

1 **Cerebrospinal fluid (CSF) boosts metabolism and virulence expression factors in**
2 ***Acinetobacter baumannii***

3 Jasmine Martinez¹, Chelsea Razo-Gutierrez¹, Casin Le¹, Robert Courville¹, Camila
4 Pimentel¹, Christine Liu¹, Sammie E. Fuang¹, Alejandro J. Vila^{2,3}, Parvin Shahrestani¹,
5 Veronica Jimenez¹, Marcelo E. Tolmasky¹, Scott A. Becka⁴, Krisztina M. Papp-
6 Wallace^{4,5,6}, Robert A. Bonomo^{4,5,6}, Alfonso Soler-Bistue⁷, Rodrigo Sieira⁸, Maria
7 Soledad Ramirez^{1*}.

8 ¹Center for Applied Biotechnology Studies, Department of Biological Science, College of
9 Natural Sciences and Mathematics, California State University Fullerton, Fullerton,
10 California, USA,

11 ²Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario,
12 Argentina,

13 ³Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad
14 Nacional de Rosario, Rosario, Argentina

15 ⁴Research Service and GRECC, Louis Stokes Cleveland Department of Veterans
16 Affairs Medical Center, Cleveland, Ohio, USA,

17 ⁵Departments of Medicine, Pharmacology, Molecular Biology and Microbiology,
18 Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School
19 of Medicine, Cleveland, Ohio, USA,

20 ⁶CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case
21 VA CARES), Cleveland, Ohio, USA,

22 ⁷Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-
23 Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Buenos Aires,

24 ⁸Fundación Instituto Leloir – IIBBA CONICET, Buenos Aires, Argentina.

25 **Running Title:** CSF boosts *A. baumannii* survival

26 **Keywords:** *Acinetobacter baumannii*, CSF, metabolism, virulence, growth,
27 transcription, survival.

28
29 ***Corresponding author.**

30 María Soledad Ramírez, PhD.

31 Assistant Professor

32 Dept. Biological Science

33 California State University Fullerton

34 800 N State College Blvd

35 Fullerton, CA 92831

36 e-mail: msramirez@fullerton.edu

37 Tel: [+1 657-278-4562](tel:+16572784562)

38

39 **Abstract**

40 In a recent report by the Centers for Disease Control and Prevention (CDC), multidrug
41 resistant (MDR) *Acinetobacter baumannii* is a pathogen described as an “urgent threat”.
42 Infection with this bacterium manifests as different diseases such as community and
43 nosocomial pneumonia, bloodstream infections, endocarditis, urinary tract, wound
44 infections, burn infections, skin and soft tissue infections, and meningitis. In particular,
45 nosocomial meningitis, a common complication of neurosurgery caused by extensively-
46 drug resistant (XDR) *A. baumannii*, is extremely challenging to manage. Therefore, it is
47 necessary to identify signals, such as exposure to cerebrospinal fluid (CSF), that trigger
48 expression of virulence factors that are associated with the successful establishment
49 and progress of this infection. While a hypervirulent *A. baumannii* strain did not show
50 changes in its transcriptome when incubated in the presence of CSF, a low-virulence
51 isolate showed significant differences in gene expression and phenotypic traits.
52 Exposure to 4% CSF caused increased expression of virulence factors such as
53 fimbriae, pilins, and iron chelators, and virulence as determined in various model
54 systems. Furthermore, although CSF's presence did not enhance bacterial growth, it
55 was associated with an increase of expression of genes encoding transcription,
56 translation, and the ATP synthesis machinery. Experiments to identify the active CSF
57 component pointed to human serum albumin (HSA).

58

59 **Importance**

60 *Acinetobacter baumannii*, notorious for its multidrug resistant phenotype, overcomes
61 nutrient deprived and desiccated conditions through its metabolic flexibility, pathogenic

62 and physiological adaptability. Although this pathogen is commonly associated with
63 respiratory infections, there have been a considerable amount of cases of *A.*
64 *baumannii* bacterial meningitis. These infections are usually post-neurological surgery
65 complications associated with high mortality rates ranging from 40 to 70%. This work
66 describes interactions that may occur during *A. baumannii* infection of human
67 cerebrospinal fluid (CSF). *A. baumannii*'s displays capabilities to persist and thrive in a
68 nutrient-limited environment, which also triggers the expression of virulence factors.
69 This work also further explores *A. baumannii*'s utilization of an essential component
70 within CSF to trigger enhanced expression of genes associated with its pathoadaptability
71 in this environment.

72

73 INTRODUCTION

74 *Acinetobacter baumannii* has emerged as an important pathogen due to its ability to
75 resist multiple antibiotics, persist in hospital settings, and cause a wide variety of
76 infections such as pneumonia, bacteremia, urinary tract infections, skin and soft-tissue
77 infections, and meningitis (1-4). The acquisition of resistance to carbapenems by
78 certain strains (carbapenem-resistant *Acinetobacter baumannii*, CRAB) increased the
79 problematic nature of this pathogen (5), which has been qualified as an “urgent” threat
80 in a recent report by the Centers for Disease Control and Prevention (6).

81 Bacterial meningitis, which is considered a medical emergency, is a serious
82 infection that can cause permanent disabilities (brain damage, hearing loss, and
83 learning problems) or death if untreated (7-9). Post neurosurgical *A. baumannii*
84 meningitis can cause death or leave permanent sequelae and is usually associated with
85 high mortality rates reaching up to 40 to 70 %. (10, 11). Illustrating the dangerous
86 nature of these infections is the recent case of the *A. baumannii* infection of a 39-year-
87 old man treated with external ventricular drainage of cerebrospinal fluid (CSF). Although
88 the strain was susceptible to colistin at the time of detection, it quickly acquired
89 resistance without losing virulence (12). This genetic plasticity, a consequence of its
90 ability to acquire and integrate foreign DNA, gives *A. baumannii*'s a tremendous
91 metabolic versatility that permits the bacterium to adapt and persist in harsh conditions
92 (2, 13-17). *A. baumannii*'s success in causing numerous infections, where it gets in
93 contact with different body components and fluids, must be the result of its capabilities
94 to not only capture adequate genetic determinants but also regulate expression of the
95 proper cell components (2, 13-15, 18-20). We have also previously documented that

96 human serum albumin (HSA) and pleural fluid (HSA-containing fluid), affected *A.*
97 *baumannii* behavior, triggering an adaptive response that modulates DNA uptake,
98 cytotoxicity, immune evasion, stress responses and metabolism (18, 20-22).
99 Understanding the virulence of this bacterium requires a thorough comprehension of the
100 general genotypic and phenotypic responses when it is exposed to the different body
101 fluids. As part of our studies of the *A. baumannii* pathogenicity in relation to meningitis,
102 we identified gene expression modifications when this bacterium is in contact with CSF
103 impacting the phenotypic behavior of this organism.

104

105 **RESULTS AND DISCUSSION**

106 **CSF treatment enhances the expression of genes involved in transcription and**
107 **translation machineries, ATP production and specific metabolic pathways in *A.***
108 ***baumannii*.**

109 To further characterize *A. baumannii*'s transcriptomic response to human fluids, two
110 different *A. baumannii* strains, A118 (low pathogenicity and high antibiotic susceptibility)
111 and AB5075 (hypervirulent and multi-drug resistant), were exposed to CSF.
112 Transcriptomic analysis of *A. baumannii* A118, using a fold-change cutoff of $\log_2 > 1$
113 (with adjusted *P*-value < 0.05), showed 275 differentially expressed-genes (DEGs),
114 7.76% of the total genes in the *A. baumannii* A118 reference genome. However,
115 statistically significant changes were not observed when *A. baumannii* AB5075 was
116 exposed to CSF. As, AB5075 is a hypervirulent and highly resistant, the lack of
117 necessity to increase its pathogenicity can explain the absence of changes at the
118 transcriptomic level in the tested conditions. Previous observations have shown that *A.*

119 *baumannii*'s response to different stimuli is dependent on each particular strain's degree
120 of pathogenicity. Less pathogenic strains induced more changes in their phenotypic
121 behavior to overcome the stressful environment and persist (23).

122 The analysis of *A. baumannii* A118 DEGs revealed an increase in the expression
123 of many genes involved in the manifestation of genetic information and energy
124 production machineries (Table S1). Notably, a large proportion of ribosomal protein
125 genes are overexpressed upon exposure to CSF. Among the ribosomal protein
126 associated genes, 47 out of 55 displayed a significant increase of expression of 2-fold
127 or more. Coincidentally, key translation genes such as those encoding elongation factors
128 (EF) EF-G, EF-F and EF-P were also up-regulated. Concurrently, the main genes of the
129 transcriptional machinery (RNA polymerase) were similarly overexpressed. The *rpoB*
130 and *rpoC* genes, which code for the beta and beta' subunits of RNA polymerase (core of
131 the transcription machinery), were overexpressed with a log₂fold just below 1. However,
132 the gene encoding the alpha subunit was also up-regulated with a log₂fold change of
133 1.48 (Table S1). In addition, genes important for energy production in the cell were also
134 induced upon CSF exposure. The *atpB/EFHAGCD* locus, an operon encoding the FoF₁-
135 ATP synthase (the main ATP generator in the bacterial cell) displayed a ~3-fold
136 transcriptional increase in expression (Table S1). These transcriptional responses
137 suggest that *A. baumannii* responds to CSF by overexpressing machinery involved in
138 gene expression (transcription and translation genes) and the main ATP generator,
139 FoF₁-ATP synthase. Also, CSF exposure induces the transcription of specific metabolic
140 routes in *A. baumannii*. In particular, several dehydrogenases of tricarboxylic acid cycle

141 (TCA) intermediates as well as a citrate symporter are significantly overexpressed,
142 together with two proline symporters (Table S1).

143 Gene ontology (GO) was performed to identify molecular functions and biological
144 pathways associated to *A. baumannii*'s adaptive responses to CSF. Consistently with
145 the above mentioned DEGs, GO enrichment analysis revealed a statistically significant
146 overrepresentation of the GO categories ATP synthesis coupled proton transport,
147 translation, tricarboxylic acid cycle, and aerobic respiration by 13.8-, 8.8-, 4.9- and 4.3-
148 fold, respectively (P-value < 0.05). Other authors found that exposure of *A. baumannii*
149 strains to amikacin, imipenem, and meropenem was associated with an increase in the
150 expression of genes involved in the TCA cycle, biosynthesis of amino acids, purines,
151 and pyrimidines, as well as, the operons involved with ATP, RNA, and protein synthesis
152 (24). Taken together, these results suggest that various stressful environments
153 (nutrients availability and antibiotic treatment) induce expression of genes related to
154 energy production, protein synthesis, and metabolism in *A. baumannii*. As a
155 consequence of these transcriptomic changes, the bacterial cell must adapt to be able
156 to survive and even thrive in these hostile conditions.

