

1
2
3

4 **MITF reprograms the extracellular matrix and focal adhesion in melanoma**

5
6

7 Ramile Dilshat¹, Valerie Fock¹, Colin Kenny², Ilse Gerritsen¹, Romain Maurice Jacques Lasseur¹, Jana
8 Travnickova³, Ossia Eichhoff⁴, Philipp Cerny¹, Katrin Möller^{1,*}, Sara Sigurbjörnsdóttir¹, Kritika Kirty¹,
9 Berglind Ósk Einarsdóttir¹, Phil F. Cheng⁴, Mitchell Levesque⁴, Robert Cornell², E. Elizabeth Patton³,
10 Lionel Larue⁶, Marie de Tayrac^{7,8}, Erna Magnúsdóttir⁵, Margrét H. Ogmundsdóttir⁵, Eiríkur
11 Steingrímsson^{1,†}.

12 Affiliation:

13 ¹Department of Biochemistry and Molecular Biology, and ⁵Department of Anatomy, BioMedical Center,
14 Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland

15 ²Department of Anatomy and Cell biology, Carver College of Medicine, University of Iowa, Iowa City, IA
16 52242, USA

17 ³MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit, University of Edinburgh,
18 Edinburgh, UK

19 ⁴Department of Dermatology, University Hospital Zurich, CH-8091 Zurich, Switzerland

20 ⁵Department of Anatomy, BioMedical Center, Faculty of Medicine, University of Iceland,
21 Vatnsmýrarvegur 101, 101 Reykjavik, Iceland

22 ⁶Institut Curie, CNRS UMR3347, INSERM U1021, Centre Universitaire, 91401 Orsay CEDEX, France

23 ⁷Univ Rennes1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, F—35000
24 Rennes, France 2 and ⁸Service de Génétique Moléculaire et Génomique, CHU, Rennes, France

25 *Present address: Institute of Molecular Life Sciences, University of Zurich, Y13-K-36,
26 Winterthurerstrasse 190, CH8057 Zurich, Switzerland

27

28 #Corresponding author:

29 Eiríkur Steingrímsson, eirikurs@hi.is, +354 525 4270

30 **Key words: MITF, melanoma, extracellular matrix, focal adhesion, repression**

31 **Abstract**

32 The microphthalmia associated transcription factor (MITF) is a critical regulator of melanocyte
33 development and differentiation. It also plays an important role in melanoma where it has been
34 described as a molecular rheostat that, depending on activity levels, allows reversible switching
35 between different cellular states. Here we show that MITF directly represses the expression of
36 genes associated with the extracellular matrix (ECM) and focal adhesion pathways in human
37 melanoma cells as well as of regulators of epithelial to mesenchymal transition (EMT) such as
38 CDH2, thus affecting cell morphology and cell-matrix interactions. Importantly, we show that
39 these effects of MITF are reversible, as expected from the rheostat model. The number of focal
40 adhesion points increased upon MITF knockdown, a feature observed in drug resistant melanomas.
41 Cells lacking MITF are similar to the cells of minimal residual disease observed in both human
42 and zebrafish melanomas. Our results suggest that MITF plays a critical role as a repressor of gene
43 expression and is actively involved in shaping the microenvironment of melanoma cells in a cell-
44 autonomous manner.

45

46

47 **Introduction**

48 Melanoma is a highly aggressive form of skin cancer that originates from melanocytes.
49 Approximately 60% of melanoma tumours harbour a BRAF mutation, most often BRAF^{V600E},
50 which leads to hyperactivation of the mitogen-activated protein kinase (MAPK) pathway [1].
51 Drugs targeting the BRAF and MAPK pathways are clinically important, but almost invariably,
52 resistance arises within a short time period [2]. Melanoma inherits its aggressive nature from its
53 multipotent neural crest precursors that gives rise to various cells including melanocytes, glia and
54 adrenal cells [3, 4]. The developmental programme of neural crest cells is believed to be reinitiated
55 during melanoma progression and dysregulation of neural crest genes is predictive of metastatic
56 potential and negative prognosis in melanoma [5-7]. Various different studies, including gene
57 expression studies of tumours, immunohistochemical analysis of melanoma samples and single-
58 cell sequencing studies of patient-derived xenografts suggest the existence of different cell types
59 in melanoma tumours. This cellular heterogeneity is believed to reflect the associated ability of
60 tumour cells to switch their phenotype from proliferative, non-invasive cells to quiescent, invasive
61 cells and back, thus allowing metastasis and the escape from therapeutic intervention (reviewed in
62 [8]). This has been summarized in the phenotype switching model which suggests that melanoma
63 cells can switch between invasive and proliferative states allowing them to either grow and form
64 tumours or metastasize to a new site [8, 9]. Understanding the molecular mechanisms underlying
65 the phenotypic plasticity of melanoma cells is key to addressing the metastatic potential of
66 melanoma cells.

67 The Microphthalmia-associated transcription factor (MITF) is essential for melanocyte
68 differentiation, proliferation and survival. MITF is also important during melanomagenesis
69 (reviewed in [10]). This is best evidenced by the observations that the rare germline mutation
70 E318K of MITF increases the susceptibility to melanoma and MITF has been shown to be
71 amplified in 15% of melanoma tumours [11-13]. Importantly, MITF activity has been used as a
72 proxy for the phenotype switching model with MITF^{high} cells characterized as proliferative
73 whereas MITF^{low} cells have been assigned a quiescent invasive phenotype [14, 15]. In fact, MITF
74 has been proposed to act as a rheostat where the levels of MITF activity determine the phenotypic
75 state of melanoma cells (reviewed in [8]). Since MITF expression and activity are regulated by
76 the various signalling pathways, the tumour microenvironment has been proposed to instruct
77 phenotypic changes in melanoma cells and thus foster disease progression [16-19]. However,

78 antibody staining suggests that cells lacking MITF are abundant in melanomas [20] and single-cell
79 sequencing of human xenotransplants and of zebrafish melanoma models suggest the existence of
80 cells with very low MITF expression [21, 22]. These cells belong to a population of cells believed
81 to represent minimal residual disease, cells that remain viable upon drug exposure.

82 The extracellular matrix (ECM) is an important component of the tumour microenvironment as it
83 provides cells with biochemical and structural support. In melanoma, expression of ECM proteins
84 such as tenascin and fibronectin increases during disease progression [23]. Focal adhesions not
85 only offer physical attachment of cells to the ECM through the integrin receptor, but also initiate
86 signalling cascades that regulate cell proliferation, migration and survival [24-26]. A key focal
87 adhesion signalling protein is Focal Adhesion Kinase (FAK), which activates the ERK pathway
88 via Grb-FAK interactions [27]. An important scaffolding protein at the focal adhesion complex is
89 Paxillin (PXN) which recruits other proteins to the focal adhesion sites when phosphorylated by
90 FAK and SRC [28]. Importantly, phosphorylation of PXN is critical for activation of RAF, MEK,
91 and ERK and has been shown to confer drug resistance by activating Bcl-2 through ERK signalling
92 [29-33]. This highlights the importance of identifying a molecular mechanism that confers cells
93 with the ability to circumvent drug inhibition through phenotypic changes.

94 In this study, we show that MITF represses the expression of focal adhesion and ECM genes in
95 melanoma cells and tissues. Our findings reveal a new role for MITF in regulating the expression
96 of genes that are essential for creating the melanoma microenvironment, establishing a link to
97 melanoma progression and drug resistance.

98

99 **Results**

100 **Melanoma cells devoid of MITF are enlarged and exhibit altered matrix interactions**

101 To assess the effects of permanent loss of MITF in melanoma cells, we used the clustered regularly
102 interspaced short palindromic repeats (CRISPR)-Cas9 technique to generate MITF knockout (KO)
103 cell lines in the human hypo-tetraploid SkMel28 melanoma cell line (containing four copies of
104 MITF). We targeted exons 2 (an early exon containing a transactivation domain) and 6 (containing
105 the DNA binding domain) of MITF separately and the resulting isogenic cell lines are hereafter
106 referred to as Δ MITF-X2 and Δ MITF-X6 (Fig. 1a). The control cell line EV-SkMel28 was
107 generated by transfecting SkMel28 cells with Cas9 along with the empty gRNA plasmid. To
108 identify mutations introduced in the cell lines, we performed whole genome sequence (WGS)
109 analysis, which showed that mutations were introduced in MITF in both the Δ MITF-X2 and
110 Δ MITF-X6 cells (Fig. 1b, c) but not in the EV-SkMel28 control. In addition, we confirmed the
111 WGS analysis by amplifying the mutated genomic regions, cloning them into vectors and
112 performing Sanger sequencing. The Δ MITF-X2 line had two different but independent insertion
113 mutations in the same codon (insertion of A and T in the codon for Y22) and a 5-bp deletion
114 (encoding Y22 and H23) that are present in 64%, 19% and 17% of sequenced DNA fragments in
115 this region, respectively. All these mutations introduced frameshifts and premature stop codons in
116 exon 2 of MITF (Fig. 1b). The mutations present in the Δ MITF-X6 line are the following: 52% of
117 the sequenced fragments contained a deletion of 1-bp (encoding residue A198), 33% contained a
118 6 bp in-frame deletion in the basic domain of the protein (encoding residues R197-R198) and 15%
119 of the sequenced fragments contained a 17-bp deletion (encoding residues 198-203). Both the 1-
120 and 17-bp deletions introduced frameshifts and downstream stop codons (Fig. 1c) whereas the in-
121 frame 6-bp deletion removed two amino acids at the beginning of the alpha-helix encoding the
122 basic domain and is therefore not expected to be able to bind DNA. No wild-type MITF gene was
123 detected in either cell line. In both cell lines the ratio of mutants is consistent with two
124 chromosomes carrying the same mutation and the remaining two chromosomes each carrying a
125 different mutation. Western blotting revealed that the Δ MITF-X6 cells express very little, if any,
126 MITF protein. Although the Δ MITF-X2 cells did not express the full-length \sim 55 kDa MITF protein,
127 truncated forms of MITF were detected at \sim 40 and 47 kDa (Fig. 1d). These truncated forms were
128 also present in wild type cells, albeit at lower levels, suggesting that these are alternative isoforms
129 of the MITF protein (Fig. 1d). In order to determine if these shorter isoforms are due to alternative

130 splicing, we performed RT-PCR across several exon-intron borders around exon 2 of the MITF
131 transcript. Our results did not show any alternative splice forms of MITF (Supplementary Fig. 1a,
132 b). The C5 MITF antibody used here recognizes an epitope located between residues 120 and 170
133 of MITF, which corresponds to exons 4 and 5 (Fig. 1a) [34]. The truncated proteins observed in
134 wild type and Δ MITF-X2 cells must still contain this region and are therefore likely to arise from
135 alternative translation start sites. Immunostaining revealed a mostly nuclear staining of MITF in
136 both the EV-SKmel28 and Δ MITF-X2 cells (Fig. 1e), indicating that the truncated MITF isoforms
137 reside in the nucleus. However, in the Δ MITF-X6 cells, no signal for MITF was observed in the
138 nucleus, whereas a very low background signal was observed in the cytoplasm (Fig. 1e). To
139 summarize, we have generated two CRISPR MITF-KO cell lines from melanoma cells where
140 Δ MITF-X6 is devoid of wild type MITF.

141

142 Morphological analysis revealed that both MITF-KO cell lines exhibited enlarged cytoplasm as
143 compared to controls (Fig. 1e-g). Vimentin staining revealed enlarged cells (Fig. 1e) which is
144 consistent with a report showing that loss of MITF affects the cytoskeletal structure and shape of
145 melanoma cells [14]. Quantification of phase contrast microscopy images revealed that the average
146 size of Δ MITF-X2 and the Δ MITF-X6 cells was 1.7-fold larger than the EV-SkMel28 cells (Fig.
147 1g). To characterize the behaviour of the cell lines when provided with ECM that mimics the
148 basement membrane, we seeded the cells on top of matrigel-coated slides, supplemented with
149 complete growth medium containing 2% matrigel. Both MITF-KO cell lines formed aggregates,
150 whereas the control EV-SkMel28 cells displayed a flat sheet-like morphology (Fig. 1h). Taken
151 together, our results show that loss of MITF lead to changes in cell morphology and cell-matrix
152 interactions.

153 **Expression of ECM and focal adhesion genes is increased upon loss of MITF**

154 Next we compared the transcriptomic profile of the Δ MITF-X6 cells (exhibiting complete loss of
155 wild type MITF) to the EV-SkMel28 control cells. We identified 2,136 differentially expressed
156 genes (DEGs) between Δ MITF-X6 and EV-SkMel28 cells with the cut off $qval < 0.05$
157 (Supplementary Table 1). Of these, 1,516 genes showed 2-fold change in expression (Fig. 2a).
158 Gene ontology and KEGG pathway enrichment analysis revealed that the genes reduced in
159 expression upon MITF depletion were verified MITF-target genes involved in pigmentation and

160 pigment cell differentiation such as *DCT*, *MLANA*, *OCA2* and *IRF4* in addition to *MITF* itself (Fig.
161 2a, b, Supplementary Table 1). Genes whose expression was increased upon loss of *MITF* were
162 enriched in processes involved in glycosaminoglycan metabolism, extracellular matrix
163 organization and extracellular structure organization, and included genes such as *SERPINA3*,
164 *ITGA2*, *PXDN* and *TGFβ1* (Fig. 2a, b, Supplementary Table 1).

165 As *MITF* is central to the melanoma phenotype switching model [35], we were interested whether
166 loss of *MITF* would be consistent with the published transcriptional signatures linked to phenotype
167 switching in melanoma cells [36]. Gene set enrichment analysis (GSEA) showed that the Verfaillie
168 invasive signature displayed a positive enrichment with the Δ*MITF*-X6 cells, whereas the
169 Verfaillie proliferative signature was negatively enriched (Fig. 2c, d). This further validated the
170 *MITF*-KO cells as a representative model of long-term *MITF* loss.

171 In order to investigate if the genes affected by *MITF* loss are direct targets of *MITF*, we performed
172 CUT&RUN *MITF* ChIP-Seq in the SkMel28 cells to map *MITF* genome wide binding sites. We
173 identified 37,643 peaks located in the promoter, 3'UTR or intronic regions of 8,288 genes
174 (Supplementary Fig. 2a) (Supplementary Table 2). Gene ontology analysis revealed that *MITF*-
175 bound genes which showed increased expression upon *MITF* loss were enriched for aminoglycan,
176 ECM and axogenesis pathways, whereas genes reduced in expression upon *MITF* loss were
177 enriched for genes involved in pigmentation (Fig. 2e). We found that 695 of the 1,284 induced
178 genes ($P<7.3e-09$ hypergeometric test) and 535 of the 852 repressed genes ($P<6.6e-23$,
179 hypergeometric test) were directly bound by *MITF* (Fig. 2f) (Supplementary Table 2). Of the 183
180 ECM and focal adhesion genes whose expression was increased upon *MITF* knockout, 101 were
181 bound by *MITF* and induced in expression upon loss of *MITF* (Supplementary Table 2). We
182 compared our CUT&RUN *MITF* ChIP-seq peaks with the published *MITF* ChIP-Seq data from
183 COLO829 (generated using the same antibody as used here) (Supplementary Table 3) and HA-
184 *MITF* ChIP-Seq 501Mel cells (Supplementary Table 4) and found 42 ECM genes consistently
185 bound by *MITF* in all three studies (Fig. 2g, h) (Supplementary Table 5).

186 To determine if the *MITF* peaks near induced and reduced genes contained the canonical *MITF*
187 binding site, we performed *de novo* motif analysis of *MITF*-bound regions near DEGs using the
188 MEMEChIP tool [37]. We found that *MITF*-bound, induced genes (777) were primarily enriched
189 for the 5'-CA[T/C]GTGAC-3' motif, whereas *MITF*-bound reduced genes (535) were enriched

190 for the 5'-CACATG-3' motif (Fig. 2i). Thus, genes that are both induced and reduced in expression
191 upon MITF loss contain MITF binding sites and are likely to be direct targets of MITF. Along
192 with primary motifs, we also observed secondary motifs including a motifs for RUNX1 and SOX10
193 in the induced, MITF-bound genes (Supplementary Fig. 2b). The secondary motifs observed in
194 MITF-bound reduced genes were the FOXC1 like motifs (Supplementary Fig. 2c). The differences
195 observed in the secondary motifs may represent factors involved in repression versus activation
196 functions of MITF. Taken together, we show that loss of MITF alters the expression of ECM genes
197 and focal adhesions and large subset of them are directly bound by MITF.

