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Abstract

Exposure of cells to diverse types of stressful environments differentially regulate cell fate.
Although many types of stresses causing this differential regulation are known, it is unknown
how changes over time of the same stressor regulate cell fate. Changes in extracellular
osmolarity are critically involved in physiological and pathophysiological processes in several
tissues. We observe that human cells survive gradual but not acute hyperosmotic stress. We
find that stress, caspase, and apoptosis signaling do not activate during gradual stress in
contrast to acute treatments. Contrary to the current paradigm, we see a substantial
accumulation of proline in cells treated with gradual but not acute stresses. We show that
proline can protect cells from hyperosmotic stress similar to the osmoprotection in plants and
bacteria. Our studies found a cell fate switch that enables cells to survive gradually changing
stress environments by preventing caspase activation and protect cells through proline

accumulation.

Introduction
All cells employ signal transduction pathways to respond to physiologically relevant changes
in extracellular stressors, nutrient levels, hormones, and morphogens. These environments vary

as functions of both concentration and time in healthy and diseased states '. Cell signaling and
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cell fate responses to the environment are commonly studied using acute concentration
changes '. Only a few pioneering studies have explored the effects of the concentration and
time, which is a gradual change of stimuli as a function of time on cell signaling in microbes %=
and in mammalian cells *'°. Thus, the impact of the rate of environmental change on cell
signaling, cell fate, and phenotype is a fundamental and poorly understood cell biological
property (Fig. 1a). We address this lack in knowledge, by thoroughly measuring molecular

changes in cells exposed to gradual environmental changes.

To begin understand how the rate of environmental change regulates human cell fate
decisions, we systematically expose cells to varying temporal profiles of increasing NaCl
concentrations. NaCl is a ubiquitous osmolyte in the human body and causes cells to
experience hypertonic stress at concentrations that change over time "'~'3. While all tissues can
experience increased NaCl concentrations in their microenvironment, measurements of
osmolytes in the kidney have revealed very high physiological NaCl concentrations '*1°. In the
kidney, spatial gradients of different osmolytes exist that change over time under normal and

16—

pathophysiological conditions '®='8. Hypertonicity changes over time are also known to occur in

2122 and the skin . In many of these high

the intestinal system '°%°, the cerebrovascular discs
osmolarity tissues, resident immune cells provide basal protection or require migration upon an
immune response of additional immune cells ?*. Therefore, immune cells need to have the
ability to survive such harsh high osmolarity environments that change over time. We choose
immune cells as a model to systematically investigate how both rapidly and slowly increasing

hypertonic, yet physiological environments impact cell survival, signaling, and metabolism.

Results

The rate of environmental change regulates cellular phenotype.

We compared cell viability, cell signaling, and metabolism in cells exposed to either linear
(ramp) or acute (step) concentration changes in the environments in which the final
concentration and the total amount of osmotic stress (Area Under the Curve - AUC) is identical
(Figure 1a). We identified the dynamic range of cell viability by determining the tolerance of
monocytes (THP1 cell line, male, acute monocytic leukemia), T-cells (Jurkat, male, acute T cell
leukemia), and cervical cells (HeLa, female, cervical adenocarcinoma %) to step increases in
NaCl concentrations (Figure 1b). In the non-stress control condition, cells were grown in culture
under physiological NaCl concentrations of about 280 mosmol/l NaCl to which we added the

hypertonic osmolytes NaCl and mannitol. To stress the cells and mimic in vivo osmolyte
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changes, we added up to 400 mosmol/l NaCl to the cells (Figure 1, Supplementary Figure 1).
We observed that cell viability decreases with an increased NaCl concentration of up to 300
mosmol/l. At and above of 300 mosmol/I NaCl, cell viability is below 15% for all cell lines. Our
results with the abovementioned cell lines are consistent with previous studies in HelLa cells

(Figure 1b) ?°, indicating that different cell types respond similarly to hypertonic stress.

We then quantified the response of different cell lines (Jurkat and THP1) to different rates
and final NaCl concentrations (Figure 1c-d, Supplementary Figure 1). To compare the different
conditions for the same final NaCl concentration, we exposed cells to the same cumulative
exposure by integrating the total amount of NaCl over the entire profile (AUC). We performed
experiments for each NaCl concentration for ramp durations of up to 10h. For experiments with
ramp durations of less than 10h, cells stayed at the final NaCl concentration until the AUC is
identical to the 10h ramp experiment. When we exposed Jurkat cells to 300 mosmol/l hypertonic
osmolyte, viability improves from 15% to 40% for a ramp duration of at least 6h (Figure 1c
(black), Supplementary Figure 1c (cyan)). In comparison, a step increase of 200 mosmol/l NaCl
to the media for 5h reduced viability to around 50% and showed only minor improvement with
increases in ramp duration (Figure 1d (black), Supplementary Figure 1c (magenta)). For the
step condition of added 400 mosmol/l NaCl for 5 h, cell viability was below 5% and showed only
minor improvement with increasing ramp durations (Figure 1d (black), Supplementary Figure 1
(green and yellow)). These observations are consistent in THP1 cells, indicating that this effect
is reproducible in a different cell line and cell type (Figure 1c-d (light grey), Supplementary
Figure 1a). To distinguish the effect on cell viability between NaCl toxicity and changes in
external osmolarity, we repeated the experiments with mannitol in the Jurkat cell line at the
same osmolar concentrations (Figure 1c-d (dark grey), Supplementary Figure 1b). Mannitol is
not able to easily pass through the cell membrane and is known to have low cell toxicity. When
we added 300 mosmol/I Mannitol to the medium, Jurkat cells survive better during the ramp
compared to the step treatment. This comparison shows no difference between cells treated
with NaCl or Mannitol, indicating extracellular hypertonicity and not NaCl-specific toxicity drive
these effects. These results strongly suggest that cell viability improvements while slowly
increasing NaCl concentration are a robust cell type- and cell line-independent hypertonic stress

response.

