

1 **Micro-biogeography greatly matters for competition: Continuous chaotic bioprinting**
2 **of spatially-controlled bacterial microcosms**

3 *Carlos Fernando Ceballos-González[#], Edna Johana Bolívar-Monsalve[#], Diego Alonso*
4 *Quevedo-Moreno, Li Lu Lam-Aguilar, Karen Ixchel Borrero-Montañó, Juan Felipe Yee-de*
5 *León, Yu Shrike Zhang, Mario Moisés Alvarez^{*}, Grissel Trujillo-de Santiago^{*}*

6

7 C.F. Ceballos-González, E.J. Bolívar-Monsalve, L.L. Lam-Aguilar, K.I. Borrero-Montañó,
8 Prof. Y.S. Zhang, Prof. M.M. Alvarez, Prof. G. Trujillo-de Santiago.

9 Centro de Biotecnología-FEMSA

10 Tecnológico de Monterrey

11 Monterrey 64849, NL, México

12 [#]Authors contributed equally.

13 *Correspondence to: grissel@tec.mx; mario.alvarez@tec.mx

14 D.A. Quevedo-Moreno, Prof. G. Trujillo-de Santiago.

15 Departamento de Ingeniería Mecatrónica y Eléctrica

16 Escuela de Ingeniería y Ciencias

17 Tecnológico de Monterrey

18 Monterrey 64849, NL, México

19 Prof. Y.S. Zhang

20 Division of Engineering in Medicine, Department of Medicine

21 Brigham and Women's Hospital

22 Harvard Medical School

23 Cambridge 02139, MA, USA

24 Prof. M.M. Alvarez

25 Departamento de Bioingeniería

26 Escuela de Ingeniería y Ciencias

27 Tecnológico de Monterrey

28 Monterrey 64849, NL, México

29 J.F. Yee-de León
30 Delee Corp., Corp.
31 Mountain View 94041, CA, USA

32

33 **Keywords:** bioprinting, Kenics, bacteria, chaotic, micro-biogeography.

34

35 **Abstract**

36 Cells do not work alone but instead function as collaborative micro-societies. The spatial
37 distribution of different bacterial strains (micro-biogeography) in a shared volumetric
38 space, and their degree of intimacy, greatly influences their societal behavior. Current
39 microbiological techniques are commonly focused on the culture of well-mixed bacterial
40 communities and fail to reproduce the micro-biogeography of polybacterial societies.

41 Here, fine-scale bacterial microcosms are bioprinted using chaotic flows induced by a
42 printhead containing a static mixer. This straightforward approach (*i.e.*, continuous chaotic
43 bioprinting) enables the fabrication of hydrogel constructs with intercalated layers of
44 bacterial strains. These multi-layered constructs are used to analyze how the spatial
45 distributions of bacteria affect their social behavior. Bacteria within these biological
46 microsystems engage in either cooperation or competition, depending on the degree of
47 shared interface. Remarkably, the extent of inhibition in predator-prey scenarios increases
48 when bacteria are in greater intimacy. Furthermore, two *Escherichia coli* strains exhibit
49 competitive behavior in well-mixed microenvironments, whereas stable coexistence
50 prevails for longer times in spatially structured communities. Finally, the simultaneous
51 extrusion of four inks is demonstrated, enabling the creation of higher complexity
52 scenarios.

53 Thus, chaotic bioprinting will contribute to the development of a greater complexity of
54 polybacterial microsystems, tissue-microbiota models, and biomanufactured materials.

55

56

57 **Introduction**

58 Cells do not work alone, but instead function in highly dynamic societies in which
59 members collaborate and/or compete. For example, cells in human tissues are spatially
60 organized, and this patterning has a significant effect on their functionality. Remarkable
61 examples of this are the highly complex multilayered systems found in the kidney, brain,
62 liver, and cancerous tissues.^[1-5] A growing body of evidence suggests that the spatial
63 distribution of microbial societies also matters.^[6,7]

64 Micro-biogeography refers to the spatial patterns of microbial communities through time
65 and space.^[8,9] The emergence of any particular arrangement greatly depends on gradients in
66 the local microenvironment (i.e., variations in temperature, oxygen concentration, pH, and
67 nutrients).^[10,11] Importantly, bacteria outside the community also contribute to the
68 generation of these gradients.^[12-14]

69 In nature, micro-biogeographies can be as diverse as well as beautiful. For instance, the
70 distribution and composition of human microbiota vary across different body habitats.^[15]
71 Factors inherent to specific sites, such as the salivary flow, may also play critical roles in
72 structuring microbial communities across space.^[16] For instance, in caries and periodontal
73 pockets, mosaic architectures of biofilms emerge due to the presence of anaerobes in the
74 interior and aero-tolerant taxa on the exterior, creating hedgehog, corncob, and cauliflower
75 microstructures.^[17,18] Therefore, an improved understanding of microbiota organization on
76 teeth, for example, may help in developing more efficient dental therapies.^[19]

77 The micro-biogeography in the gut is also very complex and dynamic. For example, studies
78 of gnotobiotic animal models suggest that the intestinal microbiota is distributed along the
79 proximal colon due to microscale mixing, challenging the expected occurrence of spatially
80 segregated communities.^[20] However, individual health status may influence this spatial
81 accommodation of microbes. For instance, patients suffering from irritable bowel disease
82 may exhibit an increased bacterial concentration on the mucosal surface compared to
83 healthy controls.^[21] The prevention of infections and cancer in other mucosal
84 microenvironments, such as the vagina, has also been associated with the maintenance of a
85 protective shell composed of non-pathogenic bacteria.^[22,23]

86 In the plant kingdom, trees also host micro-communities with structured micro-
87 biogeographies, such as lung lichens made of bacteria, algae, and fungi. Beautiful
88 associations of algae and bacteria have been observed in lichen cross sections, forming 30
89 μm wide interspersed lamellae.^[24]

90 In biofilms, bacteria form aggregates made of mono- or poly-bacterial species that play
91 distinct roles according to their phenotypes.^[25,26] When bacteria at the periphery cause a
92 depletion of available substrates at the interior, the inner cells starve and interrupt the
93 synthesis of metabolites that are vital for their counterparts on the outside. This dynamic
94 leads to spatiotemporal variations in the bacterial community.^[27] A location-dependent
95 metabolism has been observed in clonal colonies of *Escherichia coli* (*E. coli*), which form
96 subpopulations specialized in either the Krebs cycle or glycolysis according to their spatial
97 position in the community.^[28] These metabolic heterogeneities (i.e., the presence of
98 microscale gradients of nutrients and stressors at the local microenvironment) have been
99 partially associated with the expression of different sets of genes.^[23,29] Nevertheless,

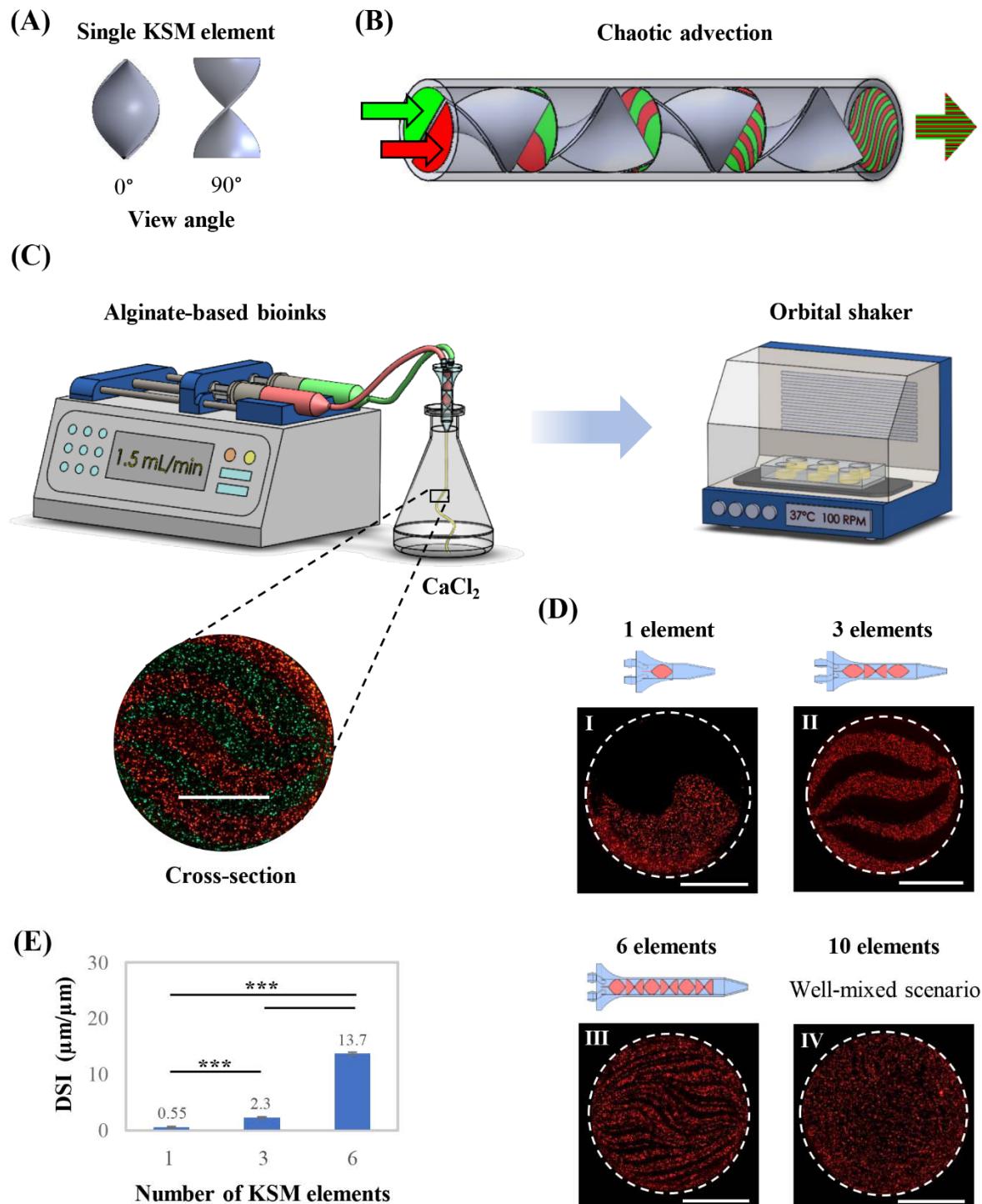
100 conventional microbiological culture techniques fail to generate these complex
101 microarchitectures of bacteria and substrates, thereby limiting the study of the effects of
102 spatial variations on the societal dynamics of microbial communities.

