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ABSTRACT 

In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis.                       

However, tumor sequencing strategies typically result in loss of spatial information, critical to                         

understand cell interactions and their functional relevance. To address this, we investigate spatial                         

gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We                     

show that expression-based clustering enables data-driven tumor annotation and assessment of                     

intra-and interpatient heterogeneity; from which we discover shared gene signatures for immune                       

and tumor processes. We integrate and spatially map tumor-associated types from single cell                         

data to find: segregated epithelial cells, interactions between B and T-cells and myeloid cells,                           

co-localization of macrophage and T-cell subsets. A model is constructed to infer presence of                           

tertiary lymphoid structures, applicable across tissue types and technical platforms. Taken                     

together, we combine different data modalities to define novel interactions between                     

tumor-infiltrating cells in breast cancer and provide tools generalizing across tissues and                       

diseases.  

 

INTRODUCTION 

Breast cancer is a vile disease, every day claiming more than a hundred lives in the US alone and                                     

inducing tremendous suffering among those affected.​[1] To better understand, diagnose, and                     

treat breast cancer, extensive studies into the genomic underpinnings of the disease have been                           

conducted; one outcome of this work is the establishment of several clinically relevant subtypes.                           

These breast cancer subtypes exhibit varying characteristics, including drug sensitivities, and as                       
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a consequence, partially dictate the choice of treatment strategy. ​[2–4] One of the major breast                           

cancer subtypes is defined by an enrichment of the HER2 (human epidermal growth factor                           

receptor 2) expression on tumor cells, often caused by the amplification of a region on                             

chromosome 17 (cytogenetic band chr17q12) comprising the HER2 (​ERBB2​) gene; these tumors                       

are referred to as ​HER2-positive ​tumors. ​[5,6] An estimated 15-20% of all breast cancers tumors                           

are HER2-positive, and these tumors often exhibit aggressive growth and demand intense                       

treatment. ​[7,8] Understanding the molecular processes responsible for tumor growth and                   

development has shown to be of utter importance; exemplified by the drastic improvement in                           

patients’ prognosis after the introduction of HER2-targeted therapies. ​[9] Despite this, many                     

patients with HER2-positive breast tumors still succumb to the disease. Therefore, to deliver more                           

effective treatments and develop tools for early detection, we must continue to chart the                           

disease’s molecular profile from new and unexplored perspectives.  

 

Tumors share an intimate relationship with their surroundings, and are best studied accordingly;                         

i.e., in the context of their environment. For example, the success of immunotherapy in tumor                             

treatment stems from its ability to interfere with interactions between cancer and certain immune                           

cells. ​[10] In addition, the presence of sites promoting cell-cell interactions, such as tertiary                         

lymphoid structures (TLSs), have shown to hold predictive power of treatment outcome in                         

HER2-positive tumors. ​[11–13] Evidently, the characterization of the cell type population within                     

tumors and their environment is imperative to understand the disease.  

 

Techniques such as immunohistochemistry (IHC), ​in situ ​hybridization (ISH) and single cell RNA                         

sequencing (scRNA-seq) have been rigorously used to study the transcriptome as well as the                           
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physical location of genes and proteins. ​[14–16] However, these methods are usually burdened by                         

a tradeoff between spatial resolution and throughput. To exemplify, techniques such as IHC and                           

ISH may provide high spatial resolution, but tend to require ​a priori ​selection of targets, making                               

these methods less suited for exploratory analysis. In contrast, scRNA-seq offers insights into the                           

transcriptome of cells in the higher order of magnitudes, but their spatial origin is to a large extent                                   

lost. ​[17] Spatial Transcriptomics (ST), as described by Ståhl and Sálmen et.al., presents a solution                           

to this dilemma, by providing spatially resolved and transcriptome-wide expression                   

information.​[18] Cell interactions and spatial context are key components of the tumor                       

ecosystem, however this space is inhabited by a diverse population of complex cell types that                             

cannot be defined by a few marker genes or surface receptors; hence the benefits of using a                                 

technique like ST.​[19,20] Although ST does not provide single-cell resolution, this issue can be                           

addressed by leveraging information from scRNA-seq, spatially mapping cell types or clusters by                         

integration of the two data modalities.​[21,22]  

 

In this study, we used ST to survey the spatial patterns of gene expression and cell types in 36                                     

samples collected from eight HER2-positive individuals. Intra-and inter-patient heterogeneity was                   

examined using a number of different methods, including expression-based clustering and single                       

cell data integration. We here present novel findings of expression signatures shared among                         

HER2-positive patients, cell type co-localization patterns and a predictive model for TLS-sites. 
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RESULTS 

HER2-positive tumors from eight individuals (patient A-H) were subjected to ST with three                         

alternatively six sections collected from each tumor, this resulted in a total of 36 ST-sections (See                               

Supplementary Figure 1 for details regarding the experimental setup). For brevity, we will refer to                             

sections originating from the same individual as replicates. ​Figure 1 provides an overview of the                             

analysis workflow and methods used for this purpose.   

 

Manual annotation 

One section from each tumor was examined and annotated by a pathologist. Based on                           

morphology, regions were labeled as either: ​in situ ​cancer​, ​invasive cancer, adipose tissue,                         

immune infiltrate, or connective tissue, see ​Figure 2 ​A and ​Supplementary Figure 3 ​; not all regions                             

were represented in every patient.  

 

Initial data characterization 

Before conducting any downstream analysis, we assessed the data’s character with respect to                         

patients and sections. First, the data was filtered and normalized (see Methods) to prepare it for                               

subsequent analysis. Next, UMAP was applied to the processed data to obtain a two-dimensional                           

embedding, see Supplementary Figure ​Supplementary Figure 2 ​.​[23] Upon inspection of the                     

UMAP-projection, spatial capture locations (hereafter; spots) from the same patient were seen to                         

cluster together, while a high degree of intermixing between spots from different replicates (within                           

each patient) occurred. Interpatient heterogeneity can be expected when working with tumor                       
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samples. ​[24] Thus, to properly capture the nuances of each patient’s molecular profile and not                           

risk quenching weak signals, we analyzed each patient separately, then compared the outcomes. 

 

Expression-based clustering 

In the patient-wise analysis, we split the data into mutually exclusive patient subsets. A                           

normalization procedure, designed to remove technical noise and batch effects, was then applied                         

to the raw data of each patient subset, i.e., all replicates from the same patient were jointly                                 

processed. Results from our analyzes, exemplified through patient G, are presented in Figure 2.                           

Equivalent results for all patients are found in ​Supplementary Figure 3 ​. Next, the normalized                           

expression data was clustered using a shared nearest neighbor (SNN) approach, resulting in                         

groups (clusters) of spots with similar gene expression profiles, see Figure 2C. Spots neighboring                           

in physical space frequently resided near each other in expression space, i.e., they were often                             

assigned to the same cluster, see ​Supplementary Figure 4 ​. The clusters were to a large extent                               

spatially coherent but, just as tumors or immune infiltrates, not always confined to a single region,                               

see Figure 2B. Cluster arrangement in the physical domain was consistent across replicates (                           

Supplementary Figure 4​ and ​Supplementary Figure 6 ​). 

 

Cluster Annotation 

To better understand what biological entities the expression-based clusters represented, we first                       

contrasted each cluster’s expression profile towards the rest (differential gene expression                     

analysis), resulting in a set of marker genes characteristic of each cluster, see Figure 2F. The                               

marker genes were selected by a combined cutoff with respect to their adjusted p-value and fold                               

change, see Methods and ​Supplementary Data 3 ​. To investigate which biological pathways that                         
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the clusters were enriched for, we queried their marker genes against the GO:BP (GO Biological                             

Processes) database using ​g:Profiler​.​[25] From the set of marker genes and their associated                         

pathways, high-level functional annotations could be assigned to the expression-based clusters,                     

motivations for the cluster annotations are found in ​Supplementary Data 2 ​. These annotations are                           

by no means exhaustive, but provide guidance in subsequent analysis.  

 

Comparison of clusters with manually defined regions 

We related the regions defined by the pathologist to the expression-based clusters by computing                           

the fraction of spots within a region that belonged to each cluster, shown in Figure 2E. Strong                                 

concordance was observed; clusters enriched for immune-related processes overlapped well with                     

the immune-infiltrates, those with cancer associated pathways fell into the cancerous regions,                       

and so forth, see ​Supplementary Data 10 ​. This comparison established the existence of a                           

relationship between the pathologist’s observations and clusters formed by data driven analysis.                       

