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ABSTRACT

In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis.
However, tumor sequencing strategies typically result in loss of spatial information, critical to
understand cell interactions and their functional relevance. To address this, we investigate spatial
gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We
show that expression-based clustering enables data-driven tumor annotation and assessment of
intra-and interpatient heterogeneity; from which we discover shared gene signatures for immune
and tumor processes. We integrate and spatially map tumor-associated types from single cell
data to find: segregated epithelial cells, interactions between B and T-cells and myeloid cells,
co-localization of macrophage and T-cell subsets. A model is constructed to infer presence of
tertiary lymphoid structures, applicable across tissue types and technical platforms. Taken
together, we combine different data modalities to define novel interactions between
tumor-infiltrating cells in breast cancer and provide tools generalizing across tissues and

diseases.

INTRODUCTION

Breast cancer is a vile disease, every day claiming more than a hundred lives in the US alone and
inducing tremendous suffering among those affected.[1] To better understand, diagnose, and
treat breast cancer, extensive studies into the genomic underpinnings of the disease have been
conducted; one outcome of this work is the establishment of several clinically relevant subtypes.

These breast cancer subtypes exhibit varying characteristics, including drug sensitivities, and as
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a consequence, partially dictate the choice of treatment strategy.[2-4] One of the major breast
cancer subtypes is defined by an enrichment of the HER2 (human epidermal growth factor
receptor 2) expression on tumor cells, often caused by the amplification of a region on
chromosome 17 (cytogenetic band chr17g12) comprising the HER2 (ERBB2) gene; these tumors
are referred to as HER2-positive tumors.[5,6] An estimated 15-20% of all breast cancers tumors
are HER2-positive, and these tumors often exhibit aggressive growth and demand intense
treatment.[7,8] Understanding the molecular processes responsible for tumor growth and
development has shown to be of utter importance; exemplified by the drastic improvement in
patients’ prognosis after the introduction of HER2-targeted therapies.[9] Despite this, many
patients with HER2-positive breast tumors still succumb to the disease. Therefore, to deliver more
effective treatments and develop tools for early detection, we must continue to chart the

disease’s molecular profile from new and unexplored perspectives.

Tumors share an intimate relationship with their surroundings, and are best studied accordingly;
i.e., in the context of their environment. For example, the success of immunotherapy in tumor
treatment stems from its ability to interfere with interactions between cancer and certain immune
cells.[10] In addition, the presence of sites promoting cell-cell interactions, such as tertiary
lymphoid structures (TLSs), have shown to hold predictive power of treatment outcome in
HER2-positive tumors.[11-13] Evidently, the characterization of the cell type population within

tumors and their environment is imperative to understand the disease.

Techniques such as immunohistochemistry (IHC), in situ hybridization (ISH) and single cell RNA

sequencing (scRNA-seq) have been rigorously used to study the transcriptome as well as the
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physical location of genes and proteins.[14-16] However, these methods are usually burdened by
a tradeoff between spatial resolution and throughput. To exemplify, techniques such as IHC and
ISH may provide high spatial resolution, but tend to require a priori selection of targets, making
these methods less suited for exploratory analysis. In contrast, scRNA-seq offers insights into the
transcriptome of cells in the higher order of magnitudes, but their spatial origin is to a large extent
lost.[17] Spatial Transcriptomics (ST), as described by Stahl and Salmen et.al., presents a solution
to this dilemma, by providing spatially resolved and transcriptome-wide expression
information.[18] Cell interactions and spatial context are key components of the tumor
ecosystem, however this space is inhabited by a diverse population of complex cell types that
cannot be defined by a few marker genes or surface receptors; hence the benefits of using a
technique like ST.[19,20] Although ST does not provide single-cell resolution, this issue can be
addressed by leveraging information from scRNA-seq, spatially mapping cell types or clusters by

integration of the two data modalities.[21,22]

In this study, we used ST to survey the spatial patterns of gene expression and cell types in 36
samples collected from eight HER2-positive individuals. Intra-and inter-patient heterogeneity was
examined using a number of different methods, including expression-based clustering and single
cell data integration. We here present novel findings of expression signatures shared among

HER2-positive patients, cell type co-localization patterns and a predictive model for TLS-sites.
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RESULTS

HER2-positive tumors from eight individuals (patient A-H) were subjected to ST with three
alternatively six sections collected from each tumor, this resulted in a total of 36 ST-sections (See
Supplementary Figure 1 for details regarding the experimental setup). For brevity, we will refer to
sections originating from the same individual as replicates. Figure 1 provides an overview of the

analysis workflow and methods used for this purpose.

Manual annotation

One section from each tumor was examined and annotated by a pathologist. Based on
morphology, regions were labeled as either: in situ cancer, invasive cancer, adipose tissue,
immune infiltrate, or connective tissue, see Figure 2A and Supplementary Figure 3; not all regions

were represented in every patient.

Initial data characterization

Before conducting any downstream analysis, we assessed the data’s character with respect to
patients and sections. First, the data was filtered and normalized (see Methods) to prepare it for
subsequent analysis. Next, UMAP was applied to the processed data to obtain a two-dimensional
embedding, see Supplementary Figure Supplementary Figure 2.[23] Upon inspection of the
UMAP-projection, spatial capture locations (hereafter; spots) from the same patient were seen to
cluster together, while a high degree of intermixing between spots from different replicates (within

each patient) occurred. Interpatient heterogeneity can be expected when working with tumor
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samples.[24] Thus, to properly capture the nuances of each patient’s molecular profile and not

risk quenching weak signals, we analyzed each patient separately, then compared the outcomes.

Expression-based clustering

In the patient-wise analysis, we split the data into mutually exclusive patient subsets. A
normalization procedure, designed to remove technical noise and batch effects, was then applied
to the raw data of each patient subset, i.e., all replicates from the same patient were jointly
processed. Results from our analyzes, exemplified through patient G, are presented in Figure 2.
Equivalent results for all patients are found in Supplementary Figure 3. Next, the normalized
expression data was clustered using a shared nearest neighbor (SNN) approach, resulting in
groups (clusters) of spots with similar gene expression profiles, see Figure 2C. Spots neighboring
in physical space frequently resided near each other in expression space, i.e., they were often
assigned to the same cluster, see Supplementary Figure 4. The clusters were to a large extent
spatially coherent but, just as tumors or immune infiltrates, not always confined to a single region,
see Figure 2B. Cluster arrangement in the physical domain was consistent across replicates (

Supplementary Figure 4 and Supplementary Figure 6).

Cluster Annotation

To better understand what biological entities the expression-based clusters represented, we first
contrasted each cluster’s expression profile towards the rest (differential gene expression
analysis), resulting in a set of marker genes characteristic of each cluster, see Figure 2F. The
marker genes were selected by a combined cutoff with respect to their adjusted p-value and fold

change, see Methods and Supplementary Data 3. To investigate which biological pathways that
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the clusters were enriched for, we queried their marker genes against the GO:BP (GO Biological
Processes) database using g:Profiler.[25] From the set of marker genes and their associated
pathways, high-level functional annotations could be assigned to the expression-based clusters,
motivations for the cluster annotations are found in Supplementary Data 2. These annotations are

by no means exhaustive, but provide guidance in subsequent analysis.

Comparison of clusters with manually defined regions

We related the regions defined by the pathologist to the expression-based clusters by computing
the fraction of spots within a region that belonged to each cluster, shown in Figure 2E. Strong
concordance was observed; clusters enriched for immune-related processes overlapped well with
the immune-infiltrates, those with cancer associated pathways fell into the cancerous regions,
and so forth, see Supplementary Data 10. This comparison established the existence of a
relationship between the pathologist’s observations and clusters formed by data driven analysis.
Notably, an in situ cancer region that consisted of as few as 3 spots correctly clustered with
physically separated, but identically annotated, spots (cluster 4 in Figure 2B and Supplementary
Figure 5), attesting to the sensitivity of ST and verifying that clusters are not based on physical
proximity alone. In patient H, parts of a region labeled as in situ cancer were consistently, across
all replicates, inhabited by two expression-based clusters; one (cluster 1, patient H) that
overlapped with the other cancer areas while the second (cluster 4, patient H) was enriched for
immune processes and aligned spatially with the annotated immune infiltrates, see
Supplementary Figure 5. These observations suggest that data-driven expression-based
clustering captures signals that may be overlooked by visual inspection; thus in some cases

providing a more in-depth and nuanced depiction of the tumor tissue. The value of this is


https://paperpile.com/c/xyqAXA/BJcE
https://doi.org/10.1101/2020.07.14.200600
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.14.200600; this version posted July 14, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

manifold; the labour intense and time-consuming process of manual annotation is neither suitable
for high throughput analysis, nor is access to a trained pathologist always guaranteed.
Importantly, regions where distinct molecular pathways are active can easily be distinguished,

something that is hard to do only relying on (human) visual inspection.

