

1 **Kinetics of osmotic stress regulates a cell fate switch of cell survival**

2

3 Alexander Thiemicke¹, and Gregor Neuert^{1-4,*}

4

5 ¹Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA

6 ²Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt
7 University, Nashville, TN, USA

8 ³Department of Biomedical Engineering, School of Engineering, Vanderbilt University,
9 Nashville, TN, USA

10 ⁴Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN,
11 USA

12

13 *Correspondence author email: gregor.neuert@vanderbilt.edu

14

15 **Abstract**

16 Exposure of cells to diverse types of stressful environments differentially regulate cell fate.
17 Although many types of stresses causing this differential regulation are known, it is unknown
18 how changes over time of the same stressor regulate cell fate. Changes in extracellular
19 osmolarity are critically involved in physiological and pathophysiological processes in several
20 tissues. We observe that human cells survive gradual but not acute hyperosmotic stress. We
21 find that stress, caspase, and apoptosis signaling do not activate during gradual stress in
22 contrast to acute treatments. Contrary to the current paradigm, we see a substantial
23 accumulation of proline in cells treated with gradual but not acute stresses. We show that
24 proline can protect cells from hyperosmotic stress similar to the osmoprotection in plants and
25 bacteria. Our studies found a cell fate switch that enables cells to survive gradually changing
26 stress environments by preventing caspase activation and protect cells through proline
27 accumulation.

28

29 **Introduction**

30 All cells employ signal transduction pathways to respond to physiologically relevant changes
31 in extracellular stressors, nutrient levels, hormones, and morphogens. These environments vary
32 as functions of both concentration and time in healthy and diseased states ¹. Cell signaling and

33 cell fate responses to the environment are commonly studied using acute concentration
34 changes ¹. Only a few pioneering studies have explored the effects of the concentration and
35 time, which is a gradual change of stimuli as a function of time on cell signaling in microbes ²⁻⁵
36 and in mammalian cells ⁶⁻¹⁰. Thus, the impact of the rate of environmental change on cell
37 signaling, cell fate, and phenotype is a fundamental and poorly understood cell biological
38 property (Fig. 1a). We address this lack in knowledge, by thoroughly measuring molecular
39 changes in cells exposed to gradual environmental changes.

40 To begin understand how the rate of environmental change regulates human cell fate
41 decisions, we systematically expose cells to varying temporal profiles of increasing NaCl
42 concentrations. NaCl is a ubiquitous osmolyte in the human body and causes cells to
43 experience hypertonic stress at concentrations that change over time ¹¹⁻¹³. While all tissues can
44 experience increased NaCl concentrations in their microenvironment, measurements of
45 osmolytes in the kidney have revealed very high physiological NaCl concentrations ^{14,15}. In the
46 kidney, spatial gradients of different osmolytes exist that change over time under normal and
47 pathophysiological conditions ¹⁶⁻¹⁸. Hypertonicity changes over time are also known to occur in
48 the intestinal system ^{19,20}, the cerebrovascular discs ^{21,22}, and the skin ²³. In many of these high
49 osmolarity tissues, resident immune cells provide basal protection or require migration upon an
50 immune response of additional immune cells ²⁴. Therefore, immune cells need to have the
51 ability to survive such harsh high osmolarity environments that change over time. We choose
52 immune cells as a model to systematically investigate how both rapidly and slowly increasing
53 hypertonic, yet physiological environments impact cell survival, signaling, and metabolism.

54

55 **Results**

56 **The rate of environmental change regulates cellular phenotype.**

57 We compared cell viability, cell signaling, and metabolism in cells exposed to either linear
58 (ramp) or acute (step) concentration changes in the environments in which the final
59 concentration and the total amount of osmotic stress (Area Under the Curve - AUC) is identical
60 (Figure 1a). We identified the dynamic range of cell viability by determining the tolerance of
61 monocytes (THP1 cell line, male, acute monocytic leukemia), T-cells (Jurkat, male, acute T cell
62 leukemia), and cervical cells (HeLa, female, cervical adenocarcinoma ²⁵) to step increases in
63 NaCl concentrations (Figure 1b). In the non-stress control condition, cells were grown in culture
64 under physiological NaCl concentrations of about 280 mosmol/l NaCl to which we added the
65 hypertonic osmolytes NaCl and mannitol. To stress the cells and mimic *in vivo* osmolyte

66 changes, we added up to 400 mosmol/l NaCl to the cells (Figure 1, Supplementary Figure 1).
67 We observed that cell viability decreases with an increased NaCl concentration of up to 300
68 mosmol/l. At and above of 300 mosmol/l NaCl, cell viability is below 15% for all cell lines. Our
69 results with the abovementioned cell lines are consistent with previous studies in HeLa cells
70 (Figure 1b) ²⁵, indicating that different cell types respond similarly to hypertonic stress.

71
72 We then quantified the response of different cell lines (Jurkat and THP1) to different rates
73 and final NaCl concentrations (Figure 1c-d, Supplementary Figure 1). To compare the different
74 conditions for the same final NaCl concentration, we exposed cells to the same cumulative
75 exposure by integrating the total amount of NaCl over the entire profile (AUC). We performed
76 experiments for each NaCl concentration for ramp durations of up to 10h. For experiments with
77 ramp durations of less than 10h, cells stayed at the final NaCl concentration until the AUC is
78 identical to the 10h ramp experiment. When we exposed Jurkat cells to 300 mosmol/l hypertonic
79 osmolyte, viability improves from 15% to 40% for a ramp duration of at least 6h (Figure 1c
80 (black), Supplementary Figure 1c (cyan)). In comparison, a step increase of 200 mosmol/l NaCl
81 to the media for 5h reduced viability to around 50% and showed only minor improvement with
82 increases in ramp duration (Figure 1d (black), Supplementary Figure 1c (magenta)). For the
83 step condition of added 400 mosmol/l NaCl for 5 h, cell viability was below 5% and showed only
84 minor improvement with increasing ramp durations (Figure 1d (black), Supplementary Figure 1
85 (green and yellow)). These observations are consistent in THP1 cells, indicating that this effect
86 is reproducible in a different cell line and cell type (Figure 1c-d (light grey), Supplementary
87 Figure 1a). To distinguish the effect on cell viability between NaCl toxicity and changes in
88 external osmolarity, we repeated the experiments with mannitol in the Jurkat cell line at the
89 same osmolar concentrations (Figure 1c-d (dark grey), Supplementary Figure 1b). Mannitol is
90 not able to easily pass through the cell membrane and is known to have low cell toxicity. When
91 we added 300 mosmol/l Mannitol to the medium, Jurkat cells survive better during the ramp
92 compared to the step treatment. This comparison shows no difference between cells treated
93 with NaCl or Mannitol, indicating extracellular hypertonicity and not NaCl-specific toxicity drive
94 these effects. These results strongly suggest that cell viability improvements while slowly
95 increasing NaCl concentration are a robust cell type- and cell line-independent hypertonic stress
96 response.

97
98 **A functional temporal screen identifies regulators of cell viability in step and ramp**
99 **conditions.**

100 Authors of previous studies argued that upregulation of genes encoding proteins responsible
101 for the accumulation of cell internal osmolytes such as taurine (TauT), betaine (BGT1), sorbitol
102 (AR) and inositol (SMIT) are the cause for improved viability in kidney cells exposed to a linear
103 increase in osmolarity ¹⁰. To address if indeed these osmolytes are increased in our
104 experiments, we determined the change in osmolyte levels in the cell by mass spectrometry
105 measured in 5h step and 10h ramp conditions both to a final osmolarity of additional 300
106 mosmol/l NaCl. We found that sorbitol, inositol, betaine, taurine, and urea do not change
107 compared to unstimulated cells (Figure 2a).

108

109 To understand which cellular mechanisms contribute to improved viability during the slow
110 ramp, we performed a temporal functional screen using a selected set of 27 well-established
111 and validated markers of cell state and signaling that contribute to cell viability (Figure 2b). We
112 grouped these into four cellular processes known to have an impact on cellular viability: stress
113 signaling (blue), caspase signaling (magenta), DNA damage (orange) and growth/survival &
114 inflammation (green) (Figure 2b). Each of these processes are known to be affected by
115 increased NaCl concentrations ¹¹. The process 'stress signaling' (blue) consists of markers
116 belonging to stress/mitogen-activated protein kinases (SAPK/MAPK) pathways such as
117 phosphorylated proteins p38 ^{26,27}, JNK ²⁸, MK2 ²⁹, ASK1 ³⁰, MKK4 ³¹, HSP27 ³², CREB ³³, ATF2
118 ³⁴, as well as protein levels of HSP70 ³⁵ and NFAT5/TonEBP ^{36,37}. MAPK pathways are known to
119 convey stress signals to alter gene expression and cell phenotype ³⁸. Proteins in the 'caspase
120 signaling' group are initiator caspases³⁹, such as activated caspase 8 (extrinsic pathway) ⁴⁰ and
121 caspase 9 (intrinsic pathway) ⁴⁰, effector caspase 3^{41,42}, cleaved PARP^{42,43} (cPARP) as a
122 substrate of caspase 3 and histone H2AX (γ H2AX), as a marker for the excessive DNA damage
123 caused by DNA degradation during apoptosis⁴⁴. The 'growth/survival & inflammation' group
124 contain proteins that counteract apoptotic responses or indicate growth, proliferation, and
125 inflammatory stimulation. The group contains phosphorylated forms of Bad⁴⁵, Bcl2 ⁴⁶, two pro-
126 apoptotic proteins, mTOR ⁴⁷, a key node in the cell growth pathway, ribosomal protein S6 ⁴⁸, a
127 marker for active translation, and p-ZAP70^{49,50}, a marker for activated inflammatory signaling.
128 The group also contains proteins Bcl-XL^{51,52}, an anti-apoptotic protein, Ki67 ⁵³, a general marker
129 of a cell proliferative activity, and NLRP3 ^{54,55}, a marker for the inflammasome, and intracellular
130 IFNy ⁵⁶, a marker for inflammatory cytokine production. In response to DNA damage ⁵⁷ proteins
131 such as Noxa ⁵⁸⁻⁶⁰, Fas-L ^{60,61}, and BAX⁵⁹ are expressed and fall into the group DNA damage.