Notably, an ​in situ cancer region that consisted of as few as 3 spots correctly clustered with                                 

physically separated, but identically annotated, spots (cluster 4 in Figure 2B and ​Supplementary                         

Figure 5 ​), attesting to the sensitivity of ST and verifying that clusters are not based on physical                                 

proximity alone. In patient H, parts of a region labeled as ​in situ cancer were consistently, across                                 

all replicates, inhabited by two expression-based clusters; one (cluster 1, patient H) that                         

overlapped with the other cancer areas while the second (cluster 4, patient H) was enriched for                               

immune processes and aligned spatially with the annotated immune infiltrates, see                     

Supplementary Figure 5 ​. These observations suggest that data-driven expression-based                 

clustering captures signals that may be overlooked by visual inspection; thus in some cases                           

providing a more in-depth and nuanced depiction of the tumor tissue. The value of this is                               
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manifold; the labour intense and time-consuming process of manual annotation is neither suitable                         

for high throughput analysis, nor is access to a trained pathologist always guaranteed.                         

Importantly, regions where distinct molecular pathways are active can easily be distinguished,                       

something that is hard to do only relying on (human) visual inspection. 

 

Exploring Intra-and interpatient heterogeneity 

Multiple tumor profiles may exist among different individuals, but also within a given patient. To                             

outline this heterogeneity may aid in the design of more nuanced and personalized treatment                           

regimens.​[26] Therefore, with the expression-based clusters as a structured framework to operate                       

within, we aimed to assess both intra-and interpatient heterogeneity in our data.  

 

Interestingly, we were able to observe intra-patient heterogeneity at the transcriptome level in                         

most of our patients; in fact, all patients except two (patient B and H) had more than one cluster                                     

labeled as cancer. To exemplify, patient E exhibited varying transcription profiles in two spatially                           

separated tumor foci assigned to different clusters (cluster 4 and 5, patient E), see ​Supplementary                             

Figure 3 ​. While true that such observations may be explained by the practice of “overclustering”,                             

the two clusters were clearly separated and non-neighboring in UMAP-space, which suggested                       

distinct expression profiles. Both clusters had ​ERBB2 ​(encoding the HER2-receptor) listed as a                         

marker gene and were enriched for pathways associated to cell growth, but one of the cluster                               

displayed a high degree of  enrichment for immune response related processes (cluster 3, patient                           

E) while apoptotic and regulatory pathways were enriched in the other (cluster 4, patient E), see                               

Supplementary Data 6 ​. These findings implied that one tumor focus (cluster 3, patient E) likely                             

had a higher degree of infiltrating immune cells than the other. 
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Another example of intrapatient heterogeneity was patient G, with four separate clusters (cluster 0                           

and 4-6) that were annotated as cancer (see ​Figure 2 ​), one of them aligned with the two ​in situ                                     

cancer regions. Of course, the presence of multiple cancer clusters does not necessarily reflect                           

different tumor types, but rather that the corresponding spatial regions are not homogenous in                           

their expression; for example, as a consequence of hosting distinct immune cell populations. If                           

additional metadata could be obtained for patients, ST might be useful for relating tumor                           

intrapatient heterogeneity to more quantitative metrics, such as survival or treatment response. 

 

Immune and tumor core signatures 

To assess if any universal features were present in our data, we compared clusters across                             

patients with respect to their marker genes. We reasoned that if two clusters shared a large                               

number of marker genes, they should be considered more similar than if not. To translate this                               

notion of similarity into a quantitative metric, we computed the Jaccard Index for every                           

combination of cluster pairs. Five distinct ​supergroups (​a.k.a, ​“clusters ​of clusters”) emerged ​after                         

the clusters were hierarchically grouped based on similarity, see Methods and ​Supplementary                       

Figure 7 ​. Only those supergroups where at least one gene was shared among all members were                               

considered as robust, meaning two supergroups were discarded. In the remaining three                       

supergroups, marker genes present in a majority of the member clusters (at least 80%) were                             

extracted and considered as ​core signatures of the HER2-positive patients. Two core signatures                         

were immune-related: the first being a set of 47 genes, including ​APOE ​and ​C1Q{A,B​,​C}                           

expressed (but not exclusively) by macrophages, suggesting that clusters in the corresponding                       

supergroup might contain tumor-associated macrophages;​[19] the second was  a set of 55 genes                         
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with lymphocyte and MHC class I-II associated members (e.g., ​TRBC1​, ​HLA-{A,B}​,                     

HLA-D{QB1,RA,RB1}​).​[27] The third core signature consisted of 11 genes, with several of them                         

being related to cancer and proliferative growth (e.g., ​ERBB2, EPCAM ​and CDH1). ​[28,29] This                           

cancer core signature was derived from a supergroup where all clusters were annotated as                           

cancer-associated. For clarity, the aforementioned cancer supergroup consisted exclusively of                   

cancer-associated clusters, but not all such clusters were members of this group. See                         

Supplementary Data 1 ​ for the complete core signatures.  

 

Inference of cell type organization by integration with single cell data 

Unsupervised clustering of expression data provides insight into spatial expression motifs present                       

in the data. Still, these expression profiles are generated by cell mixtures consisting of one or                               

more cell types; meaning that a one-to-one relationship between cluster and cell type is not                             

guaranteed. Given how spatial arrangement and patterns of interaction between different cell                       

types have implications for both disease progression and treatment, we wanted to chart each cell                             

type’s spatial distribution within the tissue. For this purpose, we deconvolved our spatial data                           

with scRNA-seq data from five HER2-positive tumors, annotated in three tiers, see Methods. ​[30]                       

The three tiers are referred to as the ​major​, ​minor and ​subset tier (terminology inherited from                               

original source). There were eight different cell types in the major class: myeloid cells, T-cells,                             

B-cells, epithelial cells, plasma cells, endothelial cells, cancer associated fibroblasts (CAFs) and                       

Perivascular Like cells (PVL cells). The minor and subset tiers represented gradually finer                         

partitioning of the major types; with examples such as Macrophages (for brevity Mø) and CD8+                             

T-cells in the minor level and subsets of these in the lowest tier. Several methods to integrate                                 

spatial and scRNA-seq data have been proposed, and success has been shown upon applying                           
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these techniques to spatial cancer data.​[21] Most of these methods rely on correlation or elevated                             

expression of a select set of marker genes; however, we decided to use a method that takes                                 

advantage of the full expression profiles from both data modalities. In short, the method we used                               

(​stereoscope ​) decomposes the expression observed in each spatial location — a mixture of                         

transcripts from multiple cells —into contributions from different cell types defined by the single                           

cell data using a probabilistic model. ​[22] The advantage of this approach is that similar cell types                               

with overlapping sets of marker genes may still be distinguished, since the inference is based on                               

the complete expression profile of each type, which is especially important in a complex and                             

intermixed environment like tumors. Excerpts from the single cell integration analysis are given in                           

Figure 3 ​. ​Supplementary Data 8 contains visualization of all of the remaining patients and tiers, all                               

output from ​stereoscope ​is found in ​Supplementary Data 7 ​. 

 

Enrichment of cell types within manually defined regions 

Analogous to the analysis of our expression-based clusters, we examined enrichment/depletion                     

of cell types within the pathology-annotated regions to see how the single cell mapping related to                               

these. We implemented a slightly different approach to assess cell type enrichment, since                         

proportion values represent continuous values in contrast to the discrete cluster labels, see                         

Methods. Several affirmative trends were observed, B and T-cells were enriched in the immune                           

infiltrates while cancer regions showed enrichment of cancer-related cell types and depletion of                         

several cell types, see Figure 3A and ​Supplementary Data 9 ​. We noted how all patients except                               

patient B showed enrichment of the HER2-related epithelial cancer type in the regions annotated                           

as invasive cancer regions. However, patient B exhibited depletion of the HER2 related type in                             

combination with enrichment of the LUMB type in these areas. Coincidentally, patient B was also                             
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unique in having a progesterone-receptor positive profile, in concordance with the LUMB                       

molecular subtype, see ​Supplementary Figure 14 and ​Supplementary Table 1 ​.​[31] Taken together,                       

these findings were seen as affirmative of our mapping’s validity. 

