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15 Abstract

16  Copy number variants (CNVs) are genomic rearrangements implicated in numerous
17 congenital and acquired diseases, including cancer. In human pluripotent stem cells
18 (PSC), the appearance of culture-acquired CNVs prompted concerns for their use in
19 regenerative medicine applications. A particularly common problem in PSC is the
20 occurrence of CNVs in the ql11.21 region of chromosome 20. However, the exact
21 mechanisms of origin of this amplicon remains elusive due to the difficulty in
22 delineating its sequence and breakpoints. Here, we used long-range Nanopore
23 sequencing on two examples of this CNV, present as a duplication in one and a
24  triplication in another line. The CNVs were arranged in a head-to-tail orientation in
25 both lines, with sequences of microhomologies flanking or overlapping both the
26 proximal and distal breakpoints. These breakpoint signatures point to a specific
27 mechanism of template switching in CNV formation, with surrounding Alu sequences
28 likely contributing to the instability of this genomic region.

29

30

31 Introduction

32 Copy number variants (CNVs) are gains or losses of DNA segments ranging in size

33 from around 50bp to several megabases’. By affecting the dosage of genes and
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34 regulatory regions within the amplified or deleted sequence, CNVs underpin the
35 aetiology of many diseases from developmental disorders to cancer'. The profound
36 effect of the CNV acquisition on cellular phenotype has been also described in
37 human pluripotent stem cells (PSC), which frequently gain a CNV located on
38 chromosome 20 in the region q11.21 upon prolonged culture?>. Once gained, the
39 20gl11.21 CNV bestows on the variant PSC attributes that provide them with a
40 growth advantage due to resistance to apoptosis>®. The 20g11.21 CNV is typically
41 gained as a tandem duplication, although PSC lines with four or five copies of this
42 CNV have been reported®’. The length of the duplicated region is also variable
43  between different lines and ranges from 0.6Mb to 4Mb?’. Nonetheless, the shared
44 overlapping region in all of the reported variants contains a dosage-sensitive gene,
45 BCL2L1, which was identified as the driver gene responsible for the key phenotypic
46 features of variant PSC>’. The altered behaviour of PSC harbouring the 20q11.21
47  CNV, coupled with the finding that the same CNV is a genomic hallmark of some
48 cancers®, represents a potential impediment to the use of PSC in regenerative
49 medicine applications and necessitates an understanding of the mechanisms

50 governing the CNV appearance.

51 CNVs can arise as a consequence of DNA replication errors or during the process of
52  DNA repair, with each of the implicated mechanisms of CNV formation yielding a
53 different sequence profile within the resulting breakpoint junction®. For example,
54  CNV formation can occur by the non-homologous end joining pathway when repair
55 of DNA double strand breaks erroneously involves ligating the broken ends of
56  different breaks instead of re-ligating the original site’. The editing of the broken
57 ends prior to ligation is performed without the use of a homologous template and,
58 consequently, the resulting breakpoint junctions in CNVs created by the non-
59 homologous end joining typically contain random bases with no or little homology to
60 the original sequence'®™. An alternative DNA repair mechanism implicated in CNV
61 formation involves the non-allelic homologous recombination pathway, which drives
62 the recombination of non-allelic genomic regions that share high sequence similarity,
63 such as low copy repeats’. A defining feature of CNVs arising through this
64 mechanism are long stretches of homology in the sequence flanking their
65 breakpoints®?. Finally, replication-based repair mechanisms of DNA repair, including

66 fork stalling and template switching, and microhomology-mediated break-induced
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67 replication, can create CNVs by switching the nascent DNA strand from a stalled or
68 collapsed replication fork to another fork in its vicinity, thereby giving rise to an

69 insertion or a deletion of a DNA segment*®**

. Importantly, invasion of an alternative
70 replication fork requires a small region of homology with the complementary strand in
71  order to prime the DNA synthesis. Therefore, CNVs formed by replication-based
72  repair mechanisms are characterised by the presence of microhomology within their

73 breakpoint sequence™.

