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Abstract

Recently, pioneering eQTLs studies on single cell RNA-seq (scRNA-seq) data have revealed
new and cell-specific regulatory SNVs. Because eQTLs correlate genotypes and gene
expression across multiple individuals, they are confined to SNVs with sufficient population
frequency. Here, we present an alternative sc-eQTL approach — scReQTL - wherein we
substitute the genotypes with expressed Variant Allele Fraction (VAFgna) at heterozygous
SNV sites. Our approach employs the advantage that, when estimated from multiple cells,
VAFgrna can be used to assess effects of rare SNVs in a single individual. ScReQTLs are enriched
in known genetic interactions, therefore can be used to identify novel regulatory SNVs.

Keywords: eQTL, ReQTL, scReQTL, single cell; VAFgna; SCVAFrNa; SCRNA-seq; SNV, genetic
variation; RNA-seq; single cell RNA sequencing, single cell RNA-seq
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Introduction

In recent years, single cell RNA-seq (scRNA-seq) has become an increasingly accessible
platform for genomic studies (1). By enabling cell-level analyses, scRNA-seq has major
advantages for studying gene-regulatory relationships. Among others, the ability to
distinguish cell populations and to assess cell-type specific transcriptome features, have
shown great potential to identify new regulatory networks (2—4). Furthermore, scRNA-seq
enables the assessment of intracellular molecular relationships, which can reveal cell-specific
gene-gene interactions and co-regulated genetic features (2,5,6). These relationships can be
reflected in mutually correlated molecular traits, including gene expression (GE) and
expression of genetic variants, such as Single Nucleotide Variants (SNVs).

A popular method to study SNVs effects on GE is eQTL (Expressed Quantitative Trait
Loci), which is based on testing for a correlation between the number of alleles bearing the
variant nucleotide at the position of interest, and the level of local (cis) or distant (trans) GE
(7). eQTLs have been mapped by large-scale efforts such as Genotype-tissue Expression
Consortium (GTEx), PsychENCODE, ImmVar BLUEPRINT, and CAGE, which have been
instrumental in identifying SNVs affecting GE (8—-12).

Recently, pioneering eQTL studies on scRNA-seq data have emerged. By utilizing the
advantages of the single cell resolution, these studies have revealed many new regulatory
SNVs, including those with cell-specific or transient effects (2—4,13—-16). To assess GE, these
methods employ approaches specific to single cell transcriptomics, including accounting for
drop-outs, classification of cells by type, and assessments of progressive cell stages (2—4,13—
16). SNV information is traditionally obtained from the genotypes across multiple individuals
and encoded as the number of alleles (0, 1 or 2) bearing the variant nucleotide. Accordingly,
eQTL analyses are confined to SNVs present in a sufficient number of individuals in the
studied group, and frequently exclude variants with low minor allele frequency in the
population.

Here, we explore an alternative approach to assess effects of SNVs on GE from scRNA-
seq data, wherein we substitute the genotype counts with the proportion of expressed
variant-bearing RNA molecules (Variant Allele Fraction, VAFgrna) at heterozygous SNV loci. Our
approach employs the advantage that, when estimated from multiple cells, VAFrna can be
used to assess effects of rare SNVs in a single sample or individual.

To correlate VAFgrna to GE from single cells, we first identify heterozygous SNVs from the
pooled RNA-sequencing data, then estimate VAFgna in the individual cell alignments, and
correlate VAFgna With GE from the individual cells using a linear regression model (17). To
develop the pipeline, we used recent methodologies for calling SNVs and VAFrna estimation
from RNA-seq data (18-22), as well as scRNA-seq-specific methods to estimate GE (23). We
also adopted a strategy from a method recently developed in our lab to correlate VAFgna and
GE from bulk RNA-sequencing data —ReQTL (RNA-eQTL) (24). We term the application of this
technique on single-cell RNA-sequencing data: scReQTL.

We applied scReQTL on publicly available scRNA-seq generated on the 10xGenomics
Chromium platform using 3’-based protocol on 26,640 cells obtained from three healthy
female donors (25). scReQTL analysis was performed after classification of the cells by cell
type, and only SNVs covered by a minimum of 10 unique sequencing reads per cell were
included in the analysis. Across the three samples, we identified 1272 unique scReQTLs.
scReQTLs common between individuals or cell types were consistent in terms of the
directionality of the relationship and the effect size. In addition, scReQTLs were substantially
enriched in known gene-gene interactions and significant genome-wide association studies
(GWAS) loci.
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93 Results

94

95 Overview of scReQTL workflow

96 The overall scReQTL workflow is presented in Figure 1 and outlined in detail in the

97  Materials and Methods section. The pipeline includes 5 major steps: scRNA-seq data
98  processing, GE estimation, cell type identification, VAFgna assessment, and SNV-GE
99  correlation by cell type. Below, we briefly describe elements that we identified as specific
100  and essential for the scReQTL analysis.
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101 Figure 1. ScReQTL workflow (a), with an example of a significant scReQTL correlation between
102 the SNV at 10:4977767_G>A and the gene AKR1C1 (b).
103
104 Processing includes alignment, deduplication, and variant calling. Because VAFgna

105  estimations can be sensitive to allele mapping bias, SNV-aware alignment is strongly
106  recommended for VAFrna — based pipelines. We perform SNV-aware alignment as
107  previously described (26) using 2-pass STAR-WASP (27,28), with intermediate deduplication
108  (UMl-tools, (29)) and variation call (GATK (18)). To outline heterozygous SNV positions for
109  VAFrna assessment, we apply a series of filtering steps (See Materials and Methods). The
110  filtered SNV sites (per donor) are then used as an input to the second pass, SNV-aware
111 alignment using STAR-WASP (27,28).