Exploring Intra-and interpatient heterogeneity

Multiple tumor profiles may exist among different individuals, but also within a given patient. To
outline this heterogeneity may aid in the design of more nuanced and personalized treatment
regimens.[26] Therefore, with the expression-based clusters as a structured framework to operate

within, we aimed to assess both intra-and interpatient heterogeneity in our data.

Interestingly, we were able to observe intra-patient heterogeneity at the transcriptome level in
most of our patients; in fact, all patients except two (patient B and H) had more than one cluster
labeled as cancer. To exemplify, patient E exhibited varying transcription profiles in two spatially
separated tumor foci assigned to different clusters (cluster 4 and 5, patient E), see Supplementary
Figure 3. While true that such observations may be explained by the practice of “overclustering”,
the two clusters were clearly separated and non-neighboring in UMAP-space, which suggested
distinct expression profiles. Both clusters had ERBB2 (encoding the HER2-receptor) listed as a
marker gene and were enriched for pathways associated to cell growth, but one of the cluster
displayed a high degree of enrichment for immune response related processes (cluster 3, patient
E) while apoptotic and regulatory pathways were enriched in the other (cluster 4, patient E), see
Supplementary Data 6. These findings implied that one tumor focus (cluster 3, patient E) likely

had a higher degree of infiltrating immune cells than the other.
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Another example of intrapatient heterogeneity was patient G, with four separate clusters (cluster O
and 4-6) that were annotated as cancer (see Figure 2), one of them aligned with the two in situ
cancer regions. Of course, the presence of multiple cancer clusters does not necessarily reflect
different tumor types, but rather that the corresponding spatial regions are not homogenous in
their expression; for example, as a consequence of hosting distinct immune cell populations. If
additional metadata could be obtained for patients, ST might be useful for relating tumor

intrapatient heterogeneity to more quantitative metrics, such as survival or treatment response.

Immune and tumor core signatures

To assess if any universal features were present in our data, we compared clusters across
patients with respect to their marker genes. We reasoned that if two clusters shared a large
number of marker genes, they should be considered more similar than if not. To translate this
notion of similarity into a quantitative metric, we computed the Jaccard Index for every
combination of cluster pairs. Five distinct supergroups (a.k.a, “clusters of clusters”) emerged after
the clusters were hierarchically grouped based on similarity, see Methods and Supplementary
Figure 7. Only those supergroups where at least one gene was shared among all members were
considered as robust, meaning two supergroups were discarded. In the remaining three
supergroups, marker genes present in a majority of the member clusters (at least 80%) were
extracted and considered as core signatures of the HER2-positive patients. Two core signatures
were immune-related: the first being a set of 47 genes, including APOE and C1Qf{A,B,C}
expressed (but not exclusively) by macrophages, suggesting that clusters in the corresponding

supergroup might contain tumor-associated macrophages;[19] the second was a set of 55 genes
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with lymphocyte and MHC class I-Il associated members (e.g., TRBC1, HLA-{A B},
HLA-D{QB1,RA,RB1}).[27] The third core signature consisted of 11 genes, with several of them
being related to cancer and proliferative growth (e.g., ERBB2, EPCAM and CDH1). [28,29] This
cancer core signature was derived from a supergroup where all clusters were annotated as
cancer-associated. For clarity, the aforementioned cancer supergroup consisted exclusively of
cancer-associated clusters, but not all such clusters were members of this group. See

Supplementary Data 1 for the complete core signatures.

Inference of cell type organization by integration with single cell data

Unsupervised clustering of expression data provides insight into spatial expression motifs present
in the data. Still, these expression profiles are generated by cell mixtures consisting of one or
more cell types; meaning that a one-to-one relationship between cluster and cell type is not
guaranteed. Given how spatial arrangement and patterns of interaction between different cell
types have implications for both disease progression and treatment, we wanted to chart each cell
type’s spatial distribution within the tissue. For this purpose, we deconvolved our spatial data
with scRNA-seq data from five HER2-positive tumors, annotated in three tiers, see Methods.[30]
The three tiers are referred to as the major, minor and subset tier (terminology inherited from
original source). There were eight different cell types in the major class: myeloid cells, T-cells,
B-cells, epithelial cells, plasma cells, endothelial cells, cancer associated fibroblasts (CAFs) and
Perivascular Like cells (PVL cells). The minor and subset tiers represented gradually finer
partitioning of the major types; with examples such as Macrophages (for brevity Mg) and CD8+
T-cells in the minor level and subsets of these in the lowest tier. Several methods to integrate

spatial and scRNA-seq data have been proposed, and success has been shown upon applying
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these techniques to spatial cancer data.[21] Most of these methods rely on correlation or elevated
expression of a select set of marker genes; however, we decided to use a method that takes
advantage of the full expression profiles from both data modalities. In short, the method we used
(stereoscope) decomposes the expression observed in each spatial location — a mixture of
transcripts from multiple cells —into contributions from different cell types defined by the single
cell data using a probabilistic model.[22] The advantage of this approach is that similar cell types
with overlapping sets of marker genes may still be distinguished, since the inference is based on
the complete expression profile of each type, which is especially important in a complex and
intermixed environment like tumors. Excerpts from the single cell integration analysis are given in
Figure 3. Supplementary Data 8 contains visualization of all of the remaining patients and tiers, all

output from stereoscope is found in Supplementary Data 7.

Enrichment of cell types within manually defined regions

Analogous to the analysis of our expression-based clusters, we examined enrichment/depletion
of cell types within the pathology-annotated regions to see how the single cell mapping related to
these. We implemented a slightly different approach to assess cell type enrichment, since
proportion values represent continuous values in contrast to the discrete cluster labels, see
Methods. Several affirmative trends were observed, B and T-cells were enriched in the immune
infiltrates while cancer regions showed enrichment of cancer-related cell types and depletion of
several cell types, see Figure 3A and Supplementary Data 9. We noted how all patients except
patient B showed enrichment of the HER2-related epithelial cancer type in the regions annotated
as invasive cancer regions. However, patient B exhibited depletion of the HER2 related type in

combination with enrichment of the LUMB type in these areas. Coincidentally, patient B was also

11
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unique in having a progesterone-receptor positive profile, in concordance with the LUMB
molecular subtype, see Supplementary Figure 14 and Supplementary Table 1.[31] Taken together,

these findings were seen as affirmative of our mapping’s validity.

Enrichment of cell types within expression-based clusters

Curious of which cell types that drove the formation of the expression-based clusters, we
conducted the same type of enrichment analysis as for the pathologist’s annotations, but this
time we assessed enrichment/depletion of cell types within clusters, see Figure 3B. In patient E —
with the two spatially disconnected tumor foci — the cluster associated with apoptotic and
regulatory pathways (cluster 4, patient E) was enriched for epithelial cells and depleted of memory
B-cells. In contrast the immune rich cancer cluster (cluster 3, patient E) was enriched for memory
B cells and CD4+ T-cells, with weaker or no enrichment of cancer types, see Supplementary
Figure 11. In Patient G, all clusters annotated as cancer were: depleted of plasma cells, had very
low enrichment or were depleted of B and T-cells, and three of four clusters were enriched for
epithelial types, see Figure 3. The in situ cancer cluster in (cluster 4) was the only cancer cluster in
patient G enriched for dendritic cells across all replicates while also being depleted of
myofibroblast like CAFs (Cancer Associated Fibroblasts), see Supplementary Figure 13. We also
observed how the plasma cell immune cluster (cluster 1, patient G) was enriched for plasma cells
while the APC immune cluster (cluster 3, patient G) exhibited stronger enrichment of B-cells,
T-cells and myeloid cells. PVL cells were overrepresented in the mixed cancer/connective tissue
clusters (cluster 6, patient G), which also showed enrichment of myeloid cells, CAFs and
endothelial cells, see Figure 3B and Supplementary Figure 12. Adipocytes or equivalent cell types

were not included in the single cell data we used, hence no such types were spatially mapped.
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Still, the adipose cluster (cluster 2, patient G) showed enrichment of PVL cells, myeloid and
plasma cells (albeit weak for the latter two). We expect cell types such as neutrophils and mast
cells to be present in our spatial data, given how they infiltrate tumors and are associated with
tumor progression; but these types were not present in the single cell data and could therefore
not be spatially mapped.[32,33] Agreement with the tissue morphology, pathologist-annotations
and expression-based clusters therefore suggests that the single cell data is sufficiently

representative of our tissues to provide a reliable mapping of the included types.