198 **MITF depletion leads to increased expression of ECM genes**

199 In order to verify that the link between MITF and the ECM and focal adhesion genes is not
200 restricted to a particular cell line, we performed knockdown and overexpression studies in
201 independent human melanoma cell lines and characterized gene expression data in the Cancer
202 Genome Atlas. First, we performed mRNA sequencing after transient knockdown of MITF in
203 SkMel28 and 501Mel cells, both of which express MITF endogenously at high levels. We
204 identified 1,040 DEGs ($\text{qval} < 0.05$, $\text{log2FC} \geq |1|$, 567 induced, 473 reduced) upon siRNA-mediated
205 MITF depletion in SkMel28 cells compared to siCTRL and 1,114 DEGs in 501Mel cells
206 ($\text{qval} < 0.05$, $\text{log2FC} \geq |1|$, 624 induced, 490 reduced) (Supplementary Table 1). A significant
207 correlation was observed between the DEGs of $\Delta\text{MITF-X6}$ vs. EV-Skmel28 cells and DEGs of
208 siMITF vs. siCTRL in SkMel28 (Pearson correlation=0.66, $P < 2.2\text{e-16}$) and 501Mel cells (Pearson
209 correlation=0.57, $P < 2.2\text{e-16}$) (Fig. 3a, b). Second, we used the Cancer Genome Atlas dataset to
210 characterize differential gene expression and split the tumours into two groups: the tumours with
211 the 10% highest ($\text{MITF}_{\text{high}}$) and 10% lowest (MITF_{low}) expression of MITF. By performing
212 differential gene expression analysis between the two groups, we identified 2,655 DEGs
213 ($\text{FDR} < 0.01$, $\text{log2FC} \geq |1|$, 1,835 induced and 820 reduced) between MITF_{low} and $\text{MITF}_{\text{high}}$ tumours
214 (Supplementary Table 1). Interestingly, the DEGs observed when comparing the $\Delta\text{MITF-X6}$ cells
215 to the EV-SkMel28 cells and the DEGs observed upon comparing the MITF_{low} and $\text{MITF}_{\text{high}}$
216 tumours were significantly correlated ($R = 0.76$, $p < 2.2\text{e-1016}$) (Fig. 3c). Additionally, principal
217 component analysis of the top 200 most statistically significant genes in each case revealed that
218 MITF_{low} tumours cluster near the $\Delta\text{MITF-X6}$ cells, whereas $\text{MITF}_{\text{high}}$ tumours cluster with EV-
219 SkMEL28 cells, indicating that $\Delta\text{MITF-X6}$ cells portray the transcriptional state of MITF_{low}

220 tumours (Fig. 3e). Third, we investigated whether overexpression of MITF would lead to
221 repression of ECM genes. To do this, we performed mRNA-sequencing in A375P cells
222 overexpressing a dox-inducible FLAG-tagged MITF construct (pB-MITF-FLAG). A control
223 A375P cell line was generated using an empty vector only expressing FLAG (pB-FLAG). We
224 identified 8,110 DEGs ($\text{qval} < 0.05$, $\log_2 \text{FC} \geq |1|$, 4,863 induced, 3,247 reduced) between pB-MITF-
225 FLAG and pB-FLAG in A375P cells and among genes that are decreased in expression are ECM
226 related genes (Supplementary Table 1). As expected, the DEGs observed upon MITF
227 overexpression in A375P cells showed anti-correlation with the DEGs observed when comparing
228 $\Delta\text{MITF-X6}$ to EV-SkMel28 cells (Pearson correlation = -0.46, $P < 2.2\text{e-}16$) (Fig. 3d).

229 To classify genes that are overrepresented after the loss or gain of MITF we performed GO term
230 enrichment analysis on the DEGs, which revealed an induction of ECM-related genes upon MITF
231 depletion in 501Mel and SkMel28 cells as well as in MITF^{low} tumours, whereas genes involved in
232 pigmentation were reduced in expression (Fig. 3f). Conversely, overexpressing MITF in the
233 A375P cell line led to a reduction in expression of ECM genes and induction of pigmentation and
234 autophagy genes, again showing that MITF negatively regulates the expression of ECM genes (Fig.
235 3f).

236 Analysis of the MITF ChIP-seq data [38] showed that a significant portion of the differentially
237 expressed ECM genes upon MITF KD and in MITF^{low} tumours have MITF peaks in their
238 regulatory domains (Supplementary Table 5) (Fig. 3g). In contrast, overexpression of MITF led to
239 the repression of 213 ECM genes, 82 of which were MITF targets, indicating a major repressive
240 influence of MITF on ECM gene expression (Fig. 3g) (Supplementary Table 5). We confirmed the
241 repressive effects of MITF by RT-qPCR in dox-inducible A375P cells overexpressing pB-MITF-
242 FLAG, which showed a significant reduction in the expression of *LOXL2*, *MMP15*, *MMP2*, and
243 *COL1A2* when compared to control pB-FLAG cells (Fig. 3h). Together, our data support our
244 conclusion that MITF is an important direct repressor of ECM gene expression in human
245 melanoma cells and tissues.

246 Next, we analysed whether the collagens that were differentially expressed in the MITF-KD or
247 KO melanoma cell lines were also affected by MITF in melanoma tumours in TCGA. Interestingly,
248 we observed increased expression of collagen genes in the MITF^{low} tumours (Fig. 3i). However,
249 to rule out the possibility that the increased expression of ECM genes in TCGA MITF^{low} melanoma

250 tumours was derived from fibroblast cells, we removed the 130 melanoma TCGA samples that
251 showed the highest expression of the fibroblast markers *PDGFRB* and *ACTA2* and then assessed
252 the expression of collagens across the 30 MITF highest and lowest melanoma samples, which
253 consistently showed that expression of genes encoding collagens are among the highest expressed
254 genes in MITF_{low} tumours (Fig. 3i). We did not observe a correlation between MITF expression
255 and the most common BRAF, NRAS and NF1 mutations found in melanoma (Fig. 3j), indicating
256 that the gene expression changes observed are controlled via transcriptional regulation, directly or
257 indirectly imposed by MITF. We conclude that reduced MITF expression leads to activation of
258 expression of genes involved in ECM and focal adhesion in melanoma cells and tumours and that
259 in many cases this is through direct binding of MITF to their regulatory regions.

260 **EMT genes are directly regulated by MITF**

261 Genes involved in the EMT process have been shown to play a role in melanoma drug resistance
262 and have been linked to low MITF expression [39, 40]. Consistent with this, analysis of the TCGA
263 data showed that the expression of *CDH2* (*N-cadherin*), *TGFB1* and *ZEB1* was anti-correlated
264 with MITF in melanoma tumours whereas the expression of *CDH1* (*E-cadherin*) and *SLUG*
265 (*SNAI2*) was positively correlated (Fig. 4a). Consistent with this, the expression of the *CDH1* and
266 *SLUG* genes was reduced in MITF_{low} tumours and ΔMITF-X6 cells whereas the expression of
267 *CDH2*, *SOX2*, *TGFβ1* and *ZEB1* was increased (Fig. 4b). We also observed increased expression
268 of *CDH2* upon siRNA-mediated KD of MITF in SkMel28 and 501Mel cells, however the level of
269 *CDH1* was decreased only in the siMITF SkMel28 cells (Fig. 4b). Interestingly, upon MITF
270 overexpression in the pB-MITF-FLAG A375P cells, the expression of *CDH2*, *SNAI2*, *SOX2* and
271 *TGFβ1* was decreased whereas the expression of *CDH1* and *ZEB1* was increased (Fig. 4b). RT-
272 qPCR analysis of EMT genes in the MITF-KO cells confirmed that *CDH1* expression was reduced
273 50- and 100-fold in the ΔMITF-X2 and ΔMITF-X6 cells, respectively, whereas *CDH2* and *TGFβ1*
274 were significantly increased when compared to EV-SkMel28 cells (Fig. 4c). Western blot analysis
275 confirmed increased expression of the classical EMT marker protein *CDH2* and decreased
276 expression of *CDH1* in both MITF-KO cell lines (Fig. 4d, e). Analysis of CUT&RUN ChIP-Seq
277 and publicly available MITF ChIP-Seq data showed that *ZEB1*, *SOX2*, *CDH1* and *CDH2* genes
278 contain MITF binding peaks in their intronic and promoter regions (Supplementary Fig. 2d) [38],
279 whereas *TGFB1* does not. This suggests that MITF is not only involved in regulating the

280 expression of ECM genes but may also be directly involved in regulating the expression of EMT
281 genes, resulting in EMT-like changes in cell morphology and behaviour.

282 **MITF-mediated effects on ECM genes are reversible**

283 The MITF rheostat model predicts that different levels of MITF activity modulate distinct
284 phenotypic states of melanoma cells and that these effects are reversible [41]. To determine if the
285 effects of long term MITF knockout could be reversed, we performed a rescue experiment by
286 introducing an exogenous MITF-FLAG or EV-FLAG construct into the MITF-KO cells and then
287 used RT-qPCR to characterize the expression pattern of ECM genes. As expected, the control EV-
288 FLAG transfected MITF-KO cells exhibited increased expression of the ECM genes *CDH2*, *ID1*
289 and *MMP15* as compared to the EV-SkMel28 control cells (Fig. 5a-d), whereas the expression of
290 *CDH1* was reduced. Importantly, the expression of all four genes was partially rescued upon
291 introducing the MITF-FLAG construct into Δ MITF-X6 cells; a smaller rescue effect was observed
292 in Δ MITF-X2 cells transfected with MITF-FLAG (Fig. 5a-d).

293 In order to overcome the partial rescue seen with the MITF-KO cells, we used the piggybac
294 transposon system to integrate a dox-inducible synthetic micro-RNA construct (*miR-MITF*) into
295 501Mel and SkMel28 cells, thus allowing inducible knockdown (KD) of MITF by addition of
296 doxycycline (Fig. 5e). At the same time, cells carrying a non-targeting control (*miR-NTC*) were
297 generated. We induced MITF-KD in the miR-MITF SkMel28 cell line by adding dox and removed
298 it again after 24 hours to assay for gene and protein expression at defined time points (Fig. 5e).
299 We chose to focus on the ECM and EMT genes *CDH1*, *CDH2*, *ITGA2* and *SERPINA3*, all of
300 which are direct targets of MITF (Supplementary Fig. 3) [38]. Our results showed that MITF
301 mRNA and protein expression was significantly decreased after 24 hours of dox treatment and
302 reached basal levels again 96 hours after dox removal (Fig. 5f, g), showing that the dox-inducible
303 system is suitable for reversibly modulating MITF levels. We observed a sharp decrease in *CDH1*
304 mRNA expression after 24 hours of dox treatment. However, 72 and 96 hours after dox removal
305 its expression had gradually increased, consistent with the restoration of *MITF* expression (Fig.
306 5g). Similarly, the expression of genes repressed by MITF such as *CDH2*, *SERPINA3*, and *ITGA2*
307 was sharply increased after 24 hours of dox treatment and decreased again 96 hours after dox
308 removal (Fig. 5h-j). Western blotting showed that the expression of the E-cadherin (CDH1) protein
309 was reduced, whereas the expression of N-Cadherin (CDH2) was increased when compared to the

310 *miR-NTC* control (Fig. 5f). After 72 and 96 hours of dox removal, MITF expression was restored
311 and expression of the E-Cadherin protein was increased back to initial levels, whereas the
312 expression of N-Cadherin was reduced compared to that observed at 24 hours of MITF-KD (Fig.
313 5f). These data show that, consistent with the rheostat model, the function of MITF as both a
314 repressor and activator of gene expression has reversible effects on the expression of EMT and
315 ECM genes.

316 **MITF affects the number of focal adhesions**

317 Based on the observed increase in the expression of ECM and focal adhesion genes, we expected
318 focal adhesion formation to be affected in the MITF-depleted cells. Indeed, immunostaining
319 revealed an increased number of paxillin (PXN)-positive focal points (stained using PXN phospho
320 -Tyr118 antibodies) around the cell periphery of MITF-KO cells as compared to EV-SkMel28
321 control cells (Supplementary Fig. 3a). Quantification of the focal points showed around 2-fold
322 increase in their numbers in both MITF-KO cell lines (Supplementary Fig. 3b). Transcriptomic
323 data of the 473 melanoma tumour samples from TCGA showed a significant negative correlation
324 between the expression of MITF and PXN in these samples (Supplementary Fig. 3c). We also
325 assessed the expression of *PXN* in a panel of 163 patient-derived melanoma cells exhibiting
326 different levels of MITF. This showed that expression of *PXN* was specifically induced in MITF_{low}
327 melanoma cell lines and displayed a negative correlation with *MITF* expression (Supplementary
328 Fig. 3d, e). In order to evaluate whether the formation of focal adhesions would be induced upon
329 short-term MITF loss, we integrated the dox-inducible *miR-MITF* transgene into 501Mel and
330 SkMel28 cells and detected focal adhesions using the PXN antibody. After a 24-hour induction of
331 MITF-KD, a 2-fold increase was observed in the number of PXN-positive focal points at the cell
332 borders when compared to the *miR-NTC* control cell lines (Supplemental Fig. 3f-h). Analysis of
333 ChIP-seq data showed an MITF peak in intron 6 of *PXN* containing the CACGTG motif
334 (Supplementary Fig. 3i). This indicates that MITF affects the formation of focal adhesions by
335 directly regulating the expression of PXN, a key player in focal adhesion.

336 Previous studies have shown that adaptive resistance to the BRAF^{V600E} inhibitor vemurafenib leads
337 to activation of focal adhesion and ECM-related pathways [42]. Indeed, treating the cells with
338 vemurafenib led to a decrease in MITF protein expression in EV-SkMel28 cells which is consistent
339 with the literature. However, the expression of MITF in the 501Mel cell upon vemurafenib

340 treatment was increased compared to a DMSO control (Supplementary Fig.4a, b). This raises the
341 question of whether the effects observed on ECM and focal adhesion genes upon BRAF inhibition
342 are mediated through MITF. To evaluate the effects of BRAF inhibition on focal adhesions, we
343 treated MITF-KO and EV-SkMel28 cells with vemurafenib and stained for phospho-paxillin
344 (Tyr118). Consistent with the observation above, the MITF-KO cells showed a 4-fold increase in
345 the number of focal adhesions as compared to EV-SkMel28 cells under the control DMSO-treated
346 conditions (Fig. 6a (upper panel), b). Treatment with vemurafenib resulted in a significant increase
347 in the number of focal adhesions in the EV-SkMel28 cells but a further increase was also observed
348 in the MITF-KO cells (Fig. 6a (lower panel), b). Consistent with this, knockdown of MITF induced
349 through the miR-MITF construct in both 501Mel and SkMel28 cells led to an increased number
350 of focal adhesions when compared to *miR-NTC* cells (Fig. 6c, d (upper panels), e, f). Treatment
351 with vemurafenib further increased the number of focal adhesions in SkMel28 cells expressing
352 miR-NTC or miR-MITF, but again, more focal points were observed in miR-MITF cells under
353 these conditions (Fig. 6c, d (lower panels)). Importantly, vemurafenib treatment alone did not lead
354 to an increase in focal adhesion formation in 501Mel cells expressing *miR-NTC* which is consistent
355 with increased MITF protein expression upon vemurafenib treatment whereas a major increase in
356 focal adhesions was observed upon MITF depletion in the miR-MITF cells (Fig. 6c (lower panel),
357 e). These results suggest that the formation of focal adhesions upon vemurafenib treatment is in
358 part dependent on changes in MITF expression. However, since a further increase is observed in
359 upon vemurafenib treatment of the knockout and knockdown lines, other factors must also be
360 involved.

