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ABSTRACT

How innate and adaptive lung immune responses to SARS-CoV-2 synchronize during COVID-19
pneumonitis and regulate disease severity is poorly established. To address this, we applied single-
cell profiling to bronchoalveolar lavages from 44 patients with mild or critical COVID-19 versus
non-COVID-19 pneumonia as control. Viral RNA-tracking delineated the infection phenotype to
epithelial cells, but positioned mainly neutrophils at the forefront of viral clearance activity during
COVID-19. In mild disease, neutrophils could execute their antiviral function in an immunologically
‘controlled’ fashion, regulated by fully-differentiated T-helper-17 (Tu7)-cells, as well as T-helper-|1
(Twi)-cells, CD8" resident-memory (Tgrv) and partially-exhausted (Tex) T-cells with good effector
functions. This was paralleled by ‘orderly’ phagocytic disposal of dead/stressed cells by fully-
differentiated macrophages, otherwise characterized by anti-inflammatory and antigen-presenting
characteristics, hence facilitating lung tissue repair. In critical disease, CD4" Ty- and CD8" Tex-
cells were characterized by inflammation-associated stress and metabolic exhaustion, while CD4"
Thi7- and CD8" Tru-cells failed to differentiate. Consequently, T-cell effector function was largely
impaired thereby possibly facilitating excessive neutrophil-based inflammation. This was
accompanied by impaired monocyte-to-macrophage differentiation, with monocytes exhibiting an
ATP-purinergic signalling-inflammasome footprint, thereby enabling COVID-19 associated fibrosis
and worsening disease severity. Our work represents a major resource for understanding the lung-

localised immunity and inflammation landscape during COVID-19.
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INTRODUCTION

SARS-CoV-2 has rapidly swept across the globe affecting >7 million people, with >400.000 fatal
cases'. It is now well appreciated that while most COVID-19 patients (80%) remain asymptomatic
or experience only mild symptoms, 20% present with overt pneumonia; about a quarter of these
progress to a life-threatening state of Acute Respiratory Distress Syndrome (ARDS) and severe
or atypical systemic inflammation?. Fever, increased acute phase reactants and coagulopathy with
decreased lymphocyte counts, pronounced myeloid inflammation and increased neutrophil-to-

lymphocyte ratio are predominant immunological hallmarks of severe COVID-19%*,

Wen et al. were the first to provide an immune atlas of circulating mononuclear cells from 10
COVID-19 patients based on single-cell RNA-sequencing (scRNA-seq). Lymphocyte counts were
globally decreased, while inflammatory myeloid cells, predominantly ILI3-secreting classical
monocytes, were more abundant, suggesting COVID-19 immunopathology to be a myeloid-driven
process’. Conversely, the contribution of circulating classical monocytes to systemic inflammation
was put into question by Wilk et al. Based on scRNA-seq, they observed sparse expression of
inflammatory cytokines by peripheral monocytes in 7 COVID-19 patients versus 6 six healthy
controls. On the other hand, antigen presentation and the number of cytotoxic NK- and T-cells
were reduced, while plasmablasts and neutrophils were increased, especially in in COVID-19

patients experiencing ARDS®.

However, profiling the peripheral immune landscape in COVID-19 may not be as comprehensive
since immune characteristics in the periphery are different from those within the lungs, both in
terms of amplitude and qualitative characteristics, as well as duration of the immune response.
Thus, a better understanding of the immune interactions in COVID-19 lungs is needed. In their
seminal paper, Liao et al. applied single-cell T-cell receptor-sequencing (scTCR-seq) and scRNA-
seq on bronchoalveolar lavage (BAL) fluid from 3 mild and 6 critical COVID-19 patients, as well as
3 healthy controls. They observed an abundance of highly inflammatory monocytes and neutrophils
and T-cell depletion in critical versus mild COVID-19. The latter showed a more potent adaptive
immune response to SARS-CoV-2, evidenced by presence of CD8" T-cells with tissue-resident
features displaying clonal expansion and increased effector function’. Subsequently, Bost et al. were
able to sort infected cells from bystander cells and investigate virus-induced transcriptional changes.
This Viral-Track pipeline showed ciliated and progenitor epithelial cells to be the main targets of
SARS-CoV-2, yet a strong enrichment of viral RNA was observed in SPPI+ macrophages®. It is

unclear however whether this represents direct viral infection of myeloid cells, or phagocytosis of
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viral particles (or virus-infected cells). Moreover, due to the small sample size, in-depth
characterization of all the cellular phenotypes detected by scRNA-seq in mild versus critical

COVID-19 remained largely unexplored.

Here, we provide a comprehensive deep-immune atlas of COVID-19 pneumonitis, analyzing BAL
from 31 COVID-19 patients with mild or critical disease, while inclusion of |3 patients with non-
COVID-19 pneumonitis allowed us to reliably distinguish non-specific lung-localised inflammatory

signaling from COVID-19 specific lung-associated immune changes.

RESULTS

scRNA-seq and cell typing of BAL samples

We performed scRNA-seq on BAL from 22 hospitalized patients with a positive qRT-PCR for
SARS-CoV-2 on a nasopharyngeal swab or a lower respiratory tract sample. We also collected
BAL from |3 patients with clinical suspicion of COVID-19 pneumonia, yet negative PCR on lower
respiratory tract sampling for SARS-CoV-2. These samples are referred to as non-COVID-19. We
further stratified COVID-19 patients by disease severity at the time of sampling, by discerning two
groups; a ‘mild’ (n=2) and a ‘critical’ (n=20) disease group, the latter requiring mechanical
ventilation or extracorporeal membrane oxygenation. Demographic and clinical data of the

prospectively recruited patient cohort are summarised in Supplementary information, Table S1.

BAL samples were immediately processed for scRNA-seq. After quality filtering (Methods), we
obtained ~186 millions of unique transcripts from 65,166 cells with >150 genes detected. Of these,
~51% of cells were from COVID-19. Subsequent analysis involving dimensionality reduction and
clustering identified several clusters (Fig. la), which through marker genes (Supplementary
information, Fig. Sla, b) could be assigned to lung epithelial cells (including ciliated, inflammatory,
hillock, secretory and AT2 lung epithelial cells), myeloid cells (monocytes/macrophages,
neutrophils, mast cells, plasmacytoid dendritic cells/pDCs and conventional dendritic cells/cDCs),
lymphoid cells (CD4" and CD8" T-cells, natural killer cells (NK), B-cells and plasma cells). We
describe each cell type in more detail, highlighting the number of cells, read counts and transcripts
detected in Supplementary information, Table S2. There was no cluster bias between disease
status (COVID-19 versus non-COVID-19), disease severity (mild versus critical) or individual

patients (Fig. Ib).

To increase our resolution, we processed scRNA-seq data on COVID-19 BAL by Liao et al,

consisting of 3 patients with ‘mild’ and 6 patients with ‘criticall COVID-19 (n=51,631 cells)
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(Supplementary information, Fig. S1c)’. We also retrieved 7 normal lung samples (n=64,876 cells)
profiled by Lambrechts et al. and 8 normal lung samples (n= 27,266 cells) by Reyfman et al. to
further enhance our resolution, specifically for T-cells and DCs>'°. Datasets were integrated by
clustering cells from each dataset separately and assigning cell type identities to each cell. We then
pooled cells from each dataset based on cell type identities and performed canonical correlation
analysis (CCA), as described previously'', followed by graph-based clustering to generate a UMAP
per cell type, displaying its phenotypic heterogeneity. Per cell type, we ruled out batch effects due

to different datasets.

After integration, COVID-19 BAL scRNA-seq data were derived from 5 mild and 26 critical
COVID-19 patients. Quantitatively, monocyte/macrophages and neutrophils were the most
abundant cell types, amounting up to 65.7% (n=55,825) of COVID-19 cells (Fig. Ic). When
evaluating the relative enrichment or depletion of these cell types, we found that monocytes and
neutrophils were indeed more frequent, while macrophages and epithelial cells were less abundant
in COVID-19 versus non-COVID-19. B-cells and NK-cells were slightly enriched in COVID-19.
Comparing mild versus critical COVID-19 revealed an increase in CD8" T-cells, macrophages and

cDGs in the former (Fig. 1d).
Below, we describe the heterogeneity underlying each cell type in more detail.

Phenotypic heterogeneity of CD8" T-cells in COVID-19 BAL

Altogether, we retrieved 23,468 T- and NK-cells, which were subclustered into 14 phenotypes
(Fig. 2a, b; Supplementary information, Fig. S2). Briefly, we identified 7 CD8" T-cell clusters, 5
CD4" T-cell clusters and 2 NK-cell clusters. While naive CD8" T-cells (Tn) expressed naive T-cell
markers (CCR7, LEFI and TCF7), effector-memory (Tgm) and partially-exhausted (Tex) T-cells were
characterized by increased expression of effector markers (IFNG, PRFI, NKG7 and GZMB). Herein,
expression of (inflammation-driven) exhaustion-defining immune-checkpoints (LAG3, HAVCR2 and
PDCDI) distinguished Tex-cells. Additionally, we identified CD8" resident-memory T-cells (Trm)
based on ZNF683 and ITGAE, as well as CD8" recently-activated effector-memory T-cells (Tevra).

