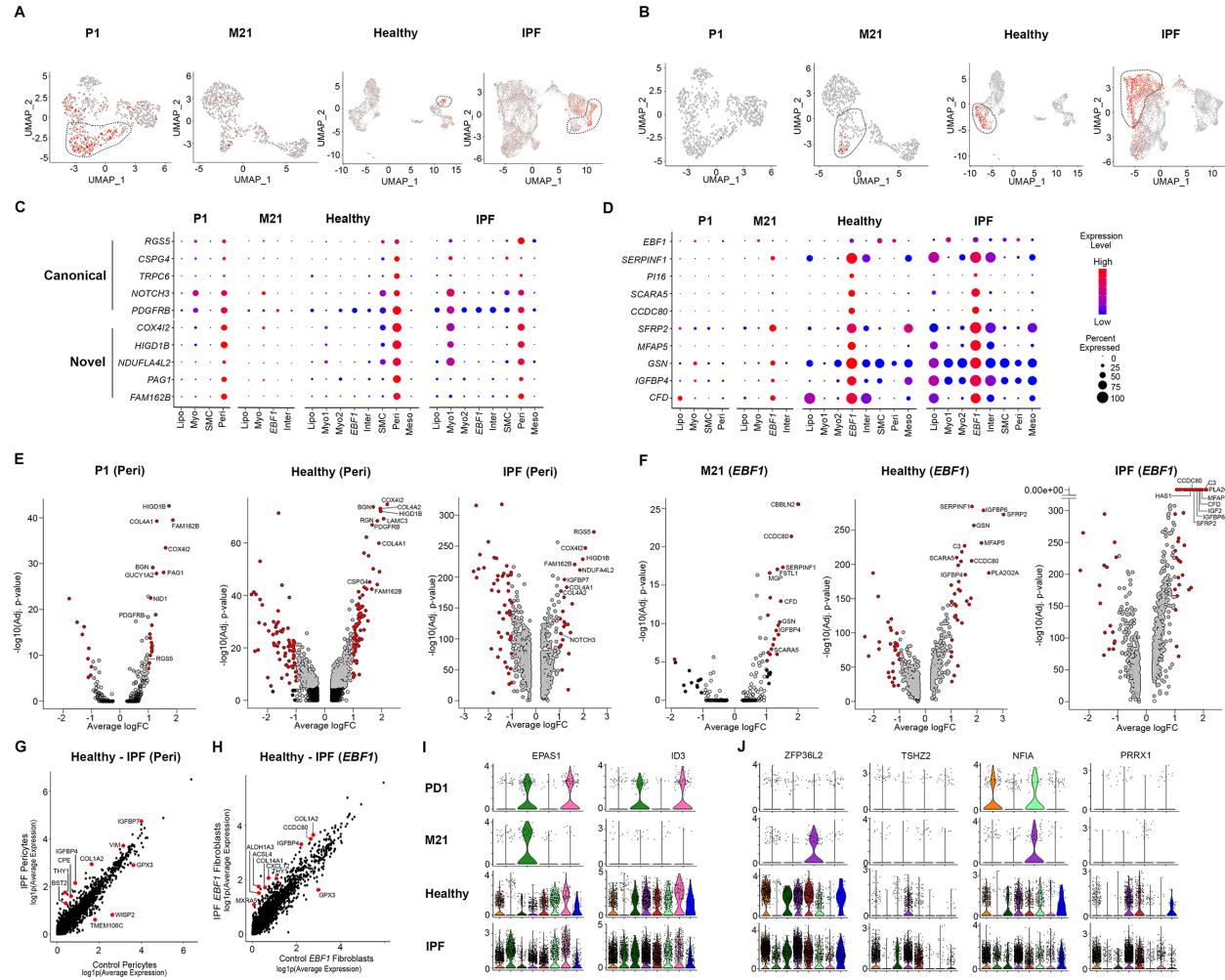

Figure 2 Identification of lung fibroblast subtypes in different time points. UMAP visualization of E9.5-E11.5 lung endoderm and mesoderm (A) and the expression of specific transcription factors (B). Fibroblast subtype classification and heatmaps based on top 15 genes in E12.5 (C, D), E14.5 (E, F), E16.5 (G, H), P1 (I, J), P7 (K, L) and P15 (M, N) mouse lung. Lung fibroblast subtype classification and heatmaps based on top 15 genes in young (O, P, Q, R) and aged (S, T, U, V) mice before (Q, P, S, T) and after (R, U, V) bleomycin injury. Pre-lipo, Pre-lipofibroblasts, Lipo, lipofibroblasts, Myo, myofibroblasts, Ebf1+, Ebf1+ fibroblasts, Inter, intermediate fibroblasts, Meso, Mesothelial cells, Chon, Chondrocytes.