361 To understand whether the ECM and focal adhesion genes affected upon MITF loss overlap with
362 the gene signature of melanoma cells that have been treated with BRAF inhibitors, we used single
363 cell RNA-sequencing data of human melanoma xenografts [21]. We focused on gene signatures
364 specific for single cell populations with low MITF, (i) a subpopulation of cells which represent
365 minimal residual disease (MRD) in melanoma, a small population of cells that remain upon drug
366 treatment and (ii) an invasive gene signature [21]. Our GSEA analysis showed that Δ MITF-X6
367 cells were significantly enriched in the MRD gene signature but not with the invasive signature
368 found in another sub-population of MRD cells in the xenografts (Supplementary Fig. 4c). Among
369 the genes that overlap between the MRD and Δ MITF-X6 cells are ECM genes such as *COL4A1*,
370 *ITGA1*, *ITGA6*, *LAMC1* and *VCAN*. The same findings were obtained using single cell RNA-Seq

371 data of MITF-depleted zebrafish melanomas as well as bulk-RNA-Seq data of MITF_{low} melanoma
372 tumours [22]. Both datasets showed positive enrichment with Δ MITF-X6 cells (Supplementary
373 Fig. 4d). Importantly, we found that in the zebrafish data the ECM signature was specifically
374 induced in the single cell cluster from MITF-low superficial tumours (representing minimal
375 residual disease) compared to other single cell clusters from MITF-high melanomas
376 (Supplementary Fig. 4e). These results suggest that the loss of MITF is an important mediator of
377 MRD in melanoma and that MRD cells alter their extracellular environment.

378 **MITF KO affects proliferation and migration**

379 The rheostat model predicts that MITF loss should reduce cell proliferation but increase migration
380 potential of melanoma cells. We therefore measured proliferative ability of the MITF-KO cells
381 using different methods. First, we characterized cell confluence over time using IncuCyte live cell
382 imaging. This showed that both of the MITF-KO cells had a two-fold reduction in proliferation
383 rate as compared to the EV-SkMel28 cells (Fig. 7a). Second, a BrdU incorporation assay showed
384 that Δ MITF-X6 and Δ MITF-X2 cells had fewer (20%-25%) BrdU positive cells than the EV-
385 SkMel28 (45%), suggesting that there are fewer actively proliferating cells in the MITF-KO cells
386 compared to the control cells (Fig. 7b).

387 Previous analysis has shown that knocking down MITF leads to increased migration ability of
388 melanoma cells [14, 43-47]. We therefore characterized the migration ability of our knockout cells.
389 Strikingly, the wound scratch assay showed that the MITF-KO cells failed to close the wound in
390 24 hours whereas the EV-SkMel28 cells were able to close the wound within that time (Fig. 7c,
391 d). To test whether the effects on migration were due to the long-term depletion of MITF in the
392 MITF-KO cells, we performed the wound scratch assay upon MITF KD in the miR-MITF cells.
393 Upon MITF-KD, we observed a minor decrease in the ability of the cells to close the wound when
394 compared to the control miR-NTC cells (Fig. 7e, f). Next, we assessed the invasion ability of the
395 MITF-KO cells using transwell chambers coated with matrigel. Interestingly, we found that MITF-
396 KO cells displayed a severe reduction in invasion ability compared to the EV-SkMel28 cells (Fig.
397 7g,h). Taken together our data suggests that knocking down MITF negatively influences both cell
398 proliferation and migration ability of the cells.

399

400 **Discussion**

401 In this study, we have shown that MITF directly binds to and represses the expression of ECM,
402 EMT and focal adhesion genes in human melanoma cells. We first observed this using our MITF-
403 KO cells but verified our observations in other cell models by overexpression and knockdown of
404 MITF using siRNA and inducible microRNA against MITF (*miR-MITF*) in melanoma cells.
405 Importantly, we showed that MITF_{low} tumours in humans as well as in zebrafish have increased
406 expression of ECM and focal adhesion genes. Together, our findings indicate that MITF acts as a
407 transcriptional repressor of genes involved in ECM and focal adhesion.

408 A role for MITF as a repressor has been described in both melanoma cells and immune cells [47,
409 48]. In myeloid precursor cells, MITF was shown to interact with EOS to recruit co-repressors to
410 target genes [48] whereas in melanoma cells MITF bound directly to an E-box located in an
411 enhancer of the *c-JUN* gene, leading to reduced expression of the gene [19]. Our results show that
412 many of the genes whose expression is repressed by MITF are bound by MITF and contain E-
413 boxes in their regulatory regions (Fig. 2i). This suggests that direct binding of MITF is involved
414 in their repression. Since we observed differences in secondary motifs between the repressed and
415 activated genes, different co-factors may be involved in mediating the repression in each case.

416 The MITF-dependent rheostat model which explains the phenotype switching of melanoma cells
417 proposes that high MITF activity dictates proliferation whereas low MITF activity results in an
418 invasive phenotype [14]. Consistent with the rheostat model, proliferation was severely reduced
419 upon MITF knockout (Fig. 7a, b). Unexpectedly, however, the migrative and invasive properties
420 were reduced in both MITF-KO and MITF KD (*miR-MITF*) cells (Fig. 7c-h).
421 Immunohistochemistry and single-cell sequencing studies of melanoma tumours have shown the
422 existence of cells with low or no MITF expression [20-22]. The involvement of MITF in migration
423 has mostly been characterized using knockdown studies in melanoma cell lines using either siRNA
424 or shRNA and by using Matrigel-coated Boyden chambers [14, 44-46]; in these studies knocking
425 down MITF resulted in increased migration properties. Cheli et al. (2012) [44] also injected
426 melanoma cells into the tail vein of mice and showed increased formation of metastasis when
427 MITF was knocked down. Two different pathways involved in migration were shown to be
428 regulated by MITF; DIAPH1, a gene implicated in actin polymerization [14], and the guanosine
429 monophosphate reductase (GMPR) gene encoding an enzyme involved in regulating intracellular

430 GTP levels [46]. Surprisingly, however, more recent studies by Falletta et al. [47] and Vlckova et
431 al. [49] failed to observe any effects on migratory/invasive properties upon MITF knockdown
432 using the same cell lines as were used in the previous studies. Interestingly, knocking down
433 SMAD7 in melanoma cells resulted in a dual invasive-proliferative phenotype without affecting
434 MITF expression [50] Thus, the idea has been proposed that two different modes of invasion
435 operate in melanoma; one with low MITF levels and no proliferation and another with high MITF
436 levels where proliferation and invasion can take place simultaneously [10]. Transcriptomic
437 analysis displayed loss of expression of genes involved in proliferation, whereas invasive genes
438 linked to AP1 and TEAD transcription factors was increased in the MITF-KO cells (Fig. 2c, d);
439 the expression of TEAD and AP1 was not changed in our models. Thus, losing MITF alone likely
440 does not lead to cells with invasive ability and something else is needed for gaining this property.

441 We identified MITF as an important transcriptional regulator of ECM and focal adhesion genes.
442 Interestingly, we observed increased expression of TGF β 1, an important regulator of ECM-related
443 genes in the MITF-KO cells and MITF $^{\text{low}}$ melanoma tumours (Fig. 4b, c). It has been shown that
444 TGF β 1 suppresses the expression of MITF in melanoblasts, thereby inhibiting differentiation into
445 melanocytes [51]. This autocrine signalling of TGF β is retained in melanoma cells [52]. According
446 to Hoek et al. (2006) [15], the MITF $^{\text{low}}$ transcriptional state is dictated by TGF β 1 signalling, which
447 can suppress MITF expression resulting in an invasive and drug resistant phenotype [15, 17]. This
448 suggests that the genes induced upon MITF loss are partly due to induction of TGF β signalling.
449 However, our results suggest that MITF is directly involved in mediating the observed effects on
450 the expression of ECM and focal adhesion genes. In addition, the relationship between MITF and
451 the expression of TGF β 1 is not clear. Our observations suggest that knocking down MITF leads
452 to a major increase in TGF β 1 mRNA expression in the melanoma cells, suggesting that the effects
453 are cell-autonomous and driven by MITF. However, there are no MITF-peaks in or near the TGF β 1
454 gene in melanoma cells, leading us to hypothesise that the effects must be mediated through a
455 hitherto unknown intermediary.

456 Enhanced expression and phosphorylation of paxillin has been linked to therapy resistance in other
457 cancer cell types, such as lung cancer [29]. In melanoma, an inverse relation between BRAF
458 inhibition and the expression of ECM genes has been described as a marker of de-differentiated
459 drug resistant cells [42]. Our data showed that the number of paxillin-positive dots was induced in

460 both MITF-KO and miR-MITF cells as compared to controls (Supplementary Fig. 3a, b, f, g h)
461 and paxillin expression was inversely correlated with MITF expression in melanoma tissues and
462 cell lines (Supplementary Fig. 3c-e). Interestingly, we found that treating cells devoid of MITF
463 with a BRAF inhibitor resulted in an increase in formation of focal adhesions (Fig. 6a-f). It is
464 worth mentioning that an increase in the number of focal adhesion was restricted to SkMel28
465 melanoma cells in which MITF protein level was reduced upon vemurafenib treatment (Fig. 6d, f,
466 Supplementary Fig.4a, b). However, we did not observe a significant increase in the number of
467 focal adhesion in the 501Mel cells that gained MITF upon vemurafenib treatment (Fig.6 c, e,
468 Supplementary Fig.4a, b). This highlights the role of MITF as a mediator of focal adhesion
469 formation. However how the synergistic effects of MITF and vemurafenib on focal adhesion
470 formation are mediated is unclear. One way to explain an increase in the formation of focal
471 adhesions is that it is due to integrin clustering that is essential for the activation of focal adhesion
472 pathways [53, 54]. We observed an increase in the expression of several integrins including *ITGA1*,
473 *ITGA2*, *ITGA6*, *ITGA10* and *ITGB3* in the MITF-KO cells, as well as in the siMITF 501Mel and
474 SkMel28 cell lines (Supplementary Table 5). In addition to this, the FLT1 receptor tyrosine kinase
475 (VEGFR1) and its ligand VEGFA, which activate a pathway that phosphorylates FAK, a key
476 mediator of focal adhesions, were increased in expression. Interestingly, both *FLT1* and *VEGFA*
477 have MITF binding sites in their promoters and MITF has previously been shown to regulate
478 *VEGFA* expression [55]. Exposure of melanoma cells to BRAF and MEK inhibitors has been
479 shown to slow growth and result in increased expression of *NGFR* and ECM and focal adhesion
480 genes [42]. Consistent with these findings, we observed an up to 200-fold induction of the *NGFR*
481 transcript in the MITF-KO cells compared to EV-SkMel28 cells, and we identified an MITF peak
482 in the 3'UTR of *NGFR* in both the MITF CUT&RUN ChIP-Seq data from SkMel28 cells and in
483 the COLO829 cells [56]; expression of the melanocyte differentiation marker and MITF target
484 *MLANA* was 50-80 fold reduced in the MITF-KO cells (Supplementary Fig. 5a-d) Thus, it is
485 possible that MITF affects focal adhesions by both directly regulating expression of genes involved
486 in the process and indirectly by activating the expression of signalling processes involved.
487 Upon MITF loss, an EMT-like process has been described to be involved in driving drug resistance
488 in melanoma [39, 40]. In addition, the degree of plasticity between EMT and mesenchymal to
489 epithelial transition (MET) has been suggested to lead to high metastatic potential as well as
490 therapeutic resistance [57-59]. Indeed, we observed changes in important EMT markers and

491 regulators such as *ZEB1*, E-Cadherin, N-Cadherin, *Slug* and *TGF β 1* in the MITF-KO cells (Fig.
492 4b-e) as well as in TCGA melanoma samples. Also, the MITF-KO cells showed increased
493 expression of *SOX2*, which is important for neuronal stem cell maintenance and has been suggested
494 to be important for self-renewal of melanoma tumour cells [60, 61] (Fig. 4b). Importantly, the
495 effects of MITF on the expression of E-Cadherin, N-Cadherin and ECM genes (ITGA2 and
496 SERPINA3) is reversible (Fig. 5e-j). This suggests that MITF enables epithelial to mesenchymal
497 plasticity (EMP) that allows the formation of a hybrid state between EMT and MET to enforce the
498 aggressiveness of melanoma. The binary effects of MITF on the expression of EMT genes may be
499 the molecular mechanism that explains its rheostat activity.

500 The minimal residual disease (MRD) is a major reason for relapse in cancer. We found that
501 Δ MITF-X6 cells are positively correlated with the gene signature of a population of MRD cells in
502 melanoma tumours as determined by single-cell RNA-Seq of human PDX samples and zebrafish
503 melanoma models (Supplementary Fig. 4c-e) [21]. Interestingly, the MRD melanoma cells in
504 zebrafish express little to no MITF protein and have increased expression of ECM genes
505 (Supplementary Fig. 4e). This suggests that the induced expression of ECM genes and low
506 expression of MITF is one of the markers of MRD in melanoma. In the absence of MITF,
507 melanoma cells may become MRD cells by reshaping their extracellular matrix, enhancing their
508 attachment to the surface, thus forming quiescent cells which wait for an opportunity to change
509 their phenotype and re-emerge as proliferative melanoma cells. Since melanoma cells can mediate
510 these effects on their own, in the absence of the tumour microenvironment, this suggests that this
511 process is cell-autonomous and under the direction of MITF which instructs the cells to create their
512 own microenvironment.

513

514

515

516 **Material and methods**

517 **Cell culture, reagents and antibodies**

518 SkMel28 cells were purchased from ATCC (HTB-72) and 501Mel melanoma cells were obtained
519 from the lab of Ruth Halaban. The cells were grown in RPMI 1640 medium (#5240025, Gibco)
520 supplemented with 10% FBS (#10270-106, Gibco) at 5% CO₂ and 37°C. We made stocks of 5mM
521 FAK inhibitor (Selleckchem, PF562271) and 5mM vemurafenib (Selleckchem, S1267) in DMSO
522 and used a dilution of 1µM final concentration in cell culture media in all drug treatment
523 experiments. The following primary antibodies and their respective dilutions were used in
524 immunofluorescence (IF) and Western blot (WB) experiments: MITF (C5) mouse monoclonal
525 (Abcam, #ab12039), 1:2000 (WB), 1:200 (IF); Phospho-Paxillin (Tyr118) rabbit monoclonal (Cell
526 signalling, #2541), 1:000 (WB), 1:100 (IF); Vimentin rabbit monoclonal (Cell signalling, #3932),
527 1:100 (IF); ERK (p44/42 MAPK (Erk1/2), CST #9102) 1:1000 (WB); p-ERK (Phospho-p44/42
528 MAPK (Erk1/2) (Thr202/Tyr204) CST #9101) 1:1000 (WB); E-Cadherin (#610182, BD) 1:5000
529 (WB), N-Cadherin (#610921, BD) 1:5000 (WB); β-Actin rabbit monoclonal (Cell signalling,
530 #4970), 1:2000 (WB), 1:200 (IF); β-Actin rabbit mouse monoclonal (Millipore, #MAB1501),
531 1:20000 (WB).

532 **Generation of MITF-KO cells and validation of mutations using Sanger sequencing**

533 The CRISPR/Cas9 technology was used to generate knock out mutations in the MITF gene in
534 SkMel28 cells. These cells carry the BRAF_{V600E} and p53_{L145R} mutations [62]. Guide RNAs
535 (gRNAs) were designed targeting exons 2 and 6 of MITF, both of which are common to all
536 isoforms of MITF; exon 2 encodes a conserved domain of unknown function as well as a
537 phosphorylation site, whereas exon 6 encodes the DNA binding domain of MITF (Fig. 1a). The
538 gRNAs used were: AGTACCACATACAGCAAGCC (Exon2-gRNA);
539 AGAGTCTGAAGCAAGAGCAC (Exon6-gRNA). The gRNAs were cloned into a gRNA
540 expression vector (Addgene plasmid #43860) using BsmBI restriction digestion. The gRNA
541 vectors were transfected into SkMel28 melanoma cells together with a Cas9 vector (a gift from
542 Keith Joung) using the Fugene® HD transfection reagent (#E2312 from Promega) at a 1:2.8 ratio
543 of DNA:Fugene. After transfection, the cells were cultured for 3 days in the presence of 3µg/ml
544 Blasticidin S (Sigma, stock 2.5mg/ml) for selection and then serially diluted to generate single cell
545 clones. As a result, we obtained the ΔMITF-X2 cell line from targeting exon 2 of MITF and the

546 Δ MITF-X6 cell line from targeting exon 6. The respective control cell line, termed EV-SKmel28,
547 was generated by transfecting the cells with empty vector Cas9 plasmid.

