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Helicases utilize the energy of NTP hydrolysis to translocate along single-stranded nucleic acids (NA) and
unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins which
regulate helicase function. For example, single-stranded DNA binding proteins are known to enhance
helicase activity, although the underlying mechanisms remain largely unknown. F. acidarmanus XPD
helicase serves as a model for understanding the molecular mechanisms of Superfamily 2B helicases, and
previous work has shown that its activity is enhanced by the cognate single-stranded DNA binding protein
RPA2. Here, single-molecule optical trap measurements of the unwinding activity of a single XPD helicase
in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different
processivities and transient RPA2 interactions stabilize the more processive state, activating a latent
“processivity switch” in XPD. These findings provide new insights on mechanisms of helicase regulation

by accessory proteins.
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Introduction

[ER

Helicases are molecular machines that use the energy of NTP hydrolysis to separate the strands of
nucleic acid (NA) duplexes. A large class of helicases unwind by translocating directionally along a single
NA strand and can utilize this translocation activity to displace NA-bound proteins (1-4). In the cell,
helicases are involved in many essential genome maintenance processes, including replication,
recombination, and repair (5-7). In a number of instances, the same helicase is known to carry out several
of these disparate functions (4,8,9). Thus, helicase activity must be tightly regulated, not only to prevent

indiscriminate unwinding of duplex DNA in the cell, which could lead to genome instability, but also to
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define the context-dependent role of the helicase. How this regulation occurs is often unclear, but

=
o

growing evidence points to interactions with protein partners as one regulatory mechanism (4,8,9).

11 Xeroderma pigmentosum group D (XPD) protein is a 5’ to 3’ DNA helicase that serves as a model for
12 understanding members of the structural Superfamily 2B (SF2B) of helicases, a group that includes yeast
13 Rad3 and human FANCJ, RTEL, and CHLR1 (9-12). Human XPD is part of transcription factor IIH (TFIIH) and
14  plays a vital role in nucleotide excision repair (NER) (13-16). It has also been shown to participate in
15 chromosome segregation (17) and in the cell’s defense against retroviral infection (18). Structurally, XPD
16  consists of a conserved motor core (Fig. 1a)—helicase domains 1 and 2 (HD1 and HD2)—that couples ATP
17  binding and hydrolysis to translocation on ssDNA, a FeS cluster-containing domain, and a unique ARCH
18  domain that encircles the translocating strand (19-23).

19 As it functions on ssDNA, XPD is expected to encounter other proteins such as Replication protein A
20  (RPA), which binds single-stranded DNA non-sequence specifically. Single-stranded DNA binding proteins
21  function as protectors of ssDNA against nucleolytic damage and play important regulatory roles (24). Due
22 to their ubiquity, frequent interactions with other DNA-bound proteins are likely (25). Single-stranded
23 binding proteins are known to stimulate the DNA unwinding activity of SF2 helicases, although the
24  mechanisms of enhancement remain elusive (26-31). In the present work, we investigate the effect of
25  single-stranded DNA binding proteins on helicase unwinding activity using XPD from Ferroplasma
26  acidarmanus as a model system due to the availability of biochemical (31) and single-molecule kinetic
27  data (32-34), as well as structural information from homologs (20-22,35). Prior work (31) has shown that
28  FacXPD unwinding is enhanced greatly by one type of cognate ssDNA-binding protein in F. acidarmanus,
29 RPA2, more so than a second cognate protein, RPA1, or by heterologous proteins. FacRPA2 has a simple,
30 single-domain architecture with one OB fold that occludes ~4 nt of ssDNA (Fig. 1b) (31). Single-molecule

31 experiments demonstrated that XPD can occupy the same DNA strand as RPA2 and bypass RPA2-bound
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ssDNA (32). Crucially, no direct, specific interactions between RPA2 and XPD in solution have been
observed (31).

How an ssDNA-binding protein with no known protein-protein contacts to the helicase stimulates
helicase-mediated DNA unwinding activity remains an open question, and makes FacXPD and FacRPA2 an
intriguing system for studying the stimulatory effects of ssDNA-binding proteins on helicases. Mechanisms
for enhancement of unwinding activity can loosely be placed in three categories (31). First, an ssDNA-
binding protein could destabilize the DNA duplex at the ssDNA-dsDNA junction ahead of the helicase,
facilitating its motion forward. Second, it could enhance unwinding by sequestering ssDNA and providing
a physical barrier to helicase backsliding, i.e. rectifying helicase forward motion. Lastly, it could activate
the helicase for processive unwinding through direct interactions with the helicase-DNA complex.

Here, we use a single-molecule optical trap assay to observe individual proteins of XPD unwinding
DNA and to analyze the effects of RPA2 on their unwinding activity. While previous reports have shown
that RPA2 is able to enhance XPD activity (31,32), they have not defined what aspects of activity is
enhanced or provided a mechanism. Our results show that RPA2 primarily increases XPD processivity, or
the maximum number of base pairs unwound. XPD exhibits repeated attempts to unwind duplex DNA and
RPA2 increases the frequency of attempts that have high processivity. While RPA2 can transiently
destabilize duplex DNA, this does not promote XPD unwinding. Instead, data point to a mechanism in
which XPD possesses a latent processivity “switch” which is activated by RPA2. Our measurements shed
new light on the mechanisms by which accessory proteins such as single-stranded DNA binding proteins

can enhance helicase activity.

Results

XPD processivity increases in the presence of RPA2

As shown in Fig. 1c, we monitored the activity of a single XPD in the absence and presence of RPA2 in
solution from the unwinding of an 89-bp DNA hairpin (Figure 1—Figure Supplement 1) tethered between
two optically trapped beads and stretched under constant force (12 pN), as described previously (33).
Data were collected at a rate of 89 Hz. Unwinding of the hairpin was detected from the increase in the
end-to-end extension of the DNA tether, as each broken base pair released 2 nucleotides (see Methods).
An abasic site positioned at the 3’ end of the hairpin prevented XPD from unwinding the long (1.5-kb)
dsDNA handle used to separate the hairpin from the trapped beads (33) (Figure 1—Figure Supplement

1). To control the loading of XPD and RPA2 onto the hairpin, we used a custom flow chamber consisting
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of parallel laminar-flow streams containing different buffers, as described previously (36) (see Methods;
Figure 1—Figure Supplement 2). Placing the hairpin in one stream containing XPD but no ATP for ~1 min.,
the protein was allowed to bind to a 10-dT ssDNA loading site—approximately equal to the footprint of a
single XPD (33,37)—at the 5’ end of the hairpin (Figure 1—Figure Supplement 1). Unwinding was initiated
by moving the hairpin to a stream containing saturating ATP (500 uM) and varying concentrations of RPA2
(0-50 nM). This procedure ensured that a single XPD was loaded at one time, and that the unwinding
observed resulted from that of a single XPD helicase in the absence or presence of many RPA2 molecules
in solution (see Methods).

