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Abstract  26 
 27 
Recently, pioneering eQTLs studies on single cell RNA-seq (scRNA-seq) data have revealed 28 
new and cell-specific regulatory SNVs. Because eQTLs correlate genotypes and gene 29 
expression across multiple individuals, they are confined to SNVs with sufficient population 30 
frequency. Here, we present an alternative sc-eQTL approach – scReQTL - wherein we 31 
substitute the genotypes with expressed Variant Allele Fraction (VAFRNA) at heterozygous 32 
SNV sites. Our approach employs the advantage that, when estimated from multiple cells, 33 
VAFRNA can be used to assess effects of rare SNVs in a single individual. ScReQTLs are enriched 34 
in known genetic interactions, therefore can be used to identify novel regulatory SNVs. 35 
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 2 

Introduction 45 

In recent years, single cell RNA-seq (scRNA-seq) has become an increasingly accessible 46 
platform for genomic studies (1). By enabling cell-level analyses, scRNA-seq has major 47 
advantages for studying gene-regulatory relationships. Among others, the ability to 48 
distinguish cell populations and to assess cell-type specific transcriptome features, have 49 
shown great potential to identify new regulatory networks (2–4). Furthermore, scRNA-seq 50 
enables the assessment of intracellular molecular relationships, which can reveal cell-specific 51 
gene-gene interactions and co-regulated genetic features (2,5,6). These relationships can be 52 
reflected in mutually correlated molecular traits, including gene expression (GE) and 53 
expression of genetic variants, such as Single Nucleotide Variants (SNVs). 54 

A popular method to study SNVs effects on GE is eQTL (Expressed Quantitative Trait 55 
Loci), which is based on testing for a correlation between the number of alleles bearing the 56 
variant nucleotide at the position of interest, and the level of local (cis) or distant (trans) GE 57 
(7). eQTLs have been mapped by large-scale efforts such as Genotype-tissue Expression 58 
Consortium (GTEx), PsychENCODE, ImmVar BLUEPRINT, and CAGE, which have been 59 
instrumental in identifying SNVs affecting GE (8–12).  60 

Recently, pioneering eQTL studies on scRNA-seq data have emerged. By utilizing the 61 
advantages of the single cell resolution, these studies have revealed many new regulatory 62 
SNVs, including those with cell-specific or transient effects (2–4,13–16). To assess GE, these 63 
methods employ approaches specific to single cell transcriptomics, including accounting for 64 
drop-outs, classification of cells by type, and assessments of progressive cell stages (2–4,13–65 
16). SNV information is traditionally obtained from the genotypes across multiple individuals 66 
and encoded as the number of alleles (0, 1 or 2) bearing the variant nucleotide. Accordingly, 67 
eQTL analyses are confined to SNVs present in a sufficient number of individuals in the 68 
studied group, and frequently exclude variants with low minor allele frequency in the 69 
population.  70 

Here, we explore an alternative approach to assess effects of SNVs on GE from scRNA-71 
seq data, wherein we substitute the genotype counts with the proportion of expressed 72 
variant-bearing RNA molecules (Variant Allele Fraction, VAFRNA) at heterozygous SNV loci. Our 73 
approach employs the advantage that, when estimated from multiple cells, VAFRNA can be 74 
used to assess effects of rare SNVs in a single sample or individual. 75 

To correlate VAFRNA to GE from single cells, we first identify heterozygous SNVs from the 76 
pooled RNA-sequencing data, then estimate VAFRNA in the individual cell alignments, and 77 
correlate VAFRNA with GE from the individual cells using a linear regression model (17). To 78 
develop the pipeline, we used recent methodologies for calling SNVs and VAFRNA estimation 79 
from RNA-seq data (18–22), as well as scRNA-seq-specific methods to estimate GE (23). We 80 
also adopted a strategy from a method recently developed in our lab to correlate VAFRNA and 81 
GE from bulk RNA-sequencing data – ReQTL (RNA-eQTL) (24). We term the application of this 82 
technique on single-cell RNA-sequencing data: scReQTL.  83 

We applied scReQTL on publicly available scRNA-seq generated on the 10×Genomics 84 
Chromium platform using 3’-based protocol on 26,640 cells obtained from three healthy 85 
female donors (25). scReQTL analysis was performed after classification of the cells by cell 86 
type, and only SNVs covered by a minimum of 10 unique sequencing reads per cell were 87 
included in the analysis. Across the three samples, we identified 1272 unique scReQTLs. 88 
scReQTLs common between individuals or cell types were consistent in terms of the 89 
directionality of the relationship and the effect size. In addition, scReQTLs were substantially 90 
enriched in known gene-gene interactions and significant genome-wide association studies 91 
(GWAS) loci.  92 
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 3 

Results 93 
 94 

Overview of scReQTL workflow 95 
The overall scReQTL workflow is presented in Figure 1 and outlined in detail in the 96 

Materials and Methods section. The pipeline includes 5 major steps: scRNA-seq data 97 
processing, GE estimation, cell type identification, VAFRNA assessment, and SNV-GE 98 
correlation by cell type. Below, we briefly describe elements that we identified as specific 99 
and essential for the scReQTL analysis. 100 