112 GE estimation is performed on the SNV-aware alignments, using FeatureCounts to assess
113 the raw gene counts (30), followed by Seurat for normalization and GE variance stabilization
114 (23,31). The generated GE expression values are then used to remove low quality data, batch
115  effects and cell-cycle effects. The before- and after-filtering distributions of genes and RNA-
116  seq reads, and the effects of batch-correction and cell-cycle effects removal are shown on
117  Figure 2. The most variable genes are then identified and used for the scReQTL analyses.
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Figure 2. a) Density plots showing the proportion of transcripts of mitochondrial origin per cell
(top) and the distribution of genes and sequencing reads per cell in the original data (bottom). b)
Distribution of genes and sequencing reads per cell after filtering of cells with low quality data,
defined as less than 3,000 or more than 7,000 genes/cell and/or mitochondrial genes’ expression
higher than 6% of the total gene expression. c) t-SNE plots before (left) and after (right) correction
for batch effects using the Seurat. Strong batch effect are visible before the correction. d) Top: cell
cycle scores based on expression of G2/M and S phase markers assigned using Seurat. Bottom: Scores

after regressing out the cell cycle source of heterogeneity

Cell type identification is performed using SingleR (32). The expression profile of each
single cell was correlated to expression data from the BluePrint + ENCODE dataset. Across
the three study samples, four major cell types were identified: adipose cells, erythrocytes,
neutrophils, and naive-B cells. Adipose cells and erythrocytes were found in all three samples,
whereas naive-B cells were seen in N5 and N7 and neutrophils —in N8 (Figure 3).
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Figure 3.a) Cell types identified in each donor using SingleR. Adipose cells and erythrocytes were
found in all three donors, whereas naive-B-cells were seen in N5 and N7 and neutrophils only in N8.
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135  b) expression of genes associated with cell types: DCN (adipose cells, top), H2AFZ (erythrocytes,
136  middle), and H1FO (neutrophils and naive B cells). c) Heatmap of SingleR scores for top correlated cell
137  typesfrom each of Seurat generated clusters. SingleR uses expression data to regenerate the clusters,
138 and for each cluster, calculates the Spearman coefficient for the genes in the reference dataset. Then,
139 it uses multiple correlation coefficient to collect a single value per cell type per cluster.

140

141 VAFgna is assessed from the individual cell alignments at sites with heterozygous SNV
142 calls using ReadCounts (22), which estimates the number of sequencing reads harboring the
143 variant and the reference nucleotide (nvar and nrer, respectively), and calculates VAFgna
144 (VAFrna = nvar / (nvar + Nref)) at each heterozygous SNV site of interest (26). To address
145  stochasticity of sampling, estimations of VAFrna require a threshold of minimal number of
146  unique sequencing reads (minR). Our previous research shows that current scRNA-seq
147  datasets can contain hundreds of SNV sites covered by minimum of 10 sequencing reads
148  (minR > 10) and thousands of SNV sites with minR >5 (26). In the herein presented analysis,
149  we used VAFgna estimated at sites with minR > 10; from here on, we refer to these loci as
150  informative. The VAFgna distribution of the qualifying SNVs is then examined to identify the
151  most variable VAFgna loci (see Methods). VAFgna distributions before and after filtering of
152  uninformative (minR<10) and non-variable VAFgna are shown on Figure 4a and b,
153  respectively.

154
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155 Figure 4. Distribution of scVAFgna values estimated at SNV sites (displayed on the y-axis) with

156  minR>10 before (a) and after (b) filtering of non-variable SNV loci. The SNV sites are sorted by
157  decreasing percentage of cells (x-axis) with scVAFgna values < 0.2.

158

159 SNV-GE correlations (scReQTLs) are then computed for each donor, stratified by cell type
160  (see Methods). To qualify for scReQTLs analysis an SNV locus is required to have informative
161  and variable VAFrna estimations from at least 20 cells per analysis. The variable VAFgna were
162  correlated to the normalized GE values of the variable genes using linear regression model
163  as implemented in Matrix eQTL (17); quantile-quantile plots (QQ-plots) are presented on
164  Supplementary Figure 1. Cis- and trans correlations were annotated as we have previously
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165  described for the bulk ReQTLs (24). Briefly, because scReQTLs are assessed from transcripts,
166  we assign cis-correlation based on the co-location of the SNV locus within the transcribed
167  gene; all the remaining correlations are annotated as trans-scReQTLs).