132

133 We used fluorescent cell barcoding for multiplex flow cytometry to identify differentially
134 regulated markers over time in step or ramp conditions ^{62,63}. This functional temporal screen
135 allows us to uniquely encode each time point sample with a combination of two dye
136 concentrations (Figure 2c). We pooled barcoded samples and then split them again into
137 different tubes to stain each split sample with specific antibodies. The advantages of first
138 barcoding and then sample splitting are: reduced variability between samples; increased
139 throughput; and reduced cost for different markers. Using this approach, we screened protein
140 markers in Jurkat cells for their change over time in step versus 10h ramp experiments to an
141 additional concentration of 300 mosmol/l NaCl. After data collection, we demultiplexed each
142 sample with one or two protein markers to extract the individual time points (Figure 2c,d). To
143 quantify each marker's response, we next computed the fraction of positive cells for this marker
144 and called this population 'ON-fraction' (Figure 2d,e). We then plotted the ON-fraction of each
145 marker at the end of the time course experiment between the ramp and the step treatment to
146 understand the correlation between the markers in each group (Figure 2f). This analysis
147 revealed several distinct response patterns: (a) We observed strong activation in step but not
148 ramp condition in cells with phosphorylated proteins of the caspase signaling group and p38 of
149 the stress signaling group (Figure 2g, Supplementary Figure 2). (b) We observed minimal
150 activation in step but strong activation in ramp conditions for some markers of stress response
151 (pASK, NFAT5, and HSP70) (Figure 2g (blue), Supplementary Figure 3), growth (Ki67), anti-
152 apoptotic (Bcl-XL), and inflammation (IFN γ , NLRP3) (Figure 2h (green), Supplementary Figure
153 4), and markers of DNA damage (Figure 2h (orange), Supplementary Figure 5). (c) A screen for
154 other markers of cell survival, growth, and DNA damage reveals no significant differential
155 changes over time. Based on this temporal functional screen, we focused on protein markers of
156 the caspase signaling group.

157

158 **Caspases differentially regulate step and ramp conditions.**

159 Activated caspases 3, 8, 9, cleaved PARP and γ H2AX all showed strong activation (ON-
160 fraction) during the 300 mosmol/l NaCl step treatment (Figure 3a-e, black, Supplementary
161 Figure 2e). Strikingly, caspase, and γ H2AX activation, as well as PARP cleavage, are negligible
162 during the 10h ramp treatment condition to the same final concentration (Figure 3a-e, magenta,
163 Supplementary Figure 2e). Phosphorylation of γ H2AX is also entirely prevented when caspase
164 activity is inhibited during step NaCl treatment by a pan-caspase inhibitor (Supplementary
165 Figure 6), which suggests prevention of apoptosis-associated destruction of DNA. Next, we

166 investigated the contributions of caspases 3, 8, and 9 to the cell viability phenotype by
167 quantifying the time course of activation for each member of the caspase signaling group
168 relative to cleavage of PARP (Figure 3f). We found that caspase 3 (grey) is activated slightly
169 before its target cPARP (purple), as expected (Figure 3f). Surprisingly, we found activation of
170 the initiator caspases 8 (magenta) and 9 (cyan) after caspase 3 and cPARP. These results
171 suggest that caspase 3 contributes to the induction of apoptosis, but not cleaved caspase 8 and
172 9. To understand if these population-level effects are indeed observable in the same cell, we co-
173 stained cells with antibodies for activated caspase 9 and cPARP (Figure 4a). We found that
174 single cells that are negative for cPARP are never positive for activated caspase 9 at any point
175 during the treatment (Figure 4b). Cells positive for activated caspase 9 already have a high level
176 of cPARP, suggesting that caspase 9 cleavage is not causative for apoptosis induction in single
177 cells. Similarly, single cells co-stained for cPARP and activated caspase 8 are never negative
178 for cPARP and positive for activated caspase 8, at the same time throughout the time course
179 (Figure 4c). These results indicate no activation of caspase 8 before apoptosis induction (Figure
180 4d). In summary, these results suggest that activated caspase 3, but not activated caspase 8
181 and 9 contribute to PARP cleavage and subsequent induction of apoptosis (Figure 4d).
182

183 **Caspase signaling is the main contributor to cell death in step conditions.**

184 We next tested if these different caspases contributed to cell viability and addressed their
185 mechanism in an attempt to link dynamics in caspase activation to apoptosis and cell phenotype
186 (Figure 4e). In our ramp treatment condition to additional 300 mosmol/l NaCl in 10h, we found
187 that cell viability increases to 40% in comparison to 15% in step treatment of the same final
188 concentration and the total amount of NaCl relative to cells grown in control conditions (100%
189 viability) (Figure 4e, magenta area). We asked if this increase in viability is entirely related to the
190 lack of caspase activation and PARP cleavage, as observed in Figures 3 & 4. To test this idea,
191 we treated cells with a step of 300 mosmol/l NaCl in the presence of different, potent pan-
192 caspase inhibitors (panCas-i-a = Z-VAD-FMK⁶⁴,panCas-i-b = Q-VD-OPH⁶⁵) (Figure 4e). We
193 observed an increase in cell viability to 40%, which is the same as for the ramp treatment. This
194 result suggests that caspase activation and caspase-mediated apoptosis are necessary to
195 explain the reduction in viability during the step treatment relative to the ramp treatment.
196 Therefore we hypothesize that caspase-dependent apoptosis is the main contributor to the
197 difference in viability between the step and the long ramp treatment conditions.

198 We predicted that early caspase 3 activation triggers PARP cleavage and apoptosis
199 compared to late caspase 8 and 9 activation (Figures 3, 4a-d). To test this prediction, we

200 exposed cells to inhibitors of caspase 8, caspase 9 alone, or in combination. We found that
201 inhibitors for caspase 8 and 9 do not substantially improve viability after step exposure to 300
202 mosmol/l NaCl (Figure 4e). As expected, we found that pan-caspase inhibition prevents the
203 cleavage of caspase 3 during the step treatment (Figure 4f).

204 Through our functional temporal screen, we also observed that p38 is strongly activated in
205 NaCl step treatment condition, as previously reported to occur in other mammalian cells (Figure
206 5a) ^{66,67}. However, during a 10h ramp treatment, we found that p38 is only slightly activated,
207 perhaps playing a role in the decreased cell viability phenotype following step stimulation
208 relative to the ramp stimulation. However, we found that the inhibition of all p38 protein isoforms
209 by using a pan-p38 inhibitor (BIRB 796)⁶⁸ had a statistically significant, but biologically small
210 effect on cell viability following step treatment condition (Figure 5b). From these results, we
211 conclude that the rate of hypertonic stress addition differentially regulates p38, but that p38
212 activity is not essential for the reduction in cell viability following step treatment.

213 Compared to p38, pASK, NFAT5, and HSP70 signals are reduced in step but not in ramp
214 conditions shortly after osmotic stress (Supplementary Figure 3c,d,e). Followed by this initial
215 drop are similar temporal profiles for step and ramp conditions. These results demonstrate that
216 the dynamics of NFAT5, pASK, and HSP70 are not differentially regulated. We also observed
217 similar dynamics for markers of the growth (Ki67), anti-apoptosis (Bcl-xL), inflammation (IFN γ ,
218 NLRP3), and the DNA damage (BAX, NOXA, and Fas-L) signaling groups (Supplementary
219 Figure 4b, d, e, f). Markers that did change over time but not strongly between step and ramp
220 conditions are the proliferation markers p-S6 and p-mTOR and pro-apoptotic protein p-BAD
221 (Supplementary Figure 4a, g, h). We observed no change given the error in the measurements
222 between step and ramp conditions for selected markers of stress signaling (p-MK2, p-JINK, p-
223 MKK4, p-HSP27, p-ATF2, and p-CREB), and an pro-apoptotic protein p-Bcl2 (Supplementary
224 Figures 3a, b, f, g, h, p, 4c).

225

226 **Intracellular proline levels improve viability in ramp stress conditions**

227 To better understand the protective mechanisms contributing to improved viability during the
228 ramp condition, we analyzed the abundance and fold changes of metabolites that may function
229 as cell internal osmolytes (Figure 6a, Supplementary Figure 7). We found that among the most
230 abundant metabolites are the amino acid proline, glutamic acid, and arginine. In comparison,
231 traditional osmolytes such as betaine, inositol, sorbitol, taurine, or urea are significantly less

232 abundant in the cell (Supplementary Figure 7). Interestingly, of these amino acids, only proline
233 is differentially regulated in step and ramp conditions, rejecting the possibility that these amino
234 acids are only byproducts of protein degradation (Figure 6a). This result suggests that proline
235 may act as an osmoprotective molecule in human cells in ramp treatment conditions. The
236 increase in abundance of cell internal proline levels relative to other amino acids and organic
237 molecules suggests that cells import proline from the growth media. Elevated protein
238 degradation in the cell, would presumably result in an equal distribution of increased amino acid
239 abundance. We then tested if intracellular proline levels are independent of the activation of the
240 caspase pathway or if preventing caspase-mediated cell death results in higher levels of proline
241 in the cells. In these experiments, we exposed cells to a step treatment of NaCl with or without
242 pan-caspase inhibitor Z-VAD-FMK (Figure 6b). As in all previous experiments, we exposed cells
243 to the same cumulative exposure of NaCl for the same final NaCl concentration and compared
244 the results. We found that regardless of pan-caspase inhibition, cells accumulated significantly
245 less proline during the step treatment than cells exposed to the ramp treatment (Figure 6b). We
246 conclude that caspase inhibition during hypertonic stress does not result in additional proline
247 accumulation during the step treatment. This result indicates that caspase activation and proline
248 accumulation are independent. To test if extracellular levels of proline can improve cell viability
249 in the step treatment to 300 mosmol/l NaCl, we added free L-proline to the media of the cells
250 before applying hypertonic stress (Figure 6c). We found a significant increase in viability due to
251 added proline, in comparison to cells were no additional proline was added (Figure 6c). This
252 result suggests that proline is transported into the cells and can protect mammalian cells from
253 hypertonic stress. It is well established that hyperosmotic stress upregulates transporters for
254 glutamine^{69,70}. Therefore, we tested if additional external L-glutamine, a precursor of proline⁷¹,
255 can also improve viability. When we added additional L-glutamine to the media before adding
256 NaCl, we observed a significant improvement in cell viability, similar to adding proline. Because
257 proline is a yet unidentified compound in the mammalian response to hyperosmotic stress, we
258 tested the effect of typical mammalian osmolytes on cell viability^{72,73}. When we added
259 compounds identified as physiological osmoprotectants to the media, such as taurine, sorbitol,
260 or betaine, we observe that these compounds seem to provide less or the same protection as
261 proline or glutamine, during hypertonic stress. These results demonstrate that proline and
262 glutamine are as effective as traditional osmolytes in protecting the cell from osmotic stress
263 (Supplementary Figure 8).

