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 2 

Summary 1 

  Human endogenous retroviruses (HERVs) occupy approximately 8% of human 2 

genome. HERVs, which are transcribed in early embryos, are epigenetically silenced 3 

in somatic cells, except in pathological contexts. HERV-K is thought to protect the 4 

embryo from exogenous viral infection. However, uncontrollable HERV-K expression 5 

in somatic cells has been implicated in several diseases. Here, we show that SOX2, 6 

which plays a key role in maintaining pluripotency of stem cells, is critical for the 7 

transcription of HERV-K LTR5Hs. HERV-K can undergo retrotransposition within 8 

producer cells in the absence of Env expression. Furthermore, new HERV-K 9 

integration sites were identified in a long-term culture of induced pluripotent stem 10 

cells, which express SOX2. Together, these results suggest the possibility that the 11 

strict dependence of HERV-K on SOX2 have allowed contribution of HERV-K to the 12 

protection of early embryos during evolution while limiting potentially harmful effects 13 

of HERV-K retrotransposition on host genome integrity to these early embryos. 14 

 15 

  16 
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 3 

Introduction 1 

Endogenous retroelements are mobile genetic elements that constitute more than 2 

40% of the human genome. Human endogenous retroviruses (HERVs), which 3 

encode the long terminal repeat (LTR)-containing elements, occupy about 8% of the 4 

human genome (Bannert & Kurth, 2004; Lander et al, 2001; Venter et al, 2001). For 5 

more than 20 million years, HERVs that have persisted in germ-cell lineages have 6 

been transmitted vertically from ancestors to descendant (Boeke & Stoye, 1997). At 7 

present, almost all HERVs have acquired numerous mutations or deletions. However, 8 

HERV-K, a relatively new endogenous retrovirus, apparently encodes intact open 9 

reading frames in the human genome (Turner et al, 2001), although no replication-10 

competent HERV-K has been detected (Beimforde et al, 2008; Boller et al, 2008; 11 

Lee & Bieniasz, 2007; Stoye, 2012). HERV-K is transcribed during early 12 

embryogenesis or exogenous viral infection, producing HERV-K proteins that appear 13 

to protect the host cells from viral attack (Grow et al, 2015; Monde et al, 2012; 14 

Monde et al, 2017; Terry et al, 2017). HERV-K expression has also been noted in 15 

various human diseases, including autoimmune disorders, neurological diseases, 16 

infectious diseases, and cancer (Young et al, 2013). 17 

  Long interspersed nuclear elements (LINE-1), which are classified among the non-18 

LTR retroelements, are transposition competent (Beck et al, 2010; Brouha et al, 19 

2003; Mills et al, 2007). The transposition of LINE-1 mainly occurs in germ cells 20 

during early embryonic development. These transposition events might cause 21 

pathogenesis by altering the structures, expression, and functions of genes (Beck et 22 

al, 2011; Han et al, 2004; Hancks & Kazazian, 2012). Therefore, transposition is 23 

regulated by histone modifications and DNA methylation to avoid the harmful 24 

mutations in the genomes (Bourc'his & Bestor, 2004; Levin & Moran, 2011). Recent 25 
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 4 

advances in sequencing technology have allowed the detection of non-reference 1 

HERV-K, which is absent from the human genome sequence, in the population 2 

(Wildschutte et al, 2016), although HERV-K retrotransposition activity has not yet 3 

been reported. 4 

  HERV-K encodes the 5-LTR and 3-LTR at the upstream and downstream of the 5 

viral protein ORFs respectively. HERV-K LTR has preserved their promoter activity, 6 

and HERV-K is transcribed in embryonic stem cells, several cancer cells, and virus-7 

infected T cells (Grow et al, 2015). The transcription factors Sp1 and Sp3 drive 8 

HERV-K transcription in teratocarcinoma cells and melanoma cells (Fuchs et al, 9 

2011). The melanoma-specific transcription factor MITF-M is also required for the 10 

activation of the HERV-K LTR (Katoh et al, 2011). In virus-infected cells, viral 11 

transcription factors Tat and Tax are associated with HERV-K expression (Gonzalez-12 

Hernandez et al, 2012; Toufaily et al, 2011). In embryonic stem cells, DNA 13 

hypomethylation and OCT3/4-binding to the HERV-K LTR synergistically facilitate 14 

HERV-K transcription (Grow et al, 2015). However, it remains unclear whether these 15 

transcription factors are essential for HERV-K activation. 16 

Here, we show that SOX2, rather than OCT3/4, is the major factor for activating the 17 

transcription of HERV-K LTR5Hs, which is the youngest HERV-K subfamily (Turner 18 

et al, 2001). Consistent with this finding, a large amount of HERV-K Gag is 19 

expressed in induced pluripotent stem (iPS) cells, which are SOX2-expressing cells. 20 

We used next-generation sequencing (NGS) to analyze the genomes of iPS cells 21 

and determined the HERV-K integration sites. Surprisingly, we found that new 22 

HERV-K insertions into the genome increase in a manner dependent upon the 23 

culture period, suggesting that HERV-K retrotransposition occurs in SOX2-24 

expressing cells. Our results suggest that HERV-K is not a harmless fossil left in the 25 
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 5 

human genome; rather, it retains the ability to spread among the human genome by 1 

retrotransposition, but is normally repressed due to its dependence on SOX2 2 

expression. 3 

 4 

Results 5 

SOX2 activates HERV-K transcription 6 

Teratocarcinomas are germ-cell tumors, and teratocarcinoma cells constitutively 7 

express HERV-K proteins and release HERV-K particles from their plasma 8 

membranes (Bieda et al, 2001; Boller et al, 1983). Several transcription factors, 9 

including MITF, MZF1, NF-Y, GATA-2, and OCT3/4, are required to activate the 10 

HERV-K LTR (Grow et al, 2015; Katoh et al, 2011; Yu et al, 2005). Wysocka’s 11 

research group identified the consensus OCT3/4-binding motifs in HERV-K LTR5Hs, 12 

and demonstrated the transcriptional activation of HERV-K by OCT3/4 in human 13 

preimplantation embryos (Grow et al, 2015). However, it is unknown whether the 14 

expression of OCT3/4 is sufficient for the transcriptional activation of HERV-K. Here, 15 

we identified the region of HERV-K responsible for the transcription of HERV-K 16 

LTR5Hs using deletion mutants of HERV-K LTR5Hs in teratocarcinoma cells (NCCIT 17 

cells) (Supplemental Fig. S1A). These results show that the deletion of nucleotides 18 

nt 650–700 in LTR5Hs causes the loss of its transactivation activity (Supplemental 19 

Fig. S1B and S1C). With the PROMO software (Farre et al, 2003; Messeguer et al, 20 

2002), which is used to identify putative transcription factors, we identified 15 SOX2-21 

binding motifs (#1–#12) and two OCT3/4-binding motifs (#13 and #14) in LTR5Hs 22 

(Fig. 1A and Supplemental Fig. S1). Some SOX2-binding motifs overlapped with 23 

each other (#10 and #11), and therefore these motifs were called each same 24 

number. Two OCT3/4-binding motifs (#13 and #14) and three SOX2-binding motifs 25 
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 6 