Figure 1. ScReQTL workflow (a), with an example of a significant scReQTL correlation between 101 
the SNV at 10:4977767_G>A and the gene AKR1C1 (b).  102 
 103 

Processing includes alignment, deduplication, and variant calling. Because VAFRNA 104 
estimations can be sensitive to allele mapping bias, SNV-aware alignment is strongly 105 
recommended for VAFRNA – based pipelines. We perform SNV-aware alignment as  106 
previously described (26) using 2-pass STAR-WASP (27,28), with intermediate deduplication 107 
(UMI-tools, (29)) and variation call (GATK (18)). To outline heterozygous SNV positions for 108 
VAFRNA assessment, we apply a series of filtering steps (See Materials and Methods). The 109 
filtered SNV sites (per donor) are then used as an input to the second pass, SNV-aware 110 
alignment using STAR-WASP (27,28). 111 

GE estimation is performed on the SNV-aware alignments, using FeatureCounts to assess 112 
the raw gene counts (30), followed by Seurat for normalization and GE variance stabilization 113 
(23,31). The generated GE expression values are then used to remove low quality data, batch 114 
effects and cell-cycle effects. The before- and after-filtering distributions of genes and RNA-115 
seq reads, and the effects of batch-correction and cell-cycle effects removal are shown on 116 
Figure 2. The most variable genes are then identified and used for the scReQTL analyses. 117 
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 4 

Figure 2. a) Density plots showing the proportion of transcripts of mitochondrial origin per cell 118 
(top) and the distribution of genes and sequencing reads per cell in the original data (bottom). b) 119 
Distribution of genes and sequencing reads per cell after filtering of cells with low quality data, 120 
defined as less than 3,000 or more than 7,000 genes/cell and/or mitochondrial genes’ expression 121 
higher than 6% of the total gene expression. c) t-SNE plots before (left) and after (right) correction 122 
for batch effects using the Seurat. Strong batch effect are visible before the correction. d) Top: cell 123 
cycle scores based on expression of G2/M and S phase markers assigned using Seurat. Bottom: Scores 124 
after regressing out the cell cycle source of heterogeneity 125 

 126 
Cell type identification is performed using SingleR (32). The expression profile of each 127 

single cell was correlated to expression data from the BluePrint + ENCODE dataset. Across 128 
the three study samples, four major cell types were identified: adipose cells, erythrocytes, 129 
neutrophils, and naïve-B cells. Adipose cells and erythrocytes were found in all three samples, 130 
whereas naïve-B cells were seen in N5 and N7 and neutrophils – in N8 (Figure 3). 131 

 132 
Figure 3. a) Cell types identified in each donor using SingleR. Adipose cells and erythrocytes were 133 

found in all three donors, whereas naïve-B-cells were seen in N5 and N7 and neutrophils only in N8. 134 
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 5 

b) expression of genes associated with cell types: DCN (adipose cells, top), H2AFZ (erythrocytes, 135 
middle), and H1F0 (neutrophils and naïve B cells). c) Heatmap of SingleR scores for top correlated cell 136 
types from each of Seurat generated clusters. SingleR uses expression data to regenerate the clusters, 137 
and for each cluster, calculates the Spearman coefficient for the genes in the reference dataset. Then, 138 
it uses multiple correlation coefficient to collect a single value per cell type per cluster.  139 

 140 
VAFRNA is assessed from the individual cell alignments at sites with heterozygous SNV 141 

calls using ReadCounts (22), which estimates the number of sequencing reads harboring the 142 
variant and the reference nucleotide (nvar and nref, respectively), and calculates VAFRNA 143 
(VAFRNA = nvar / (nvar + nref)) at each heterozygous SNV site of interest (26). To address 144 
stochasticity of sampling, estimations of VAFRNA require a threshold of minimal number of 145 
unique sequencing reads (minR). Our previous research shows that current scRNA-seq 146 
datasets can contain hundreds of SNV sites covered by minimum of 10 sequencing reads 147 
(minR > 10) and thousands of SNV sites with minR > 5 (26). In the herein presented analysis, 148 
we used VAFRNA estimated at sites with minR > 10; from here on, we refer to these loci as 149 
informative. The VAFRNA distribution of the qualifying SNVs is then examined to identify the 150 
most variable VAFRNA loci (see Methods). VAFRNA distributions before and after filtering of 151 
uninformative (minR<10) and non-variable VAFRNA are shown on Figure 4a and b, 152 
respectively. 153 
 154 

Figure 4. Distribution of scVAFRNA values estimated at SNV sites (displayed on the y-axis) with 155 
minR>10 before (a) and after (b) filtering of non-variable SNV loci. The SNV sites are sorted by 156 
decreasing percentage of cells (x-axis) with scVAFRNA values < 0.2. 157 
 158 

SNV-GE correlations (scReQTLs) are then computed for each donor, stratified by cell type 159 
(see Methods). To qualify for scReQTLs analysis an SNV locus is required to have informative 160 
and variable VAFRNA estimations from at least 20 cells per analysis. The variable VAFRNA were 161 
correlated to the normalized GE values of the variable genes using linear regression model 162 
as implemented in Matrix eQTL (17); quantile-quantile plots (QQ-plots) are presented on 163 
Supplementary Figure 1. Cis- and trans correlations were annotated as we have previously 164 
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 6 

described for the bulk ReQTLs (24). Briefly, because scReQTLs are assessed from transcripts, 165 
we assign cis-correlation based on the co-location of the SNV locus within the transcribed 166 
gene; all the remaining correlations are annotated as trans-scReQTLs).  167 