74  Although the CNV genomic sequence holds essential clues as to the mechanisms
75 governing its formation, this information is not attainable from conventionally
76 employed techniques for CNV detection, such as the CGH arrays, Fluorescent In
77  Situ Hybridisation or quantitative PCR'®. By contrast, next generation sequencing
78 technology can be used to reveal the CNV sequence at the nucleotide level, with
79 increased or decreased numbers of mapped reads across genomic regions
80 indicating the presence of genomic amplifications or deletions, respectively™.
81 However, sequencing of the genome using short reads (<300bp) is ill-suited for CNV
82 detection due to the mapping ambiguity of short reads, particularly in the presence of
83 highly homologous or repetitive sequences'’. Recently, the advent of long read
84 sequencing technologies allowed reads to be uniquely mapped to the reference
85 genome, thus facilitating a more effective CNV detection and identification of

86 previously cryptic CNV breakpoints™®.

87 Here, we applied long-range next generation sequencing to two human PSC lines
88 that each harbour a 20g11.21 CNV, in order to delineate the CNV breakpoint
89 sequences, the orientation of the amplified segments and the genomic context
90 surrounding the CNV. The amplified segments were present in a head-to-tail
91 orientation in both of the lines and their breakpoints contained sequences of
92 microhomology, suggesting that the replication-based template switching
93 mechanisms were implicated in their genesis. Moreover, we identified Alu repetitive
94  sequences that intersect or flank the 20g11.21 CNV breakpoints. The presence of
95 such repetitive elements may cause inherent instability to this area of the genome,

96 making it a particular hotspot for CNV formation.

97
98 Results
99
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100 Detection of human PSC lines with chromosome 20g11.21 CNV

101

102 By interphase FISH analysis, the human embryonic stem cell (ESC) line MShef7-A4,
103  a subline of MShef7**?, and the human induced pluripotent stem cell (iPSC) line
104 NCRM1?# each exhibited a homogeneous population of cells with a tandem
105 duplication or a triplication of the chromosome 20ql1l1.21 region, respectively
106 (Supplementary Fig. 1). To identify the approximate proximal and distal breakpoint
107 position of the amplicon in each cell line (Fig. 1), we adapted our previously
108 published gPCR-based method for assessment of copy number of target loci and we
109 used it to assess the copy numbers of loci along the length of the q arm of
110  chromosome 20%°%
111  between the centromere and the DEFB115 gene (Fig. 1). In MShef7-A4, the distal
112  breakpoint of the tandem duplication was located between the TM9SF4 and ASXL1
113 genes (Fig. 1a, b), whereas in NCRML1 the amplicon was smaller with the distal

114  breakpoint positioned between the TPX2 and MYLK2 genes (Fig. 1a, c¢). In addition

. In both cell lines, the proximal breakpoint was positioned

115 to identifying the putative breakpoints at 20g11.21, gPCR analysis revealed the
116  presence of four copies of the amplicon in NCRM1, confirming the triplication of the
117 chromosome 20g11.21 region in this line (Fig. 1c).

118

119 Nanopore sequencing reveals the chromosome 20q11.21 breakpoint in MShef7-A4
120

121 To identify the location of the breakpoints at a single nucleotide resolution in
122 MShef7-A4 CNV and to determine the orientation of this tandem duplication, we
123  performed whole-genome Oxford Nanopore sequencing on DNA extracted from the
124  cells and aligned the sequencing reads to the hg38 human reference genome
125 assembly?®. The average read depth across chromosome 20 was 14.5 with a mean
126 read length of 15.2 kb. We noted an increased sequencing read depth along the
127 chromosome 20qg11.21 relative to the rest of the chromosome (22.8 versus 14.5,
128  respectively), indicative of a change in the copy number of this region (Fig. 2a)**?°.
129 A distinct drop in read coverage was observed at position 32,273,600 bp of the
130 chromosome 20 hg38 reference sequence (between TPX2 and MYLK2 genes),
131  which we surmised was to be the distal breakpoint and was in agreement with the
132  position we defined by gPCR (Fig. 1a and 2a). To represent reads which map to two