168
169 Overall scReQTL findings
170 The number of variable genes and VAFgna loci retained for scReQTL analysis in the three

171  donors (by cell type) is shown in Table 1. We performed scReQTL analysis separately for each
172 individual and cell type; accordingly, 9 scReQTL analyses were run. Among the samples and
173 cell types, between 79 and 316 SNV loci, and between 2114 and 2442 genes were used as
174  input for scReQTL analysis. Across the 9 groups, a total of 644 distinct SNVs and 2571 distinct
175  genes were tested. This analysis identified 1281 unique scReQTLs at false discovery rate
176  (FDR) of 0.05. All significant scReQTLs are listed in Supplementary Table 1; examples are
177  shownin Figure 5.

178
179 Table 1. Input parameters for scReQTL analysis, and number of identified scReQTLs per cell type.
N N Mean Median N cells (per cell type) = 2 .
Sample cells reads Reads/Cell | Genes/Cell | after ﬁItZrin b e g ot e
g SNVs | genes FDR =0.05
Adipocytes 296 79 2,114 31
N5 8,906 1,071,156,174 120,273 5,439 Erythrocytes 5,848 208 2,206 161
Naive-B cells 2,033 99 2,138 82
Adipocytes 3,819 316 2,442 336
N7 8,478 1,579,342,505 186,287 6,049 Erythrocytes 2,788 238 2,395 127
Naive-B cells 1,618 167 2,366 102
Adipocytes 5,738 230 2,345 299
N8 9,256 1,285,218,728 138,852 5,559 Erythrocytes 1,924 157 2,367 72
Neutrophils 1,433 139 2,340 71
Total/ . 1633/ | 20,713/ | 1,281/
Overall 26,640 3,935,717,407 148,471 5,682 Total/Distinct 25,497 644 2,571 1272
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180 Figure 5. Examples of significant (FDR=0.05) scReQTL correlations in donor N5 (a), N7 (b) and N8

181 (c and d). In N8, consistent across the three cell types cis-scReQTL is shown between the SNV at
182  10:4977767_G>A and its harboring gene AKR1CI (c), and between the same SNV and the nearby
183 positioned gene AKRIC2 (trans-scReQTL, d). Note that the displayed P-values are calculated based on
184  the input for the plots generated using the R-package ggplot2 and do not represent the FDR—
185  corrected values from the scReQTL analysis performed with Matrix eQTL.
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186

187 Among the unique scReQTLs, 7 were identified in more than one cell type or sample
188  (Supplementary Table 2). In all these cases, the correlations were in the same direction, and
189  the effect sizes were similar (See Figure 5c and d). We note that the number of common
190  input SNVs across the 3 samples was as low as 20 (numbers of common input SNVs and
191  genes, as well as the common scReQTLs SNVs and genes are shown in Supplementary Figure
192  2).

193 Next, we investigated the relationship between cis- and trans-scReQTLs. Of the
194  significant scReQTLs, only 6 represented cis correlations (See examples in Figure 5c). This
195  observation differs from eQTL analyses, which typically identify a high number of significant
196  cis-correlations. Here we note that the ReQTL annotation of cis- and trans- differs from the
197  distance-based annotation used for eQTLs, which considers cis-regulatory SNVs in nearby
198  genes and transcriptionally silent genomic regions. We then assessed if some scReQTLs are
199  mediated by cis-effects that do not reach significance at an FDR of 0.05. To do this, we
200  computed the correlation of all SNVs represented in significant trans scReQTLs with their
201  harboring gene. For 26% of the scReQTL SNVs, we detected correlations with their harboring
202  genes with 0.05 < FDR < 0.1 (Supplementary Figure 3). This analysis suggests that a
203  proportion of the SNVs may at least partially exert their trans-effects via weak to moderate
204  regulation of the expression of their harboring gene.

205
206 scReQTL in known genetic networks
207 To assess to what extend scReQTL findings agree with known SNV-gene, and gene-gene

208 interactions, we intersected the significant scReQTLs with: (a) eQTLs reported in the GTEx
209  database (8), (b) ReQTLs as estimated from bulk adipose sequencing data (24), (c) known
210  gene-gene interaction from the STRING database (33), and (d) significant GWAS loci (34).
211

212 scReQTlLs and eQTLs from GTEx

213 To estimate the overlap between scReQTL and known eQTLs, we used the data from 49
214  different tissues and cell types from the GTEx database (https://www.gtexportal.org). First,
215  we identified the SNVs and genes used as an input for scReQTLs, and participating in known
216  eQTLs: a total of 111 input SNVs and 2024 input genes participated in at least one eQTL
217  reported in GTEx. Across the 49 tissues, scReQTL identified 32 correlations (Supplementary
218  Table 3), comprised of 6 unique SNV-gene pairs (5 SNVs and 6 genes). These pairs included
219  all 4 significant cis-scReQTLs, and two trans-scReQTLs: chrl0_4977767_G>A and AKRIC2
220  (see Figure 5d), and chr1:115337511 G_A and NGF. For each of the 6 SNV-gene pairs, we
221  compared the scReQTLs and the eQTLs in the different GTEx tissue types. For 3 of the 6
222 scReQTLs, the corresponding GTEx eQTLs were consistent in terms of directionality and
223  effect size (Figure 6 and Supplementary Figures 4 and 5).