 

Enrichment of cell types within expression-based clusters 

Curious of which cell types that drove the formation of the expression-based clusters, we                           

conducted the same type of enrichment analysis as for the pathologist’s annotations, but this                           

time we assessed enrichment/depletion of cell types within clusters, see ​Figure 3 ​B. In patient E —                               

with the two spatially disconnected tumor foci — the cluster associated with apoptotic and                           

regulatory pathways (cluster 4, patient E) was enriched for epithelial cells and depleted of memory                             

B-cells. In contrast the immune rich cancer cluster (cluster 3, patient E) was enriched for memory                               

B cells and CD4+ T-cells, with weaker or no enrichment of cancer types, see ​Supplementary                             

Figure 11 ​. In Patient G, all clusters annotated as cancer were: depleted of plasma cells, had very                                 

low enrichment or were depleted of B and T-cells, and three of four clusters were enriched for                                 

epithelial types, see Figure 3. The ​in situ ​cancer cluster in (cluster 4) was the only cancer cluster in                                     

patient G enriched for dendritic cells across all replicates while also being depleted of                           

myofibroblast like CAFs (Cancer Associated Fibroblasts), see ​Supplementary Figure 13 ​. We also                       

observed how the plasma cell immune cluster (cluster 1, patient G) was enriched for plasma cells                               

while the APC immune cluster (cluster 3, patient G) exhibited stronger enrichment of B-cells,                           

T-cells and myeloid cells. PVL cells were overrepresented in the mixed cancer/connective tissue                         

clusters (cluster 6, patient G), which also showed enrichment of myeloid cells, CAFs and                           

endothelial cells, see ​Figure 3 ​B and ​Supplementary Figure 12 ​. Adipocytes or equivalent cell types                           

were not included in the single cell data we used, hence no such types were spatially mapped.                                 
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Still, the adipose cluster (cluster 2, patient G) showed enrichment of PVL cells, myeloid and                             

plasma cells (albeit weak for the latter two). We expect cell types such as neutrophils and mast                                 

cells to be present in our spatial data, given how they infiltrate tumors and are associated with                                 

tumor progression; but these types were not present in the single cell data and could therefore                               

not be spatially mapped.​[32,33] Agreement with the tissue morphology, pathologist-annotations                   

and expression-based clusters therefore suggests that the single cell data is sufficiently                       

representative of our tissues to provide a reliable mapping of the included types.  

 

Interactive exploration of results 

We have compiled a resource that contains all data and results from the expression-based                           

clustering and single cell mapping; with a graphical user interface (GUI) that enables                         

comprehensive exploration of these, see Code Availability.   

 

Trends of cell type co-localization 

To condense the information generated by the cell mapping and discover putative cellular                         

interactions, we examined the co-localization of types by computing their spot-wise Pearson                       

correlation, see ​Figure 3 ​C. A positive correlation between two types was considered as indicative                           

of them co-localizing, with the degree of co-localization being proportional to their correlation                         

value; the opposite being true for negative values.  

 

Within the major tier, the most conserved feature, present in all patients, was that epithelial cells                               

anticorrelated with all other types, see ​Figure 3 ​C. Plasma cells anticorrelated with B-cells in all                             

patients except one (patient A, see ​Supplementary Figure 8 ​). These findings indicate that B-cells                           
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and plasma cells, which differentiate from B-cells, reside at distinct locations within the tumor. ​[34]                           

It is not clear whether these findings reflect plasma cell migration during local differentiation from                             

tumor-associated B-cells, or if the plasma cells have developed from B-cells outside the tumor                           

microenvironment. Positive correlations of varying strengths between B and T-cells (major tier)                       

were observed in five of the eight patients; patients G and H exhibited particularly strong                             

co-localization signals and their spatial distributions of B and T-cells had an ample overlap, see                             

Figure 5 ​A and ​Supplementary Figure 9 ​- ​Supplementary Figure 10 ​. Spatially proximal high                     

densities of B and T-cells may be indicative of TLSs, something we will revisit in later figures and                                   

text.​[20]   

 

We also observed that T-cells co-localized with myeloid cells across patients. Interactions                       

between T-cells and myeloid cells are well established and can profoundly affect their respective                           

behavior. ​[35] Recent studies have also revealed an unprecedented heterogeneity within T-cell and                       

myeloid cell types, where subsets of these exhibited a diverse spectrum of states.​[19,36,37]                         

These states present as complex phenotypes not mainly defined by marker genes, but rather the                             

expression profile of a larger gene set.  When the finer tiers of these two cell types were                                 

examined, several trends of co-localization could be observed; such as weak positive signals                         

between cDC2:CD1C, Mø1:EGR1, and pDC:IRF7 with several CD4+ T-cell populations, including                     

Tfh and Tregs. We also observed a salient correlation between Mø2:CXCL10 macrophages and a                           

T-cell subset (T-cells:IFIT1) across all patients, see Figure 4A, and thus sought an explanation for                             

this.  

 

Presence of type I interferon response processes 
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As indicated in the single cell RNA-seq resource, Mø2:CXCL10 expressed increased levels of the                           

chemoattractants ​CXCL10 ​and ​CXCL9. Both of these chemokines bind ​CXCR3​, typically found in                         

T-cells and NK cells. ​[38,39] Tumor-associated myeloid cells expressing ​CXCL9/10 have been                     

described previously and attributed important immunotherapy-induced anti-tumor             

functions.​[19,40–42] Furthermore, the chemokines ​CXCL9/10 may be induced by a type I                       

interferon ​ stimuli, also reported to be present in the ​IFIT1 ​T-cell subset.​[30] 

 

Type I interferon activation within tumors can act directly on tumor cells, to inhibit proliferation or                               

stimulate apoptotic processes, or indirectly by activation of anti-tumor immunity. ​[43,44] In                     

addition, certain anti-cancer therapies have been shown to induce and depend on type I                           

interferon activation.​[44] Given the relevance of type I interferon responses in cancer treatment,                         

we wanted to evaluate whether this process could be associated with Mø2:CXCL10 and IFIT1                           

T-cell subset co-localization in our spatial data. Thus, we inspected the cell type-within-cluster                         

enrichment results, and noted that a majority of the patients had at least one cluster (e.g., cluster                                 

4 in patient G) enriched for both Mø2:CXCL10 and IFIT1 T-cells, see ​Figure 4 ​B and                             

Supplementary Data 9 ​. Consequently, we revisited the pathways listed as enriched within the                         

clusters containing both subsets, and noted that type I interferon response related pathways were                           

among the top ranked ones in patient B, E and G, see ​Figure 4 ​D.  

 

Spatial enrichment of type I interferon responses 

Encouraged by the enrichment of type I interferon signaling pathways in the patient clusters, we                             

conducted a spatial (spot-wise) enrichment analysis, targeted specifically towards these                   

pathways. Briefly summarized, for each spot we determined the intersection between top                       
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expressed and pathway-associated genes, to then compute the probability of the overlap                       

occurring by chance; a low probability implies that a spot is enriched for the pathway, see                               

Methods. Regions with high enrichment of the type I interferon response pathways aligned                         

spatially with areas of joint Mø2:CXCL10 and IFIT1 T-cell subset presence, see ​Figure 4 ​C and 4E.                               

This suggests a spatially restricted type I interferon response in some HER2-positive tumors,                         

which may promote macrophage-induced recruitment of certain T-cells. Further investigations                   

would be useful to establish whether these interactions are relevant to disease outcome. 

 

Inferring TLSs from cell type proportions  

Next, we returned to the patterns of B and T-cell co-localization, and more specifically how this                               

related to TLSs. Our interest in TLSs stems from their cardinal role in antitumor immune                             

responses and relation to clinical outcome as well as treatment response. In the context of                             

cancer, TLSs are one of the locations where tumor antigens are presented to T-cells, promoting a                               

more targeted attack towards the tumors. ​[20]  

 

Since TLSs are defined by the presence and interaction of multiple cell types, scRNA-seq                           

techniques are suboptimal for studying them unless the sites are separated from the remaining                           

tissue prior to dissociation. We therefore see our use of ST, where each spot represents a small                                 

neighborhood populated by multiple cells, as complementary to scRNA-seq methods when                     

studying these structures. While TLSs are not exclusively inhabited by B and T-cells, they are                             

implicated by their joint presence. ​[45] Having deconvolved the cell type composition of each                         

spot, we were able to identify which spots that exhibited a high degree of co-localization between                               

B and T-cells, ergo potentially constituting parts of a TLS-site. More explicitly, for each spot we                               
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computed the probability of two randomly picked cells being a pair of B and T-cells, followed by a                                   

subtraction of the average probability of picking any pair within that spot; a metric we dubbed                               

TLS-score ​. A positive TLS-score translates to B and T-cells both being present at a site, negative                               

values the opposite. ​As expected from the overlap in B and T-cell distribution, patient G and H                                

exhibited small compartmentalized regions with high TLS-score, see ​Figure 5 ​A, these regions                       

were therefore considered as promising TLS-site candidates. 