Figure 1d shows representative traces of a single XPD protein unwinding in increasing [RPA2]. As
previously reported, XPD unwound in repeated “bursts,” comprising cycles of forward unwinding motion
followed by backward rezipping (33), repeating a number of times (5 + 1) until the protein dissociated. In
the absence of RPA2, we observe that the processivity—the maximum hairpin position reached by XPD
during any one burst—was low, on average 15-20 out of 89 bp, consistent with our prior work (33). With
increasing [RPA2], XPD unwound farther into the hairpin, occasionally unwinding the entire 89-bp hairpin
stem (e.g. t =20 sfor 5 nM RPA2 ort=30s, 70 s for 50 nM RPA2 in Fig. 1d).

Each burst represents an attempt by one XPD molecule to unwind the hairpin, and we found that
processivity varied greatly from burst to burst. Each burst consisted of varying extents of duplex
unwinding followed by rezipping, often to the base of the hairpin. As shown in the representative trace in
Fig. 2a, several molecular events comprised backward motion: XPD backstepping or backsliding via
temporary disengagement from the unwinding DNA strand (Fig. 2b: diagram 1a and 1b), or translocation
on the other hairpin strand away from the fork junction (2 and 3), all leading to DNA rezipping under its
regression force. An example of the latter occurred when XPD completely unwound the hairpin stem and
translocated past the dT tetraloop cap onto the opposing strand, allowing the stem to rezip gradually in
the protein’s wake (Fig. 2b: diagram 2). In a contrasting example, we observed gradual rezipping of the
duplex mid-hairpin, which we attributed to XPD disengaging from its DNA strand to switch to the opposing
strand (Fig. 2b: diagram 3), a behavior reported for other helicases (38,39). This interpretation is
corroborated by the observation that gradual rezipping was typically followed by a stall at ~10 bp (Fig. 2a,
t = 58 s) the size of XPD’s footprint, consistent with the protein stalling at the abasic site on the 3’ strand
at the base of the hairpin. Subsequent unwinding bursts were presumably due to XPD strand-switching
back to the original strand. In contrast, rapid rezipping events due to backsliding usually occurred to the

base of the hairpin (Fig. 2a, t = 44 s), consistent with the protein remaining on the hairpin 5’ strand.
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We analyzed the processivity of each burst as a function of [RPA2], as shown in the scatter plot in Fig.
2c. In the absence of RPA2, nearly all the individual burst processivities cluster below 25 bp, with a small
fraction (<10%) extending further. When unwinding in the presence of RPA2, the average burst
processivity increases with [RPA2] up to 35 bp at 50 nM RPA2. However, the distributions of burst
processivity at each RPA2 concentration show a significant fraction at relatively low processivity, <25 bp,
persisting across all concentrations. As [RPA2] increases, an increasing fraction of bursts fall into a higher
processivity tail of the distribution, which includes many cases of complete unwinding of the 89-bp
hairpin. The distribution of burst processivity for all [RPA2] (Fig. 2d) shows a large population of bursts
with average processivity of 15-20 bp, followed by a long tail with processivity extending from 25 to 89
bp.

Melting of the hairpin by RPA2 does not aid XPD unwinding

We next asked by what mechanism RPA2 increases the processivity of XPD. One possibility is that
RPA2 helps destabilize the duplex, assisting XPD in unwinding. In such a duplex melting mechanism (31),
RPA2 would presumably bind at the ssDNA-dsDNA junction and melt several base pairs ahead of XPD.
Because XPD relies heavily on thermal fluctuations to help it break the base pairing bonds ahead of it (33),
RPA2 lowering the energy barrier to unzipping the duplex could plausibly enhance XPD’s unwinding
activity.

As shown in Fig. 3a, RPA2 is capable of transiently destabilizing hairpin DNA under force of 12 pN. In
experiments with RPA2 but without XPD, short melting events are observed, corresponding to the hairpin
opening by ~5-6 bp, comparable to the footprint of RPA2 (31), and reannealing shortly thereafter (~20
ms). [Such transient melting is also observed in Fig. 1d after XPD dissociation (e.g. at t > 110 s for 50 nM
RPA2).] These melting events become more frequent as the concentration of RPA2 is increased (Figure
3—Figure Supplement 1), in support of melting being RPA2-mediated. Analyzing the times between
melting events, we estimate an effective second-order rate constant of (1.2 + 0.3) x 108 M s’ for binding.

RPA2-mediated melting events are also observable as XPD unwinds in the presence of RPA2 (Fig. 3b).
Such events are identifiable over XPD unwinding dynamics due to their characteristic size (~5-6 bp) and
short lifetime (~20 ms) (Fig. 3b, inset; see Methods and Figure 3—Figure Supplement 2). While some false
positives are detected in the absence of RPA2, they are uncommon and the frequency of detected melting
events increases with [RPA2] (Fig. 3c), confirming their connection to RPA2 activity. This finding indicates
that RPA2 is capable of binding at the same fork junction as XPD and melting DNA ahead of the helicase.

However the question remains whether RPA2 transient melting aids XPD in unwinding.
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To answer this question, we determined how RPA2-mediated melting events impact the forward
progress of the helicase. If duplex destabilization aids in unwinding, we suspected XPD may be more likely
to advance along the DNA during melting events. To this end, we examined the position of the helicase
on the hairpin prior to each RPA2 melting event and after the duplex reannealed. We identified many (N
= 400) individual melting events during XPD unwinding and aligned them along the position axis such that
each event began at 0 bp before melting occurred (Fig. 3d, schematic). We then independently aligned
the melting and reannealing transition of each event in time at t = tmer and t = tannear, respectively (Fig. 3d,
“before” and “after” schematic). As shown in Figure 3e, the resulting probability density of these aligned
traces reveals the average position of XPD prior to and following an RPA2 melting event (see Methods).
After a melting event, we find that the hairpin is most likely to reanneal all the way back to the same
position as before the event, indicating that XPD has not moved from its initial position. Importantly, this
result shows that there is no significant forward movement of XPD as a result of RPA2 duplex melting, and
that XPD does not exploit RPA2’s melting activity to enhance its own unwinding.

Figure 3f shows a control in which the alignment process above was repeated at random points during
unwinding, each point paired with one t = 0.06 s after, corresponding to the time window over which we
searched and identified RPA2 melting events (see Methods). Again, XPD on average shows no net progress
in this amount of time. Comparing Figure 3e and 3f shows that the RPA2-mediated melting events have

little to no impact on XPD movement.