264

265 **Discussion**

266 Previous studies have established that acute changes in environmental stimulus
267 concentrations can control cell fate. However, cells in physiological environments may not
268 necessarily experience such acute concentration changes. It is conceivable that typical solute
269 concentration changes are gradual over time with different kinetics ^{16,17,74,75}. However, there is a
270 limited understanding of how a gradual change of stimulus concentrations affect cellular
271 responses. We investigated stress responses of human immune cells to ramp increases in the
272 concentrations of different osmolytes to address the key question of how varying the kinetics of
273 stimulation affect cellular responses. We found that in comparison to instantly changing
274 osmolyte concentrations, slow changes protect human immune cells from otherwise lethal
275 insults (Figure 1b-d, Supplementary Figure 1). These results indicated that sensitivity to the rate
276 of change of external osmolyte concentrations is a fundamental feature of human cells. These
277 results are important because they demonstrate that immune cells that migrate into and through
278 hypertonic tissues such as renal, intestinal, or epidermal tissue can survive hypertonic
279 conditions better if these changes occur at a low rate over time. These results are consistent
280 with pioneering studies indicating partial protection of renal medullary cells from slowly
281 increasing external osmolytes ^{10,14}. The authors of these pioneering studies postulate an
282 increase in cell internal organic osmolytes is responsible for protecting cells exposed to
283 gradually increasing osmolyte gradients ¹⁰. Perhaps surprisingly, we found that well-established
284 osmolytes such as betaine, inositol, sorbitol, taurine, or urea did not increase at the end of our
285 experiments (Figure 2a). One reason for this observation is likely that kidney cells respond
286 differently to hypertonic stress than immune cells. Another reason is that we quantify cell
287 internal osmolytes at the end of the 10h ramp experiment, whereas the previous study analyzed
288 the response of cells 24h after the ramp treatment. We hypothesize that increases in traditional
289 cell internal osmolytes after 24h may indeed function as a secondary and long-term protection
290 against osmotic stress, but are not significant for short term protection. Because the step and
291 ramp conditions do not differentially regulate the concentrations of these osmolytes (Figure 2),
292 we studied the cellular pathways that are important in the regulation of cell viability during
293 hyperosmotic stress. We discovered differential regulation between ramp and step conditions of
294 caspases 3, 8, and 9 (Figure 3a-c). In step conditions a large fraction of cleaved caspases is
295 observed, whereas in ramp conditions only a small fraction of cells show cleaved caspases
296 (Figure 3a-c). This mechanism enables a population of cells to respond gradually to stresses
297 that change over time without changing the ability of individual cells to undergo apoptosis. It is
298 conceivable that in the kidney or the intestine, immune cells need to adjust not only to the

299 absolute change but also to the rate of change in hypertonicity to avoid apoptosis. A property of
300 an adapting system is to distinguish between a rapid and a slow increase of a stimulus.
301 Adaptation has been studied in several important model systems, such as in yeast osmotic
302 stress response signaling^{3-5,76}, chemotaxis signaling in bacteria^{2,77}, and mitogen^{8,9,78}, and
303 developmental⁶ signaling. These studies demonstrate that differential regulation of cell signaling
304 between step and ramp stimulation might be a universal feature of signal transduction pathways
305 by determining the presence or absence of a response to changes in the environment over time.

306 To better understand the mechanism of this observation, we analyzed the timing of caspase
307 activation in single cells. We discovered that activated caspase 3 and cleaved PARP increase
308 before activated caspase 8 and 9 (Figure 3f). These findings support previous studies
309 demonstrating that activated caspase 3 cleaves PARP^{42,43}. This observation is consistent with
310 published studies of apoptosis induction through caspase 9 protein recruitment, but not its
311 cleavage. Recruited caspase 9 then cleaves caspase 3, which subsequently cleaves PARP³⁹⁻
312⁴¹. However, these cell population experiments cannot determine if indeed in a single cell,
313 caspase 3 cleaves PARP and not caspase 8 or 9 (Figure 4a-d). To test if indeed caspase 3
314 cleaves PARP in single cells, we quantified co-stained cells for cleaved caspase 3 and cleaved
315 PARP. Our single-cell analysis demonstrates that PARP gets cleaved before caspase 8 or 9,
316 supporting our results and are consistent with previous cell population studies^{39,41}. From these
317 single-cell time-course experiments, we predicted that inhibition of caspase signaling in step
318 conditions increases cell viability similar to ramp conditions in single cells (Figure 4e). Because
319 PARP activates before caspases 8 and 9, we predicted that these caspases do not contribute
320 significantly to cell death. We indeed found that inhibiting caspase 8 or 9 individually, or together
321 does not improve viability (Figure 4e).

322 To better understand which proteins contribute to differential caspase activation and cell
323 survival, we analyzed changes in protein levels and/or phosphorylation states of upstream
324 markers for proteins contributing to and indicating stress, growth, pro-apoptosis, anti-apoptosis,
325 inflammation, and DNA damage. We separated these proteins into three groups. In the first
326 group of protein markers of stress (NFAT5, pASK, and HSP70), growth (Ki67), anti-apoptosis
327 (Bcl-xL), inflammation (IFN γ , NLRP3), and DNA damage (BAX, NOXA, and Fas-L) drop rapidly
328 in step but not ramp conditions. These results could indicate that these markers can sense the
329 difference in the type of stress gradient in a switch-like manner, although the dynamics of their
330 distributions do not change overall. The second group of markers, such as proliferation markers
331 p-S6 and p-mTOR and pro-apoptotic protein p-BAD, decreased over time but showed no
332 differences between step and ramp conditions relative to the cumulative osmolyte exposure.

333 These results indicate that a strong reduction of these markers is independent of the stress
334 kinetics. The third group of proteins, such as stress signaling (p-MK2, p-JINK, p-MKK4, p-
335 HSP27, p-ATF2, and p-CREB), and the pro-apoptotic protein p-Bcl2 did not show a clear
336 difference between step and ramp treatments given the experimental constraints.

337

338 We also investigated the well-established link between osmotic stress and p38 signaling.
339 We observed that p38 phosphorylation and phosphorylation of its target histone H2AX are also
340 differentially regulated in ramp and step conditions (Figures 3e, 5). However, inhibition of p38
341 does not contribute to cell viability improvement as much as caspase inhibition (Figure 5b).
342 These results are consistent with previous studies in macrophages where inhibition of stress
343 response pathways such as p38 or JNK did not contribute to caspase signaling⁶⁷. This large
344 temporal functional screen establish caspase signaling as the main contributor to differential
345 regulation in step versus ramp stress condition compared to alternative signaling pathways of
346 stress, proliferation, anti-apoptosis, pro-apoptosis, inflammation, and DNA damage.

347 Together these results indicate that human immune cells can survive shallow gradients to
348 high osmolarity. This protective capability might be important because monocytes need to
349 migrate inside the kidney from the low osmolarity cortex, to the very high osmolarity medulla to
350 prevent bacterial infection⁸¹. These results then beg the question of how do cells survive
351 gradients of osmotic stresses that would otherwise be deadly?

352 We extended our initial analysis of cell internal organic osmolytes to a wide range of
353 metabolites measured in step and ramp conditions. Although we detected many well-
354 established osmolytes, their concentration is significantly lower than many other metabolites
355 that we detected (Figure 2A, Supplementary Figure 7). Also, none of these osmolytes change
356 significantly in step and ramp conditions (Figure 6). Instead, from this analysis, we discovered
357 disproportional proline increases compared to the other amino acids. This disproportional
358 increase for one amino acid excludes differential global protein degradation as a mechanism to
359 increase proline levels (Figure 6a,b). Supplementing external proline or one of its precursors
360 glutamine, protected cells from acute hypertonic stress, similar to stress protection in ramp
361 conditions (Figure 6c). Although not well established in mammalian cells, in plants, proline acts
362 as an osmoprotective molecule, and its accumulation is a well-described mechanism applied by
363 plants to endure droughts and other stresses^{82,83}. Our results strongly suggest that the
364 accumulation of intracellular proline plays a role in the protection of human immune cells from
365 slowly increasing hypertonicity and the prevention of apoptosis (Figure 6c, Supplementary
366 Figure 8).

367 In summary, we propose a model (Figure 6d) in which step increases in hypertonicity
368 activate caspase signaling, PARP cleavage, and cause cell death. Whereas slowly increasing
369 hypertonicity did not activate caspase signaling, but instead caused accumulation of intracellular
370 proline. Proline is known to be upregulated during hypertonic stress in plants and bacteria to
371 have an osmoprotective function. Proline functions as an organic osmolyte, molecular
372 chaperone, metal chelator, and ROS scavenger independent of caspase activation^{82,84–86}.
373 These properties make proline an efficient stress response molecule. We argue that proline has
374 a underestimated and critical role in protecting human cells from cell death in hypertonic
375 conditions and could explain how immune cells can survive in microenvironments within the
376 body that have extreme osmolarities that change over time such as the renal papilla or the
377 intestine.

378

379 **Methods**

380

381 **Human cell culture**

382 THP1 (ATCC® TIB-202™) cells were cultured at $0.5\text{--}1 \times 10^6$ cells/ml in RPMI 1640 media
383 (Corning, Catalog#: 15-040-CV) containing 10% Heat inactivated FBS (Gibco, Catalog#: 16140-
384 071), 100 U/ml Penicillin-Streptomycin (Gibco, Catalog#: 15140-122), 2 mM L-alanyl-L-
385 glutamine dipeptide (GlutaMAX™, Gibco, Catalog#: 35050-061) and 0.05 mM 2-
386 Mercaptoethanol (Sigma, Catalog#: M3148) at 37 °C in a 5% CO₂ humidity controlled
387 environment. Jurkat cells (Clone E6-1, ATCC® TIB-152™) and PBMCs (Stemcell technologies,
388 Catalog # 70025.1) were cultured at $0.5\text{--}1.5 \times 10^6$ cells/ml in RPMI 1640 media (Corning,
389 Catalog#: 15-040-CV) containing 10% Heat inactivated FBS (Gibco, Catalog#: 16140-071), 100
390 U/ml Penicillin-Streptomycin (Gibco, Catalog#: 15140-122) and 2 mM L-alanyl-L-glutamine
391 dipeptide (GlutaMAX™, Gibco, Catalog#: 35050-061) at 37 °C in a 5% CO₂ humidity controlled
392 environment. Experiments with PMBCs were carried out 30 min after thawing.

393

394 **Experimental procedure for step and ramp stimuli application**

395 A programmable pump (New Era Syringe Pump Systems, NE-1200) was used to apply
396 gradually increasing (ramp) profiles. In brief, the pumping rate and dispensed volume per
397 interval were calculated as described⁷⁵ and uploaded to the pump via a computer. A syringe
398 pump driving a syringe (BD™, Catalog#: 309628) filled with 5 M NaCl (Corning, Catalog#: 46-
399 032-CV) solution connected to a needle (Jensen Global, Catalog#: JG21-1.0x) with tubing
400 (Scientific Commodities, Catalog#: BB31695-PE/4). The tubing was inserted into a foam stopper

401 on an autoclaved glass flask (Pyrex, Catalog#: 4980-500) holding the suspension cells. Cells
402 were shaken at 100 rpm during the entire experiment using a CO₂ resistant shaker, ensuring
403 proper mixing (Thermo Fisher Scientific, Catalog#: 88881101). For step stimulation, appropriate
404 amount of 5 M NaCl (Corning® 500 mL 5M Sodium Chloride, #46-032-CV) solution was added
405 by a syringe within 5 seconds to reach the desired final concentration. 5 ml of cells were
406 removed with a syringe (BD™, Catalog#: 309628) through autoclaved silicone tubing (Thermo
407 Scientific, Catalog#: 8600-0020) to collect time point samples.

