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Summary

Human endogenous retroviruses (HERVS) occupy approximately 8% of human
genome. HERVs, which are transcribed in early embryos, are epigenetically silenced
in somatic cells, except in pathological contexts. HERV-K is thought to protect the
embryo from exogenous viral infection. However, uncontrollable HERV-K expression
in somatic cells has been implicated in several diseases. Here, we show that SOX2,
which plays a key role in maintaining pluripotency of stem cells, is critical for the
transcription of HERV-K LTR5Hs. HERV-K can undergo retrotransposition within
producer cells in the absence of Env expression. Furthermore, new HERV-K
integration sites were identified in a long-term culture of induced pluripotent stem
cells, which express SOX2. Together, these results suggest the possibility that the
strict dependence of HERV-K on SOX2 have allowed contribution of HERV-K to the
protection of early embryos during evolution while limiting potentially harmful effects

of HERV-K retrotransposition on host genome integrity to these early embryos.
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Introduction

Endogenous retroelements are mobile genetic elements that constitute more than
40% of the human genome. Human endogenous retroviruses (HERVS), which
encode the long terminal repeat (LTR)-containing elements, occupy about 8% of the
human genome (Bannert & Kurth, 2004; Lander et al, 2001; Venter et al, 2001). For
more than 20 million years, HERVs that have persisted in germ-cell lineages have
been transmitted vertically from ancestors to descendant (Boeke & Stoye, 1997). At
present, almost all HERVs have acquired numerous mutations or deletions. However,
HERV-K, a relatively new endogenous retrovirus, apparently encodes intact open
reading frames in the human genome (Turner et al, 2001), although no replication-
competent HERV-K has been detected (Beimforde et al, 2008; Boller et al, 2008;
Lee & Bieniasz, 2007; Stoye, 2012). HERV-K is transcribed during early
embryogenesis or exogenous viral infection, producing HERV-K proteins that appear
to protect the host cells from viral attack (Grow et al, 2015; Monde et al, 2012;
Monde et al, 2017; Terry et al, 2017). HERV-K expression has also been noted in
various human diseases, including autoimmune disorders, neurological diseases,
infectious diseases, and cancer (Young et al, 2013).

Long interspersed nuclear elements (LINE-1), which are classified among the non-
LTR retroelements, are transposition competent (Beck et al, 2010; Brouha et al,
2003; Mills et al, 2007). The transposition of LINE-1 mainly occurs in germ cells
during early embryonic development. These transposition events might cause
pathogenesis by altering the structures, expression, and functions of genes (Beck et
al, 2011; Han et al, 2004; Hancks & Kazazian, 2012). Therefore, transposition is
regulated by histone modifications and DNA methylation to avoid the harmful

mutations in the genomes (Bourc'his & Bestor, 2004; Levin & Moran, 2011). Recent
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advances in sequencing technology have allowed the detection of non-reference
HERV-K, which is absent from the human genome sequence, in the population
(Wildschutte et al, 2016), although HERV-K retrotransposition activity has not yet
been reported.

HERV-K encodes the 5'-LTR and 3'-LTR at the upstream and downstream of the
viral protein ORFs respectively. HERV-K LTR has preserved their promoter activity,
and HERV-K is transcribed in embryonic stem cells, several cancer cells, and virus-
infected T cells (Grow et al, 2015). The transcription factors Spl and Sp3 drive
HERV-K transcription in teratocarcinoma cells and melanoma cells (Fuchs et al,
2011). The melanoma-specific transcription factor MITF-M is also required for the
activation of the HERV-K LTR (Katoh et al, 2011). In virus-infected cells, viral
transcription factors Tat and Tax are associated with HERV-K expression (Gonzalez-
Hernandez et al, 2012; Toufaily et al, 2011). In embryonic stem cells, DNA
hypomethylation and OCT3/4-binding to the HERV-K LTR synergistically facilitate
HERV-K transcription (Grow et al, 2015). However, it remains unclear whether these
transcription factors are essential for HERV-K activation.

Here, we show that SOX2, rather than OCT3/4, is the major factor for activating the
transcription of HERV-K LTR5HS, which is the youngest HERV-K subfamily (Turner
et al, 2001). Consistent with this finding, a large amount of HERV-K Gag is
expressed in induced pluripotent stem (iPS) cells, which are SOX2-expressing cells.
We used next-generation sequencing (NGS) to analyze the genomes of iPS cells
and determined the HERV-K integration sites. Surprisingly, we found that new
HERV-K insertions into the genome increase in a manner dependent upon the
culture period, suggesting that HERV-K retrotransposition occurs in SOX2-

expressing cells. Our results suggest that HERV-K is not a harmless fossil left in the
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human genome; rather, it retains the ability to spread among the human genome by
retrotransposition, but is normally repressed due to its dependence on SOX2

expression.

Results
SOX2 activates HERV-K transcription

Teratocarcinomas are germ-cell tumors, and teratocarcinoma cells constitutively
express HERV-K proteins and release HERV-K patrticles from their plasma
membranes (Bieda et al, 2001; Boller et al, 1983). Several transcription factors,
including MITF, MZF1, NF-Y, GATA-2, and OCT3/4, are required to activate the
HERV-K LTR (Grow et al, 2015; Katoh et al, 2011; Yu et al, 2005). Wysocka’s
research group identified the consensus OCT3/4-binding motifs in HERV-K LTR5HS,
and demonstrated the transcriptional activation of HERV-K by OCT3/4 in human
preimplantation embryos (Grow et al, 2015). However, it is unknown whether the
expression of OCT3/4 is sufficient for the transcriptional activation of HERV-K. Here,
we identified the region of HERV-K responsible for the transcription of HERV-K
LTR5HSs using deletion mutants of HERV-K LTR5Hs in teratocarcinoma cells (NCCIT
cells) (Supplemental Fig. S1A). These results show that the deletion of nucleotides
nt 650—700 in LTR5Hs causes the loss of its transactivation activity (Supplemental
Fig. S1B and S1C). With the PROMO software (Farre et al, 2003; Messeguer et al,
2002), which is used to identify putative transcription factors, we identified 15 SOX2-
binding motifs (#1-#12) and two OCT3/4-binding motifs (#13 and #14) in LTR5Hs
(Fig. 1A and Supplemental Fig. S1). Some SOX2-binding motifs overlapped with
each other (#10 and #11), and therefore these motifs were called each same

number. Two OCT3/4-binding motifs (#13 and #14) and three SOX2-binding motifs


https://doi.org/10.1101/2020.07.14.202135
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.14.202135; this version posted July 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