548 Genomic DNA was isolated from the MITF knock out cell lines using the following procedures:
549 Cells (~ 2 x 10⁵) were trypsinized and spun down and the supernatant was removed. The cell pellet
550 was resuspended in 25 μ L of PBS. Then 250 μ L Tail buffer (50mM Tris pH8, 100 mM NaCl, 100
551 mM EDTA, 1% SDS) containing 2.5 μ L of Proteinase K (stock 20 mg/mL) were added to the cell
552 suspension in PBS and incubated at 56°C overnight. Then 50 μ L of 5M NaCl were added and
553 mixed on a shaker for 5 minutes and spun at full speed for 5 minutes at room temperature. The
554 supernatant was then transferred into a new tube containing 300 μ L isopropanol, mixed by
555 inversion and spun in a microfuge for 5 minutes at full speed. The resulting pellet was washed
556 with 70% ethanol and the pellets air-dried at room temperature. Finally, the dried pellets were
557 dissolved in nuclease free water for at least 2 hours at 37 °C. The appropriate regions (exons 2 or
558 6) of MITF were amplified using region-specific primers (MITF-2-Fw:
559 CGTTAGCACAGTGCCTGGTA, MITF-2-Rev: GGGACAAAGGCTGGTAAATG;
560 MITF exon6-fw: GCTTTGAAAACATGCAAGC, MITF exon6-rev:
561 GGGGATCAATTCTCCCTCTT). The amplified DNA was run on a 1,5% agarose gel, at 70V for
562 60 minutes. The bands were cut out of the gel and extracted using Nucleospin Gel and PCR
563 Cleanup Kit (#740609.50 from Macherey Nagel). The purified DNA fragments were cloned into
564 the puc19 plasmid and 10 colonies were picked for each cell line, DNA isolated and sequenced
565 using Sanger sequencing. Whole genome sequencing was performed using total genomic DNA
566 isolated from the EV-SkMel28 as MITF-KO cells using the genomic isolation procedure above.
567 Sequencing results were analysed using R package CrispRVariant [63] in Bioconductor to quantify
568 mutations introduced in the MITF-KO cell lines.

569 **Generation of plasmids for stable doxycycline-inducible MITF knock down and
570 overexpression cell lines**

571 The piggy-bac transposon system was used to generate stable inducible MITF knockdown cell
572 lines. The inducible promoter is a Tetracyclin-On system, which is called reverse tetracycline-
573 transactivator (rtTA). This system allows the regulation of expression by adding tetracycline or
574 doxycycline to the media. We used a piggy-bac transposase vector from Dr. Kazuhiro Murakami
575 (Hokkaido University) [64]. The microRNAs targeting MITF (Table 1) were cloned into the piggy-

576 bac vector downstream of a tetracycline response element (TRE). First, we used BLOCK-iT RNAi
577 designer to design microRNAs targeting MITF (exons 2 and 8 of MITF), including a terminal loop
578 and incomplete sense targeting sequences that are required for the formation of stem loop
579 structures (Table 1). To obtain short double-stranded DNAs with matching BsgI overhangs, the
580 mature miRNAs were denatured at 95°C, then allowed to cool slowly in a water bath for annealing.
581 Then the piggy-bac vector pPBhCMV1-miR(BsgI)-pA-3 was digested with BsgI (#R05559S,
582 NEB) and the digested vector excised from a DNA agarose gel and the DNA purified. Following
583 this, the annealed primers and purified digested vector were ligated at a 15:1 insert to backbone
584 molar ratio using Instant Sticky-end Ligase Master Mix (M0370S, NEB). A non-targeting control
585 (miR-NTC) was used as a negative control. The ligation products were then transformed to high-
586 competent cells, clones isolated and plasmid DNA sequenced to verify the successful ligation.
587 For the generation of piggy-bac plasmids containing MITF-M-FLAG-HA and control with only
588 FLAG, we amplified MITF-M cDNA and FLAG sequence from the p3XFLAG-CMVTM-14
589 plasmid expressing mouse Mitf-M using the primers listed in Table 2 (pB-MITF-M-FLAG-HA),
590 and then introduced it into the piggy-bac vector by restriction digestion with *EcoR* I and *Spe* I.
591 **Generation of stable doxycycline-inducible MITF knock down and overexpression cell lines**
592 For generation of stable cells carrying the inducible miR-MITF constructs, 501Mel and SkMel28
593 cell lines were seeded at 70%-80% confluence and then transfected with the following mixture of
594 constructs: py-CAG-pBase, a vector transiently expressing the piggy-bac transposase, MITF
595 targeting plasmids pBhCMV1-miR(MITF-X2)-pA and pPBhCMV1-miR(MITF-X8)-pA
596 encoding miRNA sequences targeting exons 2 and 8 of MITF, and pPB-CAG-rtTA-IRES-Neo, a
597 plasmid which confers neomycin resistance and rtTA. The mixture was in the ratio of 10:5:5:1,
598 respectively. To generate the miR-NTC controls, 501Mel and SkMel28 cells were transfected at a
599 ratio of 10:10:1 with pA-CAG-pBase, pPBhCMV_1-miR(NTC)-pA encoding a non-targeting
600 miRNA and pPB-CAGrtTA-IRES-Neo. For generation of inducible A375P cells carrying the pB-
601 MITF-M-FLAG or a pB-FLAG empty vector, we transfected 70-80% confluent cells with the
602 following plasmids: py-CAG-pBase, pB-MITF-M-FLAG-HA or pB-FLAG-HA and pPB-CAG-
603 rtTA-IRES-Neo at a 10:10:1 ratio. After 48 hours of transfection, cell lines were subjected to G418
604 treatment for two weeks (0.5mg/ml, #10131-035, GIBCO) to select for transfected cells.

605 **RNA isolation, cDNA synthesis and RT-qPCR**

606 Cells were grown in 6-well culture dishes to 70-80% confluence and RNA was isolated with
607 TRIzol reagent (#15596-026, Ambion), DNase I treated using the RNase free DNase kit (#79254,
608 Qiagen) and re-purified with the RNeasy Mini kit (#74204, Qiagen). The cDNA was generated
609 using High-Capacity cDNA Reverse Transcription Kit (#4368814, Applied Biosystems) using 1
610 µg of RNA. Primers were designed using NCBI primer blast (Table 3) and qRT-PCR was
611 performed using SensiFAST™ SYBR Lo-ROX Kit (#BIO-94020, Bioline) on the BIO-RAD
612 CFX38 Real time PCR machine. The final primer concentration was 0.1µM and 2 ng of cDNA
613 were used per reaction. Quantitative real-time PCR reactions were performed in triplicates and
614 relative gene expression was calculated using the D- $\Delta\Delta Ct$ method [65]. The geometric mean of β -
615 actin and human ribosomal protein lateral stalk subunit P0 (RPLP0) was used to normalize gene
616 expression of the target genes. Standard curves were made, and the efficiency calculated using the
617 formula $E=10[-1/\text{slope}]$.

618 **Immunostaining**

619 Cells were seeded on 8-well chamber slides (#354108 from Falcon), grown to 70% confluence
620 and then fixed with 4% paraformaldehyde (PFA) diluted in 1xPBS for 15 minutes. After washing
621 3 times with PBS and blocking with 150 µL blocking buffer (1x PBS + 5% Normal goat serum +
622 0.3% Triton-X100) for 1 hour at room temperature, cells were stained overnight at 4°C with the
623 appropriate primary antibodies diluted in antibody staining buffer (1xPBS + 1% BSA + 0.3%
624 Triton-X). The wells were washed 3 times with PBS and stained for 1 hour at room temperature
625 with the appropriate secondary antibodies, diluted in antibody staining buffer. The wells were
626 washed once with PBS, followed by DAPI staining at a final concentration of 0.5 µg/ml in 1x PBS
627 (1:5000, #D-1306, Life Technologies) and 2 additional washes with PBS. Subsequently, wells
628 were mounted with Fluoromount-G (Ref 00-495802, ThermoFisher Scientific) and covered with
629 a cover slide. Slides were stored at 4°C in the dark.

630 **BrdU assay and FACS analysis**

631 Cells were grown on 6-well plates overnight and treated with a final concentration of 10 mM BrdU
632 for 4 hours. The cells were trypsinized and washed with ice cold PBS and then fixed with 70%
633 ethanol overnight. Next, the cells were centrifuged at 500g for 10 minutes and then permeabilized
634 with 2N HCl/Triton X-100 for 30 minutes followed by neutralization with 0.1 M Na2B4O7.10 H2.

635 Cells were analysed on a FACS machine (Attune NxT, Thermo fisher scientific) and data were
636 analysed using FlowJo software.

637 **IncuCyte live cell imaging**

638 Cells were seeded onto 96-well plates in triplicates supplemented with 200 μ L medium with 10%
639 FBS at a density of 2,000 cells per well. Images were recorded with the IncuCyte system at 2 hour
640 intervals for a 4-day period. Images were taken with 10x magnification and four images were
641 collected per well. Collected images were then analysed using the IncuCyte software by measuring
642 cell confluence. Relative confluence was calculated by dividing the confluence at the subsequent
643 hours by the confluence of the initial hour. In addition to this, doubling time was calculated with
644 the following formula: Duration x log(2)/log(FinalConfluency) – log(InitialConfluency).

645 **Wound scratch and transwell invasion assay**

646 2 x 10⁴ cells were seeded per well of 96-well plate (Nunclon delta surface, Thermo Scientific,
647 #167008) to reach confluent monolayer. Scratches were made with Woundmaker 96 (Essen,
648 Bioscience) and imaging was performed with IncuCyte Live Cell Imaging System (Essen,
649 Bioscience). The recorded images of the scratches were analysed with IncuCyte software to
650 quantify gap closure. For invasion assay transwell chambers with 8 μ m pore size (Thermo
651 Scientific NuncTM) were coated with matrigel matrix from corning (Thermo Scientific). Then cell
652 suspension of 1x10⁵/300 μ l in RPMI 1640 supplemented with 0.1% FBS was added to the matrigel
653 coated upper chamber and the medium containing 10% FBS was added to the lower chamber as a
654 chemoattractant. Cell were allowed to invade for 48 hours after which the cells which migrated to
655 the other side of the membrane were fixed with 4% PFA and stained with DAPI. Images were
656 acquired using QImaging (Pecon, software Micro-Manager 1.4.22) with 10x magnification, and
657 the cells were counted using Image J software.

658 **RNA sequencing and data analysis**

659 We isolated total RNA as described above from EV-SkMel28 and Δ MITF-X6 cell lines and
660 assessed RNA quality using Bioanalyzer. An RNA integrity (RIN) score above 8 was used for
661 generating RNA libraries. The mRNA was isolated from total 800 ng RNA using NEBNext Poly(A)
662 mRNA isolation module (E7490, NEB). The RNA was fragmented at 94 °C for 16 minutes in a
663 thermal cycler. Purified fragmented mRNA was then used to generate cDNA libraries for

664 sequencing using NEBNext Ultra Directional RNA library Kit (E7420S, NEB) following the
665 protocol provided by the manufacturer with these modifications: Adaptors were freshly diluted
666 10X before use. A total of 15 PCR cycles were used to amplify the library. A total of 8 RNA
667 libraries were prepared with 4 biological replicates for each cell line including EV-SkMel28 and
668 Δ MITF-X6 cells. Purified RNA sequencing libraries were paired-end sequenced with 30 million
669 reads per sample. Transcript abundance was quantified with Kallisto [66] and index was built with
670 the GRCh38 reference transcriptome. Differential expression analysis was performed using Sleuth
671 [67] to assess differentially expressed genes between EV-SkMel28 versus Δ MITF-X6. Both
672 likelihood ratio test (LRT) and wald test were used to model differential expression between
673 Δ MITF-X6 and EV-SkMel28 cells. LRT test is more stringent when estimating differentially
674 expressed genes (DEGs), whereas Wald test gives an estimate for log fold change. Therefore,
675 results from LRT test was intersected with Wald test to get significant DEGs with fold change
676 included. We selected differentially expressed genes with the cut off of $|\log_2(\text{foldchange})| \geq 1$ and
677 $\text{qval} < 0.05$. Functional enrichment analyses (GO terms and KEGG pathway) were performed using
678 Cluster profiler in the Bioconductor R package using Benjamin-Hochberg test with adjusted
679 $\text{pvalue} < 0.05$ as a cut-off [68].

680 Gene set enrichment analysis was performed using GSEA software from the Broad Institute [69].
681 GSEA software was employed with pre-ranked options and gene lists were provided manually to
682 assess enrichment. Differentially expressed genes were ranked combining p-value with log fold
683 change for the input of set enrichment analysis.

684 **Analysis of human melanoma tumor samples from the Cancer Genome Atlas (TCGA)**

685 The quantified RNA-Seq data from 473 melanoma samples were extracted from the Cancer
686 Genome Atlas database using the TCGAbiolinks package in R Bionconductor [70]. The lists of
687 MITF_{low} and MITF_{high} samples were generated by sorting the samples based on MITF expression.
688 The 30 tumour samples with the highest MITF expression and 30 tumour samples with the lowest
689 MITF expression were selected for the downstream differential expression analysis built in the
690 TCGAbiolinks package. Principal Component analysis (PCA) plots were generated using
691 normalized count expression of the 200 most significantly differentially expressed genes between
692 MITF_{low} and MITF_{high} samples and EV-SkMel28 and Δ MITF-X6 cells.

693 **CUT&RUN**

694 To identify direct MITF target genes, we performed anti-MITF Cleavage Under Targets and
695 Release Using Nuclease (CUT&RUN) sequencing in SkMel28 cell lines as described [71] with
696 minor modifications. Cells in log-phase culture (approximately 80% confluent) were harvested by
697 cell scraping (Corning), centrifuged at 600g (Eppendorf, centrifuge 5424) and washed twice in
698 calcium-free wash-buffer (20 mM HEPES, pH7.5, 150 mM NaCl, 0.5 mM spermidine and
699 protease inhibitor cocktail, cOmplete Mini, EDTA-free Roche). Pre-activated Concanavalin A-
700 coated magnetic beads (Bangs Laboratories, Inc) were added to cell suspensions (200K cells) and
701 tubes were incubated at 4°C for 15 mins. Antibody buffer (wash-buffer with 2mM EDTA and 0.03%
702 digitonin) containing anti-MITF (Sigma, HPA003259) or Rabbit IgG (Millipore, 12-370) was
703 added and cells were incubated overnight at 4°C on rotation. The following day, cells were washed
704 in dig-wash buffer (wash buffer containing 0.03% digitonin) and pAG-MNase was added at a
705 concentration of 500 µg/ mL. The pAG-MNase enzyme was purified in Dr. Robert Cornell's
706 laboratory following a previously described protocol [72]. The pAG-MNase reactions were
707 quenched with 2X Stop buffer (340mM NaCl, 20mM EDTA, 4mM EGTA, 0.05% Digitonin, 100
708 µg/ mL RNase A, 50 µg/ mL Glycogen and 2 pg/ mL sonicated yeast spike-in control). Released
709 DNA fragments were Phosphatase K (1µL/mL, Thermo Fisher Scientific) treated for 1 hr at 50°C
710 and purified by phenol/chloroform-extracted and ethanol-precipitated. CUT&RUN experiments
711 were performed in parallel as positive control and fragment sizes analysed using an 2100
712 Bioanalyzer (Agilent). All CUT&RUN experiments were performed in duplicate.

713 **Library preparation and data analysis**

714 CUT&RUN libraries were prepared using the KAPA Hyper Prep Kit (Roche). Quality control
715 post-library amplification was conducted using the 2100 Bioanalyzer for fragment analysis.
716 Libraries were pooled to equimolar concentrations and sequenced with paired-end 150 bp reads
717 on an Illumina HiSeq X instrument. Paired-end FastQ files were processed through FastQC [73]
718 for quality control. Reads were trimmed using Trim Galore Version 0.6.3 (Developed by Felix
719 Krueger at the Babraham Institute) and Bowtie2 version 2.1.0 [74] was used to map the reads
720 against the hg19 genome assembly. The mapping parameters were performed as previously
721 described [72]. The accession number for the CUT&RUN sequencing data reported in this paper
722 is [GSE153020].