 168 
Overall scReQTL findings  169 
The number of variable genes and VAFRNA loci retained for scReQTL analysis in the three 170 

donors (by cell type) is shown in Table 1. We performed scReQTL analysis separately for each 171 
individual and cell type; accordingly, 9 scReQTL analyses were run. Among the samples and 172 
cell types, between 79 and 316 SNV loci, and between 2114 and 2442 genes were used as 173 
input for scReQTL analysis. Across the 9 groups, a total of 644 distinct SNVs and 2571 distinct 174 
genes were tested. This analysis identified 1281 unique scReQTLs at false discovery rate 175 
(FDR) of 0.05. All significant scReQTLs are listed in Supplementary Table 1; examples are 176 
shown in Figure 5.  177 
 178 

 179 

Figure 5. Examples of significant (FDR=0.05) scReQTL correlations in donor N5 (a), N7 (b) and N8 180 
(c and d). In N8, consistent across the three cell types cis-scReQTL is shown between the SNV at 181 
10:4977767_G>A and its harboring gene AKR1C1 (c), and between the same SNV and the nearby 182 
positioned gene AKR1C2 (trans-scReQTL, d). Note that the displayed P-values are calculated based on 183 
the input for the plots generated using the R-package ggplot2 and do not represent the FDR—184 
corrected values from the scReQTL analysis performed with Matrix eQTL. 185 

Table 1. Input parameters for scReQTL analysis, and number of identified scReQTLs per cell type.  

c 
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 186 
Among the unique scReQTLs, 7 were identified in more than one cell type or sample 187 

(Supplementary Table 2). In all these cases, the correlations were in the same direction, and 188 
the effect sizes were similar (See Figure 5c and d). We note that the number of common 189 
input SNVs across the 3 samples was as low as 20 (numbers of common input SNVs and 190 
genes, as well as the common scReQTLs SNVs and genes are shown in Supplementary Figure 191 
2). 192 

Next, we investigated the relationship between cis- and trans-scReQTLs. Of the 193 
significant scReQTLs, only 6 represented cis correlations (See examples in Figure 5c). This 194 
observation differs from eQTL analyses, which typically identify a high number of significant 195 
cis-correlations. Here we note that the ReQTL annotation of cis- and trans- differs from the 196 
distance-based annotation used for eQTLs, which considers cis-regulatory SNVs in nearby 197 
genes and transcriptionally silent genomic regions. We then assessed if some scReQTLs are 198 
mediated by cis-effects that do not reach significance at an FDR of 0.05. To do this, we 199 
computed the correlation of all SNVs represented in significant trans scReQTLs with their 200 
harboring gene. For 26% of the scReQTL SNVs, we detected correlations with their harboring 201 
genes with 0.05 < FDR < 0.1 (Supplementary Figure 3). This analysis suggests that a 202 
proportion of the SNVs may at least partially exert their trans-effects via weak to moderate 203 
regulation of the expression of their harboring gene.  204 
 205 

scReQTL in known genetic networks 206 
To assess to what extend scReQTL findings agree with known SNV-gene, and gene-gene 207 

interactions, we intersected the significant scReQTLs with: (a) eQTLs reported in the GTEx 208 
database (8), (b) ReQTLs as estimated from bulk adipose sequencing data (24), (c) known 209 
gene-gene interaction from the STRING database (33), and (d) significant GWAS loci (34).  210 

 211 
scReQTLs and eQTLs from GTEx  212 
To estimate the overlap between scReQTL and known eQTLs, we used the data from 49 213 

different tissues and cell types from the GTEx database (https://www.gtexportal.org). First, 214 
we identified the SNVs and genes used as an input for scReQTLs, and participating in known 215 
eQTLs: a total of 111 input SNVs and 2024 input genes participated in at least one eQTL 216 
reported in GTEx. Across the 49 tissues, scReQTL identified 32 correlations (Supplementary 217 
Table 3), comprised of 6 unique SNV-gene pairs (5 SNVs and 6 genes). These pairs included 218 
all 4 significant cis-scReQTLs, and two trans-scReQTLs: chr10_4977767_G>A and AKR1C2 219 
(see Figure 5d), and chr1:115337511_G_A and NGF. For each of the 6 SNV-gene pairs, we 220 
compared the scReQTLs and the eQTLs in the different GTEx tissue types. For 3 of the 6 221 
scReQTLs, the corresponding GTEx eQTLs were consistent in terms of directionality and 222 
effect size (Figure 6 and Supplementary Figures 4 and 5).  223 

The other 3 scReQTL were found as both positive and negative eQTLs depending on the 224 
tissue type in GTEx. The positive cis-scReQTL, chr6:31354105_G>A_HLA-B, was a significant 225 
cis-eQTL in 4 GTEx tissues: positive in three, but negative in the testis (Supplementary Figure 226 
6). The last 2 scReQTLs comprised correlations of the SNV at chr10:4977767_G>A with 227 
AKR1C1 (positive) and AKR1C2 (negative); these scReQTLs were consistent across cell types 228 
(see Figure 5c and d). In GTEx, the corresponding eQTLs were found in multiple tissues, and 229 
in both positive and negative correlations, highlighting tissue-specific effects (Supplementary 230 
Figures 7 and 8).  231 

