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Immune  therapies  have  transformed  the  cancer  therapeutic  landscape  but  fail  to  benefit  most  patients.               
To  elucidate  the underlying  mechanisms  by  which  T  cells  mediate  elimination  of  leukemia,  we               
generated a  high-resolution  map  of  longitudinal  T  cell  dynamics  within  the  same  tumor              
microenvironment  (TME)  during  response  or  resistance  to  donor  lymphocyte  infusion  (DLI),  a  widely              
used  immunotherapy  for  relapsed  leukemia. We  analyzed  87,939  bone  marrow-derived  single  T  cell              
transcriptomes, along  with  chromatin  accessibility  and  single  T  cell  receptor  clonality  profiles,  by              
developing  novel  machine  learning  tools  for  integrating  longitudinal  and  multimodal  data.  We  found              
that  pre-treatment  enrichment  and  post-treatment  rapid,  durable  expansion  of  ‘terminal’  (T EX )  and             
‘precursor’  (T PEX )  exhausted  subsets,  respectively,  defined  DLI  response.  A  contrasting,  heterogeneous            
pattern  of  T  cell  dysfunction  marked  DLI  resistance.  Unexpectedly,  T PEX  cells  that  expanded  in               
responders  did  not  arise  from  the  infusion  product  but  instead  from  both  pre-existing  and  novel                
clonotypes  recruited  to  the  TME.  Our  unbiased  dissection  of  the  TME  using  a  Bayesian  method,                
Symphony,  defined  the  T  cell  circuitry  underlying  effective  human  anti-leukemic  immune  responses             
that  may  be  broadly  relevant  to  other  exhaustion  antagonists  across  cancers.  Finally,  we  provide  a                
general  analysis  paradigm  for  exploiting  temporal  single-cell  genomic  profiling  for  deep  understanding             
of   therapeutic   scenarios   beyond   oncology.  
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Despite  the  potency  of  cancer  immunotherapy  for  a  subset  of  cancer  patients,  the  variability  in  responses  and                  
efficacy  suggests  that  the  fundamental  mechanisms,  cell  types  and  pathways  driving  clinical  outcomes  remain               
elusive 1 .  Single-cell  transcriptomic  profiling  is  a  powerful  technology  that  can  characterize  the  full  range  of                
immune  cell  states  and  gene  programs  in  the  tumor  microenvironment  (TME)  in  a  comprehensive  and                
unbiased  manner.  Studying  the  evolution  of  the  TME  at  single-cell  resolution  before  and  after  therapy  can  thus                  
reveal  how  heterogeneous  cell  states  evolve  in  relation  to  distinct  clinical  outcomes  and  illuminate  the                
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molecular  and  cellular  determinants  of  immunotherapeutic  response  or  resistance 1,2 .  However,  high-resolution            
studies  of  such  temporal  dynamics  are  typically  performed  in  animal  model  systems 3  due  to  confounding                
factors   and   logistical   challenges,   and   they   may   not   fully   capture   the   response   of   tumors   in   patients.   
 
To  overcome  challenges  in  human  clinical  studies,  we  leveraged a  well-annotated  longitudinal  cohort  of               
patients  treated  with  DLI,  an  established  adoptive  cellular  therapy  for  relapsed  leukemia after  allogeneic               
hematopoietic  stem  cell  transplant  (allo-SCT) .  The  clear,  binary  outcomes  of  response  or  resistance;  the               
clinical  samples  collected  over  a  multi-year  time-span;  and  the  lack  of  confounding  chemotherapy  or               
immunomodulators  has  made  DLI  therapy  an  attractive  immunotherapeutic  setting  to  study  the  essential              
‘search  and  destroy’  functions  of  donor-derived  T  cell  responses  that  underlie  the  therapeutic              
graft-versus-leukemia  (GvL)  effect  of  allo-SCT 4,5 .  Over  the  last  30  years,  DLI  has  directly  demonstrated  the                
potency  of  GvL  by  inducing  durable  molecular  remissions  in  ~75%  of  patients  with  relapsed  chronic                
myelogenous   leukemia   (CML)   following   allo-SCT,   in   the   absence   of   further   chemo-   or   radiotherapy 6,7 .   
 