Interactive exploration of results
We have compiled a resource that contains all data and results from the expression-based
clustering and single cell mapping; with a graphical user interface (GUI) that enables

comprehensive exploration of these, see Code Availability.

Trends of cell type co-localization

To condense the information generated by the cell mapping and discover putative cellular
interactions, we examined the co-localization of types by computing their spot-wise Pearson
correlation, see Figure 3C. A positive correlation between two types was considered as indicative
of them co-localizing, with the degree of co-localization being proportional to their correlation

value; the opposite being true for negative values.

Within the major tier, the most conserved feature, present in all patients, was that epithelial cells

anticorrelated with all other types, see Figure 3C. Plasma cells anticorrelated with B-cells in all

patients except one (patient A, see Supplementary Figure 8). These findings indicate that B-cells
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and plasma cells, which differentiate from B-cells, reside at distinct locations within the tumor.[34]
It is not clear whether these findings reflect plasma cell migration during local differentiation from
tumor-associated B-cells, or if the plasma cells have developed from B-cells outside the tumor
microenvironment. Positive correlations of varying strengths between B and T-cells (major tier)
were observed in five of the eight patients; patients G and H exhibited particularly strong
co-localization signals and their spatial distributions of B and T-cells had an ample overlap, see
Figure 5A and Supplementary Figure 9-Supplementary Figure 10. Spatially proximal high
densities of B and T-cells may be indicative of TLSs, something we will revisit in later figures and

text.[20]

We also observed that T-cells co-localized with myeloid cells across patients. Interactions
between T-cells and myeloid cells are well established and can profoundly affect their respective
behavior.[35] Recent studies have also revealed an unprecedented heterogeneity within T-cell and
myeloid cell types, where subsets of these exhibited a diverse spectrum of states.[19,36,37]
These states present as complex phenotypes not mainly defined by marker genes, but rather the
expression profile of a larger gene set. When the finer tiers of these two cell types were
examined, several trends of co-localization could be observed; such as weak positive signals
between cDC2:CD1C, Mg1:EGR1, and pDC:IRF7 with several CD4+ T-cell populations, including
Tfh and Tregs. We also observed a salient correlation between Mg2:CXCL10 macrophages and a
T-cell subset (T-cells:IFIT1) across all patients, see Figure 4A, and thus sought an explanation for

this.

Presence of type | interferon response processes
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As indicated in the single cell RNA-seq resource, M@2:CXCL10 expressed increased levels of the
chemoattractants CXCL70 and CXCL9. Both of these chemokines bind CXCR3, typically found in
T-cells and NK cells.[38,39] Tumor-associated myeloid cells expressing CXCL9/10 have been
described previously and attributed important immunotherapy-induced anti-tumor
functions.[19,40-42] Furthermore, the chemokines CXCL9/70 may be induced by a type |/

interferon stimuli, also reported to be present in the IFIT1 T-cell subset.[30]

Type | interferon activation within tumors can act directly on tumor cells, to inhibit proliferation or
stimulate apoptotic processes, or indirectly by activation of anti-tumor immunity.[43,44] In
addition, certain anti-cancer therapies have been shown to induce and depend on type |
interferon activation.[44] Given the relevance of type | interferon responses in cancer treatment,
we wanted to evaluate whether this process could be associated with M@2:CXCL10 and IFIT1
T-cell subset co-localization in our spatial data. Thus, we inspected the cell type-within-cluster
enrichment results, and noted that a majority of the patients had at least one cluster (e.g., cluster
4 in patient G) enriched for both Mg@2:CXCL10 and IFIT1 T-cells, see Figure 4B and
Supplementary Data 9. Consequently, we revisited the pathways listed as enriched within the
clusters containing both subsets, and noted that type | interferon response related pathways were

among the top ranked ones in patient B, E and G, see Figure 4D.

Spatial enrichment of type | interferon responses
Encouraged by the enrichment of type | interferon signaling pathways in the patient clusters, we
conducted a spatial (spot-wise) enrichment analysis, targeted specifically towards these

pathways. Briefly summarized, for each spot we determined the intersection between top
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expressed and pathway-associated genes, to then compute the probability of the overlap
occurring by chance; a low probability implies that a spot is enriched for the pathway, see
Methods. Regions with high enrichment of the type | interferon response pathways aligned
spatially with areas of joint M@2:CXCL10 and IFIT1 T-cell subset presence, see Figure 4C and 4E.
This suggests a spatially restricted type | interferon response in some HER2-positive tumors,
which may promote macrophage-induced recruitment of certain T-cells. Further investigations

would be useful to establish whether these interactions are relevant to disease outcome.

Inferring TLSs from cell type proportions

Next, we returned to the patterns of B and T-cell co-localization, and more specifically how this
related to TLSs. Our interest in TLSs stems from their cardinal role in antitumor immune
responses and relation to clinical outcome as well as treatment response. In the context of
cancer, TLSs are one of the locations where tumor antigens are presented to T-cells, promoting a

more targeted attack towards the tumors.[20]

Since TLSs are defined by the presence and interaction of multiple cell types, scRNA-seq
techniques are suboptimal for studying them unless the sites are separated from the remaining
tissue prior to dissociation. We therefore see our use of ST, where each spot represents a small
neighborhood populated by multiple cells, as complementary to scRNA-seq methods when
studying these structures. While TLSs are not exclusively inhabited by B and T-cells, they are
implicated by their joint presence.[45] Having deconvolved the cell type composition of each
spot, we were able to identify which spots that exhibited a high degree of co-localization between

B and T-cells, ergo potentially constituting parts of a TLS-site. More explicitly, for each spot we
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computed the probability of two randomly picked cells being a pair of B and T-cells, followed by a
subtraction of the average probability of picking any pair within that spot; a metric we dubbed
TLS-score. A positive TLS-score translates to B and T-cells both being present at a site, negative
values the opposite. As expected from the overlap in B and T-cell distribution, patient G and H
exhibited small compartmentalized regions with high TLS-score, see Figure 5A, these regions

were therefore considered as promising TLS-site candidates.

Characterizing the gene expression profiles of TLSs

Next, we wanted to assess how the gene expression related to TLS-score. For this purpose we
used a simple linear model to predict the TLS-score of a spot based on its (normalized) gene
expression, and then extracted the genes with greatest contribution to a positive score (i.e.
having large positive coefficient values); we refer to this set of genes as a TLS-signature. The
number of signature members (171 genes, see Figure 5B and Supplementary Table 2) was
determined by a threshold derived from the trained model, see Methods. The three genes with
largest coefficient values were: MS4A71 (a well-known B-cell associated gene, encoding the
antigen CD20), B2M (encoding a protein that interacts with and stabilizes MHC ) and TRBC2
(encoding a component of the T-cell receptor). Other signature members have previously been
associated with TLSs (e.g., CXCL13, CXCR5, CCL19 and LTB), see Figure 5B.[20] To see what
biological processes the TLS-signature was enriched for, we subjected it to functional enrichment
analysis (using g:Profiler, querying against GO:BP). The top processes were all related to cell
activation, differentiation and immune response or regulation, see Figure 5C and Supplementary

Data 12.
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Predicting presence of TLSs across tissues and platforms

To control for overfitting, we applied the model to (HER2-positive) breast cancer data originating
from a different platform (Visium, downloaded from 10xGenomics™ website,[46]). Strong localized
signals were observed in the Visium data, overlapping with the region identified as a likely
TLS-site by a pathologist, see Figure 5D. Finally, we evaluated the model’s performance on three
different types of tissue (rheumatoid arthritis, developmental heart and melanoma), where the
results agreed with previous annotations and expectations, see Supplementary Section 1. This
suggests that the signature and model are not only representative of our data, but have a more
general character. Although further studies are necessary to confirm our findings, charting the
molecular profiles of TLSs in this manner could potentially reveal novel therapeutic targets for

drugs aiming to promote anticancer immune responses.