Finally, we also identified mucosal-associated invariant T-cells (Tmarr) and gamma-delta (Tys) T-cells.

Next, we assessed prevalence of each T-cell phenotype in COVID-19 versus non-COVID-19
disease, but failed to observe differences in the CD8" phenotypes (Fig. 2c). When comparing mild
to critical COVID-19 (Fig. 2d), we found Twarr-cells to be increased in the former. Interestingly,
Twuar-cells can actively co-opt for specific innate immune characteristics (e.g. proficient pattern-

recognition receptor-based signalling, and/or broad non-MHC antigenic surveillance), thereby
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allowing them to rapidly respond to pathogenic agents possessing pathogen-associated molecular

patterns (PAMPs)'%,

The largest increase in mild versus critical COVID-19, however, was seen for CD8" Tyu-cells. To
understand this difference, we used Slingshot to infer pseudotime trajectories (excluding CD8*
Twarr- and Tys-cells). We observed 3 distinct CD8" T-cell trajectories (Fig. 3a): CD8" Ty-cells
connected with Tgv-cells, which subsequently branched into 3 different (well-connected) lineages
i.e., Trm-cells, Tex-cells and Temra-cells. Profiling of marker genes along these trajectories confirmed
their functional annotations (Fig. 3b). Notably, effector function peaked halfway in each lineage
and then stabilized or decreased, depending on the lineage (Fig. 3c). Next, density plots reflecting
the relative number of T-cells in each phenotypic state were created along these trajectories (Fig.
3d), and stratified for normal tissue, non-COVID-19, and mild or critical COVID-19. Non-COVID-
|9 T-cells were enriched towards the end of the Tru-lineage, while in COVID-19 they were more
frequent in the Tex-lineage (Fig. 3e). In contrast, Temra-cells were more differentiated in normal
lung. When comparing mild to critical disease, the Trv-lineage was more differentiated in mild
COVID-19, while along the Tex-lineage differentiation was most prominent in critical COVID-19

(Fig. 3f). There were no differences in the Temra-lineage.

We also processed T-cells by scTCR-seq, obtaining 3,966 T-cells with a TCR sequence that were
also annotated by scRNA-seq (excluding NK-, T-yar and Tys-cells). Based on TCR sharing, we
could reinforce the 3 trajectories identified by Slingshot (Fig. 3g). Overall, CD8" Tpu-cells
contained the highest number of T-cell clonotypes. Plotting TCR richness and evenness along the
trajectories, revealed that both parameters were reduced along the Tru-lineage, specifically in
COVID-19 (Fig. 3h), likely indicating antigen-driven clonal expansion. Notably, this expansion was
more prominent in mild COVID-19 (Fig. 3i). In contrast, Tex-cells were characterized by only a
modest decrease in TCR richness/evenness along their lineage. In the Tgwra lineage, richness did

not decrease along the pseudotime.

Overall, this suggests that mild COVID-19 is characterized by fully-differentiated Tyv-cells
undergoing active (presumably antigen-driven) TCR expansion and selection, while Tex-cells are
entangled halfway their trajectory. In critical COVID-19, Tru-cells fail to differentiate or expand,

while Tex-cells become more exhausted albeit without undergoing clonal expansion.

Gene expression modelling along the CD8" Try- and Tex-lineage
We then modelled gene expression along the Tru- and Tex-lineage, and identified 5 gene sets with

a specific expression pattern in each trajectory. In the Trv-lineage, set | and 2 consisted of naive
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197 T-cell markers (set |: CCR7, LEFI, TCF7; set 2: SELL), whose expression decreased along the
198 trajectory (Fig. 3j; Supplementary information, Table S3). A third set was enriched for interferon
199 (IFN)-induced (anti-viral) genes (IFl6, IFI44L, ISG15,1SG20, MX2), activation-associated genes (CD38)
200 and genes mediating effector-memory functions (GZMK, CD44, KLRGI). Set 3 exhibited high
201 expression halfway of the trajectory. Genes from the last 2 sets were expressed at the end of the
202 trajectory and were mostly related to cytotoxicity and increased effector function (set 4: GZMA,
203 GZMB, FASLG, CXCR3, CCL5), a balance of pro-inflammatory and auto-regulatory genes (set 5:
204 ITGAI, TNF, XCL2, CD7 versus LGALS3, SLAMFI, S100A4) and genes marking resident memory
205 formation (ZNF683, ITGAE)"*'". In mild COVID-19, Teu-cells mainly expressed set 3-5 genes,

206 indicating increased (but balanced) effector function.

207 In the Tex-lineage, the first set contained naive markers (LEFI, CCR7, TCF7), a second set IFN-
208 induced (anti-viral) genes (MX1, MX2, ISGI5, IFI44, IFIT5, IFI6), while a third set besides IFNG and
209 IFN-induced genes (IFI27, IFI27L2) was also comprised of T-cell activation-related genes (CD38,
210 GZMH, GZMA), chemokines (CCL3, CCL4 and CCL5), cytotoxicity- (NKG7, GNLY, GZMB) and
211 (inflammatory) exhaustion-related genes (HAVCR2) (Fig. 3k; Supplementary information, Table
212 S4). Set 4 was characterized by expression of pro-inflammatory (CD70, COTL, HMGBI) and anti-
213 inflammatory genes (ENTPDI, ANXA5, SERPINBI), suggesting these cells exhibit a chronic
214 dysregulated hyperinflammatory phenotype. We also noticed expression of the TIM auto-
215 regulatory protein family (TIMD4) and viral infection-induced auto-regulatory genes (LGALSI,
216 LGALS3)"'¢. In set 5, cell-cycle genes (CDK |, KIFs, PCNA, CCNA/B2), stress-associated genes (HSPD [,
217 HSP90AAI, BIRCS) and chromatin re-modelling related genes (e.g., HMGB2, HMGB3, EZH2) were
218 increased, suggesting that T-cells were largely adjusting to inflammation-driven stress (rather than
219 mounting any discernible effector or auto-regulatory responses). Notably, mild COVID-19 showed
220 a very prominent enrichment in cells characterized by set 3-associated genes, whereas critical

221 COVID-19 was enriched for set 4-5 Tex-cells.

222 Overall, gene expression profiling along the trajectories confirmed that mild COVID-19 exhibits
223 CD8" Trw- and Tex-cells with good effector function, while in critical COVID-19 this effector

224 function is drastically reduced possibly due to (persistent) inflammation-associated stress.

225 Phenotypic heterogeneity of CD4" T-cells in COVID-19 BAL

226 Amongst the 5 CD4" T-cell clusters, we identified naive CD4" T-cells (Ty), effector-memory T-
227 cells (Tem), CD4" T-helper-1 (Ty) cells, expressing high levels of immune-checkpoints (HAVCR2,
228 LAG3, PDCDI and CTLA4), as well as CD4" T-helper-17 (Tw7) and CD4" regulatory T-cells (Tgec)
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(Fig. 2b for marker gene sets). Compared to non-COVID-19, we observed slightly less CD4*
Twi7-cells, but more Ty -cells in COVID-19. Comparing mild versus critical COVID-19, we found

Tha-cells to be significantly increased in the latter.

Slingshot revealed additional phenotypic heterogeneity, identifying central-memory CD4" Tcu-cells
and stem cell-like memory CD4" Tscu-cells (Fig. 4a, b), and constructed 3 trajectories, which
were independently confirmed based on shared TCR clonotypes (Fig. 4c). Briefly, Ty-cells
connected closely with Teu-cells followed by Tem-cells, which branched-off into 3 different lineages
to form Ty-cells, Tyi7-cells and Tscw-cells. Profiling of marker genes along these trajectories
confirmed their functional annotation (Fig. 4d). Density plots stratified for T-cells from each
subgroup revealed that COVID-19 was enriched for T-cells early and late in the Ty;- and Tseu-
trajectory, while vice versa T-cells from non-COVID-19 and normal lung were enriched halfway
these trajectories (Fig. 4e, f). In the Ty ;-trajectory, COVID-19 BAL was strongly enriched for T-
cells in the first half of the trajectory. Overall, CD4" T-cells from mild COVID-19 behaved similarly
as normal lung or non-COVID-19. Both TCR richness and evenness were reduced along the Ty-
lineage from COVID-19, but not from non-COVID-19 (Fig. 4g). Notably, this reduction was most
prominent in mild, but not in critical COVID-19 (Fig. 4h). In contrast, Ty 7-cells and Tscm-cells
were characterized by a modest decrease in TCR richness only at the very end of their lineage,

suggesting that mainly Ty -cells are selected for specific SARS-CoV-2 PAMPs/antigens.