157 **CSF boosts specific metabolic routes without increasing growth in optimal
158 growth conditions.**

159 The CSF-mediated upregulation of genes coding for the elements necessary for
160 transcription, translation, expression and ATP synthesis was not accompanied by a
161 decrease in generation time (Figure 1). These results suggest that cells respond to the
162 presence of CSF by enhancing the expression of pathways that produce specific effects
163 rather than increasing growth capacity. To better understand this behavior, we

164 assessed the effect of CSF on cells growing in the presence of different carbon sources.
165 *A. baumannii* A118 and AB5075 were cultured in minimal medium containing proline,
166 glutamine, glucose, or citrate, all of which are utilized through the tricarboxylic acid cycle
167 and whose expression was modified in the presence of CSF. Addition of CSF to a
168 glutamine-containing minimal medium resulted in no change (*A. baumannii* A118) or a
169 reduction (*A. baumannii* AB5075) of the growth rate (Figure S1). On the other hand,
170 when the carbon source was proline, both strains grew at a higher rate (Figure S1). The
171 transcriptomic data showed that type I glutamine synthetase (AbA118F_3228) and the
172 proline symporter *putP* genes are upregulated by a log₂fold change of 0.58 and 0.87
173 respectively. Studies on *Salmonella typhimurium* showed that *putP* codes for a proline
174 permease, an integral membrane protein, that is the primary transport protein when this
175 amino acid is the only carbon or nitrogen source (25). The CSF-mediated increase in
176 abundance of the proline permease in *A. baumannii* may explain the increase in growth
177 rate.

178 CSF also induced an increase in the growth rate of both strains, although more
179 pronounced in the case of *A. baumannii* AB5075, when cultured using citrate as sole
180 carbon source (Figure S2). The transcriptomic analysis showed upregulation (log₂fold
181 change 0.62) of AbA118F_2664, a gene that encodes a CitMHS citrate-magnesium
182 hydrogen complex symporter (Table S1). Proteins of the CitMHS family transport
183 citrate-Mg²⁺ complex symport with one proton per complex molecule (26). It is of interest
184 that increased citrate levels help survival of *A. baumannii* in certain conditions (22).
185 Thus, the net effect of CSF might be an increase in expression of this transporter, which
186 leads to higher citrate intracellular concentrations that may help by increasing the rate of

187 growth. These results are consistent with previous observations that the presence of
188 HSA, a major component of CSF, in the culture medium is correlated with elevated
189 expression of the citrate symporter in *A. baumannii* (22). Further supporting this data,
190 exposure of *A. baumannii* to pleural fluid (PF), another HSA containing fluid, increases
191 growth rate and survival of *A. baumannii* A118 (23).

192 Changes in the growth of *A. baumannii* A118 were not observed in the presence
193 or absence of CSF in minimal medium containing glucose as a carbon source (Figure
194 S2A). Conversely, the addition of CSF was correlated with an increase in growth rate of
195 *A. baumannii* AB5075 (Figure S2A). The most conspicuous change in expression of an
196 enzyme that participates in the metabolism of glucose was the glucose dehydrogenase,
197 which catalyzes oxidation of glucose to gluconic acid (27). However, expression of this
198 enzyme was increased in *A. baumannii* A118 and decreased in strain AB5075 (log2fold
199 change 0.62, as determined by RNA-seq) when CSF was added to the growth medium.
200 These results do not show a clear correlation of CSF-differentially regulated levels of
201 expression of this enzyme and growth rate. However, an increase in the growth rates of
202 both strains was observed under CSF treatment in minimal medium containing citrate
203 (Figure S2B).

204 There are numerous reports supporting the hypothesis that increasing the
205 expression of enzymes involved in transcription, translation, and synthesis of ATP is
206 correlated with an increase in bacterial growth rate (28-32). However, these growth
207 differences were not evident in either of the *A. baumannii* strains in the presence of
208 CSF. An attractive hypothesis to explain this observation is that the increase in gene

209 expression capabilities is channeled toward the synthesis of cell components necessary
210 for survival in the human body, e.g., adhesins and pilins.

211 The data described in this section indicates that certain modifications in the *A.*
212 *baumannii* metabolism are uncoupled from growth rate. Bacterial cells are characterized
213 by allocating resources to maximize growth according to the needs for each
214 environmental condition (27). When growth curves were performed in nutrient-limiting
215 conditions with metabolites including proline, citrate, and glucose, there was an
216 increase in growth of *A. baumannii* under CSF treatment. This suggests that under a
217 nutrient-depleted condition, *A. baumannii* allocates resources to maximize the efficiency
218 of metabolism instead of maximizing growth. In another study that tested the
219 relationship of gene expression with metabolism and growth, it was observed that when
220 bacterial cells were cultured in poor nutrient medium, there was a higher expression of
221 metabolic proteins, such as enzymes and transporters (27).

222 Our data also suggests that in depleted medium such as CSF, *A. baumannii* may
223 be allocating all possible resources towards metabolism using an uncoupled
224 metabolism to optimize its survival.

225 **CSF affects the expression of *A. baumannii* virulence genes**

226 Addition of CSF to *A. baumannii* A118 cultures induces an increase in the expression of
227 a set of genes that code for virulence-associated functions such as type IV pili, iron
228 uptake systems, the type VI secretion system (T6SS), and poly-N-acetylglucosamine
229 (PNAG) production.

230 Type IV pili participate in microbial adherence as well as motility (gliding or
231 twitching). While *A. baumannii* lacks flagellum-mediated motility, twitching, and surface-
232 associated motility was demonstrated in several strains (28, 29). Numerous studies on

233 twitching and surface-associated motility in *A. baumannii* A118 showed dependence on
234 changes in light and temperature (30) as well as on the components of the growth
235 media. In particular, addition of HSA resulted in increased motility and concomitantly
236 upregulation of the cognate genes (22). Exposure of *A. baumannii* A118 to CSF
237 increased the expression of *pilW* (log2fold 1.22), *pilJ* (log2fold change 0.43), *fimA*
238 (log2fold change 3.09), *fimB* (log2fold change 2.32), and the fimbrial protein precursor
239 AbA118F_3133 (log2fold change 1.91). All of the type IV fimbriae genes have been
240 experimentally shown to be associated with motility, cell adhesion, and biofilm formation
241 (31, 32).

242 The presence of CSF was also correlated with higher expression of twelve genes
243 associated with the acinetobactin iron uptake system (Figure 2 and Table S1). These
244 genes are part of the ferric-acinetobactin receptor-translocation machinery (*bauABDE*,
245 *bauA* log₂fold change 1.67), the acinetobactin biosynthesis (*basBDFGJ*, *basD* log₂fold
246 change 1.86) and export (*barB*) (33) (34) (Figure 2A and Table S1). Besides their direct
247 role in iron uptake in the iron starvation conditions found in the human host, the
248 products of *basD* and *basA* are needed for *A. baumannii* to persist and cause apoptosis
249 of human alveolar epithelial cells (35). Bacterial iron uptake systems that are virulence
250 factors are usually highly regulated and are induced in conditions of iron starvation. It is
251 was of interest that in *A. baumannii* A118, genes that code for functions in siderophore
252 biosynthesis, export, and import are upregulated of in the presence of CSF. This finding
253 adds another regulatory signal that enhances expression of acinetobactin iron uptake
254 system. This increase in expression could be directly related to growth in the host or to
255 biofilm formation, which is dependent on efficient iron uptake (36).

256 The T6SS of many bacteria evolved to become essential for virulence (37). They
257 are composed of 14 genes that code for the three components, the phage tail-like, the
258 base plate, and the membrane complexes. Nine out of the 14 *A. baumannii* A118 T6SS
259 genes were slightly but significantly upregulated in the presence of CSF. These genes
260 *tssABCDHIKLM*, code for essential components of the T6SS (Figure 2A and Table S1).

261 The structures of bacterial biofilms are usually dependent on polysaccharides
262 such as poly- β -1,6-*N*-acetyl-d-glucosamine (PGA) or cellulose. Previous studies
263 showed that functional production of PGA in *Escherichia coli* depends on the products
264 of four genes, *pgaABCD*. *pgaC* and *pgaD* are essential for biosynthesis, and *pgaB*,
265 which specifies a *N*-deacetylase, together with *pgaA* are needed to export the
266 polysaccharide from the periplasm to the extracellular milieu (38). All four homologs
267 were significantly upregulated when *A. baumannii* A118 was cultured in the presence of
268 CSF (log2fold of 1.63, 1.63, 1.56 and 1.08 for *pgaA*, *pgaB*, *pgaC* and *pgaD*,
269 respectively) (Figure 2A and Table S1). As expected, Congo red staining showed that
270 *A. baumannii* A118 cells cultured in the presence of CSF produced higher levels of PGA
271 (Figure 2B).

272

273 **CSF enhances the release of *A. baumannii*'s cytotoxic agents.**

274 An initial assessment of the effect of CSF on *A. baumannii* virulence was determined
275 using cytotoxicity assays. Cell-free conditioned medium (CFCM) obtained from *A.*
276 *baumannii* A118 and AB5075 cultured in LB with or without CSF was added to human
277 embryonic kidney cells (HEK-293), and the cells were inspected after 1 hour. Figure 2C
278 shows that CFCM samples obtained from CSF-containing *A. baumannii* AB5075

279 cultures were significantly more cytotoxic than CFCM from cultures that lacked CSF.
280 This increase in cytotoxicity was observed at all tested concentrations, 1.5% CFCM (P -
281 value = 0.006), 5% CFCM (P -value = 0.001), and 50% CFCM (P -value < 0.0001).
282 Conversely, CFCM obtained from *A. baumannii* A118 cultures containing CSF showed
283 an increased cytotoxic effect only at the highest concentration tested (50%) (P -value =
284 0.002). Although at different levels, the results of these assays suggest that the
285 presence of CSF induces the release of one or more cytotoxic substances by *A.*
286 *baumannii* (Figure 2C).