224 The other 3 scReQTL were found as both positive and negative eQTLs depending on the
225  tissue type in GTEx. The positive cis-scReQTL, chr6:31354105_G>A_HLA-B, was a significant
226  cis-eQTL in 4 GTEXx tissues: positive in three, but negative in the testis (Supplementary Figure
227  6). The last 2 scReQTLs comprised correlations of the SNV at chr10:4977767_G>A with
228  AKRICI (positive) and AKR1C2 (negative); these scReQTLs were consistent across cell types
229  (see Figure 5c and d). In GTEx, the corresponding eQTLs were found in multiple tissues, and
230  in both positive and negative correlations, highlighting tissue-specific effects (Supplementary
231  Figures 7 and 8).

232
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233 Figure 6. scReQTL and eQTLs between the SNV at 2:46858815_C>T and its harboring gene

234 [INCO1119 (cis-scReQTL). a) scReQTL between the SNV at 2:46858815 C>T and LINC01119. b) eQTLs
235 between the SNV 2:46858815 C>T and LINCO1119 reported in the GTEX in 2 tissues: Adipose Visceral
236 and Artery — Tibial. The graphs are generated at the GTEx portal (https://www.gtexportal.org/). The
237 eQTLs and scReQTL agreed in terms of directionality and effect sizes. ¢) Multi-tissue comparisons of
238 the eQTL at 2:46858815 C>T and LINCO1119 generated at the GTEx portal
239 (https://www.gtexportal.org/).

240

241 Overall, our analysis on the agreement between significant scReQTLs and eQTLs
242  identified a narrow overlap, within which most observations were consistent, and the
243 remaining were not contradictory. We note that this analysis was limited by the relatively
244 small number of input scReQTL SNVs present in GTEx. Furthermore, while the cis-scReQTLs
245  agreed with the cis-eQTLs, the majority of the significant scReQTLs were in trans, which are
246  known to be highly tissue-specific (8). None of the 4 cell types assessed in our study - adipose
247  cells, erythrocytes, neutrophils, and naive-B cells obtained from adipose-derived
248  mesenchymal stem cells - were a direct match to any of the 49 tissues and cell types from
249  the GTEx database. Finally, we expect that the strongest contributor to the low level of
250  concordance between scReQTL and eQTLs is the limited detection power of scReQTL due to
251  the sparsity of the scRNA-seq data, which is reflected in the low number of cells passing the
252  minR requirement for each SNV locus and included in the regression analysis. Indeed, while
253  theinitial cell counts per scReQTL analysis (except for N5 adipose cells) were over 1000, the
254  majority of the SNV loci had between 20 (the required minimum) and 100 cells with minR>10
255  per cell type (Supplementary Figure 9a). In comparison, the GTEx eQTLs are computed from
256  a minimum of 100, and in most of the tissues, from over 250 individuals (Supplementary
257  Figure 9b).

258
259 scReQTls and ReQTLs from bulk adipose tissue
260 Next, we intersected the scReQTL findings with ReQTLs from bulk RNA-sequencing data.

261  To do this, we performed ReQTL on RNA-seq data from two adipose tissues downloaded
262  from GTEx — adipose subcutaneous (275 samples) and adipose visceral (215 samples) -
263  following the published protocol (24). Using the SNVs and the genes used as input for the
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264  scReQTL, with an FDR = 0.05, ReQTL did not identify significant correlations, whereas with an
265 FDR =0.1, ReQTL identified 84 (6.6%) and 48 (3.8%) of the significant scReQTLs, in adipose
266  subcutaneous and visceral tissue, respectively. The majority of the these ReQTLs had small
267  effectsizes and agreed in the direction with the corresponding scReQTL in 71% of the cases
268  (Examples shown on Figure 7a). Of note, the above discussed chr10:4977767_G>A and
269  AKRI1C1/AKR1C2 did not show any correlation when examined from bulk RNA-seq data
270  (Figure 7b).
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274  scReQTLs (left) and ReQTLs from bulk adipose tissue (right) at FDR = 0.1. The ReQTLs had generally
275 weaker size effects and agreed in directionality in 71% of the correlations. Note that the displayed P-
276  values are calculated based on the input for the plots generated using the R-package ggplot2 and do
277 not represent the FDR—corrected values from the scReQTL analysis performed with Matrix eQTL. b)
278 ReQTL analysis between the SNV at 10:4977767 and AKRIC1 (left), and AKRIC2 (right), which were
279 found as significant scReQTLs, did not show significant correlation in bulk RNA-seq data.