103 One strategy to address this issue is to use biofabrication techniques, such as bioprinting
104 and microfluidics-based manufacturing, among others, in microbiology. For example,
105 Hynes et al.^[30] accommodated spatially distinct aggregates of *E. coli* and *Salmonella*
106 *enterica* using a casting-based method and suggested that interactions in this consortium
107 may be influenced by spatial scales. Similarly, Chen et al.^[31] used photolithography to
108 create patterns in adhesion polymers at a resolution of 10 μm . The patterns were
109 subsequently used for specific anchoring of *E. coli* at those locations, and the authors then
110 monitored bacterial crosstalk using a reporter gene activated by the high cell concentration
111 in neighboring fronts. Qian et al.^[32] used an extrusion-based system to print diverse 3D-
112 geometries with a 200 μm resolution for biomanufacturing purposes. In particular, lattice-
113 shaped scaffolds containing *Saccharomyces cerevisiae* were capable of a continuous
114 synthesis of ethanol not possible when these organisms were cultured in solid layers. This
115 difference presumably arose because the porosity of the latticed scaffolds facilitated mass
116 transfer.

117 In this contribution, we present a series of proof-of-concept scenarios to show that: 1) the
118 use of chaotic flows induced by static mixers (i.e., continuous chaotic bioprinting^[33]) is a
119 versatile tool for creating living microsystems with a printing resolution of a few tens of
120 micrometers, and 2) the micro-biogeography of bacterial communities defines their
121 competition or cooperation outcomes. We first demonstrate that inhibition is strongly
122 influenced by the degree of intimacy between two distinct bacterial strains. We then show

123 that even cells from the same species may exhibit either cooperation or competition,
124 depending on their spatial distribution. Finally, we advance this bioprinting approach for
125 creating scenarios where four different bacterial strains can be incorporated into the same
126 construct or where spatial isolation between bacterial consortia can be established, thereby
127 paving the way for further studies in either fundamental or applied science.

128


129 **Results and discussion**

130 **Characterization of spatial distribution**

131 Chaotic advection, defined as the continuous stretching and folding of materials that yield a
132 chaotic flow, is extensively used in industrial mixing when turbulence is either unfeasible
133 or inappropriate.^[34-36] Chaotic advection can be induced by, for example, a Kenics static
134 mixer (KSM)^[36], which is an arrangement of motionless helicoidal mixing elements
135 (**Figure 1A**) fixed in a cylindrical housing.

136 Recently, our group reported the first use of a KSM for bioprinting spatially organized
137 bacterial communities or mammalian cells at both high throughput ($>1 \text{ m} \cdot \text{min}^{-1}$) and high
138 resolution ($\sim 10 \text{ } \mu\text{m}$).^[33] Extrusion of two bioinks through a printhead containing a KSM
139 increases the number of interfaces between them exponentially according to the number of
140 mixing elements (Figure 1B). Interestingly, the printing resolution of our technique, in
141 terms of the thickness of the internal lamellae, can be simply tuned by changing the number
142 of KSM elements in the printhead. In addition, the number of lamellae can be calculated
143 according to the model $s = 2^n$, where s is the number of lamellae and n is the number of
144 KSM elements.

145

147 **Figure 1. Continuous chaotic bioprinting of fine-scale micro-biogeographies.** (A) A single
148 KSM element seen from two view angles. (B) Illustration of a multi-lamellar pattern developed by

149 the successive splitting and folding of bioinks at each mixing element. (C) Schematic diagram of
150 the procedure for bioprinting and culture microcosms-containing fibers using a printhead equipped
151 with 3 KSM elements. The outlet of the KSM printhead must be immersed in the calcium chloride
152 solution. A cross-section of a printed fiber is shown. Scale bar: 500 μ m. (D) Printheads containing
153 different numbers of KSM elements and representative micrographs of the micro-biogeographies
154 produced. (E) Quantification of the degree of shared interface (DSI) at each micro-biogeography.
155 ****p*-value < 0.001 (n=3).

156

157 Here, we use this biofabrication approach, which we have coined as “continuous chaotic
158 bioprinting,” to provide a precise accommodation of bacterial communities in fine-scale
159 multi-lamellar structures. These bioprinted constructs were then used to assess the impact
160 of the degree of intimacy between bacterial micro-clusters on their social behavior. Our
161 simple printing setup consisted of a KSM printhead, the bioinks (2% alginate containing
162 bacteria), a syringe pump, and a 2% CaCl_2 bath (Figure 1C). All bioprinting experiments
163 were performed aseptically inside a laminar flow cabinet, and the bacteria-laden constructs
164 were cultivated in suitable growth media at 37°C while shaking at 100 rpm. Our
165 experimental system enables the high-throughput fabrication of fiber-shaped scaffolds 1
166 mm diameter and containing striations as large as 500 μ m or as small as 7 μ m.

167 We first characterized the spatial distribution of our bacterial microcosms. To do this, we
168 co-extruded a suspension of red fluorescent bacteria in pristine alginate ink (2%) with a
169 non-fluorescent pristine alginate ink (2%). Overall, we chaotically printed four different
170 micro-biogeographies: printheads equipped with 1-, 3-, 6-, or 10-KSM elements produced
171 constructs containing 2, 8, and 64 defined lamellae and a homogenous microcosm,

172 respectively (Figure 1D). In principle, the 10-KSM element printhead would render 1024

173 lamellae of 0.97 μm -thickness, accommodated in a fiber of 1 mm diameter. In this

174 particular setup, the size of the bacteria (approximately 2 μm), which was larger than the

175 average size of the striations, prevented the generation of a layered microstructure.^[37]

176 We then established the degree of shared interface (DSI) as a quantitative descriptor of

177 intimacy between bacterial microcolonies (Figure 1E). Here, an interface was defined as the

178 frontier between two striations. The rationale behind the DSI arises from the fact that the

179 inter-material interface is exponentially incremented by chaotic advection.^{[33][38]} The DSI

180 was expressed as the ratio of the total length between lamellae and the fiber perimeter.

181 Figure 1E shows that printheads equipped with 1-, 3-, or 6-KSM elements generate a DSI

182 of 0.55, 2.3, or 13.7 $\mu\text{m}/\mu\text{m}$, respectively.

183 Subsequently, we analyzed the reproducibility of the lamellar microstructure along a

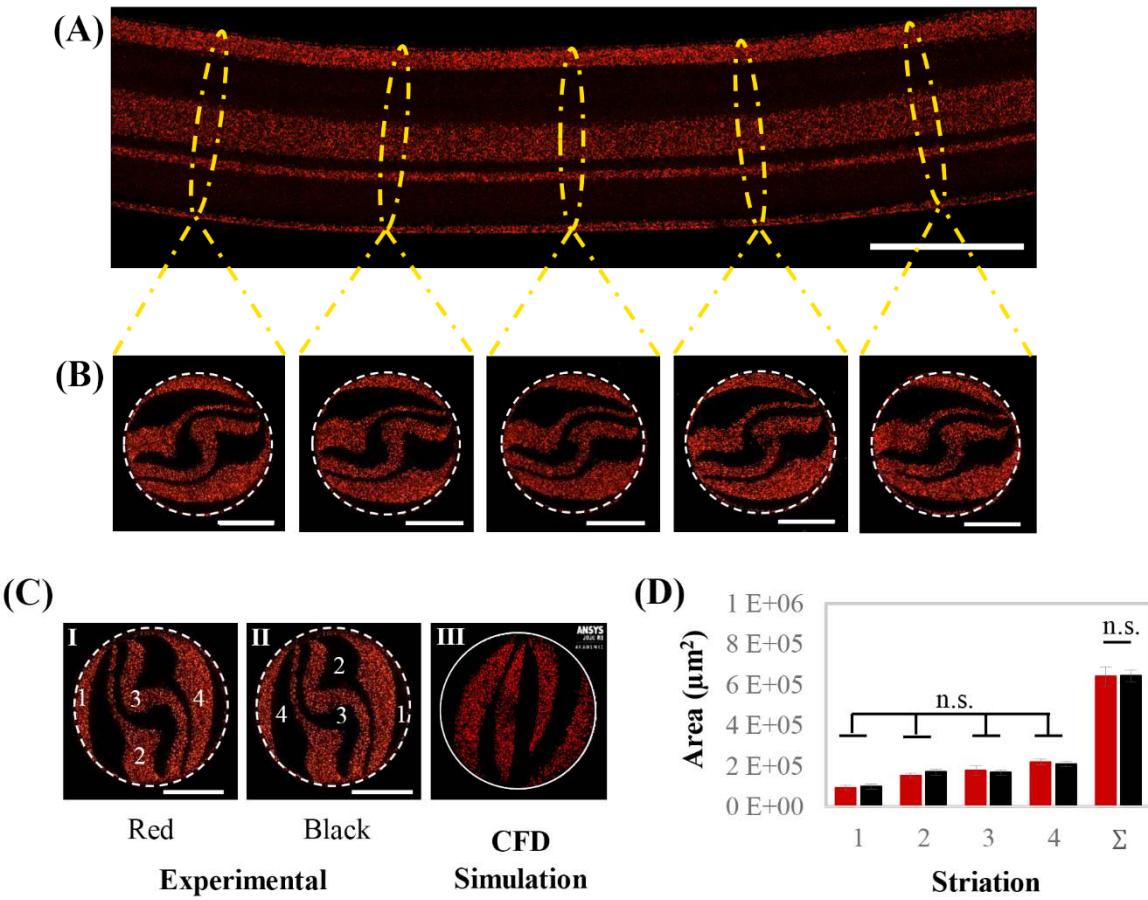
184 printed fiber (**Figure 2A**). Figure 2B shows cross-sectional cuts from the same scaffold at

185 different distances and confirms that the striation pattern is highly conserved throughout the

186 whole fiber. Interestingly, like a mirror projection, each red lamella (Figure 2C I) had a

187 practically identical black counterpart (Figure 2C II) in the same cross-section. This

188 phenomenon can be explained in terms of the self-similar nature of chaotic flows, i.e., the


189 repetitive iteration on the same flow manifold throughout n number of stretching and