XPD exhibits two distinct types of activity, the fraction of which depends on RPA2

The burst processivities at different [RPA2] (Fig. 2c) show that a persistent and significant fraction of
bursts exhibit relatively low processivity, <25 bp. Bursts with higher processivity extending from 25 to 89
bp also exist at all [RPA2], with their number apparently increasing as [RPA2] increases. An important
qguestion is whether there exist any characteristic differences between bursts during which more or less
DNA is unwound.

To answer this question, we grouped bursts into two categories: “high-processivity” or “low-
processivity” depending on whether or not a threshold of 25 bp was exceeded, this value chosen based
on where the tail in the distribution of processivities occurred (Fig. 2c). Figure 4a shows the unwinding
portions of many bursts aligned to begin at the same time (t = 0), color coded by [RPA2] and processivity
category (light color for low-processivity; dark color for high-processivity; see Table 1 for number of data
traces). When grouped in this manner, some notable features emerge. The fraction of bursts categorized

as high processivity increases clearly with RPA2 concentration (Fig. 4a) saturating to ~50% at RPA2
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concentrations >10 nM (Fig. 4b). Furthermore, long stalls (sometimes exceeding tens of seconds in
duration) around 10-15 bp are evident at all concentrations and in both high- and low-processivity traces.
This stalling behavior has been reported previously (33) and attributed to XPD’s encounter with GC-rich
regions—which are more difficult to unwind due to higher base-pairing energy—at this position in the
hairpin. All low-processivity bursts exhibit these stalls, after which XPD either backslides to the base of
the hairpin or dissociates, ending the burst. However, we have observed XPD continue unwinding past 25
bp after a long stall and be categorized as “high processivity”.

Importantly, we do not observe significant differences between bursts of the same processivity
category obtained at different RPA2 concentrations. Figure 4c shows all unwinding bursts for high and
low processivity types averaged together at each RPA2 concentration (color coded the same as in Fig. 4a)
and across all RPA2 concentrations (black and gray lines, respectively). The averaged unwinding traces
exhibit the same behavior independent of RPA2 concentration. Low-processivity bursts all display stalls at
~10 bp, whereas high-processivity bursts unwind past this region. Burst-to-burst differences are reflected
by the shaded areas and are consistently smaller than the differences between the two processivity
categories. This finding is corroborated when analyzing the velocity of XPD. Figure 4—Figure Supplement
1 shows the average unwinding velocity determined separately for low- and high-processivity bursts at
each RPA2 concentration as a function of XPD’s position on the hairpin. While XPD on average slows down
near 10 bp due to the high GC content of this section of the hairpin, the velocity of highly-processive bursts
is consistently higher than for low-processivity bursts at this position. On the other hand, differences in
velocity are insignificant across varying [RPA2] within the same processivity category.

We also find that both low- and high-processivity burst durations remain constant with RPA2
concentration (Figure 4—Figure Supplement 2, gray and open data points, respectively). The more
processive bursts tend to have longer durations since XPD travels a longer distance on DNA, and
processivity increases with [RPA2]. The increase in burst duration observed when combining both types
of bursts is explained simply from the increase in the fraction of high-processivity bursts with increasing
[RPA2].

Our results show that high-processivity unwinding in the absence of RPA2 is indistinguishable from
that in the presence of RPA2 and likewise for low-processivity unwinding. All parameters we quantified
by burst in the same processivity category are independent of [RPA2]. Instead [RPA2] increases the
probability of high-processivity bursts. These findings suggest that high- and low-processivity unwinding
correspond to intrinsic states of XPD, with RPA2 increasing the likelihood of XPD being in its more

processive state.
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2 Discussion

From our results, we propose that XPD can adopt two intrinsic states, one competent for high-
processivity unwinding and the other not. Both states are populated independently of RPA2; highly
processive unwinding activity can occur in the absence of RPA2 and is indistinguishable from that detected
in the presence of RPA2. RPA2 does not assist XPD unwinding by directly destabilizing the duplex, but
rather by shifting the equilibrium toward the high-processivity state. In the data we have collected, the

two states are effectively hidden, and we can infer their presence only from the processivity exhibited by

O 00 N o U b~ W

XPD, i.e. whether XPD unwinds beyond a threshold we have selected as 25 bp.

10 Figure 5a shows a simple kinetic scheme that describes this model quantitatively. XPD can alternate
11 between “low” and “high” processivity states with rate constants k; and k... Here, we assume k; to be
12 dependent on RPA2 concentration, whereas all other rate constants are independent of RPA2. In the high
13 processivity state, XPD reaches the 25 bp threshold—and is scored as high processivity—at a rate k;,
14 corresponding to the time XPD takes to unwind 25 bp, which encompasses all forward and backward steps
15 to this position. Finally, we assume that XPD can dissociate from the DNA in the low processivity state
16  with rate constant k.. Given this kinetic scheme, we derive an expression for the probability, Ps,s(t), that
17  a given XPD molecule unwinds >25 bp by time t (see Methods), which can be compared directly to
18  experimental data (Fig. 5¢c), obtained from the fraction of XPD molecules that have crossed the 25-bp
19  threshold at each time point (Fig. 5b).

20 Figure 5c shows a global fit to our data using different values of k; for each RPA2 concentration but a
21 common set of values of k.1, k2, and kog. The parameter values can be found in Table 2. (We considered
22 an alternative model in which XPD can dissociate in both its low- and high-processivity states by

23 introducing an additional rate constant k. (see Methods). The best fit to the data yielded negligible values

24 for Ko s

indicating that XPD dissociation occurs in its low processivity state but is unlikely from its high
25 processivity state.) The value obtained for kog predicts that XPD remains bound to DNA for an average
26 lifetime of 25 s, consistent with observation. A value of k, = 0.17 + 0.02 s matches that expected for XPD
27  tounwind 25 bp at an average speed of 4-5 bp/s (33) (Figure 4—Figure Supplement Fig. 1a). Finally, we
28  find that k; increases linearly with RPA2 concentration (Fig. 5d) with a slope of (1.5 +0.5) x 10’ Mt st The
29  linear dependence on [RPA2] suggests that a simple second-order reaction between RPA2 and the XPD-

30 DNA complex shifts the equilibrium to the high processivity state. The intercept of 1-2 x 102 s provides

31  a basal rate of interconversion between the two processivity states in the absence of RPA2. This simple
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kinetic model can also be compared to our other results. The fraction of high processivity XPD bursts
measured vs. RPA2 (Fig. 4c) is well fit by the model with no additional fitting parameters (see Methods).
Likewise, the average burst duration (Figure 4—Figure Supplement 2) is well described by the same model
(see Methods).

