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Abstract

We describe the integration of multi-batch cytometry datasets (iIMUBAC), a flexible, robust, and
scalable computational framework for unsupervised cell-type identification across multiple batches of high-
dimensional cytometry datasets. After overlaying cells from healthy controls across multiple batches, IMUBAC
learns batch-specific cell-type classification boundaries and identifies aberrant immunophenotypes in patient
samples. We illustrate unbiased and streamlined immunophenotyping, using both in-house and public mass and

flow cytometry datasets.
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Main

High-dimensional cytometry — including mass cytometry (i.e., cytometry by time-of-flight, CyTOF)
and spectral flow cytometry (e.g., Cytek Aurora) — facilitates the phenotyping of precious samples from
patients for various immune cell subsets, at single-cell resolution, which is of particular interest in human
immunology. Ideally, a large number of samples should be processed simultaneously to ensure comparability.
However, this is not always possible. For example, patients may be recruited across the globe over decades and
longitudinally monitored in prospectively expanding cohorts for rare diseases, such as inborn errors of
immunity. Similarly, some investigations may involve multiple pilot studies with small numbers of patients
followed by larger-scale validation studies. In such situations, the integration of multiple batches of experiments
processed on different occasions and at different sites is inevitable. The simplest solution for multi-batch
integration is to gate cell subsets with manual batch-to-batch adjustments. However, manual analyses of
cytometry data are inherently subjective, knowledge-driven, and non-scalable for multiple batches of datasets.
More objective, unbiased, and scalable methods are therefore desired.

Efforts have been made to facilitate high-dimensional data inspection and unsupervised cell-subset
identification (e.g., VISNE?, SPADE?, FlowSOM*°, CITRUS®, and CellCNN). However, these automated
approaches are themselves sensitive to the batch effects resulting from the separate processing of different
experiments. Per-channel (single-dimensional) signal intensity normalization has been attempted (e.g., cydar®,
CytoNorm®, and CyTOFBatchAdjust™) as a means of overcoming batch effects. However, single-dimensional
normalization cannot fully account for cell type-specific high-dimensional batch effects. Moreover, batch
correction on the cells of patients with aberrant immunophenotypes is undesirable, due to inherent uncertainty
about over- or under-correction. The requirement for identical technical replicates across all batches poses
another challenge in CytoNorm and CyTOFBatchAdjust®®. A more high-dimensional approach, SAUCIE™,
was recently described. SAUCIE automates batch correction and clustering, but its clustering resolution is

inadequate for rare subsets. For example, its analyses of T cells from subjects with acute dengue virus infection

and healthy controls do not identify a distinct cluster corresponding to CD4"CD25"FOXP3" regulatory T cells
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(Tregs). Thus, current computational approaches do not accomplish high-dimensional batch correction and
unbiased immunophenotyping with sufficient resolution from multiple batches of datasets.

Here, we present iMUBAC (integration of multi-batch cytometry datasets), a flexible, robust, and
scalable computational framework for rational interbatch comparisons through high-dimensional batch
correction and unsupervised cell-type identification across multiple batches (Fig. 1). The workflow can be
broken down into four steps. First, IMUBAC performs a data-adaptive, automated preprocessing, such as
excluding doublets and dead cells and ensuring inter-batch consistency in panel design. Second, iIMUBAC
batch-corrects cells from healthy local controls, but not from travel/family controls or patients, using Harmony*
to reduce batch effects before clustering. No technical replicates are required. Third, IMUBAC performs
unsupervised clustering with the batch-corrected expression values, with i) FlowSOM* followed by
metaclustering with ConsensusClusterPlus or ii) dimension reduction by uniform manifold approximation and
projection (UMAP)* followed by shared nearest-neighbor (SNN) graph-based clustering™. If desired, the
clusters can be further manually merged and identified to improve interpretability in subsequent analyses.
Fourth, iIMUBAC trains batch-specific classifiers through machine learning with non-corrected expression
values. Here, the idea is to “back-propagate” cell-type annotations defined in the batch-corrected high-
dimensional space into the non-corrected, batch-specific spaces in which the patients’ cells are embedded. The
entire workflow is independent of patients (and of travel/family controls), for which immunophenotypes need to
be determined, thereby circumventing potential over- or under-correction.