(#9, #10, and #11) occurred in the region nt 650—-700 in LTR5HSs (Fig. 1A and
Supplemental Fig. S1A). Based on a chromatin immunoprecipitation (ChIP) analysis
database in embryonic stem cells, there were two peaks of SOX2 binding at nt 200
and 700 of the HERV-K LTR genome (Fig. 1B). OCT3/4-binding peaks were similar
to those for SOX2 in the HERV-K LTR genome. To determine whether OCT3/4 is
sufficient for the transactivation of HERV-K LTR, as reported previously (Grow et al,
2015), we cotransfected HelLa cells with plasmids encoding each transcription factor
(OCT3/4, SOX2, KLF4, NANOG) and the HERV-K LTR-Luc (Fig. 1C). Unexpectedly,
we found that OCT3/4 was not sufficient to activate the transcription of HERV-K LTR
in HeLa cells. The transcription of LTR mutants, with mutations in the OCT3/4-
binding motifs, was slightly reduced, but not significantly so, in NCCIT cells
(Supplemental Fig. S1D) and when SOX2, KLF4 and OCT3/4 were overexpressed in
HelLa cells (Supplemental Fig. S1E). In contrast, SOX2 markedly activated HERV-K
LTR transcription (Fig. 1C). In the presence of SOX2, KLF4 slightly increased the
transactivation of HERV-K, but OCT3/4 reduced the effect of SOX2 (Supplemental
Fig. S1F). In the presence of both SOX2 and KLF4, OCT3/4 increased the
transactivation of HERV-K. The transactivation of HERV-K was dose-dependently
enhanced by expression of SOX2 alone (Fig. 1D and 1E). However, OCT3/4 alone
did not alter the transactivation of HERV-K, even when overexpressed.

Because NCCIT cells express large amounts of endogenous SOX2 (Fig. 1E), we
examined the binding of endogenous SOX2 to chromosomal HERV-K LTR with a
ChIP assay (Fig. 1F). The results showed that endogenous SOX2 binds to the
chromosomal HERV-K LTR in NCCIT cells. To confirm that endogenous SOX2
drives HERV-K transcription, we established SOX2-knockout NCCIT cells

(NCCIT/KOSOX?2) (Fig. 1G). Although the genome of the NCCIT/KOSOX2 cells
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encodes four different sequence patterns, no intact SOX2 gene was detected in the
NCCIT/KOSOX2 cells (Fig. 1G right). HERV-K LTR transactivation was dramatically
reduced in the NCCIT/KOSOX2 cells, but not completely lost, and was rescued by
the transfection of SOX2 (Fig. 1H). The mature HERV-K Gag protein (37 kDa) in the
viral particles disappeared from the supernatant of the KOSOX2 cells (Fig. 11).
Together, these results indicate that SOX2 is an essential transcription factor for
expression of HERV-K LTR5HSs, and that both OCT3/4 and KLF4 drive HERV-K
transcription in the presence of SOX2.
Multiple SOX2-binding motifs activate the HERV-K transcription

With the Promo software and the ChIP database, we localized nine of 14 SOX2-
binding motifs (#3, #4, #7, #8, #9, #10, and #11) around nt 200 and 700 of the
HERV-K LTR genome (Fig. 1A and 1B). Based on Fig. S1C, we speculated that a
deletion of the single SOX2-binding motif #9 might abolish the transactivation of
HERV-K LTR. To determine the region responsible for HERV-K transactivation by
SOX2, Hela cells were cotransfected with plasmids encoding HERV-K LTR—luc
mutants (del#01-#12) and SOX2, KLF4, and OCT3/4. Unexpectedly, any single
deletion of a SOX2-binding motif did not reduce the transactivation of HERV-K LTR
in HelLa cells (Fig. 2A) or NCCIT cells (Fig. 2B). However, the deletion of all SOX2-
binding motifs dramatically reduced HERV-K transactivation in both HelLa and
NCCIT cells. Notably, LTR sequences that contain some single deletions showed
similar activity to that of WT HERV-K LTR, but other single deletions enhanced the
LTR activity, suggesting the redundancy and/or interference between SOX2-binding
motifs. Therefore, we designed mutants of LTR5Hs with multiple deletions of SOX2-
binding motifs (Fig. 2C and 2D). Deletion of SOX2-binding motifs #03, #08, #09, and

#10 around nt 200 and 700 in LTR5HSs, which correspond to two major SOX2-


https://doi.org/10.1101/2020.07.14.202135
http://creativecommons.org/licenses/by-nc-nd/4.0/

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.14.202135; this version posted July 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

binding regions (Fig. 1A and 1B), reduced HERV-K transactivation to the same
degree as the deletion of all the SOX2-binding motifs in both HelLa cells (Fig. 2C)
and NCCIT cells (Fig. 2D). These results suggest that SOX2 activates HERV-K
transcription even after the accumulation of several mutations in LTR5Hs during its
biological evolution.
SOX2 activates chromosomal HERV-K expression
HERV-K genomes have a CpG island between the LTR and the gag gene (Fig.