723 **ChIP-Seq analysis of MITF public dataset**

724 Raw FASTQ files for MITF ChIP-seq were retrieved from GEO archive under the accession
725 numbers GSE50681 and GSE61965 and subsequently mapped to hg19 using bowtie. Peaks were
726 called using MACS, input file was used as control (pval<10e-05) and wig files were generated.
727 Subsequently, wig files were converted to bedgraph using UCSC tool bigWigToBedGraph with
728 the following command line: wigToBigwig file.wig hg19.chrom.sizes output.bw -clip, the hg19,
729 chromosome size file was downloaded from the UCSC genome browser. We used R package
730 ChIPseeker [75] for annotation of ChIP-seq peaks to genes, plotting the distribution of peaks
731 around TSS and a fraction of peaks across the genome. For motif analysis, MEMEChIP [37] was
732 used by extracting DNA sequences corresponding to the peaks that were present in the induced
733 and reduced DEGs of EV-SkMel28 vs. ΔMITF-X6 cells.

734 **Western blot analysis**

735 200 000 or 100 000 cells were seeded per well of 12 or 6 well cell culture plates overnight and
736 lysed directly with 1X Laemml buffer (2% SDS, 5% 2-mercaptoethanol, 10% glycerol, 63 mM
737 Tris-HCl, 0.0025% bromophenol blue, pH 6.8), boiled at 95 °C for 10 min and then chilled on ice
738 for 5 minutes. Lysates were spun down for 1 min at 10,000 rpm, run on 8% SDS-polyacrylamide
739 gels and transferred to 0,2 µm PVDF membranes (#88520 from Thermo Scientific). The
740 membranes were blocked with 5% bovine serum albumin (BSA) in Tris-buffered saline/0.1%
741 Tween 20 (TBS-T) for 1 hour at room temperature, and then incubated overnight (O/N) at 4°C
742 with 5% BSA in TBS-T (20 mM Tris, 150 mM NaCl, 0.05% Tween 20) and the appropriate
743 primary antibodies. Membranes were washed with TBS-T and stained for 1 hour at RT with the
744 appropriate secondary antibodies. The secondary antibodies used were the following: Anti-mouse
745 IgG(H+L) DyLight 800 conjugate (1:15000, #5257) and anti-rabbit IgG(H+L) DyLight 680
746 conjugate (1:15000, #5366) from Cell Signaling Technologies. The images were captured using
747 Odyssey CLx Imager (LICOR Biosciences).

748 **Statistical analysis**

749 All statistical tests were performed using GraphPad-Prism, one-way or two-way ANOVA was
750 performed and multiple correction was used as indicated in the figure legends.

751

752 **Acknowledgements**

753 This work was supported by grants from the Research Fund of Iceland to ES (184861 and
754 207067) and by a grant from the University of Iceland Doctoral Grants Fund to RD. EEP is
755 funded by the MRC HGU Programme (MC_UU_00007/9), European Research Council (ZF-
756 MEL-CHEMBIO-648489), and L'Oreal-Melanoma Research Alliance (401181). We thank
757 deCODE genetics for their kind assistance with RNA and whole genome sequencing.

758

759

760 **References**

761

762 1. Davies, H., et al., *Mutations of the BRAF gene in human cancer*. Nature, 2002.
763 **417**(6892): p. 949-54.

764 2. Kugel, C.H., 3rd and A.E. Aplin, *Adaptive resistance to RAF inhibitors in melanoma*.
765 Pigment Cell Melanoma Res, 2014. **27**(6): p. 1032-8.

766 3. Le Douarin, N., & Kalcheim, C, *The Migration of Neural Crest Cells*. Developmental
767 and Cell Biology Series, 1999: p. 23-59.

768 4. Le Douarin, N.M. and E. Dupin, *The "beginnings" of the neural crest*. Dev Biol, 2018.
769 **444 Suppl 1**: p. S3-S13.

770 5. Mascarenhas, J.B., et al., *PAX3 and SOX10 activate MET receptor expression in*
771 *melanoma*. Pigment Cell Melanoma Res, 2010. **23**(2): p. 225-37.

772 6. Bailey, C.M., J.A. Morrison, and P.M. Kulesa, *Melanoma revives an embryonic*
773 *migration program to promote plasticity and invasion*. Pigment Cell Melanoma Res, 2012.
774 **25**(5): p. 573-83.

775 7. Kulesa, P.M., et al., *Reprogramming metastatic melanoma cells to assume a neural crest*
776 *cell-like phenotype in an embryonic microenvironment*. Proc Natl Acad Sci U S A, 2006.
777 **103**(10): p. 3752-7.

778 8. Rambow, F., J.C. Marine, and C.R. Goding, *Melanoma plasticity and phenotypic*
779 *diversity: therapeutic barriers and opportunities*. Genes & Development, 2019. **33**(19-20): p.
780 1295-1318.

781 9. Hoek, K.S. and C.R. Goding, *Cancer stem cells versus phenotype-switching in*
782 *melanoma*. Pigment Cell Melanoma Res, 2010. **23**(6): p. 746-59.

783 10. Goding, C.R. and H. Arnheiter, *MITF-the first 25 years*. Genes & Development, 2019.
784 **33**(15-16): p. 983-1007.

785 11. Bertolotto, C., et al., *A SUMOylation-defective MITF germline mutation predisposes to*
786 *melanoma and renal carcinoma*. Nature, 2011. **480**(7375): p. 94-8.

787 12. Garraway, L.A., et al., *Integrative genomic analyses identify MITF as a lineage survival*
788 *oncogene amplified in malignant melanoma*. Nature, 2005. **436**(7047): p. 117-22.

789 13. Yokoyama, S., et al., *A novel recurrent mutation in MITF predisposes to familial and*
790 *sporadic melanoma*. Nature, 2011. **480**(7375): p. 99-U266.

791 14. Carreira, S., et al., *Mitf regulation of Dial controls melanoma proliferation and*
792 *invasiveness*. *Genes Dev*, 2006. **20**(24): p. 3426-39.

793 15. Hoek, K.S., et al., *Metastatic potential of melanomas defined by specific gene expression*
794 *profiles with no BRAF signature*. *Pigment Cell Res*, 2006. **19**(4): p. 290-302.

795 16. Feige, E., et al., *Hypoxia-induced transcriptional repression of the melanoma-associated*
796 *oncogene MITF*. *Proc Natl Acad Sci U S A*, 2011. **108**(43): p. E924-33.

797 17. Miskolczi, Z., et al., *Collagen abundance controls melanoma phenotypes through*
798 *lineage-specific microenvironment sensing*. *Oncogene*, 2018. **37**(23): p. 3166-3182.

799 18. Widmer, D.S., et al., *Hypoxia Contributes to Melanoma Heterogeneity by Triggering*
800 *HIF1 alpha-Dependent Phenotype Switching*. *Journal of Investigative Dermatology*, 2013.
801 **133**(10): p. 2436-2443.

802 19. Riesenbergs, S., et al., *MITF and c-Jun antagonism interconnects melanoma*
803 *dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment*.
804 *Nature Communications*, 2015. **6**.

805 20. Goodall, J., et al., *Brn-2 represses microphthalmia-associated transcription factor*
806 *expression and marks a distinct subpopulation of microphthalmia-associated transcription*
807 *factor-negative melanoma cells*. *Cancer Res*, 2008. **68**(19): p. 7788-94.

808 21. Rambow, F., et al., *Toward Minimal Residual Disease-Directed Therapy in Melanoma*.
809 *Cell*, 2018. **174**(4): p. 843-855 e19.

810 22. Travnickova, J., et al., *Zebrafish MITF-Low Melanoma Subtype Models Reveal*
811 *Transcriptional Subclusters and MITF-Independent Residual Disease*. *Cancer Res*, 2019. **79**(22):
812 p. 5769-5784.

813 23. Frey, K., et al., *Different patterns of fibronectin and tenascin-C splice variants*
814 *expression in primary and metastatic melanoma lesions*. *Experimental Dermatology*, 2011.
815 **20**(8): p. 685-688.

816 24. Mitra, S.K., D.A. Hanson, and D.D. Schlaepfer, *Focal adhesion kinase: In command and*
817 *control of cell motility*. *Nature Reviews Molecular Cell Biology*, 2005. **6**(1): p. 56-68.

818 25. Geiger, B., et al., *Transmembrane crosstalk between the extracellular matrix--*
819 *cytoskeleton crosstalk*. *Nat Rev Mol Cell Biol*, 2001. **2**(11): p. 793-805.

820 26. Playford, M.P. and M.D. Schaller, *The interplay between Src and integrins in normal and*
821 *tumor biology*. *Oncogene*, 2004. **23**(48): p. 7928-7946.

822 27. Schlaepfer, D.D., C.R. Hauck, and D.J. Sieg, *Signaling through focal adhesion kinase*.
823 Prog Biophys Mol Biol, 1999. **71**(3-4): p. 435-78.

824 28. Deakin, N.O. and C.E. Turner, *Paxillin comes of age*. J Cell Sci, 2008. **121**(Pt 15): p.
825 2435-44.

826 29. Wu, D.W., et al., *Paxillin confers resistance to tyrosine kinase inhibitors in EGFR-*
827 *mutant lung cancers via modulating BIM and Mcl-1 protein stability*. Oncogene, 2016. **35**(5): p.
828 621-630.

829 30. Sen, A., et al., *Paxillin Regulates Androgen- and Epidermal Growth Factor-induced*
830 *MAPK Signaling and Cell Proliferation in Prostate Cancer Cells*. Journal of Biological
831 Chemistry, 2010. **285**(37): p. 28787-28795.

832 31. Ishibe, S., et al., *Phosphorylation-dependent paxillin-ERK association mediates*
833 *hepatocyte growth factor-stimulated epithelial morphogenesis*. Molecular Cell, 2003. **12**(5): p.
834 1275-1285.

835 32. Sen, A., et al., *Paxillin mediates extranuclear and intranuclear signaling in prostate*
836 *cancer proliferation*. Journal of Clinical Investigation, 2012. **122**(7): p. 2469-2481.

837 33. Hirata, E., et al., *Intravital Imaging Reveals How BRAF Inhibition Generates Drug-*
838 *Tolerant Microenvironments with High Integrin beta 1/FAK Signaling*. Cancer Cell, 2015. **27**(4):
839 p. 574-588.

840 34. Fock, V., et al., *Subcellular localization and stability of MITF are modulated by the*
841 *bHLH-Zip domain*. Pigment Cell Melanoma Res, 2018.

842 35. Hoek, K.S., et al., *In vivo switching of human melanoma cells between proliferative and*
843 *invasive states*. Cancer Res, 2008. **68**(3): p. 650-6.

844 36. Verfaillie, A., et al., *Decoding the regulatory landscape of melanoma reveals TEADS as*
845 *regulators of the invasive cell state*. Nature Communications, 2015. **6**.

846 37. Ma, W.X., W.S. Noble, and T.L. Bailey, *Motif-based analysis of large nucleotide data*
847 *sets using MEME-ChIP*. Nature Protocols, 2014. **9**(6): p. 1428-1450.

848 38. Laurette, P., et al., *Transcription factor MITF and remodeller BRG1 define chromatin*
849 *organisation at regulatory elements in melanoma cells*. Elife, 2015. **4**.

850 39. Denecker, G., et al., *Identification of a ZEB2-MITF-ZEB1 transcriptional network that*
851 *controls melanogenesis and melanoma progression*. Cell Death Differ, 2014. **21**(8): p. 1250-61.

852 40. Caramel, J., et al., *A switch in the expression of embryonic EMT-inducers drives the*
853 *development of malignant melanoma*. *Cancer Cell*, 2013. **24**(4): p. 466-80.

854 41. Lister, J.A., et al., *A conditional zebrafish MITF mutation reveals MITF levels are*
855 *critical for melanoma promotion vs. regression in vivo*. *J Invest Dermatol*, 2014. **134**(1): p. 133-
856 40.

857 42. Fallahi-Sichani, M., et al., *Adaptive resistance of melanoma cells to RAF inhibition via*
858 *reversible induction of a slowly dividing de-differentiated state*. *Molecular Systems Biology*,
859 2017. **13**(1).

860 43. Giuliano, S., et al., *Microphthalmia-associated transcription factor controls the DNA*
861 *damage response and a lineage-specific senescence program in melanomas*. *Cancer Res*, 2010.
862 **70**(9): p. 3813-22.

863 44. Cheli, Y., et al., *Hypoxia and MITF control metastatic behaviour in mouse and human*
864 *melanoma cells*. *Oncogene*, 2012. **31**(19): p. 2461-70.

865 45. Javelaud, D., et al., *GLI2 and M-MITF transcription factors control exclusive gene*
866 *expression programs and inversely regulate invasion in human melanoma cells*. *Pigment Cell*
867 *Melanoma Res*, 2011. **24**(5): p. 932-43.

868 46. Bianchi-Smiraglia, A., et al., *Microphthalmia-associated transcription factor suppresses*
869 *invasion by reducing intracellular GTP pools*. *Oncogene*, 2017. **36**(1): p. 84-96.

870 47. Falletta, P., et al., *Translation reprogramming is an evolutionarily conserved driver of*
871 *phenotypic plasticity and therapeutic resistance in melanoma*. *Genes & Development*, 2017.
872 **31**(1): p. 18-33.

873 48. Hu, R., et al., *Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in*
874 *committed myeloid progenitors*. *Molecular and Cellular Biology*, 2007. **27**(11): p. 4018-4027.

875 49. Vlckova, K., et al., *Inducibly decreased MITF levels do not affect proliferation and*
876 *phenotype switching but reduce differentiation of melanoma cells*. *J Cell Mol Med*, 2018. **22**(4):
877 p. 2240-2251.

878 50. Tuncer, E., et al., *SMAD signaling promotes melanoma metastasis independently of*
879 *phenotype switching*. *Journal of Clinical Investigation*, 2019. **129**(7): p. 2702-2716.

880 51. Nishimura, E.K., et al., *Key Roles for Transforming Growth Factor beta in Melanocyte*
881 *Stem Cell Maintenance*. *Cell Stem Cell*, 2010. **6**(2): p. 130-140.

882 52. Javelaud, D., V.I. Alexaki, and A. Mauviel, *Transforming growth factor-beta in*
883 *cutaneous melanoma*. *Pigment Cell Melanoma Res*, 2008. **21**(2): p. 123-32.

884 53. Harburger, D.S. and D.A. Calderwood, *Integrin signalling at a glance*. *J Cell Sci*, 2009.
885 **122**(Pt 2): p. 159-63.

886 54. Humphries, J.D., A. Byron, and M.J. Humphries, *Integrin ligands at a glance*. *Journal of*
887 *Cell Science*, 2006. **119**(19): p. 3901-3903.

888 55. Louphrasitthiphol, P., et al., *MITF controls the TCA cycle to modulate the melanoma*
889 *hypoxia response*. *Pigment Cell & Melanoma Research*, 2019. **32**(6): p. 792-808.

890 56. Webster, D.E., et al., *Enhancer-targeted genome editing selectively blocks innate*
891 *resistance to oncokinase inhibition*. *Genome Research*, 2014. **24**(5): p. 751-760.

892 57. Stylianou, N., et al., *Correction: A molecular portrait of epithelial-mesenchymal*
893 *plasticity in prostate cancer associated with clinical outcome*. *Oncogene*, 2019. **38**(13): p. 2436.

894 58. Pastushenko, I., et al., *Identification of the tumour transition states occurring during*
895 *EMT*. *Nature*, 2018. **556**(7702): p. 463-468.

896 59. Thompson, E.W. and S.H. Nagaraj, *Transition states that allow cancer to spread*. *Nature*,
897 2018. **556**(7702): p. 442-+.

898 60. Taranova, O.V., et al., *SOX2 is a dose-dependent regulator of retinal neural progenitor*
899 *competence*. *Genes & Development*, 2006. **20**(9): p. 1187-1202.

900 61. Santini, R., et al., *SOX2 regulates self-renewal and tumorigenicity of human melanoma-*
901 *initiating cells*. *Oncogene*, 2014. **33**(38): p. 4697-708.

902 62. Leroy, B., et al., *Analysis of TP53 mutation status in human cancer cell lines: a*
903 *reassessment*. *Hum Mutat*, 2014. **35**(6): p. 756-65.

904 63. Lindsay, H., et al., *CrispRVariants charts the mutation spectrum of genome engineering*
905 *experiments*. *Nature Biotechnology*, 2016. **34**(7): p. 701-+.

906 64. Magnusdottir, E., et al., *A tripartite transcription factor network regulates primordial*
907 *germ cell specification in mice*. *Nat Cell Biol*, 2013. **15**(8): p. 905-15.