We first tested IMUBAC on in-house multi-batch CyTOF datasets for peripheral blood mononuclear
cells (PBMCs) from patients with unusually severe infectious diseases and their travel/family controls (75
individuals, 6 batches, 38 surface markers). After batch-correction with healthy local controls as “anchors,”
FlowSOM/ConsensusClusterPlus defined 60 metaclusters, which we merged and identified manually (Fig. S1-
3). We calculated the percentages of the various subsets among live single leukocytes (CD45CD66b" cells,
excluding granulocytes). The cell-type frequencies of both technical (i.e., experiments performed on different
dates with aliquots of identical biological materials, N=2) and biological (i.e., experiments performed on

different dates with biological materials obtained from identical donors on different occasions, N=2) duplicates
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correlated well between the two batches tested (Fig. S4). Moreover, the estimated and manually determined
frequencies of both abundant (e.g., aff T cells) and rare (e.g., innate lymphoid cells) cell subsets correlated
reasonably well across a wide range of percentages (from ~0.01% to ~70%), not only among local controls but
also among travel/family controls and patients (Fig. S5). Collectively, IMUBAC rationally integrates multi-
batch cytometry datasets, to identify cell types consistent with state-of-the-art gating in both controls and
patients.

We then applied iIMUBAC to in-house multi-batch spectral flow cytometry datasets for PBMCs (14
individuals, 2 batches, 14 cell-surface and 4 intracellular markers). The datasets included data from patients
with two monogenic forms of autoimmunity: FAS deficiency™>'® and STAT3 gain-of-function'™™°, both of
which are known to be accompanied by lymphoproliferation and high counts of circulating CD4'CD8" double-
negative a3 T (DN T) cells. After manually gating out dead cells and doublets, we defined 50 metaclusters with
FlowSOM/ConsensusClusterPlus, which we merged and identified manually (Fig. 2a, 2b, and S6). As expected,
we observed an expansion of a cluster representing DN T cells in patients with FAS deficiency and, to a lesser
extent, in those with STAT3 gain-of-function (Fig. 2c). Conventional flow cytometry with a different antibody
panel validated this expansion of DN T cells (Fig. S7). iIMUBAC also revealed a decrease in the levels of Vo2
v& T, CD8" mucosal-associated invariant T (MAIT), and CD16" natural killer (NK) cells in both groups,
possibly reflecting a previously unappreciated level of immunopathological homogeneity between these two
inborn errors of immunity (Fig. 2c). iIMUBAC can be applied to spectral flow cytometry datasets, as well as
CyTOF datasets, and readily identifies both known and unappreciated immunophenotypes in patients with rare
immunological disorders.

Finally, we applied iMUBAC to previously published CyTOF datasets for PBMCs from 10 healthy
controls and 20 patients with stage IV melanoma before and after PD-1 blockade immunotherapy (11
responders and nine non-responders, respectively) that had been stained with three antibody panels®. We
analyzed two batches simultaneously (i.e., discovery and validation cohorts). Healthy controls were used for
batch correction, clustering with FlowSOM/ConsensusClusterPlus, and classifier training (Fig. 2d and S8-10).

We tested the differential abundance (DA) between responders and non-responders using the quasi-likelihood
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F-test (QLF) in edgeR?, as previously applied to CyTOF analysis®**. Eight DA subsets were identified, with
statistical significance after adjustment for treatment status and batch effects. In particular, the “CD14 Mono 2”
cluster, corresponding to CD14"CD16'HLA-DR"CD86"PD-L1" monocytes, was expanded in responders
consistent with the findings of the original report®® (Fig. 2e). Moreover, four DA subsets, all T-cell subsets,
were reproducibly identified even if only pretreatment datasets were used (Fig. 2f). These subsets could
potentially be used as biomarkers of a better prognosis, before the initiation of PD-1 blockade immunotherapy.
IMUBAC can be used to streamline an exploratory immunophenotyping analysis in clinical pilot studies of
common disease conditions.