 232 
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Figure 6. scReQTL and eQTLs between the SNV at 2:46858815_C>T and its harboring gene 233 
LINC01119 (cis-scReQTL). a) scReQTL between the SNV at 2:46858815_C>T and LINC01119. b) eQTLs 234 
between the SNV 2:46858815_C>T and LINC01119 reported in the GTEX in 2 tissues: Adipose Visceral 235 
and Artery – Tibial. The graphs are generated at the GTEx portal (https://www.gtexportal.org/). The 236 
eQTLs and scReQTL agreed in terms of directionality and effect sizes. c) Multi-tissue comparisons of 237 
the eQTL at 2:46858815_C>T and LINC01119 generated at the GTEx portal 238 
(https://www.gtexportal.org/). 239 
 240 

Overall, our analysis on the agreement between significant scReQTLs and eQTLs 241 
identified a narrow overlap, within which most observations were consistent, and the 242 
remaining were not contradictory. We note that this analysis was limited by the relatively 243 
small number of input scReQTL SNVs present in GTEx. Furthermore, while the cis-scReQTLs 244 
agreed with the cis-eQTLs, the majority of the significant scReQTLs were in trans, which are 245 
known to be highly tissue-specific (8). None of the 4 cell types assessed in our study - adipose 246 
cells, erythrocytes, neutrophils, and naïve-B cells obtained from adipose-derived 247 
mesenchymal stem cells - were a direct match to any of the 49 tissues and cell types from 248 
the GTEx database. Finally, we expect that the strongest contributor to the low level of 249 
concordance between scReQTL and eQTLs is the limited detection power of scReQTL due to 250 
the sparsity of the scRNA-seq data, which is reflected in the low number of cells passing the 251 
minR requirement for each SNV locus and included in the regression analysis. Indeed, while 252 
the initial cell counts per scReQTL analysis (except for N5 adipose cells) were over 1000, the 253 
majority of the SNV loci had between 20 (the required minimum) and 100 cells with minR>10 254 
per cell type (Supplementary Figure 9a). In comparison, the GTEx eQTLs are computed from 255 
a minimum of 100, and in most of the tissues, from over 250 individuals (Supplementary 256 
Figure 9b). 257 

 258 
scReQTLs and ReQTLs from bulk adipose tissue  259 
Next, we intersected the scReQTL findings with ReQTLs from bulk RNA-sequencing data. 260 

To do this, we performed ReQTL on RNA-seq data from two adipose tissues downloaded 261 
from GTEx – adipose subcutaneous (275 samples) and adipose visceral (215 samples) - 262 
following the published protocol (24). Using the SNVs and the genes used as input for the 263 
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scReQTL, with an FDR = 0.05, ReQTL did not identify significant correlations, whereas with an 264 
FDR = 0.1, ReQTL identified 84 (6.6%) and 48 (3.8%) of the significant scReQTLs, in adipose 265 
subcutaneous and visceral tissue, respectively. The majority of the these ReQTLs had small 266 
effect sizes and agreed in the direction with the corresponding scReQTL in 71% of the cases 267 
(Examples shown on Figure 7a). Of note, the above discussed chr10:4977767_G>A and 268 
AKR1C1/AKR1C2 did not show any correlation when examined from bulk RNA-seq data 269 
(Figure 7b).  270 

 271 

 272 
Figure 7. scReQTLs and ReQTLs from bulk adipose tissue. a) Examples of comparisons of 273 

scReQTLs (left) and ReQTLs from bulk adipose tissue (right) at FDR = 0.1. The ReQTLs had generally 274 
weaker size effects and agreed in directionality in 71% of the correlations. Note that the displayed P-275 
values are calculated based on the input for the plots generated using the R-package ggplot2 and do 276 
not represent the FDR—corrected values from the scReQTL analysis performed with Matrix eQTL. b) 277 
ReQTL analysis between the SNV at 10:4977767 and AKR1C1 (left), and AKR1C2 (right), which were 278 
found as significant scReQTLs, did not show significant correlation in bulk RNA-seq data. 279 

 280 
The lack of strong overlap between scReQTL and ReQTL (as well as eQTL) suggests 281 

different regulatory relationships captured by scReQTLs. While ReQTLs and eQTLs show a 282 
high overlap between each other, and are both based on abundance of variant alleles across 283 
multiple individuals with different genotypes, scReQTL operates in a setting of identical 284 
genotypes, and reflects cell-specific networks that are likely to capture transient, allele-285 
mediated genetic interactions. 286 
 287 

 288 
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scReQTLs and known gene-gene interactions  297 
Because the vast majority of the significant scReQTLs reflected correlations between two 298 

different genes (VAFRNA of one of the genes and expression level of the other), we assessed 299 
if these gene pairs were enriched in known gene-gene interactions. We downloaded the 300 
known gene-gene (human) interactions from the STRING database (33) and intersected 301 
these with the scReQTLs. From the 1234 unique gene-gene scReQTLs pairs, 203 (16.4%) were 302 
previously annotated in STRING (Supplementary Table 4, p < 10e-4, permutation test using 303 
10000 permutations, Figure 8a). Examples include IFIT1 and IFITM2, AURKA and PLK, and 304 
CKS2 and CDC20 (Figure 8b-c). The strong enrichment of scReQTLs with known genetic 305 
networks suggests that scReQTLs may be used to identify allele contributions to gene-gene 306 
interactions. 307 