908 65. Livak, K.J. and T.D. Schmittgen, *Analysis of relative gene expression data using real-*
909 *time quantitative PCR and the 2(T)(-Delta Delta C) method*. *Methods*, 2001. **25**(4): p. 402-408.

910 66. Bray, N.L., et al., *Near-optimal probabilistic RNA-seq quantification*. *Nat Biotechnol*,
911 2016. **34**(5): p. 525-7.

912 67. Pimentel, H., et al., *Differential analysis of RNA-seq incorporating quantification*
913 *uncertainty*. Nat Methods, 2017. **14**(7): p. 687-690.

914 68. Yu, G., et al., *clusterProfiler: an R package for comparing biological themes among gene*
915 *clusters*. OMICS, 2012. **16**(5): p. 284-7.

916 69. Subramanian, A., et al., *Gene set enrichment analysis: a knowledge-based approach for*
917 *interpreting genome-wide expression profiles*. Proc Natl Acad Sci U S A, 2005. **102**(43): p.
918 15545-50.

919 70. Colaprico, A., et al., *TCGAbiolinks: an R/Bioconductor package for integrative analysis*
920 *of TCGA data*. Nucleic Acids Res, 2016. **44**(8): p. e71.

921 71. Skene, P.J. and S. Henikoff, *An efficient targeted nuclease strategy for high-resolution*
922 *mapping of DNA binding sites*. Elife, 2017. **6**.

923 72. Meers, M.P., D. Tenenbaum, and S. Henikoff, *Peak calling by Sparse Enrichment*
924 *Analysis for CUT&RUN chromatin profiling*. Epigenetics & Chromatin, 2019. **12**.

925 73. Andrews, S. *FastQC: a quality control tool for high throughput sequence data*. 2010;
926 Available from: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>.

927 74. Langmead, B. and S.L. Salzberg, *Fast gapped-read alignment with Bowtie 2*. Nature
928 Methods, 2012. **9**(4): p. 357-U54.

929 75. Yu, G., L.G. Wang, and Q.Y. He, *ChIPseeker: an R/Bioconductor package for ChIP*
930 *peak annotation, comparison and visualization*. Bioinformatics, 2015. **31**(14): p. 2382-3.

931

932

933 **Table 1. miR sequences used for generating miR-MITF cell lines**

Name	mature miRNA	pre-miRNA sequences
	sequence	
miR-	AAATGTACTGC	F-5'-
NTC	GCGTGGAGAC	GAAATGTACTGCGCGTGGAGACGTTTGGCCACT GAUTGACGTCTCCACGCAGTACATTCA-3'
		R-5'-
		AAATGTACTGCGTGGAGACGTCAGTCAGTGGCCA AAACGTCTCCACGCGCAGTACATTTCAG-3'
miR-	AAAGGTACTGC	F- 5'-
MITF-	TTTACCTGCT	GAAAGGTACTGCTTACCTGCTGTTGGCCACTG
X2		ACTGACAGCAGGTAGCAGTACCTTCAG-3'
		R-5'-
		AAAGGTACTGCTACCTGCTGTCAGTCAGTGGCCA AAACAGCAGGTAAAGCAGTACCTTCAG-3'
miR-	TAAGATGGTTC	F-5'-
MITF-	CCTTGTCCA	GTAAGATGGTCCCTTGTCCAGTTGGCCACTG
X6		ACTGACTGGAACAAGAACCATCTTACA-3'
		R-5'-
		TAAGATGGTCTTGTCCAGTCAGTCAGTGGCCAA AACTGGAACAAGGGAACCATCTTACAG-3'

934

935

936

937

938 **Table 2. Primers used for generating MITF overexpression lines using piggybac transposon**
939 **system**

Primer name	Sequence (5'-3')
MITF-FLAG-F	taattgaattcCGGTACCAGTCGACTCTAGA
FLAG-F	taattgaattcCCACCAATGGACTACAAAGACCATGACG
FLAG-R	taattactagtCTTGTCAATCGTCATCCTTGT

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956 **Table 3. Primers used for RT-qPCR**

Target	Primer name	Sequence (5'-3')	Primer efficiency
β -Actin	b-Actin publ-F	AGGCACCAGGGCGTGAT	2,03
	b-Actin publ-R	GCCCACATAGGAATCCTCTGAC	
		CACCATTGAAATCCTGAGTGATGT	
HumanRPLP0	hARP-F		
	hARP-R	TGACCAGCCAAAGGAGAAG	1.93
MLANA	Mlana-F	TGGATACAGAGCCTTGATGGATAA	
	Mlana-R	GAGACACTTGCTGTCCCGA	1.92
MMP15	MMP15-F	CCCCTATGACCGCATTGACA	
	MMP15-R	CGCCAGTACCTGTCCTCTG	1.94
MITF	cMITF-F	ATGGAAACCAAGGTCTGCC	
	cMITF-R	GGGAAAAATACACGCTGTGAGC	1.91
CDH2	CDH2-F	TGCAAGACTGGATTTCCTGAAGA	
	CDH2-R	TGCAGTTGCTAAACTTCACATTG	1.9
CDH1	CDH1-F	AGAAAATAACGTTCTCCAGTTGCT	
	CDH1-R	TATGGGGCGTTGTCATTCA	1.89
TGFB1	TGFB1-F	GGAAATTGAGGGCTTCGCC	
	TGFB1-R	AGTGAACCCGTTGATGTCCA	2
ITGA2	ITGA2-F	CTCGGGCAAATTATAACCGGC	
	ITGA2-R	GAGCCAATCTGGTCACCTCG	2.09
NGFR	NGFR-F	TGTCTATTGCTCCATCCTGGC	
	NGFR-R	CTGTTCCACCTCTTGAAGGC	2
SERPINA3	SERPINA3-F	AAGGACCTTGACTCGCAGAC	
	SERPINA3-R	GGCATCTCCCATTGGCTTT	

957

958

959

960

961

962

963 **Figure legends**

964 **Figure 1 MITF depletion affects cell size and cell-matrix interaction**

965 (a) Schematic illustration of MITF-M isoform and gRNA targeted location at exon 2 and exon 6.
966 The epitope location for MITF C5 antibody spanning exon 4 and 5 is shown. (b, c) Mutations
967 detected in Δ MITF-X2 and Δ MITF-X6 cell lines; amino acid sequence numbering was indexed
968 relative to MITF-M. Percentage of mutations was derived from WGS analysis by counting
969 sequenced fragments aligned to the mutated regions. (d) Western blot showing the MITF band in
970 EV-SkMel28, Δ MITF-X2 and Δ MITF-X6 cell lines. (e) Immunostaining for MITF and Vimentin
971 in EV-SkMel28, Δ MITF-X2 and Δ MITF-X6 cell lines, Scale bar (10 μ m). (f, g) Phase contrast
972 microscopy and cell size quantification using Image J with at least 200 images taken for both
973 MITF-KO and EV-SkMel28 cell lines, Scale bar (10 μ m). Average cell size for each cell line is
974 indicated by dash line EV-SkMel28 cells (6,502 μ m², SEM: 460), Δ MITF-X2 (10,395 μ m²,
975 SEM: 270) and the Δ MITF-X6 (10,825 μ m², SEM: 330). (h) Bright field images of MITF-KO
976 and EV-SkMel28 cells grown on top of matrigel, Scale bar (10 μ m).

977 **Figure 2 MITF binds and represses genes of ECM and focal adhesion genes**

978 (a) Volcano plot showing 2,136 DEGs with $qval < 0.5$ among which 1,516 genes with $\log_2 FC \geq 1$ |
979 fold change in expression Δ MITF-X6 vs. EV-SkMel28 (b) GO BP analysis of DEGs 1,284
980 induced and 852 reduced between Δ MITF-X6 vs. EV-SkMel28 cells presented in dot plot;
981 adjusted pvalue is red lowest to blue highest; gene ratio is the ratio between DEGs and all genes
982 in the GO category. (c, d) Gene set enrichment analysis (GSEA) on pre-ranked DEGs of Δ MITF-
983 X6 vs. EV-SkMel28 using Verfaillie [36] proliferative and invasive gene signature showing
984 Δ MITF-X6 cells with positive enrichment for proliferative signature and negative enrichment for
985 invasive signature. (e) Distribution of MITF CUT&RUN ChIP-Seq peaks in the genome. (f) GO
986 BP analysis of MITF CUT&RUN ChIP-Seq peaks associated genes were plotted using
987 Clusterprofiler [68] in R; Induced and reduced DEGs of Δ MITF-X6 vs. EV-SkMel28 cells based
988 on MITF ChIP-seq peak presence on their gene promoter or distal region binding, and all MITF
989 peak-associated genes regardless of DEGs. (g) Venn diagram showing the overlap between
990 MITF targets identified from MITF CUT&RUN ChIP-Seq with induced, reduced, ECM and
991 focal adhesion DEGs of Δ MITF-X6 vs. EV-SkMel28 cells (h) Venn diagram displaying the
992 common overlap between MITF ChIP-Seq targets in different cell lines and differentially

993 expressed ECM and focal adhesion genes in Δ MITF-X6 vs. EV-SkMel28 cells. (i) Heatmap
994 showing the differentially expressed ECM genes in Δ MITF-X6 vs. EV-SkMel28 cells that are
995 commonly bound by MITF across different MITF ChIP-Seq data sets. Zscore converted TPM
996 value from RNA-Seq data was used for plotting. (j) Motif analysis of MITF CUT&RUN ChIP-
997 Seq targets of induced and reduced genes in Δ MITF-X6 vs. EV-SkMel28 cells.

998 **Figure 3 The ECM and focal adhesion gene signature is overrepresented upon MITF
999 depletion and in MITF_{low} human melanoma tumours**

1000 (a-d) Positive correlation of DEGs in Δ MITF-X6 vs. EV-SkMel28 cells with DEGs of siMITF
1001 vs. siCTRL in 501Mel and SkMel28 and MITF_{low} vs. MITF_{high} melanoma tumours from TCGA,
1002 and negative correlation of DEGs in pB-FLAG vs. pB-MITF-FLAG A375P cells is shown.
1003 Values used in the X and Y axis are log2 fold change in the expression of DEGs. (e) Principal
1004 component analysis (PCA) of the most significant 200 DEGs in the MITF_{low} vs. MITF_{high} and
1005 Δ MITF-X6 vs. EV-SkMel28 display similar clustering of EV-SkMel28 samples with MITF_{high}
1006 tumours and Δ MITF-X6 cells with MITF_{low} tumours. (f) GO BP analysis of induced and reduced
1007 DEGs affected by MITF KO/KD in SkMel28 and 501Mel cells, and DEGs affected by MITF
1008 overexpression in A375P cells. (g) Venn diagram displaying the overlap in the number of
1009 differentially expressed ECM genes affected by MITF and MITF CUT&RUN ChIP-Seq targets.
1010 (h) RT-qPCR showing a reduced expression of ECM genes in the stable dox-inducible MITF
1011 overexpression A375P cell line (pB-MITF-FLAG). Relative expression was calculated by
1012 normalizing to control cells expressing empty vector (pB-FLAG). Error bars indicate standard
1013 error of the mean, (* pval < 0.05) was calculated using paired t-test. (i) Heatmap displaying the
1014 expression of ECM genes in the 472 melanoma samples from TCGA (left), from which the
1015 expression of ECM genes in the top 30 MITF_{low} and 30 MITF_{high} samples with high fibroblast
1016 marker removed (right) is shown. Hierarchical clustering was applied to cluster the samples
1017 Expression of genes was converted to Z-Score from red high to blue low. (j) Percentage of
1018 mutations in the MITF_{low} and MITF_{high} tumours from TCGA.

1019 **Figure 4 EMT genes are directly regulated by MITF**

1020 (a) Scatter plot displaying the spearman correlation between MITF mRNA expression with EMT
1021 genes in the 472 melanoma tumour samples from TCGA; MITF displayed positive correlation
1022 with *CDH1* and *SNAI2* and negative correlation with *ZEB1*, *TGF β 1* and *CDH2*. (b) Differentially

1023 expressed EMT genes plotted as heatmap using the log2 fold change value of DEGs of MITF
1024 depletion in SkMel28 and 501Mel cells, MITF overexpression in A375P cells and MITF_{low&high}
1025 melanoma tumours. (c) Real-Time qPCR (RT-qPCR) evaluation of EMT genes in the EV-
1026 SkMel28, Δ MITF-X2 and Δ MITF-X6 cell lines. Fold change in the expression calculated over
1027 EV-SkMel28. Error bar represents standard error of the mean, (* pval < 0.05) was calculated
1028 using one-way ANOVA (multiple correction with Dunnett test). (d, e) Western blot analysis and
1029 quantification (Fiji Image J) of protein expression of CDH1, CDH2 and MITF in EV-SkMel28,
1030 Δ MITF-X2 and Δ MITF-X6 cell lines. β -Actin was used as loading control. * pval < 0.05 was
1031 calculated by one-way ANOVA (multiple correction with Dunnett test).

1032 **Figure 5 The effects of MITF on EMT and ECM gene expression are reversible**

1033 (a-d) Gene expression of ECM and EMT genes evaluated by RT-qPCR in EV-SkMel28 and
1034 MITF-KO cells with ectopic expression of EV-FLAG and MITF-FLAG constructs. Expression
1035 was normalised to EV-SkMel28 cells. Error bars represent standard error of the mean, * pval <
1036 0.05 was calculated by two-way ANOVA (multiple correction with Sidak test). (e) Schematic
1037 showing the dox-inducible MITF KD system. MITF expression decreases in the presence of dox
1038 (first 24h) and reverts back to baseline levels upon dox wash-off (at 72h-96h). (f) Western blot
1039 analysis for the protein expression of MITF and CDH1, and CDH2 with the presence of dox
1040 treatment 0 and 24 hours or absence of dox 72 and 96 hours. (g-j) RT-qPCR analysis of MITF
1041 target ECM genes in miR-NTC and miR-MITF SkMel28 cells, treated with dox for 24h to
1042 induce MITF-KD and after dox wash-off at 72h and 96h. Expression was normalised to miR-
1043 NTC cell lines, error bars represent standard error of the mean, * pval < 0.05 was calculated by
1044 two-way ANOVA (multiple correction with Sidak test).

1045 **Figure 6 MITF mediates formation of focal adhesion**

1046 (a-c) Immunostaining for p-PXN_{TYR118} and quantification of p-PXN_{TYR118} positive focal points in
1047 EV-SkMel28, Δ MITF-X2 and Δ MITF-X6 cell lines treated with DMSO (a, upper panel) or
1048 vemurafenib (b, lower panel). (d-g) Immunostaining for p-PXN_{TYR118} and MITF and
1049 quantification of p-PXN_{TYR118} positive focal points in miR-NTC and miR-MITF 501Mel (d, f)
1050 and SkMel28 (e, g) cells. Error bars represent standard error of the mean, * pval < 0.05 was
1051 calculated by two-way ANOVA (multiple correction with Sidak test).

1052 **Figure 7 MITF knockout affects proliferation, migration and invasion ability of melanoma
1053 cells**

1054 (a) Relative cell confluency obtained from IncuCyte live cell imaging compared to day 0 was
1055 plotted for EV-SkMel28, Δ MITF-X2 and Δ MITF-X6 cell lines; Error bars represent standard
1056 error of the mean, * p-val < 0.05 was calculated by one-way ANOVA. (b) Percentage of BrdU
1057 positive cells was assessed by flow cytometry in EV-SkMel28, Δ MITF-X2 and Δ MITF-X6 cell
1058 lines. Error bars represent standard error of the mean, * pval < 0.05 was calculated by one-way
1059 ANOVA (multiple correction with Dunnett test). (c, d) Quantification and images of wound
1060 scratch assay in EV-SkMel28, Δ MITF-X2 and Δ MITF-X6 cells over 24 hour time period Error
1061 bars represent standard error of the mean, * p-val < 0.05 was calculated by two-way ANOVA
1062 (multiple correction with Sidak test). (e, f) Quantification and images of wound scratch assay in
1063 miR-NTC and miR-MITF in SkMel28 cells over 12 hour time period. Error bars represent
1064 standard error of the mean, * p-val < 0.05 was calculated by one-way ANOVA (multiple
1065 correction with Sidak test). (g, h) Matrigel invasion assay of EV-SkMel28, Δ MITF-X2 and
1066 Δ MITF-X6 cells using transwell; Quantification of invaded cells per transwell filter. Error bars
1067 represent standard error of the mean, * pval < 0.05 was calculated by one-way ANOVA
1068 (multiple correction with Dunnett test).