190 folding cycles.^{[38][37]} This self-similarity between lamellae was also evident in simulation

191 results obtained using computational fluid dynamics (CFD) strategies to solve the Navier-

192 Stoke equations of fluid motion (Figure 2C III).^[36]

193

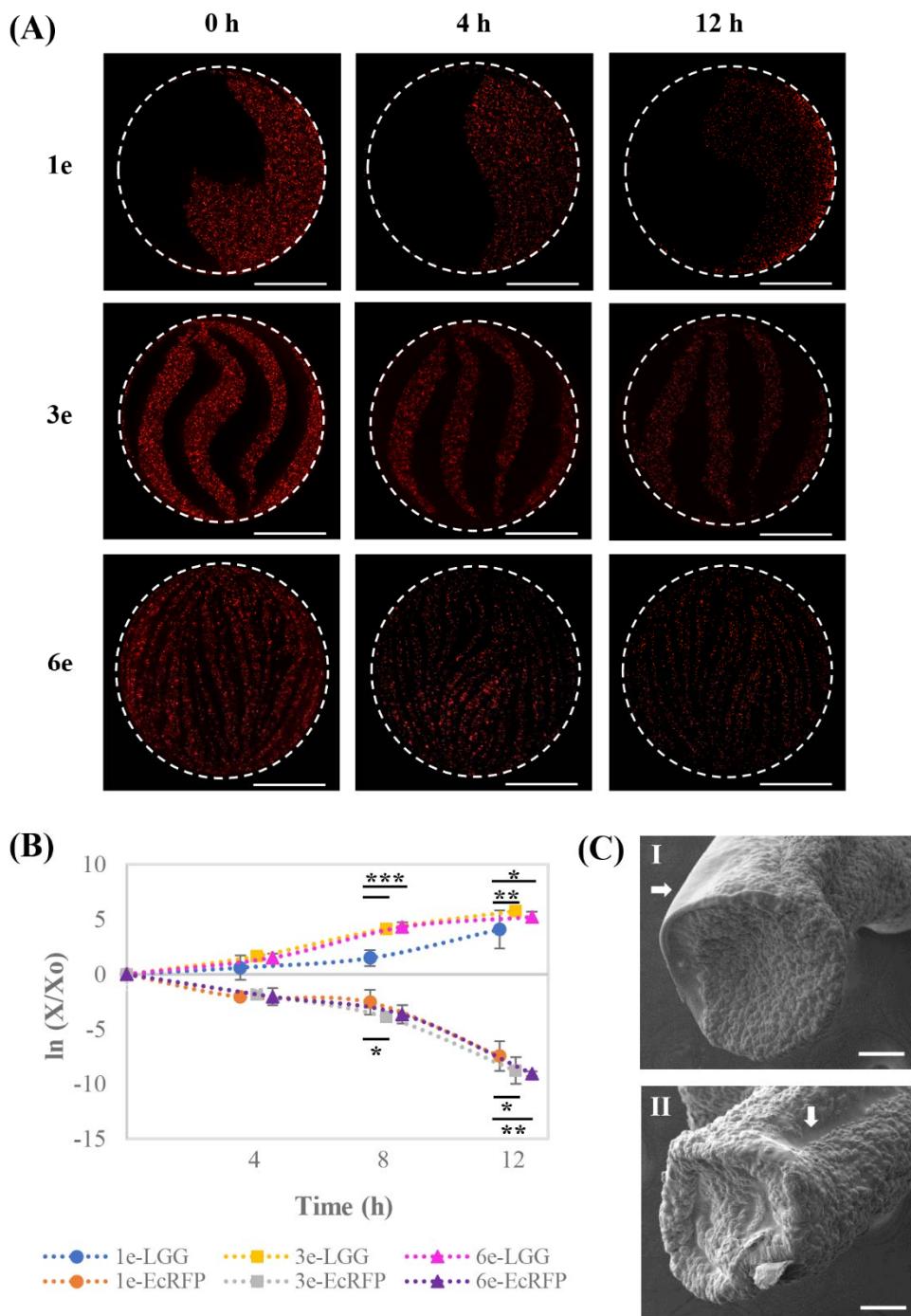
194

195 **Figure 2. Reproducibility of the lamellar microstructure.** (A) Axial view of a fiber using
196 3 KSM elements. Scale bar: 1000 μm . (B) Cross-sectional cuts of the same fiber at different lengths
197 exhibit a conserved multi-lamellar pattern. Scale bar: 500 μm . (C) Mirror-like projections of
198 homologous lamellae marked by the same number (I and II), and CFD simulation of the cross-
199 sectional microstructure after 3 KSM elements (III). (D) The individual and total (Σ) areas of red
200 and black striations among 7 cross-sectional cuts obtained experimentally. Non-significant
201 difference (n.s.) at $p\text{-value} < 0.05$ (n=7).

202

203 We then analyzed a series of cross sections along the fiber and calculated the individual
204 area of homologous lamellae and the cumulative area of the black and red lamellae (Figure

205 2D). We found that the area of the analogous lamellae, (i.e., the symmetric black and red
206 lamellae in the same cross section) is practically equivalent. The areas of analogous
207 lamellae at different cross sections were also equivalent (variance coefficient from 6 to
208 14%; Supplementary Table 1). The projected cumulative area of the black and red regions
209 at each cross section was also practically identical. This implies that both inks occupy the
210 same amount of territory (surface) in the scaffold; therefore, our bacterial strains would be
211 equally distributed when contained in a chaotically printed micro-biogeography.


212

213 ***E. coli* versus *Lactobacillus rhamnosus* GG**

214 In nature, single bacteria form three-dimensional communities, and this spatial
215 conformation influences gene expression and mass transfer of signaling molecules.^[29,39,40]
216 Communication and/or synchronized behavior in bacterial communities are conceived as
217 phenomena that mainly depend on the cell density and diversity of the species within the
218 community.^[12,31] However, a growing body of evidence suggests a paramount role as well
219 for spatial positioning in bacterial societal behavior.^[6-8,23,41,42]

220 In our first biological scenario, a recombinant *E. coli* strain, engineered to produce a red
221 fluorescent protein (EcRFP), and a non-recombinant *L. rhamnosus* LGG (LGG) were used
222 for modeling predator-prey competition. LGG is a probiotic though to suppress overgrowth
223 of pathogenic gut bacteria through diverse mechanisms including interference with
224 pathogen adhesion, secretion of antibacterial compounds (i.e, lactic acid, antibacterial
225 peptides, etc.), and stimulation of the host immune response.^[43,44]

226

227

228 **Figure 3. Dynamics of the inhibition of *Escherichia coli* by *Lactobacillus rhamnosus* LGG.** (A)
229 Cross-section of the micro-biogeographies containing EcRFP-expressing *E. coli* (red) and LGG
230 (black), chaotically printed using 1, 3, or 6 KSM elements (Scale bar: 500 μ m). (B) Co-culture
231 viability over a 12 h duration, normalized by the number of colony-forming units (CFUs) just after

232 bioprinting. (C) SEM micrographs showing the invasion of EcRFP-expressing neighborhoods by
233 LGG, in constructs printed using 1 (I) and 3 (II) KSM elements. $*p\text{-value} < 0.05$; $**p\text{-value} <$
234 0.001 ; $***p\text{-value} < 0.001$ (n=6).

235

236 Prior to the bioprinting process, both bacteria were cultivated for 24 h in fresh medium to
237 achieve a maximum cell density. Each bacterial culture was then centrifuged and placed
238 into a different reservoir containing a mixture of sodium alginate and culture medium. We
239 ensured the reproducibility of our experiments by adjusting the initial cell density of our
240 bioinks to an optical density (OD) at 600 nm of 0.1 and 0.025 for EcRFP and LGG,
241 respectively. These ODs rendered nearly the same number of colony-forming units (CFUs)
242 for each strain just after bioprinting (approximately 7.8×10^7 CFU/mL).

243 We printed micro-biogeographies using a printhead equipped with 1-, 3-, or 6-KSM
244 elements. These bacterial constructs were cultivated over a 12 h duration at 100 rpm and
245 37°C in a mixture of Luria-Bertani (LB) and de Man, Rogosa and Sharpe (MRS) media
246 (2:1, v/v), which had been determined as suitable for the co-culture in preliminary
247 experiments. At least three independent experimental runs were performed to evaluate each
248 micro-biogeography.

249 In all the scenarios analyzed, fluorescence signals in the micrographs decreased steadily
250 over time (**Figure 3A**). **Figure S1** depicts the fluorescence intensity of EcRFP in these
251 bacterial microcosms. We further investigated this trend by assessing the viability of both
252 EcRFP and LGG every 4 h by enumerating CFUs using the agar-plate method.
253 Interestingly, the growth dynamics of both EcRFP and LGG were influenced by DSI
254 (Figure 3B).

255 The EcRFP viability decreased by the same proportion in all the printed microcosms during
256 the first 4 h of cultivation. However, after 12 h, the inhibition of EcRFP by LGG was less
257 severe in the 1-KSM-fabricated constructs (DSI=0.55 $\mu\text{m}/\mu\text{m}$) than in the 6-KSM-
258 fabricated microcosms (DSI=13.7 $\mu\text{m}/\mu\text{m}$; *p-value* < 0.01). This suggests that the lowest
259 DSI was more favorable than the higher ones for EcRFP culture. We hypothesize that
260 specific competition mechanisms of LGG, which were inactive or inefficient at the lowest
261 DSI, were probably triggered at higher degrees of intimacy with EcRFP, thereby inducing a
262 stronger inhibition of this prey. In fact, the proximity of competitors has been suggested to
263 regulate toxin secretion or inhibitors in bacterial communities.^[25]

264 Concomitantly, LGG experienced a stunted growth during the first 8 h when co-cultured in
265 0.55 $\mu\text{m}/\mu\text{m}$ DSI micro-biogeographies (fabricated using a 1-KSM printhead) when
266 compared to growth in microcosms printed with 3- and 6-KSM printheads (*p-value* <
267 0.001). In addition, this tendency was also noticed at 12 h (*p-value* < 0.05; *p-value* < 0.01).
268 The lactate produced by LGG is also noxious itself^[45]. High local concentration of this
269 metabolite may have contributed to a slowing down of the proliferation of LGG since this
270 lactate-producing strain was confined in a single lamella.