(#9, #10, and #11) occurred in the region nt 650–700 in LTR5Hs (Fig. 1A and 1 

Supplemental Fig. S1A). Based on a chromatin immunoprecipitation (ChIP) analysis 2 

database in embryonic stem cells, there were two peaks of SOX2 binding at nt 200 3 

and 700 of the HERV-K LTR genome (Fig. 1B). OCT3/4-binding peaks were similar 4 

to those for SOX2 in the HERV-K LTR genome. To determine whether OCT3/4 is 5 

sufficient for the transactivation of HERV-K LTR, as reported previously (Grow et al, 6 

2015), we cotransfected HeLa cells with plasmids encoding each transcription factor 7 

(OCT3/4, SOX2, KLF4, NANOG) and the HERV-K LTR-Luc (Fig. 1C). Unexpectedly, 8 

we found that OCT3/4 was not sufficient to activate the transcription of HERV-K LTR 9 

in HeLa cells. The transcription of LTR mutants, with mutations in the OCT3/4-10 

binding motifs, was slightly reduced, but not significantly so, in NCCIT cells 11 

(Supplemental Fig. S1D) and when SOX2, KLF4 and OCT3/4 were overexpressed in 12 

HeLa cells (Supplemental Fig. S1E). In contrast, SOX2 markedly activated HERV-K 13 

LTR transcription (Fig. 1C). In the presence of SOX2, KLF4 slightly increased the 14 

transactivation of HERV-K, but OCT3/4 reduced the effect of SOX2 (Supplemental 15 

Fig. S1F). In the presence of both SOX2 and KLF4, OCT3/4 increased the 16 

transactivation of HERV-K. The transactivation of HERV-K was dose-dependently 17 

enhanced by expression of SOX2 alone (Fig. 1D and 1E). However, OCT3/4 alone 18 

did not alter the transactivation of HERV-K, even when overexpressed. 19 

   Because NCCIT cells express large amounts of endogenous SOX2 (Fig. 1E), we 20 

examined the binding of endogenous SOX2 to chromosomal HERV-K LTR with a 21 

ChIP assay (Fig. 1F). The results showed that endogenous SOX2 binds to the 22 

chromosomal HERV-K LTR in NCCIT cells. To confirm that endogenous SOX2 23 

drives HERV-K transcription, we established SOX2-knockout NCCIT cells 24 

(NCCIT/KOSOX2) (Fig. 1G). Although the genome of the NCCIT/KOSOX2 cells 25 
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 7 

encodes four different sequence patterns, no intact SOX2 gene was detected in the 1 

NCCIT/KOSOX2 cells (Fig. 1G right). HERV-K LTR transactivation was dramatically 2 

reduced in the NCCIT/KOSOX2 cells, but not completely lost, and was rescued by 3 

the transfection of SOX2 (Fig. 1H). The mature HERV-K Gag protein (37 kDa) in the 4 

viral particles disappeared from the supernatant of the KOSOX2 cells (Fig. 1I). 5 

Together, these results indicate that SOX2 is an essential transcription factor for 6 

expression of HERV-K LTR5Hs, and that both OCT3/4 and KLF4 drive HERV-K 7 

transcription in the presence of SOX2. 8 

Multiple SOX2-binding motifs activate the HERV-K transcription 9 

With the Promo software and the ChIP database, we localized nine of 14 SOX2-10 

binding motifs (#3, #4, #7, #8, #9, #10, and #11) around nt 200 and 700 of the 11 

HERV-K LTR genome (Fig. 1A and 1B). Based on Fig. S1C, we speculated that a 12 

deletion of the single SOX2-binding motif #9 might abolish the transactivation of 13 

HERV-K LTR. To determine the region responsible for HERV-K transactivation by 14 

SOX2, HeLa cells were cotransfected with plasmids encoding HERV-K LTR–luc 15 

mutants (del#01-#12) and SOX2, KLF4, and OCT3/4. Unexpectedly, any single 16 

deletion of a SOX2-binding motif did not reduce the transactivation of HERV-K LTR 17 

in HeLa cells (Fig. 2A) or NCCIT cells (Fig. 2B). However, the deletion of all SOX2-18 

binding motifs dramatically reduced HERV-K transactivation in both HeLa and 19 

NCCIT cells. Notably, LTR sequences that contain some single deletions showed 20 

similar activity to that of WT HERV-K LTR, but other single deletions enhanced the 21 

LTR activity, suggesting the redundancy and/or interference between SOX2-binding 22 

motifs.  Therefore, we designed mutants of LTR5Hs with multiple deletions of SOX2-23 

binding motifs (Fig. 2C and 2D). Deletion of SOX2-binding motifs #03, #08, #09, and 24 

#10 around nt 200 and 700 in LTR5Hs, which correspond to two major SOX2-25 
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 8 

binding regions (Fig. 1A and 1B), reduced HERV-K transactivation to the same 1 

degree as the deletion of all the SOX2-binding motifs in both HeLa cells (Fig. 2C) 2 

and NCCIT cells (Fig. 2D). These results suggest that SOX2 activates HERV-K 3 

transcription even after the accumulation of several mutations in LTR5Hs during its 4 

biological evolution. 5 

SOX2 activates chromosomal HERV-K expression 6 

HERV-K genomes have a CpG island between the LTR and the gag gene (Fig. 7 

3A), which is hypermethylated in HeLa cells (Fig. 3C) compared with NCCIT cells 8 

(Fig. 3B). This suggests that HERV-K genomes are packed into heterochromatin and 9 

are silenced in HeLa cells. To confirm the modification of the chromatin, we treated 10 

HeLa cells with 5-aza-2-deoxycytidine to hypomethylate the genome. The 11 

hypomethylation of the genome enhanced HERV-K Gag mRNA expression when 12 

SOX2 was overexpressed in the HeLa cells (Fig. 3D). These results indicate that 13 

DNA hypomethylation and SOX2 expression synergistically induce the expression of 14 

HERV-K genes in the human genome. 15 

SOX2 activates the 5 and 3 LTR5Hs of HERV-K 16 

  Because LTR sequences of HERV-K is classified into three major groups (LTR5Hs, 17 

5A, and 5B), we cloned 18 different HERV-K LTRs from NCCIT cells and 18 

investigated whether HERV-K LTR transactivation by SOX2 is conserved among the 19 

three different groups. The LTR sequences of the HERV-K 5Hs group (LTR5Hs) are 20 

the part of the most recently integrated sequences (around 9.1 million years ago) 21 

(Subramanian et al, 2011). There are two types of LTR5Hs proviruses that are 22 

classified based on the presence (type 1) or absence (type 2) of a 292 bp deletion at 23 

the pol-env junction. The LTRs of 5A and 5B groups (LTR5A and LTR5B) are 24 

associated with proviruses that are mainly classified as type 2 (Subramanian et al, 25 
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 9 

2011). The LTR5B proviruses include the oldest insertions (around 27.9 million years 1 

ago), and LTR5A proviruses (around 20.1 million years ago) are originating from 2 

LTR5B at an estimated-standard mutation rate of 0.24-0.45% per million years 3 

based on the LTR-based and internal-based phylogenies (Subramanian et al, 2011). 4 