High-dimensional cytometry has considerably improved human immunological studies, despite limited
sample availability. Moreover, platforms such as FlowRepository or Cytobank facilitate the sharing of
cytometry data, making it possible to foster discoveries through meta-analysis. We anticipate that this flexible,
robust, and scalable workflow, available on GitHub (https://github.com/casanova-lab/iMUBAC), will expedite
rational comparative analyses of multi-batch cytometry datasets and facilitate novel discoveries through

unbiased and streamlined immunophenotyping.
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M ethods

Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized venous blood samples by
Ficoll-Hypaque density gradient centrifugation (GE Healthcare). Cells were cryopreserved in bovine fetal calf
serum supplemented with 10% dimethyl sulfoxide (DMSQO) and stored at -150°C until use. Patients with
various severe infectious diseases were included in this study. When blood samples from patients were collected
at distant sites, the blood samples were transported to either the Paris or the New York branch of our laboratory
overnight and processed. We accounted for the effect of blood sample transportation, by collecting samples
from healthy volunteers or healthy family members and transporting and processing them simultaneously with
the transported samples (travel/family controls). Cells from healthy local volunteers collected and processed

locally were also used (local controls). We included multiple local controls in each cytometry experiment.

Spectral flow cytometry

Two experiments were performed on separate dates. We studied frozen PBMCs from 11 locally
recruited healthy adult controls and three patients (two patients with homozygous loss-of-function mutations of
FAS and one patient with a heterozygous gain-of-function STAT3 mutation). Freshly thawed PBMCs (2x10°
cells for controls and 5x10° cells for the patient) were stained with the Zombie NIR Fixable Viability Kit
(BioLegend, 1:2000) for 15 minutes on ice. Cells were then stained with the following panel on ice for 30
minutes: FCR Blocking Reagent (Miltenyi Biotec, 1:50), anti-CD3-BD Horizon V450 (BD Biosciences, 1:450),
anti-CD4-BUV563 (BD Biosciences, 1:450), anti-CD8-BUV737 (BD Biosciences, 1:150), anti-CD14-BUV395
(BD Biosciences, 1:100), anti-CD16-PE-Dazzle (BiolLegend, 1:150), anti-CD20-BV785 (BD Biosciences,
1:150), anti-CD56-BV605 (BioLegend, 1:50), anti-ydTCR-Alexa Fluor 647 (BioLegend, 1:50), anti-V31-FITC
(Miltenyi Biotec, 1:450), anti-V$2-APC-Fire750 (BioLegend, 1:1350), anti-Va7.2-Alexa Fluor 700 (BioLegend,
1:50), MR1-BV421 (provided by the NIH Tetramer Core Facility, 1:200), anti-Vo24-Jal8-BVv480 (BD
Biosciences, 1:50), and anti-VB11-APC (Miltenyi Biotec, 1:150) antibodies. The cells were fixed on ice for 30

minutes and permeabilized with the True-Nuclear Transcription Factor Buffer Set (BioLegend). The cells were
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then stained for intracellular transcription factors overnight in the dark at 4°C with the following panel: anti-T-
bet-PE-Cy7 (BioLegend, 1:1350), anti-GATA3-BV711 (BioLegend, 1:50), anti-RORyT-PE (BD Biosciences,
1:50), and anti-EOMES-PerCP-eFluor 710 (eBioscience, 1:50) antibodies. Cells were acquired with an Aurora
cytometer (Cytek). Data were inspected using FlowJo, and manually gated live singlets were then exported as

FCS files for subsequent iMUBAC analysis.