DISCUSSION

Using the Spatial Transcriptomics (ST) technique we have studied eight HER2-positive tumors
from a largely unexplored perspective, namely that of their spatial gene expression profiles.

Below, we will briefly recapitulate on some of our analyses and their respective ramifications.

We clustered the data based on gene expression and were able to discern sets of genes that
distinguished the clusters (i.e., marker genes), which in conjunction with functional enrichment
analysis were used to annotate our clusters. From the marker genes, we derived immune and
tumor core signatures, elements helpful in attempts to discover new therapeutic targets or

alternative treatments.
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In addition to expression-based clustering, we used an integrative method to map types found in
single cell data onto our samples. This informed us of the types’ spatial distribution within the
tissue, and enabled further analysis. When mapped, the cell types arranged as expected; gauged
by visual inspection and quantitative measures of enrichment/depletion. From the spatial
co-localization patterns we concluded that: the epithelial cancer types tend to be dominant when
present (anticorrelating with all other types); plasma cells seemed to spatially segregate from
B-cells, in several patients B and T-cells co-localized; a type | interferon associated coupling
between certain T-cell and macrophage subsets existed. The proximal location between the
CXCL9/10-expressing macrophages and T-cells suggests that Mg2 could be recruiting the IFIT1
expressing T-cells into specific locations, which may have implications for the design of future
treatment strategies. Still, more extensive efforts are required to properly confirm this synergistic

relationship between the two types.

We believe the single cell data to be representative of our tissues, but not perfectly matched, and
hence there might be cell types present in the spatial data which we lack the ability to infer
proportions of; a limitation to any method relying on external data. For example, neutrophil and
mast cells were not included in this analysis, even though they may be present in the samples.
Furthermore, some cell types were excluded from the analysis due to low numbers in the single
cell data, despite being of biological interest (e.g., one of the dendritic subsets). [19,47-49] There
is also a risk of certain cell types being dominant in some regions, meaning that the majority of
captured transcripts therewithin originate from this cell type; as a consequence very weak signals
from other types may be masked and their presence not properly accounted for. We thus

consider the integrative analysis complementary to our expression-based clustering, where the
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latter is able to discern new motifs of expression while the former allows us to assess the spatial

arrangement of known cell types.

The deconvolved spatial data allowed us to identify potential TLS-sites, by studying the joint
distribution of B and T-cells. We trained a linear model to identify TLSs based on gene
expression, from which we extracted a gene signature associated with potential TLS-sites. As
expected for a relevant signature, several of its members had previously been attributed
important roles in TLS formation and function. Despite its simplicity, the model generalized across

techniques and tissues.

In future studies we envision that cell co-localization patterns may be linked to patient outcome,
used to assess drug responses in a spatially restricted manner within tumors, and study
functional interactions. For example, there’s an unmet clinical need to understand what dictates
how a patient will respond to anti-cancer immunotherapy; for which biomarkers currently used in
the clinics are not adequate. To conclude, our study provides new tools and biological insights
into the spatial organization in HER2-positive breast cancer tumors, which may help to better

understand the underlying disease mechanisms and open up for new vantage points for therapy.
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a Shiny app, which is found at the aforementioned github repository, further instructions

regarding how to open and orient this environment are provided at said location as well.

METHODS

Array production. The array production has already been described in previous
publications.[18,50] Briefly, the microarrays were generated as a 33x35 grid of printed spots with
a 200um center-to-center distance of 100um between each capture location (spot). A total of
1007 spots were printed with unique DNA oligonucleotides (spatial barcodes) attached to

oligo(dT) capture probes.

Sample acquisition

All tumors used for this analysis were immediately frozen in -80°C after surgery and trimming of
fat, then stored in a tumor bank until the start of the experiment. For each tumor a different
section - to that used in the ST experiments - was subjected to IHC and PAM50 analysis for
classification of subtypes. All analyzed sections stained positive for HER2 and were classified as

HER2 positive tumors by PAM50.
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Tissue handling, staining and imaging. These steps have previously been described in.[18] In
short, fresh frozen material was sectioned at 16um. After placing the tissue on top of the
barcoded microarray, the glass slide was warmed at 37 °C for 1 min for tissue attachment and
fixated in ~ 4% NBF (neutral buffered formalin) for 10 min at room temperature (RT). The slide was
then washed briefly with 1x PBS (phosphate buffered saline). The tissue was dried with
isopropanol before staining. The tissue was stained with Mayer’s hematoxylin for 4 min, washed
in Milli-Q water, incubated in bluing buffer for 2 min, washed in Milli-Q water, and further
incubated for 1 min in 1:20 eosin solution in Tris-buffer (pH 6). The tissue sections were dried for
5 min at 37 °C and then mounted with 85% glycerol and a coverslip. Imaging was performed
using the Metafer VSlide system at 20x magnification. The images were processed with the
VSlide software (v1.0.0). After the imaging was complete, the cover slip and remaining glycerol
were removed by dipping the whole slide in Milli-Q water followed by a brief wash in 80% ethanol

and warming for 1 min at 37 °C.

Permeabilization and cDNA synthesis. Permeabilization and cDNA synthesis were carried out
as previously described, but with substitution of the Exonuclease | buffer pre-permeabilization
treatment with a 20 min incubation at 37 °C in 14U of collagenase type | (Life Technologies,
Paisley, UK).[18] The Exonuclease | buffer was diluted in 1x HBSS buffer (Thermo Fisher
Scientific, Life Technologies, Paisley, UK) supplemented with 14ug BSA followed by an
incubation in 0.1% pepsin-HCI (pH 1) for 10 min at 37 °C. A cDNA-mix containing Superscript Ill,
RNaseOUT, DTT, dNTPs, BSA and Actinomycin D was added and the slide incubated at 42 °C

overnight (~18 h). The tissue was washed with 0.1x SSC between each incubation step.
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Tissue removal and cDNA release from the surface. Tissue removal, as well as the release of
cDNAs from the surface have been described in prior publications.[18] In brief,
beta-Mercaptoethanol was diluted in RNeasy lysis buffer and samples were incubated for 1 h at
56 °C. The wells were washed with 0.1x SSC followed by incubation with proteinase K, diluted in
proteinase K digestion buffer, for 1 h at 56 °C. The slides were then washed in 2x SSC + 0.1%
SDS, 0.2x SSC followed by 0.1x SSC and dried. The release mix consisted of second strand
buffer, dNTPs, BSA and USER enzyme and was carried out for 2h at 37 °C. After probe release,
the 1007 spatial spots containing non-released DNA oligonucleotide fragments were detected by
hybridization and imaging, in order to obtain Cy3-images for image alignment and spot detection,

as described previously.[18]

Library preparation and sequencing. The protocol followed the same preparation procedures
as described earlier in [18], but were carried out using an automated pipetting system (MBS
Magnatrix Workstation), also previously reported.[51] In general, second strand synthesis and
blunting were carried out by adding DNA polymerase |, RNase H and T4 DNA polymerase. The
libraries were purified and amplified RNA (aRNA) was generated by a 14h in vitro transcription
(IVT) reaction using T7 RNA polymerase, supplemented with NTPs and SUPERaselN. The material
was purified and an adapter ligated to the 3’-end using a truncated RNA ligase 2. Generation of
cDNA was carried out at 50 °C for 1 h by Superscript lll, supplemented with a primer, RNaseOUT,
DTT and dNTPs. Double stranded cDNA was purified, and full lllumina sequencing adapters and
indexes were added by PCR using 2xKAPA HotStart ready-mix. The number of amplification

cycles needed for each section was determined by qPCR with the addition of EVA Green. Final
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libraries were purified and validated using an Agilent Bioanalyzer and Qubit before sequencing on
the NextSeqg500 (v2) at a depth of ~100 million paired-end reads per tissue section. The forward

read contained 31 nucleotides and the reverse read 46 nucleotides.