Interestingly, both 5- and 3-LTR of LTR5Hs and three out of four LTR5B were 5 

significantly activated by SOX2, whereas three out of four LTR5A were no activated 6 

in SOX2-expressing HeLa cells (Fig. 4A) and NCCIT cells (Fig. 4B). A phylogenetic 7 

analysis of HERV-K LTRs showed that SOX2-responsive HERV-K LTRs are closely 8 

related (Fig. 4C). Both the newest and oldest HERV-K LTRs integrated into genomes 9 

retain the capacity for SOX2-dependent transactivation, suggesting that acquiring or 10 

maintaining this capacity is advantageous for coexistence between HERV-K and the 11 

host. 12 

Reconstructed HERV-K has retrotransposition activity 13 

   HERV-K LTR5Hs is expressed in SOX2-expressing cells, such as germ cells, but it 14 

is unclear whether HERV-K has retrotransposition activity within these cells. To 15 

examine the retrotransposition activity of HERV-K, we designed a HERV-KCON 16 

construct encoding intron-inserting nanoluciferase (inNanoluc) (Fig. 5A). After the 17 

transcription of HERV-K from the Cytomegalovirus (CMV) promoter, the orientation 18 

of the intact reporter gene was reversed by splicing, and the CMV promoter at the 5-19 

UTR was then replaced with U3 through reverse transcription (Fig. 5A bottom). The 20 

reverse-transcribed HERV-K integrated into genome, and the intact reporter gene 21 

was transcribed from the Simian virus 40 (SV40) promoter. The nanoluciferase 22 

values indirectly reflected the retrotransposition activity of HERV-K. HERV-K 23 

GagProPol, which encodes full-length gag, pro, and pol, showed nanoluciferase 24 

activity 5 days after transfection, whereas HERV-K deltaGagProPol, which encodes 25 
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 10 

only truncated-gag, showed only slight nanoluciferase activity in HeLa cells (Fig. 5B). 1 

This suggests that HERV-K protease, reverse transcriptase, and/or integrase is 2 

required for HERV-K retrotransposition. Plasmids encoding HERV-K deltaProPol, a 3 

protease mutant (D203N), a reverse transcriptase mutant (SIAA), or an integrase 4 

mutant (DR1, DR2) with inNanoluc reporter gene were cotransfected into HeLa cells 5 

with or without a protein expression plasmid encoding HERV-K GagProPol (Fig. 5C). 6 

Although these mutants also showed faint nanoluciferase activity, expression of 7 

HERV-K GagProPol rescued the nanoluciferase activity of these mutants. This 8 

indicates that HERV-K protease, reverse transcriptase, and integrase are required 9 

for the retrotransposition of HERV-K. It also suggests that the assembly of intact 10 

proteases, reverse transcriptases, and integrases of different HERV-K origins can 11 

complement defective HERV-Ks during HERV-K retrotransposition. 12 

 To determine the preferred loci for new integration of HERV-K, we analyzed 13 

the new integration sites of HERV-K/inBLC, which encodes an intron-containing 14 

blasticidin gene (Fig. 6A), in HeLa cells using a ligation-mediated PCR to amplify the 15 

host-virus junction (see Method for more details). We identified total 311 HERV-K 16 

LTR integration sites in the genome of HeLa cells (Fig. 6B). Nine of these 311 17 

HERV-K LTR integration sites (1p13.2, K1; 4p16c, K6; 6p21.32; 6q26, K12; 18 

10q24.2b, De12; 11q12.2, K18; 15q13.1; 15q22.2, K24; 19q12, K28) were consistent 19 

with previously discovered non-reference HERV-K insertions (Subramanian et al, 20 

2011) and were present in HeLa and other cell lines, including fibroblast cells (data 21 

not shown). Six of the non-reference HERV-K LTR integration sites (12p13.31, 22 

16p12.3, 7p22.1, 11q13.4, 11q22.1, and 19p12) were present in HeLa cells but not 23 

in other cell lines, such as fibroblast cells (Table 1 Universal in HeLa, Fig. 6B and 24 

6C). One of the six non-reference integration sites was almost identical to one cited 25 
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 11 

in a previous report by John Coffin’s group (19p12b, K113), and the others have not 1 

yet been reported. Compared to the universal integration sites in HeLa cells, 21 of 2 

the new HERV-K/inBLC integration sites occurred in introns, exons, or intergenic 3 

regions (Table 1 Specific in HeLa-inBLC, Fig. 6B, 6D-F and Supplemental Fig. S2A). 4 

The clone numbers with some HERV-K integration sites (8q24.22, 16p11.2, and 5 

Xp11.23) gradually increased during cell culture (Table 1 Specific, rapid-growth, Fig. 6 

6D), whereas the clone numbers with the other integration sites did not increase 7 

(Table 1 Specific, normal and slow-growth, Fig. 6E, and Supplemental Fig. S2A). 8 

This suggests that HERV-K integrations at 8q24.22, 16p11.2, and Xp11.23 might 9 

promote cell growth. Seven of the integration sites were observed in HeLa cells but 10 

not in HERV-K/BLC-transfected HeLa cells (Fig. 6F, Supplemental Fig. S2B). 11 

However, all of these sites in HeLa cells were presented in low clone numbers and 12 

were detected in regions of repeated sequence, such as short interspersed nuclear 13 

elements (SINEs). Since DNA sequence data we obtained in this study is short 14 

reads, it is difficult to argue the reliability of integration sites in the repeated 15 

sequences. Some of the integrated HERV-K DNAs were amplified by nested PCR 16 

with the indicated primers shown in Fig. 6A. The expected amplification products of 17 

1000–1500 bp (2F/2R) and 3000 bp (5F/5R) were confirmed in HERV-K/inBLC-18 

transfected HeLa cells, but those of 1500–2000 bp (3F/2R) were not (Fig. 6G, 19 

Supplemental Fig. S2C). It was possible that HERV-K retrotransposition is 20 

dependent on the integration machinery through the 3’ poly(A) tail of RNA similar to 21 

LINE1 (Doucet et al, 2015). According to our sequencing analysis, HERV-K 22 

integrase yielded a 5–6-bp target-site duplication (TSD), which is conserved in the 23 

stably integrated provirus, as in alpha-, beta-, gammaretroviruses and lentiviruses 24 

but not in LINE1, in the regions flanking the HERV-K integration sites. Moreover, the 25 
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 12 

CMV promoter at the 5-LTR was replaced with U3 in each integrated HERV-K 1 

through reverse transcription (Fig. 6H, Supplemental Fig. S2D). Of note, although 2 

transient expression of the transfected HERV-K/inBLC construct driven by the CMV 3 

promoter allows one round of retrotransposition, subsequent retrotransposition does 4 

not occur in HeLa cells because HERV-K LTR is not activated in the absence of 5 

SOX2. In summary, these results indicate that reverse-transcribed HERV-KCON 6 

genomes are preferentially integrated into intron and inter-genes through the 7 

retroviral integration machinery and potentially influence the cell proliferation 8 

depending on the integration sites. 9 

Endogenous HERV-K retrotransposition occurs in iPS cells 10 

  Recently, iPS cells have become potential research models for regenerative 11 

medicine. To develop iPS cells, fibroblast cells are reprogrammed by at least three 12 

factors: SOX2, OCT3/4, and KLF4. Therefore, we speculated that HERV-K 13 

expression might be induced by SOX2 in iPS cells. As expected, large amounts of 14 