Conventional flow cytometry

PBMCs (3x10° cells) from two locally recruited healthy adult controls and three patients (two patients
with homozygous null mutations of FASand one patient with a homozygous gain-of-function STAT3 mutation)
were stained with the following panel on ice for 20 minutes: FCR Blocking Reagent (Miltenyi Biotec, 1:50),
anti- afpTCR-PE/Cy7 (BioLegend, 1:100), anti-CD3-BV421 (BioLegend, 1:100), anti-CD4-redFluor 710
(Tonbo Biosciences, 1:100), anti-CD8-PerCP/Cy7 (BioLegend, 1:100), anti-CD14-APC/Cy7 (BioLegend,
1:100), anti-CD16-APC (BioLegend, 1:100), anti-CD19-Super Bright 645 (eBioscience, 1:100), and anti-CD56-
Alexa Fluor 488 (BD Biosciences, 1:100). Cells were then stained with 7-AAD (Tonbo Biosciences, 1:200) on
ice for 10 minutes. Cells were acquired with a BD FACS Aria (BD Biosciences). Compensation was performed

using single-stained PBMCs as controls. Data were analyzed using FlowJo.

Mass cytometry (CyTOF)

PBMCs from 39 healthy individuals (30 adults and nine children or adolescents), 24 patients with
various severe infectious diseases and autoimmune diseases, and 12 travel/family controls were studied in six
different batches of experiments. Freshly thawed PBMCs (1.0x10° cells per panel) were washed with barcode
permeabilization buffer (Fluidigm) and barcoded with Fluidigm’s Cell-ID 20-Plex Pd Barcoding Kit. Samples
were then washed and pooled into a single tube, Fc-blocked with FcX (BioLegend) and heparin-blocked to
prevent non-specific binding. Cells were then stained with a panel of metal-conjugated antibodies obtained from
Fluidigm: anti-CD45-89Y, anti-CD57-113In, anti-CD11c-115In, anti-CD33-141Pr, anti-CD19-142Nd, anti-

CD45RA-143Nd, anti-CD141-144Nd, anti-CD4-145Nd, anti-CD8-146Nd, anti-CD20-147Sm, anti-CD16-
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148Nd, anti-CD127-149Sm, anti-CD1c-150Nd, anti-CD123-151Eu, anti-CD66b-152Sm, anti-PD-1-153Eu,
anti-CD86-154Sm, anti-CD27-155Gd, anti-CCR5-156Gd, anti-CD117-158Gd, anti-CD24-159Tb, anti-CD14-
160Gd, anti-CD56-161Dy, anti-ydTCR-162Dy, anti-DRTH2-163Dy, anti-CLEC12A-164Dy, anti-CCR6-165Ho,
anti-CD25-166Er, anti-CCR7-167Er, anti-CD3-168Er, anti-CX3CR1-169Tm, anti-CD38-170Er, anti-CD161-
171YDb, anti-CD209-172Yb, anti-CXCR3-173Yb, anti-HLA-DR-174Yb, anti-CCR4-176Yb, and anti-CD11b-
209Bi. After surface staining, the samples were fixed and stored until acquired on a Helios mass cytometer
(Fluidigm). Dead cells and doublets were excluded by staining the cells, before and after fixation, with a
rhodium-based dead cell exclusion intercalator (Rh103) and cationic iridium nucleic acid intercalators (Ir191

and Ir193), respectively.

Public CyTOF datasets

CyTOF datasets for PBMCs from patients on PD-1 blockade®® were downloaded from FlowRepository

(https://flowrepository.org/experiments/1124). The study from which these data were taken analyzed PBMCs
from patients with melanoma before and about 12 weeks after treatment with either nivolumab or
pembrolizumab. Patients were classified as responders or non-responders based on treatment outcomes for the
first 15 weeks of treatment. The datasets also contained data for PBMCs from healthy donors at two
corresponding time points. The datasets consisted of two batches (i.e., experiments processed at two separate
dates) used as discovery and validation cohorts in the original study. The first batch contained data for five
healthy donors, five responders, and five non-responders, whereas the second batch contained data for five
healthy donors, six responders, and four non-responders. In this study, these two batches were analyzed

simultaneously in an exploratory analysis.