 308 
Figure 8. a) Permutation test for assessment of enrichment of trans scReQTLs in known gene-309 

gene interactions obtained from the STRING database; 10000 permutations were used. The p-value 310 
(p<10e-4) was defined as the fraction of permutations in which the number of gene-gene pairs found 311 
in the known interaction database was at least as great as the number found in the observed data. 312 
This analysis showed significant enrichment of trans-scReQTLs with known gene-gene interactions. b 313 
and c) Examples of trans-scReQTLs and known gene-gene interactions: IFITM2 (11:309127_A>G) in 314 
and IFIT1 (b) and PLK1 (16_23690217_A>G) and AURKA, and CKS2 (9:89316518_T>C) and CDC20 (d). 315 
The interaction graphs are generated using the STRING database visualization tools. Note that all the 316 
scReQTL highlighted gene-gene interactions are supported by a minimum of three lines of evidence 317 
that include either experimental validation (purple line) or curated databases (light-blue line), or 318 
both.  319 

 320 
scReQTLs and GWAS  321 
Furthermore, we intersected the SNVs participating in scReQTLs with SNVs significantly 322 

associated with phenotypes by GWAS (35). This analysis showed that 18 (out of the 408 323 
unique scReQTL SNVs, 4.4%) were present in GWAS; these 18 SNVs participated in 84 324 
scReQTL correlations (Supplementary Table 5). This percentage is similar to the overlap 325 
between GWAS and GTEx eQTLs (3.7 and 3.6% in adipose visceral and adipose subcutaneous 326 
tissue respectively), and significantly higher than the overlap with common SNVs from 327 
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DbSNPv.154, (0.34%, p < 10e-6). This analysis shows that scReQTL SNVs are enriched in 328 
genetic variants associated with phenotype via large population-based and case-control 329 
studies.  330 

 331 
Functional scReQTLs SNVs annotations  332 
We assessed the SNVs participating in scReQTL in regards to position in the harboring 333 

gene and predicted functional effects. As expected from scRNA-seq data generated using a 334 
3’-based protocol, the majority of the SNVs resided in the 3’UTR of their harboring gene 335 
(70.2%, Supplementary Figure 10); the 3’UTR SNVs participated in 69.6% of the scReQTLs. 3ʹ-336 
UTR variants are known to strongly affect both GE levels and splicing (36–39); hence, 337 
scReQTLs can be applied to study this aspect of genetic regulation. The second category was 338 
exonic SNVs, comprising 16.2% of the unique SNVs and participating in 14.9% of the 339 
scReQTLs. Exonic SNVs included missense, nonsense, and near-splice variants, many of which 340 
can potentially affect the protein structure and function. Of note, scReQTL captured a 341 
substantial number of intronic SNVs – 13%, participating in 11.2% of the scReQTLs. Intronic 342 
sequences are reported in 15%–25% of the RNA-sequencing reads from both bulk and single-343 
cell RNA-seq (4,38,39). Intron quantitation can be used to estimate the relative abundance 344 
of precursor and mature mRNA, thereby assessing the RNA velocity and dynamic cellular 345 
processes (4). In the allele-specific setting provided by the scReQTLs, correlation of intronic 346 
SNVs with GE can identify SNVs regulating the RNA processing and maturation.  347 

Next, we assessed if the scReQTLs SNVs are enriched in specific clinical phenotypes 348 
obtained from the ClinVar database (40). Fifteen SNVs (3.7% of the total 408 distinct scReQTL 349 
SNVs) were associated with known clinical phenotypes, including circulating phospholipid 350 
trans fatty acids, cortisol levels, circadian rhythm, risk for cardiovascular disease, blood 351 
pressure, schizophrenia, neuroticism, osteoporosis, anthropometric traits, and asthma (See 352 
Supplementary Table 1). This percentage is similar to the overlap between ClinVar and GTEx 353 
eQTLs (3.3 and 3.1% of the eQTLs in adipose visceral and adipose subcutaneous tissue 354 
respectively), and significantly higher than the overlap with common SNVs from DbSNPv.154, 355 
(0.61%, p < 10e-6). Finally, we assessed the predicted functional and/or pathogenic scores of 356 
the scReQTL SNVs using 17 models including SIFT, Polyphen2, LRT, MutationTaster, 357 
MutationAssessor, FATHMM, PROVEAN, VEST3, CADD, DANN, fathmm-MKL, MetaSVM, 358 
MetaLR, integratedFit, GERP++, phyloP, and phastCons, as implemented in ANNOVAR (41); 359 
this data is summarized in Supplementary Table 6).  360 