3A), which is hypermethylated in HelLa cells (Fig. 3C) compared with NCCIT cells
(Fig. 3B). This suggests that HERV-K genomes are packed into heterochromatin and
are silenced in HelLa cells. To confirm the modification of the chromatin, we treated
HelLa cells with 5-aza-2’-deoxycytidine to hypomethylate the genome. The
hypomethylation of the genome enhanced HERV-K Gag mRNA expression when
SOX2 was overexpressed in the HeLa cells (Fig. 3D). These results indicate that
DNA hypomethylation and SOX2 expression synergistically induce the expression of
HERV-K genes in the human genome.
SOX2 activates the 5’ and 3' LTR5Hs of HERV-K

Because LTR sequences of HERV-K is classified into three major groups (LTR5HS,
5A, and 5B), we cloned 18 different HERV-K LTRs from NCCIT cells and
investigated whether HERV-K LTR transactivation by SOX2 is conserved among the
three different groups. The LTR sequences of the HERV-K 5Hs group (LTR5HS) are
the part of the most recently integrated sequences (around 9.1 million years ago)
(Subramanian et al, 2011). There are two types of LTR5Hs proviruses that are
classified based on the presence (type 1) or absence (type 2) of a 292 bp deletion at
the pol-env junction. The LTRs of 5A and 5B groups (LTR5A and LTR5B) are

associated with proviruses that are mainly classified as type 2 (Subramanian et al,
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2011). The LTR5B proviruses include the oldest insertions (around 27.9 million years
ago), and LTR5A proviruses (around 20.1 million years ago) are originating from
LTR5B at an estimated-standard mutation rate of 0.24-0.45% per million years
based on the LTR-based and internal-based phylogenies (Subramanian et al, 2011).
Interestingly, both 5’- and 3'-LTR of LTR5Hs and three out of four LTR5B were
significantly activated by SOX2, whereas three out of four LTR5A were no activated
in SOX2-expressing HelLa cells (Fig. 4A) and NCCIT cells (Fig. 4B). A phylogenetic
analysis of HERV-K LTRs showed that SOX2-responsive HERV-K LTRs are closely
related (Fig. 4C). Both the newest and oldest HERV-K LTRs integrated into genomes
retain the capacity for SOX2-dependent transactivation, suggesting that acquiring or
maintaining this capacity is advantageous for coexistence between HERV-K and the
host.
Reconstructed HERV-K has retrotransposition activity

HERV-K LTR5Hs is expressed in SOX2-expressing cells, such as germ cells, but it
is unclear whether HERV-K has retrotransposition activity within these cells. To
examine the retrotransposition activity of HERV-K, we designed a HERV-Kcon
construct encoding intron-inserting nanoluciferase (inNanoluc) (Fig. 5A). After the
transcription of HERV-K from the Cytomegalovirus (CMV) promoter, the orientation
of the intact reporter gene was reversed by splicing, and the CMV promoter at the 5'-
UTR was then replaced with U3 through reverse transcription (Fig. 5A bottom). The
reverse-transcribed HERV-K integrated into genome, and the intact reporter gene
was transcribed from the Simian virus 40 (SV40) promoter. The nanoluciferase
values indirectly reflected the retrotransposition activity of HERV-K. HERV-K
GagProPol, which encodes full-length gag, pro, and pol, showed nanoluciferase

activity 5 days after transfection, whereas HERV-K deltaGagProPol, which encodes
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only truncated-gag, showed only slight nanoluciferase activity in HeLa cells (Fig. 5B).
This suggests that HERV-K protease, reverse transcriptase, and/or integrase is
required for HERV-K retrotransposition. Plasmids encoding HERV-K deltaProPol, a
protease mutant (D203N), a reverse transcriptase mutant (SIAA), or an integrase
mutant (DR1, DR2) with inNanoluc reporter gene were cotransfected into HelLa cells
with or without a protein expression plasmid encoding HERV-K GagProPol (Fig. 5C).
Although these mutants also showed faint nanoluciferase activity, expression of
HERV-K GagProPol rescued the nanoluciferase activity of these mutants. This
indicates that HERV-K protease, reverse transcriptase, and integrase are required
for the retrotransposition of HERV-K. It also suggests that the assembly of intact
proteases, reverse transcriptases, and integrases of different HERV-K origins can
complement defective HERV-Ks during HERV-K retrotransposition.

To determine the preferred loci for new integration of HERV-K, we analyzed
the new integration sites of HERV-K/inBLC, which encodes an intron-containing
blasticidin gene (Fig. 6A), in HeLa cells using a ligation-mediated PCR to amplify the
host-virus junction (see Method for more details). We identified total 311 HERV-K
LTR integration sites in the genome of HelLa cells (Fig. 6B). Nine of these 311
HERV-K LTR integration sites (1p13.2, K1; 4pl6c, K6; 6p21.32; 6026, K12;
10924.2b, Del2; 11ql12.2, K18; 15q13.1; 15g922.2, K24; 19gq12, K28) were consistent
with previously discovered non-reference HERV-K insertions (Subramanian et al,
2011) and were present in HeLa and other cell lines, including fibroblast cells (data
not shown). Six of the non-reference HERV-K LTR integration sites (12p13.31,
16pl2.3, 7p22.1, 11913.4, 11922.1, and 19p12) were present in HeLa cells but not
in other cell lines, such as fibroblast cells (Table 1 Universal in HelLa, Fig. 6B and

6C). One of the six non-reference integration sites was almost identical to one cited

10
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in a previous report by John Coffin’s group (19p12b, K113), and the others have not
yet been reported. Compared to the universal integration sites in HeLa cells, 21 of
the new HERV-K/inBLC integration sites occurred in introns, exons, or intergenic
regions (Table 1 Specific in HeLa-inBLC, Fig. 6B, 6D-F and Supplemental Fig. S2A).
The clone numbers with some HERV-K integration sites (8g24.22, 16pl11.2, and
Xp11.23) gradually increased during cell culture (Table 1 Specific, rapid-growth, Fig.
6D), whereas the clone numbers with the other integration sites did not increase
(Table 1 Specific, normal and slow-growth, Fig. 6E, and Supplemental Fig. S2A).
This suggests that HERV-K integrations at 8g24.22, 16p11.2, and Xp11.23 might
promote cell growth. Seven of the integration sites were observed in HelLa cells but
not in HERV-K/BLC-transfected HelLa cells (Fig. 6F, Supplemental Fig. S2B).
However, all of these sites in HeLa cells were presented in low clone numbers and
were detected in regions of repeated sequence, such as short interspersed nuclear
elements (SINEs). Since DNA sequence data we obtained in this study is short
reads, it is difficult to argue the reliability of integration sites in the repeated
sequences. Some of the integrated HERV-K DNAs were amplified by nested PCR
with the indicated primers shown in Fig. 6A. The expected amplification products of
~1000-1500 bp (2F/2R) and ~3000 bp (5F/5R) were confirmed in HERV-K/inBLC-
transfected HelLa cells, but those of ~1500-2000 bp (3F/2R) were not (Fig. 6G,
Supplemental Fig. S2C). It was possible that HERV-K retrotransposition is
dependent on the integration machinery through the 3’ poly(A) tail of RNA similar to
LINE1 (Doucet et al, 2015). According to our sequencing analysis, HERV-K
integrase yielded a 5-6-bp target-site duplication (TSD), which is conserved in the
stably integrated provirus, as in alpha-, beta-, gammaretroviruses and lentiviruses