287

288 **CSF-treatment increases *A. baumannii* virulence.**

289 To effect of CSF on *A. baumannii*'s virulence was tested using two models of infection.
290 *Drosophila melanogaster*, recently proposed as a promising model to investigate *A.*
291 *baumannii*'s interaction with host cells (39), individuals were inoculated with *A.*
292 *baumannii* A118 or AB5075 cultured in LB medium containing 4% CSF, and inspected
293 at five and ten days post infection. Both strains showed no significant increase in killing
294 after five days but *A. baumannii* AB5075 did show a significant increase in killing after
295 ten days. Survival with respect to individuals inoculated with cells cultured in LB being
296 was reduced by 3.15% (P -value=0.186) (Figure 2D). This study was done using a highly
297 robust *D. melanogaster* population previously shown to have higher stress resistance
298 than commonly used inbred fly lines (40).

299 Infection assays using the *Galleria mellonella* model showed a statistically
300 significant difference in the killing between *A. baumannii* A118 cultured in LB or LB plus
301 4% CSF. As in the *D. melanogaster* model, the bacteria cells cultured in the presence

302 of CSF were more virulent (Figure 2E). These results showed a correlation between the
303 transcriptional changes in virulence gene expression observed *in vitro* with an increase
304 in virulence as determined by tests using two different models of infection.

305 **HSA plays a role in *A. baumannii* pathoadaptation when exposed to CSF**

306 Previous work showed that the presence of PF is correlated with modifications of the
307 expression of more than 1100 *A. baumannii* genes including many virulence factors
308 such as motility, biofilm formation, efflux, T6SS, fibrinolytic activity and capsule genes
309 (18), and with an increase in cytotoxicity and immune evasion (23). HSA, a component
310 of PF, might be responsible for all or part of these effects (18, 20, 22). The experiments
311 showed in previous sections indicate that CSF produces effects similar to those
312 observed with PF such as an increase in cytotoxicity and changes in expression of
313 virulence genes. Both fluids share as major component HSA; other CSF components
314 are glucose (50-80 mg/dl), ions (Na^+ , K^+ , Ca^{2+} , Mg^{2+} , Cl^- , HCO_3^-), low levels of urea,
315 cholesterol, lactic acid, and others (41, 42). An attractive hypothesis is that as it is the
316 case with PF, part of the effects caused by CSF are caused by its HSA content.

317 To test this hypothesis, *A. baumannii* A118 cells were cultured in LB or LB
318 supplemented with one of the following: CSF, HSA-depleted CSF (dCSF), or HSA. Total
319 RNA was extracted from cells growing in all four conditions, retrotranscribed, and the
320 cDNA was used as template for quantitative polymerase chain reactions (RT-qPCR).
321 We assessed levels of expression of the Type 1 fimbrial protein (*fimA*), *rpmC*, and *atpB*
322 (ATP synthase beta (AbA118F_0480), which were among the most DEGs when CSF
323 was present in the culture broth. The addition of CSF to LB increased transcription
324 levels while addition of dCSF resulted in a reduction in levels of expression of *fimA* and

325 *rpmC* while little to no changes in expression were observed for *atpB* (Fig 3A, B and C
326 respectively). The enhancing effect observed in the presence CSF was even more
327 pronounced when the cultures took place in LB containing HSA. In this case, *fimA*,
328 *atpB*, and *AbA118F_2933* expression levels were 8-fold, 109-fold, and 6-fold higher,
329 respectively (Figure 3A-C).

330 The expression levels of FoF1-ATP synthase, as determined by ATP synthesis in
331 cells cultured in LB containing CSF or LB containing has, were significantly higher than
332 those observed when the growth media was LB or LB supplemented with dCSF (Figure
333 3D). These results are in agreement with those obtained by transcriptomics and RT
334 PCR (Table S1, Figure 3C).

335 Bacterial cells turn on genes that code for factors that allow growth in the hostile
336 environments they encounter upon invading the human body. The results shown in this
337 section indicate that HSA is the signal that triggers the expression of several *A.*
338 *baumannii* genes when the bacterial cells are in contact with HSA-containing fluids, PF
339 or CSF. Furthermore, our previous studies showed that HSA also enhances DNA
340 acquisition through modulation of natural competence-related gene expression and
341 affects the expression of genes related to motility, efflux pumps, pathogenicity and
342 antibiotic resistance, among others (19, 22). These characteristics are not unique to *A.*
343 *baumannii*, various bacterial pathogens and protozoa (43-46) modify gene expression to
344 adapt and thrive within the host utilizing HSA as one of the signals. For example, in
345 *Bordetella pertussis*, the causative agent of the whooping cough, albumin combined
346 with calcium induces an increase in production and release of the major toxin, ACT (46).
347 Another example is the case of *Pseudomonas aeruginosa*, in which the presence of

348 albumin is correlated with increased expression of iron-controlled genes (*pvdS* and
349 *regA*) (47). In summary, our observations, together with the evidence available from
350 studies with other bacteria, suggest an important role of HSA as signal for expression of
351 genes and systems essential for survival within the human body.

352

353 **CONCLUSION**

354 *A. baumannii* is one of many causative agents of bacterial meningitis, an infection
355 associated with high morbidity and mortality rates. During the infection, bacteria can be
356 found in CSF. In fact, of the several methods available for diagnosis, CSF culture is the
357 most favored (Wu et al BMC 2013 13:26). This study describes changes in expression
358 of numerous genes when *A. baumannii* is exposed to CSF (Figure 5). These genes
359 code for a variety of proteins that participate in the gene expression machinery, energy
360 production, motility, metabolism, survival, and virulence factors among others (Figure
361 4). Our results in combination with previous work strongly suggest that HSA is a major
362 signaling factor. HSA is one of the main components of CSF and is also present in
363 blood and PF, all body fluids that trigger similar responses in bacteria. Utilizing HSA as
364 the signal for gene expression of elements that facilitate progression of the infection is
365 an intelligent strategy that permits bacteria to sense the presence of human
366 environments. However, not all strains respond equally when HSA is present, slight
367 differences were identified when comparing *A. baumannii* strains A118 and AB5075.
368 These changes are correlated with differences in levels of pathogenicity and probably
369 the kind of infections that are more commonly caused by each variant. An additional
370 remarkable effect of HSA on *A. baumannii* is the augmentation of natural competency

371 (22, 48). Traglia et al. proposed that a random coil stretch in the structure of HSA is
372 responsible for increasing the ability of *A. baumannii* to take up DNA. Considering the
373 pleiotropic effects caused by the presence of HSA on *A. baumannii*, an alternative path
374 to design therapeutic agents against this infection could be to identify compounds that
375 interfere with the ability of *A. baumannii* to detect HSA. Compounds that interact with
376 the HSA regions that are detected by *A. baumannii* could mask the presence of the
377 protein impeding expression of the necessary systems for survival and progression of
378 the infection.

379

380 MATERIAL AND METHODS

381 Bacterial strains.

382 Two *A. baumannii* strains already used in previous studies (ALL references),
383 exhibiting different degree of susceptibility and virulence were used. A118 strain is
384 known to be susceptible to variety of antibiotics (49, 50) and AB5075 possesses high
385 virulence and is resistant to many antibiotics (51).

386 RNA extraction and sequencing

387 *A. baumannii* colonies (A118 and AB5075) were suspended in Luria Bertani broth (LB)
388 with or without 4% CSF and incubated with agitation for 18 h at 37°C. Overnight
389 cultures were then diluted 1:10 in fresh LB broth and incubated with agitation for 7 h at
390 37°C. RNA was extracted from each strain using the TRI REAGENT® Kit (Molecular
391 Research Center, Inc., Cincinnati, Ohio, USA) as previously described (22). Total RNA
392 extractions were performed in two biological replicates for each condition.

393 RNA sequencing was outsourced to Novogene (Novogene Corporation, CA) for mRNA-
394 seq analysis, which includes rRNA depletion, library preparation through Next® Ultra™
395 RNA Library Prep Kit for Illumina (New England Biolabs) and HiSeq 2500 paired-end
396 150 bp sequencing.

397 **RNA-seq Data Analysis.**

398 RNA-seq reads (GEO accession No GSE153967) corresponding to *A. baumannii* strain
399 A118 and AB5075 exposed to LB or LB plus 4% CSF were analyzed as follows.
400 Trimming of low-quality bases at the ends of the reads to a minimum length of 100 bp
401 and removal of Illumina adaptor sequences was performed using Trimmomatic (52).
402 FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess the
403 quality of the reads before and after trimming. Burrows-Wheeler Alignment software
404 (BWA) was used to align the RNA-seq reads to sequences of the whole genome
405 shotgun sequencing project of strain *Acinetobacter baumannii* A118F
406 (DDBJ/ENA/GenBank accession VCCO01000000). FeatureCounts was used to
407 calculate the read counts per gene, and differential expression analysis was performed
408 using DEseq2 (53, 54). Principal component analysis (PCA) and gene expression heat
409 map with clustering dendograms of the RNA-seq data analysis of LB and CSF
410 treatments are shown in Supplementary Figure S3. Features exhibiting FDR <0.05 and
411 log2fold change >1 were considered statistically significant.

412 **Gene ontology analysis.**

413 iGO terms were retrieved from UniProt for the best BLASTx hits to *A. baumannii* A118F
414 genes. Using GO.db Bioconductor annotation data package in R language, GO terms
415 and ancestor terms were assigned for all DEGs from this study. GO enrichment analysis

416 was performed using custom-made scripts as described previously (55). The
417 enrichment factor was estimated as the ratio between the proportions of genes
418 associated with a particular GO category present in the dataset under analysis, relative
419 to the proportion of the number of genes in this category in the whole genome. *p*-values
420 were calculated using the Fisher Exact Test and adjusted by the Benjamini-Hochberg
421 method.

422 **Growth Curves.**

423 Both strains, AB5075 and A118, were cultured overnight under different conditions (LB
424 broth and LB broth + 4% CSF). OD₆₀₀ was adjusted to 0.01 using M9 minimal media
425 and used for growth curves with different amino acids at 10 mM (Glutamine and Proline)
426 and carbon sources at 5 mg/mL (Glucose and Citrate). A microplate reader was used to
427 incubate the cultures at 37°C with shaking and OD₆₀₀ readings were taken every 15
428 minutes for 24 hours. Growth rate data was then analyzed using Prism 8 software.