280

281 The lack of strong overlap between scReQTL and ReQTL (as well as eQTL) suggests
282  different regulatory relationships captured by scReQTLs. While ReQTLs and eQTLs show a
283  high overlap between each other, and are both based on abundance of variant alleles across
284  multiple individuals with different genotypes, scReQTL operates in a setting of identical
285  genotypes, and reflects cell-specific networks that are likely to capture transient, allele-
286  mediated genetic interactions.
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297 scReQTlLs and known gene-gene interactions

298 Because the vast majority of the significant scReQTLs reflected correlations between two
299  different genes (VAFgrna Of One of the genes and expression level of the other), we assessed
300 if these gene pairs were enriched in known gene-gene interactions. We downloaded the
301  known gene-gene (human) interactions from the STRING database (33) and intersected
302  these with the scReQTLs. From the 1234 unique gene-gene scReQTLs pairs, 203 (16.4%) were
303  previously annotated in STRING (Supplementary Table 4, p < 10e-4, permutation test using
304 10000 permutations, Figure 8a). Examples include IFIT1 and IFITM2, AURKA and PLK, and
305 CKS2 and CDC20 (Figure 8b-c). The strong enrichment of scReQTLs with known genetic
306 networks suggests that scReQTLs may be used to identify allele contributions to gene-gene
307 interactions.
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309 Figure 8. a) Permutation test for assessment of enrichment of trans scReQTLs in known gene-
310  gene interactions obtained from the STRING database; 10000 permutations were used. The p-value
311 (p<10e-4) was defined as the fraction of permutations in which the number of gene-gene pairs found
312  in the known interaction database was at least as great as the number found in the observed data.
313  This analysis showed significant enrichment of trans-scReQTLs with known gene-gene interactions. b
314  and c) Examples of trans-scReQTLs and known gene-gene interactions: IFITM2 (11:309127_A>G) in
315  and/FIT1 (b) and PLK1 (16_23690217_A>G) and AURKA, and CKS2 (9:89316518_T>C) and CDC20 (d).
316 Theinteraction graphs are generated using the STRING database visualization tools. Note that all the
317  scReQTL highlighted gene-gene interactions are supported by a minimum of three lines of evidence
318  that include either experimental validation (purple line) or curated databases (light-blue line), or
319  both.

320
321 scReQTlLs and GWAS
322 Furthermore, we intersected the SNVs participating in scReQTLs with SNVs significantly

323  associated with phenotypes by GWAS (35). This analysis showed that 18 (out of the 408
324  unique scReQTL SNVs, 4.4%) were present in GWAS; these 18 SNVs participated in 84
325  scReQTL correlations (Supplementary Table 5). This percentage is similar to the overlap
326  between GWAS and GTEx eQTLs (3.7 and 3.6% in adipose visceral and adipose subcutaneous
327  tissue respectively), and significantly higher than the overlap with common SNVs from
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328  DbSNPv.154, (0.34%, p < 10e-6). This analysis shows that scReQTL SNVs are enriched in
329  genetic variants associated with phenotype via large population-based and case-control
330  studies.

331
332 Functional scReQTLs SNVs annotations
333 We assessed the SNVs participating in scReQTL in regards to position in the harboring

334  gene and predicted functional effects. As expected from scRNA-seq data generated using a
335  3’-based protocol, the majority of the SNVs resided in the 3’UTR of their harboring gene
336 (70.2%, Supplementary Figure 10); the 3’"UTR SNVs participated in 69.6% of the scReQTLs. 3'-
337  UTR variants are known to strongly affect both GE levels and splicing (36—39); hence,
338  scReQTLs can be applied to study this aspect of genetic regulation. The second category was
339  exonic SNVs, comprising 16.2% of the unique SNVs and participating in 14.9% of the
340  scReQTLs. Exonic SNVsincluded missense, nonsense, and near-splice variants, many of which
341  can potentially affect the protein structure and function. Of note, scReQTL captured a
342  substantial number of intronic SNVs — 13%, participating in 11.2% of the scReQTLs. Intronic
343  sequencesare reported in 15%—25% of the RNA-sequencing reads from both bulk and single-
344  cell RNA-seq (4,38,39). Intron quantitation can be used to estimate the relative abundance
345  of precursor and mature mRNA, thereby assessing the RNA velocity and dynamic cellular
346  processes (4). In the allele-specific setting provided by the scReQTLs, correlation of intronic
347  SNVs with GE can identify SNVs regulating the RNA processing and maturation.

348 Next, we assessed if the scReQTLs SNVs are enriched in specific clinical phenotypes
349  obtained from the ClinVar database (40). Fifteen SNVs (3.7% of the total 408 distinct scReQTL
350  SNVs) were associated with known clinical phenotypes, including circulating phospholipid
351 trans fatty acids, cortisol levels, circadian rhythm, risk for cardiovascular disease, blood
352  pressure, schizophrenia, neuroticism, osteoporosis, anthropometric traits, and asthma (See
353  Supplementary Table 1). This percentage is similar to the overlap between ClinVar and GTEx
354  eQTls (3.3 and 3.1% of the eQTLs in adipose visceral and adipose subcutaneous tissue
355  respectively), and significantly higher than the overlap with common SNVs from DbSNPv.154,
356  (0.61%, p < 10e-6). Finally, we assessed the predicted functional and/or pathogenic scores of
357 the scReQTL SNVs using 17 models including SIFT, Polyphen2, LRT, MutationTaster,
358  MutationAssessor, FATHMM, PROVEAN, VEST3, CADD, DANN, fathmm-MKL, MetaSVM,
359  MetalR, integratedFit, GERP++, phyloP, and phastCons, as implemented in ANNOVAR (41);
360  this datais summarized in Supplementary Table 6).