but not in LINEL, in the regions flanking the HERV-K integration sites. Moreover, the
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CMV promoter at the 5-LTR was replaced with U3 in each integrated HERV-K
through reverse transcription (Fig. 6H, Supplemental Fig. S2D). Of note, although
transient expression of the transfected HERV-K/inBLC construct driven by the CMV
promoter allows one round of retrotransposition, subsequent retrotransposition does
not occur in HelLa cells because HERV-K LTR is not activated in the absence of
SOX2. In summary, these results indicate that reverse-transcribed HERV-Kcon
genomes are preferentially integrated into intron and inter-genes through the
retroviral integration machinery and potentially influence the cell proliferation
depending on the integration sites.
Endogenous HERV-K retrotransposition occurs in iPS cells

Recently, iPS cells have become potential research models for regenerative
medicine. To develop iPS cells, fibroblast cells are reprogrammed by at least three
factors: SOX2, OCT3/4, and KLF4. Therefore, we speculated that HERV-K
expression might be induced by SOX2 in iPS cells. As expected, large amounts of
HERV-K Gag mRNA were detected in iPS cells compared with NCCIT cells
(Supplemental Fig. S3A). It is possible that unregulated HERV-K transposes in the
genomes of iPS cells. To investigate HERV-K retrotransposition, we analyzed the
HERV-K integration sites in fibroblast cells and iPS cells from the same donor with
an NGS analysis (See Method for more details) (Fig. 7A). We found six non-
reference HERV-K insertions in both the fibroblast cells and iPS cells, which were
not found in HeLa cells (Fig. 7B, Table 2 Universal in fibroblast and iPS cells). Two
of the six non-reference HERV-K insertions were consistent with HERV-K integration
sites previously reported by John Coffin’s group (1212, K20; 13q31.3, K22). Other
non-reference HERV-K insertion sites might be unique individual-specific HERV-K

sites. On the other hand, we detected non-reference HERV-K integration sites in
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inter-gene, intron and exon in iPS cells but not in fibroblast cells (Table 2 Specific in
iPS cells, Fig. 7C and 7D, Supplemental Fig. S3C). There were four non-reference
integration sites in the fibroblast cells that were not present in the iPS cells (Table 2
Specific fibroblast and Supplemental Fig. S3B). Compared with the fibroblast cells,
the number of non-reference integration sites in the iPS cells increased with time
(Table 2 Specific in iPS31, iPS41, Fig. 7C and 7D, Supplemental Fig. S3C). These
results indicate that HERV-K has retrotransposition activity and moves within the
genomes of iPS cells. However, we found no rapidly growing cells containing non-
reference HERV-K integration sites among the iPS-p41 cells (Fig. 7C), indicating that
clonal expansion is rare in iPS cells. These results suggest that newly integrated
HERV-K is not always advantageous to the cell proliferation, and cellular clonality

might depend on the HERV-K integration sites in iPS cells.

Discussion

In this study, we demonstrated that HERV-K is capable of retrotransposition in
SOX2-expressing cells. The transactivation of HERV-K LTR5Hs and LTR5B by
SOX2 is retained even after the accumulation of several mutations in these LTR
sequences. Although the physiological roles of HERV-K are still unknown, we found
that HERV-K has retrotransposition activity and moves randomly around the host
genome. In a blasticidin-selected cell population where SOX2 is not expressed, and
hence retrotransposition occurs only once after transfection, the copy number of
HERV-K, which is integrated into the intron of a tumor suppressor gene (NDRG1)
(Table 1), increased. This suggests that HERV-K integration may accelerate cell
growth by impairing the host genome and thus can cause several diseases

(discussed below). However, in SOX2-expressing cells, only a small number of novel
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HERV-K integration sites were identified. It is possible that the SOX2-expressing
cells that have new integration of HERV-K may die or grow slowly during the long-
term culture due to the harmful impact of the HERV-K integration on the genome
integrity.

In addition to the well known role in the maintenance and re-establishment of
pluripotency (Avilion et al, 2003) (Takahashi & Yamanaka, 2006), SOX2 is essential
for central nervous system (CNS) development and the maintenance of neural stem
cells (Pevny & Nicolis, 2010). SOX2 is also expressed in Schwann cells (Le et al,
2005) and impairs Schwann cell remyelination and their functional recovery after
nerve injury, such as in multiple sclerosis (Roberts et al, 2017). Therefore, it is
conceivable that SOX2-induced expression of HERV-K might have impact on CNS
development, the maintenance of neural stem cells, remyelination, or recovery from
nerve injury. Indeed, HERV-K is implicated in several neural diseases, including
multiple sclerosis (Tai et al, 2008). Moreover, the HERV-K LTR integration sites
differ slightly among the genomes of individual humans and between human tissues,
and HERV-K LTR single-nucleotide polymorphisms (SNPs) are implicated in several
neural diseases (Wallace et al, 2018). It is possible that SOX2 might influence the
expression of genes adjacent to HERV-K LTR5Hs. Additionally, our results are
consistent with the possibility that HERV-K expression, which becomes
uncontrollable when the epigenetic regulation of SOX2 is disturbed, disrupts the
nervous system through the retrotransposition of HERV-K.

SOX2 is known for its association with numerous types of cancer (Weina & Utikal,
2014). It regulates the self-renewal and maintenance of cancer stem cell populations
by promoting oncogenic signaling (Bareiss et al, 2013; Chen et al, 2012; Laga et al,

2011). The expression of HERV-K is considerably higher in malignant tissues, such
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as germ-cell tumors, melanomas, and ovarian cancers, than in healthy tissues
(Buscher et al, 2005; Conrad et al, 1997; Kurth & Bannert, 2010; Wang-Johanning et
al, 2007), suggesting a possibility that the transactivation of HERV-K LTR5Hs by
SOX2 is involved in numerous malignant tumors. Whether HERV-K expression is
involved in the self-renewal and maintenance of cancer stem cells is still unknown,
but it is possible that the impairment of the genome by HERV-K retrotransposition
may cause the malignancy of tumor tissues.