 361 
scReQTL application 362 
Application of scReQTLs requires consideration of several factors. First, because 363 

scReQTLs are confined to expressed SNV loci, they cannot capture variants in 364 
transcriptionally silent genomic regions. In addition, SNV loci with expression levels below 365 
the required minimum number of RNA-seq reads (minR) are not included in the scReQTL 366 
analyses. Furthermore, because of the platform used in this study - 10x Genomics Chromium 367 
v3 chemistry – the analyzed SNVs are restricted to those located within the length of the 368 
sequencing read (here, 150nt) from the 3’ end of the transcript. For many genes, these reads 369 
cover only a proportion of the SNVs residing in a transcript. For the above reasons, scReQTLs 370 
accessible SNVs represent a relatively small subset of the expressed SNVs and are not 371 
designed to cover the full set of SNVs in the transcriptome.  372 

Second, it is important to note that even when a genetically regulated gene is captured 373 
by scReQTL analysis, the scReQTLs may not include the actual causative SNV, but its co-allelic 374 
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SNVs. This is the case for SNVs positioned outside the transcribed regions or outside the 375 
coverage of the sequencing library. 376 

Third, scReQTLs are based on VAFRNA estimation, which can be affected by technical 377 
parameters, including allele mapping bias (42) which can lead to overestimation of the 378 
reference allele count (43). Therefore, we perform the scReQTL using SNV-aware alignments. 379 
Specifically, we apply STAR-alignment with WASP, which removes ambiguously mapped 380 
reads after checking for consistency with the reads containing the alternative nucleotide 381 
(27,28).  382 

Another important parameter for VAFRNA estimation is the selection of cutoff for minimal 383 
number of reads, minR. When selecting minR for an analysis, a major factor is the balance 384 
between the confidence of VAFRNA estimation (high minR) and the inclusivity of SNVs (lower 385 
minR values include more loci for scReQTL). In the present study, we have included SNV loci 386 
with minR > 10. Our previous research shows that for current 10× Genomics scRNA-seq 387 
datasets, minR > 5 provides a reasonable balance between VAFRNA confidence and SNV 388 
inclusivity (26). At lower cutoffs (i.e. minR = 3) stochasticity of sampling can affect the VAFRNA 389 
estimation (26). In addition, low cutoffs are expected to include SNVs in genes expressed at 390 
low levels, where additional technical noise can affect the accuracy of the estimations.  391 

Furthermore, VAFRNA can be affected by inaccuracies in the variant calling, including 392 
incorrect calling of the presence or absence of an SNV, and erroneous assignment of a 393 
heterozygous state. The presented pipeline uses scRNA-seq data only, where we call SNVs 394 
from pooled scRNA-seq data, and select for scReQTL analysis highly confident heterozygous 395 
sites based on mapping and Phred quality, genomic position (genic, non-repetitive regions), 396 
and previously validated rsID. To confidently assign heterozygosity, we select bi-allelic SNVs 397 
with a minimum of 50 unique reads supporting each allele from the pooled scRNA-seq. By 398 
default, this selection excludes heterozygous SNVs with strong non-random monoallelic 399 
expression. Therefore, while the above approach is suitable for datasets where matched DNA 400 
is not available, we recommend assignment of heterozygosity based on genotypes when 401 
available. Importantly, scReQTLs do not necessarily require prior variant calls and can be run 402 
on custom pre-defined lists of genomic positions such as dbSNP or a database of RNA-editing 403 
sites. 404 

Finally, VAFRNA varies between different cell types, often due to cell-specific regulatory 405 
mechanisms (44). Due to the dynamic nature of RNA transcription, it is expected that VAFRNA 406 
(similarly to GE) will vary depending on conditions, disease states and stochastic factors. 407 
Therefore, interpretation of scReQTL findings requires consideration of the dynamics of the 408 
variables underlying the correlation. 409 

 410 
Discussion 411 
Single-cell RNA-seq eQTL analyses define an emerging research niche that brings major 412 

benefits for the understanding of functional genetic variation including the identification of 413 
cell-type and condition-specific correlations (2,13–16,45). In this paper, we present a new 414 
eQTL-based analysis in a scRNA-seq setting - scReQTL – which uses the VAFRNA at expressed 415 
heterozygous SNVs in place of the genotypes, to correlate allele prevalence to gene-416 
expression levels. By using VAFRNA across multiple cells of the same sample, scReQTLs 417 
introduce several new analytical aspects.  418 

First, and perhaps most importantly, as scReQTL can be implemented on multiple single 419 
cells from the same sample, it can be applied to assess the effects of SNVs in a single sample 420 
or individual. This is particularly applicable for rare SNVs which are challenging to study via 421 
population-based approaches.  Second, scReQTLs increase the dynamicity of the SNV-gene 422 
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correlations, as VAFRNA, similarly to GE, is both dynamic and cell-type-specific (44). In 423 
particular, in each cell type, scReQTL correlates the most variable VAFRNA to the most variable 424 
genes. Third, as compared to the discrete genotype values (0,1,2), VAFRNA can obtain 425 
continuous values spread along the entire VAFRNA range ([0,1]), allowing for more precise 426 
computation of the proportion of each allele represented in the RNA in a given cell. Fourth, 427 
scReQTL operates in the context of (largely) identical genotypes, which narrows the observed 428 
effects to RNA-mediated interactions. Finally, scReQTL does not necessarily require matched 429 
DNA (although we recommend it for genotyping of heterozygous SNVs, if available), and 430 
therefore can be applied on scRNA-seq data alone. Related to that, scReQTL analyses can be 431 
performed using pre-defined SNV lists, such as RNA-editing sites and sets of dbSNP SNVs of 432 
interest.  433 