Although the success of this kinetic model in fitting the data supports our two-state processivity
model, it is agnostic to the underlying mechanism of processivity enhancement. We thus must look to
other evidence to identify plausible mechanisms. The dependence of the rate k; on RPA2 concentration
suggests that RPA2 binding to the XPD-DNA complex may activate it for processive unwinding; the linear
dependence on [RPA2] rules out mechanisms in which multiple RPA2 bind cooperatively. RPA2 could be
binding to DNA, the protein, or both. We have already explored some mechanisms in which RPA2 binding
to DNA enhances XPD activity. Our results in Figure 3 rule out RPA2 melting of DNA as a plausible
mechanism. They also disfavor a sequestration mechanism, in which RPA2 binding to ssDNA behind XPD
inhibits retrograde motion. By acting as a physical barrier against XPD back-stepping or back-sliding
(Figure 4—Figure Supplement 2a), two behaviors often exhibited by XPD during unwinding (33), ssDNA
sequestration may enhance processivity. Since each burst involves XPD-mediated DNA unwinding
followed by rezipping to the base of the hairpin, the duration of a burst provides information on the
amount of back-stepping. Bursts with more back-steps are expected to be shorter in duration and vice
versa. However, as shown in Figure 4—Figure Supplement 2b, we do not observe the mean duration of
either the low or high-processivity bursts to increase with RPA2, as predicted by a sequestration
mechanism.

Alternately, RPA2 may interact directly with XPD (Figure 4—Figure Supplement 3). Direct RPA-
helicase interactions have been detected for the Superfamily 2 human helicases WRN, BLM, RECQ, and
FANCJ and shown to increase helicase activity (29,30,40-42). While no strong interactions between
FacXPD and FacRPA2 have been reported in solution (31), formation of a XPD-RPA2 complex on DNA may
be possible. To test such a mechanism, we carried out an experiment in which we allowed a complex of
XPD and RPA2 to form on DNA in the absence of ATP, then provided ATP for unwinding. Here, we utilized
a different flow chamber configuration in which one stream contained XPD and RPA2 (Figure 4—Figure
Supplement 3b; red stream) but no ATP, and another stream contained ATP but no protein (blue stream).
We placed the DNA hairpin in the protein stream for 40-60 s, then moved it into the ATP stream to observe
unwinding. If XPD and RPA2 were to form a complex with higher processivity than XPD alone, we would
expect more processive activity at higher RPA2 concentrations as the probability of a complex forming

should increase. However, we observed no effect on processivity across RPA2 concentration (Figure 4—
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Figure Supplement 3c); the fraction of bursts that exhibited high processivity (>25 bp) remained constant.
The addition of non-hydrolyzable ATP analog ATP-yS to the protein stream had no measureable impact
(data not shown). This result indicates that any complex formed would be short-lived, and would not
survive the move between the protein and ATP streams, which takes up to ~10 s. The rate constant k.; in
our kinetic model (Fig. 5a) determines the lifetime of the high-processivity state, and its value obtained
from a global fit to the data gives a lifetime of ~8 s, consistent with this interpretation. The transience of
the interaction may also explain why an XPD molecule may revert to low processivity activity after a high
processivity burst and vice versa.

Alternate mechanisms involving transient RPA2 binding to DNA may be more plausible. Recent studies
(43) suggest that the displaced (non-translocating) DNA strand may play an inhibitory role for some
helicases by binding to secondary sites on the protein surface. Protein binding to the displaced ssDNA
could reduce the strand’s inhibitory interaction with the helicase, enhancing unwinding activity. XPD is
known to possess a secondary binding site for the (3’) displaced strand located on the HD1 domain, under
the ARCH domain (22,44) (Fig. 1a). This site is not only important for DNA fork positioning but also plays
a regulatory role, likely acting as a throttle to unwinding. In the homologous T. aquaticus XPD, a point
mutation disrupting this secondary binding site enhances unwinding and force generation (44). Structural
analysis of XPD and homologs maps ~5 nt of ssDNA to this secondary site between the DNA fork at the
FeS cluster and the entry tunnel into the motor core (33,37,44). Thus, RPA2 binding of 5 nt of ssDNA would
disrupt XPD-ssDNA contacts at this secondary site and could similarly activate XPD unwinding. Moreover,
previous single-molecule measurements (33) showed that individual XPD exhibit 5-bp backward/forward
step pairs (see also Figure 3—Figure Supplement 2; blue box), attributed to the transient
release/recapture of 5 nt of ssDNA from the secondary site. In the presence of RPA2, we observe the
frequency of such events decrease (Figure 3—Figure Supplement 2; compare blue box for 0 nM to 50 nm
RPA2), consistent with the idea that RPA2 may affect DNA contacts to this regulatory site.

Helicases are likely to encounter other DNA-bound proteins in the cell, and such molecular
associations have the potential to regulate helicase activity. Our results provide new insights into the
possible mechanisms by which accessory proteins can affect helicases. We show how a single-stranded
DNA binding protein can enhance helicase processivity through transient interactions with the helicase-
DNA complex which can activate a “processivity switch”. We speculate on the latent conformational states
that could be controlled by this switch. The evidence above points to alternate DNA binding configurations
(33,44) that regulate unwinding activity, but there may be other possibilities. An intriguing example is the

ARCH domain of XPD, which has been shown to interconvert dynamically between two conformations
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(34). However, while these states are connected to DNA damage recognition (34), their roles in unwinding
have yet to be defined. The general mechanism described here for XPD may apply broadly to other
helicases. Recent studies of SF2 helicase RecQ (43) suggest a similar inhibitory role of a secondary DNA
binding site, which could plausibly be modulated by DNA-binding proteins. Likewise, studies on SF1
helicases UvrD, Rep, and PcrA have shown that alternate conformations of one subdomain strongly affect
activity, particularly processivity (39,45). Interactions with protein partners favoring particular subdomain
conformations may provide a mechanism for activating processive unwinding (45,46). Identifying the
molecular details of the conformational states that produce high and low processivity activity is a rich

subject ripe for future investigation.
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Methods

[ER

DNA Construct Synthesis. The hairpin construct was synthesized as described in Qi et al. (33). The
construct consists of three separate dsDNA fragments ligated together after synthesis and purification
(Figure 1—Figure Supplement 1): a 1.5-kb ‘Right handle’, an 89-bp ‘Hairpin’ stem capped by a (dT). loop,
and a 1.5-kb ‘Left Handle’. ‘Right handle’ and ‘Left handle’ are functionalized with a 5’ digoxigenin and
biotin, respectively, for binding to anti-digoxigenin and streptavidin coated beads. The hairpin stem
sequence used for all experiments was identical to ‘Sequence 1’ used in Ref. (33), which contains a random

49% GC sequence: 5'-GGC TGA TAG CTG AGC GGT CGG TAT TTC AAA AGT CAA CGT ACT GAT CAC GCT GGA

O 00 N oo U b W N

TCC TAG AGT CAA CGT ACT GAT CAC GCT GGA TCC TA-3'. The hairpin stem is flanked by a 5" 10-dT binding

=
o

site for loading XPD and a 3’ abasic site to prevent XD unwinding into the handle. All oligonucleotides were
11 purchased from Integrated DNA Technologies (Coralville, I1A).