HERV-K is transiently reactivated in early human development to protect cells
from the threat of exogenous viral infection (Grow et al, 2015); however, HERV-K
retrotransposition entails a risk of genomic impairment in SOX2-expressing cells
such as iPS cells. According to our results, such genomic impairment is probably a
rare event in iPS cells (Fig. 7). In addition to the possibility that HERV-K
retrotransposition causes a defect in cell growth, thereby reducing cells with the
genomic impairment, it is possible that HERV-K retrotransposition is prohibited by
host restriction factors during its reverse transcription and/or integration. For
example, APOBECSF, a restriction factor in cell-free HERV-K infection (Lee &
Bieniasz, 2007), may inhibit HERV-K retrotransposition during the reverse
transcription step. In the yeast Saccharomyces cerevisiae, Tyl LTR retrotransposon
Gag forms virus-like particle as retrosome for the reverse transcription (Salinero et
al, 2018). APOBEC3G interacts with Tyl Gag in the retrosome and restricts the Tyl
retrotransposition (Dutko et al, 2005; Schumacher et al, 2005). However, it is
unknown whether HERV-K Gag forms a retrosome, as does Ty1 (Salinero et al,
2018), or whether APOBEC3F can access the HERV-K genome in the retrosome. In

future, the mechanism of HERV-K retrotransposition must be clarified.
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Transposable elements such as HERVs often provide new functions to vertebrate
hosts, which result in the exaptation (Johnson, 2019). Endogenous retrovirus Env,
which is called syncytins, is necessary for fusion of cytotrophoblasts to form the
multinucleate syncytiotrophoblast layer of the placenta (Lavialle et al, 2013). The
syncytins are involved in the convergent evolution during the changes from oviparity
to viviparity because syncytins are originated independently across multiple
mammalian lineages and a live-bearing reptile (Cornelis et al, 2017; Cornelis et al,
2015). Additionally, the neuronal gene Arc, which is retrotransposon Gag protein,
mediates intercellular signaling in neurons and is essential for the animal cognition
(Pastuzyn et al, 2018). It suggests that retrotransposon Gag has obtained alternative
functions in neurons during evolution. The function of HERV-K is still unclear, but
considering the acquisition of SOX2 responsive elements long time ago and the
retention of the competent elements in their LTRs since then, it is tempting to

speculate that HERV-K play important physiological roles in SOX2-expressing cells.
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Plasmids

Full-length HERV-Kcon Was kindly provided by Paul Bieniasz (Lee & Bieniasz,
2007). pHERV-Kcon LTR-Luc encodes the luciferase gene, driven by HERV-K LTR.
pMXs-SOX2, OCT3/4, KLF4, and NANOG were obtained from Addgene.
CHKCinNluc and CHKCInBLC were derived from CHKCP (kindly provided from Paul
Bieniasz) (Lee & Bieniasz, 2007). The puromycin N-acetyl-transferase gene was
removed from CHKCP (CHKCP/delPuro), and a Notl site was inserted. Intron-
disrupted Nanoluc (inNluc) and blasticidin (inBLC) were designed as previously
reported (Xie et al, 2011). The inNluc and inBLC cassettes encode the SV40 early
enhancer/promoter and SV40 late poly(A) signal, respectively. These cassettes were
introduced into CHKCP/delPuro at the Notl site in an antisense orientation.
Cells

Hela cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma)
supplemented with 5% fetal bovine serum (FBS). NCCIT cells (ATCC® CRL-2073™)
were cultured in RPMI1640 medium with 10% FBS, 1 mM sodium pyruvate and
Glutamax™ (Teshima et al, 1988). Human iPS cells were generated from human-

skin- derived fibroblasts and were cultured with mitomycin-C-treated mouse
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embryonic fibroblast feeder cells, as described previously (Fusaki et al, 2009; Soga
et al, 2015); Eto et al., 2018).
HERV-K retrotransposition assay

HelLa cells were seeded in six-well plates at a density of 2 x 10° cells/well. The
cells were transfected with Lipofectamine 3000 Reagent (Invitrogen), according to
the manufacturer’s protocol. The cells were harvested 1— 6 days after transfection,
and the nanoluciferase activities in the cells were measured with Nano-Glo®
Luciferase Assay Reagent (Promega).
Measurement of dual-luciferase luminescence

Luminescence was measured with the Dual-Luciferase Reporter Assay System
(Promega), according to the manufacturer’s instructions. The cell lysate was mixed
with Luciferase Assay Reagent Il. Firefly luciferase activity was measured with a
luminometer. Renilla luciferase activity was read after the cell lysate containing
Luciferase Assay Reagent Il was mixed with Stop & Glo Reagent.
Bisulfite sequencing

EpiTect Plus Bisulfite conversion kit (Qiagen) was used as described previously
(Grow et al, 2015). The PCR fragments were inserted into pCR-Bluntll-Topo vector
(Invitrogen). Approximately 10 clones in HeLa and NCCIT cells were Sanger
sequenced for quantifying the CpG methylation.
ChIP assay

NCCIT cells were fixed with 1% formaldehyde and lysed with 20% NP-40 (10 mM

HEPES-KOH pH 7.9, 1.5 mM MgCl,, 10 mM KCI, 0.5 mM DTT, and 20% NP-40 with
protease inhibitor cocktail [Roche]). The chromatin in the lysates was fragmented to
320 bp after digestion with micrococcal nuclease. After further lysis with 10% SDS

(50 mM Tris-HCI pH 8.1, 0.2 mM EDTA, 10% SDS, with protease inhibitor cocktail
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[Roche]), the chromatin was sonicated. The DNA—protein complexes were
precipitated overnight by incubation with an anti-SOX2 antibody (BioLegend),and
then incubated with ChlP-Grade Protein G Magnetic Beads (9006, Cell Signaling
Technology) for 2 h. The abundance of HERV-K LTR in the precipitated-DNA was
analyzed with quantitative PCR using primers: HERV-K LTR primer F 5'-
AGCACTGAGATGTTTATGTG-3' and R 5'-TGTGGGGAGAGGGTCAGC -3' and
SYBR Premix ExTaq Il (Takara Bio Inc.). The signal intensity was quantified with the
ABI 7900HT Fast Real-Time PCR System (Applied Biosystems).
Linker-mediated (LM)-PCR