At the same time, compared to single cell and bulk eQTLs, scReQTL analyses have 434 
notable limitations. First, the scReQTL accessible SNVs are restricted by depth of coverage 435 
per cell (minR) and, in the case of 3’-based scRNA-seq protocols, by the length of the 436 
sequencing read. Therefore, scReQTLs can analyze only a proportion of the transcribed SNVs. 437 
This limitation is expected to be gradually reduced with the progress of the sequencing 438 
technologies. Additional attenuation of this constraint is possible through reducing the value 439 
of minR used in the analysis. Indeed, while in this study we apply minR > 10, which retained 440 
between 308 and 721 input SNVs per sample, in our prior research we show that at minR > 441 
5 the number of SNVs is higher by an order of magnitude (26). Second, scReQTL appears to 442 
have relatively low power to detect cis-acting (on the same gene) SNVs (See Supplementary 443 
Figure 3). Specifically, the vast majority of the correlations identified in this study are trans-444 
scReQTLs. Several factors may account for this observation. As mentioned earlier, the 445 
definition of “cis”-scReQTLs is based on residing of the SNV within the same gene; hence 446 
SNVs that would be classified as “cis” using the eQTL distance-based definition are “trans” 447 
for the scReQTLs, increasing the proportion of trans-correlations in the same SNV-gene 448 
dataset. Additional possible explanation is that in the explored setting of minR>10, cis-acting 449 
SNVs are located in genes with high expression, which likely contain a high proportion of 450 
stably expressed genes, including with house-keeping functions. Confining the analyses to 451 
SNVs in genes with high expression level is an additional limitation of the scReQTLs. 452 
Nevertheless, due to the dynamic nature of the scReQTL estimations, scReQTLs can capture 453 
SNVs in genes with transiently high expression in a particular cell type or in a specific stage 454 
of the cell development. Notably, the identified trans-scReQTLs are significantly enriched in 455 
known gene-gene correlations (See Figure 7), therefore we interpret them as indictive of an 456 
allelic contribution to these gene-gene interactions. The above limitations, together with the 457 
relatively low number of cells with minR >10 for many of the participating SNVs, at least 458 
partially account for the narrow overlap between scReQTLs and eQTLs/ReQTLs. At the same 459 
time, scReQTLs are able to capture correlations that are masked in the bulk eQTL and ReQTL 460 
analyses (See Figure 8). 461 

Our scReQTL analysis includes approximately 4 billion RNA-seq reads from 26,640 462 
human adipose-derived mesenchymal stem cells, obtained from three healthy donors. We 463 
chose the 10xGenomics platform due to its growing popularity, high throughput, and the 464 
support for unique molecular identifiers (UMI) for the removal of PCR-related sequencing 465 
bias. Using stringent cutoff for SNV coverage (minR>10) we identified 1272 distinct scReQTLs. 466 
These scReQTLs include a considerable number of correlations which involve SNVs previously 467 
highlighted by GWAS and are significantly enriched in known gene-gene interactions. These 468 
results demonstrate that scReQTLs can be used to identify novel genetic interactions, 469 
including those which are specific to a given cell-type.  470 
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 471 
Conclusion 472 
We present a new approach – scReQTL – that correlates SNVs to gene expression from 473 

scRNA-seq data. The scReQTL analyses presented in this research generated results 474 
containing both previously known and novel genetic interactions. scReQTL is applicable to 475 
the rapidly growing source of scRNA-seq data, and is capable of identify SNVs contributing to 476 
cell type-specific intracellular genetic interactions.  477 

 478 
Materials and Methods 479 

Data 480 
We used publicly available scRNA-seq data (25) from 26,640 human cells from three 481 

healthy donors: N5, N7 and N8. The scRNA-seq data was generated on 10x Genomics 482 
Chromium v2 platform; the library preparation and sequencing are described in detail 483 
elsewhere (25). Briefly, cells were partitioned using 10x Genomics Single Cell 3ʹ Chips, and 484 
barcodes to index cells (16 bp) and transcripts (10 bp UMI) were incorporated. The 485 
constructed libraries were sequenced on an Illumina NovaSeq 6000 System in 2 × 150 bp 486 
paired-end mode.  487 

 488 
SNV-aware alignment 489 
The cell barcodes and UMIs were extracted using UMI-tools from the pooled (per donor) 490 

raw sequencing reads (29). The pooled sequencing reads were aligned to the latest version 491 
of the human genome reference (GRCh38, Dec 2013) using STAR v.2.7.3.c in 2-pass mode 492 
with transcript annotations from the assembly GRCh38.79 (27). The alignments were 493 
deduplicated retaining the reads with the highest alignment scores (29). SNVs were called in 494 
the pooled deduplicated alignments using GATK v.4.1.4.1 (18). To identify heterozygous SNV 495 
positions qualified for VAFRNA analysis, we applied a series of filtering steps. Specifically, 496 
heterozygous SNVs were selected based on the presence of minimum of 50 high-quality 497 
reads supporting both (reference and alternative) nucleotides in the pooled alignments. SNV 498 
loci were annotated using SeattleSeq v.13.00 (dbSNP build 153), and loci positioned in 499 
repetitive or intergenic regions were removed. The SNV lists were further filtered based on 500 
the following requirements: QUAL (Phred-scaled probability) > 100, MQ (mapping quality) > 501 
60, QD (quality by depth) > 2, and FS (Fisher’s exact test estimated strand bias) = 0.000. The 502 
filtered SNV lists (per donor) were then used as an input for a second, SNV-aware alignment 503 
using STAR-WASP (28).  504 