408

409 **Cell viability assay**

410 Cell viability was measured with CellTiterGlo (Promega, Cat.#: G7571). Cells were transferred
411 to a white 96 well plate according to the manufacturer's instructions and equilibrated to room
412 temperature for 10 minutes. CellTiterGlo reagent was added in a ratio 1:8 to cell suspension.
413 Luminescence was measured using a plate reader (Promega, GloMax Discover plate reader,
414 GM3000). Relative viability was calculated by dividing luminescence values for each replicate
415 by mean luminescence of media control for each experiment.

416

417 **Flow cytometry**

418 Cells are fixed with 1.6% formaldehyde (Fisher, Catalog#: F79-4) in a 15 ml falcon tube.
419 Fixation was quenched by adding 200 mM Glycine after 8 minutes. Cells were washed with PBS
420 (Corning, Catalog#: 46-013-CM) and permeabilized with Methanol (Fisher, Catalog#: A454-4)
421 for 15 minutes on ice. Cells were washed with PBS and stained with Pacific-Blue NHS ester
422 (Pacific Blue™ Succinimidyl Ester, Thermo Fisher Scientific, #P10163) and Pacific-Orange NHS
423 ester (Pacific Orange™ Succinimidyl Ester, Triethylammonium Salt, Thermo Fisher Scientific,
424 #P30253) for 30 minutes. Cells are blocked with 1% BSA (Rpi, Catalog#: A30075-100.0) in
425 PBS. Cells are washed and stained with a primary monoclonal antibody for 60 minutes at room
426 temperature. Flow cytometry was performed on BD LSRII (five lasers). All antibodies used in
427 this study are listed in supplementary Table 1.

428

429 **Flow cytometry analysis**

430 Flow cytometry data was analyzed with custom R software. The primary cell population was
431 gated on FSC-A vs. SSC-A by using the 'flowcore' package ⁸⁷. The cell populations are
432 automatically debarcoded and the resulting data was analyzed using custom software in R
433 applying the following packages: 'ggplot2', 'data.table', 'plyr', 'dplyr', 'flowViz', 'flowCore',
434 'flowStats', 'ggcyto', 'RcppEigen', 'fields', 'ggridges', 'viridis', 'scales' and 'xml2'. The

435 distributions between independent experiments with similar shapes are aligned for their 0
436 minute time point so that their means are identical. This offset was applied to all the distributions
437 in each experiment. Experiments are performed so that the total exposure to NaCl is identical
438 between step and ramp experiments. The distributions, and ON-fraction are plotted as a
439 function of the cumulative exposure. Plotting data as a function of the cumulative NaCl exposure
440 helps to distinguish between changes related to the total NaCl exposure compared to the
441 temporal change in the NaCl concentration.

442

443 **Inhibitor studies**

444 All inhibitors used in this study are listed in Supplementary Table 2. Inhibitors were dissolved in
445 DMSO, and added 30 min before the start of the experiment to the cell culture media at
446 indicated concentrations.

447

448 **Targeted Metabolomics Methodology**

449 5 ml of cell suspension were pelleted, the supernatant was removed and resuspended in 90%
450 methanol. Analysis of metabolites was performed at the Vanderbilt University Mass
451 Spectrometry Research Center using an Acquity UPLC system (Waters, Milford, MA) interfaced
452 with a TSQ Quantum triple-stage quadrupole mass spectrometer (Thermo Scientific, San Jose,
453 CA), using heated electrospray ionization operating in multiple reaction monitoring (MRM)
454 mode. 500 μ L of each cell lysate sample was blown to dryness with N_2 and reconstituted with
455 150 μ L of an Acetonitrile/ H_2O (2:1) solution containing stable isotope-labeled internal
456 standards: tyrosine-d₂ and lactate-¹³C₃ (Cambridge Isotope Lab, Tewksbury, MA). Centrifuged
457 the cell lysate at 10,000 g for 20 minutes, and injected 90 μ L supernatant into UPLC. The
458 supernatant was chromatographically separated with a Zic-cHILIC column, 3 μ m, 150 x 2.1 mm
459 (Merck SeQuant, Darmstadt, Germany) at a flow rate of 300 μ L/min. The mobile phases were A)
460 15 mM ammonium acetate with 0.2% acetic acid in water/acetonitrile (90:10, v/v), and B) 15 mM
461 ammonium acetate with 0.2% acetic acid in acetonitrile/water/methanol (90:5:5, v/v). The
462 gradient was as follows: 0 min, 85% B, 2 min, 85% B, 5 min, 30% B, 9 min, 30% B, 11 min, 85% B,
463 20 min, 85% B. We set the spray voltage to 5 kV and the capillary and vaporizer temperatures to
464 300°C and 185°C, with sheath gas and auxiliary gas set to 60 and 45 psi, respectively. The
465 skimmer offset was -10 V, and the collision energy varied for each transition. Metabolites were
466 identified based on predetermined peaks and elution times. The response ratio was calculated
467 for each detected metabolite relative to the internal standard.

468

469

470 **Acknowledgments**

471 This work is supported by NIH DP2 GM11484901 to GN, a predoctoral fellowship
472 18PRE34050016 from the AHA to AT, VICTR fund VR53716 to AT and Vanderbilt Startup
473 Funds. The authors thank Robert Markowitz, Yelena Perevalova, and Minh Tran for technical
474 assistance. The authors thank the Bachmann lab for technical assistance in setting up
475 fluorescent cell barcoding for multiplex flow cytometry and the Vanderbilt Flow cytometry and
476 Mass Spectrometry Core. The authors thank Dr. David G. Harrison, Dr. Jens Titze, Dr. Annet
477 Kirabo, Dr. Meena S. Madhur, Dr. Vivian Gama and Dr. Jose Gomez for useful discussions and
478 Benjamin Kesler, Jason Hughes, Dr. Hossein Jashnsaz, Dr. Amanda Johnson, Dr. Rama Ali,
479 Dr. Rogert Colbran, Dr. David Cortez, Dr. Sandra S. Zinkel, and Dr. Ken Lau for feedback on
480 the manuscript.

481

482 **Author information**

483 Contributions
484 GN and AT conceived the study and designed the experiments. AT performed the experiments
485 and the data analysis. GN and AT wrote the manuscript.

486

487

488 **References**

- 489 1. Lim, W., Meyer, B., Pawson, T. *Cell Signaling: Principles and Mechanisms*. CRC Press
490 (2014).
- 491 2. Young, J. W., Locke, J. C. W. & Elowitz, M. B. Rate of environmental change determines
492 stress response specificity. *Proc. Natl. Acad. Sci.* **110**, 4140–4145 (2013).
- 493 3. Goulev, Y. *et al.* Nonlinear feedback drives homeostatic plasticity in H₂O₂ stress
494 response. *Elife* **6**, 84–97 (2017).
- 495 4. Granados, A. A. *et al.* Distributing tasks via multiple input pathways increases cellular
496 survival in stress. *Elife* **6**, (2017).
- 497 5. Johnson, A. N. *et al.* A rate threshold mechanism regulates MAPK stress signaling and
498 survival. *bioRxiv* (2020).

499 6. Sorre, B., Warmflash, A., Brivanlou, A. H. & Siggia, E. D. Encoding of Temporal Signals
500 by the TGF- β Pathway and Implications for Embryonic Patterning. *Dev. Cell* **30**, 334–342
501 (2014).

502 7. Heemskerk, I. *et al.* Rapid changes in morphogen concentration control self-organized
503 patterning in human embryonic stem cells. *Elife* **8**, (2019).

504 8. Sasagawa, S., Ozaki, Y., Fujita, K. & Kuroda, S. Prediction and validation of the distinct
505 dynamics of transient and sustained ERK activation. *Nat. Cell Biol.* **7**, 365–73 (2005).

506 9. Fujita, K. A. *et al.* Decoupling of receptor and downstream signals in the Akt pathway by
507 its low-pass filter characteristics. *Sci. Signal.* **3**, ra56 (2010).

508 10. Cai, Q., Ferraris, J. D. & Burg, M. B. Greater tolerance of renal medullary cells for a slow
509 increase in osmolality is associated with enhanced expression of HSP70 and other
510 osmoprotective genes. *Am. J. Physiol. Renal Physiol.* **286**, F58–67 (2004).

511 11. Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses.
512 *Physiol. Rev.* **87**, 1441–74 (2007).

513 12. Stewart, B. J. *et al.* Spatiotemporal immune zonation of the human kidney. *Science* **365**,
514 1461–1466 (2019).

515 13. Wilck, N., Balogh, A., Markó, L., Bartolomaeus, H. & Müller, D. N. The role of sodium in
516 modulating immune cell function. *Nat. Rev. Nephrol.* **15**, 546–558 (2019).

517 14. Cai, Q. *et al.* Rate of increase of osmolality determines osmotic tolerance of mouse inner
518 medullary epithelial cells. *Am. J. Physiol. Renal Physiol.* **283**, F792–F798 (2002).

519 15. Hai, M. A. & Thomas, S. The time-course of changes in renal tissue composition during
520 lysine vasopressin infusion in the rat. *Pflugers Arch. Eur. J. Physiol.* **310**, 297–319
521 (1969).

522 16. Ullrich, K. J. *et al.* Micropuncture study of composition of proximal and distal tubular fluid
523 in rat kidney. *Am. J. Physiol.* **204**, 527–531 (1963).

524 17. Neuhofer, W. & Beck, F.-X. Cell Survival in the hostile environment of the renal medulla.
525 *Annu. Rev. Physiol.* **67**, 531–555 (2005).

526 18. Firsov, D. & Bonny, O. Circadian rhythms and the kidney. *Nat. Rev. Nephrol.* **1** (2018).

527 19. Overduin, J., Tylee, T. S., Frayo, R. S. & Cummings, D. E. Hyperosmolarity in the small

528 intestine contributes to postprandial ghrelin suppression. *Am. J. Physiol. Gastrointest.*
529 *Liver Physiol.* **306**, G1108-16 (2014).

530 20. Hallbäck, D.-A., Jodal, M., Mannischeff, M. & Lundgren, O. Tissue osmolality in intestinal
531 villi of four mammals in vivo and in vitro. *Acta Physiol. Scand.* **143**, 271–277 (1991).