429 **Human Serum Growth Curves**

430 Overnight cultures of A118 and AB5075 cultured in LB broth and LB broth + 4% CSF
431 were OD₆₀₀ adjusted (0.001) in M9 minimal media and incubated along with either
432 10% human sera or 10% heat inactive human sera. Human sera were inactivated by
433 placing human sera in a 56°C water bath for 30 minutes. Cultures were incubated at 37°C
434 with shaking and OD₆₀₀ readings were taken every 15 minutes for 24 hours. Growth rate
435 data was analyzed using Prism 8 software.

436 **Cytotoxicity assays.**

437 In a Nunclon™ Delta Surface opaque 96-well microplate (ThermoScientific), we added
438 colorless DMEM, 4% CSF, and A118 or AB5075 CFCM diluted in LB broth to make 50

439 μ L of CFCM at final concentrations of 1.5%, 5%, and 50%. An additional 50 μ L of ATCC
440 HEK-293 cells at a concentration of 1×10^6 cells/mL in colorless DMEM were
441 suspended in the well and intoxicated for 1 h at 37°C, 5% CO₂. CellTiter-Glo® Reagent
442 (100 μ L) was added to each experimental and standard curve well and then placed on
443 an orbital shaker for 2 min. Following mixing, plates were incubated at room
444 temperature for 10 min to stabilize the luminescent signal. The viability of HEK cells was
445 measured at room temperature using the “all” luminescence function of SpectraMax M3.

446 ***Galleria mellonella* infection model**

447 To assess the virulence of *A. baumannii* with and without CSF *in vivo*, the *G. mellonella*
448 insect model of infection was used (56). Larvae weighing between 200 and 400 mg
449 were maintained on wood chips in the dark at 4°C. *A. baumannii* A118 was grown
450 overnight in either LB or LB with 4% CSF. An equivalent of 1.0 OD_{600nm} unit of
451 overnight culture was pelleted and resuspended in 1 mL of cold sterile 20 mM
452 phosphate buffered saline, pH 7.4 (PBS). The cells were further diluted 1:10 in sterile
453 PBS and used for injections. A Hamilton syringe was used to inject 5 μ L of the diluted
454 bacterial suspension via the left proleg of each larva. A control group of untreated larvae
455 was used to assess overall larval viability for the duration of the assay. One hundred *G.*
456 *mellonella* larvae were used in each condition and incubated at (37 °C) in a sterile Petri
457 dish for 24 h intervals for 48 h total. Larvae viability was monitored by observing
458 response to gentle prodding with a glass rod; those with no response were considered
459 dead. Four replicates with 100 larvae per Petri dish were performed for each condition.

460 ***Drosophila melanogaster* model of infection**

461 The *D. melanogaster* population used in this study, population B1, is a large
462 outbred population, maintained on 14-day discrete generation cycles, 24:0 light:dark,
463 25°C, on banana molasses diet (40, 57). Eggs were collected at densities of ~60
464 eggs/vial. Freshly eclosed adults were transferred to fresh food vials. On day 14 from
465 egg (~4-5 days post eclosion), male flies were inoculated with: PBS, A118 LB, A118 4%
466 CSF, and AB5075 LB, AB5075 4% CSF. All bacterial suspensions were grown
467 overnight and diluted in PBS to an OD of 1. To carry out the inoculation, a stainless
468 steel pin (Fine Science Tools 26002-10, length 1cm, tip diameter 0.0125mm, rod
469 diameter 0.1mm) was sterilized with ethanol, then dipped in each bacterial suspension
470 (or PBS control) and pricked into the ventrolateral thorax of each fruit fly, following the
471 pricking protocol described in Khalil et al. 2015 (58). After inoculation, flies were
472 maintained in groups of ten same-sex flies per vial on banana-molasses medium. Three
473 hours after inoculation, flies that died from handling were discarded, which was always
474 <5% of the flies. Thereafter, flies were transferred to fresh diet every three days.
475 Survival was recorded daily. 50 male flies were inoculated per treatment per each of
476 three biological replicates.

477 **PNAG assays.**

478 To study extracellular matrix (ECM) production, microcolony biofilm was used as model
479 system. 5 ul of overnight cultures of A118 cultured in LB broth and LB broth + 4% CSF
480 were inoculated on LB agar and supplemented with Congo red as previously described
481 (59). Plates were incubated at 28°C in static incubator for up to 48hs. Results were
482 record at 24 hours with a Plugable USB 2.0 Digital Microscope.

483 **HSA depletion.**

484 HSA was depleted from CSF by placing 1mL of CSF into a 30 kDa Amicon™ Ultra
485 Centrifugal Filter (Millipore, Temecula, CA, United States) and the solution was
486 centrifuged at 20,000 x g for 10 minutes. To identify HSA was successfully depleted, an
487 SDS-PAGE was conducted that contained CSF, depleted CSF (dCSF), and pure HSA.

488 **qPCR.**

489 Previously extracted and DNase-treated RNA from *A. baumannii* strain A118 grown in
490 LB, 4% CSF, 4% depleted CSF and 0.2% HSA, were synthesized to cDNA using the
491 manufacturer protocol provided within the iScript™ Reverse Transcription Supermix for
492 qPCR (Bio-Rad, Hercules, CA, United States). The cDNA concentrations were
493 measured with a DeNovix DS-11+ spectrophotometer; each sample was then diluted to
494 a concentration of 50 ng/µl. qPCR was conducted using the iQ™ SYBR®Green
495 Supermix through the manufacturer's instructions. At least three biological replicates of
496 cDNA were used and were run in quadruplet. All samples were then run on the CFX96
497 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, United States).
498 The transcript levels of each sample were normalized to the *recA* rRNA transcript levels
499 for each cDNA sample. The relative quantification of gene expression was performed
500 using the comparative threshold method $2^{-\Delta\Delta Ct}$. The ratios obtained after normalization
501 were expressed as folds of change compared with cDNA samples isolated from bacteria
502 cultures on LB. Statistical analysis (Mann–Whitney test) was performed using
503 GraphPad Prism (GraphPad software, San Diego, CA, United States). A *P*-value < 0.05
504 was considered significant.

505 **ATP assay.**

506 Both strains, A118 and AB5075, were cultured overnight in LB broth with or without 4%
507 CSF. Cultures were then diluted 1:100 using fresh LB broth and were incubated at 37°C
508 with agitation. After 6 hours of incubation, an aliquot of each sample was taken. The
509 OD600 of each sample was recorded. Samples were prepared for the ATP assay using
510 the perchloric acid extraction method as previously described. 100 μ l of ice-cold 1.2 M
511 perchloric acid was added to 200 μ l of the bacterial sample and they were vortexed for
512 10 seconds. The mixture was then incubated on ice for 15 minutes. After incubation, the
513 samples were spin down at 16,100 \times g for 5 minutes at 4°C. 200 μ l of the supernatant
514 was then transferred into a fresh tube and mixed with a neutralizing solution (0.72 M
515 KOH and 0.16 M KHCO₃). The neutralized extract was spin down and the supernatant
516 was then transferred into a fresh tube and used for the ATP assay.

517 To measure intracellular ATP content, we followed the manufacturer instructions
518 (Promega, Madison, WI, United States). Briefly, 100 μ l of the supernatant was added
519 into an opaque 96 well plate and allowed to stabilize to room temperature. 100 μ l of the
520 Bac-Titer™ Glo Reagent was added into each of the samples and the plate was mixed
521 in an orbital shaker and incubated for 5 minutes. A standard curve was included in each
522 plate. Luminescence of the samples was recorded.

523

524 **Conflict of interest declaration:** The authors declare no conflict of interests.

525

526 **Funding:** The authors' work was supported by NIH SC3GM125556 to MSR,
527 2R15AI047115 to MET. R01AI100560 to RAB and AJV, R01AI063517, R01AI072219 to
528 RAB, and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) to AJV.

529 This study was supported in part by funds and/or facilities provided by the Cleveland
530 Department of Veterans Affairs, VA Merit Review Award Numbers 1I01BX001974 to
531 RAB and 1I01 BX002872 to KMPW from the Biomedical Laboratory Research &
532 Development Service of the VA Office of Research and Development, and the Geriatric
533 Research Education and Clinical Center VISN 10 to RAB. The content is solely the
534 responsibility of the authors and does not necessarily represent the official views of the
535 National Institutes of Health or the Department of Veterans Affairs. A.J.V., AS-B and RS
536 are staff members from CONICET.

537

538 REFERENCES

- 539 1. Peleg AY, Seifert H, Paterson DL. 2008. *Acinetobacter baumannii*: emergence of
540 a successful pathogen. *Clin Microbiol Rev* 21:538-82.
- 541 2. Roca I, Espinal P, Vila-Farres X, Vila J. 2012. The *Acinetobacter baumannii*
542 Oxymoron: Commensal Hospital Dweller Turned Pan-Drug-Resistant Menace.
543 *Front Microbiol* 3:148.
- 544 3. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B.
545 2017. Clinical and Pathophysiological Overview of *Acinetobacter* Infections: a
546 Century of Challenges. *Clin Microbiol Rev* 30:409-447.
- 547 4. Hartstein AI, Rashad AL, Liebler JM, Actis LA, Freeman J, Rourke JW, Jr., Stibolt
548 TB, Tolmasky ME, Ellis GR, Crosa JH. 1988. Multiple intensive care unit
549 outbreak of *Acinetobacter calcoaceticus* subspecies *anitratus* respiratory
550 infection and colonization associated with contaminated, reusable ventilator
551 circuits and resuscitation bags. *Am J Med* 85:624-31.
- 552 5. Ramirez MS, Bonomo RA, Tolmasky ME. 2020. Carbapenemases: Transforming
553 *Acinetobacter baumannii* into a Yet More Dangerous Menace. *Biomolecules* 10.
- 554 6. CDC. 2019. Antibiotic Resistance Threats in the United States. Atlanta, GA: US
555 Department of Health and Human Services, CDC; 2019.
- 556 7. Erdem I, Hakan T, Ceran N, Metin F, Akcay SS, Kucukercan M, Berkman MZ,
557 Goktas P. 2008. Clinical features, laboratory data, management and the risk
558 factors that affect the mortality in patients with postoperative meningitis. *Neurol
559 India* 56:433-7.
- 560 8. Sacar S, Turgut H, Toprak S, Cirak B, Coskun E, Yilmaz O, Tekin K. 2006. A
561 retrospective study of central nervous system shunt infections diagnosed in a
562 university hospital during a 4-year period. *BMC Infect Dis* 6:43.