Response  to  DLI  modified  by  CD8-depletion  has  been  associated  with  decreased  toxicity 8–11 ,  increased  T  cell                
receptor  (TCR)  repertoire  diversity 12 ,  expansion  of  endogenous,  tumor-specific,  marrow  resident  CD8+  T             
cells 13 ,  and  reversal  of  T  cell  exhaustion 14 .  Similar  observations  in  acute  myelogenous  leukemia 15  suggest  that                
the  study  of  DLI  in  CML  can  reveal  insights  that  are  broadly  relevant  across  hematologic  malignancies.  Yet                  
despite  the  widespread  use  of  DLI  for  the  treatment  of  relapsed  disease  following  allo-SCT 6,16 ,  the  mechanistic                 
basis  for  its  effectiveness  remains  incompletely  understood.  Such  insight  would  elucidate  the  pathways  driving               
GvL   clinical   outcomes   and   inform   therapeutic   strategies   to   prevent   or   treat   relapse   following   allo-SCT.   
 
To  elucidate  the  T  cell  subsets  mediating  DLI  resistance,  response  and  exhaustion  after  DLI  therapy,  we                 
analyze  single-cell  T  cell  transcriptomes,  bulk  chromatin  accessibility  profiles,  cluster-specific  gene  regulatory             
networks  and  single  T  cell  clonality  data  from  bone  marrow  biopsies  of  a  longitudinal  cohort  of  patients  with                   
relapsed  CML  after  allo-SCT  treated  with  DLI 10 .  We  introduce  new  computational  models  to  integrate  data                
across  multiple  timepoints  and  modalities  and  use  this  unbiased  framework  to  reveal  the  subsets  of  exhausted                 
T  cells  whose  enrichment  and  divergent  dynamics  define  immunotherapeutic  responses  in  human  leukemia.              
Our  findings  parallel  the  role  of  similar  exhausted  subsets  of  T  cells  during  response  to  checkpoint  blockade  in                   
murine  models  of  chronic  viral  infection  and  human  melanoma,  now  implicating  them  in  adoptive  cellular                
therapy  and  the  GvL  effect  as  well  as  defining  their  underlying  regulatory  circuitries.  We  also  present  a  general                   
computational  framework  that  can  be  applied  to  high-dimensional  temporal  analyses  of  other  cancer  types  and                
therapeutic   scenarios   beyond   oncology.  
 
A   global   map   of   T   cell   states   in   the   leukemic   microenvironment   
To  delineate  the  evolving  landscape  of  cellular  phenotypic  states  for  marrow-infiltrating  T  cells  in  relation  to  DLI                  
therapy,  we  assembled  a  cohort  of  12  patients  treated  with  CD8-depleted  DLI  for  relapsed  CML 10 .  Six  patients                  
were  long-term  DLI  responders  (“Rs”),  defined  as  having  achieved  molecular  remission  (i.e.  RT-PCR  negative               
for  the BCR-ABL  transcript)  after  DLI,  and  6  were  nonresponders  (“NRs”),  who  did  not  achieve  measurable                 
tumor  reduction  following  DLI.  None  of  the  patients  developed  acute  graft-versus-host  disease  (GvHD)  after               
DLI,  and  the  development  of  GvHD  was  unnecessary  for  DLI  response  ( Extended  Data Table  1 ).  Serial  bone                  
marrow  (BM)  biopsies  were  collected  before  and  after  DLI  treatment  at  a  median  of  3  timepoints  per  patient                   
( Suppl.  Note  1 ).  The  cohorts  had  comparable  timing  between  allo-SCT  and  DLI  therapy  (median  702  (R)  and                  
1064  (NR)  days),  and  between  pre-  and  post-DLI  sampling  ( Extended  Data  Fig.  1a ; Suppl.  Note  1;  Extended                  
Data  Table  1 ).  As  reference,  we  also  analyzed  post-transplant  BM  biopsies  from  2  CML  patients  who  never                  
relapsed  after  allo-SCT.  From  each  of  the  41  total  BM  samples,  we  obtained  scRNA-seq  on  viable                 
mononuclear  cells  and  chromatin  accessibility  profiles  (using  ATAC-seq)  on  isolated  CD45RA +  and  CD45RA - ,              
CD4 +    and   CD8 +    T   cells   ( Fig.   1a ,    Suppl.   Note   1 ).   
 