A functional temporal screen identifies regulators of cell viability in step and ramp

conditions.
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Authors of previous studies argued that upregulation of genes encoding proteins responsible
for the accumulation of cell internal osmolytes such as taurine (TauT), betaine (BGT1), sorbitol
(AR) and inositol (SMIT) are the cause for improved viability in kidney cells exposed to a linear
increase in osmolarity '°. To address if indeed these osmolytes are increased in our
experiments, we determined the change in osmolyte levels in the cell by mass spectrometry
measured in 5h step and 10h ramp conditions both to a final osmolarity of additional 300
mosmol/l NaCl. We found that sorbitol, inositol, betaine, taurine, and urea do not change

compared to unstimulated cells (Figure 2a).

To understand which cellular mechanisms contribute to improved viability during the slow
ramp, we performed a temporal functional screen using a selected set of 27 well-established
and validated markers of cell state and signaling that contribute to cell viability (Figure 2b). We
grouped these into four cellular processes known to have an impact on cellular viability: stress
signaling (blue), caspase signaling (magenta), DNA damage (orange) and growth/survival &
infammation (green) (Figure 2b). Each of these processes are known to be affected by
increased NaCl concentrations ''. The process ‘stress signaling’ (blue) consists of markers
belonging to stress/mitogen-activated protein kinases (SAPK/MAPK) pathways such as
phosphorylated proteins p38 6%, JNK %, MK2 2°, ASK1 *°, MKK4 3!, HSP27 32, CREB **, ATF2
3 as well as protein levels of HSP70 3° and NFAT5/TonEBP ", MAPK pathways are known to
convey stress signals to alter gene expression and cell phenotype *8. Proteins in the ‘caspase
signaling’ group are initiator caspases®’, such as activated caspase 8 (extrinsic pathway) *° and
caspase 9 (intrinsic pathway) *°, effector caspase 3*'“?, cleaved PARP***3 (cPARP) as a
substrate of caspase 3 and histone H2AX (yH2AX), as a marker for the excessive DNA damage
caused by DNA degradation during apoptosis*. The ‘growth/survival & inflammation’ group
contain proteins that counteract apoptotic responses or indicate growth, proliferation, and
inflammatory stimulation. The group contains phosphorylated forms of Bad*®, Bcl2 “¢, two pro-
apoptotic proteins, mTOR /| a key node in the cell growth pathway, ribosomal protein S6 *, a
marker for active translation, and p-ZAP70***°, a marker for activated inflammatory signaling.
The group also contains proteins Bcl-XL°"?, an anti-apoptotic protein, Ki67 3, a general marker
of a cell proliferative activity, and NLRP3 **°°, a marker for the inflammasome, and intracellular
IFNy %%, a marker for inflammatory cytokine production. In response to DNA damage *' proteins

such as Noxa *°, Fas-L%%%" and BAX*® are expressed and fall into the group DNA damage.
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We used fluorescent cell barcoding for multiplex flow cytometry to identify differentially
regulated markers over time in step or ramp conditions %23, This functional temporal screen
allows us to uniquely encode each time point sample with a combination of two dye
concentrations (Figure 2c). We pooled barcoded samples and then split them again into
different tubes to stain each split sample with specific antibodies. The advantages of first
barcoding and then sample splitting are: reduced variability between samples; increased
throughput; and reduced cost for different markers. Using this approach, we screened protein
markers in Jurkat cells for their change over time in step versus 10h ramp experiments to an
additional concentration of 300 mosmol/I NaCl. After data collection, we demultiplexed each
sample with one or two protein markers to extract the individual time points (Figure 2c,d). To
quantify each marker’s response, we next computed the fraction of positive cells for this marker
and called this population ‘ON-fraction’ (Figure 2d,e). We then ploted the ON-fraction of each
marker at the end of the time course experiment between the ramp and the step treatment to
understand the correlation between the markers in each group (Figure 2f). This analysis
revealed several distinct response patterns: (a) We observed strong activation in step but not
ramp condition in cells with phosphorylated proteins of the caspase signaling group and p38 of
the stress signaling group (Figure 2g, Supplementary Figure 2). (b) We observed minimal
activation in step but strong activation in ramp conditions for some markers of stress response
(PASK, NFATS5, and HSP70) (Figure 2g (blue), Supplementary Figure 3), growth (Ki67), anti-
apoptotic (Bcl-XL), and inflammation (IFNy, NLRP3) (Figure 2h (green), Supplementary Figure
4), and markers of DNA damage (Figure 2h (orange), Supplementary Figure 5). (c) A screen for
other markers of cell survival, growth, and DNA damage reveals no significant differential
changes over time. Based on this temporal functional screen, we focused on protein markers of

the caspase signaling group.

Caspases differentially regulate step and ramp conditions.

Activated caspases 3, 8, 9, cleaved PARP and yH2AX all showed strong activation (ON-
fraction) during the 300 mosmol/l NaCl step treatment (Figure 3a-e, black, Supplementary
Figure 2e). Strikingly, caspase, and yH2AX activation, as well as PARP cleavage, are negligible
during the 10h ramp treatment condition to the same final concentration (Figure 3a-e, magenta,
Supplementary Figure 2e). Phosphorylation of yH2AX is also entirely prevented when caspase
activity is inhibited during step NaCl treatment by a pan-caspase inhibitor (Supplementary

Figure 6), which suggests prevention of apoptosis-associated destruction of DNA. Next, we
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166 investigated the contributions of caspases 3, 8, and 9 to the cell viability phenotype by

167  quantifying the time course of activation for each member of the caspase signaling group

168 relative to cleavage of PARP (Figure 3f). We found that caspase 3 (grey) is activated slightly
169  before its target cPARP (purple), as expected (Figure 3f). Surprisingly, we found activation of
170  the initiator caspases 8 (magenta) and 9 (cyan) after caspase 3 and cPARP. These results