Figure 3 Identification and induction of lung lipofibroblast specific markers. Visualization of 4 known lipofibroblast markers (**A**) and top 4 timepoint specific genes (**B**) by violin plots. (**C**) Comparison of known and novel lipofibroblast markers in each developmental timepoints, normal and fibrosis lungs. (**D**) Representative Oil Red O staining and of murine lung fibroblasts and a lipofibroblast like phenotype was induced by stimulation by different conditions. (**E**) Morphologies of the stimulated lipofibroblast like cells and control cells were visualized by representative phase contrast images. Immunofluorescent images of the neutral lipid stained by BODPIY 493/503 (**F**) or the lipid stained Nile Red (**G**) in control and stimulated cells to confirm the presence of lipid droplets in the stimulated lipofibroblast like cells. Sample integration and cell distribution (**H, I**) of the control and stimulated cells by scRNA-seq and transcript of lipofibroblast common marker, Plin2 (**J**), were visualized by UMAP. (**K-L**) Colony formation assays were performed to examine the supporting potentials of the control and stimulated fibroblasts. Pre-lipo, Pre-lipofibroblasts, Lipo, lipofibroblasts, Myo, myofibroblasts, Ebf1+, Ebf1+ fibroblasts, Inter, intermediate fibroblasts, SM, smooth muscle cells, Peri, Pericytes, proli, proliferative fibroblasts, Meso, Mesothelial cells, Chon, Chondrocytes. Scale bar, 20 μ m (**D, E, F, G**) and 1 mm (**K**).


Figure 4 Identification of murine lung myofibroblast and SMC cluster. (A) Visualization of differentially expressed genes of myofibroblasts at each time point by Volcano plots. Genes highlighted in red have both a p -value $< 10^{-5}$ and an average log fold-change (logFC) > 1 , genes in black, p -value $< 10^{-5}$, logFC < 1 , genes in grey, p -value $> 10^{-5}$, logFC > 1 . (B) Comparison of known and novel myofibroblast markers in embryonic and postnatal mouse lungs. Visualization of myofibroblasts and SM cells in adult and aged normal and fibrosis mouse lung by dot plots (C) and UMAPs (D). Pre-lipo, Pre-lipofibroblasts, Lipo, lipofibroblasts, Myo, myofibroblasts, Ebf1+, Ebf1+ fibroblasts, Inter, intermediate fibroblasts, SM, smooth muscle cells. Peri, Pericytes. proli, proliferative fibroblasts. Meso, Mesothelial cells. Chon, Chondrocytes.


Figure 5 Identification of mouse lung pericytes and *Ebf1*+ fibroblasts. (A) Visualization of differentially expressed genes of *Ebf1*+ fibroblasts at each time point by Volcano plots. Genes highlighted in red have both a p-value $< 10^{-5}$ and an average log fold-change (logFC) > 1 , genes in black, p-value $< 10^{-5}$, logFC < 1 , genes in grey, p-value $> 10^{-5}$, logFC > 1 . Visualization of *Ebf1*+ fibroblast specific genes in embryonic (B) and postnatal (C) mouse lungs, and *Ebf1*+ fibroblasts and pericytes in adult and aged normal and fibrosis lung (D) by dot plots. Top 3 specific genes of *Ebf1*+ fibroblasts and 5 known genes of pericytes were visualized by UMAP (E). (F-G) α SMA, VWF and *Ebf1* staining on E17.5 mouse lung section to visualize *Ebf1* protein localization. Pre-lipo, Pre-lipofibroblasts, Lipo, lipofibroblasts, Myo, myofibroblasts, *Ebf1*+, *Ebf1*+ fibroblasts, Inter, intermediate fibroblasts, SM, smooth muscle cells, Peri, Pericytes, proli, proliferative fibroblasts, Meso, Mesothelial cells, Chon, Chondrocytes. Scale bar, 50 μ m.