563 9. Tuon FF, Penteado-Filho SR, Amarante D, Andrade MA, Borba LA. 2010.
564 Mortality rate in patients with nosocomial *Acinetobacter* meningitis from a
565 Brazilian hospital %J Brazilian Journal of Infectious Diseases. 14:437-440.

566 10. Huttova M, Freybergh PF, Rudinsky B, Sramka M, Kisac P, Bauer F, Ondrusova
567 A. 2007. Postsurgical meningitis caused by *Acinetobacter baumannii* associated
568 with high mortality. Neuro Endocrinol Lett 28 Suppl 2:15-6.

569 11. Metan G, Alp E, Aygen B, Sumerkan B. 2007. *Acinetobacter baumannii*
570 meningitis in post-neurosurgical patients: clinical outcome and impact of
571 carbapenem resistance. J Antimicrob Chemother 60:197-9.

572 12. López-Rojas R, Jiménez-Mejías ME, Lepe JA, Pachón J. 2011. *Acinetobacter*
573 *baumannii* Resistant to Colistin Alters Its Antibiotic Resistance Profile: A Case
574 Report From Spain. The Journal of Infectious Diseases 204:1147-1148.

575 13. Jawad A, Seifert H, Snelling AM, Heritage J, Hawkey PM. 1998. Survival of
576 *Acinetobacter baumannii* on dry surfaces: comparison of outbreak and sporadic
577 isolates. J Clin Microbiol 36:1938-41.

578 14. Juttukonda LJ, Chazin WJ, Skaar EP. 2016. *Acinetobacter baumannii*
579 Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal
580 Limitation. MBio 7.

581 15. Mortensen BL, Skaar EP. 2013. The contribution of nutrient metal acquisition and
582 metabolism to *Acinetobacter baumannii* survival within the host. Front Cell Infect
583 Microbiol 3:95.

584 16. Imperi F, Antunes LCS, Blom J, Villa L, Iacono M, Visca P, Carattoli A. 2011. The
585 genomics of *Acinetobacter baumannii*: Insights into genome plasticity,
586 antimicrobial resistance and pathogenicity. IUBMB Life 63:1068-1074.

587 17. Snitkin ES, Zelazny AM, Montero CI, Stock F, Mijares L, Program NCS, Murray
588 PR, Segre JA. 2011. Genome-wide recombination drives diversification of
589 epidemic strains of *Acinetobacter baumannii*. Proc Natl Acad Sci U S A
590 108:13758-63.

591 18. Martinez J, Fernandez JS, Liu C, Hoard A, Mendoza A, Nakanouchi J, Rodman
592 N, Courville R, Tuttobene MR, Lopez C, Gonzalez LJ, Shahrestani P, Papp-
593 Wallace KM, Vila AJ, Tolmasky ME, Bonomo RA, Sieira R, Ramirez MS. 2019.
594 Human pleural fluid triggers global changes in the transcriptional landscape of
595 *Acinetobacter baumannii* as an adaptive response to stress. Sci Rep 9:17251.

596 19. Quinn B, Traglia GM, Nguyen M, Martinez J, Liu C, Fernandez JS, Ramirez MS.
597 2018. Effect of Host Human Products on Natural Transformation in *Acinetobacter*
598 *baumannii*. Curr Microbiol.

599 20. Rodman N, Martinez J, Fung S, Nakanouchi J, Myers AL, Harris CM, Dang E,
600 Fernandez JS, Liu C, Mendoza AM, Jimenez V, Nikolaidis N, Brennan CA,
601 Bonomo RA, Sieira R, Ramirez MS. 2019. Human Pleural Fluid Elicits Pyruvate
602 and Phenylalanine Metabolism in *Acinetobacter baumannii* to Enhance
603 Cytotoxicity and Immune Evasion. 10.

604 21. Jacobs AC, Sayood K, Olmsted SB, Blanchard CE, Hinrichs S, Russell D,
605 Dunman PM. 2012. Characterization of the *Acinetobacter baumannii* growth
606 phase-dependent and serum responsive transcriptomes. FEMS Immunol Med
607 Microbiol 64:403-12.

608 22. Quinn B, Rodman N, Jara E, Fernandez JS, Martinez J, Traglia GM, Montana S,
609 Cantera V, Place K, Bonomo RA, Iriarte A, Ramirez MS. 2018. Human serum
610 albumin alters specific genes that can play a role in survival and persistence in
611 *Acinetobacter baumannii*. *Sci Rep* 8:14741.

612 23. Rodman Nyah MJ, Fung Sammie, Nakanouchi Jun, Myers Amber L., Harris
613 Caitlin M., Dang Emily, Fernandez Jennifer S., Liu Christine, Mendoza Anthony
614 M., Jimenez Veronica, Nikolaidis Nikolas, Brennan Catherine A., Bonomo Robert
615 A., Sieira Rodrigo, Ramirez Maria Soledad. 2019. Human Pleural Fluid Elicits
616 Pyruvate and Phenylalanine Metabolism in *Acinetobacter baumannii* to Enhance
617 Cytotoxicity and Immune Evasion *Frontiers in Microbiology* 10:1581

618 24. Qin H, Lo NW, Loo JF, Lin X, Yim AK, Tsui SK, Lau TC, Ip M, Chan TF. 2018.
619 Comparative transcriptomics of multidrug-resistant *Acinetobacter baumannii* in
620 response to antibiotic treatments. *Sci Rep* 8:3515.

621 25. Dila DK, Maloy SR. 1986. Proline transport in *Salmonella typhimurium*: putP
622 permease mutants with altered substrate specificity. *J Bacteriol* 168:590-4.

623 26. Boorsma A, van der Rest ME, Lolkema JS, Konings WN. 1996. Secondary
624 transporters for citrate and the Mg(2+)-citrate complex in *Bacillus subtilis* are
625 homologous proteins. *J Bacteriol* 178:6216-22.

626 27. Kim J, Darlington A, Salvador M, Utrilla J, Jimenez JI. 2019. Trade-offs between
627 gene expression, growth and phenotypic diversity in microbial populations. *Curr*
628 *Opin Biotechnol* 62:29-37.

629 28. Harding CM, Tracy EN, Carruthers MD, Rather PN, Actis LA, Munson RS, Jr.
630 2013. *Acinetobacter baumannii* strain M2 produces type IV pili which play a role
631 in natural transformation and twitching motility but not surface-associated motility.
632 *MBio* 4.

633 29. Wood CR, Ohneck EJ, Edelmann RE, Actis LA. 2018. A Light-Regulated Type I
634 Pilus Contributes to *Acinetobacter baumannii* Biofilm, Motility, and Virulence
635 Functions. *Infect Immun* 86.

636 30. Ramirez MS, Penwell WF, Traglia GM, Zimbler DL, Gaddy JA, Nikolaidis N,
637 Arivett BA, Adams MD, Bonomo RA, Actis LA, Tolmasky ME. 2019. Identification
638 of potential virulence factors in the model strain *Acinetobacter baumannii* A118.
639 *Front Microbiol* 10:1599.

640 31. Vijayakumar S, Rajenderan S, Laishram S, Anandan S, Balaji V, Biswas I. 2016.
641 Biofilm Formation and Motility Depend on the Nature of the *Acinetobacter*
642 *baumannii* Clinical Isolates. *Front Public Health* 4:105.

643 32. Peleg AY, de Breij A, Adams MD, Cerqueira GM, Mocali S, Galardini M,
644 Nibbering PH, Earl AM, Ward DV, Paterson DL, Seifert H, Dijkshoorn L. 2012.
645 The success of *acinetobacter* species: genetic, metabolic and virulence
646 attributes. *PLoS One* 7:e46984.

647 33. Eijkelpamp BA, Hassan KA, Paulsen IT, Brown MH. 2011. Investigation of the
648 human pathogen *Acinetobacter baumannii* under iron limiting conditions. *BMC*
649 *Genomics* 12:126.

650 34. Penwell WF, Arivett BA, Actis LA. 2012. The *Acinetobacter baumannii* *entA* gene
651 located outside the acinetobactin cluster is critical for siderophore production,
652 iron acquisition and virulence. *PLoS One* 7:e36493.