12

13 Flow Chamber for Optical Tweezers Measurements. All measurements were carried out in laminar flow
14 chambers described in Whitley et al. (36). Chambers were made from NescoFilm (Karlan, Phoenix, AZ)
15 melted between two glass coverslips and laser-engraved with channels for buffers. Chambers for all
16  measurements had three channels (Figure 1—Figure Supplement 2). Top and bottom channels contained
17  anti-digoxigenin and DNA-coated streptavidin beads, respectively. Small (100-um OD) glass capillaries
18  connected the top and bottom channels to the central channel for trapping and allow a controlled flow of
19  beads. Three separate streams converged into the central trapping channel. Because the flow in each
20  stream is laminar, mixing between different buffer streams is minimal and a reasonably sharp boundary
21 between buffer conditions was maintained (Figure 1—Figure Supplement 2a, inset). This chamber design
22 allowed moving freely between different streams via motorized sample stage and changing buffer
23 conditions during an experiment, as described below.

24

25  Optical trap measurements. High-resolution dual-trap optical tweezers based on a previously reported
26  design (36,47) were used to study XPD helicase unwinding in the presence of RPA2. The optical traps were
27  calibrated by standard procedures (36,48) and both traps had a typical stiffness of k = 0.3 pN/nm in all
28 experiments. All data were acquired using custom LabVIEW software (National Instruments, Austin, TX),
29 and were collected at a 267-Hz sampling rate and boxcar filtered to a lower frequency as indicated in the
30 text. All measurements were carried out at a constant force of 12 pN using a feedback loop to maintain

31 constant force.
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FacXPD and FacRPA2 were purified as described previously by Pugh et al. (31). Single XPD unwinding
experiments were performed in a similar manner to that described in Qi et al. (33), with some
amendments. The trapping buffer consisted of 100 mM Tris-HCI (pH 7.6), 20 mM NaCl, 2 mM DTT, 3 mM
MgCl,, 0.1 mg/mL BSA and oxygen scavenging system (49) (0.5 mg/mL pyranose oxidase [Sigma-Aldrich,
St. Louis, MO], 0.1 mg/mL catalase [Sigma-Aldrich, St. Louis, MO], and 0.4% glucose) to increase the
lifetime of the DNA tethers (50). To this buffer, varying concentrations of XPD, ATP, ATP-yS, and RPA2
were added. Unless otherwise noted, the following buffers filled the three laminar flow streams in the
central trapping channel (Figure 1—Figure Supplement 2a): Upper stream, 500 uM ATP + 0-50 nM RPA2;
Middle stream, 500 uM ATP-yS + 10 nM Cy3; Lower stream, 60 nM XPD + 500 uM ATP-yS. ATP-yS was
used to increase the binding efficiency of XPD to the DNA loading site. The dye molecule Cy3 was added
to the middle stream to detect, via fluorescence imaging, the precise locations of the middle stream
boundaries. Fluorescence detection of the Cy3 stream was achieved using a confocal microscope
incorporated into the optical trap instrument, as described in Refs. (36,47).

During a typical experiment, a single DNA hairpin was tethered between an optically trapped
streptavidin-coated bead and an anti-digoxigenin coated bead in the middle stream, in the absence of any
protein or ATP (Step 1 in Figure 1—Figure Supplement 2b and 2c). A low force (~2 pN) was applied to the
tether, and the traps and tethered DNA were moved by motorized sample stage into the lower stream
containing XPD + ATP-yS, where they incubated for ~40-60 s to allow a single XPD to bind to the 10-dT
ssDNA loading site but not unwind the hairpin (Step 2). Following incubation, the force on the tether was
increased to 12 pN and the tether was moved into the upper stream containing ATP + RPA2 (Step 3). Upon
exposure to ATP, an XPD molecule bound at the loading site unwound the hairpin ahead of it, which, at
constant force, resulted in an increase in the end-to-end extension of the DNA tether (Figure 1—Figure

Supplement 2c). Unwinding data were typically collected until the tether broke or XPD dissociated.

Analysis of DNA hairpins and determining base pairs unwound by XPD. A force-extension curve of each
tether was usually taken in the middle stream containing no protein to verify proper synthesis. A properly
synthesized hairpin unzips mechanically at an applied force of ~15 pN (Figure 1—Figure Supplement 1b),

and its force-extension curve is well fit to the following model:
X(F):Ndsgds(F)-i_Nssé:ss(F)' (1)
where &, (F) and & (F) are the extension of 1 bp of dsDNA and 1 nt of ssDNA at a given force, F,

respectively, and N, and N are the number of dsDNA base pairs and ssDNA nucleotides, respectively, in
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the construct. &, (F) and & (F) are given by the extensible worm-like chain (XWLC) model of elasticity,

using the following parameters: persistence length Pgs = 50 nm and Pss = 1.0 nm, contour length per base
pair/nucleotide hgs =0.34 nm bpand hss = 0.59 nm nt?, and stretch modulus Sg = 1,000 pN and Sss = 1,000
pN (33,51). For the closed hairpin at forces <15 pN, the model Eq. (1) was used with Ng = 3,050 bp,
corresponding to the sum of the handle lengths, and Ns = 10 nt, corresponding to the helicase loading
site length (Figure 1—Figure Supplement 1b, black dashed line). For the open hairpin at forces >15 pN,
values Ny = 3,050 bp and Nss = 192 nt were used (Figure 1—Figure Supplement 1b, gray dashed line).

As a helicase unwinds the tethered DNA hairpin at a constant force, the tether extension increases
due to the release of 2 nt of ssDNA for each bp of the hairpin dsDNA unwound. The number of base pairs
unwound at each time point was obtained from the relation

nunwound(t): AX(t) ’
26,(F)

(2)

at the force F applied, and where Ax is the measured change in extension (in nm).

Analysis of XPD unwinding bursts. All XPD unwinding time traces were down-sampled from 267 Hz to 89
Hz. Start and end times for each unwinding burst were selected manually using the following criteria:
Bursts were defined as periods of significant forward progress by XPD (>5 bp) followed by significant
backward motion (>5 bp), excluding behavior obviously attributed to RPA2-mediated transient melting or
5-bp back- and forward step pairs XPD is known to take (33). The processivity (Fig. 2c) for each burst was
determined from the maximum number of base pairs open between the burst start and end time points,
and the burst duration (Figure 4—Figure Supplement 2) was determined from the time elapsed between
start and end time points.