271 Bacteria can use both contact-dependent and independent competition mechanisms.^[46-48] In
272 the first case, a bacterium secretes toxic substances directly into the cytoplasm of a member
273 of a different species; contact is therefore mandatory and DSI is directly relevant. In the
274 second case, bacteria secrete specialized metabolites that diffuse into the
275 microenvironment, where they interfere with the metabolism of susceptible microbial
276 individuals. Distance is also relevant here since diffusion is inversely proportional to the
277 square root of distance.^[33] DSI is also highly relevant, since diffusive processes occur more

278 effectively across structures with high perimeter-to-area ratios. Chemical and physical
279 gradients at the local microenvironment play important roles in the dynamics of mixed
280 bacterial communities, so they might influence gene expression and, consequently, growth
281 dynamics.^[27,49] In addition, spatial distribution has been suggested as a key driver of gene
282 expression due to the micro-scale concentration differences at distinct locations within a
283 microbial consortium.^[27,29,40] Furthermore, spatial segmentation may mitigate the
284 proliferation of specific bacterial species due to changes in local concentrations of signaling
285 molecules.^[23,50]

286 Micro-biogeographies printed using a 1-KSM printhead provide only one frontier for
287 competition, allowing a safer establishment of microcolonies, far away from the battlefield.
288 Consequently, the survival outcome in this microcosm may be mainly influenced by the
289 lethality of contact-independent weapons.

290 Another interesting observation was that the fluorescence intensity in the 1-KSM-fabricated
291 microcosms decreased near the shared border after 12 h (Figure 3A). In fact, Figure 3C I
292 shows that much of the EcRFP neighborhood was invaded by LGG. This trend was also
293 noticeable in the micro-biogeographies printed using a 3-KSM printhead (Figure 3C II).
294 However, when looking at the surface of the fibers (indicated with white arrows), a
295 relatively mild invasion was detected in comparison to the deeper regions. This
296 phenomenon might reflect an effect of the higher oxygen concentration at the construct
297 surface since the proliferation of *E. coli* is potentiated by aerobic microenvironments.

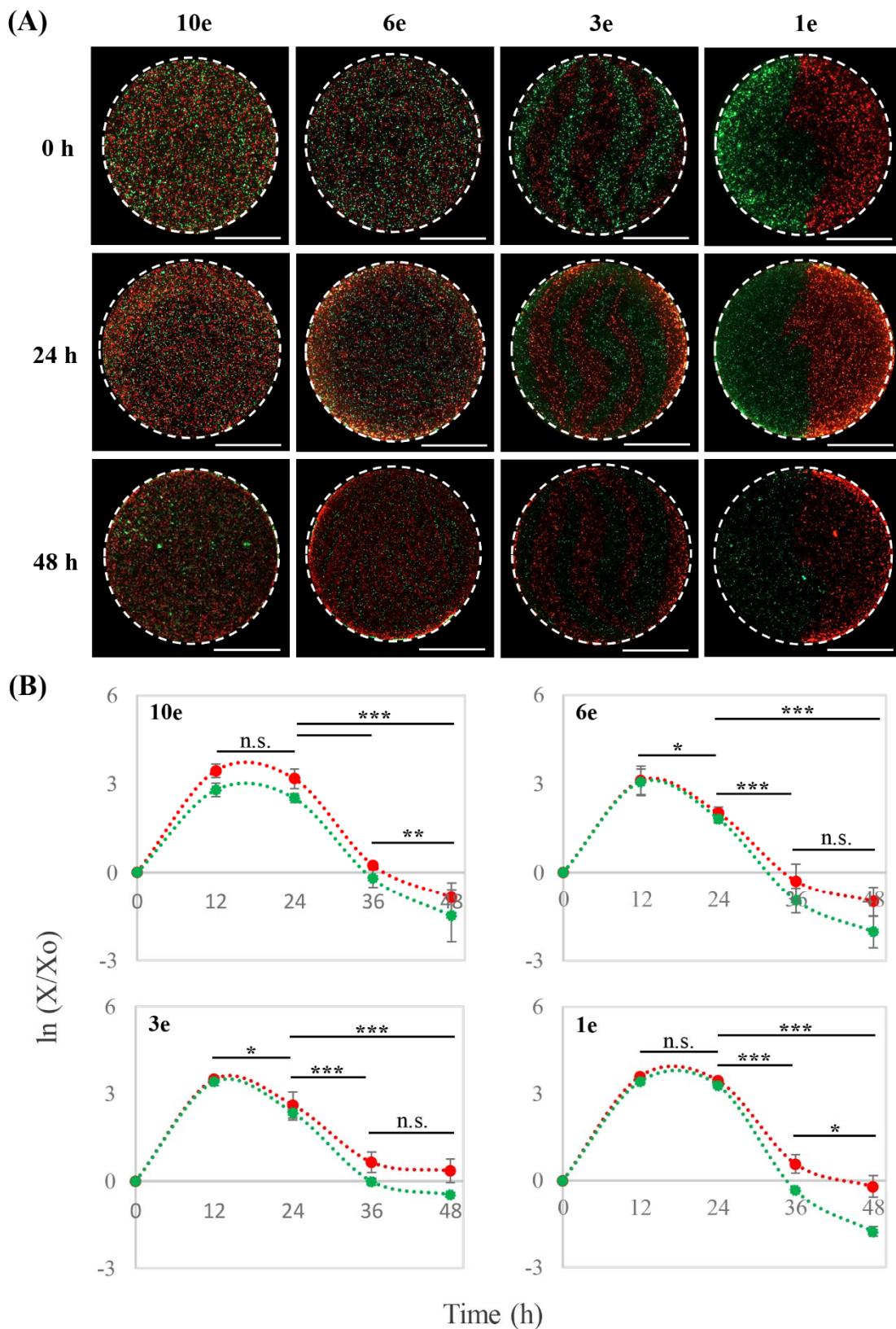
298 Recently, Song et al.^[51] assessed the capability of microencapsulated LGG to either disrupt
299 or inhibit biofilms formed by *E. coli*. Exponential reduction of the biofilm was observed as

300 early as 4 h of co-culture. In addition, the authors found that the 3D-microenvironment
301 stimulated the release of inhibitory molecules by LGG, thereby reducing the transcriptional
302 activation of the *luxS* quorum-sensing pathway in *E. coli*. Analogous reports using the same
303 prey (*E. coli*), but a different predator (i.e., *Bdellovibrio bacteriovorus*), have suggested that
304 this bacterial species exhibits an enhanced persistence when its microcolonies are placed far
305 away from its enemy and, in particular, at the periphery of the micro-landscape.^[52]

306 In conclusion, this predator-prey scenario demonstrates that the inhibition dynamics was
307 greatly dependent on the DSI between EcRFP and LGG. Importantly, a high number of
308 viable LGG cells has been suggested to represent a determining factor in the effectiveness
309 of medical interventions using this probiotic strain.^[53] Therefore, studies that use LGG to
310 suppress the growth of other microorganisms (i.e., those related to the activity of LGG
311 against pathogenic bacteria) should consider that micro-biogeography may play paramount
312 roles both in the inhibition dynamics of the prey and in the proliferation of LGG.

313

314 ***E. coli* versus *E. coli***


315 Quantum paradoxes are those in which phenomena at the macroscale differ from those at
316 the atomic scale. Likewise, studies on bacterial communities sometimes reveal astonishing
317 information about dynamics related to micro-biogeography.

318 In our second proof-of-concept scenario, the same *E. coli* strain used above (EcRFP) was
319 cultivated with an *E. coli* strain producing a green fluorescent protein (EcGFP). At first
320 sight and considering the similarity between the weapons of these two bacterial armies
321 (both share practically the same genetic load), we would not expect any fierce competition

322 between them. However, factors such as limited space and resources may lead to
323 competition among bacterial strains even within the same species.^[25,26,54] In this set of
324 experiments, we additionally printed a micro-biogeography using a 10-KSM element to
325 obtain a well-mixed microcosm, as stated before. Prior to the bioprinting process, both
326 EcRFP and EcGFP were cultivated in fresh medium for 24 h. Pellets of the bacteria where
327 suspended in sodium alginate, and the initial cell density of each bioink was adjusted to an
328 optical density of 0.1, measured at 600 nm. The bacteria-laden constructs were cultivated
329 for 48 h in LB medium at 100 rpm and 37 °C. In all of the printed micro-biogeographies,
330 EcRFP and EcGFP exhibited increased fluorescence intensity from 0 to 12 or 24 h, and a
331 subsequent decrease after 48 h of cultivation (**Figure 4A**). **Figure S2** depicts the changes in
332 fluorescence intensities for EcRFP and EcGFP over time.

333 Interestingly, the quantification of the total number of CFUs, using the agar-plate method,
334 revealed that the cooperation dynamics in the community was strongly influenced by the
335 degree of intimacy between its members. We observed a pronounced prevalence of EcRFP
336 over EcGFP throughout cultivation in the 10-KSM-mediated microcosm, i.e., the well-
337 mixed micro-biogeography, (*p-value* < 0.01; *p-value* < 0.001). *In silico* models have
338 suggested that well-mixed microenvironments demand more complex interactions between
339 *E. coli* strains than do segregated systems for supporting co-existence^[55], since individual
340 bacteria sense genetic relatedness in their surrounding counterparts in order to establish or
341 avoid cooperation.^[13,14] Therefore, a mutualistic behavior is less likely to occur in well-
342 mixed microcosms because the bacteria can freely screen their vicinal homologues, thereby
343 avoiding the risk of being exploited by freeloaders.^[14,56]

344

346 **Figure 4. Growth dynamics of the *E. coli* consortia.** (A) Cross-section of micro-biogeographies
347 containing EcRFP (red) and EcGFP (green), chaotically bioprinted using 10, 6, 3, or 1 KSM
348 elements (Scale bar: 500 μ m). (B) Viability of EcRFP and EcGFP for 48 h, normalized by the
349 number of CFUs just after bioprinting (X_0). One plot per micro-biogeography. * p -value < 0.05;
350 ** p -value < 0.001; *** p -value < 0.001 (n=6).

351

352 The capability of using available carbon sources and electron acceptors is crucial for
353 determining who dominates who in *E. coli* consortia.^[57] Experimental data have also shown
354 that harmonious co-existence between *E. coli* strains is disrupted in well-mixed
355 microcosms.^[58] Indeed, one strategy used to promote cooperation in a microbial consortium
356 is to control the spatial position of the microorganisms.^[7,13,41,58] However, spatial patterning
357 may not be suitable in specific cases, for example, when inter-strain communication is
358 required for efficient biosynthesis^[42], auxotrophy^[59], or gene transfer^[60].