133 discontinuous locations in the genome, mapping algorithms “soft-clip” reads to
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134 indicate that a portion of the read in question does not map to the same position as
135 the remainder of the read. Soft-clipping of reads therefore provides evidence of
136  structural variation, in our case, tandem duplication, as reads which span
137 breakpoints map to disparate regions therefore triggering soft-clipping

26,27

138 (Supplementary Fig. 2) Furthermore, the soft-clipped proportion of the
139 sequencing read at the distal breakpoint can be used to infer the orientation of the
140 tandem duplication. We reasoned that, if the soft-clipped DNA sequence at the distal
141  breakpoint aligns to the reference genome between the centromere and DEFB115
142  gene, then these two distantly positioned DNA sequences must have been fused in a
143 head-to-tail orientation. However, if the soft-clipped portion of reads aligns to the
144  distal breakpoint in an inverted orientation, the duplication has occurred in a head-to-
145 head fashion. Therefore, we performed a BLAT pairwise sequence alignment of a
146  contig formed from the unmapped portion of the soft-clipped reads to identify their
147 genomic location?®. The contig aligned with 92% identity to a (GGAAT)n
148 microsatellite repeat in the pericentromeric region proximal of the DEFB115 gene,
149 confirming the head-to-tail orientation of the tandem duplication (Fig. 2b, c¢). This
150 microsatellite is positioned at 31,051,509-31,107,036 bp on chromosome 20, and is
151 flanked by two unmapped regions of the reference genome. We could not locate the
152 proximal breakpoint to a single nucleotide position, which we inferred was due to the
153 breakpoint being located in a currently unmapped region of the reference genome,
154  potentially in one of the regions we observed flanking the microsatellite.

155

156 To understand the mechanism of tandem duplication in MShef7-A4, we analysed the
157 breakpoint sequences for signatures commonly observed in copy number variants.
158 For the distal breakpoint, we analysed 500 bp of the reference genome sequence
159 (hg38) surrounding the junction (Fig. 2c). As we were unable to locate the proximal
160 breakpoint, we used the contig of the unmapped portions of the soft-clipped reads
161 found at the distal breakpoint (Fig. 2b, c), which revealed a region of micro-
162 homology (AGAATCACTTAAACC) that flanked both the proximal and distal
163 breakpoint positions (Fig. 2c). By consulting the Dfam database of transposable
164 elements, we observed that the distal region of microhomology lies within an AluSz6
165 retrotransposon that spans the distal breakpoint®®. These results suggest a role of
166 microhomology in the mutational mechanism of the tandem amplification of
167 chromosome 20 in the MShef7-A4 cell line.
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168

169 Break point mapping of a chromosome 20g11.21 tandem triplication

170

171  We used the same sequencing approach to identify and analyse the breakpoints in
172  the human iPSC cell line, NCRM1, which contains a tandem triplication in the
173  20911.21 region (Supplementary Fig. 2). Our Nanopore sequencing returned an
174  average read length of 19.9 kb at a mean depth of 20.3 across chromosome 20.
175 Consistent with our qPCR analysis, long-read sequencing identified a sole distal
176  breakpoint at position 31,813,288 bp between the TPX2 and MYLK2 genes. This
177  confirmed that both amplicon copies in NCRM1 have the same distal breakpoint
178 position. The increased read depth associated with copy number variants was
179 greater in NCRM1 (43.9) when compared with MShef7-A4, consistent with the
180 triplication indicated by our PCR and FISH analyses (Fig. 3a). To identify the
181 proximal breakpoint position, we performed a BLAT pairwise sequence alignment on
182 the unmapped portions of the soft-clipped reads. Our soft-clipped sequence aligned
183 with the reference genome at position 31,059,954 bp, within the same microsatellite
184 that was putatively identified as the proximal breakpoint region in MShef7-A4 (Fig.
185 3b, c¢). These data confirm that the tandem triplication of chromosome 20g11.21 in
186 NCRM1 has occurred in a head-to-tail orientation, and that each amplicon was of
187 equal length and contained the same breakpoint positions. Furthermore, we
188 observed a common microsatellite sequence at the proximal breakpoint in both cell
189 lines, and thus, its involvement could be complicit in the tandem amplifications that
190 commonly occur associated with chromosome 20q11.21.