1069 **Supplementary Figure 1**

1070 (a) Western blot analysis for MITF and Actin in EV-SkMel28, Δ MITF-X2 and Δ MITF-X6 cells.
1071 (b) PCR product of exon3, 4, 5 and 6 of MITF in using cDNA generated from 5'RACE
1072 experiment.

1073 **Supplementary Figure 2**

1074 (a, b) motif analysis of MITF peaks on reduced and induced DEGs in Δ MITF-X6 vs. EV-
1075 SkMel28 cells using MEMEChIP. E-value is a measure of the expected number of motifs with
1076 the same size occurring in the random database. (c) View of MITF ChIP-Seq from CUT&RUN
1077 in SkMEL28 (rep1 and rep2), MITF ChIP-seq in COLO829 cells [56], and HA-MITF ChIP-Seq
1078 in 501Mel [38] loaded in IGV genome browser indicating MITF peaks in *CDH1*, *CHD2*, *ZEB1*,
1079 *SNAI2* and *SOX2*.

1080 **Supplementary Figure 3**

1081 (a) Immunostaining for p-PXNTYR118 and quantification of p-PXNTYR118 positive focal points in
1082 EV-SkMel28, Δ MITF-X2 and Δ MITF-X6 cell lines. Error bars represents standard error of the
1083 mean, * pval < 0.05 was calculated by one-way ANOVA (multiple correction with Dunnett test)
1084 (c) Positive co-expression of MITF mRNA expression and PXN in the 473 melanoma tumour
1085 samples displayed in the scatter plot with positive pearson correlation coefficient. (d) Expression
1086 of MITF and PXN across 168 melanoma cell lines. Mutations are indicated for each cell line in
1087 colours (red:BRAF, orange:NRAS, yellow:cKIT, lime:double, green: WT, and blue: GNA11).
1088 (e) Negative correlation of MITF and PXN mRNA expression in 168 melanoma cell lines. (f-h)
1089 Immunostaining for p-PXNTYR118 and MITF; Quantification of p-PXNTYR118 positive focal points
1090 in miR-NTC and miR-MITF 501Mel and SkMel28 cells. (i) View of MITF ChIP-seq peaks in
1091 *PXN* from ChIP-Seq of CUT&RUN in SkMEL28 (rep1 and rep2), MITF ChIP-seq in COLO829
1092 cells [56], and HA-MITF ChIP-Seq in 501Mel [38] loaded in IGV genome browser.

1093 **Supplementary Figure 4**

1094 (a, b) Western blot analysis and quantification for MITF, ERK and p-ERK inEV-SkMel28,
1095 Δ MITF-X2, Δ MITF-X6 and *miR-NTC*, *miR-MITF* in SkMEL28 and 501Mel cell lines treated
1096 with DMSO or vemurafenib (1 μ M) for 24 hour. Actin was used as loading control. (c, d) GSEA
1097 analysis using DEGs of Δ MITF-X6 vs. EV-SkMel28 cells on Rambow MRD and invasive gene
1098 signatures and MRD signature from Zebrafish and *mitf_{low}* melanoma tumours. (e) Gene
1099 enrichment analysis plotted using Cluster profiler of single cell clusters obtained from melanoma
1100 tumours in zebrafish.

1101 **Supplementary Figure 5**

1102 (a,b) Gene expression of *NGFR* and *MLANA* measured by RT-qPCR in EV-SkMel28, Δ MITF-
1103 X2 and Δ MITF-X6 cell lines. Expression was normalized to EV-SkMel28 cells. Error bars
1104 represent standard error of the mean, * pval < 0.05 was calculated by one-way ANOVA
1105 (multiple correction with Dunnett test). (c, d) IGV genome browser showing MITF ChIP-Seq
1106 tracks from ChIP-Seq of CUT&RUN in SkMEL28 (rep1 and rep2), MITF ChIP-seq in
1107 COLO829 cells [56], and HA-MITF ChIP-Seq in 501Mel [38] in *NGFR* and *MLANA*.

1108

1109

Figure 1

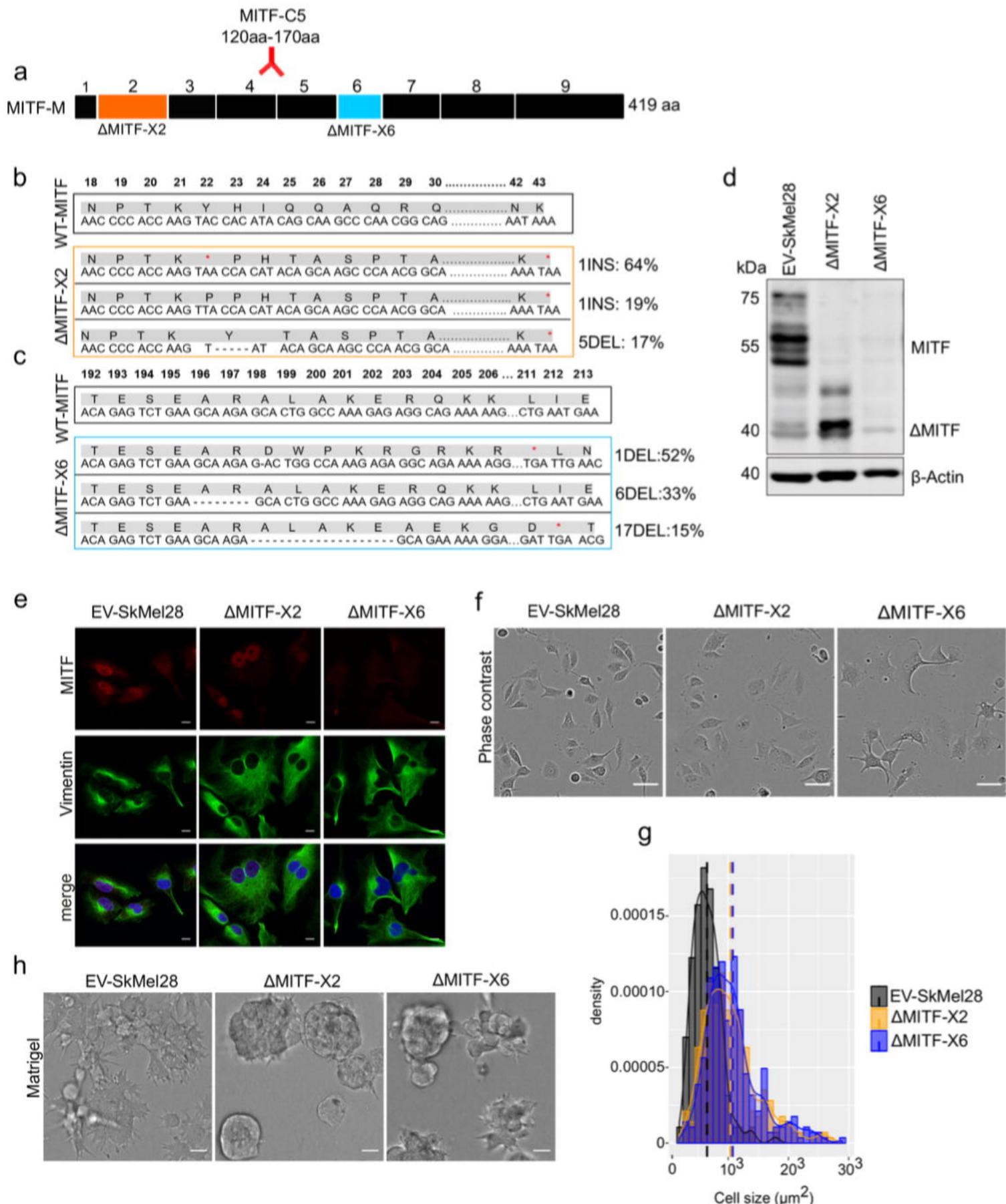


Figure 2

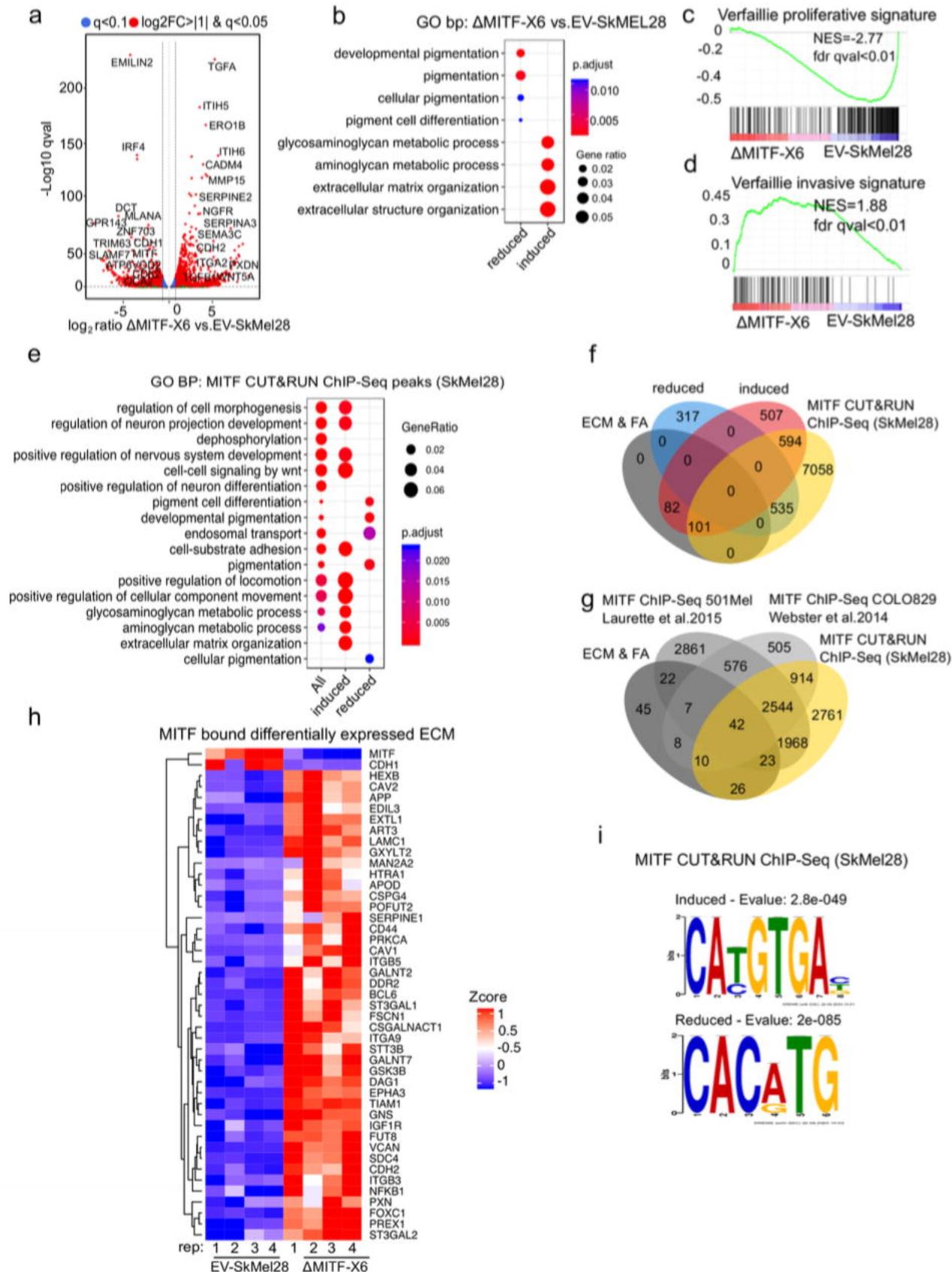


Figure 3

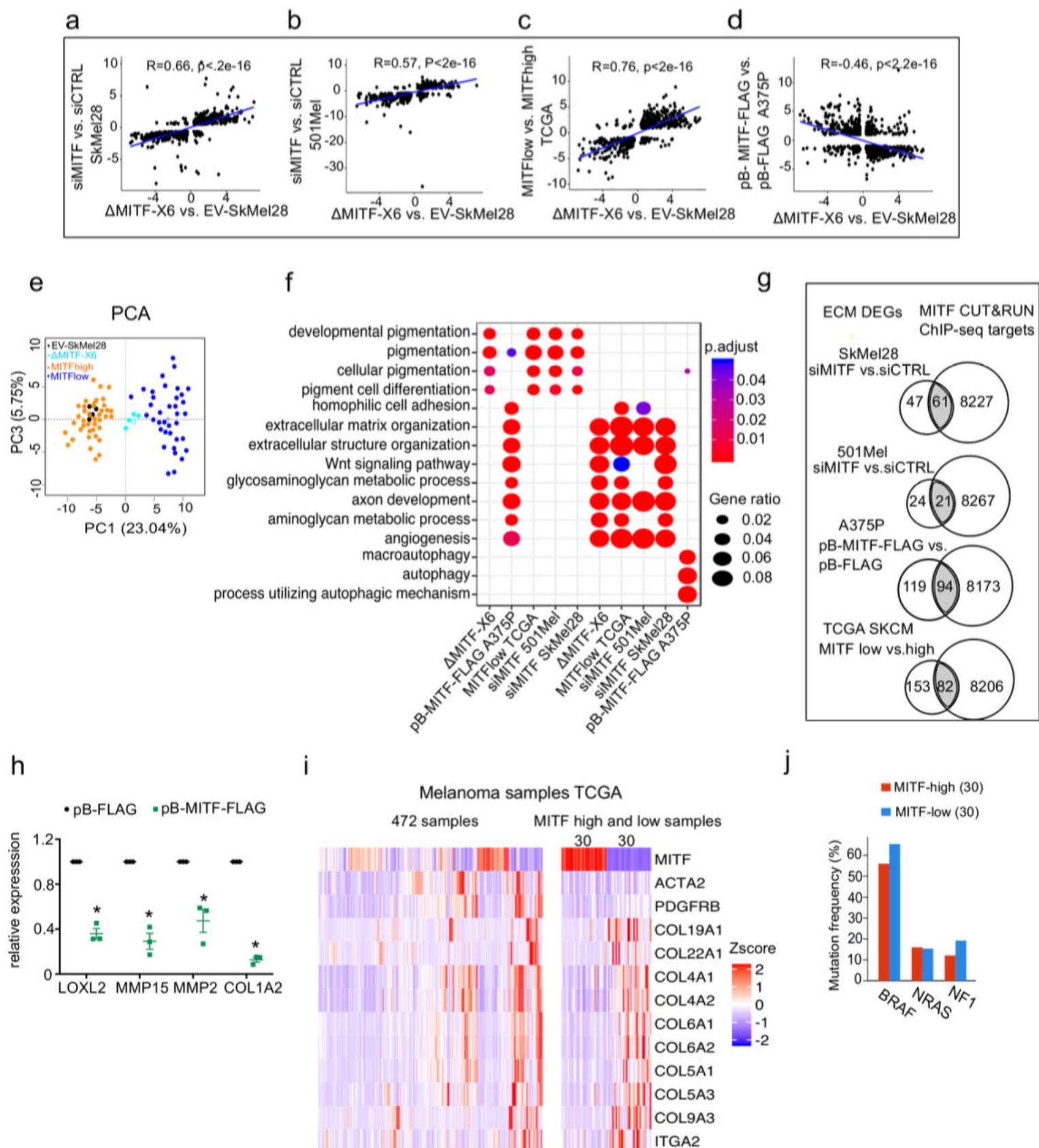
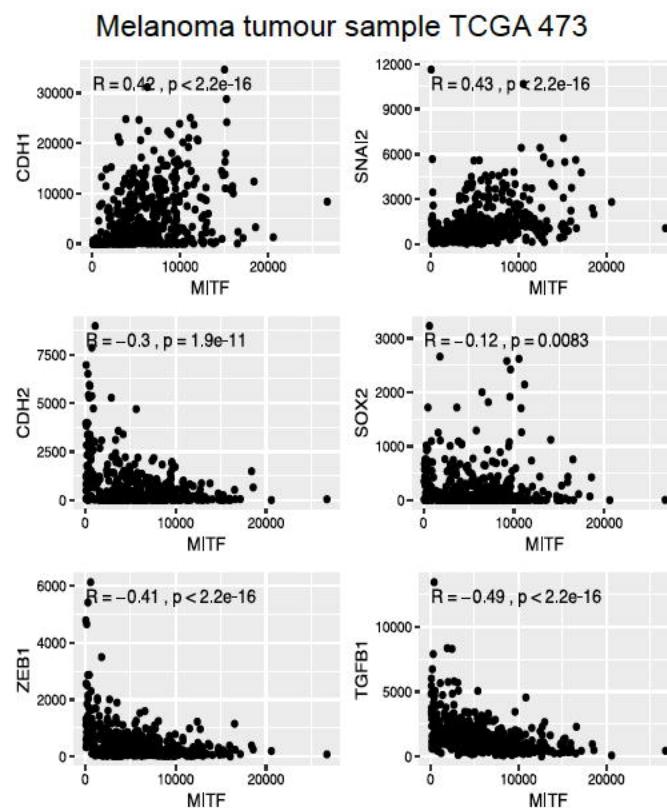
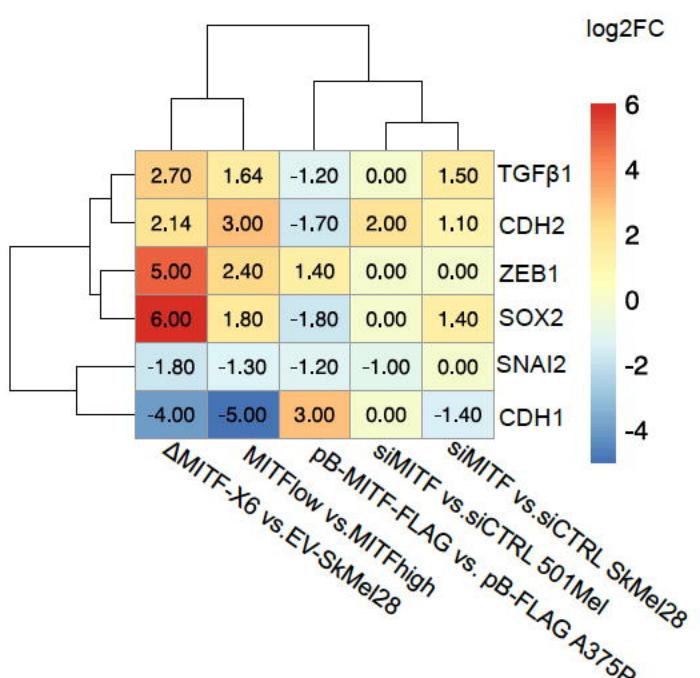
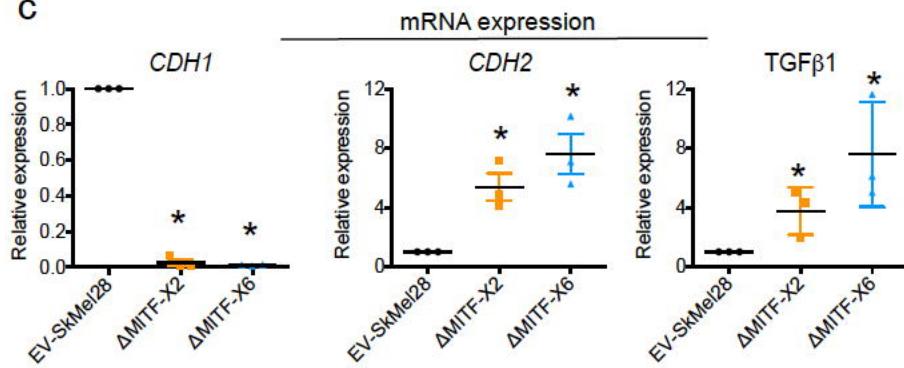
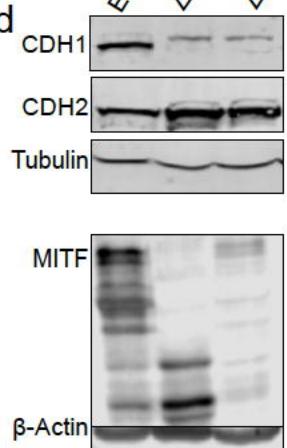