359 We then investigated the effect of the spatial accommodation patterns in our *E. coli*–*E. coli*
360 consortium in promoting a sustained growth of both strains. We first analyzed the micro-
361 biogeography in constructs chaotically printed using a 6-KSM element printhead (Figure
362 4A). In this microcosm, the DSI between EcRFP and EcGFP was 13.7 μ m/ μ m (Figure 1E).
363 Both strains grew at equal proportions. In contrast with the well-mixed condition, the
364 emergence of a dominant strain was not observed (Figure 4B). Both, EcRFP and EcGFP
365 reached a peak of growth at 12 h, with an average magnitude similar to the highest viability
366 of EcRFP in the well-mixed micro-biogeography (3.1 \pm 0.1 and 3.4 \pm 0.2 in logarithmic scale,
367 respectively). Subsequently, both strains exhibited a death phase starting after 24 h of
368 cultivation.

369 In a similar fashion, when the microcosm was chaotically printed using 3-KSM elements,
370 both EcRFP and EcGFP grew equitably and steadily for 12 h of cultivation. Nevertheless,
371 the average peak of growth was higher in the consortium printed using 3-KSM elements
372 than using 6-KSM elements (3.5 ± 0.1 vs 3.1 ± 0.1 , respectively). This trend was also
373 noticeable at 24 h in constructs printed using either 3- or 6-KSM elements (2.5 ± 0.2 and
374 1.9 ± 0.2 , respectively). Therefore, a smaller DSI ($2.3 \mu\text{m}/\mu\text{m}$) was more favorable for *E.*
375 *coli* strains than a larger DSI ($13.7 \mu\text{m}/\mu\text{m}$) in terms of growth dynamics. Interestingly, in
376 the micro-biogeography printed using 1-KSM element ($0.55 \mu\text{m}/\mu\text{m}$ DSI), neither EcRFP
377 nor EcGFP exhibited a death phase at 24 h. Instead, a continued stationary growth phase
378 was evident (Figure 4B). Our results are consistent with several recent reports that indicate
379 a higher stability in partially segregated communities. For example, the creation of a single
380 shared interface enabled the culture of two *E. coli* consortia for a longer time than when
381 homogenously mixed microenvironments were used.^[61] A balanced “chasing” takes place
382 when *E. coli* strains are spatially segregated, thereby boosting ecosystem biodiversity for a
383 longer period.^[58]

384 Our results suggest that segregated coexistence, even between bacterial strains from the
385 same species, may facilitate efficient cooperation. The presence of one or more shared
386 interfaces between EcRFP and EcGFP clearly bypassed competition. Remarkably, the
387 microcosm with the lowest DSI evidently facilitated the emergence of a much longer
388 stationary phase for the segregated coculture.

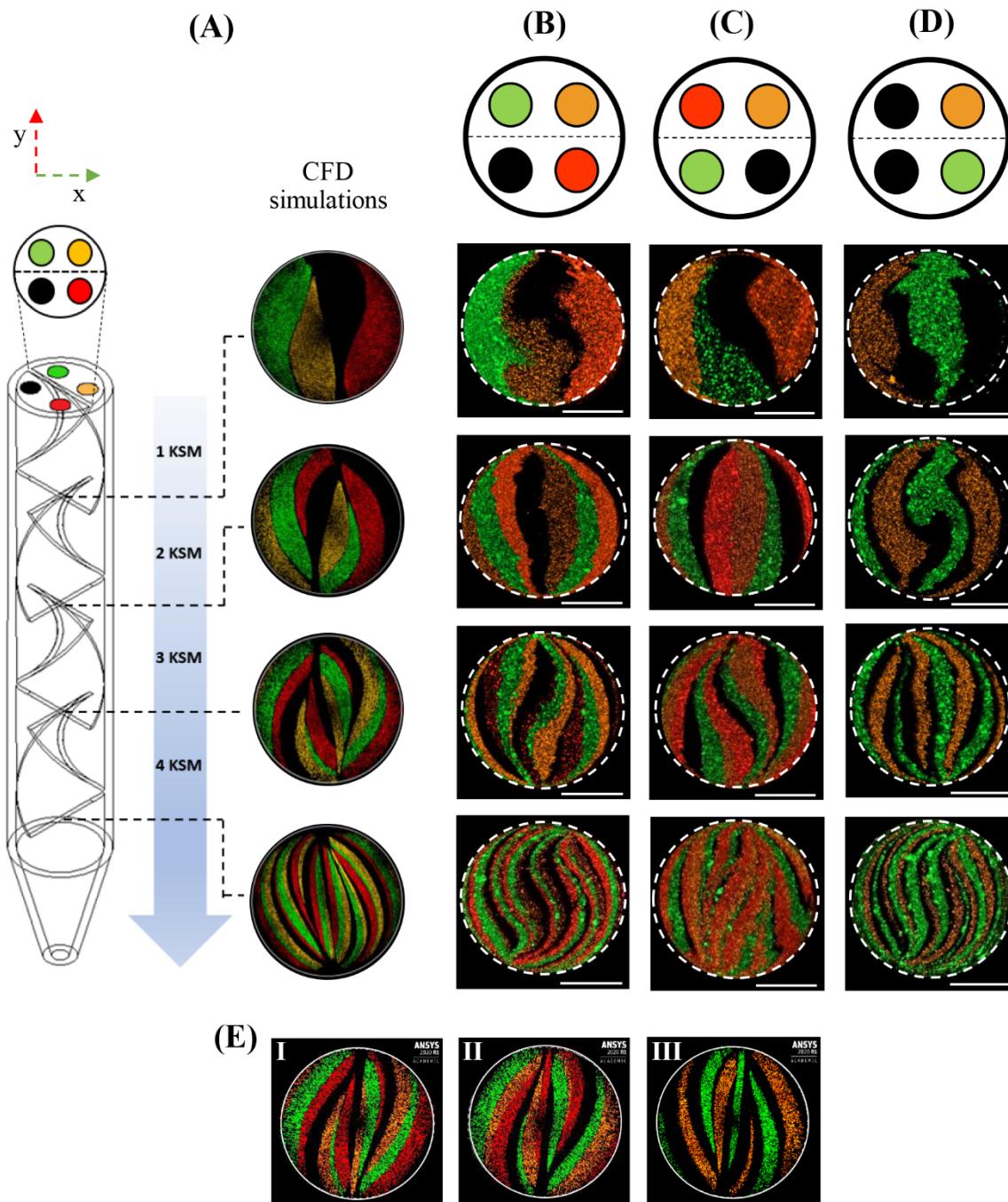
389 When the same *E. coli* strain is accommodated in spatially segregated subgroups, intra-
390 strain genetic relatedness may diminish over time, forcing each subgroup to consume
391 nutrients at distinct rates and proportions.^[14,62] Interestingly, previous reports have shown

392 that microcolonies of *E. coli* may exhibit different growth rates, even when they belong to
393 the same clone, because they adopt distinct metabolic tasks according to microscale
394 gradients of nutrients and metabolites.^[29,40] Furthermore, *in silico* models of *E. coli* have
395 suggested that cells at the edge of a bacterial patch are in charge of expanding the colony
396 boundaries, whereas cells at the interior play different roles, such as cross-feeding.^[49] In our
397 system, the degree of competition among our segregated societies appears to be lower in
398 segregated *E. coli* societies than in completely mixed microcosms. As more interfaces exist
399 between the segregated regions, the long-term stability of the community is compromised.
400 While societies fabricated using a printhead with 6-KSM elements reached their peak
401 population in 12 hours and then declined (*p-value* < 0.05), societies that shared one order of
402 magnitude less interface reached a significantly higher population peak during the same
403 time and remained a stable society for 12 additional hours.

404 The short-term stability of societies printed using 3 and 6 elements might be related to
405 changes in gene expression, and their associated influence in the growth behavior of the
406 community.^[27] For example, we hypothesize that additional energy will be invested to
407 maintain the boundaries between both *E. coli* strains (i.e., the red and the green armies) in a
408 segregated microcosm with a higher DSI values. Note also that the rate of growth is
409 significantly lower in the microcosms fabricated with 6 KSM elements than in the ones
410 printed using 3 elements.

411 Alternative interpretations of our results are certainly plausible. For example, previous
412 reports have suggested that contact-dependent inhibition systems are crucial for cooperation
413 in consortia of either *E. coli* or *Vibrio cholera*. In this ecosystem, each strain naturally
414 adopts the spatial distribution that best fits the community needs.^[26,56,63] Our results suggest

415 that, in our *E. coli*–*E. coli* microcosms, the metabolic necessities at the global level were
416 better addressed at the lowest DSI. Nevertheless, general assumptions should be avoided,
417 since each microbial consortium develops a unique network of metabolic interactions that
418 dictates the community behavior.^[7,64,65]


419 We found that the growth dynamics in our *E. coli* consortium can be finely controlled by
420 simply switching the DSI from 13.7 to 2.3 or to 0.55 $\mu\text{m}/\mu\text{m}$, thereby facilitating the
421 emergence of a stationary growth phase whenever necessary. This straightforward approach
422 may find powerful applications as well in bioproduction engineering and synthetic biology,
423 as segregated ecosystem diversity might make possible the synthesis of added-value
424 compounds and highly complex materials even without redesigning metabolic
425 pathways.^[25,57,66]

426

427 Tailor-made deposition of multiple inks

428 Extrusion-based 3D-bioprinters often implement sequential injection protocols for printing
429 multi-material constructs.^[2,3] Although remarkably enabling multi-material bioprinting
430 systems have been developed recently, several challenges are still associated with accurate
431 deposition patterns of bioinks at high resolution and fast speed.^[3,67] In this final section, we
432 expand the use of our bioprinting system to multi-material printing scenarios that consider
433 the use of more than two inks and enable the facile development of highly complex
434 microbial communities composed of up to four species.