HERV-K Gag mRNA were detected in iPS cells compared with NCCIT cells 15 

(Supplemental Fig. S3A). It is possible that unregulated HERV-K transposes in the 16 

genomes of iPS cells. To investigate HERV-K retrotransposition, we analyzed the 17 

HERV-K integration sites in fibroblast cells and iPS cells from the same donor with 18 

an NGS analysis (See Method for more details) (Fig. 7A). We found six non-19 

reference HERV-K insertions in both the fibroblast cells and iPS cells, which were 20 

not found in HeLa cells (Fig. 7B, Table 2 Universal in fibroblast and iPS cells). Two 21 

of the six non-reference HERV-K insertions were consistent with HERV-K integration 22 

sites previously reported by John Coffin’s group (12q12, K20; 13q31.3, K22). Other 23 

non-reference HERV-K insertion sites might be unique individual-specific HERV-K 24 

sites. On the other hand, we detected non-reference HERV-K integration sites in 25 
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inter-gene, intron and exon in iPS cells but not in fibroblast cells (Table 2 Specific in 1 

iPS cells, Fig. 7C and 7D, Supplemental Fig. S3C). There were four non-reference 2 

integration sites in the fibroblast cells that were not present in the iPS cells (Table 2 3 

Specific fibroblast and Supplemental Fig. S3B). Compared with the fibroblast cells, 4 

the number of non-reference integration sites in the iPS cells increased with time 5 

(Table 2 Specific in iPS31, iPS41, Fig. 7C and 7D, Supplemental Fig. S3C). These 6 

results indicate that HERV-K has retrotransposition activity and moves within the 7 

genomes of iPS cells. However, we found no rapidly growing cells containing non-8 

reference HERV-K integration sites among the iPS-p41 cells (Fig. 7C), indicating that 9 

clonal expansion is rare in iPS cells. These results suggest that newly integrated 10 

HERV-K is not always advantageous to the cell proliferation, and cellular clonality 11 

might depend on the HERV-K integration sites in iPS cells. 12 

 13 

Discussion 14 

In this study, we demonstrated that HERV-K is capable of retrotransposition in 15 

SOX2-expressing cells. The transactivation of HERV-K LTR5Hs and LTR5B by 16 

SOX2 is retained even after the accumulation of several mutations in these LTR 17 

sequences. Although the physiological roles of HERV-K are still unknown, we found 18 

that HERV-K has retrotransposition activity and moves randomly around the host 19 

genome. In a blasticidin-selected cell population where SOX2 is not expressed, and 20 

hence retrotransposition occurs only once after transfection, the copy number of 21 

HERV-K, which is integrated into the intron of a tumor suppressor gene (NDRG1) 22 

(Table 1), increased. This suggests that HERV-K integration may accelerate cell 23 

growth by impairing the host genome and thus can cause several diseases 24 

(discussed below). However, in SOX2-expressing cells, only a small number of novel 25 
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HERV-K integration sites were identified. It is possible that the SOX2-expressing 1 

cells that have new integration of HERV-K may die or grow slowly during the long-2 

term culture due to the harmful impact of the HERV-K integration on the genome 3 

integrity. 4 

In addition to the well known role in the maintenance and re-establishment of 5 

pluripotency (Avilion et al, 2003) (Takahashi & Yamanaka, 2006), SOX2 is essential 6 

for central nervous system (CNS) development and the maintenance of neural stem 7 

cells (Pevny & Nicolis, 2010). SOX2 is also expressed in Schwann cells (Le et al, 8 

2005) and impairs Schwann cell remyelination and their functional recovery after 9 

nerve injury, such as in multiple sclerosis (Roberts et al, 2017). Therefore, it is 10 

conceivable that SOX2-induced expression of HERV-K might have impact on CNS 11 

development, the maintenance of neural stem cells, remyelination, or recovery from 12 

nerve injury. Indeed, HERV-K is implicated in several neural diseases, including 13 

multiple sclerosis (Tai et al, 2008). Moreover, the HERV-K LTR integration sites 14 

differ slightly among the genomes of individual humans and between human tissues, 15 

and HERV-K LTR single-nucleotide polymorphisms (SNPs) are implicated in several 16 

neural diseases (Wallace et al, 2018). It is possible that SOX2 might influence the 17 

expression of genes adjacent to HERV-K LTR5Hs. Additionally, our results are 18 

consistent with the possibility that HERV-K expression, which becomes 19 

uncontrollable when the epigenetic regulation of SOX2 is disturbed, disrupts the 20 

nervous system through the retrotransposition of HERV-K.  21 

SOX2 is known for its association with numerous types of cancer (Weina & Utikal, 22 

2014). It regulates the self-renewal and maintenance of cancer stem cell populations 23 

by promoting oncogenic signaling (Bareiss et al, 2013; Chen et al, 2012; Laga et al, 24 

2011). The expression of HERV-K is considerably higher in malignant tissues, such 25 
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as germ-cell tumors, melanomas, and ovarian cancers, than in healthy tissues 1 

(Buscher et al, 2005; Conrad et al, 1997; Kurth & Bannert, 2010; Wang-Johanning et 2 

al, 2007), suggesting a possibility that the transactivation of HERV-K LTR5Hs by 3 

SOX2 is involved in numerous malignant tumors. Whether HERV-K expression is 4 

involved in the self-renewal and maintenance of cancer stem cells is still unknown, 5 

but it is possible that the impairment of the genome by HERV-K retrotransposition 6 

may cause the malignancy of tumor tissues. 7 

HERV-K is transiently reactivated in early human development to protect cells 8 

from the threat of exogenous viral infection (Grow et al, 2015); however, HERV-K 9 

retrotransposition entails a risk of genomic impairment in SOX2-expressing cells 10 

such as iPS cells. According to our results, such genomic impairment is probably a 11 

rare event in iPS cells (Fig. 7). In addition to the possibility that HERV-K 12 

retrotransposition causes a defect in cell growth, thereby reducing cells with the 13 

genomic impairment, it is possible that HERV-K retrotransposition is prohibited by 14 

host restriction factors during its reverse transcription and/or integration. For 15 

example, APOBEC3F, a restriction factor in cell-free HERV-K infection (Lee & 16 

Bieniasz, 2007), may inhibit HERV-K retrotransposition during the reverse 17 

transcription step. In the yeast Saccharomyces cerevisiae, Ty1 LTR retrotransposon 18 

Gag forms virus-like particle as retrosome for the reverse transcription (Salinero et 19 

al, 2018). APOBEC3G interacts with Ty1 Gag in the retrosome and restricts the Ty1 20 

retrotransposition (Dutko et al, 2005; Schumacher et al, 2005). However, it is 21 

unknown whether HERV-K Gag forms a retrosome, as does Ty1 (Salinero et al, 22 

2018), or whether APOBEC3F can access the HERV-K genome in the retrosome. In 23 

future, the mechanism of HERV-K retrotransposition must be clarified. 24 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.14.202135doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.202135
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Transposable elements such as HERVs often provide new functions to vertebrate 1 

hosts, which result in the exaptation (Johnson, 2019). Endogenous retrovirus Env, 2 

which is called syncytins, is necessary for fusion of cytotrophoblasts to form the 3 

multinucleate syncytiotrophoblast layer of the placenta (Lavialle et al, 2013). The 4 

syncytins are involved in the convergent evolution during the changes from oviparity 5 

to viviparity because syncytins are originated independently across multiple 6 

mammalian lineages and a live-bearing reptile (Cornelis et al, 2017; Cornelis et al, 7 