For the analysis shown in Fig. 4, we considered only the unwinding portion of each burst. For highly
processive bursts, this segment consisted of the data from the beginning of the burst to the time point at
which the maximum number of base pairs was unwound. However, for low-processivity bursts that
exhibited extended stalls at ~10 bp, the unwinding endpoint was selected to be the last point above 10
bp. This allowed us to account for extended stalling behavior, while excluding rapid rezipping at the end
of the burst. For bursts with processivity less than 10 bp, the unwinding portion of each burst was selected

to be the first 75% of the total burst duration to exclude rapid rezipping at the end of the burst.

Analysis of XPD unwinding speed. To calculate the unwinding speed during each burst, we first smoothed

the data to remove any RPA2-mediated transient melting events. Data were smoothed over a 51-point
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(190-ms) window using the weighted local regression method “rloess” in Matlab’s in-built “smooth”
function, which fits the span around each data point to a 2" degree polynomial and excludes outliers
based on a residual analysis. Then, the local velocity was determined over half-overlapping 50-point
windows from the slope of a fit of the data to a line. The corresponding times and hairpin positions were
also determined from their mean in each window. To create Figure 4—Figure Supplement 1, the local

velocity for each burst was plotted against hairpin position and averaged over the set of bursts analyzed.

Analysis of RPA-mediated melting events. RPA2-like melting events on the bare hairpin were identified
from short-lived melting of >4 bp of the hairpin (Figure 3—Figure Supplement 2). To find RPA2-like events
during XPD unwinding, we identified steps in selected XPD unwinding bursts using an algorithm by
Kerssemakers et al. (52) (Figure 3—Figure Supplement 2a). Specifically, we searched for adjacent pairs of
steps that met the following criteria: >2 bp forward step (step n) followed by >2 bp back-step (step n+1)
within 5 time points (56 ms) of each other (Figure 3—Figure Supplement 2b outlined in red). While false
positives are observable even in the absence of RPA2, their probability is low, and the probability increases
with RPA2 concentration (Figure 3—Figure Supplement 2c), confirming their connection to RPA2 activity.

Each step was then aligned at full bandwidth (267 Hz) to the detected locations of RPA2 melting and
reannealing. We used 2D kernel density estimation to visualize the probability density of these aligned
traces. In this method, each point in the aligned data was replaced by a kernel function, here a 2D
Gaussian. The sum of all kernels provides an excellent approximation to the probability density. The darker

color in Fig. 3e and f indicate higher probability.

Kinetic model. We defined a model in which XPD can exist in two intrinsic states—a low- and high-
processivity state—the latter of which we infer only when XPD unwinds past a ~25 bp threshold. In this
model, XPD can alternate between “low” and “high” states (with rates constants k; and k.1) and can also

dissociate from DNA from both states (with rates constants k. and k' ., respectively; Fig. 5a). The effect

off /
of RPA2 increasing the probability of the high-processivity state is captured by the dependence of the rate
constant k; on [RPA2]. Since the high-processivity state is “hidden”, and unwinding bursts are scored as
high processivity only when XPD unwinds >25 bp, the model includes the rate constant k, that determines
the time XPD takes to pass this threshold.

We used this kinetic model to fit the measured first-passage-time for XPD to unwind past 25 bp. The

model in Figure 5a is described by a set of master equations for the state probabilities:
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P ()= KLy ()= ke + K )P, (8)

Ph,gh (6)=k,P,, (£) = (ko +k_; +k,)P,,(2)

F"off () =Ko Py, (8) + kP (£)

Ps ()= kP (1)
where the subscripts correspond to the four possible states: low processivity (“low”), high processivity
(“high”), dissociated (“off”), and past the 25 bp threshold (“>25"). The first passage time is measured from
the time XPD is first exposed to RPA2, and XPD is in the low-processivity state. Thus, the initial conditions

are given by:

P/OW (O) =1 Phjgh (0) =0; Poff (0) =0; P

>25(0) :O
These coupled linear differential equations can be solved to determine all four state probabilities. Here,
we provide an expression for Ps2s, which is plotted in Fig. 5c:

kk, (1-e™ 1-e*
P t)= 12 _ .
s(t) A—/L( A A j

an

The eigenvalues of the system give the decay constants for the exponentials:

- 2

ks kK, i|:[kl+k_l+kz+koff+k;ff
: 2

3 1/2
J = (ky (ke + KLy )+ kg (ke +k;ff))} .
In our model, only k; is expected to vary as a function of RPA concentration. By grouping terms that are

RPA-concentration dependent vs. independent, Ps;s(t) can be written in terms of 5 unknown parameters

A, B, C, D, and k related to the 5 rate constants:

P>25 (t,[RPAZ]) =

At At
k([RPA2])D(1—e 1-e ) a)

A=A, A, A
and

A
: 2

_ k([RPA2])+B8+C +ﬂk([RPA2])+B+C
B 2

2 1/2
j —(Ak([RPAZ])+BC)} , (4)
where k is written explicitly as a function of [RPA2]. The relationships between the 5 parameters and rate
constants are given by:
k, =k([RPA2]); k,=D; k,=C-A; k,,=A-D; k. =B.
We performed a global fit to our first-passage-time data (Fig. 5¢) using Eq. (3) and (4) with common
values A, B, C, and D for all RPA2 concentrations but a different value for k([RPA2]) at each concentration

(Fig. 5d). In the data fit displayed in Figure 5c (dashed line), we set k/ to zero; we found that the best-fit
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value for k;ff was small with a large error (-0.05 + 1.23) and provided no significant improvement to the
fit. By assuming k;ﬂ= 0, A = D, reducing our fit to 4 parameters: A, B, C, k. Parameter values and

uncertainties are listed in Table 2.