 

Characterizing the gene expression profiles of TLSs   

Next, we wanted to assess how the gene expression related to TLS-score. For this purpose we                               

used a simple linear model to predict the TLS-score of a spot based on its (normalized) gene                                 

expression, and then extracted the genes with greatest contribution to a positive score (i.e.                           

having large positive coefficient values); we refer to this set of genes as a ​TLS-signature​. ​The                              

number of signature members (171 genes, see Figure 5B and ​Supplementary Table 2 ​) was                           

determined by a threshold derived from the trained model, see Methods. The three genes with                             

largest coefficient values were: ​MS4A1 (a well-known B-cell associated gene, encoding the                       

antigen CD20), ​B2M (encoding a protein that interacts with and stabilizes MHC I) and ​TRBC2                             

(encoding a component of the T-cell receptor).  Other signature members have previously been                         

associated with TLSs (e.g., C ​XCL13, CXCR5, CCL19 ​and ​LTB) ​, see Figure 5B. ​[20] To see what                             

biological processes the TLS-signature was enriched for, we subjected it to functional enrichment                         

analysis (using g:Profiler, querying against GO:BP). The top processes were all related to cell                           

activation, differentiation and immune response or regulation, see ​Figure 5 ​C and ​Supplementary                       

Data 12 ​. 
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Predicting presence of TLSs across tissues and platforms 

To control for overfitting, we applied the model to (HER2-positive) breast cancer data originating                         

from a different platform (Visium, downloaded from 10xGenomics​TM website,​[46]​). Strong localized                     

signals were observed in the Visium data, overlapping with the region identified as a likely                             

TLS-site by a pathologist, see Figure 5D. Finally, we evaluated the model’s performance on three                             

different types of tissue (rheumatoid arthritis, developmental heart and melanoma), where the                       

results agreed with previous annotations and expectations, see ​Supplementary Section 1 ​. This                       

suggests that the signature and model are not only representative of our data, but have a more                                 

general character. Although further studies are necessary to confirm our findings, charting the                         

molecular profiles of TLSs in this manner could potentially reveal novel therapeutic targets for                           

drugs aiming to promote anticancer immune responses.  

DISCUSSION 

Using the Spatial Transcriptomics (ST) technique we have studied eight HER2-positive tumors                       

from a largely unexplored perspective, namely that of their spatial gene expression profiles.                         

Below, we will briefly recapitulate on some of our analyses and their respective ramifications. 

 

We clustered the data based on gene expression and were able to discern sets of genes that                                 

distinguished the clusters (i.e., marker genes), which in conjunction with functional enrichment                       

analysis were used to annotate our clusters. From the marker genes, we derived immune and                             

tumor core signatures, elements helpful in attempts to discover new therapeutic targets or                         

alternative treatments. 
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In addition to expression-based clustering, we used an integrative method to map types found in                             

single cell data onto our samples. This informed us of the types’ spatial distribution within the                               

tissue, and enabled further analysis. When mapped, the cell types arranged as expected; gauged                           

by visual inspection and quantitative measures of enrichment/depletion. From the spatial                     

co-localization patterns we concluded that: the epithelial cancer types tend to be dominant when                           

present (anticorrelating with all other types); plasma cells seemed to spatially segregate from                         

B-cells, in several patients B and T-cells co-localized; a type I interferon associated coupling                           

between certain T-cell and macrophage subsets existed. The proximal location between the                       

CXCL9/10​-expressing macrophages and T-cells suggests that Mø2 could be recruiting the IFIT1                       

expressing T-cells into specific locations, which may have implications for the design of future                           

treatment strategies. Still, more extensive efforts are required to properly confirm this synergistic                         

relationship between the two types. 

 

We believe the single cell data to be representative of our tissues, but not perfectly matched, and                                 

hence there might be cell types present in the spatial data which we lack the ability to infer                                   

proportions of; a limitation to any method relying on external data. For example, neutrophil and                             

mast cells were not included in this analysis, even though they may be present in the samples.                                 

Furthermore, some cell types were excluded from the analysis due to low numbers in the single                               

cell data, despite being of biological interest (e.g., one of the dendritic subsets). ​[19,47–49] There                             

is also a risk of certain cell types being dominant in some regions, meaning that the majority of                                   

captured transcripts therewithin originate from this cell type; as a consequence very weak signals                           

from other types may be masked and their presence not properly accounted for. We thus                             

consider the integrative analysis complementary to our expression-based clustering, where the                     
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latter is able to discern new motifs of expression while the former allows us to assess the spatial                                   

arrangement of known cell types.  

 

The deconvolved spatial data allowed us to identify potential TLS-sites, by studying the joint                           

distribution of B and T-cells. We trained a linear model to identify TLSs based on gene                               

expression, from which we extracted a gene signature associated with potential TLS-sites. As                         

expected for a relevant signature, several of its members had previously been attributed                         

important roles in TLS formation and function. Despite its simplicity, the model generalized across                           

techniques and tissues.  

 

In future studies we envision that cell co-localization patterns may be linked to patient outcome,                             

used to assess drug responses in a spatially restricted manner within tumors, and study                           

functional interactions. For example, there’s an unmet clinical need to understand what dictates                         

how a patient will respond to anti-cancer immunotherapy; for which biomarkers currently used in                           

the clinics are not adequate. To conclude, our study provides new tools and biological insights                             

into the spatial organization in HER2-positive breast cancer tumors, which may help to better                           

understand the underlying disease mechanisms and open up for new vantage points for therapy. 
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CODE AVAILABILITY 

All code, data and results that relate to the content of this manuscript are available as a github                                   

repository found at https://github.com/almaan/her2st. The repository also includes results and all                     

code used to generate these as well as the figures. 

 

The presented results (clustering and single cell integration) can be interactively explored through                         

a Shiny app, which is found at the aforementioned github repository, further instructions                         

regarding how to open and orient this environment are provided at said location as well. 

METHODS 

Array production. ​The array production has already been described in previous                     

publications.​[18,50] Briefly, the microarrays were generated as a 33x35 grid of printed spots with                           

a 200μm center-to-center distance of 100μm between each capture location (spot). A total of                           

1007 spots were printed with unique DNA oligonucleotides (spatial barcodes) attached to                       

oligo(dT) capture probes. 

 

Sample acquisition 

All tumors used for this analysis were immediately frozen in -80 ​o​C after surgery and trimming of                               

fat, then stored in a tumor bank until the start of the experiment. For each tumor a different                                   

section - to that used in the ST experiments - was subjected to IHC and PAM50 analysis for                                   

classification of subtypes. All analyzed sections stained positive for HER2 and were classified as                           

HER2 positive tumors by PAM50.  
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Tissue handling, staining and imaging. ​These steps have previously been described in. ​[18] In                         

short, fresh frozen material was sectioned at 16μm. After placing the tissue on top of the                               

barcoded microarray, the glass slide was warmed at 37 °C for 1 min for tissue attachment and                                 

fixated in ~ 4% NBF (neutral buffered formalin) for 10 min at room temperature (RT). The slide was                                   

then washed briefly with 1x PBS (phosphate buffered saline). The tissue was dried with                           

isopropanol before staining. The tissue was stained with Mayer’s hematoxylin for 4 min, washed                           

in Milli-Q water, incubated in bluing buffer for 2 min, washed in Milli-Q water, and further                               

incubated for 1 min in 1:20 eosin solution in Tris-buffer (pH 6). The tissue sections were dried for                                   

5 min at 37 °C and then mounted with 85% glycerol and a coverslip. Imaging was performed                                 

using the Metafer VSlide system at 20x magnification. The images were processed with the                           

VSlide software (v1.0.0). After the imaging was complete, the cover slip and remaining glycerol                           

were removed by dipping the whole slide in Milli-Q water followed by a brief wash in 80% ethanol                                   

and warming for 1 min at 37 °C. 