Figure 6 Lineage graph of mouse lung mesenchymal cell subtypes. Cell integration of adult and fibrosis mesenchymal cells (**A**), aged and aged fibrosis mesenchymal cells (**G**). Cell subtype definition of integrated adult and fibrosis (**B**), aged and aged fibrosis (**H**) mesenchymal cells. Comparison of *Col1a1* (**C**, **D**, **I** and **J**) and *Fn1* (**E**, **F**, **K** and **L**) expression in total mesenchymal cells (**C**, **E**, **I** and **K**) and mesenchymal cell subtypes (**D**, **F**, **J** and **L**) of adult and fibrosis lungs, aged and aged fibrosis lungs. (**M** and **N**) Lineage bifurcation and differentiation potentials of mesenchymal cell subtypes in embryonic lungs. (**O**) Lineage graph of mouse lung mesenchymal cell subtypes labelled by specific transcription factors and growth factors. Lipo, lipofibroblasts, Myo, myofibroblasts, Ebf1+, Ebf1+ fibroblasts, Inter, intermediate fibroblasts, Proli, proliferative fibroblasts, Meso, Mesothelial cells.


Figure 7. Identification of lung fibroblast subtypes in the human lung. UMAP visualization of mesenchymal subtypes in P1 (A), M21 (B), healthy control (C) and IPF donor (D) lungs. Heatmap of scaled gene expression of the top 15 differentially expressed genes (rows) in each cluster of cells (columns) in P1 (E), M21 (F), control (G) and IPF (H) dataset. Lipo, lipofibroblasts, Myo, myofibroblasts, *EBF1*, *EBF1* subpopulation, Inter, intermediate fibroblasts, SMC, smooth muscle cells, Peri, pericytes, Meso, mesothelial cells.