Mapping, gene counting and demultiplexing. These steps were carried out in a similar fashion
to what previously have been described.[18] The forward read contained the spatial barcode and
a semi-randomized UMI sequence (WSNNWSNNYV, with: W - A/T, S - G/C, N - A/C/T/G and V -
A/C/G) while the reverse read contained the transcript information and was used for mapping to
the reference GRCh38 human genome. Before mapping the reads with STAR [52], the reverse
reads were first quality trimmed based on the Burrows-Wheeler aligner, long homopolymer
stretches were also removed. Multi-mapped reads, i.e. reads mapping to multiple loci in the
genome, were discarded after mapping with STAR. HTSeqg-count with the setting
-intersection-nonempty, was used to generate gene counts, using an Ensembl reference file (v.
86).[53] The remaining reads were provided as input to TagGD demultiplexing using the 18
nucleotides spatial barcode.[54] The demultiplexed reads were then filtered for amplification
duplicates using the UMI with a minimal hamming distance of 2. The UMI-filtered counts were
used in the analysis. The analysis pipeline (1.6.0) is available at

https://github.com/SpatialTranscriptomicsResearch/st_pipeline.

Pre-processing. Raw data was merged from 6 section gene count matrices for samples A, B, C
and D and 3 section gene count matrices for samples E, F, G and H. The merged expression
matrices were enriched for genes matching the biotypes protein_coding, |IG_C_gene, IG_J_gene,

IG_V_gene, TR_C_gene, TR_J_gene and TR_V_gene. In addition, each merged expression matrix
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was filtered from ribosomal protein genes (RPL and RPS), mitochondrial genes (MT-) and MTRNR
genes as well as genes expressed in fewer than 10 spots across the whole merged dataset.

Spots with fewer than 300 unique features (genes) were also removed from the merged datasets.

Normalization and feature selection. The merged data was first normalized using the
regularized negative binomial regression method implemented in the SCTransform function from
Seurat (v3.1.4) R package.[55] The number of variable genes selected with SCTransform was
determined by applying a residual variance cutoff of 1.1 (variable.features.rv.th = 1.1) with the
additional parameter settings; return.only.var.genes = FALSE and variable.features.n = NULL. In
the subsequent patient-based analysis, we applied the same normalization scheme but with an
additional batch correction term to adjust for technical differences across replicate tissue

sections (vars.to.regress = section).

Dimensionality reduction. Before running dimensionality reduction, the set of highly variable
genes as defined by the SCTransform method was reduced to a smaller set of genes as
described below. First, we hypothesized that the most relevant features should not only have high
variance, but also show positive spatial autocorrelation. We therefore devised a method to rank
the variable features by spatial autocorrelation by computing the pearson correlation coefficient
for each gene between the expression vector and the spatial lag vector (defined as the summed
expression in the adjacent neighboring spots over all spots). Variable genes with a correlation
coefficient larger than 0.1 were therefore kept in the reduced gene set. We also identified 21
highly variable genes which contributed to form a ring like pattern in several capture areas

(Supplementary Data 4) . This effect was not found in all biological replicates from the same
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tissue biopsies and was therefore concluded to be a source of technical variation. All 21 genes
were excluded from the reduced gene set. For each patient dataset, the reduced set of highly
variable and spatially correlated genes was used as input for a Non-negative Matrix Factorization
(NMF) computation with 10 factors using the RunNMF function from the STUtility R package.[56]
Each factor was then visualized as a spatial heatmap colored by factor value and factors with

consistent patterns across replicate tissue sections were kept for subsequent analysis steps.

Expression-based clustering. First, a Shared Nearest Neighbor (SNN) graph was constructed
from the selected NMF factor matrix with the FindNeighbors function in Seurat. This SNN graph
was then used to identify clusters of spots using the modularity based clustering algorithm
implemented in the FindClusters function in Seurat. The resolution parameter was set to 0.4 for all

samples.

Marker detection. For each patient dataset, a Wilcoxon signed-rank test was performed using
the FindAllMarkers function in Seurat to find differentially expressed genes within each cluster.
The function performs the test pairwise between each cluster and its background (all other spots
in the dataset). The resulting table of gene markers was filtered to include genes with an adjusted
p-value lower than 0.01 and an average log fold (natural logarithm) change higher than 0.15, thus

omitting down-regulated genes.

Cluster annotation. Each set of differentially up-regulated genes were subjected to enrichment
analysis using the Gene Ontology — Biological Processes (GO:BP) database and the enricher

function from the g:profiler R package with an adjusted p-value cutoff of 0.05. Each cluster was
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then manually annotated using the top enriched pathways and up-regulated marker genes as

basis.

Cluster overlap between patients and core signature extraction. To check for overlapping
gene signatures between clusters from different patients, we computed the Jaccard index for all
pairs of cluster gene sets (up-regulated DE genes). These values were first used to compute a
distance matrix (euclidean distance) from which a dendrogram was constructed (R package
hclust) with the agglomeration method set to “complete”. This dendrogram was then cut into 5
groups using the cutree function (R package stats) with k (number of clusters) set to 5. Then, for
each group of clusters we extracted all genes that were shared between at least two clusters. For
two of the groups, zero genes were shared across all clusters and these groups were excluded.
For the remaining 3 groups, we defined a core signature as the genes that were shared across at

least 80% of the clusters.

Single Cell Data

We downloaded the single cell data related to the publication [30]. Only cells originating from the
HER2-positive patients were used in our analysis. We used the same labels as in the figures of
the single-cell resource, with the exception of Plasmablasts which we here refer to as Plasma

Cells.

Spatial Mapping of Single Cell Data. To infer the spatial organization of certain cell types we
used a method developed to integrate spatial and single cell data, implemented and available as
a python package (stereoscope, v.0.2, https://github.com/almaan/stereoscope). The method is

based on a probabilistic model which assumes that both single cell and spatial RNA-seq data
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follow a negative binomial distribution. By using annotated single cell data in combination with
spatial transcriptomics data it estimates proportions of every cell type (present in the single cell

data) at each spatial capture location.[22]

To conduct the spatial mapping of cell types, we only included cells from the five HER2-positive
patients found in the single cell data, all ST-sections were used. In total three analyzes were
conducted, with the only difference being the labels used for the single cell data. As mentioned in
the main text, every cell was assigned to a type within each of the three tiers major, minor and
subset. For respective tier, we subsampled the single cell data set, according to the following
scheme: (i) If a type had fewer than 25 members, exclude the type; (ii) if a type had more than 25
members but less than or equal to 500 members, include all cells; (iii) if a type had more than 500
members, randomly select 500 of these. Next, the subsampled sets were spatially mapped, one

by one, onto the ST data.

A custom gene list of 5540 members, representing the union of the 5000 (highest expressed)
genes in the single cell data and cell type marker genes, were used for the proportion inference,
see Supplementary Data 11. 50000 epochs and a batch size of 2048 were used for all tiers, in

both steps of the stereoscope procedure. Default values were used for all remaining parameters.

Cell type co-localization. We use spotwise Pearson correlation between the estimated cell type
proportion values as a proxy for cell type co-localization; with high positive correlation being
indicative of types that exhibit similar spatial distributions and the opposite being true for negative

values. To estimate the confidence interval for each of the correlation values, we used a bootstrap
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approach. The Pearson correlation was computed for each of 10000 bootstrap samples (sampling
from all spots with replacement), forming a distribution of correlation values for each pair of types.
The mean of each distribution was taken as a representative correlation value, and a 95%
confidence interval was defined by the 2.5th and 97.5th percentiles. Pairs where the confidence

interval included zero were considered as not statistically significant, indicated with a gray border.

Region based enrichment/depletion of cell types. The enrichment, or alternatively depletion, of
the mapped cell types in relation to spatial regions (e.g., manual annotations or clusters) were
assessed by the following procedure: First, the average proportion value was computed within
each of the regions, referred to as the tfrue average. Next, we permuted the spot indices for the
proportion estimate vectors 10000 times, while maintaining the original indices for the annotated
regions. In other words, the proportion estimates were shuffled w.r.t to their spatial location.
Average proportion values of the annotated regions were determined for each permutation,
constituting the set of permuted averages. We then computed the differences between the true
average and the all permuted averages. Finally, the mean value of the differences divided by the
standard deviation of these differences were taken as the enrichment score for the respective

regions.