2015). Additionally, the neuronal gene Arc, which is retrotransposon Gag protein, 8 

mediates intercellular signaling in neurons and is essential for the animal cognition 9 

(Pastuzyn et al, 2018). It suggests that retrotransposon Gag has obtained alternative 10 

functions in neurons during evolution. The function of HERV-K is still unclear, but 11 

considering the acquisition of SOX2 responsive elements long time ago and the 12 

retention of the competent elements in their LTRs since then, it is tempting to 13 

speculate that HERV-K play important physiological roles in SOX2-expressing cells. 14 
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Plasmids 11 

Full-length HERV-KCON was kindly provided by Paul Bieniasz (Lee & Bieniasz, 12 

2007). pHERV-KCON LTR-Luc encodes the luciferase gene, driven by HERV-K LTR. 13 

pMXs-SOX2, OCT3/4, KLF4, and NANOG were obtained from Addgene. 14 

CHKCinNluc and CHKCinBLC were derived from CHKCP (kindly provided from Paul 15 

Bieniasz) (Lee & Bieniasz, 2007). The puromycin N-acetyl-transferase gene was 16 

removed from CHKCP (CHKCP/delPuro), and a NotI site was inserted. Intron-17 

disrupted Nanoluc (inNluc) and blasticidin (inBLC) were designed as previously 18 

reported (Xie et al, 2011). The inNluc and inBLC cassettes encode the SV40 early 19 

enhancer/promoter and SV40 late poly(A) signal, respectively. These cassettes were 20 

introduced into CHKCP/delPuro at the NotI site in an antisense orientation. 21 

Cells 22 

HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma) 23 

supplemented with 5% fetal bovine serum (FBS). NCCIT cells (ATCC® CRL-2073™) 24 

were cultured in RPMI1640 medium with 10% FBS, 1 mM sodium pyruvate and 25 

Glutamax™ (Teshima et al, 1988). Human iPS cells were generated from human-26 

skin‐ derived fibroblasts and were cultured with mitomycin-C-treated mouse 27 
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embryonic fibroblast feeder cells, as described previously (Fusaki et al, 2009; Soga 1 

et al, 2015); Eto et al., 2018).  2 

HERV-K retrotransposition assay 3 

   HeLa cells were seeded in six-well plates at a density of 2 x 105 cells/well. The 4 

cells were transfected with Lipofectamine 3000 Reagent (Invitrogen), according to 5 

the manufacturer’s protocol. The cells were harvested 1– 6 days after transfection, 6 

and the nanoluciferase activities in the cells were measured with Nano-Glo® 7 

Luciferase Assay Reagent (Promega). 8 

Measurement of dual-luciferase luminescence 9 

   Luminescence was measured with the Dual-Luciferase Reporter Assay System 10 

(Promega), according to the manufacturer’s instructions. The cell lysate was mixed 11 

with Luciferase Assay Reagent II. Firefly luciferase activity was measured with a 12 

luminometer. Renilla luciferase activity was read after the cell lysate containing 13 

Luciferase Assay Reagent II was mixed with Stop & Glo Reagent. 14 

Bisulfite sequencing 15 

EpiTect Plus Bisulfite conversion kit (Qiagen) was used as described previously 16 

(Grow et al, 2015). The PCR fragments were inserted into pCR-BluntII-Topo vector 17 

(Invitrogen). Approximately 10 clones in HeLa and NCCIT cells were Sanger 18 

sequenced for quantifying the CpG methylation. 19 

ChIP assay 20 

 NCCIT cells were fixed with 1% formaldehyde and lysed with 20% NP-40 (10 mM 21 

HEPES-KOH pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, and 20% NP-40 with 22 

protease inhibitor cocktail [Roche]). The chromatin in the lysates was fragmented to 23 

320 bp after digestion with micrococcal nuclease. After further lysis with 10% SDS 24 

(50 mM Tris-HCl pH 8.1, 0.2 mM EDTA, 10% SDS, with protease inhibitor cocktail 25 
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[Roche]), the chromatin was sonicated. The DNA–protein complexes were 1 

precipitated overnight by incubation with an anti-SOX2 antibody (BioLegend),and 2 

then incubated with ChIP-Grade Protein G Magnetic Beads (9006, Cell Signaling 3 

Technology) for 2 h. The abundance of HERV-K LTR in the precipitated-DNA was 4 

analyzed with quantitative PCR using primers: HERV-K LTR primer F 5-5 

AGCACTGAGATGTTTATGTG-3 and R 5-TGTGGGGAGAGGGTCAGC -3 and 6 

SYBR Premix ExTaq II (Takara Bio Inc.). The signal intensity was quantified with the 7 

ABI 7900HT Fast Real-Time PCR System (Applied Biosystems). 8 

Linker-mediated (LM)-PCR 9 

The HERV-K integration sites were analyzed with LM-PCR and high-throughput 10 

sequencing, as previously described (Gillet et al, 2011; Satou et al, 2017). To 11 

analyze HERV-K integration site, the junction between the 3-LTR of HERV-K and 12 

the host genomic DNA was amplified with a primer targeting the 3-LTR and the 13 

linker. The first forward primer targeting the 3-LTR was B3-K1: 5-14 

CCTCCATATGCTGAACGCTGGTT-3; the second forward primer targeting the 3-15 

LTR was P5B5-K2: 5-16 

AATGATACGGCGACCACCGAGATCTACACCCAAATCTCTCGTCCCACCTTACGA17 

GAAACACCCACAGG-3. The DNA libraries were sequenced as paired-end reads 18 

with Illumina MiSeq, and the resulting fastq files were analyzed. The sequencing 19 

primer targeting the 3-LTR was Seq-K1: 5-20 

ACACCCACAGGTGTGTAGGGGCAACCCACC-3. The flanking host genome 21 

sequences were used to determine viral integration sites. The resulting short reads 22 

were cleaned using an in house script, which extracts reads with a high index-read 23 

sequencing quality (Phred score > 20) in each position of an 8-bp index read. The 24 

clean sequencing reads were aligned with HERV-K LTR sequences (CCTACA and 25 
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CCTTCA) and were mapped to human genome using the BWA-MEM algorithm (Li & 1 

Durbin, 2009). Further data processing and cleanup, including the removal of reads 2 

with multiple alignments and duplicated reads, were performed using Samtools (Li & 3 

Durbin, 2009) and Picard (http://broadinstitute.github.io/picard/). The clone numbers 4 

with each HERV-K integration site were quantified as previous reports (Gillet et al, 5 

2011; Satou et al, 2017). 6 

Western blotting analysis 7 

Cells and virus were lysed with 1% Triton X lysis buffer (50 mM Tris-HCl pH 7.5 8 

containing 0.5% Triton X-100, 300 mM NaCl, 10 mM iodoacetamide, and protease 9 

inhibitor cocktail [Roche]). After 2 x SDS sample buffer was added, the SOX2, 10 

OCT3/4, GAPDH and HERV-K Gag proteins were detected with immunoblotting 11 

using an anti-SOX2 antibody (Merck Millipore), an anti-OCT3/4 antibody (BD 12 

Biosciences), an anti-GAPDH antibody (Sigma) and an anti-HERV-K Gag antibody 13 

(Austral Biologicals), respectively, as the primary antibodies. Horseradish peroxidase 14 