361
362 scReQTL application
363 Application of scReQTLs requires consideration of several factors. First, because

364 scReQTLs are confined to expressed SNV loci, they cannot capture variants in
365  transcriptionally silent genomic regions. In addition, SNV loci with expression levels below
366 the required minimum number of RNA-seq reads (minR) are not included in the scReQTL
367 analyses. Furthermore, because of the platform used in this study - 10x Genomics Chromium
368  v3 chemistry — the analyzed SNVs are restricted to those located within the length of the
369 sequencingread (here, 150nt) from the 3’ end of the transcript. For many genes, these reads
370  cover only a proportion of the SNVs residing in a transcript. For the above reasons, scReQTLs
371  accessible SNVs represent a relatively small subset of the expressed SNVs and are not
372  designed to cover the full set of SNVs in the transcriptome.

373 Second, it is important to note that even when a genetically regulated gene is captured
374  byscReQTL analysis, the scReQTLs may not include the actual causative SNV, but its co-allelic
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375  SNVs. This is the case for SNVs positioned outside the transcribed regions or outside the
376  coverage of the sequencing library.

377 Third, scReQTLs are based on VAFgna estimation, which can be affected by technical
378  parameters, including allele mapping bias (42) which can lead to overestimation of the
379  reference allele count (43). Therefore, we perform the scReQTL using SNV-aware alignments.
380  Specifically, we apply STAR-alignment with WASP, which removes ambiguously mapped
381 reads after checking for consistency with the reads containing the alternative nucleotide
382  (27,28).

383 Anotherimportant parameter for VAFgna estimation is the selection of cutoff for minimal
384  number of reads, minR. When selecting minR for an analysis, a major factor is the balance
385  between the confidence of VAFgrna estimation (high minR) and the inclusivity of SNVs (lower
386  minR values include more loci for scReQTL). In the present study, we have included SNV loci
387  with minR > 10. Our previous research shows that for current 10x Genomics scRNA-seq
388 datasets, minR > 5 provides a reasonable balance between VAFrna confidence and SNV
389 inclusivity (26). At lower cutoffs (i.e. minR = 3) stochasticity of sampling can affect the VAFgna
390 estimation (26). In addition, low cutoffs are expected to include SNVs in genes expressed at
391 low levels, where additional technical noise can affect the accuracy of the estimations.

392 Furthermore, VAFrna can be affected by inaccuracies in the variant calling, including
393  incorrect calling of the presence or absence of an SNV, and erroneous assignment of a
394  heterozygous state. The presented pipeline uses scRNA-seq data only, where we call SNVs
395  from pooled scRNA-seq data, and select for scReQTL analysis highly confident heterozygous
396  sites based on mapping and Phred quality, genomic position (genic, non-repetitive regions),
397  and previously validated rsID. To confidently assign heterozygosity, we select bi-allelic SNVs
398  with a minimum of 50 unique reads supporting each allele from the pooled scRNA-seq. By
399  default, this selection excludes heterozygous SNVs with strong non-random monoallelic
400  expression. Therefore, while the above approach is suitable for datasets where matched DNA
401 is not available, we recommend assignment of heterozygosity based on genotypes when
402  available. Importantly, scReQTLs do not necessarily require prior variant calls and can be run
403  on custom pre-defined lists of genomic positions such as dbSNP or a database of RNA-editing
404  sites.

405 Finally, VAFrna varies between different cell types, often due to cell-specific regulatory
406  mechanisms (44). Due to the dynamic nature of RNA transcription, it is expected that VAFgna
407  (similarly to GE) will vary depending on conditions, disease states and stochastic factors.
408  Therefore, interpretation of scReQTL findings requires consideration of the dynamics of the
409  variables underlying the correlation.

410
411 Discussion
412 Single-cell RNA-seq eQTL analyses define an emerging research niche that brings major

413  benefits for the understanding of functional genetic variation including the identification of
414  cell-type and condition-specific correlations (2,13—-16,45). In this paper, we present a new
415 eQTl-based analysis in a sScRNA-seq setting - scReQTL — which uses the VAFgna at expressed
416  heterozygous SNVs in place of the genotypes, to correlate allele prevalence to gene-
417  expression levels. By using VAFgrna across multiple cells of the same sample, scReQTLs
418 introduce several new analytical aspects.

419 First, and perhaps most importantly, as scReQTL can be implemented on multiple single
420  cells from the same sample, it can be applied to assess the effects of SNVs in a single sample
421  orindividual. This is particularly applicable for rare SNVs which are challenging to study via
422  population-based approaches. Second, scReQTLs increase the dynamicity of the SNV-gene

12


https://doi.org/10.1101/2020.07.13.200956
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.200956; this version posted July 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

423  correlations, as VAFgrna, similarly to GE, is both dynamic and cell-type-specific (44). In
424  particular, in each cell type, scReQTL correlates the most variable VAFgna to the most variable
425 genes. Third, as compared to the discrete genotype values (0,1,2), VAFrna can obtain
426  continuous values spread along the entire VAFgna range ([0,1]), allowing for more precise
427  computation of the proportion of each allele represented in the RNA in a given cell. Fourth,
428  scReQTL operatesin the context of (largely) identical genotypes, which narrows the observed
429  effects to RNA-mediated interactions. Finally, scReQTL does not necessarily require matched
430  DNA (although we recommend it for genotyping of heterozygous SNVs, if available), and
431  therefore can be applied on scRNA-seq data alone. Related to that, scReQTL analyses can be
432  performed using pre-defined SNV lists, such as RNA-editing sites and sets of dbSNP SNVs of
433 interest.