The HERV-K integration sites were analyzed with LM-PCR and high-throughput
sequencing, as previously described (Gillet et al, 2011; Satou et al, 2017). To
analyze HERV-K integration site, the junction between the 3'-LTR of HERV-K and
the host genomic DNA was amplified with a primer targeting the 3'-LTR and the
linker. The first forward primer targeting the 3'-LTR was B3-K1: 5'-
CCTCCATATGCTGAACGCTGGTT-3'; the second forward primer targeting the 3'-
LTR was P5B5-K2: 5'-
AATGATACGGCGACCACCGAGATCTACACCCAAATCTCTCGTCCCACCTTACGA
GAAACACCCACAGG-3'. The DNA libraries were sequenced as paired-end reads
with lllumina MiSeq, and the resulting fastq files were analyzed. The sequencing
primer targeting the 3'-LTR was Seq-K1: 5'-
ACACCCACAGGTGTGTAGGGGCAACCCACC-3'. The flanking host genome
sequences were used to determine viral integration sites. The resulting short reads
were cleaned using an in house script, which extracts reads with a high index-read
sequencing quality (Phred score > 20) in each position of an 8-bp index read. The

clean sequencing reads were aligned with HERV-K LTR sequences (CCTACA and
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CCTTCA) and were mapped to human genome using the BWA-MEM algorithm (Li &
Durbin, 2009). Further data processing and cleanup, including the removal of reads
with multiple alignments and duplicated reads, were performed using Samtools (Li &

Durbin, 2009) and Picard (http://broadinstitute.github.io/picard/). The clone numbers

with each HERV-K integration site were quantified as previous reports (Gillet et al,
2011; Satou et al, 2017).
Western blotting analysis

Cells and virus were lysed with 1% Triton X lysis buffer (50 mM Tris-HCI pH 7.5
containing 0.5% Triton X-100, 300 mM NaCl, 10 mM iodoacetamide, and protease
inhibitor cocktail [Roche]). After 2 x SDS sample buffer was added, the SOX2,
OCT3/4, GAPDH and HERV-K Gag proteins were detected with immunoblotting
using an anti-SOX2 antibody (Merck Millipore), an anti-OCT3/4 antibody (BD
Biosciences), an anti-GAPDH antibody (Sigma) and an anti-HERV-K Gag antibody
(Austral Biologicals), respectively, as the primary antibodies. Horseradish peroxidase
(HRP)-conjugated anti-mouse Ig antibody (Jackson ImmunoResearch) was used as
the secondary antibody. The HRP-conjugated secondary antibody was detected with
Chemi-Lumi One L (Nacalai Tesque).
Reverse transcription—quantitative PCR analysis

Total RNA was purified with the RNeasy Mini Kit (Qiagen). The mRNA was reverse
transcribed with Murine leukemia virus (MLV) reverse transcriptase after it was
annealed with a poly(T) primer. HERV-K gag DNA was amplified with primers:
HERV-K Gag CA forward primer 5'- CAAGACCCAGGAAGTACCT-3' and reverse
primer 5-ACACTCAGGATTGGCGTT-3'. All g°PCR assays were performed with
SYBR Premix ExTaq Il (Takara Bio Inc.). The data for the target genes were then

normalized to the expression level of glyceraldehyde 3-phosphate dehydrogenase
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(GAPDH; housekeeping gene), amplified with GAPDH forward primer 5’'-
CGCTCTCTGCTCCTCCTGTT-3' and reverse primer 5'-
ACAAAGTGGTCGTTGAGGGC-3'.
Flow cytometry analysis

Total DNA was extracted from NCCIT cells with the DNeasy Blood & Tissue kit
(Qiagen). HERV-K LTR was amplified with HERV-K LTR primers (5Hs forward
primer: 5'-CCAAAAGCCATCGATTGTGGGGAAAAGCAAGAGAG-3'; 5Hs 5'LTR
reverse primer: 5-TTCCATCTCGAGTGAAGTGGGGCCAGCCCCTCCACACCT-3,
5Hs 3'LTR reverse primer: 5'-
TTCCATCTCGAGTGTAGGGGTGGGTTGCCCCTCCACACC-3’; 5A forward primer:
5'-AAAGCCATCGATTGTAGGGAAAAGAAAGAGAGATCAGAC-3; 5A5'LTR
reverse primer: 5-TTCCATCTCGAGTGAAGGGGTGGCCTGCCCCTCCA-3'; 5A
3'LTR: reverse primer 5'-TTCCATCTCGAGCTCCACACCTGTGGGTAT-3'; 5B
forward primer: 5’-AAAGCCATCGATTGTAGGGAAAAGAAAGAGAGATCAG-3; 5B
5'LTR reverse primer: 5'-
TTCCATCTCGAGTGAAGTGGGGCCAGCCCCTCCACACCT-3'; 5B 3'LTR reverse
primer: 5'-TTCCATCTCGAGCTCCACACCTGTGGGTATTTCT-3'). The HERV-K
LTR was inserted upstream from the yellow-fluorescent-protein-encoding gene
(HERV-K LTR-Venus). HeLa and NCCIT cells were cotransfected with pHERV-K
LTR-Venus and pMXs-SOX2. Two days after transfection, the fluorescent signals

were analyzed with flow cytometry.