 

Permeabilization and cDNA synthesis. ​Permeabilization and cDNA synthesis were carried out                     

as previously described, ​but with substitution of the Exonuclease I buffer pre-permeabilization                       

treatment with a 20 min incubation at 37 °C in 14U of collagenase type I (Life Technologies,                                 

Paisley, UK).​[18] The Exonuclease I buffer was diluted in 1x HBSS buffer (Thermo Fisher                           

Scientific, Life Technologies, Paisley, UK) supplemented with 14μg BSA followed by an                       

incubation in 0.1% pepsin-HCl (pH 1) for 10 min at 37 °C. A cDNA-mix containing Superscript III,                                 

RNaseOUT, DTT, dNTPs, BSA and Actinomycin D was added and the slide incubated at 42 °C                               

overnight (~18 h). The tissue was washed with 0.1x SSC between each incubation step. 
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Tissue removal and cDNA release from the surface. ​Tissue removal, as well as the release of                               

cDNAs from the surface have been described in prior publications.​[18] In brief,                       

beta-Mercaptoethanol was diluted in RNeasy lysis buffer and samples were incubated for 1 h at                             

56 °C. The wells were washed with 0.1x SSC followed by incubation with proteinase K, diluted in                                 

proteinase K digestion buffer, for 1 h at 56 °C. The slides were then washed in 2x SSC + 0.1%                                       

SDS, 0.2x SSC followed by 0.1x SSC and dried. The release mix consisted of second strand                               

buffer, dNTPs, BSA and USER enzyme and was carried out for 2h at 37 °C. After probe release,                                   

the 1007 spatial spots containing non-released DNA oligonucleotide fragments were detected by                       

hybridization and imaging, in order to obtain Cy3-images for image alignment and spot detection,                           

as described previously. ​[18]  

 

Library preparation and sequencing. ​The protocol followed the same preparation procedures                     

as described earlier in ​[18]​, but were carried out using an automated pipetting system (MBS                             

Magnatrix Workstation), also previously reported.​[51] In general, second strand synthesis and                     

blunting were carried out by adding DNA polymerase I, RNase H and T4 DNA polymerase. The                               

libraries were purified and amplified RNA (aRNA) was generated by a 14h ​in vitro transcription                             

(IVT) reaction using T7 RNA polymerase, supplemented with NTPs and SUPERaseIN. The material                         

was purified and an adapter ligated to the 3’-end using a truncated RNA ligase 2. Generation of                                 

cDNA was carried out at 50 °C for 1 h by Superscript III, supplemented with a primer, RNaseOUT,                                   

DTT and dNTPs. Double stranded cDNA was purified, and full Illumina sequencing adapters and                           

indexes were added by PCR using 2xKAPA HotStart ready-mix. The number of amplification                         

cycles needed for each section was determined by qPCR with the addition of EVA Green. Final                               
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libraries were purified and validated using an Agilent Bioanalyzer and Qubit before sequencing on                           

the NextSeq500 (v2) at a depth of ~100 million paired-end reads per tissue section. The forward                               

read contained 31 nucleotides and the reverse read 46 nucleotides. 

 

Mapping, gene counting and demultiplexing. ​These steps were carried out in a similar fashion                           

to what previously have been described.​[18] The forward read contained the spatial barcode and                           

a semi-randomized UMI sequence (WSNNWSNNV, with: W - A/T, S - G/C, N - A/C/T/G and V -                                   

A/C/G) while the reverse read contained the transcript information and was used for mapping to                             

the reference GRCh38 human genome. Before mapping the reads with STAR ​[52]​, the reverse                           

reads were first quality trimmed based on the Burrows-Wheeler aligner, long homopolymer                       

stretches were also removed. Multi-mapped reads, i.e. reads mapping to multiple loci in the                           

genome, were discarded after mapping with STAR. HTSeq-count with the setting                     

-intersection-nonempty​, was used to generate gene counts, using an Ensembl reference file (v.                         

86).​[53] The remaining reads were provided as input to TagGD demultiplexing using the 18                           

nucleotides spatial barcode.​[54] The demultiplexed reads were then filtered for amplification                     

duplicates using the UMI with a minimal hamming distance of 2. The UMI-filtered counts were                             

used in the analysis. The analysis pipeline (1.6.0) is available at                     

https://github.com/SpatialTranscriptomicsResearch/st_pipeline​. 

 

Pre-processing. ​Raw data was merged from 6 section gene count matrices for samples A, B, C                               

and D and 3 section gene count matrices for samples E, F, G and H. The merged expression                                   

matrices were enriched for genes matching the biotypes protein_coding, IG_C_gene, IG_J_gene,                     

IG_V_gene, TR_C_gene, TR_J_gene and TR_V_gene. In addition, each merged expression matrix                     
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was filtered from ribosomal protein genes (RPL and RPS), mitochondrial genes (MT-) and MTRNR                           

genes as well as genes expressed in fewer than 10 spots across the whole merged dataset.                               

Spots with fewer than 300 unique features (genes) were also removed from the merged datasets. 

 

Normalization and feature selection. The merged data was first normalized using the                       

regularized negative binomial regression method implemented in the ​SCTransform function from                     

Seurat (v3.1.4) R package. ​[55] The number of variable genes selected with ​SCTransform was                         

determined by applying a residual variance cutoff of 1.1 (variable.features.rv.th = 1.1) with the                           

additional parameter settings; return.only.var.genes = FALSE and variable.features.n = NULL. In                     

the subsequent patient-based analysis, we applied the same normalization scheme but with an                         

additional batch correction term to adjust for technical differences across replicate tissue                       

sections (vars.to.regress = section). 

Dimensionality reduction. Before running dimensionality reduction, the set of highly variable                     

genes as defined by the ​SCTransform method was reduced to a smaller set of genes as                               

described below. First, we hypothesized that the most relevant features should not only have high                             

variance, but also show positive spatial autocorrelation. We therefore devised a method to rank                           

the variable features by spatial autocorrelation by computing the pearson correlation coefficient                       

for each gene between the expression vector and the spatial lag vector (defined as the summed                               

expression in the adjacent neighboring spots over all spots). Variable genes with a correlation                           

coefficient larger than 0.1 were therefore kept in the reduced gene set. We also identified 21                               

highly variable genes which contributed to form a ring like pattern in several capture areas                             

(​Supplementary Data 4 ​) . This effect was not found in all biological replicates from the same                               
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tissue biopsies and was therefore concluded to be a source of technical variation. All 21 genes                               

were excluded from the reduced gene set. For each patient dataset, the reduced set of highly                               

variable and spatially correlated genes was used as input for a Non-negative Matrix Factorization                           

(NMF) computation with 10 factors using the ​RunNMF function from the STUtility R package. ​[56]                           

Each factor was then visualized as a spatial heatmap colored by factor value and factors with                               

consistent patterns across replicate tissue sections were kept for subsequent analysis steps.  

Expression-based clustering. First, a Shared Nearest Neighbor (SNN) graph was constructed                     

from the selected NMF factor matrix with the ​FindNeighbors function in Seurat. This SNN graph                             

was then used to identify clusters of spots using the modularity based clustering algorithm                           

implemented in the ​FindClusters function in Seurat. The resolution parameter was set to 0.4 for all                               

samples.  

Marker detection. For each patient dataset, a Wilcoxon signed-rank test was performed using                         

the ​FindAllMarkers function in Seurat to find differentially expressed genes within each cluster.                         

The function performs the test pairwise between each cluster and its background (all other spots                             

in the dataset). The resulting table of gene markers was filtered to include genes with an adjusted                                 

p-value lower than 0.01 and an average log fold (natural logarithm) change higher than 0.15, thus                               

omitting down-regulated genes. 

 

Cluster annotation. Each set of differentially up-regulated genes were subjected to enrichment                       

analysis using the Gene Ontology – Biological Processes (GO:BP) database and the enricher                         

function from the g:profiler R package with an adjusted p-value cutoff of 0.05. Each cluster was                               
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then manually annotated using the top enriched pathways and up-regulated marker genes as                         

basis. 

Cluster overlap between patients and core signature extraction​. To check for overlapping                       

gene signatures between clusters from different patients, we computed the Jaccard index for all                           

pairs of cluster gene sets (up-regulated DE genes). These values were first used to compute a                               

distance matrix (euclidean distance) from which a dendrogram was constructed (R package                       

hclust​) with the agglomeration method set to “complete”. This dendrogram was then cut into 5                             

groups using the ​cutree function (R package ​stats​) with k (number of clusters) set to 5. Then, for                                   

each group of clusters we extracted all genes that were shared between at least two clusters. For                                 

two of the groups, zero genes were shared across all clusters and these groups were excluded.                               

For the remaining 3 groups, we defined a core signature as the genes that were shared across at                                   

least 80% of the clusters. 

 

Single Cell Data 

We downloaded the single cell data related to the publication ​[30]​. Only cells originating from the                               

HER2-positive patients were used in our analysis. We used the same labels as in the figures of                                 

the single-cell resource, with the exception of Plasmablasts which we here refer to as Plasma                             

Cells. 

 

Spatial Mapping of Single Cell Data. To infer the spatial organization of certain cell types we                               

used a method developed to integrate spatial and single cell data, implemented and available as                             

a python package (​stereoscope​, v.0.2, https://github.com/almaan/stereoscope). The method is                 

based on a probabilistic model which assumes that both single cell and spatial RNA-seq data                             
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follow a negative binomial distribution. By using annotated single cell data in combination with                           

spatial transcriptomics data it estimates proportions of every cell type (present in the single cell                             

data) at each spatial capture location.​[22] 

 

To conduct the spatial mapping of cell types, we only included cells from the five HER2-positive                               

patients found in the single cell data, all ST-sections were used. In total three analyzes were                               

conducted, with the only difference being the labels used for the single cell data. As mentioned in                                 

the main text, every cell was assigned to a type within each of the three tiers ​major, minor ​and                                     

subset ​. For respective tier, we subsampled the single cell data set, according to the following                             

scheme: (i) If a type had fewer than 25 members, exclude the type; (ii) if a type had more than 25                                         

members but less than or equal to 500 members, include all cells; (iii) if a type had more than 500                                       

members, randomly select 500 of these. Next, the subsampled sets were spatially mapped, one                           

by one, onto the ST data.  