Computational analysis
All computational analyses were performed with R version 4.0.0 (https://www.r-project.org/)®. The R
package iMUBAC and example codes are available from GitHub (https://github.com/casanova-lab/iIMUBAC).

Full scripts are available upon request.
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Integration of multi-batch cytometry datasets (iMUBAC)

The iMUBAC workflow consists of four steps: i) preprocessing, ii) batch correction, iii) unsupervised
clustering and cell-type annotation, and iv) batch-specific cell-type prediction.

Preprocessing. Batch-specific preprocessing was performed as follows. First, CyTOF data files in the
FCS format were imported into R with the ncdfFlow package. The ncdfFlow package can be used for the
memory-efficient HDF5-based storage of cytometry data. The truncate_ max_range option was disabled. For
CyTOF data, the transformation option was also disabled, as the transformation implemented in the underlying
read.FCS package is optimized for flow cytometry. Second, channel names were organized. This step resolves
batch-to-batch differences in the panel design such that identical markers measured using different channels (i.e.,
fluorochrome- or metal-conjugated antibodies) are aligned. Third, for CyTOF data, doublets and dead cells
were excluded in a data-adaptive manner. In this step, all cells from all samples in a single batch of an
experiment were pooled, such that identical gates were applied to all samples in a given batch. For DNA-based
gating, the dnaGate function in the cydar package was used, and outliers on both the higher and lower sides
(considered to be doublets and debris, respectively) were excluded. For event length and dead cell exclusion
dye-based gating, the outlierGate function in the cydar package was used, and outliers on the higher side were
excluded. In our in-house CyTOF datasets, the intercalator Rh103 was used to exclude dead cells, whereas the
intercalators Ir191 and Ir193 were used to exclude doublets and debris. In the PD-1 blockade CyTOF datasets,
the intercalator Pt198 was used to exclude dead cells, whereas the intercalators Ir191 and Ir193 were used to
exclude doublets and debris. For our in-house pre-gated spectral flow cytometry datasets, the channel for the
Zombie NIR Fixable Viability dye was used to exclude dead cells, and automated gating for doublets and DNA
content was disabled. The expression values were then transformed. For CyTOF data, a hyperbolic arcsin-
transformation was applied, with a cofactor of five. For spectral flow cytometry data, Logicle transformation
was applied, with parameters estimated in a data-adaptive manner with the estimateLogicle function

implemented in the flowCore package. Finally, any event with zeros for all markers was discarded.
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After the batch-specific preprocessing, the outputs were concatenated, with only markers common to all
batches retained, to form a single SingleCell Experiment object in R.

Batch correction. The goal of this step is to enable the system to learn batch-to-batch deviations due to

technical effects but not biological variabilities. We, therefore, used only data from healthy controls for batch
correction, excluding data for patients and travel/family controls. Data were first down-sampled to 200,000 cells
per batch (unless otherwise stated) by taking approximately equal numbers of cells from each control, to reduce
the computational burden. For the in-house spectral flow datasets, we used 500,000 cells per batch, to ensure
the robust identification of invariant natural killer T (iNKT) cells, an extremely rare innate-like T-cell subset.
For the PD-1 blockade CyTOF Panel 3 (Myeloid Panel) dataset, we used 50,000 cells per batch, due to the low
total cell counts in the dataset. We then batch-corrected expression values for all markers with Harmony'?,
using the default parameters. Rather than performing principal component analysis (PCA), we used each marker
directly as an input for batch correction. The effect of batch correction was assessed by manual inspection, with
uniform manifold approximation and projection (UMAP) used for data visualization®®.

Unsupervised clustering and cell-type annotation. The goal of this step was to identify cell types in an

unsupervised manner. We implemented two methods: i) FlowSOM-guided -clustering followed by
ConsensusClusterPlus-guided metaclustering and i) UMAP-based dimension reduction followed by shared
nearest neighbor (SNN) graph-based clustering™, as described below.