532 21. Jiang, L.-B. *et al.* Activation of autophagy via Ca^{2+} -dependent AMPK/mTOR pathway in
533 rat notochordal cells is a cellular adaptation under hyperosmotic stress. *Cell Cycle* **14**,
534 867–879 (2015).

535 22. Urban, J. P. G. & Maroudas, A. The measurement of fixed charged density in the
536 intervertebral disc. *Biochim. Biophys. Acta - Gen. Subj.* **586**, 166–178 (1979).

537 23. Jantsch, J. *et al.* Cutaneous Na^+ storage strengthens the antimicrobial barrier function of
538 the skin and boosts macrophage-driven host defense. *Cell Metab.* **21**, 493–501 (2015).

539 24. Müller, S. *et al.* Salt-dependent chemotaxis of macrophages. *PLoS One* **8**, e73439
540 (2013).

541 25. Dmitrieva, N. I. & Burg, M. B. Analysis of DNA breaks, DNA damage response, and
542 apoptosis produced by high NaCl . *Am. J. Physiol. - Ren. Physiol.* **295**, (2008).

543 26. Kleinewietfeld, M. *et al.* Sodium chloride drives autoimmune disease by the induction of
544 pathogenic TH17 cells. *Nature* **496**, 518–22 (2013).

545 27. Ko, B. C. B. *et al.* Fyn and p38 signaling are both required for maximal hypertonic
546 activation of the osmotic response element-binding protein/tonicity-responsive enhancer-
547 binding protein (OREBP/TonEBP). *J. Biol. Chem.* **277**, 46085–92 (2002).

548 28. Luo, L., Li, D.-Q. & Pflugfelder, S. C. Hyperosmolarity-Induced Apoptosis in Human
549 Corneal Epithelial Cells Is Mediated by Cytochrome c and MAPK Pathways. *Cornea* **26**,
550 452–460 (2007).

551 29. Soni, S., Anand, P. & Padwad, Y. S. MAPKAPK2: the master regulator of RNA-binding
552 proteins modulates transcript stability and tumor progression. *J. Exp. Clin. Cancer Res.*
553 **38**, 121 (2019).

554 30. Takeda, K., Noguchi, T., Naguro, I. & Ichijo, H. Apoptosis Signal-Regulating Kinase 1 in
555 Stress and Immune Response. *Annu. Rev. Pharmacol. Toxicol.* **48**, 199–225 (2008).

556 31. Brancho, D. *et al.* Mechanism of p38 MAP kinase activation in vivo. *Genes Dev.* **17**,

557 1969–78 (2003).

558 32. Niswander, J. M. & Dokas, L. A. Phosphorylation of HSP27 and synthesis of 14-3-3 ϵ are
559 parallel responses to hyperosmotic stress in the hippocampus. *Brain Res.* **1116**, 19–30
560 (2006).

561 33. Sulen, A. *et al.* Signaling effects of sodium hydrosulfide in healthy donor peripheral blood
562 mononuclear cells. *Pharmacol. Res.* **113**, 216–227 (2016).

563 34. Humphreys, J. M., Piala, A. T., Akella, R., He, H. & Goldsmith, E. J. Precisely ordered
564 phosphorylation reactions in the p38 mitogen-activated protein (MAP) kinase cascade. *J.
565 Biol. Chem.* **288**, 23322–30 (2013).

566 35. Woo, S. K., Lee, S. Do, Na, K. Y., Park, W. K. & Kwon, H. M. TonEBP/NFAT5 stimulates
567 transcription of HSP70 in response to hypertonicity. *Mol. Cell. Biol.* **22**, 5753–60 (2002).

568 36. Jeon, U. S., Kim, J.-A., Sheen, M. R. & Kwon, H. M. How tonicity regulates genes: story
569 of TonEBP transcriptional activator. *Acta Physiol.* **187**, 241–247 (2006).

570 37. Cheung, C. Y. & Ko, B. C. NFAT5 in cellular adaptation to hypertonic stress - regulations
571 and functional significance. *J. Mol. Signal.* **8**, 5 (2013).

572 38. Kyriakis, J. M. J. *et al.* Mammalian MAPK signal transduction pathways activated by
573 stress and inflammation: a 10-year update. *Physiol. Rev.* **92**, 689–737 (2012).

574 39. Slee, E. A. *et al.* Ordering the cytochrome c-initiated caspase cascade: Hierarchical
575 activation of caspases-2,-3,-6,-7,-8, and -10 in a caspase-9-dependent manner. *J. Cell
576 Biol.* **144**, 281–292 (1999).

577 40. Choi, S. Y. *et al.* Multiple cell death pathways are independently activated by lethal
578 hypertonicity in renal epithelial cells. *Am. J. Physiol. Physiol.* **305**, C1011–C1020 (2013).

579 41. McComb, S. *et al.* Efficient apoptosis requires feedback amplification of upstream
580 apoptotic signals by effector caspase-3 or -7. *Sci. Adv.* **5**, eaau9433 (2019).

581 42. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. & Earnshaw, W. C.
582 Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE.
583 *Nature* **371**, 346–347 (1994).

584 43. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E. & Poirier, G. G. Specific
585 Proteolytic Cleavage of Poly(ADP-ribose) Polymerase: An Early Marker of

615 57. Dmitrieva, N. I., Cai, Q. & Burg, M. B. Cells adapted to high NaCl have many DNA breaks
616 and impaired DNA repair both in cell culture and in vivo. *Proc. Natl. Acad. Sci. U. S. A.*
617 **101**, 2317–22 (2004).

618 58. Flinterman, M. *et al.* E1A activates transcription of p73 and noxa to induce apoptosis. *J.*
619 *Biol. Chem.* **280**, 5945–5959 (2005).

620 59. Fei, P., Bernhard, E. J. & El-Deiry, W. S. Tissue-specific Induction of p53 Targets in Vivo.
621 *Cancer Res.* **62**, (2002).

622 60. Roos, W. P. & Kaina, B. DNA damage-induced cell death by apoptosis. *Trends in*
623 *Molecular Medicine* **12**, 440–450 (2006).

624 61. Kasibhatla, S. *et al.* DNA damaging agents induce expression of Fas ligand and
625 subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. *Mol. Cell* **1**,
626 543–551 (1998).

627 62. Krutzik, P. O. & Nolan, G. P. Fluorescent cell barcoding in flow cytometry allows high-
628 throughput drug screening and signaling profiling. *Nat. Methods* **3**, 361–368 (2006).

629 63. Earl, D. C. *et al.* Discovery of human cell selective effector molecules using single cell
630 multiplexed activity metabolomics. *Nat. Commun.* **9**, 1–12 (2018).

631 64. Slee, E. Cohen, G. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-
632 VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. *Biochem. J.* (1996).

633 65. Caserta, T. M., Smith, A. N., Gultice, A. D., Reedy, M. A. & Brown, T. L. Q-VD-OPh, a
634 broad spectrum caspase inhibitor with potent antiapoptotic properties. *APOPTOSIS* **8**,
635 345–352 (2003).

636 66. Han, J., Lee, J., Bibbs, L. & Ulevitch, R. A MAP kinase targeted by endotoxin and
637 hyperosmolarity in mammalian cells. *Science (80)*. **265**, 808–811 (1994).

638 67. Ip, W. K. E., Medzhitov, R., Roti, M. A., Liu, F. & Ho, S. N. Macrophages monitor tissue
639 osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome
640 activation. *Nat. Commun.* **6**, 6931 (2015).

641 68. Pargellis, C. *et al.* Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site.
642 *Nat. Struct. Biol.* **9**, 268–272 (2002).

643 69. Ferreiro, I. *et al.* Whole genome analysis of p38 SAPK-mediated gene expression upon

644 stress. *BMC Genomics* **11**, 144 (2010).

645 70. Izumi, Y., Yang, W., Zhu, J., Burg, M. B. & Ferraris, J. D. RNA-Seq analysis of high NaCl-
646 induced gene expression. *Physiol. Genomics* **47**, 500–513 (2015).

647 71. Li, H. *et al.* The metabolites of glutamine prevent hydroxyl radical-induced apoptosis
648 through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes.
649 *Free Radic. Biol. Med.* **92**, 126–140 (2016).

650 72. Phang, J. M., Liu, W., Hancock, C. & Christian, K. J. The Proline Regulatory Axis and
651 Cancer. *Front. Oncol.* **2**, 60 (2012).

652 73. Phang, J. M., Liu, W. & Zabirnyk, O. Proline Metabolism and Microenvironmental Stress.
653 *Annu. Rev. Nutr.* **30**, 441–463 (2010).

654 74. Gottschalk, C. W. & Mylle, M. Micropuncture study of the mammalian urinary
655 concentrating mechanism: evidence for the countercurrent hypothesis. *Am J Physiol* **196**,
656 927–936 (1959).

657 75. Thiemicke, A., Jashnsaz, H., Li, G. & Neuert, G. Generating kinetic environments to study
658 dynamic cellular processes in single cells. *Sci. Rep.* **9**, 10129 (2019).

659 76. Muzzey, D., Gómez-Uribe, C. a, Mettetal, J. T. & van Oudenaarden, A. A systems-level
660 analysis of perfect adaptation in yeast osmoregulation. *Cell* **138**, 160–71 (2009).

661 77. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis.
662 *Nature* **397**, 168–71 (1999).

663 78. Albeck, J. G., Mills, G. B. & Brugge, J. S. Frequency-Modulated Pulses of ERK Activity
664 Transmit Quantitative Proliferation Signals. *Mol. Cell* **49**, 249–261 (2013).

665 79. Dmitrieva, N. I. & Burg, M. B. Analysis of DNA breaks, DNA damage response, and
666 apoptosis produced by high NaCl. *Am. J. Physiol. Physiol.* **295**, F1678–F1688 (2008).