(HRP)-conjugated anti-mouse Ig antibody (Jackson ImmunoResearch) was used as 15 

the secondary antibody. The HRP-conjugated secondary antibody was detected with 16 

Chemi-Lumi One L (Nacalai Tesque). 17 

Reverse transcription–quantitative PCR analysis 18 

Total RNA was purified with the RNeasy Mini Kit (Qiagen). The mRNA was reverse 19 

transcribed with Murine leukemia virus (MLV) reverse transcriptase after it was 20 

annealed with a poly(T) primer. HERV-K gag DNA was amplified with primers: 21 

HERV-K Gag CA forward primer 5- CAAGACCCAGGAAGTACCT-3 and reverse 22 

primer 5-ACACTCAGGATTGGCGTT-3. All qPCR assays were performed with 23 

SYBR Premix ExTaq II (Takara Bio Inc.). The data for the target genes were then 24 

normalized to the expression level of glyceraldehyde 3-phosphate dehydrogenase 25 
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(GAPDH; housekeeping gene), amplified with GAPDH forward primer 5-1 

CGCTCTCTGCTCCTCCTGTT-3 and reverse primer 5- 2 

ACAAAGTGGTCGTTGAGGGC-3. 3 

Flow cytometry analysis 4 

  Total DNA was extracted from NCCIT cells with the DNeasy Blood & Tissue kit 5 

(Qiagen). HERV-K LTR was amplified with HERV-K LTR primers (5Hs forward 6 

primer: 5-CCAAAAGCCATCGATTGTGGGGAAAAGCAAGAGAG-3; 5Hs 5LTR 7 

reverse primer: 5-TTCCATCTCGAGTGAAGTGGGGCCAGCCCCTCCACACCT-3; 8 

5Hs 3LTR reverse primer: 5-9 

TTCCATCTCGAGTGTAGGGGTGGGTTGCCCCTCCACACC-3; 5A forward primer: 10 

5-AAAGCCATCGATTGTAGGGAAAAGAAAGAGAGATCAGAC-3; 5A 5LTR 11 

reverse primer: 5-TTCCATCTCGAGTGAAGGGGTGGCCTGCCCCTCCA-3; 5A 12 

3LTR: reverse primer 5-TTCCATCTCGAGCTCCACACCTGTGGGTAT-3; 5B 13 

forward primer: 5-AAAGCCATCGATTGTAGGGAAAAGAAAGAGAGATCAG-3; 5B 14 

5LTR reverse primer: 5-15 

TTCCATCTCGAGTGAAGTGGGGCCAGCCCCTCCACACCT-3; 5B 3LTR reverse 16 

primer: 5-TTCCATCTCGAGCTCCACACCTGTGGGTATTTCT-3). The HERV-K 17 

LTR was inserted upstream from the yellow-fluorescent-protein-encoding gene 18 

(HERV-K LTR-Venus). HeLa and NCCIT cells were cotransfected with pHERV-K 19 

LTR-Venus and pMXs-SOX2. Two days after transfection, the fluorescent signals 20 

were analyzed with flow cytometry. 21 

 22 

Figure legends 23 
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Fig. 1. SOX2 contributes to the promoter function of HERV-K LTR. (A) SOX2 and 1 

OCT3/4 binding motifs were identified in the HERV-K LTR with the PROMO 2 

software, which is used to identify transcription factor binding motifs. (B) Binding 3 

sites of SOX2, OCT3/4 and NANOG on respective LTR5Hs copies in human ES 4 

cells were collected from ENCODE ChIP-Seq dataset, and the positions on the 5 

consensus sequence of LTR5Hs are shown. (C) HeLa cells were cotransfected with 6 

the plasmid pHERV-KCON LTR-Luc, the indicated plasmids, and the Renilla-Luc 7 

plasmid. The firefly and renilla luciferase activities were measured. (D) HeLa cells 8 

were cotransfected with pHERV-K LTR-Luc and different amounts of the indicated 9 

plasmids. The luciferase activity was measured. (E) Amounts of OCT3/4, SOX2, and 10 

GAPDH proteins were measured with western blotting. (F) Chromatins in HeLa and 11 

NCCIT cells were extracted, and SOX2-binding DNA fragments were 12 

immunoprecipitated with the indicated antibodies. HERV-K LTRs in the 13 

immunoprecipitated DNA were measured with qPCR. (G) Amounts of SOX2 and 14 

GAPDH proteins in NCCIT and SOX2-knockout NCCIT (NCCIT/KOSOX2) cells were 15 

measured with western blotting. The sequences of SOX2 in each cell were analyzed. 16 

(H) NCCIT and NCCIT/KOSOX2 cells were cotransfected with pHERV-K LTR-Luc 17 

and SOX2-encoding plasmids. The luciferase activity was measured. (C, D, F, and 18 

H) Data from three independent experiments are shown as means  standard 19 

deviations. P values were determined with Student’s t test. *P < 0.01; **P < 0.001; 20 

***P < 0.0001; n.s., not significant. (I) Amounts of mature HERV-K Gag in the 21 

supernatants of NCCIT and NCCIT/KOSOX2 cells were measured with western 22 

blotting. 23 

 24 
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Fig. 2. Multiple SOX2-binding motifs contribute to HERV-K transcription. HeLa (A 1 

and C) and NCCIT cells (B and D) were cotransfected with pHERV-K LTR mutants 2 

and the indicated plasmids. The luciferase activity was measured. (A, B, C, and D) 3 

Data from three independent experiments are shown as means  standard 4 

deviations. P values were determined with Student’s t test. *P < 0.01; **P < 0.001; 5 

***P < 0.0001; n.s., not significant. 6 

 7 

Fig. 3. HERV-K genome is hypermethylated in HeLa cells. (A) There is likely to be a 8 

CpG island (11 CG nucleotides) between HERV-K LTR and gag. (B and C) DNA was 9 

extracted from NCCIT (B) and HeLa cells (C). The sequences of nine HERV-K 10 

genomes between LTR and Gag in NCCIT cells and 12 HERV-K genomes in HeLa 11 

cells were analyzed after the DNAs were treated with bisulfite to convert cytosine 12 

residues to uracil. White circles indicate unmethylated nucleotides and black circles 13 

indicate methylated nucleotides in the CpG island. (D) HeLa cells were treated with 14 

5-aza-2-deoxycytidine for 1 day, and then transfected with a plasmid encoding 15 

SOX2. Two days after transfection, the amounts of HERV-K Gag mRNA were 16 

measured with RT–qPCR. Data from three independent experiments are shown as 17 

means  standard deviations. P values were determined using Student’s t test. *P < 18 

0.01; **P < 0.001; n.s., not significant. 19 

 20 

Fig. 4. HERV-K transactivation by SOX2 is conserved among HERV-K LTR5Hs. 21 

HERV-K LTR series were amplified with PCR from genome into NCCIT cells and 22 

inserted upstream from the YFP gene. HeLa cells (A) were cotransfected with 23 

plasmid encoding SOX2 and the pHERV-K LTR–YFP series. NCCIT (Parent) and 24 

NCCIT/KOSOX2 cells (B) were transfected with the pHERV-K LTR-YFP series. The 25 
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yellow fluorescent protein (YFP)-positive cells were analyzed with flow cytometry. (C) 1 