653 35. Gaddy JA, Arivett BA, McConnell MJ, Lopez-Rojas R, Pachon J, Actis LA. 2012.
654 Role of acinetobactin-mediated iron acquisition functions in the interaction of
655 *Acinetobacter baumannii* strain ATCC 19606T with human lung epithelial cells,
656 Galleria mellonella caterpillars, and mice. *Infect Immun* 80:1015-24.
657 36. Ahmed E, Holmstrom SJ. 2014. Siderophores in environmental research: roles
658 and applications. *Microb Biotechnol* 7:196-208.
659 37. Coulthurst SJ. 2013. The Type VI secretion system - a widespread and versatile
660 cell targeting system. *Res Microbiol* 164:640-54.
661 38. Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J, Meisner J, Beveridge TJ, Preston
662 JF, 3rd, Romeo T. 2008. Roles of *pgaABCD* genes in synthesis, modification,
663 and export of the *Escherichia coli* biofilm adhesin poly-beta-1,6-N-acetyl-D-
664 glucosamine. *J Bacteriol* 190:3670-80.
665 39. Qin Q-M, Pei J, Gomez G, Rice-Ficht A, Ficht TA, de Figueiredo P. 2020. A
666 tractable *Drosophila* cell system enables rapid identification of *Acinetobacter*
667 *baumannii* host factors. *bioRxiv*:2020.04.09.034157.
668 40. Rose M.R. PHB, and M. Matos. 2014. A Case Study in the Evolution of Aging.
669 World Scientific Publishing.
670 41. Hladky SB, Barrand MA. 2014. Mechanisms of fluid movement into, through and
671 out of the brain: evaluation of the evidence. *Fluids and Barriers of the CNS*
672 11:26.
673 42. Spector R, Robert Snodgrass S, Johanson CE. 2015. A balanced view of the
674 cerebrospinal fluid composition and functions: Focus on adult humans. *Exp
675 Neurol* 273:57-68.
676 43. Brown KM, Lourido S, Sibley LD. 2016. Serum Albumin Stimulates Protein
677 Kinase G-dependent Microneme Secretion in *Toxoplasma gondii*. *J Biol Chem*
678 291:9554-65.
679 44. de Chateau M, Holst E, Bjorck L. 1996. Protein PAB, an albumin-binding
680 bacterial surface protein promoting growth and virulence. *J Biol Chem*
681 271:26609-15.
682 45. Egesten A, Frick IM, Morgelin M, Olin AI, Bjorck L. 2011. Binding of albumin
683 promotes bacterial survival at the epithelial surface. *J Biol Chem* 286:2469-76.
684 46. Gonyar LA, Gray MC, Christianson GJ, Mehrad B, Hewlett EL. 2017. Albumin, in
685 the Presence of Calcium, Elicits a Massive Increase in Extracellular *Bordetella*
686 *Adenylate Cyclase Toxin*. *Infect Immun* 85.
687 47. Kruczak C, Wachtel M, Alabady MS, Payton PR, Colmer-Hamood JA, Hamood
688 AN. 2012. Serum albumin alters the expression of iron-controlled genes in
689 *Pseudomonas aeruginosa*. *Microbiology* 158:353-367.
690 48. Traglia GM, Quinn B, Schramm ST, Soler-Bistue A, Ramirez MS. 2016. Serum
691 Albumin and Ca²⁺ Are Natural Competence Inducers in the Human Pathogen
692 *Acinetobacter baumannii*. *Antimicrob Agents Chemother* 60:4920-9.
693 49. Ramirez MS, Don M, Merkier AK, Bistue AJ, Zorreguieta A, Centron D, Tolmisky
694 ME. 2010. Naturally competent *Acinetobacter baumannii* clinical isolate as a
695 convenient model for genetic studies. *J Clin Microbiol* 48:1488-90.
696 50. Traglia GM, Chua K, Centron D, Tolmisky ME, Ramirez MS. 2014. Whole-
697 genome sequence analysis of the naturally competent *Acinetobacter baumannii*
698 clinical isolate A118. *Genome Biol Evol* 6:2235-9.

699 51. Jacobs AC, Thompson MG, Black CC, Kessler JL, Clark LP, McQueary CN,
700 Gancz HY, Corey BW, Moon JK, Si Y, Owen MT, Hallock JD, Kwak YI, Summers
701 A, Li CZ, Rasko DA, Penwell WF, Honnold CL, Wise MC, Waterman PE, Lesho
702 EP, Stewart RL, Actis LA, Palys TJ, Craft DW, Zurawski DV. 2014. AB5075, a
703 Highly Virulent Isolate of *Acinetobacter baumannii*, as a Model Strain for the
704 Evaluation of Pathogenesis and Antimicrobial Treatments. *MBio* 5:e01076-14.

705 52. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
706 Illumina sequence data. *Bioinformatics* 30:2114-20.

707 53. Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose
708 program for assigning sequence reads to genomic features. *Bioinformatics*
709 30:923-30.

710 54. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and
711 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15:550.

712 55. Bonomi HR, Toum L, Sycz G, Sieira R, Toscani AM, Gudesblat GE, Leskow FC,
713 Goldbaum FA, Vojnov AA, Malamud F. 2016. *Xanthomonas campestris*
714 attenuates virulence by sensing light through a bacteriophytochrome
715 photoreceptor. *EMBO Rep* 17:1565-1577.

716 56. Papp-Wallace KM, Becka SA, Zeiser ET, Ohuchi N, Mojica MF, Gatta JA, Falleni
717 M, Tosi D, Borghi E, Winkler ML, Wilson BM, LiPuma JJ, Nukaga M, Bonomo
718 RA. 2017. Overcoming an Extremely Drug Resistant (XDR) Pathogen: Avibactam
719 Restores Susceptibility to Ceftazidime for *Burkholderia cepacia* Complex Isolates
720 from Cystic Fibrosis Patients. *ACS Infect Dis* 3:502-511.

721 57. Rose MR. 1984. Laboratory Evolution of Postponed Senescence in *Drosophila*
722 *Melanogaster*. *Evolution* 38:1004-1010.

723 58. Khalil S, Jacobson E, Chambers MC, Lazzaro BP. 2015. Systemic bacterial
724 infection and immune defense phenotypes in *Drosophila melanogaster*. *J Vis*
725 *Exp*:e52613.

726 59. Wermser C, Lopez D. 2018. Identification of *Staphylococcus aureus* genes
727 involved in the formation of structured macrocolonies. *Microbiology* 164:801-815.

728

729 **Figure Legends**

730 **Figure 1. A118 and AB5075 growth curves in LB or LB plus 4% CSF.**

731 Strains A) A118 and B) AB5075 were grown in LB or LB supplemented with 4% CSF.

732 Growth curves were conducted in triplicate.

733

734 **Figure 2. Exposure to CSF can affect multiple virulence factors in *A. baumannii*.**

735 A) Heat map of multiple virulence factor associated genes that were differentially
736 expressed in *A. baumannii* strain A118. Asterisks represent a *P*-value of <0.05. B) Poly-

737 N-acetylglucosamine (PNAG) assays were conducted with strains A118 and AB5075 in
738 LB or LB supplemented with 4% CSF. C) Percentage viability of HEK-293 cells under
739 exposure to various concentrations of *A. baumannii* strains A118 or AB5075
740 supplemented with or without 4% CSF. D) Percentage survival of *Galleria mellonella*
741 when inoculated with *A. baumannii* strain A118 with or without 4% CSF. E) Percentage
742 survival of *Drosophila melanogaster* flies when inoculated with *A. baumannii* strains
743 A118 or AB5075 supplemented with or without 4% CSF.

744

745 **Figure 3. HSA is an essential component for the differential expression of genes**
746 **in *A. baumannii*.**

747 *A. baumannii* strain A118 was exposed to LB, LB plus 0.2% HSA, LB+ 4% CSF and LB
748 + 4% dCSF and its cDNA was synthesized. RT-qPCR was conducted with several
749 genes A) *fimA* encoding gene, B) *rpmC*, and C) *atpB* to determine if HSA was
750 responsible for the increased expression in these overexpressed genes. D) ATP assays
751 were conducted with strain A118 and intracellular ATP was measured to determine if
752 HSA increased the production of bacterial cell ATP.

753

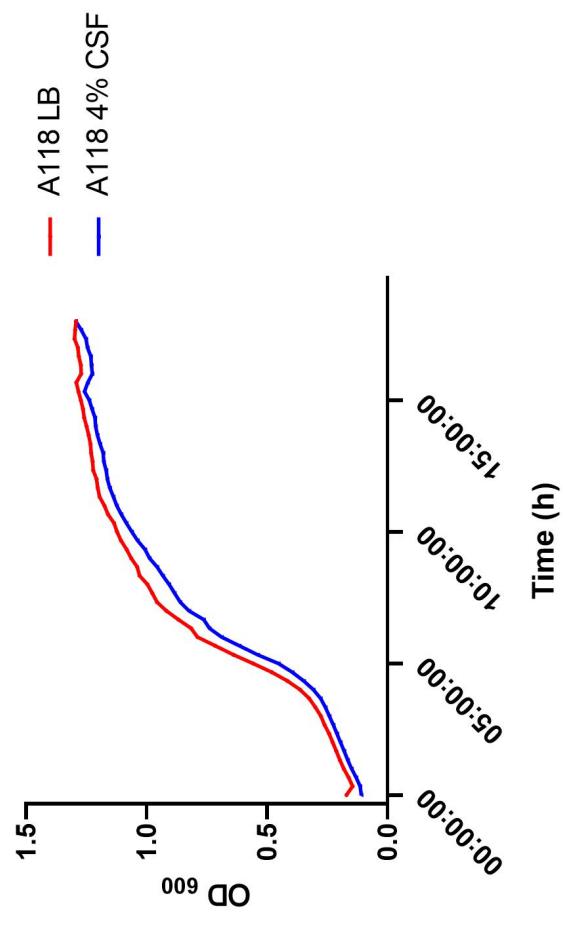
754 **Figure 4. Graphical representation of *A. baumannii*'s transcriptomic and**
755 **behavioral response to CSF.**

756

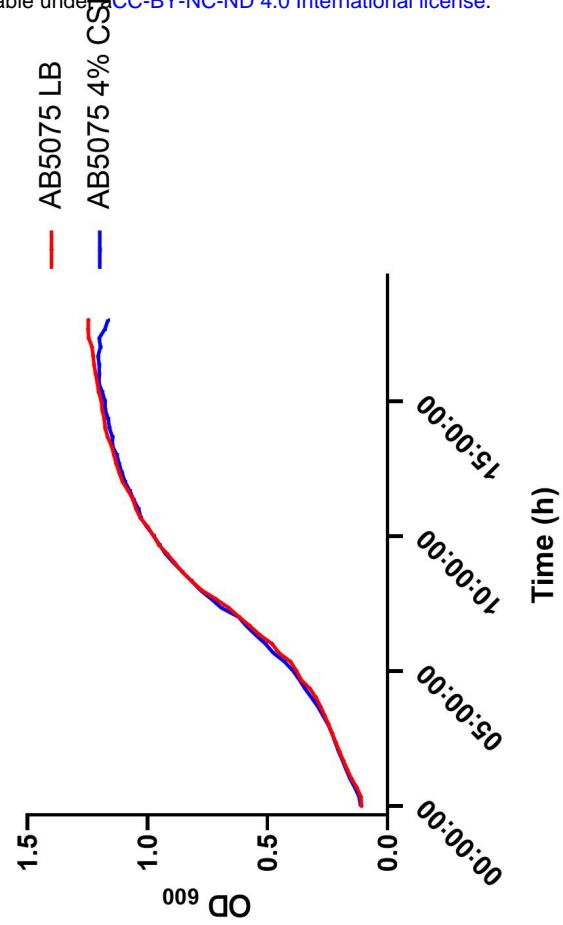
757 **Supplementary material**

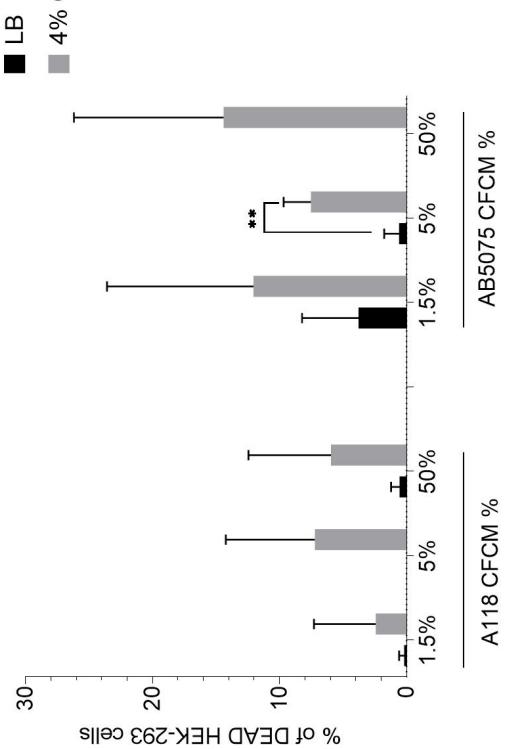
758 **Table S1. Differential gene expression analysis of strain A118 under exposure to**
759 **4% CSF.** RNA-seq read counts of 2 biological replicates of LB or LB with 4% CSF