Figure legends
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Fig. 1. SOX2 contributes to the promoter function of HERV-K LTR. (A) SOX2 and
OCT3/4 binding motifs were identified in the HERV-K LTR with the PROMO
software, which is used to identify transcription factor binding motifs. (B) Binding
sites of SOX2, OCT3/4 and NANOG on respective LTR5Hs copies in human ES
cells were collected from ENCODE ChIP-Seq dataset, and the positions on the
consensus sequence of LTR5Hs are shown. (C) HelLa cells were cotransfected with
the plasmid pHERV-Kcon LTR-Luc, the indicated plasmids, and the Renilla-Luc
plasmid. The firefly and renilla luciferase activities were measured. (D) HelLa cells
were cotransfected with pHERV-K LTR-Luc and different amounts of the indicated
plasmids. The luciferase activity was measured. (E) Amounts of OCT3/4, SOX2, and
GAPDH proteins were measured with western blotting. (F) Chromatins in HeLa and
NCCIT cells were extracted, and SOX2-binding DNA fragments were
immunoprecipitated with the indicated antibodies. HERV-K LTRs in the
immunoprecipitated DNA were measured with gPCR. (G) Amounts of SOX2 and
GAPDH proteins in NCCIT and SOX2-knockout NCCIT (NCCIT/KOSOX2) cells were
measured with western blotting. The sequences of SOX2 in each cell were analyzed.
(H) NCCIT and NCCIT/KOSOX2 cells were cotransfected with pHERV-K LTR-Luc
and SOX2-encoding plasmids. The luciferase activity was measured. (C, D, F, and
H) Data from three independent experiments are shown as means + standard
deviations. P values were determined with Student’s t test. *P < 0.01; **P < 0.001;
***P < 0.0001; n.s., not significant. (I) Amounts of mature HERV-K Gag in the
supernatants of NCCIT and NCCIT/KOSOX2 cells were measured with western

blotting.
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Fig. 2. Multiple SOX2-binding motifs contribute to HERV-K transcription. HeLa (A
and C) and NCCIT cells (B and D) were cotransfected with pHERV-K LTR mutants
and the indicated plasmids. The luciferase activity was measured. (A, B, C, and D)
Data from three independent experiments are shown as means =+ standard
deviations. P values were determined with Student’s t test. *P < 0.01; **P < 0.001;

***P < 0.0001; n.s., not significant.

Fig. 3. HERV-K genome is hypermethylated in HeLa cells. (A) There is likely to be a
CpG island (11 CG nucleotides) between HERV-K LTR and gag. (B and C) DNA was
extracted from NCCIT (B) and HelLa cells (C). The sequences of nine HERV-K
genomes between LTR and Gag in NCCIT cells and 12 HERV-K genomes in HelLa
cells were analyzed after the DNAs were treated with bisulfite to convert cytosine
residues to uracil. White circles indicate unmethylated nucleotides and black circles
indicate methylated nucleotides in the CpG island. (D) HeLa cells were treated with
5-aza-2'-deoxycytidine for 1 day, and then transfected with a plasmid encoding
SOX2. Two days after transfection, the amounts of HERV-K Gag mRNA were
measured with RT-qPCR. Data from three independent experiments are shown as
means + standard deviations. P values were determined using Student’s t test. *P <

0.01; **P < 0.001; n.s., not significant.

Fig. 4. HERV-K transactivation by SOX2 is conserved among HERV-K LTR5HS.
HERV-K LTR series were amplified with PCR from genome into NCCIT cells and
inserted upstream from the YFP gene. HelLa cells (A) were cotransfected with
plasmid encoding SOX2 and the pHERV-K LTR-YFP series. NCCIT (Parent) and

NCCIT/KOSOX2 cells (B) were transfected with the pHERV-K LTR-YFP series. The
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yellow fluorescent protein (YFP)-positive cells were analyzed with flow cytometry. (C)
Neighbor-joining tree was constructed based on the aligned nucleotide sequences

corresponding to HERV-K LTRs within NCCIT cells.

Fig. 5. HERV-K has retrotransposition activity in HeLa cells. (A) The construction of
pHERV-K GagProPol/inNanoluc is described. The 5" U3 region was replaced with
the CMV promoter. Intron-disrupted Nanoluc (inNluc) and SV40 were introduced into
the Env region in an antisense orientation. (B) HelLa cells were transfected with
pHERV-K GagProPol/inNanoluc or pHERV-K del/GagProPol/inNanoluc.
Nanoluciferase activity was measured each day with a nanoluciferase reporter
assay. (C) HelLa cells were transfected with pHERV-K mutants/inNanoluc alone or
cotransfected with pHERV-K mutants/inNanoluc and HERV-K GagProPol. Five days
after transfection, spliced nanoluciferase activity within the retrotransposed HERV-K
was measured as the nanoluciferase activity. (B and C) P values were determined

with Student’s t test. *P < 0.01; **P < 0.001; ***P < 0.0001; n.s., not significant.

Fig. 6. New integration sites for HERV-K appeared in HERV-K-transfected HelLa
cells. (A) Construction of pHERV-K GagProPol/inBlasticidin (inBLC) is described.
inNluc was replaced with inBlasticidin (inBLC) in the Env region of HERV-K. HelLa
cells were transfected with pHERV-K inBLC. Blasticidin-resistant cells were selected
2 weeks after transfection, and the HERV-K DNA in the genome was then amplified
by PCR and determined with NGS analysis. The primers were designed to bind the
outside of repeated sequences (4F, 5F, 1R and 2R arrowheads), (B) HERV-K
integration sites that are present in the database are shown in red (Reference). Non-

reference HERV-K integration sites in the HeLa and HeLa-inBLC cells, but not in
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fibroblasts, are shown in yellow (passage 0), black (passage 1), green (passage 2),
purple (passage 17), and blue (passage 31). The outer most ring is G-band of
human chromosome. (C) Universal non-reference HERV-K insertions (Universal)
were detected in both HeLa and HelLa-inBLC cells, but not in fibroblast cells. (D and
E) Specific non-reference HERV-K insertions (Specific) were detected in HelLa-
inBLC-p1, -p2, -p17, and -p31 cells, but not in HeLa-p0. Cell growth rates were
classified as rapid (D) or normal (E). (C, D and E) Gray letters indicate HERV-K-
integration into a LINE-1, SINE, or repeat elements. These data were collected from
two independent samples. (F) The number of specific non-reference HERV-K
locations in HeLa and HeLa-inBLC-p1, -p2, -p17, and -p31 cells were determined.
(G) HERV-K integration sites (8g24.22 and 16p11.2) in HeLa-inBLC-p1 cells were
confirmed with PCR. Arrows (A) indicate primer-binding sites for PCR. The primers,
which annealed at the integration sites, were designed to sequences adjacent to
HERV-K LTR (A). (H) Sequences between HERV-K LTR and the neighboring HERV-
K genomes in HERV-K/inBLC-transfected HelLa cells were analyzed with Sanger
sequencing. TSD indicates target-site duplication in the human genome generated

by integrase.