 

A custom gene list of 5540 members, representing the union of the 5000 (highest expressed)                             

genes in the single cell data and cell type marker genes, were used for the proportion inference,                                 

see ​Supplementary Data 11 ​. 50000 epochs and a batch size of 2048 were used for all tiers, in                                   

both steps of the ​stereoscope ​ procedure. Default values were used for all remaining parameters.  

 

Cell type co-localization. We use spotwise Pearson correlation between the estimated cell type                         

proportion values as a proxy for cell type co-localization; with high positive correlation being                           

indicative of types that exhibit similar spatial distributions and the opposite being true for negative                             

values. To estimate the confidence interval for each of the correlation values, we used a bootstrap                               

29 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.14.200600doi: bioRxiv preprint 

https://paperpile.com/c/xyqAXA/z9fD
https://doi.org/10.1101/2020.07.14.200600
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

approach. The Pearson correlation was computed for each of 10000 bootstrap samples (sampling                         

from all spots with replacement), forming a distribution of correlation values for each pair of types.                               

The mean of each distribution was taken as a representative correlation value, and a 95%                             

confidence interval was defined by the 2.5th and 97.5th percentiles. Pairs where the confidence                           

interval included zero were considered as not statistically significant, indicated with a gray border. 

 

Region based enrichment/depletion of cell types ​. The enrichment, or alternatively depletion, of                       

the mapped cell types in relation to spatial regions (e.g., manual annotations or clusters) were                             

assessed by the following procedure: First, the average proportion value was computed within                         

each of the regions, referred to as the ​true average​. Next, we permuted the spot indices for the                                   

proportion estimate vectors 10000 times, while maintaining the original indices for the annotated                         

regions. In other words, the proportion estimates were shuffled w.r.t to their spatial location.                           

Average proportion values of the annotated regions were determined for each permutation,                       

constituting the set of ​permuted averages ​. We then computed the differences between the true                           

average and the all permuted averages. Finally, the mean value of the differences divided by the                               

standard deviation of these differences were taken as the ​enrichment score for the respective                           

regions. 

 

Upon visualization, the ​enrichment score of a type within a certain region is represented by two                               

features, the marker size and it’s color. We let the marker size be proportional to the absolute                                 

value of the enrichment score, while the color indicates the sign (red for negative and green for                                 

positive). To summarize, red markers are indicative of a type being depleted in a certain region,                               

green markers of enrichment; the larger the marker, the larger the effect.  
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TLS Signatures 

The method we devised to obtain a TLS signature can be decomposed into two steps: (1)                               

associating a TLS-score to each spatial location and (2) modelling the contribution of each gene                             

to this score. We base the TLS-score in the proportion values estimated for the major cell type                                 

tier; first a ​raw TLS-scores ​are computed, taken as the product between B and T-cell proportions                               

multiplied by the scalar 2. In theory ​— assuming unbiased and independent sampling from a large                               

population of cells with the same type composition as the spot ​— this represents the probability                               

that two randomly selected cells is a B respectively T-cell. The raw TLS-score is then adjusted by                                 

subtracting the average probability of picking any cell type pair in the associated spot, this is the                                 

final TLS-score used in the subsequent steps. 

 

In the second step, we consider the (adjusted) TLS-score at a given spot as a function of its gene                                     

expression. The gene expression values are normalized accordingly: First, all elements of a spot’s                           

expression vector are divided by its library size (the sum of all elements); second, the expression                               

vector associated to each gene is divided by its standard deviation (computed after the preceding                             

library size division). Letting ​y represent the S-dimensional (S being the number of spots)                           

TLS-score vector, ​X the SxG (G being the number of genes) normalized expression vector, ​β a                               

G-dimensional vector of coefficients and β​0 ​a scalar representing the intercept value; we estimate                           

values of ​β ​and β​0 ​that minimize the loss function L(​β) = || ​y - ​(​Xβ + ​β​0​1​)​|| ​2​, ​where ​1 ​is a                                         

G-dimensional vector with all elements being 1 ​. ​Implementation wise, we used the ​OLS class                           

from the ​linear_model module in the python package statsmodels (version 0.11.0) for the purpose                           

of finding the least square estimates. 
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The genes qualifying as members in the final TLS-signature is determined by ordering the                           

coefficient values from largest to smallest, considering the values as a function (​f) ​of the gene’s                               

rank. The resulting curve is then smoothed with a gaussian filter, and the second order                             

differences of this smoothed curve are computed, representing an approximation of ​f​’s second                         

derivative . Using the same gaussian filter as previously mentioned, the second derivative                         

approximation is smoothed. The gene coefficient for which the smoothed second derivative                       

approximation obtains a value below zero is taken as the lower bound (threshold), hence all genes                               

with a coefficient having a lower rank than this will be excluded. The gaussian filtering was                               

performed by using the ​gaussian_filter ​function from scipy’s (version 1.4.1) ​ndimage ​module; the                         

sigma parameter was set to 10 whilst default values were used for the remaining parameters.                             

Applying the aforementioned procedure to all replicates of patient G and H, we obtained a                             

signature of 171 genes, full list in ​Supplementary Table 2 ​. 

 

Functional enrichment of the gene signature was performed by using the ​g:Profiler ​python                         

package (version 1.0.0), we queried against GO:BP (GO Biological Processes) and selected all                         

terms that were significantly enriched (having an adjusted p-value smaller than 0.05). The                         

complete set of these pathways are found in ​Supplementary Data 12 ​. 

 

Spot-wise pathway enrichment 

To assess enrichment of a given gene set (here associated to a given functional pathway)                             

spatially, we used the following approach. Let G be all genes present in the spatial data, and let                                   

Q​P be the set of all genes associated with the pathway P for which enrichment should be                                 
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examined. Also, for each gene subtract its average expression, then within each spot rank the                             

genes according to their adjusted expression levels (from highest to lowest). Let T ​n​(s) be the set of                                 

n highest ranked genes within spot ​s. Now, for each spot construct a 2x2 contingency table of the                                   

following character: 

 

  Top ranked genes   Lowly ranked genes 

Associated with P  | T ​n​(s) ∩ Q​P ​|  | Q​p​ \ T​n​(s) |  

Not associated with P  |T ​n​(s) \ Q​P ​|  | G \ (T​n​(s) U Q​P​)​ ​| 

 

Then conduct a Fisher’s exact test, to calculate the probability (p(s)) of observing this partitioning                             

of genes among the two variables, assuming that the genes associated with P are equally                             

distributed over the top (T ​n​(s)) and lower ranked genes. The enrichment (E​P​(S)) of P for spot ​s is                                   

then taken as : E​p​(s) = -log2(p(s)). These are the values visualized in Figure 4E. 
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Figures 

 

 

Figure 1 | Overview of study. ​After sample retrieval, we performed ST on 36 sections confirmed                               

as being HER2-positive. A trained pathologist manually annotated one section from each sample.                         

Expression-based clustering and single cell data integration was applied to explore the spatial                         

expression profiles and cell type interactions in our data. Marker genes were extracted for each of                               

the clusters and subjected to functional enrichment analysis, which allowed us to biologically                         

annotate them. By deconvolving the cell types in each spot we could infer novel patterns of cell                                 

type co-localization and design a model for prediction of TLSs. Blue dashed boxes indicate steps                             

in the process executed by external groups or individuals. 
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Figure 2​ | Clustering of spatial data 

A ​. Morphological regions were annotated by a pathologist into six distinct categories: invasive                         

cancer (red), adipose tissue (cyan), connective tissue (blue), breast glands (green), ​in situ ​cancer                           

(orange) and inflammatory cells (yellow). B. Split view of each cluster's distribution across one                           

tissue section. ​C. UMAP projection of 446 spots from patient G colored based on cluster identity.                               

D. Proportions of spots assigned to each cluster across the three consecutive tissue sections in                             

patient G. ​E. Dot plot showing the overlap between clusters and annotated regions. The size of                               

the dots represent the proportion of cluster spots belonging to an annotated region. The                           

pathologist’s annotations are given on the x-axis, cluster annotations are found on the y-axis. ​F.                             