435

437 **Figure 5. Continuous chaotic printing of multiple inks.** (A) Computational simulations showing
438 the evolution of the lamellar micro-structure due to the successive splitting and reorientation of four
439 inks in the KSM printhead. Spatial distribution patterns of alginate inks when (B) the reservoirs of
440 black and green inks were connected to adjacent inlets located at different compartments (divisor
441 wall represented by the dotted line), (C) the black and green inks enter the KSM printhead through
442 inlets positioned at the same compartment, and (D) two black inks were connected to adjacent inlet

443 ports located at distinct compartments to establish spatial isolation of the green and orange lamellae.
444 (E) Computational simulations of the lamellar patterns obtained when using 3 KSM elements and
445 the connection configurations detailed in B, C, and D.

446

447 Here, we redesigned our KSM printhead for simultaneous extrusion of four inks from the
448 same nozzle in a simple, continuous, and symmetrical fashion. We achieved this by
449 accommodating four inlets, instead of two, in the SolidWorks design of our KSM
450 printhead. **Video S1** shows that this KSM printhead has a divisor wall that connects the
451 inlet port to the first KSM element. This cap creates two compartments before the first
452 KSM element, each one receiving the feed flow from two inlets. Since our printing
453 technique uses chaotic flows to mix in the laminar regime^[33,36,38], all four inks are
454 accommodated in the form of multilayered microstructures with astonishing alienation
455 accuracy (**Figure 5**). The limiting factor in printing resolution will be particle size.^[33]

456 Our computational simulations show that, when using this four-stream system, the number
457 of internal lamellae in a chaotically printed scaffold increases exponentially according to
458 the model $S_{4i} = 2^{n+1}$, where s is the number of lamellae and n is the number of KSM
459 elements in the printhead (Figure 5A). **Video S2** shows CFD simulations of the extrusion
460 process in our multi-port chaotic printing system.

461 Indeed, our experimental results corroborate the development of the same number of
462 internal lamellae dictated by this model (Figure 5B-D). We found that the spatial
463 organization of the inks in a printed construct could be easily tuned by switching the spatial
464 positioning of each ink at the inlet port. To explain this, consider a XY plane at the top of a
465 KSM printhead (Figure 5), where the X axis is parallel to the divisor wall (represented by a

466 dotted line). When the reservoirs of two inks (2% alginate containing black or green
467 microparticles) are connected to adjacent ports from different compartments (Figure 5B),
468 the inks will not come into contact, regardless of the number of lamellae in the printed
469 construct.

470 This remarkable obedience of the inks is due to: 1) the architecture and sequential
471 arrangement of the KSM elements, and 2) the laminarity of the flow. Figure 5A shows that
472 adjacent KSM elements have opposite twist directions. Therefore, when the black and
473 green inks are co-extruded across each KSM element in our 4-inlet printhead, they will be
474 split and reoriented to a different compartment, thereby avoiding the emergence of a shared
475 interface between the black and green lamellae. By contrast, when the reservoirs of black
476 and green inks are connected to the inlet ports detailed in Figure 5C, the black and green
477 lamellae will share an interface in the printed fiber because both inks enter the same
478 compartment in the printhead. Consequently, the emergence or absence of shared interfaces
479 between materials, or bioinks, can be precisely defined only by switching the connection
480 order of the reservoirs at the inlet port. These multi-material scaffolds may enable, for
481 example, the fabrication of spatially structured multi-microbial consortia with the presence
482 or absence of shared interfaces.^[24,58,68]

483 Finally, implementing the rationale behind Figure 5B, we were able to establish spatial
484 separation between two inks (orange and green) by connecting the reservoirs of two black
485 inks to the adjacent inlets from different compartments (Figure 5D). In this case, the orange
486 and green lamellae exhibited an interspersed repetition in the chaotically printed fiber
487 without any shared interface. The thickness of these physical barriers also decreased due to
488 the incremented number of lamellae. Thus, this type of scaffold may be used to study, for

489 example, the maximum physical separation that allows a syntrophic or auxotrophic
490 consortium to survive^[25,30,42,68,69], or to analyze the role of spatial segmentation in
491 horizontal gene transfer.^[59,60,70] In addition, our four-stream system would facilitate the
492 accommodation of physical barriers between microorganisms with a micrometer resolution,
493 which might be useful to drive microbial cooperation in biomanufacturing
494 applications.^[54,64,71–73]

495

496 **Concluding remarks**

497 In this study, we have demonstrated the feasibility of using continuous chaotic bioprinting
498 to fabricate micro-biogeographies with an unprecedented resolution among extrusion-based
499 approaches. To our knowledge, this is the first report to investigate the growth dynamics of
500 microcosms composed of two microorganisms at a wide range of spatial scales, where the
501 DSI is a key factor that defines competition or cooperation outcomes. We postulate that
502 DSI is a suitable quantitative descriptor of the degree of intimacy between members of a
503 bacterial community. Consideration of a complementary parameter related to the spatial
504 position of microcolonies (possibly the average distancing) is also recommended.

505 In further support of our statement regarding DSI, consider the shared interface between a
506 pair of striations as a battlefield, where members of both armies fight and die to maintain
507 the defined boundaries of their territories. Meanwhile, their counterparts fulfill other duties
508 far away from that location. Consequently, when the area occupied by a specific population
509 of bacteria decreases, we can intuitively expect that a dramatic change in metabolic tasks,
510 such as cross-feeding, might occur. In fact, the feasibility of this analogy has been partly

511 confirmed in previous reports.^[29,40,49] Thus, continuous chaotic bioprinting may be an
512 enabling platform in microbial ecology and related scientific fields that will allow the
513 creation of spatially controlled living microsystems at high printing resolution. We envision
514 the utility of chaotic bacterial bioprinting for the development of customized microcosms in
515 the analysis, for example, of the effects of micro-biogeography on the microbial
516 transcriptome or gene transfer. We anticipate that this might have tremendous relevance to
517 the design of probiotic interventions and the understanding of the interplay between
518 different species in complex ecosystems such as the gut, the oral cavity, or the skin.
519 Implications of spatial segregation to phenomena such as antibiotic resistance^[29,74] may be
520 rigorously studied in chaotically bioprinted systems. Advanced metabolomic techniques,
521 such as ¹³C metabolic flux analysis^[28], might also be implemented to identify phenomena
522 occurring locally (i.e., within lamellae boundaries).

523 Nature is a magical and prolific factory of scenarios where spatial distribution matters. The
524 unprecedented development of a four-stream KSM printhead expands the horizons of
525 continuous chaotic bioprinting to diverse and exciting applications. For instance, multi-port
526 chaotic bioprinting may enable the facile creation of the beautiful lamellar
527 microarchitecture of lung lichens, where bacteria, algae, and fungi co-exist in 30 µm wide
528 interspersed lamellae.^[24] Other scenarios include the investigation of horizontal gene
529 transfer according to the spatial segmentation of the microenvironment^[59,60,70], or the
530 analysis of the influence of spatial micro-organization on the capacity of pathogens to
531 withstand antimicrobials agents.^[29,74]

532 We believe that the implications of our findings will be also highly relevant in scientific
533 fields outside microbiology, where additive manufacturing technologies are used in

534 research. Multi-port chaotic printing may facilitate the synthesis of multi-material
535 structures with tailored local properties^[75,76], or the mimicry of compositional gradients
536 found in tissues such as the bone and the skin^[3,77], among other applications.

537

538 **Experimental section**

539 **Printing set-up**

540 In general, our continuous chaotic printing system consisted of a commercial syringe pump
541 (Fusion 200, Chemyx) loaded with 5 mL sterile syringes, sterile plastic hoses, a disinfected
542 printhead containing a specific number of KSM elements (Figure 1C-D), and a flask
543 containing 2% aqueous calcium chloride (Sigma Aldrich). The KSM printheads were
544 printed on a Form 2 SLA 3D printer (FormLabs) using a standard resin (Clear FLGPCL04,
545 FormLabs). We used the design parameters reported in our previous contribution^[33] to
546 establish a printhead outlet diameter of 1 mm. A new version of our KSM printhead was
547 designed using SolidWorks, incorporating four-inlet ports instead of two, for simultaneous
548 extrusion of four inks. In this four-stream system, each pair of inlets connects to one of the
549 two compartments inside the printhead. These compartments originate from the cap that
550 connects the base of the inlet ports to the first KSM element (Video S1).

551 **Bacterial strains and culture conditions**

552 Bacterial cultures were grown in distinct reservoirs for 24 h at 37°C before printing
553 experiments. *E. coli* strains expressing either RFP or GFP were separately cultured in
554 Luria-Bertani (LB) medium (Sigma Aldrich) containing 1 µL/mL of chloramphenicol to

555 retain the recombinant plasmid. *L. rhamnosus* GG (LGG) (ATCC 53103) was grown in de
556 Man, Rogosa, and Sharpe (MRS) medium (Merck).

557 **Bioink preparation and printing experiments**

558 Bioinks were prepared following this general protocol: approximately 10 mL of each
559 bacterial culture was centrifuged at 8000 rpm for 10 min. The supernatant was discarded,
560 and the pellet was resuspended in 2% sterile alginate solution (Sigma Aldrich)
561 supplemented with suitable culture medium (i.e., 2% LB broth for EcRFP or EcGFP, and
562 5.22% MRS broth for LGG).

563 In *E. coli* versus *L. rhamnosus* GG experiments, the initial cell density of the bioinks, in
564 terms of optical density, was adjusted to 0.025 and 0.1 absorbance units for LGG and
565 EcRFP, respectively. In *E. coli* versus *E. coli* experiments, the cell density of both EcRFP
566 and EcGFP was adjusted to 0.1 absorbance units. Subsequently, each bioink was deposited
567 in a distinct sterile syringe and connected to a KSM printhead. The bioinks were co-
568 extruded at a flow rate of 1.5 mL/min at room temperature while the printhead outlet was
569 immersed in a 2% calcium chloride solution. Bacteria-laden constructs were cultured in 6-
570 well plates containing 3 mL of MRS-LB (1:2) medium for *E. coli* versus *L. rhamnosus* GG
571 micro-biogeographies, or LB medium for *E. coli* versus *E. coli* experiments. In both
572 scenarios, the printed fibers were incubated at 37°C under shaking at 100 rpm.

573 The number of CFU was assessed by disaggregating and homogenizing 0.1 g of sample in
574 0.9 mL of phosphate buffered saline (PBS). A 100- μ L aliquot of homogenized sample was
575 sequentially diluted in PBS. Sequential dilutions were seeded by duplicate on Petri dishes
576 containing MRS-agar or LB-agar medium. The collected data was multiplied by the

577 dilution factor, and normalized by the number of CFU in constructs just after bioprinting.