171  suggest that caspase 3 contributes to the induction of apoptosis, but not cleaved caspase 8 and
172 9. To understand if these population-level effects are indeed observable in the same cell, we co-
173  stained cells with antibodies for activated caspase 9 and cPARP (Figure 4a). We found that

174  single cells that are negative for cPARP are never positive for activated caspase 9 at any point
175  during the treatment (Figure 4b). Cells positive for activated caspase 9 already have a high level
176  of cPARP, suggesting that caspase 9 cleavage is not causative for apoptosis induction in single
177  cells. Similarly, single cells co-stained for cPARP and activated caspase 8 are never negative
178  for cPARP and positive for activated caspase 8, at the same time throughout the time course
179  (Figure 4c). These results indicate no activation of caspase 8 before apoptosis induction (Figure
180  4d). In summary, these results suggest that activated caspase 3, but not activated caspase 8
181  and 9 contribute to PARP cleavage and subsequent induction of apoptosis (Figure 4d).

182

183  Caspase signaling is the main contributor to cell death in step conditions.

184 We next tested if these different caspases contributed to cell viability and addressed their
185  mechanism in an attempt to link dynamics in caspase activation to apoptosis and cell phenotype
186  (Figure 4e). In our ramp treatment condition to additional 300 mosmol/l NaCl in 10h, we found
187  that cell viability increases to 40% in comparison to 15% in step treatment of the same final

188  concentration and the total amount of NaCl relative to cells grown in control conditions (100%
189  viability) (Figure 4e, magenta area). We asked if this increase in viability is entirely related to the
190 lack of caspase activation and PARP cleavage, as observed in Figures 3 & 4. To test this idea,
191  we treated cells with a step of 300 mosmol/l NaCl in the presence of different, potent pan-

192  caspase inhibitors (panCas-i-a = Z-VAD-FMK®* panCas-i-b = Q-VD-OPH®) (Figure 4e). We

193  observed an increase in cell viability to 40%, which is the same as for the ramp treatment. This
194  result suggests that caspase activation and caspase-mediated apoptosis are necessary to

195  explain the reduction in viability during the step treatment relative to the ramp treatment.

196  Therefore we hypothesize that caspase-dependent apoptosis is the main contributor to the

197  difference in viability between the step and the long ramp treatment conditions.

198 We predicted that early caspase 3 activation triggers PARP cleavage and apoptosis

199 compared to late caspase 8 and 9 activation (Figures 3, 4a-d). To test this prediction, we
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exposed cells to inhibitors of caspase 8, caspase 9 alone, or in combination. We found that
inhibitors for caspase 8 and 9 do not substantially improve viability after step exposure to 300
mosmol/l NaCl (Figure 4e). As expected, we found that pan-caspase inhibition prevents the
cleavage of caspase 3 during the step treatment (Figure 4f).

Through our functional temporal screen, we also observed that p38 is strongly activated in
NaCl step treatment condition, as previously reported to occur in other mammalian cells (Figure
5a) 5% However, during a 10h ramp treatment, we found that p38 is only slightly activated,
perhaps playing a role in the decreased cell viability phenotype following step stimulation
relative to the ramp stimulation. However, we found that the inhibition of all p38 protein isoforms
by using a pan-p38 inhibitor (BIRB 796)°® had a statistically significant, but biologically small
effect on cell viability following step treatment condition (Figure 5b). From these results, we
conclude that the rate of hypertonic stress addition differentially regulates p38, but that p38

activity is not essential for the reduction in cell viability following step treatment.

Compared to p38, pASK, NFAT5, and HSP70 signals are reduced in step but not in ramp
conditions shortly after osmotic stress (Supplementary Figure 3c,d,e). Followed by this initial
drop are similar temporal profiles for step and ramp conditions. These results demonstrate that
the dynamics of NFAT5, pASK, and HSP70 are not differentially regulated. We also observed
similar dynamics for markers of the growth (Ki67), anti-apoptosis (Bcl-xL), inflammation (IFNy,
NLRP3), and the DNA damage (BAX, NOXA, and Fas-L) signaling groups (Supplementary
Figure 4b, d, e, f). Markers that did change over time but not strongly between step and ramp
conditions are the proliferation markers p-S6 and p-mTOR and pro-apoptotic protein p-BAD
(Supplementary Figure 4a, g, h). We observed no change given the error in the measurements
between step and ramp conditions for selected markers of stress signaling (p-MK2, p-JINK, p-
MKK4, p-HSP27, p-ATF2, and p-CREB), and an pro-apoptotic protein p-Bcl2 (Supplementary
Figures 3a, b, f, g, h, p, 4c).

Intracellular proline levels improve viability in ramp stress conditions

To better understand the protective mechanisms contributing to improved viability during the
ramp condition, we analyzed the abundance and fold changes of metabolites that may function
as cell internal osmolytes (Figure 6a, Supplementary Figure 7). We found that among the most
abundant metabolites are the amino acid proline, glutamic acid, and arginine. In comparison,