Overall, this suggests that mild COVID-19 is characterized by more stable or differentiated Ty~
cells’ activity, which is crucial for productive immunity against pathogens at mucosal surfaces'’,
whereas Ty -cells become entangled halfway in their trajectory. In critical COVID-19, Ty;7 cells

completely fail to differentiate, while Ty -cells behave the opposite.

Gene expression modelling along the CD4* Ty,;- and Ty, ;-lineage

Differential gene expression analysis along both lineages identified gene sets with specific
expression profiles. In the Ty -lineage, the first gene set consisted of naive (LEFI, TCF7) and
undifferentiated (CCR7, SIPRI) T-cell markers (Fig. 4i; Supplementary information, Table S5). A
second set was enriched for both pro- and anti-inflammatory markers (CXCR4, CXCL2, ANXAI,
SOCS2, LTB), while a third set was characterized (halfway the trajectory) by an effector-like Ty-
program based on expression of IFNG, granzymes (GZMA, GZMK, GZMB), CXCR3, PRFI, NGK7,
CCLS5, as well as CTLA4 and HAVCR2. Finally, a fourth gene set was characterized by high HLA
expression, auto-regulatory markers (LGALSI, CCL3), partial activation markers (CXCLI3) and

stress-response markers (PDIAé, HSBPI, VDAC3, PARPI) at the end of the trajectory, suggesting a
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complex mixture of a pro- and anti-inflammatory phenotype coupled with early-stress modulation.
In a final fifth set, we noticed mitochondrial stress (LDHA, PKM, COX17, VDACI, COX8A), an IL2
withdrawal-associated  stressed  phenotype = (MTIE, MTIX), proteotoxic  stress
(PSMB3/B6/D4/A7/C3, HSPBI I, PARK7, EIF4EBPI) and glycolysis (PGAMI) suggesting ‘terminal
exhaustion’ at the end of the Ty -trajectory'®"”. Overall, in mild COVID-19, the Ty;-lineage was
enriched for cells halfway the trajectory where expression of set 2-3 genes was most dominant,
indicating increased Ty -effector function. In critical COVID-19, expression of sets 4-5 pre-

dominated, suggesting inflammation-driven terminal exhaustion and severe dysregulation.

In the Ty7-lineage, we also identified 5 gene sets (Fig. 4j; Supplementary information, Table Sé):
the first 2 sets with high expression early in the trajectory did not express markers indicative of
Twhi7 function. Three other gene sets with high expression at the end of the trajectory were
characterized by T-cell effector function (set 3: PDCDI, CCL5, CXCR2, CCR2 and GZMAI/B),
expression of cytotoxic-activity genes (set 4: NKG7 and PRFI) and Ty,s-cell associated interleukins
(set 5: ILI7A, ILI7F, IL23R, as well as IFNG and CCL4). Notably, in mild COVID-19, cells were
characterized by expression of genes belonging to set 3-5, while critical patients only expressed

set |-2 genes, completely failing to differentiate along the Ty lineage.

Overall, this clearly indicates that mild COVID-19 is characterized by improved Ty - and Ty ;-
effector functions that together mediate a highly controlled antiviral immune response, whose

absence underlies critical COVID-19.

Trajectory of monocyte-to-macrophage differentiation in COVID-19 BAL

In the 63,114 myeloid cells derived from BAL, we identified 9 phenotypes (Fig. 5a). Monocytes
clustered separately from macrophages based on the absence of macrophage markers (CDé68,
MSRI, MRCI) and presence of monocyte markers (ILIRN, FCNI, LILRA5). Monocytes could be
further divided into FCNI"" |LIB"8" and HSPA6"®" monocytes (Fig. 5b; Supplementary
information, Fig. S3a), respectively, characterized by expression of classical monocyte markers
(ILIRN, S100A8/9), pro-inflammatory cytokines (ILIB, IL6, CCL3, CCL4) and heat-shock proteins
(HSPA6, HSPAIA/B). Based on CSFIR, CSF3R and SPPI, 3 monocyte-derived macrophage
phenotypes could further be delineated, including CCL2"¢", CCL18"¢" and RGS|"¢" (Supplementary
information, Fig. S3b). CCL2"#" clusters were characterized by the pro-migratory cytokine CCL2,
but also by several pro- (CCL7, CXCLI0) and anti-inflammatory (CCLI3, CCL22) genes, suggesting
existence of an intermediate population of cells. In contrast, CCL18"¢" and RGS1"#" cells expressed

mainly anti-inflammatory genes (CCLI3, CCLI8, PLD4, FOLR2), as well as genes involved in receptor-
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mediated phagocytosis (MERTK, AXL). Finally, we identified MT|G"¢" macrophages (expressing
numerous metallothioneins suggestive of oxidative stress or immune cell’s growth factor-
withdrawal), a monocyte-derived (FABP4™%™) and tissue-resident (FABP4"#") alveolar macrophage
cluster. The latter two populations were characterized by high expression of resident markers
(FABP4, PPARG), anti-inflammatory (CCLI8, CCL22) and antigen-presentation relevant MHC-I/II

genes.

We observed a significant increase in FCN 1" and ILIB"®" monocytes in COVID-19 versus non-
COVID-19, while FABP4™™ and FABP4"¢" alveolar macrophages were reduced (Fig. 5¢). FCN|"&"
monocytes were significantly reduced in mild COVID-19, while alveolar macrophages were
increased (Fig. 5d). Using Slingshot, we reconstructed two monocyte-to-macrophage lineages,
consisting of a common branch of FCNI"" monocytes differentiating into ILIB"®" monocytes,
followed by CCL2"¢" and CCL18"8" monocyte-derived macrophages. These subsequently branched
into RGSI"& monocyte-derived macrophages (RGSI-lineage), or via FABP4™%™ into FABP4"¢"
tissue-resident macrophages (alveolar lineage; Fig. 5e). Monocyte marker expression decreased
along both lineages, while macrophage marker expression increased (Fig. 5f). Density plots
revealed that in COVID-19 cells were enriched in the first half of both lineages (Fig. 5g),
confirming our above observations of monocyte enrichment in COVID-19. Comparing mild to

critical COVID-19, we noticed that the former differentiated along both lineages, whereas in the

latter monocytes completely failed to differentiate (Fig. 5h).

Modelling gene expression along the alveolar lineage revealed 5 gene sets (Fig. 5i; Supplementary
information, Table S7). Sets | and 2 were characterized by inflammatory markers (CXCLI-3,
CCL20, CXCL8, CXCLI10, CCRI, ILIB), survival factors (RACI, JAKI, ZEB2, CDKNA), IFN-induced
(anti-viral) genes (IFITM -3, IFIT1-3, IRFI, MX1/2), hypoxia (HIFIA) and NF-xB (NFKB1/2, NFKBIZ)
signalling early in the lineage, suggesting these monocytes to be characterized by a
hyperinflammatory state, in which they prioritized inflammation rather than committing toward
differentiation into macrophages. The third gene set was characterized by a possible CD47-based
macrophage-suppressive phenotype, potentially aimed at dysregulating macrophage-activation
(since CDA47 is a well-established ‘don’t eat me’ signal striving to avoid auto-immunity)*?'.
Moreover, based on expression of purinergic signalling (P2RX7), inflammasome or IL1-modulating
factors (NLRP3, ILIB, ILIORA, CTSL, CALM I, NFKBI), endoplasmic reticulum (ER) stress capable of
enabling ATP secretion (UBC, PSMB9, SEC61G, ATF5, ATF3), unconventional trafficking (VAMPS),
fibrosis-related factors (FGL2, TGFBI, COTLI) and vascular inflammation (TNF, AIFI, RNF213, CCL2,

CCL8) across sets 2 and 3 of these monocytes, we strongly suspect presence of extracellular ATP-
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driven purinergic-inflammasome signalling; especially given the high likelihood of extracellular ATP
release from damaged epithelium in the context of acute viral infection. Importantly, this ATP-
driven purinergic-inflammasome signalling pathway is a danger signalling cascade, which has been
shown to facilitate ARDS-associated lung fibrosis and thus acts disease-worsening in this context*
2 Finally, set 4 and 5 genes were expressed at the end of the trajectory. Set 4 was characterized
by expression of chaperone-coding genes (CALU, CALR, CANX, PDIA4, HSP90B ), which are crucial
for robust functioning of the antigen-loading machinery for MHC molecules, whereas in set 5 there
were clear signs of antigen presentation (expression of numerous MHC class Il genes).
Furthermore, set 5 comprised genes involved in receptor-mediated phagocytosis and post-
phagocytic lipid degradation/metabolism: APOE for lipid metabolism, scavenger receptors MARCO
and MSRI, complement activation (C/QA, CIQB, CIQC and CD46; that can also facilitate
phagocytosis), viral infection-relevant inflammatory orientation (CD81, CD9), as well as anti-
inflammatory markers (PPARG, FABP4)>?*. Similar gene sets were observed for the RGS|-lineage
(Supplementary information, Fig. S3c), except for gene set 5, which exhibited expression of genes
involved in chemokine signalling desensitization (RGS/), phagocytosis (AXL) and ATP clearance
(ENTPD1)”.