Neighbor-joining tree was constructed based on the aligned nucleotide sequences 2 

corresponding to HERV-K LTRs within NCCIT cells. 3 

 4 

Fig. 5. HERV-K has retrotransposition activity in HeLa cells. (A) The construction of 5 

pHERV-K GagProPol/inNanoluc is described. The 5 U3 region was replaced with 6 

the CMV promoter. Intron-disrupted Nanoluc (inNluc) and SV40 were introduced into 7 

the Env region in an antisense orientation. (B) HeLa cells were transfected with 8 

pHERV-K GagProPol/inNanoluc or pHERV-K del/GagProPol/inNanoluc. 9 

Nanoluciferase activity was measured each day with a nanoluciferase reporter 10 

assay. (C) HeLa cells were transfected with pHERV-K mutants/inNanoluc alone or 11 

cotransfected with pHERV-K mutants/inNanoluc and HERV-K GagProPol. Five days 12 

after transfection, spliced nanoluciferase activity within the retrotransposed HERV-K 13 

was measured as the nanoluciferase activity. (B and C) P values were determined 14 

with Student’s t test. *P < 0.01; **P < 0.001; ***P < 0.0001; n.s., not significant. 15 

 16 

Fig. 6. New integration sites for HERV-K appeared in HERV-K-transfected HeLa 17 

cells. (A) Construction of pHERV-K GagProPol/inBlasticidin (inBLC) is described. 18 

inNluc was replaced with inBlasticidin (inBLC) in the Env region of HERV-K. HeLa 19 

cells were transfected with pHERV-K inBLC. Blasticidin-resistant cells were selected 20 

2 weeks after transfection, and the HERV-K DNA in the genome was then amplified 21 

by PCR and determined with NGS analysis. The primers were designed to bind the 22 

outside of repeated sequences (4F, 5F, 1R and 2R arrowheads), (B) HERV-K 23 

integration sites that are present in the database are shown in red (Reference). Non-24 

reference HERV-K integration sites in the HeLa and HeLa-inBLC cells, but not in 25 
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fibroblasts, are shown in yellow (passage 0), black (passage 1), green (passage 2), 1 

purple (passage 17), and blue (passage 31). The outer most ring is G-band of 2 

human chromosome. (C) Universal non-reference HERV-K insertions (Universal) 3 

were detected in both HeLa and HeLa-inBLC cells, but not in fibroblast cells. (D and 4 

E) Specific non-reference HERV-K insertions (Specific) were detected in HeLa-5 

inBLC-p1, -p2, -p17, and -p31 cells, but not in HeLa-p0. Cell growth rates were 6 

classified as rapid (D) or normal (E). (C, D and E) Gray letters indicate HERV-K-7 

integration into a LINE-1, SINE, or repeat elements. These data were collected from 8 

two independent samples. (F) The number of specific non-reference HERV-K 9 

locations in HeLa and HeLa-inBLC-p1, -p2, -p17, and -p31 cells were determined. 10 

(G) HERV-K integration sites (8q24.22 and 16p11.2) in HeLa-inBLC-p1 cells were 11 

confirmed with PCR. Arrows (A) indicate primer-binding sites for PCR. The primers, 12 

which annealed at the integration sites, were designed to sequences adjacent to 13 

HERV-K LTR (A). (H) Sequences between HERV-K LTR and the neighboring HERV-14 

K genomes in HERV-K/inBLC-transfected HeLa cells were analyzed with Sanger 15 

sequencing. TSD indicates target-site duplication in the human genome generated 16 

by integrase. 17 

 18 

Fig. 7. New integration sites for HERV-K appeared in iPS cells. (A) Integration sites 19 

of HERV-K were determined with NGS analysis. iPS cells were derived from 20 

fibroblasts, then the cells were passaged 31 times (iPS-p31) or 41 times (iPS-p41). 21 

HERV-K integration sites that were already present in the database (Reference) are 22 

shown in red. Non-reference HERV-K integration sites in fibroblasts and iPS cells but 23 

not in HeLa cells are shown in green (fibroblast), purple (iPS cells; passage 31), and 24 

blue (iPS cells; passage 41). (B) Universal non-reference HERV-K insertions were 25 
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specifically determined in this donor. (C) Specific non-reference HERV-K insertions 1 

were specifically identified in iPS cells. (B and C) Gray letters indicate HERV-K-2 

integration into LINE-1, SINE, or repeat elements. These data were collected from 3 

four independent samples. (D) The number of specific non-reference HERV-K 4 

locations in fibroblasts and iPS cells were determined. 5 

 6 

Table 1. Loci of new HERV-K integration sites in HERV-K-transfected HeLa cells.  7 

aUniversal HERV-K integration sites in HeLa cells. 8 

bDifferent HERV-K integration sites between HeLa and HERV-K/inBLC-transfected 9 

HeLa cells. 10 

cConsistent with a previous report from John Coffin’s group (Subramanian et al, 11 

2011). 12 

dHERV-K flanking region is in the repetitive sequence. 13 

 14 

Table 2. Loci of new HERV-K integration sites in iPS cells. 15 

aUniversal HERV-K integration sites in this donor. 16 

bDifferent HERV-K integration sites between fibroblast and iPS cells. 17 

cConsistent with a previous report from John Coffin’s group (Subramanian et al, 18 

2011). 19 

dHERV-K flanking region is in the repetitive sequence. 20 

 21 

Fig. S1. SOX2 and OCT3/4 contribute to the promoter function of HERV-K LTR. (A) 22 

SOX2- and OCT3/4-binding motifs were identified in the HERV-K LTR with the 23 

PROMO software, which is used to identify putative transcription factors. Deletion 24 

mutants of LTR were constructed. (B–D) NCCIT cells were transfected with the 25 
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pHERV-KCON mutants. Two days after transfection, the firefly luciferase activities 1 

were measured with a luciferase reporter assay. (E) HeLa cells were cotransfected 2 

with pHERV-KCON mutants and the indicated plasmids. Two days after transfection, 3 

the firefly luciferase activities were measured with a luciferase reporter assay. (F) 4 

HeLa cells were cotransfected with the pHERV-KCON mutants, the indicated plasmids, 5 

and the Renilla-Luc plasmid. Two days after transfection, both firefly luciferase and 6 

Renilla luciferase activities were measured with a dual luciferase reporter assay. 7 

 8 

Fig. S2. New integration sites for HERV-K appeared in HERV-K-transfected HeLa 9 

cells. (A and B) HeLa cells were transfected with pHERV-K-inBLC. Blasticidin-10 

resistant cells were selected 2 weeks after transfection, and the HERV-K DNA in the 11 

genome was then amplified with PCR and analyzed with next-generation 12 

sequencing. Specific non-reference HERV-K insertions (Specific) were detected in 13 