Upon visualization, the enrichment score of a type within a certain region is represented by two
features, the marker size and it’'s color. We let the marker size be proportional to the absolute
value of the enrichment score, while the color indicates the sign (red for negative and green for
positive). To summarize, red markers are indicative of a type being depleted in a certain region,

green markers of enrichment; the larger the marker, the larger the effect.
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TLS Signatures

The method we devised to obtain a TLS signature can be decomposed into two steps: (1)
associating a TLS-score to each spatial location and (2) modelling the contribution of each gene
to this score. We base the TLS-score in the proportion values estimated for the major cell type
tier; first a raw TLS-scores are computed, taken as the product between B and T-cell proportions
multiplied by the scalar 2. In theory — assuming unbiased and independent sampling from a large
population of cells with the same type composition as the spot — this represents the probability
that two randomly selected cells is a B respectively T-cell. The raw TLS-score is then adjusted by
subtracting the average probability of picking any cell type pair in the associated spot, this is the

final TLS-score used in the subsequent steps.

In the second step, we consider the (adjusted) TLS-score at a given spot as a function of its gene
expression. The gene expression values are normalized accordingly: First, all elements of a spot’s
expression vector are divided by its library size (the sum of all elements); second, the expression
vector associated to each gene is divided by its standard deviation (computed after the preceding
library size division). Letting y represent the S-dimensional (S being the number of spots)
TLS-score vector, X the SxG (G being the number of genes) normalized expression vector, B a
G-dimensional vector of coefficients and 3, a scalar representing the intercept value; we estimate
values of B and B, that minimize the loss function LB) = |ly - XB + B,1)||>, where 1 is a
G-dimensional vector with all elements being 1. Implementation wise, we used the OLS class
from the linear_model module in the python package statsmodels (version 0.11.0) for the purpose

of finding the least square estimates.
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The genes qualifying as members in the final TLS-signature is determined by ordering the
coefficient values from largest to smallest, considering the values as a function (f) of the gene’s
rank. The resulting curve is then smoothed with a gaussian filter, and the second order
differences of this smoothed curve are computed, representing an approximation of f's second
derivative . Using the same gaussian filter as previously mentioned, the second derivative
approximation is smoothed. The gene coefficient for which the smoothed second derivative
approximation obtains a value below zero is taken as the lower bound (threshold), hence all genes
with a coefficient having a lower rank than this will be excluded. The gaussian filtering was
performed by using the gaussian_filter function from scipy’s (version 1.4.1) ndimage module; the
sigma parameter was set to 10 whilst default values were used for the remaining parameters.
Applying the aforementioned procedure to all replicates of patient G and H, we obtained a

signature of 171 genes, full list in Supplementary Table 2.

Functional enrichment of the gene signature was performed by using the g:Profiler python
package (version 1.0.0), we queried against GO:BP (GO Biological Processes) and selected all
terms that were significantly enriched (having an adjusted p-value smaller than 0.05). The

complete set of these pathways are found in Supplementary Data 12.

Spot-wise pathway enrichment
To assess enrichment of a given gene set (here associated to a given functional pathway)
spatially, we used the following approach. Let G be all genes present in the spatial data, and let

Q, be the set of all genes associated with the pathway P for which enrichment should be
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examined. Also, for each gene subtract its average expression, then within each spot rank the
genes according to their adjusted expression levels (from highest to lowest). Let T (s) be the set of
n highest ranked genes within spot s. Now, for each spot construct a 2x2 contingency table of the

following character:

Top ranked genes Lowly ranked genes
Associated with P | T.(s) N Qpl | Q\T,(s) |
Not associated with P IT.(s)\ Q;| |G\ (T (s) U Q)]

Then conduct a Fisher’s exact test, to calculate the probability (p(s)) of observing this partitioning
of genes among the two variables, assuming that the genes associated with P are equally
distributed over the top (T, (s)) and lower ranked genes. The enrichment (E.(S)) of P for spot s is

then taken as : E(s) = -log2(p(s)). These are the values visualized in Figure 4E.
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Figure 1 | Overview of study. After sample retrieval, we performed ST on 36 sections confirmed

as being HER2-positive. A trained pathologist manually annotated one section from each sample.

Expression-based clustering and single cell data integration was applied to explore the spatial

expression profiles and cell type interactions in our data. Marker genes were extracted for each of

the clusters and subjected to functional enrichment analysis, which allowed us to biologically

annotate them. By deconvolving the cell types in each spot we could infer novel patterns of cell

type co-localization and design a model for prediction of TLSs. Blue dashed boxes indicate steps

in the process executed by external groups or individuals.
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Figure 2 | Clustering of spatial data
A. Morphological regions were annotated by a pathologist into six distinct categories: invasive
cancer (red), adipose tissue (cyan), connective tissue (blue), breast glands (green), in situ cancer
(orange) and inflammatory cells (yellow). B. Split view of each cluster's distribution across one
tissue section. C. UMAP projection of 446 spots from patient G colored based on cluster identity.
D. Proportions of spots assigned to each cluster across the three consecutive tissue sections in
patient G. E. Dot plot showing the overlap between clusters and annotated regions. The size of
the dots represent the proportion of cluster spots belonging to an annotated region. The
pathologist’s annotations are given on the x-axis, cluster annotations are found on the y-axis. F.
Heat map of the clusters and the most highly differentially expressed genes for patient G. Each

cluster was annotated based on morphological region together with marker genes
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A. Enrichment (green) and depletion (red) of major tier cell types in the regions defined by the

pathologist, along with proportion estimates of different cell types (epithelial, CAFs, plasma cells

and B-cells). Spots annotated as cancer in situ, invasive cancer and immune infiltrate are

indicated by border color. B. Similar to A but with the regions defined by the expression-based

clusters. C. Correlation plot of all cell types within the major tier across all sections, a distinct

correlation between myeloid cells and T-cells can be observed. D. Proportions of myeloid cells

and T-cells showing one area with higher (1) respectively lower (2) degree of co-localization. All

presented results are associated with patient G, except for subfigure C where correlation values

are computed across all patients.
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Figure 4 | Co-localisation of myeloid cells and T-cells

A. Correlation plot of subsets of T-cells and Myeloid cells showing a distinct correlation between
the IFIT1 T-cell subset and M@2 across all patients. B. Enrichment (green) and depletion (red) of
subsets of T-cells and Myeloid cells in each manually annotated region, highlighting the presence
of the correlated cellypes IFIT1 T-cell subset and M@2 within the in situ region of patient G. C.
Proportion estimates for IFIT1T T-cell subset and Macrophage 2 in patient G, highlighting the
annotated in situ region. D. Pathways enriched by marker genes for cluster 4, interferon signalling
pathways are highlighted in red. Intersection size is equivalent to the number of overlapping terms
between the marker genes of cluster 4 and the given pathway. E. Spot-wise enrichment of type 1

interferon signaling pathway (GO:0060337) visualized on patient G.
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Figure 5 | TLS Inference and Prediction

A. Proportion estimates of B and T-cells together with the computed TLS-score for patient G and
H, annotated HE-images are included for reference. B. Rank-plot (coefficient value vs. rank) of the
fitted model, genes included in the TLS-signature are indicated by red; excerpt (*) shows the three
top ranked genes together with known TLS associated genes. C. Top 15 pathways which the
TLS-signature showed enrichment of. D. Predicted TLS-score for the 10X Visium breast cancer
data set, using the model trained on Patient G and H. Pathologist’s annotation for likely TLS-sites

(red) are included as a reference.
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Supplementary Figure 1 | Experimental setup
Six cryosections were taken with a distance of 32 um from patient A-D respectively and three consecutively cut
cryosections were taken from patient E-H respectively. Each section was taken with a thickness of 16 um and placed

on a ST-array.