traditional osmolytes such as betaine, inositol, sorbitol, taurine, or urea are significantly less
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abundant in the cell (Supplementary Figure 7). Interestingly, of these amino acids, only proline
is differentially regulated in step and ramp conditions, rejecting the possibility that these amino
acids are only byproducts of protein degradation (Figure 6a). This result suggests that proline
may act as an osmoprotective molecule in human cells in ramp treatment conditions. The
increase in abundance of cell internal proline levels relative to other amino acids and organic
molecules suggests that cells import proline from the growth media. Elevated protein
degradation in the cell, would presumably result in an equal distribution of increased amino acid
abundance. We then tested if intracellular proline levels are independent of the activation of the
caspase pathway or if preventing caspase-mediated cell death results in higher levels of proline
in the cells. In these experiments, we exposed cells to a step treatment of NaCl with or without
pan-caspase inhibitor Z-VAD-FMK (Figure 6b). As in all previous experiments, we exposed cells
to the same cumulative exposure of NaCl for the same final NaCl concentration and compared
the results. We found that regardless of pan-caspase inhibition, cells accumulated significantly
less proline during the step treatment than cells exposed to the ramp treatment (Figure 6b). We
conclude that caspase inhibition during hypertonic stress does not result in additional proline
accumulation during the step treatment. This result indicates that caspase activation and proline
accumulation are independent. To test if extracellular levels of proline can improve cell viability
in the step treatment to 300 mosmol/l NaCl, we added free L-proline to the media of the cells
before applying hypertonic stress (Figure 6¢). We found a significant increase in viability due to
added proline, in comparison to cells were no additional proline was added (Figure 6c). This
result suggests that proline is transported into the cells and can protect mammalian cells from
hypertonic stress. It is well established that hyperosmotic stress upregulates transporters for
glutamine %97, Therefore, we tested if additional external L-glutamine, a precursor of proline’",
can also improve viability. When we added additional L-glutamine to the media before adding
NaCl, we observed a significant improvement in cell viability, similar to adding proline. Because
proline is a yet unidentified compound in the mammalian response to hyperosmotic stress, we
tested the effect of typical mammalian osmolytes on cell viability ">"®. When we added
compounds identified as physiological osmoprotectants to the media, such as taurine, sorbitol,
or betaine, we observe that these compounds seem to provide less or the same protection as
proline or glutamine, during hypertonic stress. These results demonstrate that proline and
glutamine are as effective as traditional osmolytes in protecting the cell from osmotic stress

(Supplementary Figure 8).
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265 Discussion

266 Previous studies have established that acute changes in environmental stimulus

267  concentrations can control cell fate. However, cells in physiological environments may not

268  necessarily experience such acute concentration changes. It is conceivable that typical solute
269  concentration changes are gradual over time with different kinetics '®'""*7, However, there is a
270 limited understanding of how a gradual change of stimulus concentrations affect cellular

271  responses. We investigated stress responses of human immune cells to ramp increases in the
272  concentrations of different osmolytes to address the key question of how varying the kinetics of
273  stimulation affect cellular responses. We found that in comparison to instantly changing

274 osmolyte concentrations, slow changes protect human immune cells from otherwise lethal

275  insults (Figure 1b-d, Supplementary Figure 1). These results indicated that sensitivity to the rate
276  of change of external osmolyte concentrations is a fundamental feature of human cells. These
277  results are important because they demonstrate that immune cells that migrate into and through
278  hypertonic tissues such as renal, intestinal, or epidermal tissue can survive hypertonic

279  conditions better if these changes occur at a low rate over time. These results are consistent
280  with pioneering studies indicating partial protection of renal medullary cells from slowly

281 increasing external osmolytes '*'*. The authors of these pioneering studies postulate an

282 increase in cell internal organic osmolytes is responsible for protecting cells exposed to

283  gradually increasing osmolyte gradients '°. Perhaps surprisingly, we found that well-established
284  osmolytes such as betaine, inositol, sorbitol, taurine, or urea did not increase at the end of our
285  experiments (Figure 2a). One reason for this observation is likely that kidney cells respond

286  differently to hypertonic stress than immune cells. Another reason is that we quantify cell

287  internal osmolytes at the end of the 10h ramp experiment, whereas the previous study analyzed
288 the response of cells 24h after the ramp treatment. We hypothesize that increases in traditional
289  cell internal osmolytes after 24h may indeed function as a secondary and long-term protection
290 against osmotic stress, but are not significant for short term protection. Because the step and
291 ramp conditions do not differentially regulate the concentrations of these osmolytes (Figure 2),
292  we studied the cellular pathways that are important in the regulation of cell viability during

293  hyperosmotic stress. We discovered differential regulation between ramp and step conditions of
294  caspases 3, 8, and 9 (Figure 3a-c). In step conditions a large fraction of cleaved caspases is
295  observed, whereas in ramp conditions only a small fraction of cells show cleaved caspases

296  (Figure 3a-c). This mechanism enables a population of cells to respond gradually to stresses
297  that change over time without changing the ability of individual cells to undergo apoptosis. It is

298 conceivable that in the kidney or the intestine, immune cells need to adjust not only to the
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absolute change but also to the rate of change in hypertonicity to avoid apoptosis. A property of
an adapting system is to distinguish between a rapid and a slow increase of a stimulus.

Adaptation has been studied in several important model systems, such as in yeast osmotic

3-5,76 2,77 8,9,78
)

stress response signaling , chemotaxis signaling in bacteria /", and mitogen and

developmental® signaling. These studies demonstrate that differential regulation of cell signaling
between step and ramp stimulation might be a universal feature of signal transduction pathways
by determining the presence or absence of a response to changes in the environment over time.

To better understand the mechanism of this observation, we analyzed the timing of caspase
activation in single cells. We discovered that activated caspase 3 and cleaved PARP increase
before activated caspase 8 and 9 (Figure 3f). These findings support previous studies
demonstrating that activated caspase 3 cleaves PARP “>*3. This observation is consistent with
published studies of apoptosis induction through caspase 9 protein recruitment, but not its
cleavage. Recruited caspase 9 then cleaves caspase 3, which subsequently cleaves PARP 39~
41 However, these cell population experiments cannot determine if indeed in a single cell,
caspase 3 cleaves PARP and not caspase 8 or 9 (Figure 4a-d). To test if indeed caspase 3
cleaves PARP in single cells, we quantified co-stained cells for cleaved caspase 3 and cleaved
PARP. Our single-cell analysis demonstrates that PARP gets cleaved before caspase 8 or 9,
supporting our results and are consistent with previous cell population studies ***'. From these
single-cell time-course experiments, we predicted that inhibition of caspase signaling in step
conditions increases cell viability similar to ramp conditions in single cells (Figure 4e). Because
PARP activates before caspases 8 and 9, we predicted that these caspases do not contribute
significantly to cell death. We indeed found that inhibiting caspase 8 or 9 individually, or together
does not improve viability (Figure 4e).