 505 
Gene Expression estimation 506 
To estimate gene expression, we first apply FeatureCount on the individual alignments 507 

to assess the row gene counts per cell (30). We then normalize and scale the expression data 508 
using the sctransform package as implemented in Seurat v.3.0 (23,31), which stabilizes the 509 
GE variance using regularized negative binomial regression. The normalized GE values are 510 
then used to remove cells with low quality data, defined as less than 3,000 or more than 511 
7,000 detected genes and/or mitochondrial genes’ expression higher than 6% of the total 512 
gene expression. The GE values were used to correct for batch- and cell-cycle effects (See 513 
Figure 2). Thereby selected most variable genes were then used to classify cell types (See 514 
below). In addition, after examining the GE distribution across the cells (per cell type), genes 515 
which expression in 80% or more of the cells was within 20% or less from the top or bottom 516 
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of the GE range, were filtered out; the retained most variable genes were then used for 517 
scReQTL analyses (See Table 1).  518 

 519 
Cell type identification  520 
To define individual cell types, we used SingleR version 1.0.5 (32). The expression profile 521 

of each single cell was correlated to expression data from the BluePrint + ENCODE dataset, 522 
containing 259 bulk RNAseq samples representing 24 main cell types and 43 subtypes. 523 
SingleR first calculates a Spearman coefficient for the correlation of the expression of the 524 
most variable genes of each single-cell gene with each of the samples in the reference data 525 
set. Then, it uses multiple correlation coefficient to collect a single value per cell type per 526 
cluster. This correlation analysis is rerun iteratively using only the top cell types from the 527 
previous step and the variable genes among them until only one cell type is retained. 528 
Applying SingleR, we identified four major cell types were identified across the three donors: 529 
adipose cells and erythrocytes were found in all three samples, naïve-B-cells found in N5 and 530 
N7, and neutrophils, in N8 (See Figure 3 and Table 1). 531 

 532 
VAFRNA estimation 533 
VAFRNA is assessed from the individual alignments as we have previously described (26), 534 

using the high quality heterozygous SNV sites as inputs for ReadCounts (22). At each position 535 
of interest, ReadCounts estimates the number of sequencing reads harboring the variant and 536 
the reference nucleotide (nvar and nref, respectively), calculates VAFRNA (VAFRNA = nvar / (nvar + 537 
nref), and filters out positions not covered by the user-defined minimum number of reads 538 
(minR); minR is constant across the genome (22). For the herein presented analysis, we used 539 
minR>10. To qualify for scReQTL, a variant is required to have variable VAFRNA from a 540 
minimum of 20 cells from the same cell type (per donor). The VAFRNA distribution is then 541 
examined and loci with non-variable VAFRNA are filtered out. Loci were considered non-542 
variable if: (1) over 75% of the VAFRNA values are in the range of 0.5 ± 0.1 (corresponding to 543 
stable biallelic expression), and (2) over 75% of the VAFRNA values are in the ranges 0-0.25 or 544 
0.75-1 (corresponding to predominantly monoallelic or skewed allelic expression).  545 

 546 
 547 
ScReQTL computations 548 
SNV-GE correlations (scReQTLs) were computed for each donor, across the cells of each 549 

type separately. To qualify for scReQTLs analysis, an SNV locus is required to have informative 550 
and variable VAFRNA estimations (minR>10) from at least 20 cells per analysis. The variable 551 
VAFRNA were correlated to the normalized GE values of the most variable genes using a linear 552 
regression model as implemented in Matrix eQTL (17). The top 15 principal components of 553 
the GE were used as covariates (Supplementary Figure 11). Cis and trans correlations were 554 
annotated as previously described for the bulk ReQTLs (24). Briefly, because scReQTLs are 555 
assessed from transcripts, we assign cis-correlation based on the co-location of the SNV locus 556 
within the transcribed gene, using the gene coordinates (46). All the scReQTLs including SNVs 557 
residing in genes different from the expression-correlated genes are annotated as trans-558 
scReQTLs.  559 

 560 
Statistical Analyses 561 
Throughout the analysis we used the default statistical tests (with built-in multiple 562 

testing corrections) implemented in the used software packages (Seurat, SingleR, Matrix 563 
eQTL), where p-value of 0.05 was considered significant, unless otherwise stated. For 564 
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estimation of differences in overlap between scReQTL SNVs, GWAS and ClinVar, chi-square 565 
test was used. For assessment of enrichment of scReQTLs in known gene-gene interactions, 566 
a permutation test with 10000 permutations was applied. For each permutation, a random 567 
set of gene-gene pairs of the same size as the observed data was selected. The p-value was 568 
defined as the fraction of permutations in which the number of gene-gene pairs found in the 569 
known interaction database was at least as great as the number found in the observed data. 570 
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