Overall, this indicates that mild COVID-19 is characterized by functional pro-phagocytic and
antigen-presentation facilitating functions in myeloid cells, whereas critical COVID-19 is
characterized by disease-worsening characteristics related to monocyte-based macrophage
suppression and ATP-purinergic signalling-inflammasome that may enable COVID-19 associated

fibrosis and can worsen patient prognosis.
Qualitative assessment of T-cell and monocyte/macrophage function in COVID-19

Next, although pseudotime inference usually allocates cells with a similar expression to the same
pseudotime on the trajectory, we explored specific differences in gene expression along the
pseudotime. We scored each cell using REACTOME pathway signatures and when comparing
COVID-19 versus non-COVID-19 BAL, we observed consistently decreased IFN-signalling in non-
COVID-19 T-cell and myeloid lineages (Supplementary information, Fig. S4a). In mild versus
critical COVID-19, we observed that amongst several other pathways, IFN- (type | and ll),
interleukin (e.g,, IL12 and IL6) and oligoadenylate synthetase (OAS) antiviral response signalling
was increased in CD8" Trw- and Tex-lineages (Fig. 5j; Supplementary information, Fig. S4b-e).
The CD4" Ty -lineage was similarly characterized by increased IFN- (type | and Il) and interleukin
(IL6, 1L12, IL21) signalling in mild COVID-19 (Fig. 5k; Supplementary information, Fig. S4f, g).
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358 Additionally, TRAF6-induced NF-kB and IRF7 activation, as well as TGFBR complex activation were
359 increased. Similar effects were observed in the Ty ;-lineage (Supplementary information, Fig. S4h,
360 i). The alveolar macrophage lineage was characterized by increased phagocytosis-related pathways
361 (scavenging receptors, synthesis of lipoxins or leukotrienes) and IFN-signalling in mild COVID-19
362 (Fig. 51; Supplementary information, Fig. S4j-m). Vice versa, IL10-signalling (which inhibits the IFN-
363 response), chemokine receptor binding and ATF4-mediated ER stress response were increased in

364 critical COVID-19.

365 Overall, while our trajectory and cell density analyses already indicated quantitative shifts in various
366 cellular phenotypes comparing mild versus critical COVID-19, we noticed that also qualitatively

367 immune cells from critical COVID-19 were severely dysfunctional.
368 scRNA-seq of neutrophils, DCs and B-cells in COVID-19

369 We retrieved 14,154 neutrophils, which were subclustered into 5 phenotypes (Fig. éa, b;
370 Supplementary information, Fig. S5a). A first cluster consisted of ‘progenitor’ neutrophils based
371 on CXCR4 and CDé63, and was also characterized by expression of the angiogenic factor VEGFA and
372 cathepsins (CTSA, CTSD) (Fig. 6c). A second cluster consisted of few ‘immature’ neutrophils
373 expressing LTF, LCN2, MMP8/9, PADI4 and ARG . Cluster 3 and 4 consisted of ‘inflammatory mature’
374 neutrophils, both expressing a signature footprint that highlights anti-pathogenic orientation of
375 neutrophils®: cluster 3 expressed IFN-induced genes and calgranulins (S/00A8/9, SI00A9 and
376 SI100AI2), which can modulate inflammation, while cluster 4 expressed high levels of cytokines
377 (ILIB) and chemokines (CXCL8, CCL3, CCL4). A final subset was characterized as ‘hybrid’
378 neutrophils due to their macrophage-like characteristics, i.e., expression of MHC class Il and
379 complement activation genes (C/QB, CIQC, CD74), cathepsins (CTSB, CTSL) and APOE. All
380 neutrophil subclusters were more frequent in COVID-19 than non-COVID- |9, but most significant
381 changes were noticed for the ‘progenitor’ and ‘inflammatory mature’ neutrophils (Fig. 6d). Similar

382 trends were observed in mild versus critical COVID-19, albeit non-significantly (Fig. ée).

383 We also identified 1,410 dendritic cells (DCs), which we could subcluster into 6 established
384 populations (Fig. 6f, g; Supplementary information, Fig. S5b, c). None of these differed
385 significantly between COVID-19 and non-COVID-19, while migratory DCs and Langerhans-cell-
386 like DC were more frequent in mild versus critical COVID-19 (Fig. 6éh, i).

387 Within the 1,397 B-cells, we obtained 4 separate clusters (Fig. 6j; Supplementary information, Fig.
388 S5d). Follicular B-cells were composed of mature-naive (CD27°) and memory (CD27%) B-cells.
389 The former were characterized by a unique CD27/IGHD"(IgD)/IGHM*(IgM) signature and give
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rise to the latter by migrating through the germinal center to form CD27*/IGHD (IgD)/IGHM (IgM)
memory B-cells (Fig. 6k, ). Memory B-cells then further differentiate into antibody-secreting
plasma cells (IGHAI, IGHGI, JCHAIN). A first cluster of ‘active’ plasma cells expressed high levels
of PRDM I (Blimp-1) and XBPI, indicating high antibody-secretion capacity, while the latter was
enriched for CLL2 and CCL5, but also characterized by a reduced G2M and S cell cycle score and
increased expression of mitochondrial genes, indicating ongoing stress (Fig. 6m). Notably, this
population of ‘terminal’ plasma cells was also characterized by increased BCR clonality and reduced
BCR evenness (Fig. 6n). Compared to non-COVID-19, mature-naive B-cells and active plasma
cells were increased in COVID-19, while terminal B-cells were reduced in CoVID-19, albeit non-
significantly (Fig. 60). There were no significant differences between mild versus critical COVID-
19 (Fig. 6p). Overall, this suggests terminal B-cells in COVID-19 to be characterized by sub-
optimal differentiation or activation, which may cause defective or counter-productive (possibly

low-quality) antibody responses in COVID-19.
SARS-CoV-2 viral particles in epithelial and immune cells

Finally, we retrieved 22,215 epithelial cells, which we subclustered into 7 distinct clusters (Fig. 7a,
b; Supplementary information, Fig. S5e, f), the largest 3 clusters consisting of secretory, ciliated
and hillock lung epithelial cells. The basal population (KRT5, AQP3 and SPARCLI), representing stem
cell epithelial cells responsible for epithelial remodelling upon lung injury, was significantly enriched
in COVID-19 versus non-COVID-19, as well as ionocytes, which is another rare epithelial cell type
that regulates salt balance (Fig. 7c). There were no significant differences between mild versus
critical COVID-19 (Fig. 7d). Interestingly, ACE2Z and TMPRSS2 expression was increased in
COVID-19 versus non-COVID-19, with 21% and 2.3% of epithelial cells being positive, respectively
(Fig. 7e, f). We then assessed in which cells we retrieved sequencing reads mapping to the SARS-
CoV-2 genome, identifying 3,773 positive cells from 17 out of 31 COVID-19 patients. Surprisingly,
this revealed a higher overall number of reads mapping to lymphoid and myeloid than epithelial
cells (Fig. 7g). Stratification for each of the || SARS-CoV-2 open-reading frames (ORF) using
Viral-Track revealed that the RNA encoding for spike protein (S), which interacts which ACE2
during viral entry of the cell, was almost exclusively detected in epithelial cells, which were also
the only cells expressing ACE2 and TMPRSS2 (Fig. 7g). In contrast, the nucleocapsid protein (N),
and to a lesser extent the ORFI0 and ORFla-encoding mRNAs were detected in myeloid and
lymphoid cells at much higher levels than in epithelial cells (Fig. 7h). Further stratification into cell
types revealed that neutrophils and to a limited extent also monocytes, contained most reads

mapping to N (Fig. 7i). This might suggest that neutrophils are the main cell type interacting with
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SARS-CoV-2 viral particles/infected cells and account for the highest procurement of viral material,
in line with their role as first innate immune responders to infection”. Differential gene expression
of N-positive versus N-negative neutrophils identified upregulation of transcription factor BCLS,
which promotes neutrophils survival and inflammatory response following virus infection, and
numerous |FN-induced genes (IFITM3, IFITI-3, MXI/2, ISGI5, RSAD2; Fig. 7j)*. No such
enrichment was observed in monocytes nor macrophages (Supplementary information, Fig. S5g-
i). Pathway analysis on differentially-expressed genes revealed IFN-signalling using REACTOME and
Response_to_virus using GO for genes upregulated in N-containing neutrophils (Fig. 7k, I).
Notably, amongst the different neutrophil phenotypes, N was most strongly enriched in
‘inflammatory mature’ neutrophils expressing calgranulins (Fig. 7m). As expected, significantly

more N was present in critical versus mild COVID-19°".