>
W

patient
< A replicate

B . % 1
c : % e 2
D 1 . 3
E ; 4
F 5
G 6
H

UMAP_2
UMAP_2

UMAP_1

Supplementary Figure 2 | UMAP-plot

A. UMAP visualization of all spots colored by patient. B. UMAP visualization of all spots colored by replicate.

44


https://doi.org/10.1101/2020.07.14.200600
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.14.200600; this version posted July 14, 2020. The copyright holder for this preprint (which

was not certified by

UMAP_2

UMAP 2

o

UMAP_2

o

UMAP_2

m

UMAP_2

n

UMAP_2

[o]

UMAP_2

x

UMAP_2

peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

secton &

UMAR_1

eluster
0 urkeown

® 1 breasigands 1

sactian &

UMAR_1

secton &

socion &

UMAR_1

UMAR_1

e APC. Brcel, T-cell

UMAP 1

Supplementary Figure 3 | Expression-based clustering overview

Proportions of spots

Column 1. UMAP visualization of spots colored by cluster. Column 2. Annotations made by a trained pathologist into
six distinct categories: Invasive Cancer (red), Adipose tissue (cyan), Connective tissue (blue), Breast glands (green), in

situ cancer (orange) and Inflammatory cells (yellow). Column 3. Spatial visualization of clusters. Column 4.

belonging to each cluster across replicate sections.
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Supplementary Figure 4 | Spatial arrangement of all expression-based clusters
Spatial visualization of clusters across all replicate tissue sections for each patient (A-H). Spots

with the same colors belong to the same clusters. Clusters are not shared between patients.
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Supplementary Figure 5 | Patient G and H Zoom-in of specific regions of interest

(Top row) A region in patient G consisting of only three spots and aligning with the in situ cancer regions is assigned
to a different cluster than its spatial neighbors (orange), the same cluster as the rest of the in situ cancer spots are
found in. (Bottom row) A region with in situ region in patient H is populated by two different clusters (purple and

yellow)
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Supplementary Figure 6 | 3D visualization of Patient G

The three replicates taken from Patient G, visualizing the expression based clusters’ distribution in all three

dimensions. Distances in the XY-plane and Z-axis are, for ease of visualization, not depicted in the same scale.
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Supplementary Figure 7 | Clusters-of-clusters plot
Heatmap of Jaccard indices calculated across cluster geneset paris. The three cluster supergroups are highlighted
by the dashed boxes, each defined by their upregulation of core signature genes. Group 1: cancer, group 2 and 3:

immune related.
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Supplementary Table 1| Receptor Status
ER and PgR receptor status for all patients (A-H) used during the tumor classification. Only Patient B (bold) has

positive PgR status.

Patient ER PgR
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Supplementary Figure 8 | Correlation plot - Patient A, major tier
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Correlation (Pearson) plot of cell type proportions across the spots, red is indicative of high spatial co-localization,

blue is indicative of low spatial co-localization. The correlation values are computed over all six replicates of patient

A, for the major tier.
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Supplementary Figure 9 | Correlation plot - patient G, major tier
Correlation (Pearson) plot of cell type proportions across the spots, red is indicative of high spatial co-localization,
blue is indicative of low spatial co-localization. The correlation values are computed over all three replicates of patient

G, for the major tier
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Supplementary Figure 10 | Correlation plot - Patient H, major tier
Correlation (Pearson) plot of cell type proportions across the spots, red is indicative of high spatial co-localization,
blue is indicative of low spatial co-localization. The correlation values are computed over all three replicates of patient

H, for the major tier.

53


https://doi.org/10.1101/2020.07.14.200600
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.14.200600; this version posted July 14, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

NKT cells

NK cells

Cycling T-cells

CD8+ T-cells

CD4+ T-cells

PVL Immature

PVL Differentiated

Plasma Cells

Monocytes

Macrophages

DCs 4

Cycling Myeloid

Normal Epithelial

Cancer Epithelial

Endothelial ACKR1

Endothelial CXCL12

Endothelial RGS5 -

Endothelial Lymphatic LYVEL

CAFs myCAF-like

CAFs MSC/iCAF-like q

B-cells Naive §

B-cells Memory

Patient E | Replicate 1

L ] . [] . [ ]
e ® o . ™
e @ ¢ ¢ o
o @, @ e
e o + @ o
e - @ @ o
o o e .
o0 -0
L] ] . L] (]
® ® ¢ 0 o
¢« @ + e o
® ® 0 o o
e ¢ O *+» O
e 00 -0
e @ - o
@ @ [ ] .
. ] (] e @
e @ + o+ @
- @ @ <« @
. @ ° e [ ]
e o o .
e+ + @ e
I ;CIusi‘erl 3

INKT cells «

NK cells

Cycling T-cells q

CD8+ T-cells q

CD4+ T-cells q

PVL Immature -

PVL Differentiated -

Plasma Cells -

Monocytes 4

Macrophages -

Cycling Myeloid 4

Normal Epithelial

Cancer Epithelial

Endothelial ACKR1 1

Endothelial CXCL12 -

Endothelial RGS5

Endothelial Lymphatic LYVEL 4

CAFs myCAF-like 4

CAFs MSC/iCAF-like -

B-cells Naive 4

B-cells Memory -

Patient E | Replicate 2

® @
.« & ©® s+
e 00 -0
@ e e o 0O
® @ & +» o
s ® e s+ @

T T T T T

Cluster

NKT cells

NK cells

Cycling T-cells

CD8+ T-cells

CD4+ T-cells q

PVL Immature

PVL Differentiated

Plasma Cells

Monocytes

Macrophages

Cycling Myeloid

Normal Epithelial 4

Cancer Epithelial 4

Endothelial ACKR1 4

Endothelial CXCL12

Endothelial RGS5 4

Endothelial Lymphatic LYVE1

CAFs myCAF-like

CAFs MSC/iCAF-like

B-cells Naive

B-cells Memary

Patient E | Replicate 3

® . ° . ™
e o o L
e & o o -
[ ] . L] . L]
® [ ] [ ] [ ] .
. e @ e+ @
® ] ® ® L
e @ . - @
L] [ ] ® L] ®
® o o [ ] [ ]
® @ . - ®
e ® & - o
- 0@ - 0
- 0@ - @
. e O o ]
. . L] . L ]
. ® . [
@ ® .
- @ o @
. ® . [ ]
. © ° . °
[ ] ® L]
s A ~ :
Cluster

Supplementary Figure 11 | Enrichment in expression-based clusters, Patient E, minor tier

Patient E, enrichment of minor tier cell types within expression based clusters. Red is indicative of depletion, green of

enrichment. Markersize is indicative of the extent of the effect (depletion or enrichment).
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Supplementary Figure 12 | Enrichment in expression-based clusters, Patient G, major tier
Patient G, enrichment of major tier cell types within expression based clusters. Red is indicative of depletion, green of

enrichment. Markersize is indicative of the extent of the effect (depletion or enrichment).
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Supplementary Figure 13 | Enrichment in expression-based clusters, Patient G, minor tier

Patient G, enrichment of minor tier cell types within expression based clusters. Red is indicative of depletion, green of

enrichment. Markersize is indicative of the extent of the effect (depletion or enrichment).
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Supplementary Figure 14 | Cancer cell type enrichment across all patients
Enrichment/depletion plots of Her2 and LumB associated cancer cell types in respective patients in the regions
defined by the pathologist. Dashed boxes indicate regions of invasive cancer. Patient B (red dashed box) is the only

patient that exhibits depletion (red) of HER2 but enrichment (green) of LumB associated cancer cell types.
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Supplementary Section 1 | Prediction on External Data

Having established good performance for our predictive model across techniques when applied to breast cancer
data we wanted to assess its behavior when presented with other types of tissue. Thus we predicted TLS-score in

samples from three different tissues: rheumatoid arthritis (RA), melanoma and developmental heart, see

Supplementary Figure 15. Regions with high TLS-score in RA tissue overlapped with the areas annotated as immune

infiltrates in the original publication, where they also discuss the likely presence of ectopic lymphoid structures (in this

context, synonymous to TLS).[57] A similar trend was observed in the melanoma sample, where high TLS-scores

were predicted in regions annotated as immune infiltrates.[58] In the healthy developmental heart, no signals above

zero were observed for the predicted TLS-score, suggesting absence of TLSs, as expected in this tissue.[59,60]
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Breast Cancer Developmental Heart Melanoma Rheumatoid Arthritis
(Visium) (ST) (ST) (ST)

Supplementary Figure 15 | Validation on external data sets

(Top row) Predicted TLS-score of tissues from different platforms (Visium and ST) and tissues (breast cancer,

developmental heart, melanoma and rheumatoid arthritis). (Bottom row) HE-images of the corresponding tissue. Our

pathologist has annotated the Visium sample, with an arrow indicating a likely TLS site (the only candidate identified).