760 treated *A baumannii* A118 were analyzed using DEseq software. For each hit, gene ID,
761 average base mean, base mean group A (LB-treated), base mean group B (LB+CSF
762 treated), fold-change, log₂fold change, *P*-value, Benjamini-Hochberg adjusted *P*-value,
763 and gene description/function are provided.

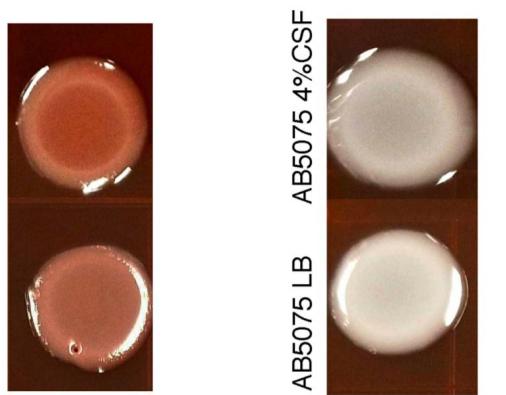

764 **Figure S1.** Minimal media growth curves of strain A118 and AB5075 in A) 10mM of
765 glutamine and B) 10mM of proline.

766 **Figure S2.** Minimal media growth curves of strain A118 and AB5075 in A) 5mg/mL of
767 glucose and B) 5mg/mL of citrate.

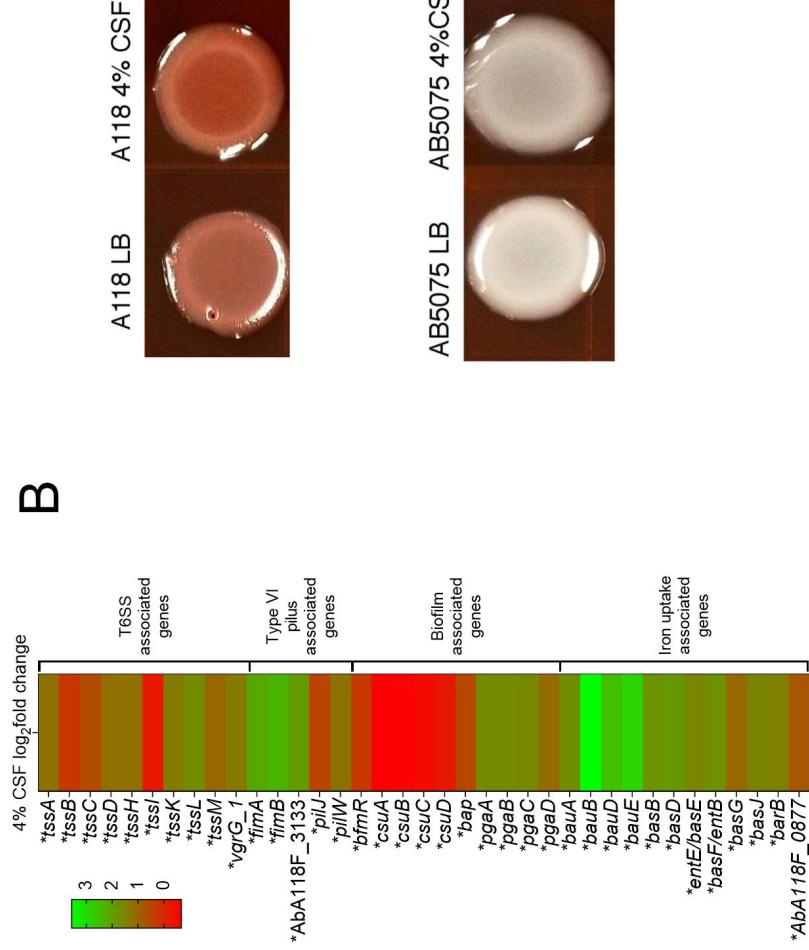

768 **FIGURE S3. Bioinformatic analysis of RNA-seq data from LB- or 4% CSF-treated**
769 **A. baumannii A118.** A) PCA plot of all RNA-seq samples. Biological replicates of the
770 same treatment are indicated by color in the legend. B) Heat map of the expression
771 profiles of the 200 genes displaying the highest variance across samples based on
772 DESeq2 analysis of read count data. Sample-wise (columns) clustering dendrogram is
773 shown.

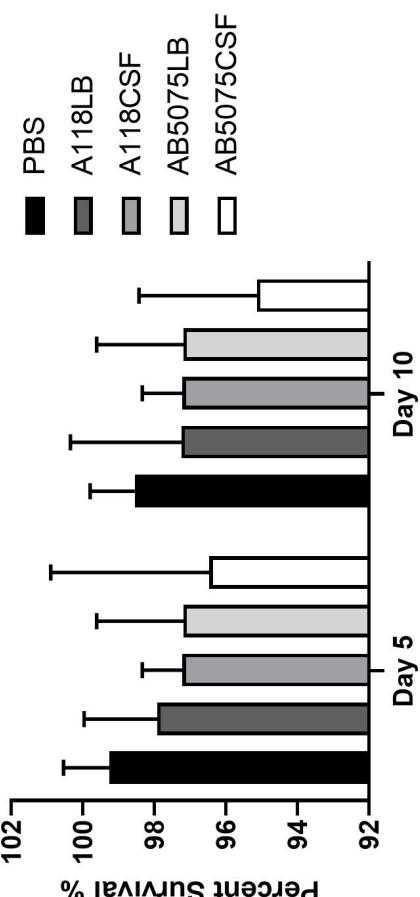

774

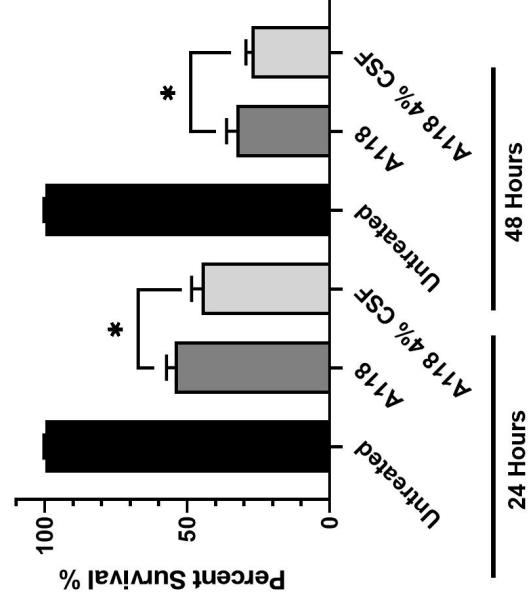
B)