Cell-to-cell communication to unravel the immune context of COVID-19 BAL
Since, our data on the one hand reveal that neutrophils were involved in cleaning up viral
particles/virus-infected cells, yet T-cell and monocyte-to-macrophage lineages were significantly
disrupted in critical COVID-19, we explored the (predicted) interactome between these cell types
to gain more refined insights. First, we calculated interactions between cell types (P<0.05)
separately for mild and critical COVID-19, then we assessed differences in the number of specific
interactions. Neutrophils were characterized by a low number of specific interactions that were
slightly more frequent in critical versus mild COVID-19. Vice versa, numerous specific interactions
were predicted between all other immune and epithelial cells, especially in mild COVID-19 (Fig.

8a, b; Supplementary information, Fig. S6).

In critical COVID-19, specific interactions between monocytes/macrophages and neutrophils
almost always involved pro-migratory interactions (FLT I, NRPI| or NRP2/VEGFA, CXCLI or CXCL2
or CXCL8/CXCR2, CCL3 or CCL7I/CCRI), coupled with immune-inhibitory interactions, such as
LILRBI or LILRB2/HLA-F and RPSI9/C5ARI, which also induce neutrophil dysfunction (Fig. 8c)*>. A
few stimulatory T-cell to neutrophil interactions were observed, including IFNG/type Il IFNR,
PDCD1/CD274, LTAITNFRSFIA or TNFRSFIB (Fig. 8d), while specific epithelial cell-to-neutrophil
interactions were limited to a mixture of myeloid immunosuppression (RPSI9/C5AR1) and viral
infection-relevant pro-inflammatory signals (TNFRSFI4/TNFSF14) (Fig. 8e). Amongst T-cell and
monocytes/macrophages, some immune-stimulatory or auto-regulatory interactions were seen
(CTLA4 or CD28/CD80 or CD86, CCL5/CCRS) (Fig. 8f), but specific epithelial to T-cell interactions

in critical COVID-19 were limited to pro-inflammatory ICAMI-mediated interactions (Fig. 8g).
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A very different scenario was observed in mild COVID-19 (Fig. 8c-g). Amongst the numerous
interactions between monocytes/macrophages and neutrophils, we noticed interleukin signalling
(bi-directional ILIB, ILIA, ILIRN/A signalling, IL7/IL7R, CXCR2/CXCLI or CXCLS8), but also
MRCI/PTPR (phagocytosis) and LTBR/LTB (pro-inflammation). Between T-cells and neutrophils
specific interactions involved CCRI/CCL3 or CCL3LI (pro-inflammation), CD2/CD58 (co-
stimulatory/immunogenic pathway) and CD94:NKG2E/HLA-F (anti-viral immune-surveillance),
whereas between epithelial cells and neutrophils, ILIR/ILIA or ILIB or ILIR interactions were most
pronounced (which can facilitate productive neutrophil immunity in an immune-
controlled/immunogenic context)®***. Numerous interactions were also observed between
epithelial cells and monocyte/macrophages: GAS6 or PROS|/AXL (receptor-mediated phagocytosis),
ADORA2B/ENTPD|  (extracellular ATP degradation/suppression), CD83/PECAMI (immune
activation) and semaphorins interacting with their plexin and NRP receptors (tissue re-modelling
and repair). Between epithelial cells and T-cells, we observed mainly co-stimulatory (CD46/JAGI,
CD40LG/CD40, IL7R/IL7, MICA or RAETIIINKG2D receptor) and tissue repair interactions
(TGFBI/TGFR2 and TGFBI/TGFBR3), while amongst T-cells and monocytes/macrophages, there
were amongst others, co-stimulatory (LTA/TNFRSFIA or TNFRSFIB or TNFRSFI4,
TNFSFIO/TNFRSFI0B) or tissue-repair factors (CSFI/CSFRI, TGFBR3/TGFBI, ILI5RA/ILIS),
mediators of T-cell homeostasis and cytotoxicity (FASLG/FAS) and antiviral immune surveillance

(NKG2D II receptor/MICB or MICA).

DISCUSSION

Based on scRNA-seq data obtained from BAL fluid, we were able to perform deep-immune
profiling of the adaptive and innate immune cell landscape within the main locale of COVID-19
pathology. A particular strength of our study is the profiling of BAL from a fairly large cohort of
COVID-19 patients (n=31), enabling statistically meaningful and robust comparisons between mild
and critical disease severity subgroups (in contrast to initial COVID-19 publications that profiled
<10 patients)’. Importantly, our control group also consisted of non-COVID-19 pneumonia cases
(n=13), instead of healthy controls. Since the latter are likely to differ on almost every
immunological parameter-level relative to COVID-19, our strategy enhances qualitative clarity of
immunological conclusions. Finally, due to the fact that we profiled >116,000 single-cells, we could
infer pseudotime trajectories for both T-cells and myeloid cells. Such method is particularly

attractive since it allows modelling of gene expression changes along the inferred trajectories,
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thereby generating data at a much greater resolution. Overall, this allowed us to draw the following

key conclusions regarding what distinguishes a critical from a mild COVID-19 disease course:

Firstly, CD8" T-cells exhibited good effector functions along their resident-memory and partially-
exhausted lineages in mild COVID-19, while also CD4" T-cells showed increased effector or
disease-resolving functions in Ty- and Ty ;-lineages. In critical COVID-19, T-cells were highly
dysregulated, either failing to differentiate (T,7- and Trum-lineage) or exhausting excessively, thereby
leading to metabolic disparities, dysregulation of their immunological interface with myeloid cells
and/or a dysregulated chronic hyper-inflammatory phenotype (T, and Tex-lineage). Notably, we
observed that mild versus critical COVID-19, not only differed quantitatively in terms of the number
of T-cells exhibiting a good T-cell effector function, but also qualitatively, in terms of consistently
lower activation levels of the type | and Il IFN (anti-viral) signalling pathways (amongst several
other pathways). Overall, this showed that T-cells in mild COVID-19, unlike those in critical
COVID-19, were cross-talking better with their lung-localised microenvironment thereby
facilitating ‘ordered’ immune reactions capable of resolving, rather than exacerbating, inflammation

and tissue repair *.

Secondly, in mild COVID-19 monocytes exhibited a pronounced pro-inflammatory phenotype, but
then differentiated into macrophages characterized by anti-inflammatory, pro-phagocytic and
antigen-presentation facilitating functions. This suggests that in these patients, macrophages might
be immunologically ’silently’ cleaning the dying/dead epithelial cells (as well as other immune cells
meeting their demise due to inflammation), hence contributing to degradation and dilution of the
viral load in COVID-19 BAL. Such pro-homeostatic activity of macrophages is well-established to
aid in disease amelioration and inflammation resolution®. In critical COVID-19, monocytes were
instead characterized by a chronically hyper-inflamed phenotype with characteristics of an ATP-
inflammasome-purinergic signalling-based fibrosis, which can promote worse disease outcome by
contributing to development of ARDS. This danger signalling pathway is hypothesized to be part
of the chronology of events during SARS-CoV-2 infection, but its genetic footprints have not been
documented as we report here®. Considering that fully-differentiated macrophages are much more
efficient in clearing large debris or cellular corpses (e.g. infected dead/dying lung epithelia or dead
neutrophils) than monocytes or neutrophils, their dysfunction in critical COVID-19 may explain
the excessive accumulation of lung epithelial (as well as dead immune cell) debris and alveolar

dyshomeostasis coupled with dysregulated coagulopathy®®*,
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Lastly, based on the presence of sequencing reads mapping to the gene encoding for viral protein
S, which is needed to infect cells via ACE2 and TMPRSS2 receptors, we propose that SARS-CoV-
2 largely infects epithelial cells (as primary targets of excessive pathological replication and
propagation), but not necessarily lymphoid or myeloid cells (although we cannot exclude yet that
some virions might be capable of ‘latently’ entering these cells without showing pathological
replication or propagation). Interestingly, we also detected reads mapping to the nucleocapsid
protein (N) encoding gene mainly in neutrophils, but to some extent also in other lymphoid or
myeloid cells, especially monocytes. This suggests that neutrophils might be heavily involved in viral
clearance of SARS-CoV-2 — as is the case in most viral pathologies?. Indeed, we observed that
‘inflammatory mature’ neutrophils, which exhibited an anti-pathogenic orientation with
pronounced degranulating activity, contained most of the viral N sequences (amongst all other
neutrophil phenotypes). Moreover, N-positive neutrophils exhibited increased expression of IFN-
induced (anti-viral) genes, compared to N-negative neutrophils. Some sequencing reads also
mapped to ORF/0 and ORF/ab, but not the other viral protein-encoding genes. We suspect this is
due to increased stability of N, ORFI0 and ORFlab RNA compared to other viral ORFs. In
conclusion, these data suggest that the neutrophil’s positioning in an immune-inhibitory (adverse)
environment, with disrupted T-cell effector/regulatory function as well as mostly inhibitory or
dysregulated interactions with other (myeloid) immune cells, might explain their failure in

controlling disease progression, thereby leading to critical COVID-19 pathology.