The FlowSOM/ConsensusCluster Plus method. This approach was inspired by the workflow described by
Nowicka et al.®> Briefly, batch-corrected expression values were subjected to unsupervised clustering with
FlowSOM?*, using the FlowSOM package, followed by metaclustering with the ConsensusCluster Plus package.
Euclidean distance was used for metaclustering. For the in-house spectral flow cytometry and CyTOF datasets,
we generated 50 and 60 metaclusters, respectively, to improve the resolution of cell-type identification. For the
PD-1 blockade CyTOF datasets, we generated 40 metaclusters. In addition to this clustering, we generated a
heatmap for the median expression levels of all markers for each of the clusters, to facilitate the manual

determination of cell identity.
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SNN graph method. This approach was inspired by the workflow for single-cell RNA sequencing
datasets implemented in the scran package. Batch-corrected expression values were first dimension-reduced via
UMAP into ten dimensions. These dimensions were then used to construct an SNN graph with the
buildSNNGraph function in scran, using the default settings. Finally, the graph was divided into communities,
or clusters, with the Louvain algorithm, implemented as the cluster_louvain function in the igraph package®.

Batch-specific cell-type prediction. The goal of this step is to allow the system to learn, automatically,

the cell-type classification rules, or cell-type boundaries, in a batch-specific manner, and to propagate the
boundaries to all the cells in a given batch, including cells from travel/family controls and patients. Importantly,
we used non-batch-corrected expression values tied to cluster labels defined in the unsupervised clustering
section. First, cells from the healthy controls used for unsupervised clustering were further downsampled,
retaining a maximum of 100 cells per cluster from a given batch. This step reduces the computational burden
and also alleviates the class imbalance problem during machine learning, as there are both highly abundant cell
subsets (e.g., CD14" monocytes) and rare cell subsets (e.g., plasmacytoid dendritic cells) among human PBMCs.
We tested several conditions and found that cell-type classification rules can be learned successfully from 100
events per cell-type. A classifier was then trained with the caret package”. We selected the extremely
randomized trees® algorithm implemented in the extraTrees package. After centering and scaling the non-
batch-corrected expression values, we performed five-times repeated 10-fold cross-validations with internal
upsampling to maximize the Kappa statistic. Hyperparameters were tuned for each batch; mtry was tuned from
five to 15, whereas numRandomCuts was tuned from one to two, the ranges being empirically determined. The
trained batch-specific classifier was then applied to predict clusters for all cells in a given batch, including the
cells of patients and travel/family controls. This approach assumes that all cells of patients and travel/family

controls fall into one of the clusters defined from the cells of healthy controls.

Differential abundance analysis
For the PD-1 blockade CyTOF datasets, the raw counts of cell subsets identified from the three panels

were tested simultaneously for differential abundance (DA) with the quasi-likelihood F-test (QLF) framework
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of the package edgeR?*. When both pre- and post-treatment datasets were used, the DA between groups (i.e.,
responders and non-responders) was assessed with adjustment for both treatment and batch effects. When only
pretreatment datasets were used, the DA between groups was assessed with adjustment for batch effects only.
The DA values for subsets with an absolute log2 fold-change of at least 0.5 and an adjusted P-value below 0.05

were considered statistically significant.
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Figure 1. Integration of multi-batch cytometry datasets (iMUBAC). Multiple cytometry datasets can be
integrated for rational inter-batch and inter-individual comparisons. Even experiments with heterogeneous
designs (e.g., different in the numbers of local controls and patients) or inconsistent panels without shared
technical replicates can be integrated. Only cells from healthy local controls were used for batch correction. The
batch-corrected expression values were then used for unsupervised clustering, followed by manual annotation if
desired. The non-batch-corrected expression values, tied to cell-type annotations, were then used to train batch-
specific cell-type classifiers. Finally, cell types were predicted for the rest of the cells, including the cells of