To better understand which proteins contribute to differential caspase activation and cell
survival, we analyzed changes in protein levels and/or phosphorylation states of upstream
markers for proteins contributing to and indicating stress, growth, pro-apoptosis, anti-apoptosis,
inflammation, and DNA damage. We separated these proteins into three groups. In the first
group of protein markers of stress (NFAT5, pASK, and HSP70), growth (Ki67), anti-apoptosis
(Bcl-xL), inflammation (IFNy, NLRP3), and DNA damage (BAX, NOXA, and Fas-L) drop rapidly
in step but not ramp conditions. These results could indicate that these markers can sense the
difference in the type of stress gradient in a switch-like manner, although the dynamics of their
distributions do not change overall. The second group of markers, such as proliferation markers
p-S6 and p-mTOR and pro-apoptotic protein p-BAD, decreased over time but showed no

differences between step and ramp conditions relative to the cumulative osmolyte exposure.
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These results indicate that a strong reduction of these markers is independent of the stress
kinetics. The third group of proteins, such as stress signaling (p-MK2, p-JINK, p-MKK4, p-
HSP27, p-ATF2, and p-CREB), and the pro-apoptotic protein p-Bcl2 did not show a clear

difference between step and ramp treatments given the experimental constraints.

We also investigated the well-established link between osmotic stress and p38 signaling.
We observed that p38 phosphorylation and phosphorylation of its target histone H2AX are also
differentially regulated in ramp and step conditions (Figures 3e, 5). However, inhibition of p38
does not contribute to cell viability improvement as much as caspase inhibition (Figure 5b).
These results are consistent with previous studies in macrophages where inhibition of stress
response pathways such as p38 or JNK did not contribute to caspase signaling ®’. This large
temporal functional screen establish caspase signaling as the main contributor to differential
regulation in step versus ramp stress condition compared to alternative signaling pathways of
stress, proliferation, anti-apoptosis, pro-apoptosis, inflammation, and DNA damage.

Together these results indicate that human immune cells can survive shallow gradients to
high osmolarity. This protective capability might be important because monocytes need to
migrate inside the kidney from the low osmolarity cortex, to the very high osmolarity medulla to
prevent bacterial infection 8'. These results then beg the question of how do cells survive
gradients of osmotic stresses that would otherwise be deadly?

We extended our initial analysis of cell internal organic osmolytes to a wide range of
metabolites measured in step and ramp conditions. Although we detected many well-
established osmolytes, their concentration is significantly lower than many other metabolites
that we detected (Figure 2A, Supplementary Figure 7). Also, none of these osmolytes change
significantly in step and ramp conditions (Figure 6). Instead, from this analysis, we discovered
disproportional proline increases compared to the other amino acids. This disproportional
increase for one amino acid excludes differential global protein degradation as a mechanism to
increase proline levels (Figure 6a,b). Supplementing external proline or one of its precursors
glutamine, protected cells from acute hypertonic stress, similar to stress protection in ramp
conditions (Figure 6¢). Although not well established in mammalian cells, in plants, proline acts
as an osmoprotective molecule, and its accumulation is a well-described mechanism applied by
plants to endure droughts and other stresses 883, Our results strongly suggest that the
accumulation of intracellular proline plays a role in the protection of human immune cells from
slowly increasing hypertonicity and the prevention of apoptosis (Figure 6¢, Supplementary

Figure 8).
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In summary, we propose a model (Figure 6d) in which step increases in hypertonicity
activate caspase signaling, PARP cleavage, and cause cell death. Whereas slowly increasing
hypertonicity did not activate caspase signaling, but instead caused accumulation of intracellular
proline. Proline is known to be upregulated during hypertonic stress in plants and bacteria to
have an osmoprotective function. Proline functions as an organic osmolyte, molecular
chaperone, metal chelator, and ROS scavenger independent of caspase activation 828486,
These properties make proline an efficient stress response molecule. We argue that proline has
a underestimated and critical role in protecting human cells from cell death in hypertonic
conditions and could explain how immune cells can survive in microenvironments within the
body that have extreme osmolarities that change over time such as the renal papilla or the

intestine.

Methods

Human cell culture

THP1 (ATCC® TIB-202™) cells were cultured at 0.5-1 x 1026 cells/ml in RPMI 1640 media
(Corning, Catalog#: 15-040-CV) containing 10% Heat inactivated FBS (Gibco, Catalog#: 16140-
071), 100 U/ml Penicillin-Streptomycin (Gibco, Catalog#: 15140-122), 2 mM L-alanyl-L-
glutamine dipeptide (GlutaMAX™, Gibco, Catalog#: 35050-061) and 0.05 mM 2-
Mercaptoethanol (Sigma, Catalog#: M3148) at 37 °C in a 5% CO2 humidity controlled
environment. Jurkat cells (Clone E6-1, ATCC® TIB-152™) and PBMCs (Stemcell technologies,
Catalog # 70025.1) were cultured at 0.5-1.5 x 1076 cells/ml in RPMI 1640 media (Corning,
Catalog#: 15-040-CV) containing 10% Heat inactivated FBS (Gibco, Catalog#: 16140-071), 100
U/ml Penicillin-Streptomycin (Gibco, Catalog#: 15140-122) and 2 mM L-alanyl-L-glutamine
dipeptide (GlutaMAX™, Gibco, Catalog#: 35050-061) at 37 °C in a 5% CO2 humidity controlled

environment. Experiments with PMBCs were carried out 30 min after thawing.