Our findings bear important therapeutic relevance. The RECOVERY trial recently claimed that
dexamethasone reduces death by one-third in hospitalised patients with critical COVID-19
(unpublished data). Dexamethasone has indeed been shown to dampen myeloid inflammatory
signalling (notably IL-1 and IL-6 release), reduce neutrophil inflammation*’, promote an ‘M2-like”
macrophage phenotype, which has anti-inflammatory and phagocytic traits*, as well as to maintain
clonal balance in T-cells*. Given the findings we report here, the therapeutic effects of
dexamethasone are not entirely unexpected. Our data also suggest that neutrophils are key players
in the acute phase of the infection. However, prolonged neutrophil inflammation might also cause
excessive collateral lung damage and be detrimental to the host, as suggested by autopsy reports*.
In this regard, the immunomodulatory antibiotic azithromycin might be a promising therapy for
COVID-19 when administered early in the disease course. Acutely administered azithromycin
enhances degranulation and the oxidative burst by neutrophils in response to a stimulus, yet this

is followed by a subsequent decrease of oxidative burst capacity and increase in neutrophil
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apoptosis’’. We are therefore eagerly awaiting results from large-scale randomised trials with

azithromycin for COVID-19.

Nevertheless, there are also limitations to our study. For instance, we observed evidence of
counter-productive (possibly low-quality) antibody response-related signatures in COVID-19, but
failed to perform an in-depth study in this area. Additional studies performing scRNA- and scBCR-
seq on serially-collected samples during disease are needed to reinforce this observation. Also,
several COVID-19 patients were treated with the antiviral drugs remdesivir, which targets the viral
RNA-dependent RNA polymerase, or hydroxychloroquine, which has immunomodulatory traits
and is still controversial with respect to its therapeutic effects on disease outcome*=°. Of note,

we did not detect major patient-specific cell clusters nor other type of outliers during our analyses.

In conclusion, we used single-cell transcriptomics to characterize the innate and adaptive lung
immune response to SARS-CoV-2. We observed marked changes in the immune cell compositions,
phenotypes as well as immune cross-talks during SARS-CoV-2 infection and identified several
distinguishing immunological features of mild versus critical COVID-19. We also documented
genetic footprints of several crucial immunological pathways that have been extensively
hypothesized, but not always systematically confirmed, to be associated with COVID-19 pathology
and SARS-CoV-2 infection biology. We believe that this work represents a major resource for
understanding lung-localised immunity during COVID-19 and holds great promise for the study of
COVID-19 immunology, immune-monitoring of COVID-19 patients and relevant therapeutic

development.
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MATERIALS AND METHODS

Patient cohort, sampling and data collection

22 COVID-19 patients and 13 non-COVID-19 pneumonitis patients in this study were enrolled
from the University Hospitals Leuven, between March 31" 2020 and May 4™ 2020. Disease severity
was defined as ‘mild’ or ‘critical’, based on the level of respiratory support at the time of sampling.
Specifically, ‘mild’ patients required no respiratory support or supplemental oxygen through a nasal
cannula, whereas ‘critically ill’ patients were mechanically ventilated or received extracorporeal

membrane oxygenation.

The demographic and disease characteristics of the prospectively recruited patients studied by
scRNA-seq are listed in Supplementary Table I. Diagnosis of COVID-19 was based on clinical
symptoms, chest imaging and SARS-CoV-2 RNA-positive testing (QRT—-PCR) on a nasopharyngeal
swab and/or BAL fluid sample. Non-COVID-19 pneumonitis cases all tested negative for SARS-
CoV-2 RNA using a qRT-PCR assay on BAL.

All 35 patients underwent bronchoscopy with BAL as part of the standard of medical care, because
of i) high clinical suspicion of COVID-19 yet negative SARS-CoV-2 qRT-PCR on nasopharyngeal
swab ii) established COVID-19 with clinical deterioration, to rule out opportunistic (co-)infection
and/or to remove mucus plugs. Lavage was performed instilling 20cc of sterile saline, with an
approximate retrieval of 10cc. 2-3cc of the retrieved volume was used for clinical purposes. The

remaining fraction was used for scRNA-seq.

The retrieved BAL volume was separated into two aliquots, as explained above, at the bedside by
the performing endoscopist. The aliquot used for scRNA-seq was immediately put on ice and

transported to a Biosafety Level 3 Laboratory (REGA Institute, KU Leuven) for scRNA-seq.

Demographic, clinical, treatment and outcome data from patient electronic medical records were
obtained through a standardized research form in Research Electronic Data Capture Software
(REDCAP, Vanderbilt University). This study was conducted according to the principles expressed
in the Declaration of Helsinki. Ethical approval was obtained from the Research Ethics Committee
of KU / UZ Leuven (S63881). All participants provided written informed consent for sample

collection and subsequent analyses.

scRNA-seq, scTCR-seq and scBCR-seq profiling
BAL fluid was centrifuged and the supernatant was frozen at -80°C for further experiments. The
cellular fraction was resuspended in ice-cold PBS and samples were filtered using a 40pm nylon

mesh (ThermoFisher Scientific). Following centrifugation, the supernatant was decanted and
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discarded, and the cell pellet was resuspended in red blood cell lysis buffer. Following a 5-min
incubation at room temperature, samples were centrifuged and resuspended in PBS containing
UltraPure BSA (AM2616, ThermoFisher Scientific) and filtered over Flowmi 40pum cell strainers
(VWR) using wide-bore | ml low-retention filter tips (Mettler-Toledo). Next, 10 pl of this cell
suspension was counted using an automated cell counter to determine the concentration of live

cells. The entire procedure was completed in less than 1.5 h.

Single-cell TCR/BCR and 5’ gene expression sequencing data for the same set of cells were
obtained from the single-cell suspension using the Chromium™ Single Cell 5’ library and Gel Bead
& Multiplex Kit with the Single Cell V(D)) Solution from 10x Genomics according to the
manufacturer’s instructions. Up to 5,000 cells were loaded on a 10x Genomics cartridge for each
sample. Cell-barcoded 5’ gene expression libraries were sequenced on an lllumina NovaSeq6000,
and mapped to the GRCh38 human reference genome using CellRanger (10x Genomics, v3.1).
V(D)) enriched libraries were sequenced on an lllumina HiSeq4000 and TCR and BCR alignment

and annotation was achieved with CellRanger VD] (10x Genomics, v3.1).

Single-cell gene expression analysis

Raw gene expression matrices generated per sample were merged and analysed with the Seurat
package (v3.1.4)°'. Cell matrices were filtered by removing cell barcodes with <301 UMIs, <I5]
expressed genes or >20% of reads mapping to mitochondrial RNA. We opted for a lenient filtering
strategy to preserve the neutrophils, which are transcriptionally less active (lower transcripts and
genes detected). The remaining cells were normalized and the 3000 most variable genes were
selected to perform a PCA analysis after regression for confounding factors: number of UMIs,
percentage of mitochondrial RNA, patient ID and cell cycle (S and G2M phase scores calculated
by the CellCycleScoring function in Seurat), interferon response (BROWNE_INTERFERON_RE-
SPONSIVE_GENES in the Molecular Signatures Database or MSigDB v6.2), sample dissociation-
induced stress signatures®?, hypoxia signature®®. This PCA and graph-based clustering approach
however resulted in some highly patient specific clusters, which prompted us to perform data
integration using anchor-based CCA in Seurat (v3) package between patients to reduce the patient-
specific bias. And this was performed after excluding cells from an erythrocyte cluster (primarily
from a single patient) and a low-quality cell cluster. After data integration, 3000 most variable genes
were calculated by FindVariableFeatures function, and all the mitochondrial, cell cycle, hypoxia,
stress and interferon response genes (Pearson correlation coefficient > 0.1 against scores of the
above-mentioned signatures calculated by AddModuleScore function in Seurat) were removed

from the variable genes. In addition, we also removed common ambient RNA contaminant genes,
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637 including hemoglobin and immunoglobulin genes, as well as T-cell receptor (TRAVs, TRBVs,
638 TRDVs, TRGVs) and B-cell receptor (IGLVs, IGKVs, IGHVs) genes, before downstream analyses.

639 scRNA-seq clustering for cell type identification

640 For the clustering of all cell types, principal component analysis (PCA) was applied to the variable
641 genes of dataset to reduce dimensionality. The selection of principal components was based on
642 elbow and Jackstraw plots (usually 25-30). Clusters were calculated by the FindClusters function
643 with a resolution between 0.2 and 2, and visualised using the Uniform Manifold Approximation and
644 Projection for Dimension Reduction (UMAP) reduction. Differential gene-expression analysis was
645 performed for clusters generated at various resolutions by both the Wilcoxon rank sum test and
646 Model-based Analysis of Single-cell Transcriptomics (MAST) using the FindMarkers function®'. A
647 specific resolution was selected when known cell types were identified as a cluster at a given
648 resolution, but not at a lower resolution with the minimal constraint that each cluster has at least
649 10 significantly differentially expressed genes (FDR <0.01, 2-fold difference in expression compared
650 to all other clusters). Annotation of the resulting clusters to cell types was based on the expression

651 of marker genes.