434 At the same time, compared to single cell and bulk eQTLs, scReQTL analyses have
435  notable limitations. First, the scReQTL accessible SNVs are restricted by depth of coverage
436  per cell (minR) and, in the case of 3’-based scRNA-seq protocols, by the length of the
437  sequencingread. Therefore, scReQTLs can analyze only a proportion of the transcribed SNVs.
438  This limitation is expected to be gradually reduced with the progress of the sequencing
439  technologies. Additional attenuation of this constraint is possible through reducing the value
440  of minR used in the analysis. Indeed, while in this study we apply minR > 10, which retained
441  between 308 and 721 input SNVs per sample, in our prior research we show that at minR >
442 5 the number of SNVs is higher by an order of magnitude (26). Second, scReQTL appears to
443  have relatively low power to detect cis-acting (on the same gene) SNVs (See Supplementary
444  Figure 3). Specifically, the vast majority of the correlations identified in this study are trans-
445  scReQTLs. Several factors may account for this observation. As mentioned earlier, the
446  definition of “cis”-scReQTLs is based on residing of the SNV within the same gene; hence
447  SNVs that would be classified as “cis” using the eQTL distance-based definition are “trans”
448  for the scReQTLs, increasing the proportion of trans-correlations in the same SNV-gene
449  dataset. Additional possible explanation is that in the explored setting of minR>10, cis-acting
450  SNVs are located in genes with high expression, which likely contain a high proportion of
451  stably expressed genes, including with house-keeping functions. Confining the analyses to
452  SNVs in genes with high expression level is an additional limitation of the scReQTLs.
453 Nevertheless, due to the dynamic nature of the scReQTL estimations, scReQTLs can capture
454  SNVs in genes with transiently high expression in a particular cell type or in a specific stage
455  of the cell development. Notably, the identified trans-scReQTLs are significantly enriched in
456  known gene-gene correlations (See Figure 7), therefore we interpret them as indictive of an
457  allelic contribution to these gene-gene interactions. The above limitations, together with the
458  relatively low number of cells with minR >10 for many of the participating SNVs, at least
459  partially account for the narrow overlap between scReQTLs and eQTLs/ReQTLs. At the same
460 time, scReQTLs are able to capture correlations that are masked in the bulk eQTL and ReQTL
461  analyses (See Figure 8).

462 Our scReQTL analysis includes approximately 4 billion RNA-seq reads from 26,640
463  human adipose-derived mesenchymal stem cells, obtained from three healthy donors. We
464  chose the 10xGenomics platform due to its growing popularity, high throughput, and the
465  support for unique molecular identifiers (UMI) for the removal of PCR-related sequencing
466  bias. Using stringent cutoff for SNV coverage (minR>10) we identified 1272 distinct scReQTLs.
467  These scReQTLsinclude a considerable number of correlations which involve SNVs previously
468  highlighted by GWAS and are significantly enriched in known gene-gene interactions. These
469  results demonstrate that scReQTLs can be used to identify novel genetic interactions,
470 including those which are specific to a given cell-type.
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471
472 Conclusion
473 We present a new approach —scReQTL — that correlates SNVs to gene expression from

474  scRNA-seq data. The scReQTL analyses presented in this research generated results
475  containing both previously known and novel genetic interactions. scReQTL is applicable to
476  the rapidly growing source of scRNA-seq data, and is capable of identify SNVs contributing to
477  cell type-specific intracellular genetic interactions.

478

479 Materials and Methods

480 Data

481 We used publicly available scRNA-seq data (25) from 26,640 human cells from three

482  healthy donors: N5, N7 and N8. The scRNA-seq data was generated on 10x Genomics
483  Chromium v2 platform; the library preparation and sequencing are described in detail
484  elsewhere (25). Briefly, cells were partitioned using 10x Genomics Single Cell 3' Chips, and
485  barcodes to index cells (16bp) and transcripts (10bp UMI) were incorporated. The
486  constructed libraries were sequenced on an lllumina NovaSeq 6000 System in 2x150bp
487  paired-end mode.

488
489 SNV-aware alignment
490 The cell barcodes and UMIs were extracted using UMI-tools from the pooled (per donor)

491  raw sequencing reads (29). The pooled sequencing reads were aligned to the latest version
492  of the human genome reference (GRCh38, Dec 2013) using STAR v.2.7.3.c in 2-pass mode
493  with transcript annotations from the assembly GRCh38.79 (27). The alignments were
494  deduplicated retaining the reads with the highest alignment scores (29). SNVs were called in
495  the pooled deduplicated alignments using GATK v.4.1.4.1 (18). To identify heterozygous SNV
496  positions qualified for VAFgna analysis, we applied a series of filtering steps. Specifically,
497  heterozygous SNVs were selected based on the presence of minimum of 50 high-quality
498  reads supporting both (reference and alternative) nucleotides in the pooled alignments. SNV
499  loci were annotated using SeattleSeq v.13.00 (dbSNP build 153), and loci positioned in
500 repetitive or intergenic regions were removed. The SNV lists were further filtered based on
501  the following requirements: QUAL (Phred-scaled probability) > 100, MQ (mapping quality) >
502 60, QD (quality by depth) > 2, and FS (Fisher’s exact test estimated strand bias) = 0.000. The
503 filtered SNV lists (per donor) were then used as an input for a second, SNV-aware alignment
504  using STAR-WASP (28).