In  total,  we  identified  381,462  cells  that  passed  our  quality  metrics,  with  a  median  of  8735  cells/sample                  
( Extended  Data  Table  2 ).  We  used  Phenograph 17  to  cluster  the  data  into  62  distinct  cell  states,  including                  
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subtypes  of  T,  B,  NK,  monocytes,  progenitor  cells  and  CD34+  stem  cells  ( Suppl.  Note  2 ).  Given  the                  
established  critical  role  of  T  cells  in  the  anti-leukemic  potency  of  DLI 5 ,  we  normalized  and  clustered  the  87,939                   
T  cells  in  our  data,  using  Biscuit 18 , 19  which  robustly  accounts  for  artifacts  such  as  batch  effects  and  library  size                    
variation  ( Suppl.  Note  2 ).  This  analysis  yielded  43  distinct  T  cell  subsets  spanning  combinations  of  subtypes                 
and  differentiation  states  with  variably  expressed  gene  programs  related  to  environmental  stimuli  ( Fig.  1b,c;               
Extended  Data  Fig.  1b-d ).  For  example,  clusters  6,  19,  37  and  31  exhibited  similar  differentiation  states  and                  
subtypes,  for  which  we  observed  differential  enrichment  of  pathways  involving  adenosine  suppression,  glucose              
deprivation,  and  anergy.  Thus  our  global  T  cell  map  reveals  substantial  diversity  corresponding  to  established                
T   cell   subtypes   and   states,   marked   by   known   and   novel   markers,   that   are   shared   across   groups   of   patients.  
 
DLI   resistance   comprises   multiple   states   of   T   cell   dysfunction  
While  most  T  cell  clusters  were  shared  across  patients,  they  were  variably  distributed  across  clinical  features                 
such  as  timing  relative  to  DLI  and  clinical  outcome  (R  vs  NR)  ( Extended  Data  Fig.  1e,  Fig.  1b ),  motivating  us                     
to  identify  the  gene  expression  programs  that  might  underlie  these  clinical  variables.  We  tested  standard                
techniques  used  to  decompose  single-cell  data  to  identify  trends  underlying  its  variance  ( Suppl.  Note  2,                
Extended  Data  Fig.  2a ),  but  no  principal  or  diffusion  component  was  associated  with  R  or  NR  status.  Instead,                   
we  chose  to  use  common  factor  analysis 20 ,  an  unsupervised  approach  to  uncover  latent  factors  that  explain                 
shared  variance  across  T  cells,  ignoring  the  portion  of  variance  unique  to  cells  ( Extended  Data  Fig.  2b ,                  
Suppl.  Note  2 ).  Our  rationale  was  that  covariation  across  T  cells  can  potentially  capture  factors  underlying                 
clinical  response  while  de-emphasizing  patient-specific  variation.  We  identified  3  factors  that  explained  67%  of               
the  variation  in  our  data  which  segregated  R  and  NR  T  cells;  co-variation  in  R  T  cells  was  found  to  be  defined                       
by  Factor  1,  while  that  in  NR  T  cells  was  defined  by  Factors  2  and  3  ( Fig.  1d ).  We  associated  each  of  these                        
factors  with  manually  curated  gene  sets  relating  to  T  cell  biology  and  found  Factor  1  to  correlate  with  profiles                    
associated  with  T  cell  activation  (i.e.  cytolytic  effectors,  interferon  response,  glycogen  metabolism,  CD8+  T  cell                
activation,  T  cell  exhaustion; Fig.  1e ).  We  further  confirmed  enrichment  of  T  cell  exhaustion  pre-DLI  in  R                  
compared  to  NR,  as  previously  observed 14  ( P <10 -6; Extended  Data  Fig.  2c ).  In  contrast,  Factors  2  and  3                  
correlated  with  non-overlapping  signatures  related  to  multiple,  distinct  T  cell  dysfunctional  states  (i.e.  hypoxia,               
anergy,  peripheral  and  deletional  tolerance,  tumor-infiltrating  lymphocyte  dysfunction; Fig.  1e , Extended  Data             
Fig.   2d ),   suggesting   that   DLI   resistance   may   be   driven   by   not   one,   but   multiple   types   of   T   cell   dysfunction.  
 