Figure 4


a


b

c

d

e

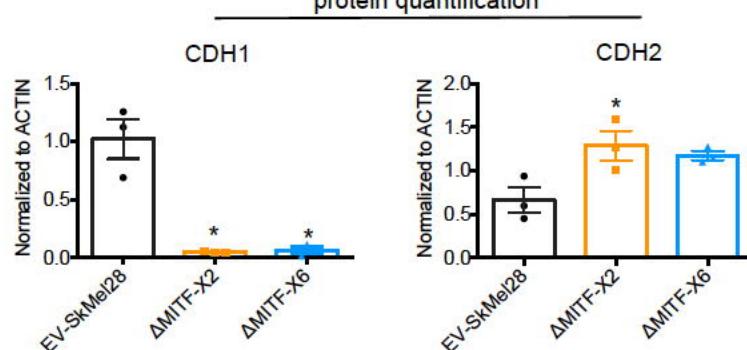


Figure 5

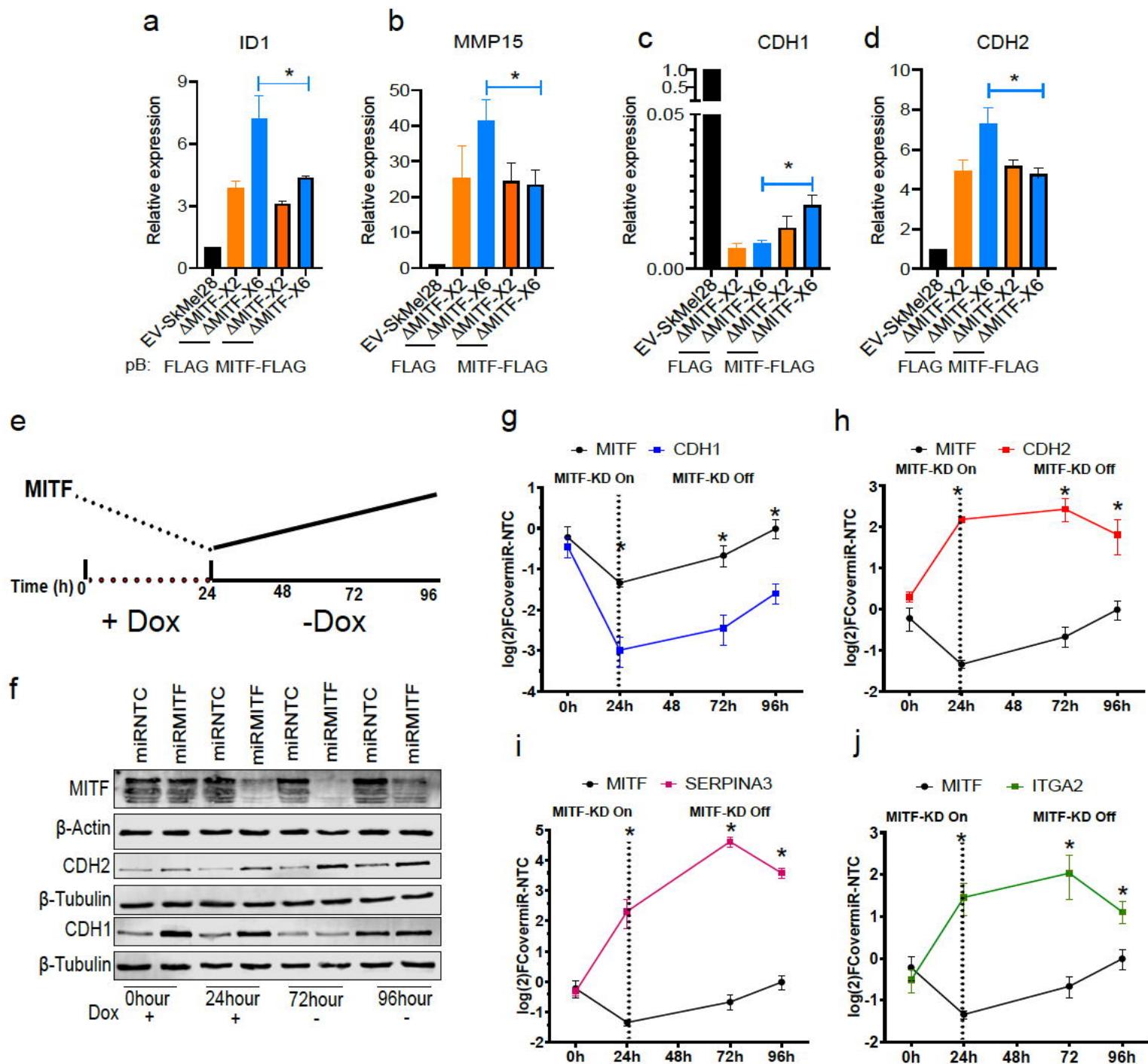


Figure 6

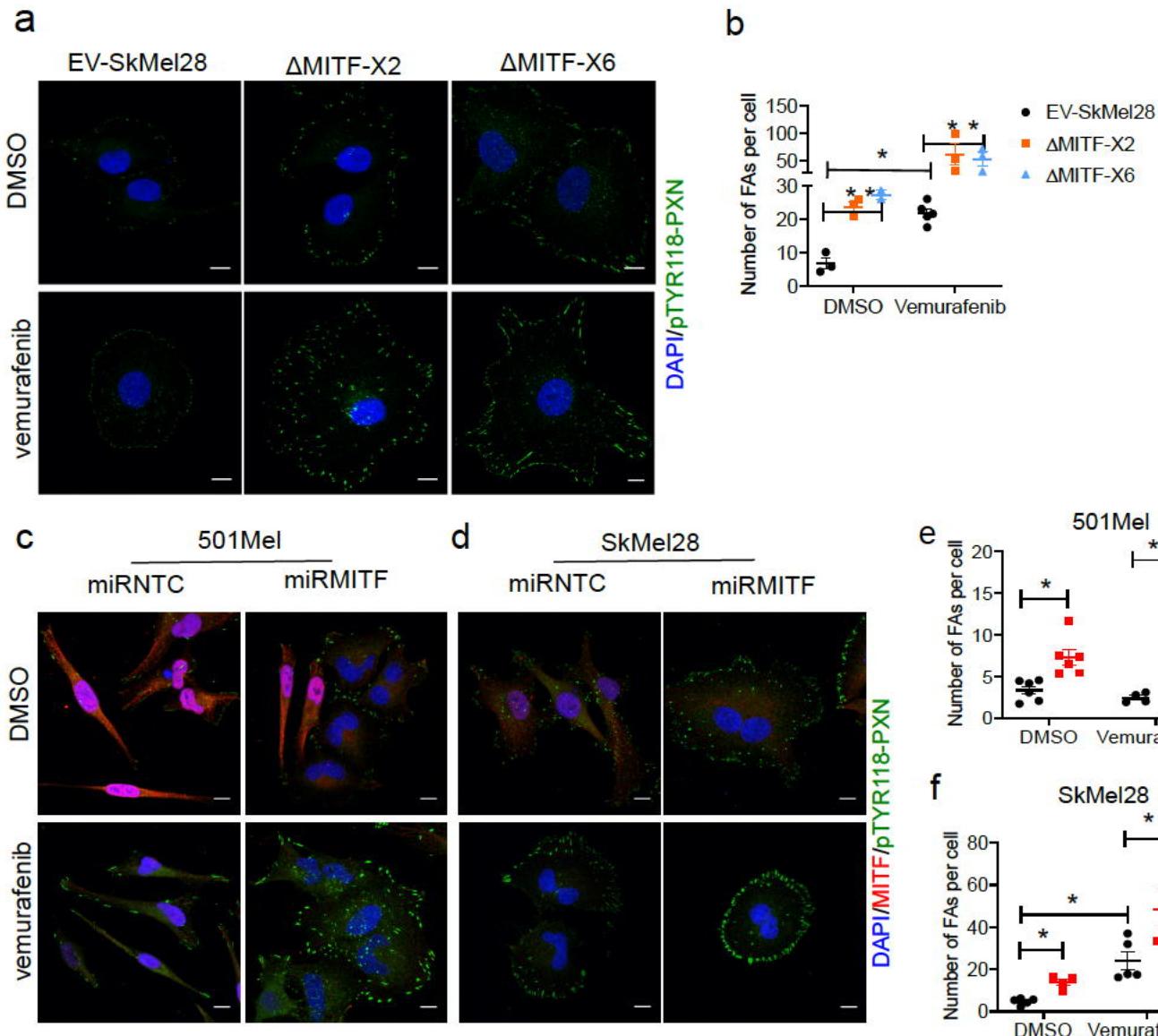
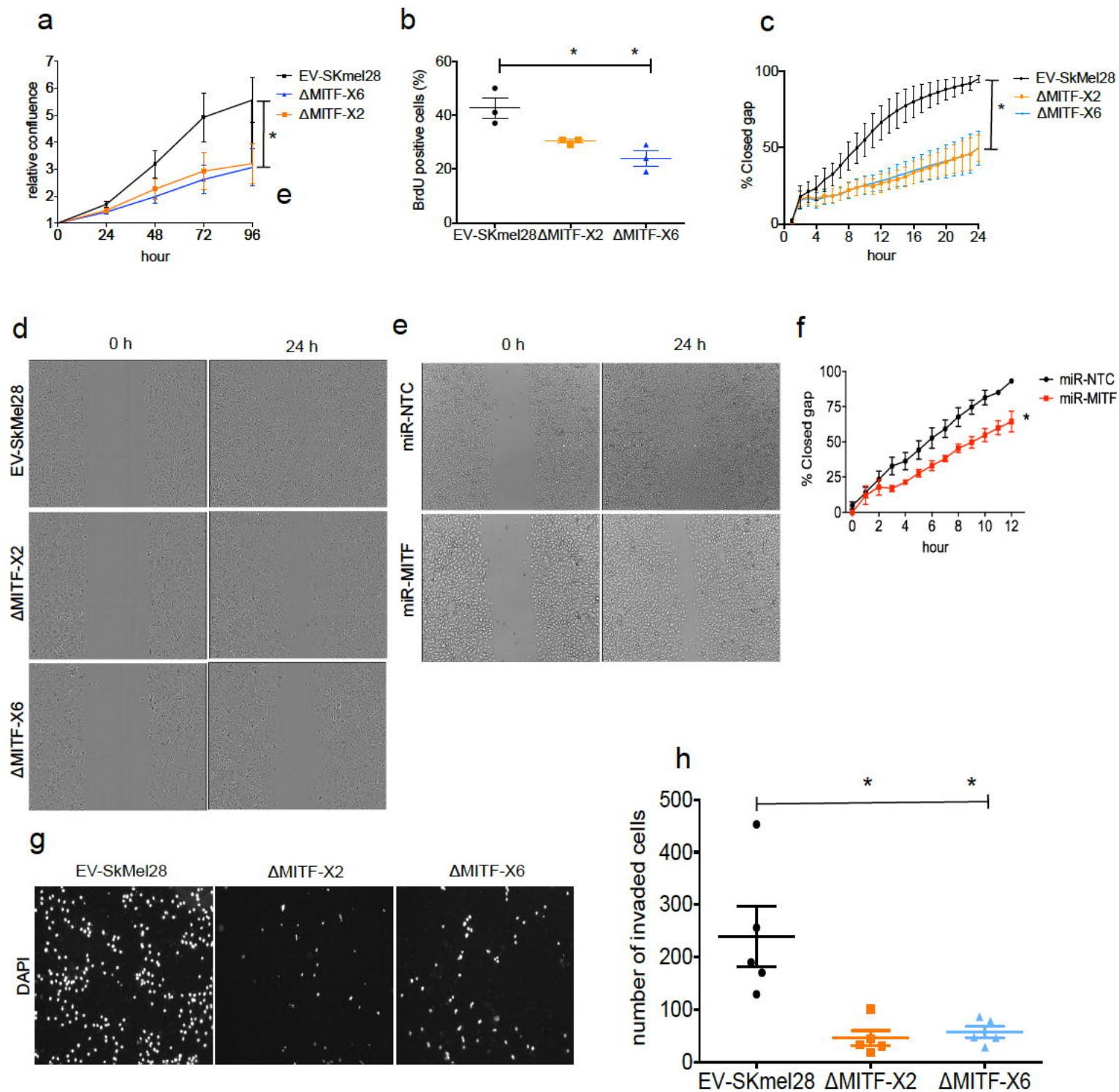



Figure 7