191

192 To infer the mechanism involved in the tandem triplication of chromosome 20q11.21
193 in NCRM1, we interrogated the reference sequence at both the proximal and distal
194  breakpoint positions. We identified multiple regions of micro-homology (TGAA and
195 AATTGAA) that flanked both sides of the fusion junction (Fig. 3c). Furthermore, we
196 consulted the Dfam database of transposable elements and identified an AluSz6
197 element that was situated 9 bp downstream of the distal breakpoint (Fig. 3b, c). As
198 we were unable to find an Alu element at the proximal breakpoint itself, it is unlikely
199 the tandem duplication and triplication in MShef7-A4 and NCRML1, respectively, have
200 arisen through a mechanism of Alu-Alu recombination. Instead, we propose that the

201 Alu elements are sites of chromosome fragility, due to replication blockage®>*.
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202 Repair of stalled and collapsed forks would then proceed through replication fork
203  switching to complementary sites of microhomology, and strand invasion upstream

204  on the same or a homologous chromosome would generate a tandem amplification

205 (Fig. 4).
206

207 Discussion
208

209 The experiments reported here have revealed the breakpoints of tandem
210 amplifications of chromosome 20g11.21 in human PSC. The distal breakpoints were
211 all found to be located in, or close to Alu sequences. The proximal breakpoints were
212 located in a pericentromeric microsatellite region close to 31 Mb on chromosome 20.
213 In the case of NCRM1, each amplicon of the tandem triplication was of equal length
214  with the same breakpoint positions. A detailed characterisation of the breakpoints at
215 a single nucleotide level revealed short microhomologies that flank or overlap both
216 the proximal and distal breakpoints. These breakpoint characteristics are like scars
217  left by the repair mechanism that operated on the DNA lesion.

218

219 Although rare, breakpoint microhomology of between 1-4 bp long is occasionally
220 observed with CNV formed by non-homologous end joining (NHEJ)*?¢. As the
221 microhomology at the breakpoints of our lines was larger than 7 bp we excluded
222 classical NHEJ as the mechanism of tandem amplification. However, alternative
223 forms of end-joining such as microhomology mediated end joining do utilize larger
224  spans of homology or microhomology*’*?. These mechanisms differ from classical
225 NHEJ, as they do not perform blunt-end ligation and instead utilise end-resection at
226  DNA breaks to reveal overlapping micro-homologous single stranded DNA required
227  for annealing®®. We eliminated alternative end-joining from the potential mutagenic
228 mechanisms, as the microhomology in both MShef7 and NCRM1 was intact and
229 tandem amplifications are not readily explained by this mechanism *,

230

231 The tandem amplifications in MShef7 and NCRM1 had breakpoints devoid of large
232  regions of sequence homology, which ruled out mechanisms involving homologous

% However, the

233 recombination such as non-allelic homologous recombination
234  presence of an AluSz6 element at the distal breakpoints in both cell lines led us to

235 consider Alu-Alu-mediated non-allelic homologous recombination mechanism. For
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236  Alu-Alu-mediated non-allelic homologous recombination to take place it would
237  require a second Alu element at the proximal breakpoint with high sequence identity
238 with the distal Alu®. We found no evidence of a second Alu at the proximal
239  breakpoint in either of our cell lines. Despite this, the presence of AluSz6 at distal
240  breakpoints in both cell lines suggests that it might play a role in the initiation of
241 tandem amplifications, rather than in the mechanism of mutation itself. Inverted
242  repeats, such as Alu elements, form hairpin loop secondary structures that can
243  impede replication, leading to fork stalling and collapse, particularly under conditions
244 of replication stress®****"*° |t is perhaps no coincidence then, that this mechanism
245 of mutagenesis is associated with high levels of replication stress, which is a
246  characteristic of human PSC during in vitro culture®®>2.