HeLa (B) or HeLa-inBLC-p1, -p2, -p17, and -p31 cells (A). Cell growth speeds was 14 

classified as slow (A). Gray letters indicate HERV-K-integration in LINE-1, SINE, or 15 

repeat elements. (C) HERV-K integration sites (1q36.21 and 12p13.33) in HeLa-16 

inBLC-p1 cells were confirmed with PCR. (H) Sequences between HERV-K LTR and 17 

the neighboring HERV-K genomes in HERV-K/inBLC-transfected HeLa cells were 18 

analyzed with Sanger sequencing. TSD is a target-site duplication in the human 19 

genome generated by integrase.. 20 

  21 

Fig. S3. New integration sites of HERV-K appeared in iPS cells. (A) HERV-K Gag 22 

mRNA and GAPDH mRNA expression in NCCIT and iPS cells was measured with 23 

reverse transcription–PCR. The integration sites of HERV-K were determined with 24 

next-generation sequencing. (B and C) Specific non-reference HERV-K insertions 25 
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were specifically determined in fibroblasts (B) and iPS-31 cells (C). Gray letters 1 

indicate HERV-K-integration in LINE-1, SINE, or repeat elements. 2 
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HeLa-inBLC Locus Coordinate GRCh38/hg38 Flanking region Function 
Universala 7p22.1 chr7:4,599,432 ERVK intd

HeLa 11q13.4 chr11:71,800,891 FAM86C1 exon4,5
11q22.1 chr11:101,696,031 ERVK intd

12p13.31 chr12:8,231,534
16p12.3 chr16:20,180,721 AluSxd

19p12 c chr19:21,658,739
Specificb 8q24.22 chr8:133,275,187 NDRG1 intron 3 Stress-responsive protein in hormone responses, cell growth, and differentiation. 
HeLa-inBLC Acts as a tumor suppressor in many cell types.
Rapid-growth 16p11.2 chr16:30,785,310 MIRcd; ZNF629 intron 1 Maybe involved in transcriptional regulation.

Xp11.23 chrX:120,549,077 AluSz6 d

Specificb 8p11.1 chr8:43,312,043 L1PA2d; POTEA intron 6
HeLa-inBLC 19p11.21 chr18:15,163,428 ERVL-MaLRb;
Normal-growth AP005901.2 intron 1

Xq24 CUL4B intron 2 Core component of multiple culin-RING-based E3 ubiquitin-protein ligase complexes.
Specificb 1p36.21 chr1:15,112,068 KAZN intron 13, Desmosome assembly, cell adhesion, cytoskeletal organization, 
HeLa-inBLC TMEM51-AS1 exon 6 and epidermal differntiation.
Slow-growth 2q13 chr2:111,999,744 LTR7Bd:MERTK intron 9 MER/AXL/TYRO3 receptor kinase family,

cell survival, migration, differentiation, and phagocytosis of apoptotic cells.
3p26.1 chr3:4,366,476 L1P1d;SUMF1 intron 8 Enzyme that catalyzes the hydrolysis of sulfate esters by oxidizing a cysteine residue 

in the substrate sulfatase to an active site 3-oxoalanine residue.
6p22.3 chr6:23,230,703 AluScd

7p21.2 chr7:16,217,694 L1PA2d;ISPD intron 8 2-C-metyl-D-erythritol 4-phosphate cytidylyltransferase-like protein
10p15.1 chr10:6,263,616 LTR50d

10q11.21 chr10:42,101,508
12p13.33 chr12:768,683 WNK1 intron 1 Serin/threonine protein kinases. Maybe a key regulator of blood pressure by

controlling the transport of sodium and chloride ions.
12q23.1 chr12:100,854,613 L1ME4ad;ANO4 intron 3

AC138360.1 intron 1
13q22.2 chr13:76,617,585 L1HSd;

AL136441.1 intron 3
16p13.3 chr16:1,748,182 MAPK8IP3 intron 6 JNK signaling by aggregating specific components of the MAPK cascade.
16q11.2 chr16:46,398,910
17p13.1 chr17:8,072,100
20q13.2 chr20:51,642,183 AluSx1d;ATP9A intron 9 ATPase phospholipid transporting 9A
Xq13.3 chrX:75,233,189 L1PA3d
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iPS Locus Coordinate GRCh38/hg38 Flanking region Function 
Universala 3q13.2 chr3:113,032,475 HERV-K intd; AC078785.1 intron 1
fibroblast 4q25 chr4:111,308,304 AluYd

iPS31 6q14.1 chr6:77,725,406 HERV-K intd; MEI4 intron 2 Required for meiotic DNA double-strand break formation.
iPS41 7p14.3 chr7:334,071,494 L1PA3d; BBS9 intron 19 Required for ciliogenesisi but is dispensable for centriolar satellite function.

(bardet-biedl syndrome)
12q12 c chr12:43,919,854 L1MB1d; TMEM117 intron 2
13q31.3 c chr13:90,090,934 ; LINC00559 intron 3 Long non-coding RNA.

Specificb 8q13.1 chr8:66,953,856 L1PA2d; TCF24 intron 3 Putative transcription factor. 
fibroblast 9q22.33 chr9:99,500,005 L1PA2d

15q15.1 chr15:41,053,309 AluYd; INO80 intron 19 DNA helicase, transcriptional regulation, DNA replication, DNA repair 
21q11.2 chr21:13,820,849 MIR/LTR5Hsd

Specificb 1p13.2 chr1:113,755,874 AluYd;PHTF1 intron 2 Transcription regulation 
iPS31 2q22.3 chr2:147,700,152

5p13.3 chr5:30,822,734 L1PA2d

15q11.2 chr15:23,715,336 L1PA3d

20q11.23 chr20:38,348,370 AluSc5d; LBP intron 1 Binds to the lipid A moiety of bacterial lipopolysaccharides (LPS), a glycolipid
present in the outer membrane of all Gram-negative bacteria. 
(toxic pneumonitis, mastitis, infective endocarditis, alcoholic hepatitis, 
mesenteric lymphadenitis, peritonitis, appendictis, bacteremia, endocarditis, 
acute respiratory distress syndrome)

Xq25 chrX:126,189,98 L1PA2d

Specificb 1p13.2 chr1:111,609,710 AluSxd; RAP1A intron 1 Induces morphological reversion of a cell line transformed by a Ras oncogene.
iPS31 (Kabuki syndrome 1, leukocyte adhesion deficiency type iii, tuberous sclerosis, 
iPS41 babesiosis, central nervous system hemangioma, 

cerebral cavernous malformations-1, cerebral cavernous malformations-2)
1p34.3 chr1:38,842,086 AluYd; RRAGC intron 6 Has guanine nucleotide-binding activity
1p35.1 chr1:32,614,846 AluScd

3q11.2 chr3:97,642,693 L1PA2d; EPHA6 intron 14 (Oculoauricular syndrome)
4q22.1 chr4:91,979,478 L1HSd

5p13.3 chr5:32,212,988 AluSx3d

9q21.13 chr9:73,987,206 /LTR5Hsd

10q24.2 chr10:99,256,369 MSTD intd

11q13.2 chr11:67,868,810 LTR5Hs intd

11q13.3 chr11:70,471,356 ; SHANK2 exon 2 Molecular scaffolds in the postsynaptic density of excitatory synapses.
(Autism susceptibility 17, autism spectrum disorder, pervasive developmental 

15q14 chr15:36,348,199 disorder, deafness, autosomal recessive 63, secretory diarrhea, autistic disorder)
16p12.3 chr16:18,135,887 AluSzd; AC010601.1 intron 1
21p11.2 chr21:8,586,021 MLT1A0d

21q22.3 chr21:43,711,450 AluYd
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