In addition, we used Eq. (3) to model the RPA2-dependent fraction of high-processivity bursts (Fig.
4b) and average burst duration (Figure 4—Figure Supplement 2). For the former, data were fit to the
expression for P.,s(t) evaluated at a time t equal to the average low-processivity burst duration Tjow = 7 s.
The latter was fit to the following model:

(tpurst ) = Tiow (1= Ploys (t =0, [RPA2])) +7,,,P.,5(t = 0,[RPA2]),

in which the average burst duration is given by the sum of the low-processivity burst duration, tw, and
the high-processivity burst duration, tsign, multiplied by the probabilities of being in their respective states

at long times (t - o ):

k[RPA2]D

P (t—> o, [RPA2])=—— ——
s [ D K[RPA2]A +BC
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Figure 1. RPA2 increases XPD helicase processivity. a Schematic of FacXPD based on S. acidocaldarius
XPD structure (PDB 3CRV). XPD is composed of four domains: Helicase Domain 1 and 2 (HD1, blue; HD2,
pink) which form the motor core, and the ARCH domain (purple) and FeS cluster (brown). A model of the
DNA fork (red) shows ~10 nt bound to the motor core and secondary contacts (black) to each strand of
the fork. b Schematic of FacRPA2 based on partial crystal structure of M. maripaludis RPA (PDB 2K5V).
RPA2 consists of a single OB fold that binds to ssDNA in the C-shaped cavity. ¢ Single-molecule hairpin
unwinding assay. A DNA hairpin consisting of an 89-bp stem and (dT)4 loop is tethered between trapped
beads by biotin-streptavidin (yellow cross) and digoxigenin-antibody linkages (pentagon) and held at a
constant force. A 10-nt poly-dT site at the 5’ end of the hairpin allows one XPD molecule to load, and an
abasic site at the 3’ end prevents XPD unwinding past the hairpin. Unwinding of the hairpin by XPD
increases the end-to-end extension of the construct by an amount, Ax, proportional to the number of base
pairs unwound. Arrows indicate the 5’ to 3’ direction of XPD translocation along ssDNA. d Representative
traces of a single molecule of XPD unwinding in the presence of varying concentrations of RPA2 (0-50 nM)
at constant force (F = 12 pN). ATP and RPA2 are added at t = 0 s. XPD processivity increases with RPA2

concentration.
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Figure 2. XPD unwinds in bursts of varying processivity whose average increases with RPA2
concentration. a Representative trace of a single molecule of XPD unwinding in the presence of RPA2 (5
nM). One XPD exhibits repetitive bursts of activity, making multiple attempts to unwind hairpin DNA.
Processivity can vary widely from burst to burst. Example time trace with: (1a) 20 bp- and (1b) 30 bp-
processivity bursts composed of forward unwinding followed by backsliding to the hairpin base; (2) a high-
processivity burst during which XPD completely unwinds the 90-bp hairpin past the hairpin loop (time

point indicated by yellow hexagon) and translocates on the opposing strand, allowing the hairpin to rezip;
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and (3) a 50 bp-processivity burst during which XPD unwinds and switches strand mid-hairpin (indicated

[EY
o

by yellow triangle), allowing the hairpin to rezip. b Schematics representing the behaviors in (a). c
11 Processivity of each burst (colored circles) vs. RPA2 concentration. The mean processivity (open circles)
12 increases with RPA2 concentration. Error bars represent s.e.m. d Histogram of all burst processivities at

13 all RPA2 concentrations.
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2 Figure 3. RPA2 transiently melts hairpin duplex but does not assist XPD unwinding. a Representative
3 time trace of RPA2 transiently destabilizing hairpin dsDNA at a constant force (F = 12 pN). Inset: RPA2
4 melts ~8 bp, which then rapidly reanneals (see Figure 3—Figure Supplement 1). b RPA2 is able to melt
5  dsDNA at a fork occupied with XPD. Inset: transient RPA2-like melting events during XPD unwinding (see
6 Figure 3—Figure Supplement 2). ¢ The frequency of RPA2 melting events increases with RPA2
7  concentration. Error bars represent s.e.m. d Analysis of RPA2 melting events and their effect on XPD
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unwinding. The schematic shows all RPA2 melting events identified and divided into “melting” and
“reannealing” transitions. Each transition is aligned temporally such that all melting transitions begin at
the same time tmer and corresponding reannealing transitions end at the same time tannea. Both types of
transitions are aligned spatially relative to the starting extension before melting (x = 0). e Probability
distribution of all aligned RPA2 melting events. Although RPA2 melts an average of 5 bp of hairpin DNA
(left), it reanneals by the same amount (right), and there is no net progress of XPD due to melting. f
Probability distribution at a random time point (left) and 0.06 s later (right). Net progress of XPD after an
RPA2 melting event is indistinguishable from net progress at a random time point. Probability distributions

were obtained using kernel density estimation (see Methods).
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Figure 4. XPD exhibits two burst types, the fraction of which is RPA2 dependent. a Plot of XPD unwinding
bursts, aligned to start at t = 0 and grouped by RPA2 concentration (colored traces). XPD unwinding bursts
come in two types: low processivity, never unwinding more than 25 bp, (light colors); and high
processivity, unwinding more than 25 bp (dark colors). b The fraction of high-processivity bursts (>25 bp)
increases with RPA2 concentration. Fit to model described in the text (dashed line; see Methods). ¢
Averages of all low-processivity bursts (light colored lines) and all high-processivity bursts (dark colored

lines) at each RPA2 concentration. Comparison to averages of low- and high-processivity burst types over
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all RPA2 concentrations (dark gray and black lines, respectively). Shaded regions represent s.e.m.

throughout. Unwinding behavior within each burst category remains the same over all RPA2

=
o

11 concentrations.
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Figure 5. RPA2 activates a high processivity state of XPD. a Kinetic model of XPD processivity and the
effect of RPA2. XPD can adopt one of two intrinsic states—a LOW and HIGH processivity state. XPD
interconverts between both states with rates k; and k.1, and RPA2 shifts the equilibrium toward the HIGH
state. XPD can dissociate from DNA only from the LOW state with rate kg Only in the HIGH state is XPD
able to unwind in excess of 25 bp, which occurs at a rate k.. Once an XPD molecule unwinds >25 bp, it is
scored as being in the HIGH processivity state. b Representative traces of XPD exhibiting high processivity
unwinding. The time t.,; denotes the first time at which XPD crosses the 25 bp threshold. ¢ Fraction of all
XPD molecules that have reached high processivity (>25 bp) after time t for each RPA2 concentration. The
curves are globally fit to the model in (a) using as parameters the rate constants ki, k.1, k2, and kog. d The
rate of entry into the high processivity state, k1, depends linearly on RPA2 concentration. For more details

on the kinetic model see Methods.
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Figure 1—Figure Supplement 1. DNA hairpin construct. a The hairpin construct consists of three ligated

DNA fragments: left (black) and right (blue) dsDNA handles and an 89-bp hairpin that includes a 5’ 10-nt

ssDNA protein loading site. The left and right handles are modified with a 5’ biotin (black square) and 5’

digoxigenin (yellow pentagon), respectively, for attachment to beads. b Representative force-extension

curve of a DNA hairpin. The experimental curve (red solid line) is fit to a model of the closed (black dashed

0O N OO U b~ W

line) and open (gray dashed line) hairpin. (See Methods).
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Figure 1—Figure Supplement 2. Laminar flow chamber. a Photograph of laminar flow chamber. Colored
food dye highlights the different flow streams. Parafilm in the central channel is recolored to enhance
contrast. The bead channels (yellow and green) are connected via capillaries to the central trapping region
(inset). Three streams (dark blue, uncolored, and red) meet in the center channel but mix minimally. b
Typical experimental protocol. The upper stream of the the central channel is filled with buffer containing
500 uM ATP, the middle stream with 500 uM ATP-yS, and the bottom stream with 60 nM XPD and 500