Heat map of the clusters and the most highly differentially expressed genes for patient G. Each                               

cluster was annotated based on morphological region together with marker genes 
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Figure 3​ | Single cell mapping through ​stereoscope​.  

A ​. Enrichment (green) and depletion (red) of major tier cell types in the regions defined by the                                 

pathologist, along with proportion estimates of different cell types (epithelial, CAFs, plasma cells                         

and B-cells). Spots annotated as cancer ​in situ​, invasive cancer and immune infiltrate are                           

indicated by border color. ​B. Similar to A but with the regions defined by the expression-based                               

clusters. ​C. ​Correlation plot of all cell types within the major tier across all sections, a distinct                                 

correlation between myeloid cells and T-cells can be observed. ​D. Proportions of myeloid cells                           

and T-cells showing one area with higher (1) respectively lower (2) degree of co-localization. All                             

presented results are associated with patient G, except for subfigure C where correlation values                           

are computed across all patients. 
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Figure 4​ | Co-localisation of myeloid cells and T-cells 

A. Correlation plot of subsets of T-cells and Myeloid cells showing a distinct correlation between                             

the ​IFIT1 ​T-cell subset and Mø2 across all patients. ​B. Enrichment (green) and depletion (red) of                               

subsets of T-cells and Myeloid cells in each manually annotated region, highlighting the presence                           

of the correlated cellypes ​IFIT1 ​T-cell subset and Mø2 within the ​in situ region of patient G. ​C.                                   

Proportion estimates for ​IFIT1 ​T-cell subset and Macrophage 2 in patient G, highlighting the                           

annotated ​in situ region. ​D. Pathways enriched by marker genes for cluster 4, interferon signalling                             

pathways are highlighted in red. Intersection size is equivalent to the number of overlapping terms                             

between the marker genes of cluster 4 and the given pathway. ​E. Spot-wise enrichment of type 1                                 

interferon signaling pathway (GO:0060337) visualized on patient G.   
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Figure 5 

 

Figure 5​ | TLS Inference and Prediction  

A. ​Proportion estimates of B and T-cells together with the computed TLS-score for patient G and                               

H, annotated HE-images are included for reference. ​B. Rank-plot (coefficient value vs. rank) of the                             

fitted model, genes included in the TLS-signature are indicated by red; excerpt (*) shows the three                               

top ranked genes together with known TLS associated genes. ​C. Top 15 pathways which the                             

TLS-signature showed enrichment of. ​D. Predicted TLS-score for the 10X Visium breast cancer                         

data set, using the model trained on Patient G and H. Pathologist’s annotation for likely TLS-sites                               

(red) are included as a reference. 
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Supplementary 

 

Supplementary Figure 1 ​ | Experimental setup 

Six cryosections were taken with a distance of 32 um from patient A-D respectively and three consecutively cut 

cryosections were taken from patient E-H respectively. Each section was taken with a thickness of 16 um and placed 

on a ST-array. 

 

 

Supplementary Figure 2 ​ | UMAP-plot 

 A. ​UMAP visualization of all spots colored by patient. ​B. ​UMAP visualization of all spots colored by replicate. 
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Supplementary Figure 3 ​ | Expression-based clustering overview 

Column 1. ​ UMAP visualization of spots colored by cluster. ​Column 2 ​. Annotations made by a trained pathologist into 

six distinct categories: Invasive Cancer (red), Adipose tissue (cyan), Connective tissue (blue), Breast glands (green), ​in 

situ​ cancer (orange) and Inflammatory cells (yellow). ​Column 3. ​ Spatial visualization of clusters. ​Column 4. 

Proportions of spots belonging to each cluster across replicate sections.   
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Supplementary Figure 4​ ​| Spatial arrangement of all expression-based clusters 

Spatial visualization of clusters across all replicate tissue sections for each patient (A-H). Spots 

with the same colors belong to the same clusters. Clusters are not shared between patients.   
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Supplementary Figure 5 ​ | Patient G and H Zoom-in of specific regions of interest 

(Top row) A region in patient G consisting of only three spots and aligning with the ​in situ ​cancer regions is assigned 

to a different cluster than its spatial neighbors (orange), the same cluster as the rest of the ​in situ ​cancer spots are 

found in. (Bottom row) A region with ​in situ​ region in patient H is populated by two different clusters (purple and 

yellow)    
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Supplementary Figure 6 ​ | 3D visualization of Patient G 

The three replicates taken from Patient G,  visualizing the expression based clusters’ distribution in all three 

dimensions. Distances in the XY-plane and Z-axis are, for ease of visualization, not depicted in the same scale.  
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Supplementary Figure 7 ​ | Clusters-of-clusters plot 

Heatmap of Jaccard indices calculated across cluster geneset paris. The three cluster supergroups are highlighted 

by the dashed boxes, each defined by their upregulation of core signature genes. Group 1: cancer, group 2 and 3: 

immune related.  
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Supplementary Table 1 ​ |  Receptor Status 

ER and PgR receptor status for all patients (A-H) used during the tumor classification. Only Patient B (bold) has 

positive PgR status. 

                 

Patient  ER  PgR 

A  -  - 

B  -  + 

C  -  - 

D  -  - 

E  -  - 

F  -  - 

G  -  - 

H  -  - 
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Supplementary Figure 8 ​ | Correlation plot -  Patient A, major tier 

Correlation (Pearson) plot of cell type proportions across the spots, red is indicative of high spatial co-localization, 

blue is indicative of low spatial co-localization. The correlation values are computed over all six replicates of patient 

A, for the major tier. 
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Supplementary Figure 9 ​ | Correlation plot - patient G, major tier 

Correlation (Pearson) plot of cell type proportions across the spots, red is indicative of high spatial co-localization, 

blue is indicative of low spatial co-localization. The correlation values are computed over all three replicates of patient 

G, for the major tier 
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Supplementary Figure 10 ​ | Correlation plot - Patient H, major tier 

Correlation (Pearson) plot of cell type proportions across the spots, red is indicative of high spatial co-localization, 

blue is indicative of low spatial co-localization. The correlation values are computed over all three replicates of patient 

H, for the major tier. 
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Supplementary Figure 11 ​ | Enrichment in expression-based clusters, Patient E, minor tier  

Patient E, enrichment of minor tier cell types within expression based clusters. Red is indicative of depletion, green of 

enrichment. Markersize is indicative of the extent of the effect (depletion or enrichment). 
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Supplementary Figure 12 ​ | Enrichment in expression-based clusters, Patient G, major tier  

Patient G, enrichment of major tier cell types within expression based clusters. Red is indicative of depletion, green of 

enrichment. Markersize is indicative of the extent of the effect (depletion or enrichment). 
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Supplementary Figure 13 ​ | Enrichment in expression-based clusters, Patient G, minor tier  

Patient G, enrichment of minor tier cell types within expression based clusters. Red is indicative of depletion, green of 

enrichment. Markersize is indicative of the extent of the effect (depletion or enrichment). 
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Supplementary Figure 14 ​ | Cancer cell type enrichment across all patients 

Enrichment/depletion plots of Her2 and LumB associated cancer cell types in respective patients in the regions 

defined by the pathologist. Dashed boxes indicate regions of invasive cancer. Patient B (red dashed box) is the only 

patient that exhibits depletion (red) of HER2 but enrichment (green) of LumB associated cancer cell types. 
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Supplementary Section 1 ​ | Prediction on External Data 

 

Having established good performance for our predictive model across techniques when applied to breast cancer 

data we wanted to assess its behavior when presented with other types of tissue. Thus we predicted TLS-score in 

samples from three different tissues:  rheumatoid arthritis (RA), melanoma and developmental heart, see 

Supplementary Figure 15 ​. Regions with high TLS-score in RA tissue overlapped with the areas annotated as immune 

infiltrates in the original publication, where they also discuss the likely presence of ectopic lymphoid structures (in this 

context, synonymous to TLS).​[57]​ A similar trend was observed in the melanoma sample, where high TLS-scores 

were predicted in regions annotated as immune infiltrates.​[58]​ In the healthy developmental heart, no signals above 

zero were observed for the predicted TLS-score, suggesting absence of TLSs, as expected in this tissue.​[59,60] 
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Supplementary Figure 15 ​ | Validation on external data sets 

(Top row) Predicted TLS-score of tissues from different platforms (Visium and ST) and tissues (breast cancer, 

developmental heart, melanoma and rheumatoid arthritis). (Bottom row) HE-images of the corresponding tissue. Our 

pathologist has annotated the Visium sample, with an arrow indicating a likely TLS site (the only candidate identified). 