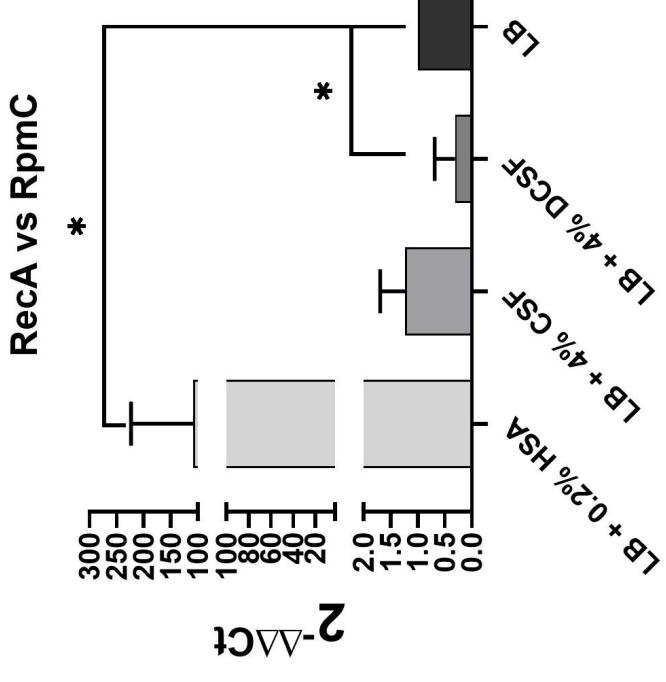


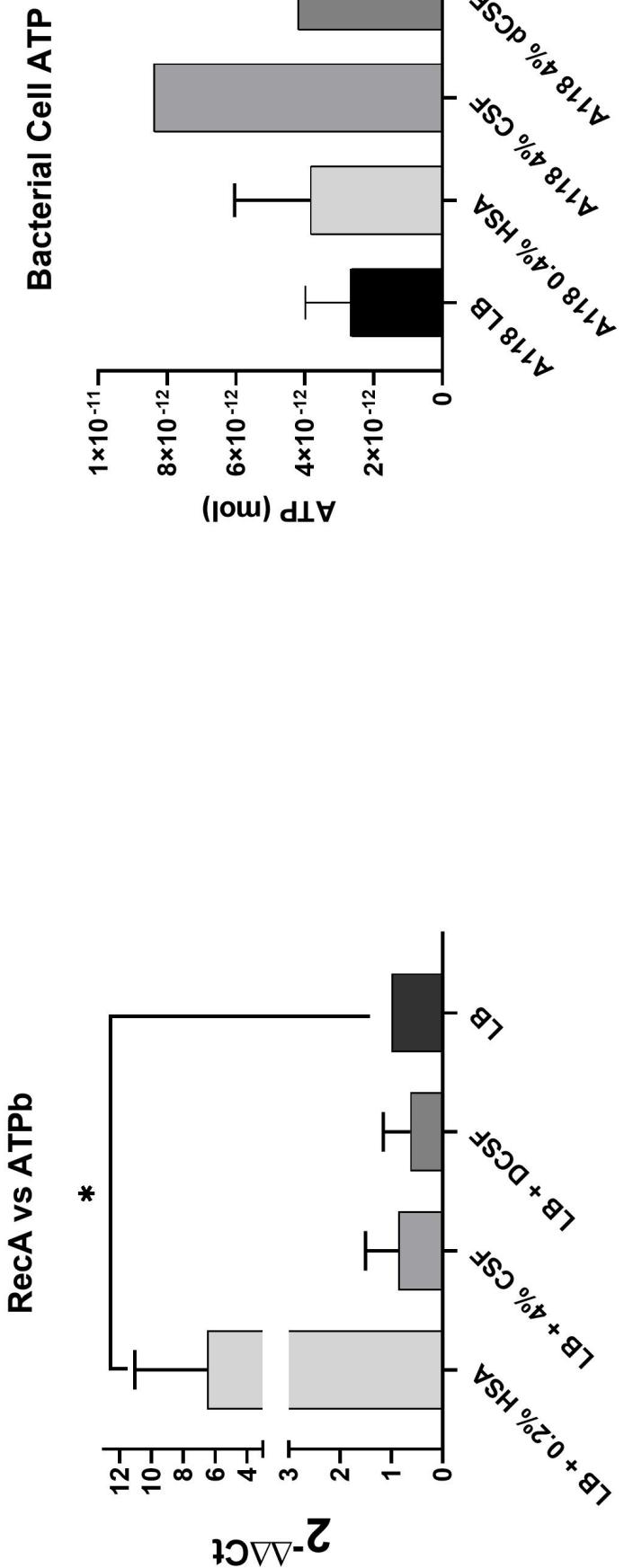
A)

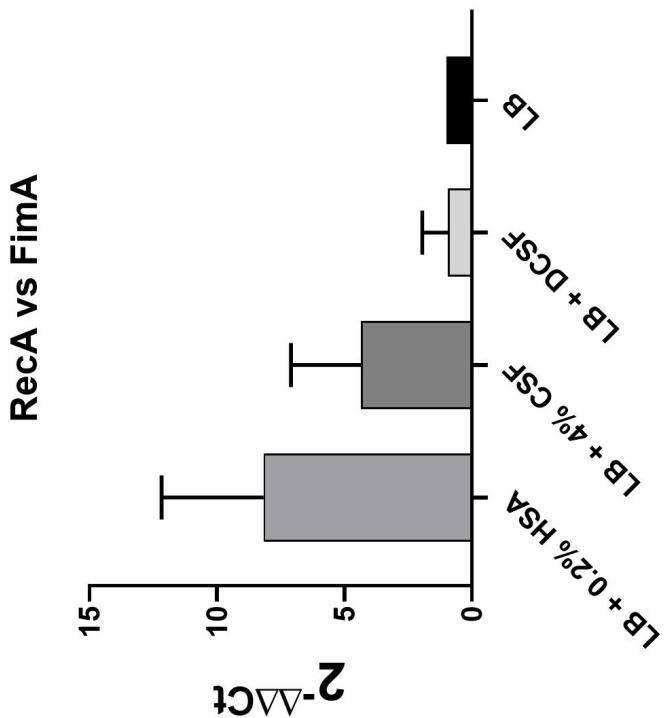


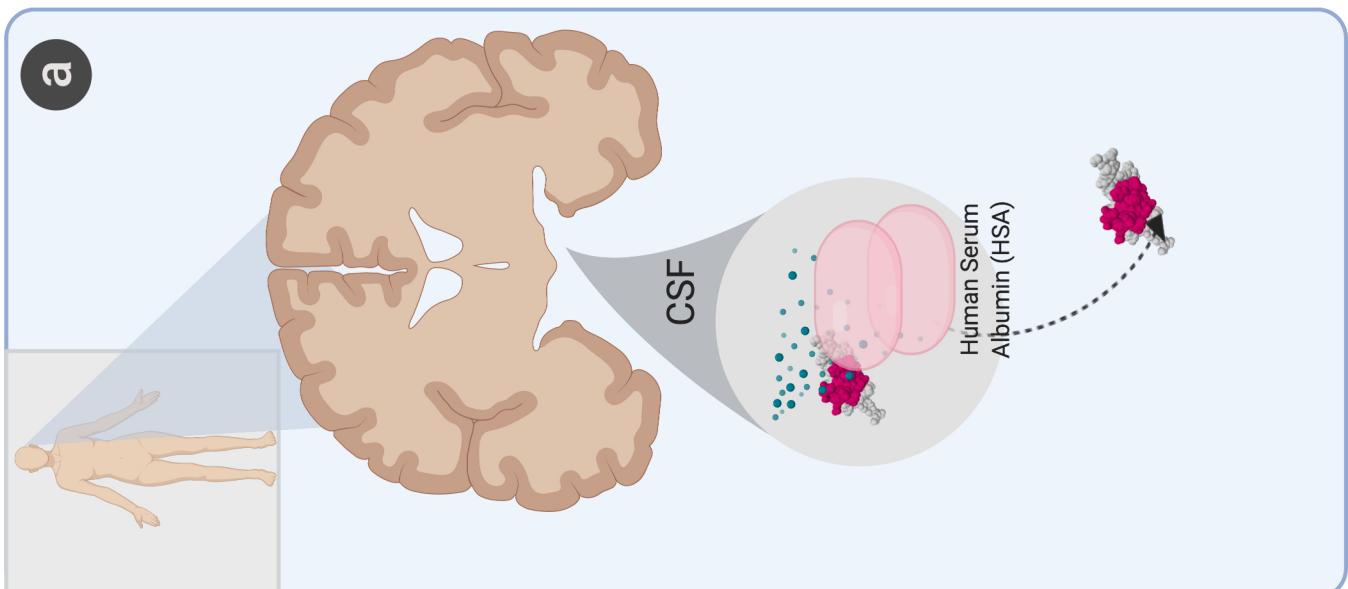
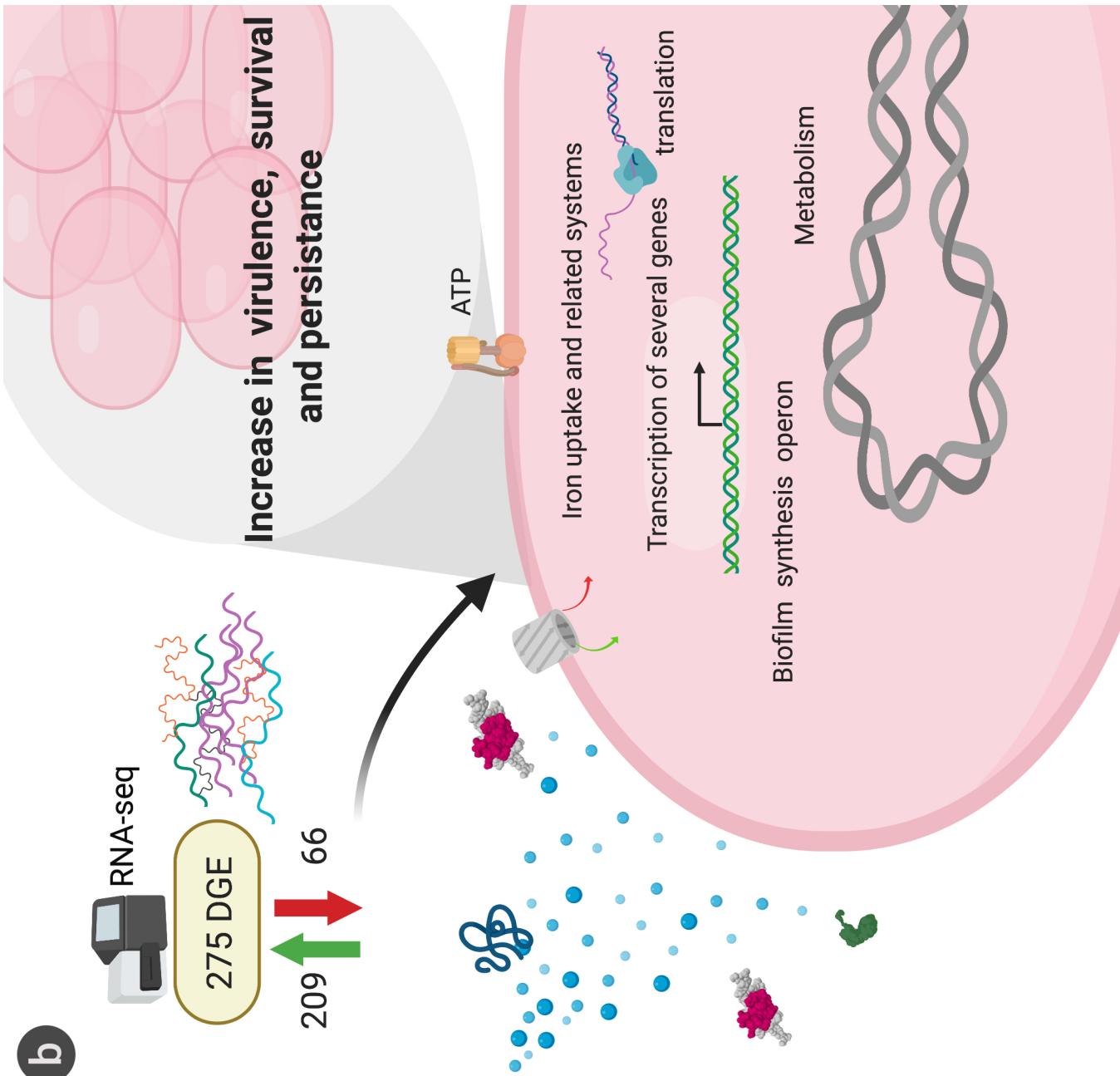

C


B


D


E


B

C

A