patients and their travel/family controls.
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Figure 2. IMUBAC readily identifies both known and unknown immunophenotypes. (a-c) Spectral flow

cytometry datasets for peripheral blood mononuclear cells (PBMCs) from patients with monogenic forms of

autoimmunity. (a) Batch correction. (b) Cell-type identification through unsupervised clustering. (c) Selected

immunophenotypes of patients with FAS deficiency and STAT3 gain-of-function mutations. (d-f) CyTOF

datasets for PBMCs from patients on PD-1 blockade treatments®. The original study compared

immunophenotypes between responders and non-responders and reported higher levels of CD14"CD16 HLA-
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DR"™ monocytes among responders at baseline. (d) Batch correction. Panel 1, T-cell phenotyping. Panel 2,
cytokines. Panel 3, myeloid phenotyping. (e and f) Differential abundance (DA) analysis. All subsets from the
three panels were simultaneously tested for DA with edgeR* after adjustment for treatment and batch effects.
Percentages among live single leukocytes before PD-1 blockade are shown. (e) Expansion of the “CD14 Mono
2" cluster, corresponding to CD14*CD16 HLA-DR"CD86"PD-L1" monocytes, in responders. (f) DA for
subsets identified statistically significant when only pretreatment datasets were used for DA testing. Estimated

log2 fold-changes between responders and non-responders are also shown.
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Figure S1. Batch correction of the in-house multi-batch CyTOF datasets. PBMCs from healthy local controls,
travel/family controls, and patients with unusually severe infectious diseases (N=75 in total) were stained with a
general immunophenotyping panel (38 surface markers) and analyzed on six different occasions. The six
batches of datasets were integrated through iMUBAC. In total, 200,000 cells per batch randomly selected from
healthy local controls were batch-corrected with Harmony™. Uniform manifold approximation and projection

(UMAP)® visualizations are shown.


https://doi.org/10.1101/2020.07.14.202432
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.14.202432; this version posted July 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

=1 CD4 CM (10.2%)

i CD4 EM (1.85%)

| CD4 TEMRA (1.02%)

1 CD4 CD25+ Memory (1.45%)
CD4 Treg DR- (0.6%)

CD4 Treg DR+ (0.5%)

CD8 Naive (11.61%)

CD8 EM 1 (2.42%)

CD8 EM 2 (0.06%)

CD8 EM 3 (0.43%)

= CD8 TEMRA (3.84%)

CD8 CD25+ Memory (0.46%)

DN Thymocyte (0.29%)

DN Maive (0.73%)

DN TEMRA (0.05%)

DN Activated (0.06%)

CD4 MAIT (0.78%) Scaled
i CD8 MAIT (1.53%) expression
DN MAIT (0.69%) m
1 gd EM (1.43%) 0.5
gd TEMRA (0.6%) L1
gd Exhausted (0.1%)

NKT (0.05%)

[ B (9.95%)

Plasma (0.06%)

] NK CD16+CD57- (2.83%)

[ NK CD16+CD57+ (3.44%)

I NK CD16dim (1.3%)

NK CD56bright (0.49%)

ILC (0.06%)

i CD14dim Mono (1.66%)

=] CD14 Mono (11.19%)

| CD16 Mono (1.35%)

DC CD141+ (0.06%)

DC CD1c+ (0.81%)

pDC (0.43%)

5]