578 The results were depicted in logarithmic scale. At least six independent constructs were
579 analyzed at each time point.

580 In a final set of experiments, we printed multi-color constructs using our four-inlets KSM
581 printhead and 1 part of fluorescent microparticles (Fluor Green 5404; Fluor Hot Pink 5407;
582 or Fluor Sunburst 5410, Createx Colors) in 9 parts of a 2% pristine alginate solution.
583 Fluorescent microparticles were washed as detailed in our previous report.^[33]

584 **Microscopy analyses**

585 The microarchitecture and fluorescence of the chaotically printed fibers was assessed using
586 an Axio Observer.Z1 microscope (Zeiss) equipped with Colibri.2 led illumination and an
587 Apotome.2 system (Zeiss). A stitching algorithm, included in the microscope software (Zen
588 Blue Edition, Zeiss), was used for producing wide-field micrographs.

589 **Characterization of micro-architecture**

590 The DSI of each micro-biogeography was estimated according to Equation 1. The
591 measurements were performed using Image J software, by Fiji. The results were expressed
592 as the average of three independent micrographs per micro-biogeography ($n=3$).

$$593 DSI = \frac{\text{Total length between striations } (\mu\text{m})}{\text{Perimeter of cross section } (\mu\text{m})} \quad (\text{Equation 1})$$

594 We evaluated the reproducibility of the lamellar microstructure by calculating the area of
595 each black or red striation using Image J software. Once the scale bar was set, each lamella
596 was surrounded using the freehand selection tool. The average of seven cross-sectional cuts

597 ($n=7$) was reported. In addition, the total area of either red or black lamellae in the cross-
598 section was expressed as the sum of individual measurements.

599 **Scanning electron microscopy (SEM)**

600 SEM images were obtained using a variable pressure scanning electron microscope
601 EVO/MA25 (Zeiss). Briefly, printed fibers were sequentially incubated with 4%
602 formaldehyde and 4% paraformaldehyde for 15 min each, and then washed with PBS. The
603 fibers were then successively dehydrated in an ethanol gradient (i.e., using 25, 50, 75, and
604 95% ethanol in water) for 1 h. The samples were then coated with gold and visualized at
605 high vacuum mode.

606 **Computational simulations**

607 Computational fluid dynamics simulations were implemented using ANSYS Fluent 2020
608 software. The 3D geometries of the systems were discretized using a fine mesh of
609 triangular elements, and a mesh refinement procedure was conducted to ensure
610 convergence of results. Using this mesh, the Navier Stokes equations of motion were
611 solved at each node in laminar flow using a transient state implementation. A fluid density
612 of 1000 kg m^{-3} and a viscosity of 0.1 kg m s^{-1} were used.^[33] No-slip boundary conditions
613 were imposed in the fluid flow simulations.

614 **Statistical analysis**

615 All statistical analyses were performed using GraphPad Prism 8. Biological data were
616 presented as the mean \pm SD from at least six bacterial constructs ($n=6$). Based on two-way
617 analysis of variance (ANOVA) and Tukey multiple comparisons, differences between data

618 were considered statistically significant at $*p\text{-value} < 0.05$, $**p\text{-value} < 0.01$, or $***p\text{-value}$
619 < 0.001 .

620

621 **Conflict of interest**

622 The authors declare no conflicts of interest.

623 **Acknowledgments**

624 CFCG and EJBM gratefully acknowledge financial support granted by CONACyT
625 (Consejo Nacional de Ciencia y Tecnología, México) in the form of Graduate Program
626 Scholarships. GTdS acknowledges the funding received from CONACyT, L'Oréal-
627 UNESCO-CONACyT-AMC (National Fellowship for Women in Science, Mexico), and
628 UC-MEXUS. MMA and GTdS acknowledge funding provided from CONACyT. YSZ
629 acknowledges the funding granted by the Brigham Research Institute. This research has
630 been partially funded by the Tecnológico de Monterrey. We gratefully acknowledge the
631 experimental contributions of Felipe López-Pacheco, Norma Alicia Garza-Flores, Carolina
632 Chávez-Madero, Alan Roberto Márquez-Ipiña, and Everardo González-González to this
633 work.

634 **Author contributions**

635 CFCG, EJBM, MMA, and GTdS designed the study. CFCG and EJBM analyzed the data.
636 CFCG, EJBM, MMA, and GTdS wrote the manuscript. CFCG, EJBM, and KIBM
637 performed all the bacterial bioprinting experiments. DAQM conducted all the
638 computational simulations. CFCG, EJBM, GTdS, and DAQM designed the four-inlet KSM

639 printhead. CFCG, EJBM, and LLLA conducted the printing characterization of the four-
640 stream system. CFCG, EJBM, and DAQM prepared the illustrations. JFYdL fabricated the
641 printheads by stereolithographic 3D printing. GTdS, MMA, and YSZ edited the final
642 versions of the manuscript. All the authors read, commented on, and approved the
643 manuscript.

644 **References**

645 [1] S. Soliman, J. Laurent, L. Kalenjian, K. Burnette, B. Hedberg, S. La Francesca, *J. Biomed. Mater. Res. - Part B Appl. Biomater.* **2019**, *107*, 324.

646 [2] Y. C. Li, Y. S. Zhang, A. Akpek, S. R. Shin, A. Khademhosseini, *Biofabrication* **2017**, *9*, DOI
648 10.1088/1758-5090/9/1/012001.

649 [3] W. Liu, Y. S. Zhang, M. A. Heinrich, F. De Ferrari, H. L. Jang, S. M. Bakht, M. M. Alvarez, J. Yang,
650 Y. C. Li, G. Trujillo-de Santiago, A. K. Miri, K. Zhu, P. Khoshakhlagh, G. Prakash, H. Cheng, X.
651 Guan, Z. Zhong, J. Ju, G. H. Zhu, X. Jin, S. R. Shin, M. R. Dokmeci, A. Khademhosseini, *Adv. Mater.* **2017**, *29*, DOI 10.1002/adma.201604630.

653 [4] J. H. Kim, Y. J. Seol, I. K. Ko, H. W. Kang, Y. K. Lee, J. J. Yoo, A. Atala, S. J. Lee, *Sci. Rep.* **2018**,
654 *8*, DOI 10.1038/s41598-018-29968-5.

655 [5] A. M. van Genderen, J. Jansen, C. Cheng, T. Vermonden, R. Masereeuw, *Adv. Healthc. Mater.* **2018**,
656 *7*, DOI 10.1002/adhm.201800529.

657 [6] G. G. D'Souza, *Curr. Opin. Biotechnol.* **2020**, *62*, 220.

658 [7] S. Ben Said, R. Tecon, B. Borer, D. Or, *Curr. Opin. Biotechnol.* **2020**, *62*, 137.

659 [8] A. Stacy, L. McNally, S. E. Darch, S. P. Brown, M. Whiteley, *Nat. Rev. Microbiol.* **2016**, *14*, 93.

660 [9] R. Tofalo, G. Perpetuini, M. Schirone, G. Fasoli, I. Aguzzi, A. Corsetti, G. Suzzi, *Front. Microbiol.*
661 **2013**, *4*, 1.

662 [10] J. L. M. Welch, F. E. Dewhirst, G. G. Borisy, *Annu. Rev. Microbiol.* **2019**, *73*, 335.

663 [11] G. Klauck, D. O. Serra, A. Possling, R. Hengge, *Open Biol.* **2018**, *8*, DOI 10.1098/rsob.180066.

664 [12] S. Mukherjee, B. L. Bassler, *Nat. Rev. Microbiol.* **2019**, *17*, 371.

665 [13] J. Cremer, A. Melbinger, K. Wienand, T. Henriquez, H. Jung, E. Frey, *J. Mol. Biol.* **2019**, *431*, 4599.

666 [14] S. A. Kraemer, S. Wielgoss, F. Fiegna, G. J. Velicer, *Mol. Ecol.* **2016**, *25*, 4875.

667 [15] E. K. Costello, C. L. Lauber, M. Hamady, N. Fierer, J. I. Gordon, R. Knight, *Science (80-).* **2009**,
668 *326*, 1694.

669 [16] Di. M. Proctor, J. A. Fukuyama, P. M. Loomer, G. C. Armitage, S. A. Lee, N. M. Davis, M. I. Ryder,
670 S. P. Holmes, D. A. Relman, *Nat. Commun.* **2018**, *9*, DOI 10.1038/s41467-018-02900-1.

671 [17] J. L. M. Welch, B. J. Rossetti, C. W. Rieken, F. E. Dewhirst, G. G. Borisy, *Proc. Natl. Acad. Sci. U.*
672 *S. A.* **2016**, *113*, E791.

673 [18] I. Dige, L. Grønkjær, B. Nyvad, *Caries Res.* **2014**, *48*, 451.

674 [19] D. M. Proctor, K. M. Shelef, A. Gonzalez, C. L. Davis, L. Dethlefsen, A. R. Burns, P. M. Loomer, G.
675 C. Armitage, M. I. Ryder, M. E. Millman, R. Knight, S. P. Holmes, D. A. Relman, *Periodontol. 2000*
676 **2020**, *82*, 26.

677 [20] J. L. M. Welch, Y. Hasegawa, N. P. McNulty, J. I. Gordon, G. G. Borisy, *Proc. Natl. Acad. Sci. U. S.*
678 *A.* **2017**, *114*, E9105.

679 [21] A. Swidsinski, A. Ladhoff, A. Pernthaler, S. Swidsinski, V. LoeningBaucke, M. Ortner, J. Weber, U.
680 Hoffmann, S. Schreiber, M. Dietel, H. Lochs, *Gastroenterology* **2002**, *122*, 44.

681 [22] J. Xu, J.-J. Peng, W. Yang, K. Fu, Y. Zhang, *Am. J. Cancer Res.* **2020**, *10*, 743.

682 [23] L. Hardy, N. Cerca, V. Jespers, M. Vaneechoutte, T. Crucitti, *Res. Microbiol.* **2017**, *168*, 865.

683 [24] I. A. Aschenbrenner, T. Cernava, A. Erlacher, G. Berg, M. Grube, *Mol. Ecol.* **2017**, *26*, 2826.

684 [25] C. D. Nadell, K. Drescher, K. R. Foster, *Nat. Publ. Gr.* **2016**, *14*, DOI 10.1038/nrmicro2016.84.