The Melanoma sample is annotated (taken from original publication) with black as melanoma, red as stroma and

yellow as immune infiltrate. A cutoff of 0.0 was used when visualizing the TLS-score predictions.
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Gene Coefficient Gene Coefficient Gene Coefficient
MS4A1 0.000595692124909 CD69 0.000178523456895 ALG8 0.000144285394958
B2M 0.000332672042219 SYT11 0.00017618286567 CD79A 0.000143369081063
TRBC2 0.000317378385003 FYB 0.000175798252131 UHRF1BP1L 0.000143360448522
LTB 0.000314349966323 CD48 0.000175141314241 MDFIC 0.00014292847454
TIAM1 0.000314177344547 PLA2G2D 0.00017383613927 TARBP1 0.000142217292012
ZC3H12D 0.000313029236991 SPIB 0.00017356648257 MICB 0.000142213802666
SCML4 0.00030351675486 LIMD2 0.000172949993333 B3GLCT 0.000142087554698
CXCR4 0.000295575363742 ARHGAP15 0.000171935625146 CASP2 0.000141827504695
CD19 0.000288765012981 BCL11B 0.00017006201514 SELL 0.000141554153463
TRAF3IP3 0.000285710237725 AKNA 0.000169636422625 EMB 0.000141385335943
BTG1 0.000271035711673 TNFAIP8 0.000168196592318 CD37 0.000141033972406
BIRC3 0.000270754219697 CD2 0.000167327817843 ABCD4 0.000140912625775
CD52 0.000263835835808 DDX5 0.000166677867478 AP4B1 0.000140867027941
RAC2 0.000257684640648 POGLUT1 0.000166524246914 TTBK2 0.000140579746916
CD83 0.000251490238498 TIPARP 0.000165554981735 FAM65B 0.000140571174096
HLA-B 0.000249477062823 GAREM2 0.000165279736338 TMEMS5 0.000140404709944
PTPRC 0.00024628671493 EPHA4 0.000165144835794 ANKDD1A 0.000140393391408
TRAC 0.000243828273295 IL2RB 0.00016475163977 WIPF1 0.000140275511107
SLA 0.000239561152957 GRPEL2 0.000164137100584 NKRF 0.000140206314254
CXCL9 0.00023484222349 ADAM28 0.000163998734444 SEPT6 0.000140109149509
CORO1A 0.000231949711471 VWAS8 0.000163958977584 IL10RA 0.000139939044216
IL16 0.000227806544677 FAR1 0.000163316470036 SLC25A33 0.000139753022653
CYTH1 0.000222133222142 TMSB4X 0.000162675011343 LMO2 0.000139663150449
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ZFP36L2 0.00022125659097 CACNA1I 0.000161818137099 DUsP2 0.000139263146875
ITGAL 0.000220774848163 SMCHD1 0.000160065486459 NACA 0.000138814706626
ICOs 0.000220531627722 HLA-DQB1 0.000159989878407 SCIMP 0.000138632593831

FAM96B 0.000219830644763 LNPEP 0.000158710432572 ZSCAN29 0.000138317307187

CXCL13 0.000219689264426 RCHY1 0.000158638904959 RNASET2 0.000138178147064
PASK 0.000216719757693 GPSM3 0.000157818119632 RFFL 0.000138106631077
CCR7 0.000211367390464 TRBC1 0.000157724735433 CD96 0.000138037067735
SNX13 0.000210712369247 TSC22D3 0.000156868044902 CD79B 0.000135989992381
TRAF5 0.000209622341485 DOCK8 0.000156646041763 DGKE 0.000135961951047
LRMP 0.000208922706969 SPOCK2 0.000156272915968 SGSM2 0.000135605121307
BLK 0.000208263281006 PIP4K2A 0.00015617577339 FN3KRP 0.000135460976542
IL7R 0.000207819468811 CCDC50 0.00015532079662 ZNF700 0.000135343521919
PRKCB 0.000206018165061 GZMK 0.000154890466818 TBC1D23 0.000135309288028
IL11RA 0.00020215370056 CPSF7 0.00015484366527 PIK3IP1 0.000135100371679
IL2RG 0.000200475332668 CDs3 0.000154433698911 SP140 0.000134814720212
CD247 0.000200350709432 SLAMF6 0.000153225703526 DEF6 0.000134762514514

QRICH1 0.000199184724442 BARX2 0.000152592481906 EVI2A 0.00013474131392

CARMIL2 0.00019838434595 FUCA1 0.000151902661181 CARD11 0.000134728651734

C5orf56 0.000196288725541 CCL19 0.000151759813087 HNRNPA1 0.000134434803067
CD3E 0.000196279783133 ACAP1 0.000151533777593 RNF43 0.000133758771941

DNMBP 0.00019550043764 IBTK 0.000151216643474 HLA-DMB 0.000133751800931
RHOF 0.00019001882019 OSBPL7 0.000151164146772 CD5 0.000133081864036

ARHGEF1 0.000189847012439 STK17A 0.000149839180989 TBC1D10C 0.000132825037694
KLF12 0.000188405291697 CD3G 0.000149756396866 SEPT1 0.000132610015045
TXNIP 0.000187362619779 ATP8A1 0.000149099799003 ZBTB46 0.000132412254372
Lyz 0.000187060745086 KLF2 0.000149027298158 S100PBP 0.000132239263083
TCL1A 0.0001870026952 Ccb27 0.000148457414886 EIF4H 0.000132006812558
SAFB 0.000186077044672 COA1 0.000148200697177 NELL2 0.000131969279709
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DGKA 0.000185571574722 CXCR5 0.000148114866973 TMED8 0.000131946332862
BRE 0.000183349162999 EPB41 0.000147422991384 MLLT10 0.000131921796035
PLEKHG1 0.000183107764966 GTF2E1 0.000146664134548 CASP1 0.000131851115526
PTPN22 0.000182056748811 SLAMF1 0.000146196045923 TESPA1 0.000131262931785
LAMPS 0.000181972075947 T™MC6 0.000145610417408
ZNF558 0.000181232416102 UBA7 0.000144881439034
JAK3 0.000179071216954 MSN 0.000144873617036
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File Listing (Supplementary Data)

e Supplementary Data 1 | CORESIG.xIsx - genes included in each of the respective core signatures (2
immune associated and 1 tumor associated)

e Supplementary Data 2 | CLUSTERANNOT.xIsx - cluster annotations and the motivations behind these

e Supplementary Data 3 | MARKERGENES.xIsx - marker genes for each of the expression based clusters
(within each patient)

e Supplementary Data 4 | RINGGENES.tsv - list of genes that were excluded in parts of the analysis due
to their aberrant behavior; forming ring-like patterns in several capture areas.

e Supplementary Data 5 | CORRS.zip - correlation matrices for all three tiers. Matrices are sorted in
subfolders according to their tier, naming follows the convention: corrs-{tier}/{tier}-{samples}-corr-plot.png

e Supplementary Data 6 | PATHWAYS.zip - enriched pathways for each of the expression based clusters.
Naming follows the conventions : {patient}_GO_BP.xlsx

e Supplementary Data 7 | STSCPROP.zip - Proportion estimates across all tiers and samples. Naming
follows the convention : {tier}/{sample}-proportion.tsv

e Supplementary Data 8 | STSCVISUAL.zip - Visualization of proportion estimates across all tiers and
samples. Naming follows the convention : {tier}/{sample}-proportion-visual.png.

e Supplementary Data 9 | STSCENR.zip - enrichment/depletion results for all cell types across all tiers.
Naming follows the convention {annotation}/{tier}/{sample}-enrichment.png, with annotation =
[cluster,pathologist].

e Supplementary Data 10 | CLUSTERENR.zip - enrichment of expression-based clusters and the regions
defined by the pathologist. Naming follows the conventions {sample}_cluster_vs_annotation_overlap.xIsx

e Supplementary Data 11 | STSCGENELIST.tsv - genes included from the single cell data when running
Stereoscope.

e Supplementary Data 12 | TLSENR.tsv - enrichmed pathways when subjecting the TLS-signature to

functional enrichment analysis (GO:BP)
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e Supplementary Data 13 | TLSCOEF.tsv - coefficient for all genes obtained upon fitting the linear model

(trying to predict TLS-score) to patient G and H.
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