247

248  The breakpoint signatures of the tandem amplifications characterised in MShef7-A4
249 and NCRML1 are consistent with the replication template switching mechanisms, fork
250 stalling and template switching and microhomology mediated break induced
251 replication, which are initiated by replication fork stalling and collapse,

252 respectively'®**

. In the case of fork stalling and template switching, the lagging
253 strand at the stalled fork disengages and invades another replication fork at a region
254  of microhomology. Microhomology mediated break induced replication is similar to
255 fork stalling and template switching, although following a collapsed fork the 5’ end of
256 the DNA break is resected to generate a 3’ single-stranded overhang that then
257 invades a template region with microhomology before replication is reinitiated. If the
258 template is upstream on the same chromosome or a homologous chromosome, a
259 tandem amplification would result (Fig. 4a, b)**!**>%3  Furthermore, the role of
260 microhomology mediated break induced replication and fork stalling and template
261  switching in the formation of tandem triplications has been discussed**>**°. Should
262 replication fork collapse lead to sister chromatid strand invasion at an upstream
263 region of microhomology, replication of the amplified segment will proceed. This
264  could then be followed by a second round of template switching and strand invasion
265 at the same region of microhomology, although this time into the other parental
266 homolog with replication proceeding to the distal end of the chromosome, resulting in
267 atandem triplication (Fig. 4a-c)

268
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269 In summary, we provide evidence from breakpoint junctions that implicate
270 replication-based repair by fork stalling and template switching and microhomology
271 mediated break induced replication as the mutational mechanism driving tandem
272  duplication in human PSC. We argue that constitutive replication stress observed
273  during the in vitro culture of human PSC could be driving replication fork stalling and
274  collapse at Alu elements that initiates these mutations. This report provides new
275 insight into the mechanisms of mutation in human PSC. The recurrent nature of
276  genetic change in human PSC is considered non-random due to the selection of
277 advantageous mutations. However, it was recently reported that mutations in human
278 PSC occur with higher frequency in non-genic regions®’. The data presented here
279 complements these findings and suggests that mutation itself may be non-random
280 but may be enriched at certain sites that can be characterised by the genomic
281 architecture. By defining these regions, it may be possible to safeguard the genome
282  stability of human PSC for their use in cell-based regenerative medicine.

283

284  Methods

285

286 Human pluripotent stem cell culture. The MShef7**® (hPSCreg:
287  https://hpscreg.eu/cell-line/lUOSe012-A) human ESC line was derived at the
288  University of Sheffield Centre for Stem Cell Biology under the HFEA licence R0O115-
289  8A (centre 0191) and HTA licence 22510. A mosaic sub-population of chromosome

290 20 variant cells was detected in a culture of MShef7, which was sub-cloned using
291 single cell deposition by FACS. The NCRM1%** (hPSCreg: https://hpscreg.eu/cell-
292  line/CRMi003-A) human iPSC line was acquired from RUCDR Infinite Biologics and

293 was originally derived by reprogramming umbilical cord blood CD34+ cells using a

294  non-integrating episomal vector. Both cell lines were maintained in culture vessels
295 coated with a matrix of Vitronectin human recombinant protein (ThermoFisher
296  Scientific, A14700) and batch fed daily with mTeSR (STEMCELL Technologies,
297 85850). Once the cells had reached confluency, they were passaged using ReLeSR
298 (STEMCELL Technologies, 05873) according to manufacturer’'s guidelines.

299

300 gPCR breakpoint determination. DNA was extracted from cell pellets using the
301 DNeasy Blood and Tissue kit (Qiagen, 69504). DNA quantity and quality were

302 measured using a NanoPhotometer (Implen). 1ug of DNA was digested with 10 units
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303 of FastDigest EcoRI enzyme (Thermo Fisher Scientific, FD0275) in FastDigest buffer
304 (Thermo Fisher Scientific, FD0275) for 5 minutes at 37°C, followed by deactivation of
305 the enzyme by incubating at 80°C for 5 minutes. gPCR was performed as previously

306 described™?? using the adapted protocol®?