652 Integration of publicly available datasets and identification of cell subtypes

653 We additionally processed scRNA-seq data on COVID-19 BAL fluid by Liao et al. and on normal
654 lung samples by Reyfman et al. and Lambrechts et al. as described above’”'°. The former two
655 datasets were de novo clustered and annotated, and cell type annotation of the last dataset was
656 used as previously described''. For cell subtype identification, the main cell types identified from
657 multiple datasets were pooled, integrated, and further subclustered using the similar strategy,
658 except that the constant immunoglobulin genes were not excluded for B-cell and plasma cell
659 subclustering. Finally, doublet clusters were identified based on: |) expression of marker genes
660 from other cell (sub)clusters, 2) higher average UMIs as compared to other (subclusters), and 3) a
661 higher than expected doublets rate (> 20%), as predicted by both DoubletFinder (v2)** and

662 Scrublet® and the clustering was re-performed in the absence of the doublet clusters.

663 Trajectory inference analysis

664 The R package Slingshot was used to explore pseudotime trajectories/potential lineages in T- and
665 myeloid cells®. The analyses were performed for CD8* and CD4" cell phenotypes separately, with
666 Tmarr-, Tys- and Treg-cells excluded due to their unique developmental origin. For each analysis,
667 PCA-based dimension reduction was performed with differentially expressed genes of each

668 phenotype, followed by two-dimensional visualization with UMAP. Graph-based clustering (Louvain)
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identified additional heterogeneity for some phenotypes, as described in the manuscript for CD4"
T-cells. Next, this UMAP matrix was fed into SlingShot, with naive T-cells as a root state for
calculation of lineages and pseudotime. Similar approach was applied to the monocyte-macrophage

differentiation trajectory inferences.

Assessing the TCR and BCR repertoires

We only considered productive TCR/BCRs, which were assigned by the CellRanger VD] pipeline.
Relative clonotype richness®’, defined as the number of unique TCRs/BCRs divided by the total
number of cells with a unique TCR/BCR, was calculated to assess clonotype diversity. Relative
clonotype evenness®®, was defined as inverse Simpson index divided by species richness (number

of unique clonotypes).
Inflammatory pathways and gene set enrichment analysis and tradeSeq

The REACTOME pathway activity of individual cells was calculated by AUCell package (v1.2.4)*.
And the differential activity between lineages along the trajectories were calculated using
TradeSeq®’. Pathways with median fold change >3 and an adjusted p-value < 0.0| were considered
as significantly changed. GO and REACTOME geneset enrichment analysis were performed using

hypeR package®'; geneset over-representation was determined by hypergeometric test.
SARS-CoV-2 viral sequence detection

Viral-Track was used to detect SARS-CoV-2 reads from BAL scRNA-seq data (reference
genome NC_045512.2), as previously described®. The initial application was aimed to identify
SARS-CoV-2 reads against thousands of other viruses, and thus the STAR indexes for read
alignment were built by combining the human (GRCh38) genome reference with thousands of virus
refence genomes from viruSITE. Since the likelihood of co-infection with multiple viruses (>2) is
low in COVID-19 patients®, we adapted the Viral-Track pipeline to reduce computation time and
increase sensitivity. Briefly, instead of directly processing raw fastq reads, we took advantage of
BAM reads generated for scRNA-seq data, which mapped to human genome by the CellRanger
pipeline as described above. The BAM files were filtered to only keep reads with cell barcodes
annotated in the scRNA-seq analysis using subset-bam tools (10x Genomics). Then the
corresponding unmapped BAM reads were extracted using samtools and converted to fastq files
using bamtofastq tool to be further processed by UMI-tools for cell barcode assignment before
feeding into Viral-Track pipeline. These unmapped reads, which contain potential viral sequences,
were aligned using STAR to SARS-CoV-2 reference genome, with less stringent mapping parameter

(outFilterMatchNmin 25-30), as compared to the original Virial-Track pipeline. Our approach
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identified 17 SARS-CoV-2 positive patients from a total of 31 COVID-19 patients, including 3
patients that were previously not detected using original Viral-Track pipeline by Bost et al. None
of the patients among the 13 non-COVID-19 patients were detected as SARS-CoV-2 positive,
suggesting our adapted pipeline does not result in major false-positive detection. For the detection
of Il SARS-CoV-2 ORFs or genes, a GTF annotation file was generated according to
NC_045512.2%2 for counts matrix using Viral-Track. The viral gene counts of each barcoded cells
were integrated into the scRNA-seq gene count matrix and normalized together using

NormalizeData function in Seurat.
Cell-to-cell communication of scRNA-seq data

The CellPhoneDB algorithm was used to infer cell-to-cell interactions®. Briefly, the algorithm
allows to detect ligand-receptor interactions between cell types in scRNA-seq data. We assessed
the amount of interactions that are shared and specific for i) COVID-19 versus non-COVID-19 and
ii) mild versus critical COVID-19.

Quantification and statistical analysis

Descriptive statistics are presented as median [interquartile range; IQR] (or median [range] if
dataset contained only 2 variables) and n (%) for continuous and categorical variables, respectively.
Statistical analyses were performed using R (version 3.6.3, R Foundation for Statistical Computing,
R Core Team, Vienna, Austria). Statistical analyses were performed with a two-sided alternative

hypothesis at the 5% significance level.

DATA AVAILABILITY

Raw sequencing reads of the scRNA-seq and scTCR-seq experiments generated for this study will
be deposited in the EGA European Genome-Phenome Archive database. Based on SCope, which
is an interactive web server for scRNA-seq data visualisation, a download of the read count matrix
will be made available at http://blueprint.lambrechtslab.org. The publicly available datasets that
supported this study are available from GEO GSEI145926’, GEO GSEI122960"° and from
ArrayExpress E-MTAB-6149/E-MTAB-6653°.

ADDITIONAL RESOURCES
The findings outlined above are part of the COntAGlouS observational clinical trial:

https://clinicaltrials.gov/ct2/show/NCT04327570 .
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Figure Legends

Fig. . Annotation of cell types by scRNA-seq in COVID-19 and non-COVID-19 BAL

a UMAP representation of 65,166 cells (obtained from BAL from n=13 non-COVID-19, n=2 mild and n=22
critical COVID-19 patients) by scRNA-seq color-coded for the indicated cell type. pDC: plasmacytoid
dendritic cell, cDC: conventional dendritic cell, NK: natural-killer cell, Md_Mac: monocyte-derived
macrophage. Alveolar_Mac: alveolar macrophage. AT2: alveolar type Il epithelial cell. b UMAP panels
stratified per individual patient, COVID-19 versus non-COVID-19 and mild versus critical COVID-19. ¢
Relative contribution of each cell type (in %) in COVID-19 versus non-COVID-19. d Relative contribution
of each cell type (in %) in mild versus critical COVID-19. P values were assessed by Mann-Whitney test. *
P<0.05, ** P<0.01, **P<0.001

Fig. 2. 14 T-cell phenotypes in mild and critical COVID-19 BAL

a Subclustering of 23,468 T-/NK-cells into 14 T-/NK-cell phenotypes, as indicated by the color-coded
legend. NK cyto: cytotoxic NK cell; NK inflam: inflammatory NK cell. b Heatmap showing T-/NK-cell
phenotypes with corresponding marker genes and functional gene sets. ¢ Relative contribution of each T-
INK-cell phenotype (in %) in COVID-19 versus non-COVID-19. d Relative contribution of each T-/NK-cell
phenotype (in %) in mild versus critical COVID-19. P values were assessed by Mann-Whitney test. * P<0.05,
** P<0.01, **P<0.001

Fig. 3. CD8" T-cell phenotypes in mild and critical COVID-19 BAL

a Pseudotime trajectories for CD8* T-cells based on Slingshot, showing 3 lineages (Tru-lineage, Tex-lineage
and Temra-lineage), color-coded for the CD8* T-cell phenotypes (left panel), the pseudotime (middle panel)
and the number of clonotypes (right panel). b Profiling of marker genes along these trajectories to confirm
their functional annotation: ZNF683 and ITGAE for the Trm-lineage, HAVCR2 and CTLA4 for the Tex-lineage,
FGFBP2 and CX3CRI for the Temra-lineage. ¢ Genes involved in T-cell effector function and cytotoxicity
(GZMB, IFNG, GNLY) and related transcription factor (TOX2) modelled along the CD8* T-cell lineages. d
Density plots reflecting the number of T-cells along the 3 CD8* T-cell lineages. e Density plots reflecting
the number of T-cells along the 3 CD8* T-cell lineages stratified for non-COVID-19, COVID-19 and normal
lung. f Density plots reflecting the number of T-cells along the 3 CD8* T-cell lineages stratified for mild
versus critical COVID-19. g Analysis of clonotype sharing (thickness indicates proportion of sharing)
between the CD8* T-cells. h-i TCR richness and TCR evenness along the 3 T-cell lineages for non-COVID-
19 versus COVID-19 (h), and mild versus critical COVID-19 (i). j-k Gene expression dynamics along the
CD8* Trm- (j) and Tex-lineage (k). Genes cluster into 5 gene sets, each of them characterized by specific
expression profiles, as depicted by a selection of marker gene characteristic for each set. Differences in
trajectories were assessed by Mann-Whitney test. For CD8* Trm: COVID-19 versus non-COVID-19 (P
=1.0E-6), mild versus critical COVID-19 (P=5.9E-102). For CD8* Tex: COVID-19 versus non-COVID-19 and
normal lung (P=2.3E-67), mild versus critical (P=1.1E-39). For CD8* Temra: normal lung versus COVID-19
and non-COVID-19 (P=3.8E-39).