&

N |

ccra [0
corer N

CCR5

cueciza [l

G045
CO45RA

Figure S2. Cell-type identification for the in-house CyTOF datasets. After batch correction, the batch-corrected
expression values were used for unsupervised clustering with FlowSOM?*, followed by metaclustering with
ConsensusClusterPlus. Initially, 60 metaclusters were generated. Clusters were manually inspected to determine
their identity. A summary heatmap of the scaled median expression levels of all markers for all cell subsets is
shown. Clusters resembling granulocytes (CD45-CD66b), eosinophils, basophils, and mast cells were excluded

from the heatmap analysis.
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Figure S3. Batch-specific back propagation of cell-type annotations through machine learning. We used 100
cells per cluster to train a batch-specific cell-type classifier by machine learning. Cell types were determined
probabilistically for the other cells in a given batch. UMAP dimensions calculated from the non-batch-corrected
expression values are shown. The cell types determined by unsupervised clustering followed by manual

inspection are indicated by color coding.
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Figure S4. Analysis of the correlation between technical and biological replicates. In our in-house CyTOF
datasets, two healthy local controls were analyzed as technical replicates (i.e., experiments performed on
different dates with aliquots of the same PBMC samples), and another two healthy local controls were analyzed
as biological replicates (i.e., experiments performed on different dates using PBMC samples obtained on

different occasions from the same donors). We assessed the consistency of the predicted immunophenotypes
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between these replicates, by assessing the correlation between relative frequencies among live single cells
(excluding the CD45CD66b™ granulocyte-like cluster) of each of the cell types defined by unsupervised
clustering followed by manual refinement. We also assessed the “background-level” correlation by intentionally
inverting the donors in the second batch. (a) Technical replicates. (b) Dummy analysis of technical replicates in
which two donors were intentionally inverted in the second batch. (c) Biological replicates. (d) Dummy analysis
of biological replicates in which two donors were intentionally inverted in the second batch. R, Kendall’s

correlation coefficient.
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Figure S5. Analysis of the correlation of cell subset abundance values obtained by automated analysis and by
manual gating. In-house CyTOF datasets were analyzed with IMUBAC and by manual gating. Frequencies
among live single cells were compared for each cell subset. In this analysis, when multiple clusters were
identified for a given subset (e.g., “NK CD16"CD57, “NK CD16CD57"”, “NK CD16%™, and “NK
CD56""9" for NK cells), these clusters were merged before the calculation of frequencies. Representative
results are shown for ten subsets. NK, natural killer cells; ILC, innate lymphoid cells; cDC2, type-2

conventional dendritic cells; pDC, plasmacytoid dendritic cells. R, Kendall’s correlation coefficient.
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Figure S6. Cell-type identification for the in-house spectral flow cytometry datasets. The datasets consist of data
for PBMCs from 11 healthy controls and three patients (two patients with FAS deficiency and one patient with
a STAT3 gain-of-function mutation). The two batches were integrated with Harmony*?, using default parameters.
The FlowSOM/ConsensusClusterPlus method initially identified 60 metaclusters. Clusters were then manually

inspected and annotated. A heatmap representing scaled median expression levels is shown.
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Figure S7. Validation for the in-house spectral flow cytometry data by a conventional flow cytometry. PBMCs
from two healthy controls and three patients (two patients with FAS deficiency and one patient with a STAT3
gain-of-function mutation) were analyzed using a conventional flow cytometry. Compensation was performed

using single-stained PBMCs as controls.
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Figure S8. Cell-type identification for the CyTOF Panel 1 dataset for patients treated with PD-1 blockade
immunotherapy. The datasets were downloaded from the FlowRepository (FR-FCM-ZY34)%. The datasets
consist of data for PBMCs from 10 healthy controls and 20 patients with stage IV melanoma, before and after
PD-1 blockade immunotherapy (N=11 and 9 for responders and non-responders, respectively). The two batches
(i.e., discovery and validation cohorts) were integrated with Harmony®?, using default parameters. The
FlowSOM/ConsensusClusterPlus method initially identified 40 metaclusters. These clusters were then manually

inspected and annotated. A heatmap representing scaled median expression levels is shown.
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Figure S9. Cell-type identification for the CyTOF Panel 2 dataset for patients treated with PD-1 blockade

immunotherapy. See Figure S8 for details.
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Figure S10. Cell-type identification for the CyTOF Panel 3 dataset for patients treated with PD-1 blockade

immunotherapy. See Figure S8 for details.
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