whereby primer sets were designed
307 along the length of the q arm of chromosome 20 (Table 1) to allow an estimate of the
308 amplicon length. A 10yl PCR reaction contained TagMan Fast Universal PCR
309 mastermix (ThermoFisher Scientific, 4366072), 0.1 uM Universal probe library
310 hydrolysis probe, 0.1 uM each of the forward and reverse primers (Table 1) and
311 either 20ng of EcoRI-digested DNA or water only (no template control). The PCR
312 reactions were run on the QuantStudio 12K Flex Real-Time PCR System using the
313 following profile: 50°C for 2 minutes, 95°C for 10 minutes, and 40 cycles of 95°C for
314 15 seconds and 60°C for 1 minute. The copy number was determined by first
315 subtracting the average Cq values from the test sample 20q loci from the reference
316 loci (Chromosome 4p) to obtain a dCqg value. The dCq for the calibrator sample at
317 the same loci was then calculated in the same way and the test sample dCqg and
318 calibrator sample dCq were subtracted from one another to give ddCqg. The relative
319 quantity was calculated as 2°%““. Finally, to obtain the copy number, the relative
320 quantity value was multiplied by 2.

321

322 Table 1. gPCR breakpoint detection primer sets and probes %

Gene (location) Primer sequences (forward UPL probe number
Accession Number and reverse)

RELL1 (4p14) tgcttgctcagaaggagctt 12
NC_000004.12 tgggttcaggaacagagaca

DEFB115 (20g11.21) tcagcctgaacattctggtaaa 14
31,257,664 cacttgtcttttccccaaactc
NM_001037730.1

REM1 (20q11.21) Cccccttttctcactccacaa 46
31,475,272 tctgcagggggagaagtaca
NM_014012.5

TPX2 (20g11.21) cccccaaatcaggectac 35
31,739,101 ttaaagcaaaatccaggagtcaa
NM_012112.4

MYLK2 (20911.21) ggtcaggagaacccagagtg 16
31,819,375 gtctcccagggcacttcag

NC_000020.11

10


https://doi.org/10.1101/2020.07.11.198382
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.11.198382; this version posted July 12, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

XKR7 (20g11.21) gtgtcttaccggggtcctatc 3
31,968,002 gcctggaaggtgtgcagta

NM_033118.3

TM9SF4 (20g11.21) taatggagccaatgccagta 45
32,109,506 caaaaccagtttctgtgcecttt

NM_014742.3

ASXL1 (20911.21) gagtgtcactgtggatgggtag 13
32,358,062 ctggcatatggaaccctcac

NM_015338.5

323

324  Fluorescence in situ hybridisation (FISH) for the detection of chromosomal
325 variants. Human PSC were detached from culture flasks by incubating with TrypLE
326 Express Enzyme (Fisher Scientific, 11528856) for 3 minutes at 37°C. The cells were
327 collected in DMEM/F12 basal media (D6421, Sigma Aldrich) and centrifuged at 270
328 g for 8 minutes. To the cell pellet, 1 mL of pre-warmed 37°C 0.0375 M potassium
329 chloride was added. The cells were then centrifuged at 270 g for 8 minutes, before
330 fixing the cells by adding 2 mL fixative (3 parts methanol : 1 part acetic acid, v/v), in a
331 drop-wise manner under constant agitation. FISH detection of chromosomal variants
332 was performed by Sheffield Diagnostics Genetic Service. Analysis was performed on
333 100 interphase nuclei per sample that had been probed with D20S108 (BCL2L1)
334 probe.

335

336 DNA extraction for sequencing. DNA was extracted from cell pellets using the
337 DNeasy Blood and Tissue kit (Qiagen, 69504). DNA quantity and quality were
338 measured using a NanoPhotometer (Implen).

339

340 DNA sequencing. DNA library preparation was performed using the ligation (Oxford
341  Nanopore Technologies, SQK-LSK108) or Rapid sequencing kits (Oxford Nanopore
342 Technologies, SQK-RADO004) according to the manufacturer's Genomic DNA by
343 Ligation or Rapid Sequencing protocols, respectively. The whole genome libraries
344  were sequenced using the Oxford Nanopore MinlON or GridlON sequencers with the
345 R9.4.1 flow cell (Oxford Nanopore Technologies, FLO-MIN106D) following the
346  manufacturer’s instructions. Each flow cell yielded ~5 Gb of data.