Experimental procedure for step and ramp stimuli application

A programmable pump (New Era Syringe Pump Systems, NE-1200) was used to apply
gradually increasing (ramp) profiles. In brief, the pumping rate and dispensed volume per
interval were calculated as described "° and uploaded to the pump via a computer. A syringe
pump driving a syringe (BD™, Catalog#: 309628) filled with 5 M NaCl (Corning, Catalog#: 46-
032-CV) solution connected to a needle (Jensen Global, Catalog#: JG21-1.0x) with tubing
(Scientific Commodities, Catalog#: BB31695-PE/4). The tubing was inserted into a foam stopper
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on an autoclaved glass flask (Pyrex, Catalog#: 4980-500) holding the suspension cells. Cells
were shaken at 100 rpm during the entire experiment using a CO2 resistant shaker, ensuring
proper mixing (Thermo Fisher Scientific, Catalog#: 88881101). For step stimulation, appropriate
amount of 5 M NaCl (Corning® 500 mL 5M Sodium Chloride, #46-032-CV) solution was added
by a syringe within 5 seconds to reach the desired final concentration. 5 ml of cells were
removed with a syringe (BD™, Catalog#: 309628) through autoclaved silicone tubing (Thermo
Scientific, Catalog#: 8600-0020) to collect time point samples.

Cell viability assay

Cell viability was measured with CellTiterGlo (Promega, Cat.#: G7571). Cells were transferred
to a white 96 well plate according to the manufacturer’s instructions and equilibrated to room
temperature for 10 minutes. CellTiterGlo reagent was added in a ratio 1:8 to cell suspension.
Luminescence was measured using a plate reader (Promega, GloMax Discover plate reader,
GMB3000). Relative viability was calculated by dividing luminescence values for each replicate

by mean luminescence of media control for each experiment.

Flow cytometry

Cells are fixed with 1.6% formaldehyde (Fisher, Catalog#: F79-4) in a 15 ml falcon tube.
Fixation was quenched by adding 200 mM Glycine after 8 minutes. Cells were washed with PBS
(Corning, Catalog#: 46-013-CM) and permeabilized with Methanol (Fisher, Catalog#: A454-4)
for 15 minutes on ice. Cells were washed with PBS and stained with Pacific-Blue NHS ester
(Pacific Blue™ Succinimidyl Ester, Thermo Fisher Scientific, #710163) and Pacific-Orange NHS
ester (Pacific Orange™ Succinimidyl Ester, Triethylammonium Salt, Thermo Fisher Scientific,
#P30253) for 30 minutes. Cells are blocked with 1% BSA (Rpi, Catalog#: A30075-100.0) in
PBS. Cells are washed and stained with a primary monoclonal antibody for 60 minutes at room
temperature. Flow cytometry was performed on BD LSRII (five lasers). All antibodies used in

this study are listed in supplementary Table 1.

Flow cytometry analysis

Flow cytometry data was analyzed with custom R software. The primary cell population was
gated on FSC-A vs. SSC-A by using the ‘flowcore’ package . The cell populations are
automatically debarcoded and the resulting data was analyzed using custom software in R
applying the following packages: ‘ggplot2’, ‘data.table’, ‘plyr’, ‘dplyr’, ‘flowViz’, ‘flowCore’,
‘flowStats’, ‘ggcyto’, ‘ReppEigen’, fields’, ‘ggridges’, ‘viridis’, ‘scales’ and ‘xml2’. The
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distributions between independent experiments with similar shapes are aligned for their 0
minute time point so that their means are identical. This offset was applied to all the distributions
in each experiment. Experiments are performed so that the total exposure to NaCl is identical
between step and ramp experiments. The distributions, and ON-fraction are plotted as a
function of the cumulative exposure. Plotting data as a function of the cumulative NaCl expose
helps to distinguish between changes related to the total NaCl exposure compared to the

temporal change in the NaCl concentration.

Inhibitor studies
All inhibitors used in this study are listed in Supplementary Table 2. Inhibitors were dissolved in
DMSO, and added 30 min before the start of the experiment to the cell culture media at

indicated concentrations.

Targeted Metabolomics Methodology

5 ml of cell suspension were pelleted, the supernatant was removed and resuspended in 90%
methanol. Analysis of metabolites was performed at the Vanderbilt University Mass
Spectrometry Research Center using an Acquity UPLC system (Waters, Milford, MA) interfaced
with a TSQ Quantum triple-stage quadrupole mass spectrometer (Thermo Scientific, San Jose,
CA), using heated electrospray ionization operating in multiple reaction monitoring (MRM)
mode. 500 pl of each cell lysate sample was blown to dryness with N2 and reconstituted with
150 pL of an Acetonitrile/H-O (2:1) solution containing stable isotope-labeled internal
standards: tyrosine-d; and lactate-"3C3 (Cambridge Isotope Lab, Tewksbury, MA). Centrifuged
the cell lysate at 10,000 g for 20 minutes, and injected 90 uL supernatant into UPLC. The
supernatant was chromatographically separated with a Zic-cHILIC column, 3 um, 150 x 2.1 mm
(Merck SeQuant, Darmstadt, Germany) at a flow rate of 300 uL/min. The mobile phases were A)
15 mM ammonium acetate with 0.2% acetic acid in water/acetonitrile (90:10, v/v), and B) 15 mM
ammonium acetate with 0.2% acetic acid in acetonitrile/water/methanol (90:5:5, v/v). The
gradient was as follows: 0 min, 85%B, 2 min, 85%B, 5 min, 30%B, 9 min, 30%B, 11 min, 85%B,
20 min, 85%B. We set the spray voltage to 5 kV and the capillary and vaporizer temperatures to
300°C and 185°C, with sheath gas and auxiliary gas set to 60 and 45 psi, respectively. The
skimmer offset was -10 V, and the collision energy varied for each transition. Metabolites were
identified based on predetermined peaks and elution times. The response ratio was calculated