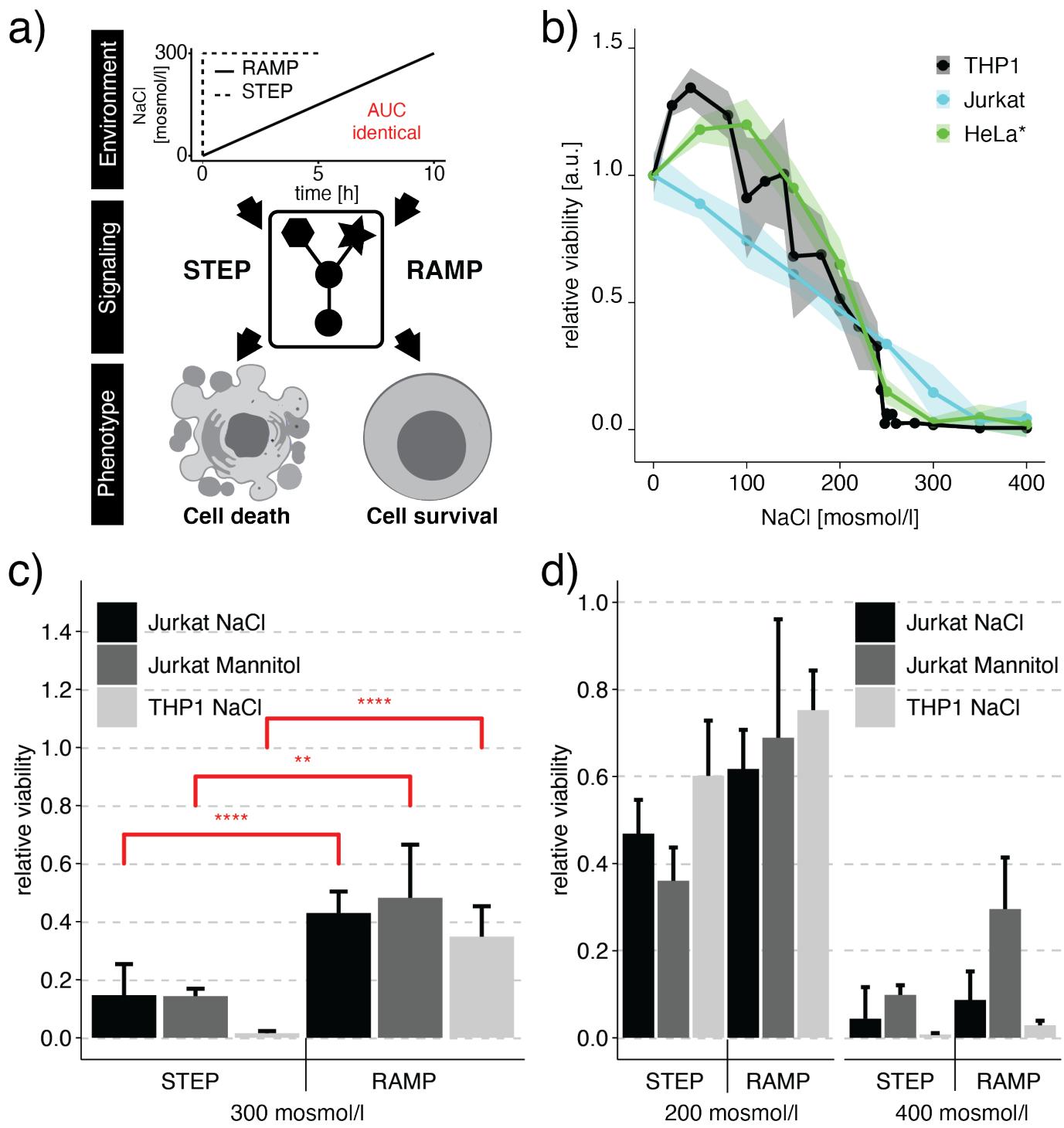
667 80. Kültz, D., Chakravarty, D., Dmitrieva, N. I., Liu, Y. & Burg, M. B. Hyperosmolality in the
668 form of elevated NaCl but not urea causes DNA damage in murine kidney cells. *Proc.
669 Natl. Acad. Sci. U. S. A.* **98**, 1999–2004 (2001).

670 81. Berry, M. R. *et al.* Renal Sodium Gradient Orchestrates a Dynamic Antibacterial Defense
671 Zone. *Cell* **170**, 860-874.e19 (2017).

672 82. Szabados, L. & Savouré, A. Proline: a multifunctional amino acid. *Trends Plant Sci.* **15**,

673 89–97 (2010).

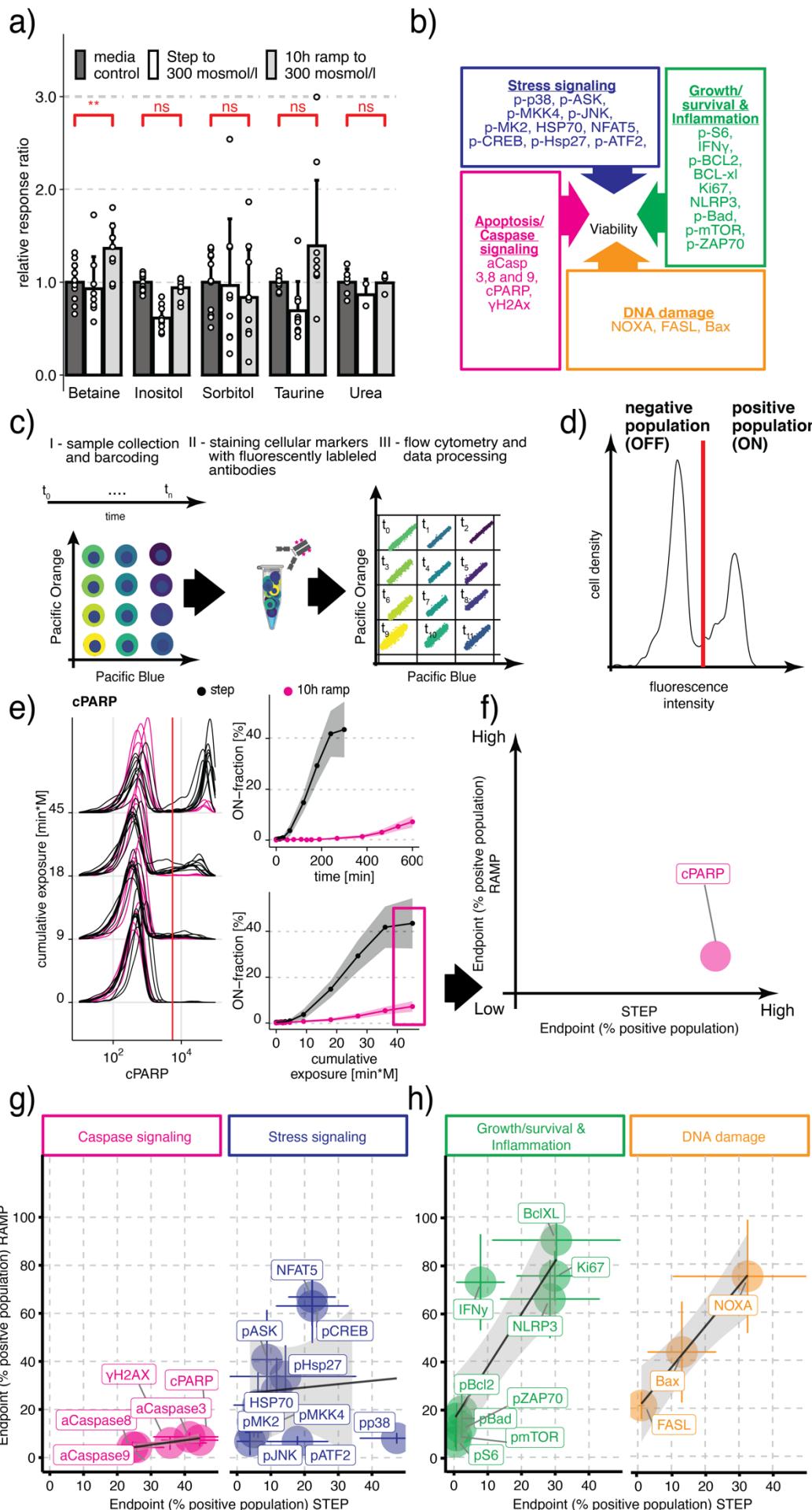
674 83. Liang, X., Zhang, L., Natarajan, S. K. & Becker, D. F. Proline Mechanisms of Stress
675 Survival. *Antioxid. Redox Signal.* **19**, 998–1011 (2013).

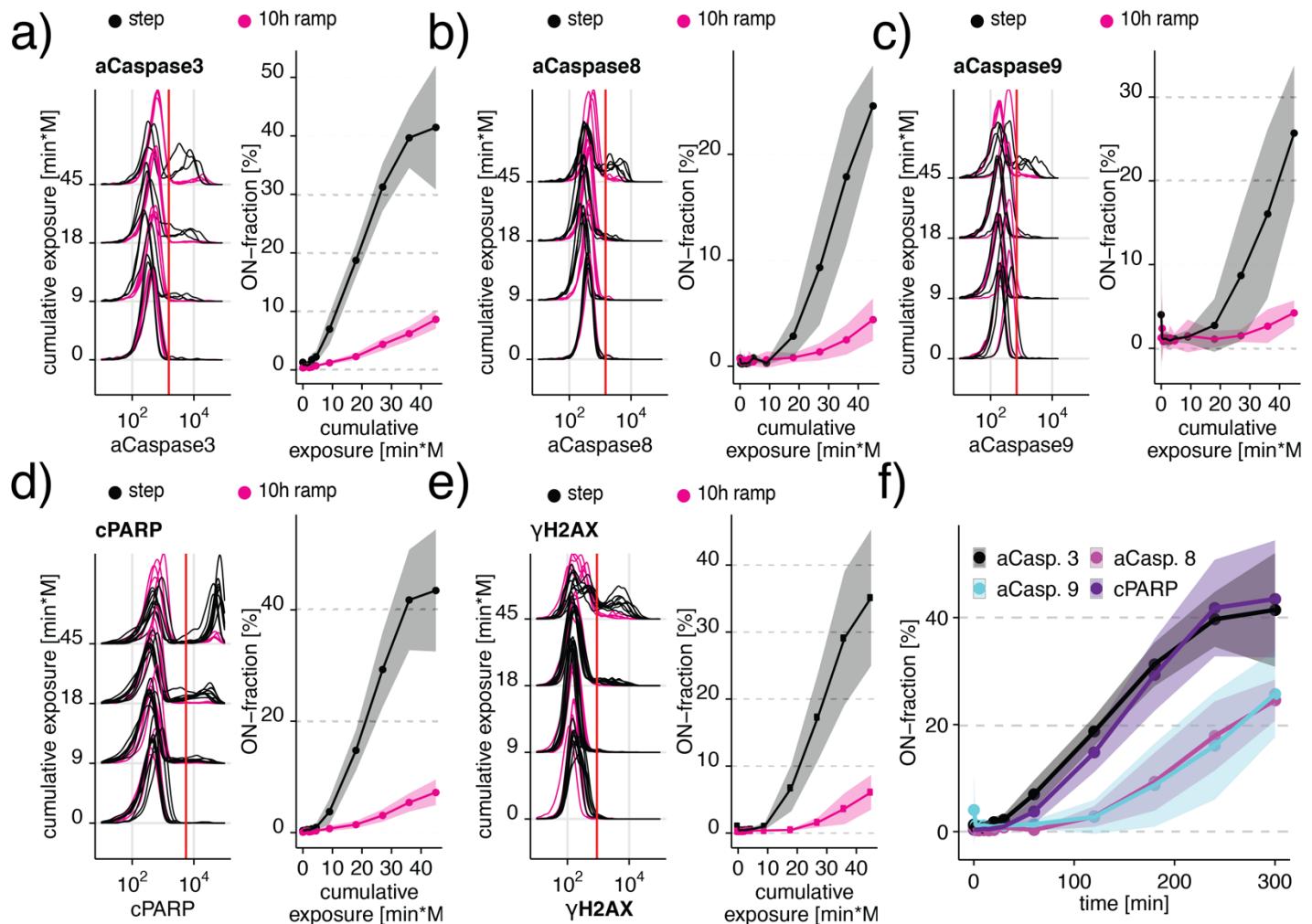

676 84. Hare, P. D. & Cress, W. A. Metabolic implications of stress-induced proline accumulation
677 in plants. *Plant Growth Regul.* **21**, 79–102 (1997).