347

11
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348 Data processing. Data exported as FASTQ files were mapped to the chromosome
349 20 hg38 reference sequence using minimap2 sequence aligner (version 2-2.15)%.
350 File management, merging, sorting and indexing was performed using Sambamba
351 (version 0.6.6) and Samtools (version 1.9)**. Breakpoint regions were inspected
352 manually using IGV genomic viewer®® and the breakpoint location was identified
353 based on read depth and soft-clipped sequence analysis. Briefly, the aligned and
354 sorted .bam files were opened using IGV genomic viewer with soft-clipped bases
355 enabled. The distal breakpoint region identified by gPCR was inspected and the
356 breakpoint at the single nucleotide level was located by identifying a region of
357 reduced read depth with soft-clipped reads that spanned the point of reduced read
358 coverage (Figure S2A, B). To identify the proximal breakpoint, the soft-clipped
359 proportion of the sequencing reads at the distal breakpoint were queried using BLAT
360 sequence alignment to identify the sequence matches in the human reference

361 genome with high similarity.
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Figure 1 | gPCR detection of distal breakpoint positions. a, A schematic showing
the position and order of genes probed by gPCR along the chromosome 20q11.21.
Primer sets were designed to target intronic regions of the genes displayed. b, Copy
number values for the human ESC line MShef7-A4, determined by qPCR for loci
along the length of chromosome 20g11.21. The primer location according to the
hg38 reference genome are also displayed with the gene names along the X axis. c,
The qPCR determined copy number for loci along the length of chromosome
20g11.21 in the NCRM1 human iPSC line. The copy number of four between
DEFB115 and TPX2 indicates a triplication of this region.

Figure 2 | Breakpoint junction detection in MShef7-A4 using Nanopore
sequencing. a, Sequencing read coverage of 30 kb spanning the breakpoint
junction at 32,273,600 bp (chromosome 20g11.21) of the hg38 reference genome.
Each dot indicates the read depth at a single base pair position. The red and blue
lines indicate the mean read depth before and after the breakpoint position,
respectively b, Schematic of the reference genome and the tandem duplication
detected in MShef7-A4. Junction between genome segment A-B and B-C represents

the proximal and distal breakpoint, respectively. The position of genes flanking and
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the location of the AluSz6 in relation to the breakpoint are depicted. ¢, Reference
sequence spanning the distal breakpoint (B — top, green), sequence of the
breakpoint junction (B/B fusion— middle) and the contig sequence of the distal side of
the proximal breakpoint (B — bottom, blue). The regions of microhomology that flank

the proximal and distal breakpoint is highlighted (red).

Figure 3 | Breakpoint position of the tandem triplication in NCRML1. a, Read
coverage of 30 kb surrounding the breakpoint junction 31,813,288 bp (chromosome
20911.21) of the hg38 reference genome. The mean read depth before and after the
breakpoint is shown (red line and blue line, respectively). b, Schematic depicting the
reference genome and the NCRML1 tandem triplication. The distal breakpoint lies
between the junction of B-C and the proximal breakpoint is located on the boundary
of the A-B segments. The genes flanking the breakpoint, as determined by gPCR are
depicted. The position of the AluSz6 identified from the Dfam database is
represented above the reference sequence schematic. The exact nucleotide position
of the proximal and distal breakpoint is written above the schematic of the tandem
triplication. ¢, Reference sequence spanning the distal breakpoint (B — top, green),
the proximal breakpoint (B — bottom, blue) and the combined amplification
breakpoint junction (B/B fusion — middle). The region of microhomology that flanks

each of the breakpoints is highlighted (red).

Figure 4 | Replication template switching is responsible for tandem
amplification in human PSC. a, Replication fork stalling is promoted by Alu
sequences that form hairpin loops. b, Replication fork repair by fork stalling and
template switching and/or microhomology mediated break induced replication is
initiated by strand invasion at a site of microhomology in the pericentromeric
microsatellite on the sister chromatid. Replication proceeds, duplicating 20g11.21. c,
An additional round of strand invasion and re-synthesis occurs of the other parent

homolog in examples of tandem triplication.
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