UM ATP-yS. The dye Cy3 is added to the middle stream for illustrative purposes. A DNA hairpin is tethered
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between trapped beads in the middle stream (step 1), and its force-extension behavior characterized (see

=
o

Figure 1—Figure Supplement 1). The trapped beads and DNA are next moved into the XPD stream (step
11 2) for ~1 min. for a single XPD to bind at low force, ~1-2 pN. Then, they are moved into the ATP stream
12 (step 3) to initiate XPD unwinding, as the force is increased and maintained at 12 pN. ¢ Example unwinding
13 trace of a single XPD. Colored regions and numbers above the trace correspond to chamber locations in
14  b. Cy3 fluorescence intensity indicates when the traps are in the middle stream. Unwinding activity begins
15  as soon as XPD enters the ATP stream (t = 95 s). XPD unwinds in repetitive “bursts” of activity for ~90 s

16 until it dissociates.
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Figure 3—Figure Supplement 1. RPA2 transiently melts DNA under force. a Representative time traces
of RPA2 transiently destabilizing hairpin dsDNA at a constant force (F = 12 pN) and at varying RPA2
concentrations. The hairpin is exposed to varying concentrations of RPA2 at t = 0. In the absence of RPA2,
the hairpin remains stably zipped. In the presence of RPA2, brief (<0.1 s) events consisting of 5-10 bp
dsDNA melting followed by rapid reannealing are observed. The frequency of these events increases with
RPA2 concentration. b-c Selected RPA2 melting events from traces in a with 5 nM and 50 nM RPA2.
Melting events are identified at time points where >4 bp of DNA is unwound, and melting kinetics are
quantified from the time between events, trpaz. d Probability distribution of tgeaz across RPA2
concentrations (colors same as in a). The distributions are best fit to a bi-exponential with one slow and
one fast rate constant. The slow process depends on [RPA2] and corresponds to RPA2 binding and melting

the hairpin DNA. The fast process is independent of [RPA2] (data not shown), and attributed to already-
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1 bound RPA2 “re-melting” the DNA. e The effective RPA2 binding rate, kgpaz, determined from the slow

2 rate constant in d, increases linearly with RPA2 concentration. Error bars represent s.e.m.
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Figure 3—Figure Supplement 2. Detecting RPA2 melting events during XPD unwinding. a Representative
time traces of XPD unwinding in the presence of 2 nM and 50 nM RPA2 (data in gray) and corresponding
step-fitting analysis (colored line) used to identify putative RPA2 melting events. Inset: steps fitted
(colored lines) to unwinding data (gray). b Scatter plot of step size for pairs of consecutive steps for XPD
unwinding in 0 and 50 nM RPA2 (blue and green, respectively). Schematics illustrate the step pairs. In the
absence of RPA2, small steps (<2 bp) account for the majority of unwinding behavior. In the presence of

RPA2, a detectable fraction of step pairs corresponds to a large (>2 bp) forward step followed by a large

O 00 N o u B W N Bk

backward step (red outline; lower right corner). A subset of these events with the appropriate duration

=
o

(~0.06 s) are selected as RPA2 melting events. Step pairs consisting of a ~5-bp backward step followed by
11 a forward step (dark blue outline; upper left corner) are attributed to DNA dynamics at a secondary,
12 regulatory binding site on XPD. These events are less frequent in the presence of RPA2 (compare 0 nM
13 and 50 nM RPA2; see Discussion). ¢ The probability of RPA2 melting events identified in b increases with
14  RPA2 concentration, confirming their connection to RPA2 activity. Some events are detected in the

15  absence of RPA2 due to detection errors. Error bars represent s.e.m.
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Figure 4—Figure Supplement 1. Unwinding velocity varies with processivity type but not RPA2
concentration. a-b Average unwinding velocity as a function of hairpin position for low-processivity (a)
and high-processivity (b) bursts at two representative RPA2 concentrations, 0 (blue) and 50 nM (green).
Velocities averaged over all RPA2 concentration for high- and low- processivity burst types are shown for
comparison (black and gray, respectively). Velocity profiles are similar within each processivity type,
independent of RPA2 concentration. However, velocity profiles for high processivity bursts differ
significantly from those of low processivity bursts, particularly at positions >10 bp. Error bars represent

s.e.m.
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Figure 4—Figure Supplement 2. XPD backward motion varies with processivity type but not RPA2
concentration. a Schematic representation of the sequestration model, in which RPA2 binding to ssDNA
prevents XPD’s backward motion, enhancing unwinding. The model predicts that burst duration should
increase with RPA2 concentration, since each burst ends when backward motion takes XPD to the base of
the hairpin. b Average burst duration for low-processivity (gray circles) and high-processivity (open circles)
remains constant with RPA2 concentration. Burst durations averaged over both burst types (black circles)
increases with RPA2 due to the increasing fraction of high-processivivity bursts, consistent with the

guantitative model (shaded gray region) based on Figure 4b (see Methods).
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Figure 5—Figure Supplement 1. Test of stable complex formation. a In the complex formation model,
RPA2 forms a complex with XPD that activates it for processive unwinding. b Flow chamber configuration
for testing the complex formation model. The protein stream contains 60 nM XPD, 500 uM ATP-yS, and O
—200 nM RPA2. This configuration allows pre-loading an XPD-RPA2 complex during incubation. Unwinding
processivity of the putative complex is measured upon entering into the ATP stream. ¢ Although an XPD-
RPA2 complex is predicted to be more likely as RPA2 concentration increases, the high processivity
fraction remains constant with increasing RPA2 concentration. Error bars represent s.e.m. (N = 6 — 43

molecules).
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1 Tables

Parameter [RPA2] =0 2nM 5nM 10 nM 50 nM
No. of XPD 20 19 27 20 21
molec.

No. of bursts 94 123 79 60 82
No. of

bursts/XPD 4.7 6.5 2.9 3.0 3.9
No. of low-proc. 36 109 61 31 45
bursts

No. of high-proc. 3 14 18 59 37
bursts

2 Table 1. Data statistics.

Rate const. Fit value (s?)
k1 0.18 £0.13

k> 0.170 £ 0.017
kogs 0.037 £0.019
ke 0

ki, [RPA2]=0nM | 0.02 £ 0.006

ki, 2 nM 0.059 £ 0.017
ki, 5 nM 0.065 £ 0.019
k1, 10 nM 0.200 + 0.059
k1, 50 nM 1.15+0.39

3 Table 2. Model fit parameters. Error bars represent 95% confidence intervals.
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