for each detected metabolite relative to the internal standard.
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Figure 1: Human cell fate decisions are regulated differently upon step or ramp treatment conditions.
a) Environments such as concentration ramps, as observed in different physiological relevant conditions, may
differentially modulate cell signaling, cell fate, and phenotype even if the final concentration and total amount of
stress are identical. Step experiments finish earlier than ramp experiments to account for the same total
exposure or Area Under the Curve (AUC). b) We measured relative cell viability after exposure to instant
hyperosmotic stress (NaCl for 5h for Jurkat, THP1) or 24h (HeLa cells). Cell viability was determined by
measuring intracellular ATP (Jurkat, THP1) or cell counts (HeLa). The shaded area represents the standard
deviation (SD) (Jurkat, THP1) or Standard Error (SE) (HeLa) (25) c,d) Relative cell viability was determined for
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step and 10h ramp treatment after addition of (c) 300 mosmol/l osmolyte or (d) 200 and 400 mosmol/l
osmolyte. We determined viability at the end of the experiment after reaching the same cumulative exposure of
additional NaCl. Bars represent data from at least 3 independent experiments for each condition. Error bars
represent SD. Two-sided unpaired student’s t-test: **p<0.01, ***p<0.001, ****p<0.001.
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Figure 2: Temporal functional flow cytometry screen identifies differential regulation of stress and
caspase signaling during step and ramp hyperosmotic stress conditions. a) Mean response ratio of
cellular osmolytes relative to media measured in Jurkat cells exposed to an additional 300 mosmol/l NaCl and
determined by Mass spectrometry. Two-sided unpaired student’s t-test: **p<0.01, ns=not significant. b)
Overview of protein markers representing four cellular processes affecting viability. Each box lists the proteins
representing each process. c) Multiplex flow cytometry workflow to quantify dynamic changes in protein activity
over time: (1) Each time point is barcoded with a different combination of dyes. (ll) Barcoded cells are pooled
and split into different tubes for pairwise antibody staining. (l1l) We measured cells by flow cytometry and then
computationally demultiplexed the different time points for further analysis. d) A single-cell distribution obtained
by flow cytometry is threshold-gated (red line) to determine an ON-fraction. e) Representative flow cytometry
single-cell distributions for cleaved PARP (cPARP) at selected time points for step (black) and 10h ramp
(magenta) conditions (left). We quantified the fraction of cPARP positive cells (On-cells) as a function of time
(right, top) or cumulative NaCl exposure (right, bottom). We plotted mean (solid line) and standard deviation
(shaded area) of 3 — 10 biological replicas. f) We used endpoint measurement (magenta box in e) to determine
ON-fraction to compare changes for step and ramp conditions. g,h) Comparison of endpoint measurement of
mean ON-fraction between steps and ramps measured for individual markers of (g) caspase signaling
(magenta), stress signaling (blue), and (h) DNA damage (orange), Growth/survival & Inflammation (green) in
Jurkat cells in response to hypertonic stress. Circles represent the mean of 3-10 replicates per condition. ON-
fraction at the final time point of cells exposed to 300 mosmol/l NaCl by a step (5h) or a 10h ramp (10h).
Colored lines represent the SD. Black lines indicate linear regression fit lines. The shaded area represents

95% confidence interval.
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Figure 3: Differential caspase signaling regulates cell viability. a-d) Differential regulation of (a) cleaved
Caspase 3, (b) cleaved Caspase 8, (c) cleaved Caspase 9, (d) cleaved PARP, and (e) yH2AX in Jurkat cells
exposed to 300 mosmol/l NaCl by a step (black) or a 10h ramp (magenta). The left panel shows selected
single-cell distributions over the cumulative exposure with individual lines representing independent
experiments. Redline indicates the threshold for determining the ON-fraction. Right panels represent ON-
fraction mean and standard deviation of 3-10 independent experiments as a function of cumulative exposure of
NaCl. f) ON-fraction kinetics of caspase signaling markers over time indicate early (Caspase 3 and cPARP)

and late (Caspase 8 and 9) activation. Lines indicate mean and SD of 3-10 independent experiments.


https://doi.org/10.1101/2020.07.10.197871
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.197871; this version posted July 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

b)

® Cas9-/cPARP-
® Cas9-/cPARP+

Cas9+/cPARP-
® Cas9+/cPARP+

100

200 300

time [min]

® Cas8-/cPARP-
® Cas8-/cPARP+

Cas8+/cPARP-
® Cas8+/cPARP+

0 min | | 2 min | | 5 min | | 10 min | 1.00 1
4
10
10°1
2_ -
NN .
10'
(o))
o 15 min | | 20 min l | 30 min | I 60 min l IS
§_1o4- g
S 10% 1—— _“c_: 0.50 1
o W W W
R ) E
S 120 min | [ 180 min || 240 min || 300 min | 0.251
104_
T
T L TR
L Rl LK ' ' - 0.00 1 o
102 10* 10 10* 10% 10* 10% 10* 0
) cleaved PARP d)
0 min | | 2 min || 5 min || 10 min | 1.00 1
104_
103_? - = = ~
10°1 1"' .‘!' ‘!I'
101 | ® ; 3 0.751
[e0] C
@ 15 min || 20 min || 30 min || 60 min | 2
g 1041 3 8
e e w
2 17
B 10 d §
© 4014 ’ J
> 10 S
3 120 min || 180 min || 240 min | | 300 min | 0.95
104_
o
101 > )
ot 0.00
102 10* 10 10* 10® 10* 10%® 10*
e) cleaved PARP
1 2 Jdkk ok *k Jedk ok Kkk ok * ko k Jokok ok ns nS ns
> 1'0_ RAMP
= B +0 mosm/I NaCl
2 0.81 O +300 mosm/l NaCl
02') 06' 1. °
8 0.4 S . 1 I—“‘-‘
put Y ° & ¢ ®e ° o
0.2- o . Tﬁ T
, @ e °
0.0+ - -
Q ‘ ;\’b -'\30 ‘b}\ (b}\ ‘b}\'
QQ@& 00"’6 (\Ofo% & & 0&&@’\
& < X

time [min]