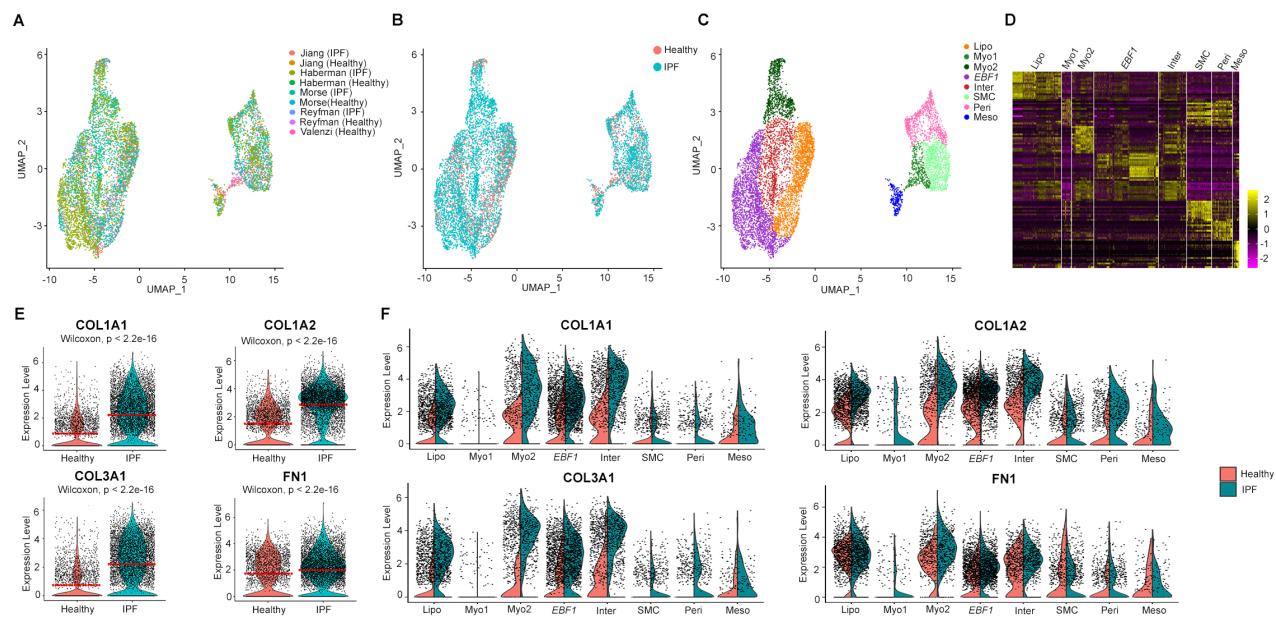

Figure 8. Identification of human lung lipofibroblasts and lipofibroblast specific markers. (A) UMAP visualization of *TCF21* (lipofibroblast cluster circled). Dot plot visualization of canonical **(B)** and novel **(C)** lipofibroblast marker genes. Dot size corresponds to the percentage of cells expressing the gene and color to average expression level. **(D)** Volcano plot visualization of differentially expressed lipofibroblast genes. Genes in red: $p < 10^{-5}$; average log fold-change (Avg_logFC) > 1 . Genes in black: $p < 10^{-5}$; Avg_logFC < 1 . Genes in grey: $p > 10^{-5}$; Avg_logFC > 1 . **(E)** Comparative analysis of changes in gene expression in lipofibroblasts from healthy vs IPF donor lungs. **(F)** Violin plot representation of conserved transcription factors in the LIF cluster. Lipo, lipofibroblasts, M, month, P, post-natal day.

Figure 9. Identification of human lung myofibroblast and SMC clusters. UMAP visualization of *TAGLN* (myofibroblast clusters circled) **(A)** and *ACTG2* (SMC cluster circled) **(B)**. Dot plot representation of myofibroblast **(C)** and SMC **(D)** markers. Dot size corresponds to percentage of cells expressing the gene and color to average expression level. **(E)** Violin plot representation of widely reported SMC genes. Volcano plot visualization of differentially expressed myofibroblast **(F, G)** and SMC **(H)** cluster genes. Genes in red, $p < 10^{-5}$; average log fold-change (Avg_logFC) > 1 . Genes in black $p < 10^{-5}$; Avg_logFC < 1 . Genes in grey, $p > 10^{-5}$; Avg_logFC > 1 . **(I)** Comparative analysis of changes in gene expression in myofibroblast and SMC subpopulations from healthy vs IPF donor lungs. **(J)** Violin plot representation of conserved transcription factors in the SMC/myofibroblasts clusters. Myo, myofibroblasts, M, month, P, post-natal day, SMC, smooth muscle cell.

Figure 10. Identification of human lung pericytes and *EBF1* fibroblasts. UMAP visualization of *PDGFRB* (pericyte cluster circled) (**A**) and *SCARA5* (*EBF1* subpopulation circled) (**B**). Dot plot representation of canonical and novel pericyte genes (**C**) and the *EBF1* subpopulation transcriptomic signature (**D**). Dot size corresponds to percentage of cells expressing the gene and color to average expression level. Volcano plot visualization of differentially expressed pericyte (**E**) and *EBF1* (**F**) cluster genes. Genes in red: $p < 10^{-5}$; average log fold-change (Avg_logFC) > 1 . Genes in black, $p < 10^{-5}$; Avg_logFC < 1 . Genes in grey, $p > 10^{-5}$; Avg_logFC > 1 . Comparative analysis of changes in gene expression in pericytes (**G**) and *EBF1* (**H**) fibroblasts from healthy vs IPF donor lungs. Violin plot representation of conserved transcription factors in the pericyte (**I**) and *EBF1* (**J**) clusters. M, month, Peri, pericyte, P, post-natal day.

Figure 11. Expression of extracellular matrix associated genes in the human lung. (A, B, C) UMAP visualization of the integrated and clustered mesenchymal cells from normal/IPF donor lungs and published data. (D) Heatmap of scaled gene expression of the top 15 differentially expressed genes (rows) in each cluster of cells (columns). Violin plot representation of representative ECM related genes in healthy vs. IPF donor lung mesenchymal cells (E) and the change in expression of these genes in each identified cluster (F). Wilcoxon, $p < 2.2e-16$ per comparison. Lipo, lipofibroblasts, Myo, myofibroblast subpopulation, *EBF1*, *EBF1* subpopulation, Inter, intermediate fibroblasts, SMC, smooth muscle cells, Peri, pericytes, Meso, mesothelial cells.