The Melanoma sample is annotated (taken from original publication) with black as melanoma, red as stroma and 

yellow as immune infiltrate. A cutoff of 0.0 was used when visualizing the TLS-score predictions. 
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Supplementary Table 2​ | Genes included in TLS-signature 

       

Gene  Coefficient  Gene  Coefficient  Gene  Coefficient 

MS4A1  0.000595692124909  CD69  0.000178523456895  ALG8  0.000144285394958 

B2M  0.000332672042219  SYT11  0.00017618286567  CD79A  0.000143369081063 

TRBC2  0.000317378385003  FYB  0.000175798252131  UHRF1BP1L  0.000143360448522 

LTB  0.000314349966323  CD48  0.000175141314241  MDFIC  0.00014292847454 

TIAM1  0.000314177344547  PLA2G2D  0.00017383613927  TARBP1  0.000142217292012 

ZC3H12D  0.000313029236991  SPIB  0.00017356648257  MICB  0.000142213802666 

SCML4  0.00030351675486  LIMD2  0.000172949993333  B3GLCT  0.000142087554698 

CXCR4  0.000295575363742  ARHGAP15  0.000171935625146  CASP2  0.000141827504695 

CD19  0.000288765012981  BCL11B  0.00017006201514  SELL  0.000141554153463 

TRAF3IP3  0.000285710237725  AKNA  0.000169636422625  EMB  0.000141385335943 

BTG1  0.000271035711673  TNFAIP8  0.000168196592318  CD37  0.000141033972406 

BIRC3  0.000270754219697  CD2  0.000167327817843  ABCD4  0.000140912625775 

CD52  0.000263835835808  DDX5  0.000166677867478  AP4B1  0.000140867027941 

RAC2  0.000257684640648  POGLUT1  0.000166524246914  TTBK2  0.000140579746916 

CD83  0.000251490238498  TIPARP  0.000165554981735  FAM65B  0.000140571174096 

HLA-B  0.000249477062823  GAREM2  0.000165279736338  TMEM5  0.000140404709944 

PTPRC  0.00024628671493  EPHA4  0.000165144835794  ANKDD1A  0.000140393391408 

TRAC  0.000243828273295  IL2RB  0.00016475163977  WIPF1  0.000140275511107 

SLA  0.000239561152957  GRPEL2  0.000164137100584  NKRF  0.000140206314254 

CXCL9  0.00023484222349  ADAM28  0.000163998734444  SEPT6  0.000140109149509 

CORO1A  0.000231949711471  VWA8  0.000163958977584  IL10RA  0.000139939044216 

IL16  0.000227806544677  FAR1  0.000163316470036  SLC25A33  0.000139753022653 

CYTH1  0.000222133222142  TMSB4X  0.000162675011343  LMO2  0.000139663150449 
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ZFP36L2  0.00022125659097  CACNA1I  0.000161818137099  DUSP2  0.000139263146875 

ITGAL  0.000220774848163  SMCHD1  0.000160065486459  NACA  0.000138814706626 

ICOS  0.000220531627722  HLA-DQB1  0.000159989878407  SCIMP  0.000138632593831 

FAM96B  0.000219830644763  LNPEP  0.000158710432572  ZSCAN29  0.000138317307187 

CXCL13  0.000219689264426  RCHY1  0.000158638904959  RNASET2  0.000138178147064 

PASK  0.000216719757693  GPSM3  0.000157818119632  RFFL  0.000138106631077 

CCR7  0.000211367390464  TRBC1  0.000157724735433  CD96  0.000138037067735 

SNX13  0.000210712369247  TSC22D3  0.000156868044902  CD79B  0.000135989992381 

TRAF5  0.000209622341485  DOCK8  0.000156646041763  DGKE  0.000135961951047 

LRMP  0.000208922706969  SPOCK2  0.000156272915968  SGSM2  0.000135605121307 

BLK  0.000208263281006  PIP4K2A  0.00015617577339  FN3KRP  0.000135460976542 

IL7R  0.000207819468811  CCDC50  0.00015532079662  ZNF700  0.000135343521919 

PRKCB  0.000206018165061  GZMK  0.000154890466818  TBC1D23  0.000135309288028 

IL11RA  0.00020215370056  CPSF7  0.00015484366527  PIK3IP1  0.000135100371679 

IL2RG  0.000200475332668  CD53  0.000154433698911  SP140  0.000134814720212 

CD247  0.000200350709432  SLAMF6  0.000153225703526  DEF6  0.000134762514514 

QRICH1  0.000199184724442  BARX2  0.000152592481906  EVI2A  0.00013474131392 

CARMIL2  0.00019838434595  FUCA1  0.000151902661181  CARD11  0.000134728651734 

C5orf56  0.000196288725541  CCL19  0.000151759813087  HNRNPA1  0.000134434803067 

CD3E  0.000196279783133  ACAP1  0.000151533777593  RNF43  0.000133758771941 

DNMBP  0.00019550043764  IBTK  0.000151216643474  HLA-DMB  0.000133751800931 

RHOF  0.00019001882019  OSBPL7  0.000151164146772  CD5  0.000133081864036 

ARHGEF1  0.000189847012439  STK17A  0.000149839180989  TBC1D10C  0.000132825037694 

KLF12  0.000188405291697  CD3G  0.000149756396866  SEPT1  0.000132610015045 

TXNIP  0.000187362619779  ATP8A1  0.000149099799003  ZBTB46  0.000132412254372 

LYZ  0.000187060745086  KLF2  0.000149027298158  S100PBP  0.000132239263083 

TCL1A  0.0001870026952  CD27  0.000148457414886  EIF4H  0.000132006812558 

SAFB  0.000186077044672  COA1  0.000148200697177  NELL2  0.000131969279709 
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DGKA  0.000185571574722  CXCR5  0.000148114866973  TMED8  0.000131946332862 

BRE  0.000183349162999  EPB41  0.000147422991384  MLLT10  0.000131921796035 

PLEKHG1  0.000183107764966  GTF2E1  0.000146664134548  CASP1  0.000131851115526 

PTPN22  0.000182056748811  SLAMF1  0.000146196045923  TESPA1  0.000131262931785 

LAMP5  0.000181972075947  TMC6  0.000145610417408     

ZNF558  0.000181232416102  UBA7  0.000144881439034     

JAK3  0.000179071216954  MSN  0.000144873617036     

 

   

62 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.14.200600doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.200600
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

File Listing (Supplementary Data) 

 

● Supplementary Data 1​ | CORESIG.xlsx - genes included in each of the respective core signatures (2 

immune associated and 1 tumor associated) 

●  ​Supplementary Data 2 ​ | CLUSTERANNOT.xlsx - cluster annotations and the motivations behind these 

● Supplementary Data 3​ | MARKERGENES.xlsx - marker genes for each of the expression based clusters 

(within each patient) 

● Supplementary Data 4​ | RINGGENES.tsv - list of genes that were excluded  in parts of the analysis due 

to their aberrant behavior; forming ring-like patterns in several capture areas.  

● Supplementary Data 5​ | CORRS.zip - correlation matrices for all three tiers. Matrices are sorted in 

subfolders according to their tier, naming follows the convention: corrs-{tier}/{tier}-{samples}-corr-plot.png 

● Supplementary Data 6​ | PATHWAYS.zip - enriched pathways for each of the expression based clusters. 

Naming follows the conventions : {patient}_GO_BP.xlsx 

● Supplementary Data 7​ | STSCPROP.zip - Proportion estimates across all tiers and samples. Naming 

follows the convention : {tier}/{sample}-proportion.tsv 

● Supplementary Data 8​ | STSCVISUAL.zip - Visualization of proportion estimates across all tiers and 

samples. Naming follows the convention : {tier}/{sample}-proportion-visual.png. 

● Supplementary Data 9​ | STSCENR.zip - enrichment/depletion results for all cell types across all tiers. 

Naming follows the convention {annotation}/{tier}/{sample}-enrichment.png, with annotation = 

[cluster,pathologist]. 

● Supplementary Data 10​ | CLUSTERENR.zip - enrichment of expression-based clusters and the regions 

defined by the pathologist. Naming follows the conventions {sample}_cluster_vs_annotation_overlap.xlsx 

● Supplementary Data 11​ | STSCGENELIST.tsv - genes included from the single cell data when running 

stereoscope​. 

● Supplementary Data 12​ | TLSENR.tsv - enrichmed pathways when subjecting the TLS-signature to 

functional enrichment analysis (GO:BP) 

63 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.14.200600doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.200600
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

● Supplementary Data 13​ | TLSCOEF.tsv - coefficient for all genes obtained upon fitting the linear model 

(trying to predict TLS-score) to patient G and H. 
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