0 100 200 300

time [min]
e step @ panCas-i-a
aCaspase3
30
300 | X
_520_
120 | ©
g
T
pd
60 | g 10 |
04
0
102 10* 0 10020030
aCaspase3 time [min]


https://doi.org/10.1101/2020.07.10.197871
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.197871; this version posted July 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 4: Activated Caspase 8 or 9 are not initiating apoptosis in hyperosmotic stress. a) Single-cell
scatter plots of Jurkat cells co-stained with antibodies for cPARP and activated Caspase 9 measured by flow
cytometry after exposure to 300 mosmol/l NaCl for 5h. Black lines indicate thresholds to determine individual
fractions of low aCaspase9 and low cPARP (black), low aCaspase9, and high cPARP (magenta), high
aCaspase9 and high cPARP (purple) and high aCaspase9 and low cPARP (cyan). Circles represent single
cells. b) Quantification of fraction of cells stained for Caspase 9 activation and PARP cleavage over the time
course using the thresholds indicated in (a). c) Single-cell scatter plots of Jurkat cells co-stained with
antibodies for cPARP and activated Caspase 8 measured by flow cytometry after exposure to 300 mosmol/l
NaCl for 5h. Black lines indicate thresholds to determine individual fractions of low aCaspase8 and low cPARP
(black), low aCaspase8 and high cPARP (magenta), high aCaspase8 and high cPARP (purple) and high
aCaspase8 and low cPARP (cyan). d) Quantification of fraction of cells stained for Caspase 8 activation and
PARP cleavage over the time course using the thresholds indicated in (c). e) Relative viability of untreated
cells (grey), cells exposed to a 10h ramp (magenta) or 5h step treatment both to 300 mosmol/l NaCl (white)
exposed to different inhibitors. Inhibitors were added 30 min before NaCl at concentrations as follows:
“panCas-i-a” (pan-caspase inhibitor Z-VAD-FMK, 100 uM), “panCas-i-b” (pan-caspase inhibitor Q-VD-OPH,
100 uM), “Cas8-i” (Caspase 8 inhibitor Z-IETD-FMK, 100 uM), “Cas9-i" (Caspase 9 inhibitor Z-LEHD-FMK, 100
uM). Bars indicate the mean and SD of at least 3 replicates. Two-sided unpaired student’s t-test: **p<0.01,
***p<0.001, ****p<0.001, ns=not significant. f) Activated Caspase 3 (aCasapse 3) in Jurkat cells exposed to
300 mosmol/l NaCl step in presence (black) or absence (magenta) of pan-caspase inhibitor (Z-VAD-FMK, 20
uM). The left panel shows single-cell distributions over the cumulative exposure with individual lines
representing independent experiments. The Red line indicates the threshold for determining the ON-fraction.
Right panels represent the mean and standard deviation of 1-4 independent experiments as a function of

cumulative exposure.
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Figure 5: Contribution of p38 to apoptosis in hypertonic stress is minimal. a) Phosphorylation of p38 in
Jurkat cells exposed to 300 mosmol/l NaCl by a step (black) or a 10h ramp (blue). The left panel shows
selected single-cell distributions over the cumulative exposure with individual lines representing independent
experiments. The Red line indicates the threshold for determining a cell that is p38 phosphorylation positive
(ON-fraction). The right panel represents the ON-fraction mean and standard deviation of 3-10 independent
experiments as a function of cumulative exposure. b) Viability of Jurkat cells relative to untreated cells (control)
exposed to an additional 0 (grey) or 300 mosmol/l (white) NaCl for 5h (step) or 10h (ramp, purple),
respectively. Pan p38 inhibitor (pan-p38-i, BIRB796) was added 30 min before NaCl at concentrations at 10
uM. Circles represent single experiments. Bars indicate the mean and SD of at least 3 replicates. Two-sided

unpaired student’s t-test: **p<0.01, ****p<0.001.
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Figure 6: Intracellular proline protects human cells during ramp stress conditions. a) Fifteen most
abundant metabolites detected in Jurkat cells without stimulation (control media, black), after treatment with
step (magenta) or 10h ramp (cyan) to 300 mosmol/I NaCl. Bars represent the mean and standard deviation of
the fold change of each metabolite to the average metabolite concentration in the control condition (yellow line)
with circles representing individual replicates. b) Change of proline levels in Jurkat cells relative to control (no
additional NaCl) in 0 (black) or 300 mosmol/l NaCl for 5h without (step, magenta) or with pan-caspase inhibitor
“a” (Z-VAD-FMK, 100 uM)(purple) or a 300 mosmol/l NaCl ramp for 10h (cyan). Boxplots represent data of 4-
10 replicates with circles represent individual replicates as determined by Mass spectrometry. c) External
amino acid treatment impacts viability relative to untreated cells (control, grey) in Jurkat cells exposed to an
additional 0 or 300 mosmol/I NaCl for 5h (step) or 10h (10h ramp, blue shade), respectively. Amino acids were
added 60 min before NaCl at indicated concentrations. Pan-caspase inhibitor (Q-VD-OPH) was added 30 min
before NaCl at 100 uM. Bars indicate the mean and SD of at least 3 replicates. Two-sided unpaired student’s t-
test: *p<0.05, ***p<0.001, ****p<0.0001, ns=not significant. d) Model summarizing how instant stress conditions
cause activation of caspase signaling (C) and cell death (left, magenta) whereas the gradual increase of the
same stress to the same final concentration does not activate caspase signaling but instead increases

intracellular proline (P) as an osmolyte to protect cells against increasing stress (right, cyan).


https://doi.org/10.1101/2020.07.10.197871
http://creativecommons.org/licenses/by-nc-nd/4.0/