678 85. Rudolph, A. S. & Crowe, J. H. Membrane stabilization during freezing: The role of two
679 natural cryoprotectants, trehalose and proline. *Cryobiology* **22**, 367–377 (1985).

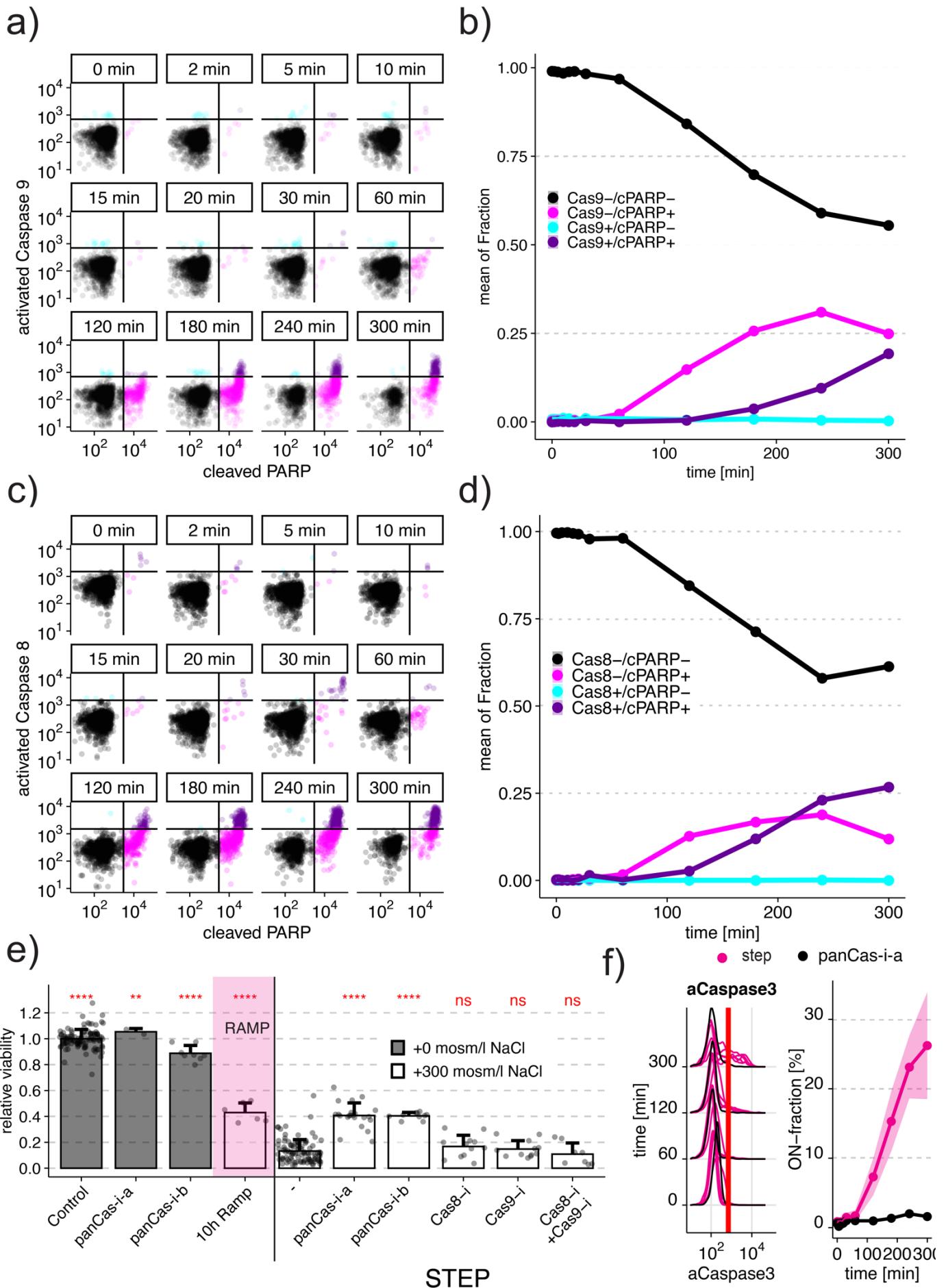
680 86. Csonka, L. N. Physiological and genetic responses of bacteria to osmotic stress.
681 *Microbiol. Mol. Biol. Rev.* **53**, 121–147 (1989).

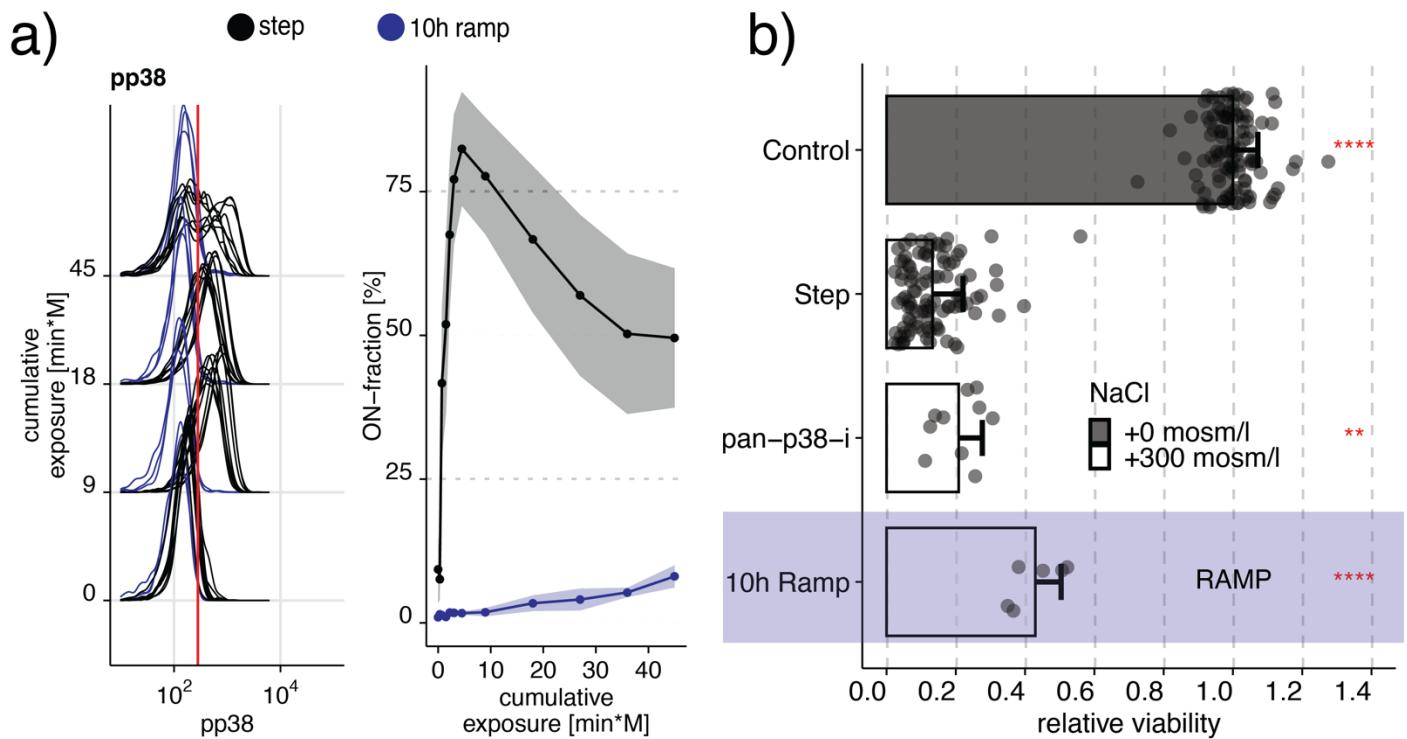
682 87. Meur, N. Le, Hahne, F. & Ellis, B. FlowCore: data structures package for flow cytometry
683 data. *Bioconductor Proj.* 1–34 (2007).


684


Figure 1: Human cell fate decisions are regulated differently upon step or ramp treatment conditions.

a) Environments such as concentration ramps, as observed in different physiological relevant conditions, may differentially modulate cell signaling, cell fate, and phenotype even if the final concentration and total amount of stress are identical. Step experiments finish earlier than ramp experiments to account for the same total exposure or Area Under the Curve (AUC). b) We measured relative cell viability after exposure to instant hyperosmotic stress (NaCl for 5h for Jurkat, THP1) or 24h (HeLa cells). Cell viability was determined by measuring intracellular ATP (Jurkat, THP1) or cell counts (HeLa). The shaded area represents the standard deviation (SD) (Jurkat, THP1) or Standard Error (SE) (HeLa) (25) c,d) Relative cell viability was determined for


step and 10h ramp treatment after addition of (c) 300 mosmol/l osmolyte or (d) 200 and 400 mosmol/l osmolyte. We determined viability at the end of the experiment after reaching the same cumulative exposure of additional NaCl. Bars represent data from at least 3 independent experiments for each condition. Error bars represent SD. Two-sided unpaired student's t-test: **p<0.01, ***p<0.001, ****p<0.0001.