505
506 Gene Expression estimation
507 To estimate gene expression, we first apply FeatureCount on the individual alignments

508  toassessthe row gene counts per cell (30). We then normalize and scale the expression data
509  using the sctransform package as implemented in Seurat v.3.0 (23,31), which stabilizes the
510  GE variance using regularized negative binomial regression. The normalized GE values are
511  then used to remove cells with low quality data, defined as less than 3,000 or more than
512 7,000 detected genes and/or mitochondrial genes’ expression higher than 6% of the total
513  gene expression. The GE values were used to correct for batch- and cell-cycle effects (See
514  Figure 2). Thereby selected most variable genes were then used to classify cell types (See
515  below). In addition, after examining the GE distribution across the cells (per cell type), genes
516  which expression in 80% or more of the cells was within 20% or less from the top or bottom
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517  of the GE range, were filtered out; the retained most variable genes were then used for
518  scReQTL analyses (See Table 1).

519
520 Cell type identification
521 To define individual cell types, we used SingleR version 1.0.5 (32). The expression profile

522 of each single cell was correlated to expression data from the BluePrint + ENCODE dataset,
523  containing 259 bulk RNAseq samples representing 24 main cell types and 43 subtypes.
524  SingleR first calculates a Spearman coefficient for the correlation of the expression of the
525  most variable genes of each single-cell gene with each of the samples in the reference data
526  set. Then, it uses multiple correlation coefficient to collect a single value per cell type per
527  cluster. This correlation analysis is rerun iteratively using only the top cell types from the
528  previous step and the variable genes among them until only one cell type is retained.
529  Applying SingleR, we identified four major cell types were identified across the three donors:
530 adipose cells and erythrocytes were found in all three samples, naive-B-cells found in N5 and
531 N7, and neutrophils, in N8 (See Figure 3 and Table 1).

532
533 VAFrna estimation
534 VAFgrna is assessed from the individual alignments as we have previously described (26),

535  using the high quality heterozygous SNV sites as inputs for ReadCounts (22). At each position
536  of interest, ReadCounts estimates the number of sequencing reads harboring the variant and
537  the reference nucleotide (nvar and nrer, respectively), calculates VAFgna (VAFgna = Nvar / (Nvar +
538  nrer), and filters out positions not covered by the user-defined minimum number of reads
539  (minR); minR is constant across the genome (22). For the herein presented analysis, we used
540 minR>10. To qualify for scReQTL, a variant is required to have variable VAFrna from a
541  minimum of 20 cells from the same cell type (per donor). The VAFgrna distribution is then
542  examined and loci with non-variable VAFgna are filtered out. Loci were considered non-
543  variable if: (1) over 75% of the VAFgna values are in the range of 0.5 + 0.1 (corresponding to
544  stable biallelic expression), and (2) over 75% of the VAFgna values are in the ranges 0-0.25 or
545  0.75-1 (corresponding to predominantly monoallelic or skewed allelic expression).

546

547
548 ScReQTL computations
549 SNV-GE correlations (scReQTLs) were computed for each donor, across the cells of each

550 typeseparately. To qualify for scReQTLs analysis, an SNV locus is required to have informative
551  and variable VAFgna estimations (minR>10) from at least 20 cells per analysis. The variable
552 VAFgrna were correlated to the normalized GE values of the most variable genes using a linear
553  regression model as implemented in Matrix eQTL (17). The top 15 principal components of
554  the GE were used as covariates (Supplementary Figure 11). Cis and trans correlations were
555 annotated as previously described for the bulk ReQTLs (24). Briefly, because scReQTLs are
556  assessed from transcripts, we assign cis-correlation based on the co-location of the SNV locus
557  withinthe transcribed gene, using the gene coordinates (46). All the scReQTLs including SNVs
558  residing in genes different from the expression-correlated genes are annotated as trans-
559  scReQTlLs.

560
561 Statistical Analyses
562 Throughout the analysis we used the default statistical tests (with built-in multiple

563  testing corrections) implemented in the used software packages (Seurat, SingleR, Matrix
564 eQTL), where p-value of 0.05 was considered significant, unless otherwise stated. For
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estimation of differences in overlap between scReQTL SNVs, GWAS and ClinVar, chi-square
test was used. For assessment of enrichment of scReQTLs in known gene-gene interactions,
a permutation test with 10000 permutations was applied. For each permutation, a random
set of gene-gene pairs of the same size as the observed data was selected. The p-value was
defined as the fraction of permutations in which the number of gene-gene pairs found in the
known interaction database was at least as great as the number found in the observed data.
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