Fig. 4. CD4" T-cell developmental trajectories in mild and critical COVID-19 BAL

a UMAP with pseudotime trajectories based on Slingshot, showing 3 lineages (TH-lineage, THi7-lineage and
Tscu-lineage), color-coded for the CD4* T-cell phenotypes (left), the pseudotime (middle) and the number
of clonotypes (right). b Naive and memory-related marker gene expression (left), and cell cycle scoring
(right) reveal additional CD4* T-cell subclusters. Tscu-cells are characterized by naive marker genes (CCR7,
TCF7), memory markers (CD27), cell proliferation but no GZMA expression. ¢ Analysis of clonotype sharing
(thickness indicates proportion of sharing) between the CD4* T-cell subclusters. d Profiling of marker genes
along these trajectories to confirm their functional annotation: GZMB and IFNG for the Tw-lineage, ILI 7A
and RORC for the Tw7-lineage, TCF7 and CCR7 for the Tscu-lineage, while GNLY and PRFI were plotted to
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highlighted T-cell effector function. e Density plots reflecting the number of T-cells along the 3 CD4* T-cell
lineages stratified for non-COVID-19, COVID-19 and normal lung. f Density plots reflecting the number of
T-cells along the 3 CD4* T-cell lineages stratified for mild versus critical COVID-19. g-h TCR richness and
TCR evenness along the 3 CD4* T-cell lineages comparing non-COVID-19 versus COVID-19 (g) and mild
versus critical COVID-19 (h). i-j Gene expression dynamics along the CD4* Tw- (i) and Twi7-lineage (j).
Genes cluster into 5 gene sets, each of them characterized by specific expression profiles, as depicted by a
selection of marker genes characteristic for each set. Differences in trajectories were assessed by Mann-
Whitney test. For CD4* Th and CD4* Tscm: COVID-19 versus non-COVID-19 and lung normal (P =1.4E-6
and 5.9E-37), For CD4* Tni7: COVID-19 versus non-COVID-19 (P=9.7E-12), mild versus critical COVID-
19 (P=1.3E-121).

Fig. 5. Monocyte-to-macrophage differentiation in COVID-19 BAL

a Subclustering of myeloid cells into 9 phenotypes, as indicated by the color-coded legend. b Heatmap
showing myeloid cell phenotypes with corresponding functional gene sets. ¢ Relative contribution of each
cell type (in %) to COVID-19 versus non-COVID-19 BAL. d Relative contribution of each cell type (in %) to
mild versus critical COVID-19 BAL. e Pseudotime trajectories for myeloid cells based on Slingshot, showing
the common branch of FCN " monocytes differentiating into either RGS Ih monocyte-derived macrophages
(RGS Ihi-lineage) or FABP4hi tissue-resident alveolar macrophages (alveolar lineage). f Profiling of marker
genes along these trajectories to confirm their functional annotation: FCN/, SI00A 12, CCL2, CCLI8 for the
common branch, FABP4 and PPARG for the alveolar lineage, RGS| and GPRI83 for the RGSI-lineage. g
Density plots reflecting the number of myeloid cells along the 2 lineages stratified for non-COVID- 19 versus
COVID-19. h Density plots reflecting the number of myeloid cells along the 2 lineages stratified for mild
versus critical COVID-19. i Gene expression dynamics along the alveolar lineage. Genes cluster into 5 gene
sets, each of them characterized by specific expression profiles, as depicted by a selection of genes
characteristic for each cluster. j-I Profiling of IFN type | and Il signalling along the 3 CD8* (j) and CD4* (k)
T-cell lineages, and along the monocyte-macrophage lineage (l), comparing mild versus critical COVID-19.
All P values were assessed by a Mann-Whitney test. * P<0.05, ** P<0.01, ***P<0.001. P values comparing
COVID-19 versus non-COVID-19, and mild versus critical COVID-9 for density plots were all <I0E-50.

Fig. 6. Neutrophil, dendritic cell and B-cell phenotypes in COVID-19 BAL

a Subclustering of neutrophils into 5 phenotypes, as indicated by the color-coded legend. b UMAP showing
expression of a marker gene for each neutrophil phenotype. ¢ Heatmap showing neutrophil phenotypes
with corresponding marker genes and functional gene sets. d Relative contribution of each neutrophil
phenotype (in %) to COVID-19 versus non-COVID- 9. e Relative contribution of each neutrophil phenotype
(in %) to mild versus critical COVID-19. f Subclustering of DC into 6 phenotypes, as indicated by the color-
coded legend. g Heatmap showing DC phenotypes with corresponding marker genes and functional gene
sets. h Relative contribution of each DC phenotype (in %) to COVID-19 versus non-COVID-19. i Relative
contribution of each DC phenotype (in %) to mild versus critical COVID-19. j Subclustering of B-cells and
plasma cells into 4 phenotypes, as indicated by the color-coded legend. k Heatmap showing B-cell and
plasma cell phenotypes with corresponding marker genes and functional gene sets. | Feature plots of marker
gene expression for each B-cell and plasma cell subcluster. m Violin plots showing cell cycle scores and
mitochondrial gene expression by plasma cell subcluster. n B-cell receptor evenness in B-cell and plasma
cell subclusters. o Relative contribution of each B-cell and plasma cell phenotype (in %) to COVID-19 versus
non-COVID-19. p Relative contribution of each B-cell and plasma cell phenotype (in %) to mild versus
critical COVID-19. P values were assessed by a Mann-Whitney test. * P<0.05, ** P<0.01, ***P<0.001.

Fig. 7. SARS-CoV-2 RNA detection in epithelial and immune cells

a Subclustering of epithelial cells into 7 phenotypes, as indicated by the color-coded legend. b Heatmap
showing epithelial cell phenotypes with corresponding marker genes. c¢ Relative contribution of each
epithelial cell phenotype (in %) to COVID-19 versus non-COVID-19. d Relative contribution of each
epithelial cell phenotype (in %) to mild versus critical COVID-19. e-f Expression level of ACE2 (e) and
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TMPRSS2 (f) by epithelial cell subclusters, comparing COVID-19 versus non-COVID-19. g Expression levels
of ACE2, TMPRSS2 and SARS-CoV-2 (cells with viral reads) RNA in epithelial, myeloid and lymphoid cells from
COVID-19. h Detection of || SARS-CoV-2 open-reading frames in epithelial, myeloid and lymphoid cells
from COVID-19. i Detection of spike protein (S) and nucleocapsid protein (N) encoding viral RNA in
epithelial cells and immune cell subclusters from COVID-19. Cell types with <50 positive cells are not
shown. j Differential gene expression of N-positive versus N-negative neutrophils from |7 COVID-19
patients in which viral reads were detected. k-l REACTOME (k) and GO (I) pathway analysis on IFN-
signalling and response-to-virus signalling, comparing N-positive versus N-negative neutrophils from |7
COVID-19 patients in which viral reads were detected. m Detection of reads mapping to SARS-CoV-2 and
to N in neutrophil subclusters from COVID-19 BAL. P values were assessed by a Mann-Whitney test. *
P<0.05, ** P<0.01, ***P<0.001.

Fig. 8. Cell-to-cell communication between epithelial and immune cells

a Number of predicted interactions (P<0.05) between monocytes, macrophages, T-cells, neutrophils and
epithelial cells based on CellPhoneDB in critical (left panel) and mild (right panel) COVID-19. b Differences
in the number of predicted interactions, comparing mild versus critical COVID-19, showing generally more
interactions in mild COVID-19. c Predicted interactions between monocytes/macrophages and neutrophils,
comparing critical versus mild COVID-19. d Predicted interactions between T-cells and neutrophils,
comparing critical versus mild COVID-19. e Predicted interactions between epithelial and myeloid cells,
comparing critical versus mild COVID-19. f Predicted interactions between T-cells and
monocytes/macrophages, comparing critical versus mild COVID-19. g Predicted interactions between T-
cells and epithelial cells, comparing critical versus mild COVID-19.
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