Figure 2: Temporal functional flow cytometry screen identifies differential regulation of stress and caspase signaling during step and ramp hyperosmotic stress conditions. a) Mean response ratio of cellular osmolytes relative to media measured in Jurkat cells exposed to an additional 300 mosmol/l NaCl and determined by Mass spectrometry. Two-sided unpaired student's t-test: **p<0.01, ns=not significant. b) Overview of protein markers representing four cellular processes affecting viability. Each box lists the proteins representing each process. c) Multiplex flow cytometry workflow to quantify dynamic changes in protein activity over time: (I) Each time point is barcoded with a different combination of dyes. (II) Barcoded cells are pooled and split into different tubes for pairwise antibody staining. (III) We measured cells by flow cytometry and then computationally demultiplexed the different time points for further analysis. d) A single-cell distribution obtained by flow cytometry is threshold-gated (red line) to determine an ON-fraction. e) Representative flow cytometry single-cell distributions for cleaved PARP (cPARP) at selected time points for step (black) and 10h ramp (magenta) conditions (left). We quantified the fraction of cPARP positive cells (On-cells) as a function of time (right, top) or cumulative NaCl exposure (right, bottom). We plotted mean (solid line) and standard deviation (shaded area) of 3 – 10 biological replicas. f) We used endpoint measurement (magenta box in e) to determine ON-fraction to compare changes for step and ramp conditions. g,h) Comparison of endpoint measurement of mean ON-fraction between steps and ramps measured for individual markers of (g) caspase signaling (magenta), stress signaling (blue), and (h) DNA damage (orange), Growth/survival & Inflammation (green) in Jurkat cells in response to hypertonic stress. Circles represent the mean of 3-10 replicates per condition. ON-fraction at the final time point of cells exposed to 300 mosmol/l NaCl by a step (5h) or a 10h ramp (10h). Colored lines represent the SD. Black lines indicate linear regression fit lines. The shaded area represents 95% confidence interval.

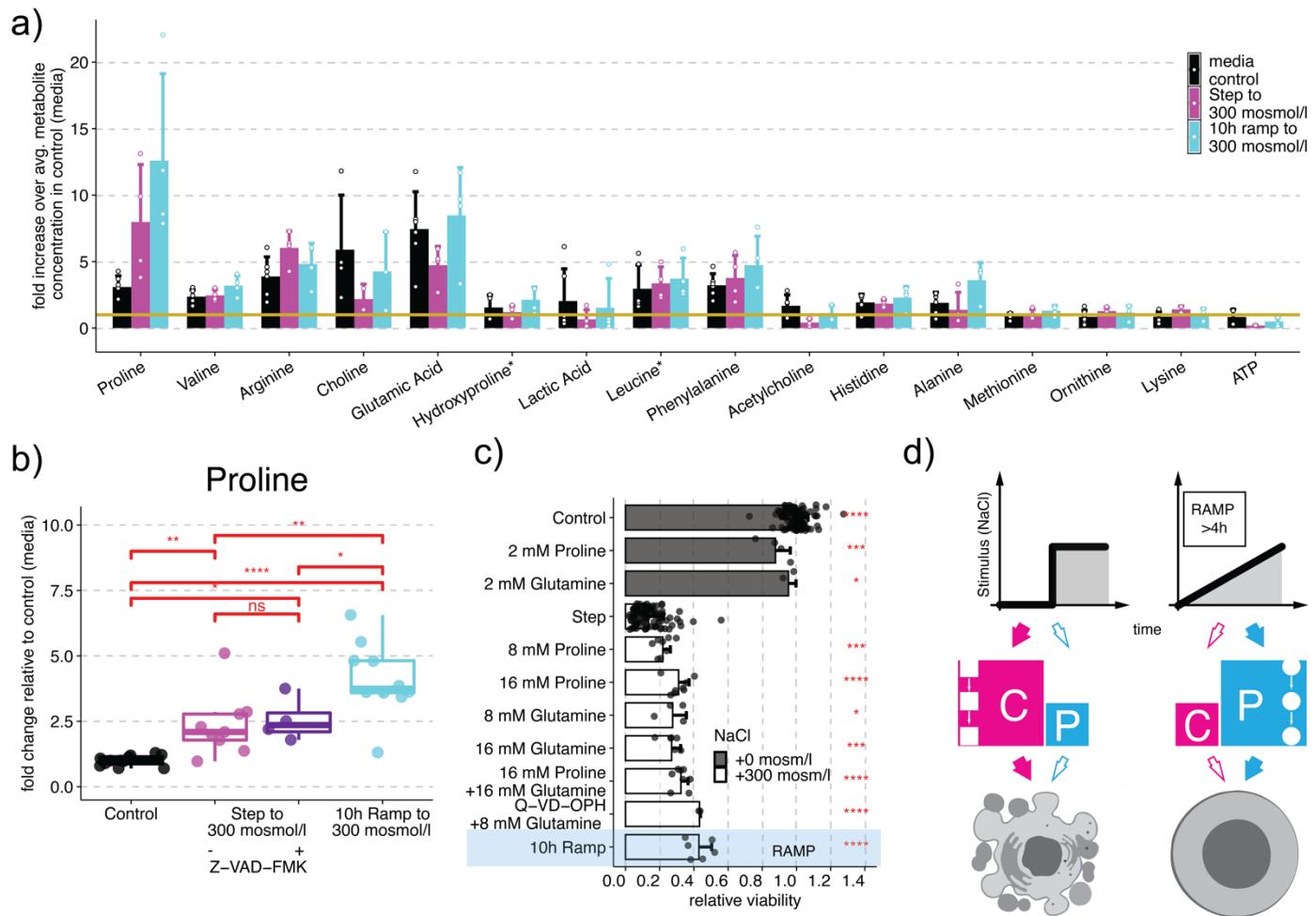

Figure 3: Differential caspase signaling regulates cell viability. a-d) Differential regulation of (a) cleaved Caspase 3, (b) cleaved Caspase 8, (c) cleaved Caspase 9, (d) cleaved PARP, and (e) γ H2AX in Jurkat cells exposed to 300 mosmol/l NaCl by a step (black) or a 10h ramp (magenta). The left panel shows selected single-cell distributions over the cumulative exposure with individual lines representing independent experiments. Redline indicates the threshold for determining the ON-fraction. Right panels represent ON-fraction mean and standard deviation of 3-10 independent experiments as a function of cumulative exposure of NaCl. f) ON-fraction kinetics of caspase signaling markers over time indicate early (Caspase 3 and cPARP) and late (Caspase 8 and 9) activation. Lines indicate mean and SD of 3-10 independent experiments.

Figure 4: Activated Caspase 8 or 9 are not initiating apoptosis in hyperosmotic stress. a) Single-cell scatter plots of Jurkat cells co-stained with antibodies for cPARP and activated Caspase 9 measured by flow cytometry after exposure to 300 mosmol/l NaCl for 5h. Black lines indicate thresholds to determine individual fractions of low aCaspase9 and low cPARP (black), low aCaspase9, and high cPARP (magenta), high aCaspase9 and high cPARP (purple) and high aCaspase9 and low cPARP (cyan). Circles represent single cells. b) Quantification of fraction of cells stained for Caspase 9 activation and PARP cleavage over the time course using the thresholds indicated in (a). c) Single-cell scatter plots of Jurkat cells co-stained with antibodies for cPARP and activated Caspase 8 measured by flow cytometry after exposure to 300 mosmol/l NaCl for 5h. Black lines indicate thresholds to determine individual fractions of low aCaspase8 and low cPARP (black), low aCaspase8 and high cPARP (magenta), high aCaspase8 and high cPARP (purple) and high aCaspase8 and low cPARP (cyan). d) Quantification of fraction of cells stained for Caspase 8 activation and PARP cleavage over the time course using the thresholds indicated in (c). e) Relative viability of untreated cells (grey), cells exposed to a 10h ramp (magenta) or 5h step treatment both to 300 mosmol/l NaCl (white) exposed to different inhibitors. Inhibitors were added 30 min before NaCl at concentrations as follows: “panCas-i-a” (pan-caspase inhibitor Z-VAD-FMK, 100 μ M), “panCas-i-b” (pan-caspase inhibitor Q-VD-OPH, 100 μ M), “Cas8-i” (Caspase 8 inhibitor Z-IETD-FMK, 100 μ M), “Cas9-i” (Caspase 9 inhibitor Z-LEHD-FMK, 100 μ M). Bars indicate the mean and SD of at least 3 replicates. Two-sided unpaired student’s t-test: **p<0.01, ***p<0.001, ****p<0.0001, ns=not significant. f) Activated Caspase 3 (aCasapse 3) in Jurkat cells exposed to 300 mosmol/l NaCl step in presence (black) or absence (magenta) of pan-caspase inhibitor (Z-VAD-FMK, 20 μ M). The left panel shows single-cell distributions over the cumulative exposure with individual lines representing independent experiments. The Red line indicates the threshold for determining the ON-fraction. Right panels represent the mean and standard deviation of 1-4 independent experiments as a function of cumulative exposure.

Figure 5: Contribution of p38 to apoptosis in hypertonic stress is minimal. a) Phosphorylation of p38 in Jurkat cells exposed to 300 mosmol/l NaCl by a step (black) or a 10h ramp (blue). The left panel shows selected single-cell distributions over the cumulative exposure with individual lines representing independent experiments. The Red line indicates the threshold for determining a cell that is p38 phosphorylation positive (ON-fraction). The right panel represents the ON-fraction mean and standard deviation of 3-10 independent experiments as a function of cumulative exposure. b) Viability of Jurkat cells relative to untreated cells (control) exposed to an additional 0 (grey) or 300 mosmol/l (white) NaCl for 5h (step) or 10h (ramp, purple), respectively. Pan p38 inhibitor (pan-p38-i, BIRB796) was added 30 min before NaCl at concentrations at 10 μ M. Circles represent single experiments. Bars indicate the mean and SD of at least 3 replicates. Two-sided unpaired student's t-test: **p<0.01, ***p<0.001.

Figure 6: Intracellular proline protects human cells during ramp stress conditions. a) Fifteen most abundant metabolites detected in Jurkat cells without stimulation (control media, black), after treatment with step (magenta) or 10h ramp (cyan) to 300 mosmol/l NaCl. Bars represent the mean and standard deviation of the fold change of each metabolite to the average metabolite concentration in the control condition (yellow line) with circles representing individual replicates. b) Change of proline levels in Jurkat cells relative to control (no additional NaCl) in 0 (black) or 300 mosmol/l NaCl for 5h without (step, magenta) or with pan-caspase inhibitor “a” (Z-VAD-FMK, 100 μ M)(purple) or a 300 mosmol/l NaCl ramp for 10h (cyan). Boxplots represent data of 4-10 replicates with circles represent individual replicates as determined by Mass spectrometry. c) External amino acid treatment impacts viability relative to untreated cells (control, grey) in Jurkat cells exposed to an additional 0 or 300 mosmol/l NaCl for 5h (step) or 10h (10h ramp, blue shade), respectively. Amino acids were added 60 min before NaCl at indicated concentrations. Pan-caspase inhibitor (Q-VD-OPH) was added 30 min before NaCl at 100 μ M. Bars indicate the mean and SD of at least 3 replicates. Two-sided unpaired student's t-test: *p<0.05, ***p<0.001, ****p<0.0001, ns=not significant. d) Model summarizing how instant stress conditions cause activation of caspase signaling (C) and cell death (left, magenta) whereas the gradual increase of the same stress to the same final concentration does not activate caspase signaling but instead increases intracellular proline (P) as an osmolyte to protect cells against increasing stress (right, cyan).