Fig. 7. New integration sites for HERV-K appeared in iPS cells. (A) Integration sites
of HERV-K were determined with NGS analysis. iPS cells were derived from
fibroblasts, then the cells were passaged 31 times (iPS-p31) or 41 times (iPS-p41).
HERV-K integration sites that were already present in the database (Reference) are
shown in red. Non-reference HERV-K integration sites in fibroblasts and iPS cells but
not in HeLa cells are shown in green (fibroblast), purple (iPS cells; passage 31), and

blue (iPS cells; passage 41). (B) Universal non-reference HERV-K insertions were
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specifically determined in this donor. (C) Specific non-reference HERV-K insertions
were specifically identified in iPS cells. (B and C) Gray letters indicate HERV-K-
integration into LINE-1, SINE, or repeat elements. These data were collected from
four independent samples. (D) The number of specific non-reference HERV-K

locations in fibroblasts and iPS cells were determined.

Table 1. Loci of new HERV-K integration sites in HERV-K-transfected HelLa cells.
%Universal HERV-K integration sites in HelLa cells.

PDifferent HERV-K integration sites between HeLa and HERV-K/inBLC-transfected
HelLa cells.

“Consistent with a previous report from John Coffin’s group (Subramanian et al,
2011).

9HERV-K flanking region is in the repetitive sequence.

Table 2. Loci of new HERV-K integration sites in iPS cells.

#Universal HERV-K integration sites in this donor.

PDifferent HERV-K integration sites between fibroblast and iPS cells.
“Consistent with a previous report from John Coffin’s group (Subramanian et al,
2011).

YHERV-K flanking region is in the repetitive sequence.

Fig. S1. SOX2 and OCT3/4 contribute to the promoter function of HERV-K LTR. (A)
SOX2- and OCT3/4-binding motifs were identified in the HERV-K LTR with the
PROMO software, which is used to identify putative transcription factors. Deletion

mutants of LTR were constructed. (B—D) NCCIT cells were transfected with the
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pHERV-Kcon mutants. Two days after transfection, the firefly luciferase activities
were measured with a luciferase reporter assay. (E) HelLa cells were cotransfected
with pHERV-Kcon mutants and the indicated plasmids. Two days after transfection,
the firefly luciferase activities were measured with a luciferase reporter assay. (F)
HelLa cells were cotransfected with the pHERV-Kcony mutants, the indicated plasmids,
and the Renilla-Luc plasmid. Two days after transfection, both firefly luciferase and

Renilla luciferase activities were measured with a dual luciferase reporter assay.

Fig. S2. New integration sites for HERV-K appeared in HERV-K-transfected HelLa
cells. (A and B) HelLa cells were transfected with pHERV-K-inBLC. Blasticidin-
resistant cells were selected 2 weeks after transfection, and the HERV-K DNA in the
genome was then amplified with PCR and analyzed with next-generation
sequencing. Specific non-reference HERV-K insertions (Specific) were detected in
HelLa (B) or HeLa-inBLC-p1, -p2, -p17, and -p31 cells (A). Cell growth speeds was
classified as slow (A). Gray letters indicate HERV-K-integration in LINE-1, SINE, or
repeat elements. (C) HERV-K integration sites (1936.21 and 12p13.33) in HelLa-
inBLC-p1 cells were confirmed with PCR. (H) Sequences between HERV-K LTR and
the neighboring HERV-K genomes in HERV-K/inBLC-transfected HeLa cells were
analyzed with Sanger sequencing. TSD is a target-site duplication in the human

genome generated by integrase..

Fig. S3. New integration sites of HERV-K appeared in iPS cells. (A) HERV-K Gag
MRNA and GAPDH mRNA expression in NCCIT and iPS cells was measured with
reverse transcription—PCR. The integration sites of HERV-K were determined with

next-generation sequencing. (B and C) Specific non-reference HERV-K insertions
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were specifically determined in fibroblasts (B) and iPS-31 cells (C). Gray letters

indicate HERV-K-integration in LINE-1, SINE, or repeat elements.
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chr4:91,979,478
chrb:32,212,988
chr9:73,987,206
chr10:99,256,369
chr11:67,868,810
chr11:70,471,356

chr15:36,348,199
chr16:18,135,887
chr21:8,586,021

chr21:43,711,450

Flanking region

HERV-K int' AC078785.1 intron 1

AluY?
HERV-K int MEI4 intron 2
L1PA3% BBS9 intron 19

L1IMB1% TMEM117 intron 2

; LINC00559 intron 3
L1PA2% TCF24 intron 3
L1PA2¢
AluY®; INOSO intron 19
MIR/LTR5Hs*
AluY%PHTF1 intron 2

L1PA2¢
L1PA3¢
AluSc5% LBP intron 1

L1PA2¢
AluSx%; RAP1A intron 1

AluY%; RRAGC intron 6
AluSc?
L1PA2% EPHAG intron 14
L1HsS*

AluSx3¢

/LTR5Hs?

MSTD int!

LTR5Hs int?

; SHANK2 exon 2

AluSz®% AC010601.1 intron 1

MLT1A0¢
Aluy!

Function

Required for meiotic DNA double-strand break formation.
Required for ciliogenesisi but is dispensable for centriolar satellite function.
(bardet-biedl syndrome)

Long non-coding RNA.

Putative transcription factor.

DNA helicase, transcriptional regulation, DNA replication, DNA repair

Transcription regulation

Binds to the lipid A moiety of bacterial lipopolysaccharides (LPS), a glycolipid
present in the outer membrane of all Gram-negative bacteria.

(toxic pneumonitis, mastitis, infective endocarditis, alcoholic hepatitis,
mesenteric lymphadenitis, peritonitis, appendictis, bacteremia, endocarditis,
acute respiratory distress syndrome)

Induces morphological reversion of a cell line transformed by a Ras oncogene.
(Kabuki syndrome 1, leukocyte adhesion deficiency type iii, tuberous sclerosis,
babesiosis, central nervous system hemangioma,

cerebral cavernous malformations-1, cerebral cavernous malformations-2)
Has guanine nucleotide-binding activity

(Oculoauricular syndrome)

Molecular scaffolds in the postsynaptic density of excitatory synapses.
(Autism susceptibility 17, autism spectrum disorder, pervasive developmental
disorder, deafness, autosomal recessive 63, secretory diarrhea, autistic disorder)
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