685 [26] L. Yung-Hua, T. Xiao-Lin, in *Stress Environ. Regul. Gene Expr. Adapt. Bact.* (Ed.: F. Bruijn), John
686 Wiley & Sons, **2016**, pp. 1197–1205.

687 [27] F. Schreiber, M. Ackermann, *Curr. Opin. Biotechnol.* **2020**, *62*, 202.

688 [28] E. Wolfsberg, C. P. Long, M. R. Antoniewicz, *Metab. Eng.* **2018**, *49*, 242.

689 [29] A. D. Co, S. Van Vliet, M. Ackermann, *Philos. Trans. R. Soc. B Biol. Sci.* **2019**, *374*, DOI
690 10.1098/rstb.2019.0080.

691 [30] W. F. Hynes, J. Chacón, D. Segrè, C. J. Marx, N. C. Cady, W. R. Harcombe, *Biomed. Phys. Eng.*
692 *Express* **2018**, *4*, DOI 10.1088/2057-1976/aad544.

693 [31] F. Chen, J. Ricken, D. Xu, S. V. Wegner, *Adv. Biosyst.* **2019**, *3*, DOI 10.1002/adbi.201800269.

694 [32] F. Qian, C. Zhu, J. M. Knipe, S. Ruelas, J. K. Stolaroff, J. R. Deotte, E. B. Duoss, C. M. Spadaccini,
695 C. A. Henard, M. T. Guarnieri, S. E. Baker, *Nano Lett.* **2019**, *19*, 5829.

696 [33] C. Chávez-Madero, M. Diaz de Leon-Derby, M. Samandari, C. F. Ceballos-González, E. J. Bolívar-
697 Monsalve, C. C. Mendoza-Buenrostro, S. Holmberg, N. A. Garza-Flores, M. A. Almajhadi, I.
698 González-Gamboa, J. F. Yee-de León, S. O. Martinez-Chapa, C. A. Rodriguez, H. K.
699 Wickramasinghe, M. J. Madou, D. Dean, A. Khademhosseini, Y. S. Zhang, M. M. Alvarez, G.
700 Trujillo de Santiago, *Biofabrication* **2020**, DOI 10.1088/1758-5090/ab84cc.

701 [34] F. Hosseini Kakavandi, M. Rahimi, O. Jafari, N. Azimi, *Chem. Eng. Process. Process Intensif.* **2016**,
702 *107*, 58.

703 [35] N. T. Nguyen, Z. Wu, *J. Micromechanics Microengineering* **2005**, *15*, DOI 10.1088/0960-
704 1317/15/2/R01.

705 [36] D. Hobbs, F. Muzzio, *Chem. Eng. J.* **1997**, *67*, 153.

706 [37] D. M. Hobbs, M. M. Alvarez, F. J. Muzzio, *Fractals* **1997**, *5*, 395.

707 [38] M. M. Alvarez, F. J. Muzzio, S. Cerbelli, A. Adrover, M. Giona, *Phys. Rev. Lett.* **1998**, *81*, 3395.

708 [39] M. Gao, H. Zheng, Y. Ren, R. Lou, F. Wu, W. Yu, X. Liu, X. Ma, *Sci. Rep.* **2016**, *6*, DOI
709 10.1038/srep34695.

710 [40] A. Dal Co, M. Ackermann, S. Van Vliet, *J. R. Soc. Interface* **2019**, *16*, DOI 10.1098/rsif.2019.0182.

711 [41] T. G. Johnston, S. F. Yuan, J. M. Wagner, X. Yi, A. Saha, P. Smith, A. Nelson, H. S. Alper, *Nat.*
712 *Commun.* **2020**, *11*, DOI 10.1038/s41467-020-14371-4.

713 [42] R. N. Alnahhas, J. J. Winkle, A. J. Hirning, B. Karamched, W. Ott, K. Josić, M. R. Bennett, *ACS*

714 [43] M. E. Segers, S. Lebeer, *Microb. Cell Fact.* **2014**, *13*, S7.

715 [44] A. S. Dhanani, S. B. Gaudana, T. Bagchi, *Eur. Food Res. Technol.* **2011**, *232*, 777.

716 [45] Q. Jiang, I. Stamatova, V. Kainulainen, R. Korpela, J. H. Meurman, *BMC Microbiol.* **2016**, *16*, DOI 10.1186/s12866-016-0759-7.

717 [46] E. T. Granato, T. A. Meiller-Legrand, K. R. Foster, *Curr. Biol.* **2019**, *29*, R521.

718 [47] E. C. Garcia, *Curr. Opin. Microbiol.* **2018**, *42*, 40.

719 [48] R. M. Stubbendieck, C. Vargas-Bautista, P. D. Straight, *Front. Microbiol.* **2016**, *7*, 1234.

720 [49] J. A. Cole, L. Kohler, J. Hedhli, Z. Luthey-Schulten, *BMC Syst. Biol.* **2015**, *9*, 1.

721 [50] C. Werlang, G. Cárcamo-Oyarce, K. Ribbeck, *Nat. Rev. Mater.* **2019**, *4*, 134.

722 [51] H. Song, J. Zhang, J. Qu, J. Liu, P. Yin, G. Zhang, D. Shang, *Biotechnol. Lett.* **2019**, *41*, 1007.

723 [52] F. J. H. Hol, O. Rotem, E. Jurkevitch, C. Dekker, D. A. Koster, *Proc. R. Soc. B Biol. Sci.* **2016**, *283*, 1.

724 [53] W. Chen, *Lactic Acid Bacteria. Omics and Functional Evaluation.*, Springer Singapore, **2019**.

725 [54] K. Nagy, O. Sipos, É. Gombai, Á. Kerényi, S. Valkai, P. Ormos, P. Galajda, in *Chem. Biochem. Eng. Q.*, Assoc. Of Chemists And Chemical Engineers Of Croatia, **2014**, pp. 225–231.

726 [55] X. Ren, R. M. Murray, *Cooperation Enhances Robustness of Coexistence in Spatially Structured Consortia*, IEEE, Napoli, Italy, **2019**.

727 [56] M. J. Bottery, I. Passaris, C. Dytham, A. J. Wood, M. W. van der Woude, *Curr. Biol.* **2019**, *29*, 3622.

728 [57] A. Patel, R. P. Carlson, M. A. Henson, *Biotechnol. J.* **2019**, *14*, 1.

729 [58] B. Kerr, M. A. Riley, M. W. Feldman, B. J. M. Bohannan, *Nature* **2002**, *418*, 171.

730 [59] A. Burmeister, F. Hilgers, A. Langner, C. Westerwalbesloh, Y. Kerkhoff, N. Tenhaef, T. Drepper, D. Kohlheyer, E. Von Lieres, S. Noack, A. Grünberger, *Lab Chip* **2019**, *19*, 98.

731 [60] B. Li, Y. Qiu, Y. Song, H. Lin, H. Yin, *Environ. Int.* **2019**, *131*, DOI 10.1016/j.envint.2019.105007.

732 [61] B. A. E. Lehner, D. T. Schmieden, A. S. Meyer, *ACS Synth. Biol.* **2017**, *6*, 1124.

733 [62] R. N. Alnahhas, J. J. Winkle, A. J. Hirning, B. Karamched, W. Ott, K. Josić, M. R. Bennett, *ACS Synth. Biol.* **2019**, *8*, 2051.

734 [63] L. McNally, E. Bernardy, J. Thomas, A. Kalziki, J. Pentz, S. P. Brown, B. K. Hammer, P. J. Yunker, W. C. Ratcliff, *Nat. Commun.* **2017**, *8*, DOI 10.1038/ncomms14371.

735 [64] H. Akdemir, A. Silva, J. Zha, D. V. Zagorevski, M. A. G. Koffas, *Metab. Eng.* **2019**, *55*, 290.

736 [65] J. R. Peterson, J. A. Cole, Z. Luthey-Schulten, **2017**, DOI 10.1371/journal.pone.0182570.

737 [66] S. Pande, H. Merker, K. Bohl, M. Reichelt, S. Schuster, L. F. De Figueiredo, C. Kaleta, C. Kost, *ISME J.* **2014**, *8*, 953.

738 [67] A. K. Miri, I. Mirzaee, S. Hassan, S. Mesbah Oskui, D. Nieto, A. Khademhosseini, Y. S. Zhang, *Lab Chip* **2019**, *19*, 2019.

739 [68] X. Qian, L. Chen, Y. Sui, C. Chen, W. Zhang, J. Zhou, W. Dong, M. Jiang, F. Xin, K. Ochsenreither, *Biotechnol. Adv.* **2020**, *40*, DOI 10.1016/j.biotechadv.2019.107500.

751 [69] J. K. Kim, Y. Chen, A. J. Hirning, R. N. Alnahhas, K. Josić, M. R. Bennett, *Nat. Chem. Biol.* **2019**,
752 *15*, 1102.

753 [70] P. Nazarian, F. Tran, J. Q. Boedicker, *Front. Microbiol.* **2018**, *9*, DOI 10.3389/fmicb.2018.02978.

754 [71] J. Cremer, A. Melbinger, K. Wienand, T. Henriquez, H. Jung, E. Frey, *J. Mol. Biol.* **2019**, *431*, 4599.

755 [72] T. G. Johnston, S. F. Yuan, J. M. Wagner, X. Yi, A. Saha, P. Smith, A. Nelson, H. S. Alper, *Nat. Commun.* **2020**, *11*, DOI 10.1038/s41467-020-14371-4.

756

757 [73] J. A. Jones, X. Wang, *Curr. Opin. Biotechnol.* **2018**, *53*, 33.

758 [74] P. Phalak, J. Chen, R. P. Carlson, M. A. Henson, *BMC Syst. Biol.* **2016**, *10*, DOI 10.1186/s12918-
759 016-0334-8.

760 [75] D. Pan, R. Hufenus, Z. Qin, L. Chen, A. Gooneie, *Macromol. Mater. Eng.* **2019**, *304*, DOI
761 10.1002/mame.201800601.

762 [76] D. Pan, R. Hufenus, Z. Qin, L. Chen, A. Gooneie, *J. Appl. Polym. Sci.* **2019**, *136*, DOI
763 10.1002/app.48165.

764 [77] Y. Xu, S. Yuan, J. Han, H. Lin, X. Zhang, *Carbohydr. Polym.* **2017**, *176*, 195.