DLI   response   is   heralded   by   enrichment   of   activated   and   cytotoxic   T   cells   prior   to   DLI   
Given  the  substantial  diversity  of  T  cell  subsets  and  gene  programs  in  the  leukemic  microenvironment,  we                 
aimed  to  quantify  this  heterogeneity  and  study  its  change  with  outcome.  T  cell  states  are  known  to  reside  on                    
continuous  trajectories,  which  explain  the  majority  of  their  variation 19 , 21 , 22 .  We  thus  quantified  their  diversity               
across  all  clusters  using  phenotypic  volume 19 ,  defined  as  the  pseudo-determinant  of  covariance  between              
genes.  Phenotypic  volume  serves  as  a  measure  of  the  diversity  of  co-expressed  transcriptional  programs,               
which  increases  with  the  number  and  degree  of  independence  of  gene  programs  ( Suppl.  Note  2 ).  We  found                  
substantially  higher  phenotypic  diversity  in  pre-DLI  Rs  compared  to  pre-DLI  NRs  ( Fig.  2a ,  log  fold                
change=104.6,    P <10 -6 ),   suggesting   that   diverse   T   cell   phenotypes   pre-DLI   could   be   essential   for   response.  
 
In  addition  to  finding  increased  overall  phenotypic  diversity  in  pre-DLI  Rs,  we  next  sought  to  identify  distinct                  
transcriptional  states  associated  with  clinical  outcome.  We  tested  each  cluster  for  enrichment  in  baseline,               
pre-DLI  samples  from  Rs  compared  to  NRs  ( Suppl.  Table  1 ).  No  cluster  was  consistently  enriched  in  NRs,                  
attesting  to  the  notion  of  multiple  pathways  to  DLI  resistance  rather  than  a  common  resistance  mechanism                 
shared  across  NRs.  In  contrast,  within  Rs,  we  identified  four  individual  clusters  (4,  14,  21,  27)  that  consistently                   
enriched  pre-DLI  across  responder  patients  ( Fig.  2b , FDR <0.1);  comprised  predominantly  CD8+  T  cells;  and               
shared  the  expression  of  genes  involved  in  T  cell  activation  ( CD160 , HAVCR2 , CD38 )  and  cytotoxicity                
( CRTAM , GNLY , GZMK,  GZMB )  ( Extended  Data  Fig.  3a ).  Nevertheless,  their  distinct  differentiation  states  (4,               
14,  21:  T EM /T TE ;  27:  T CM ),  subtypes  (21:  T γδ ),  and  varied  expression  of  chemokine  receptors  (14: XCL2 , CXCR4 ;                  
21: CXCR1 , CXCR2 ),  tissue  residency  (14: ITGA1 , RGS1 ;  high  score  for  “CD8+  T RM ”)  and  cell  cycle  (27:                  
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CDKN2A , TAF5 , RRM2 )  programs  indicated  the  baseline  diversity  of  these  T  cell  states  ( Fig.  1c , Extended                 
Data   Fig.   3a ).   
 
We  observed  a  marked  increase  in  the  number  of  T  cell  clusters  in  post-DLI  samples  compared  to  matched                   
pre-DLI  samples  (mean  41  [range:  35-46]  versus  mean  38  [range:  34-41], P <0.001; Suppl.  Note  2 ),                
suggesting  that  DLI  expands  the  number  of  T  cell  transcriptional  states.  Indeed,  both  R  and  NR  cases                  
exhibited  increases  in  phenotypic  volume  following  DLI  ( P <10 -6 ),  ( Fig.  2a ).  Rs  displayed  higher  phenotypic               
volume  than  NRs  at  both  pre-  and  post-DLI  timepoints  ( P <10 -5 ),  whereas  NRs  displayed  a  far  greater  increase                  
in  phenotypic  volume  after  DLI  than  Rs  ( P <10 -6 ).  Thus,  despite  an  absent  clinical  response,  NRs  undergo                 
marked  T  cell  phenotypic  remodeling.  Of  note,  the  phenotypic  volumes  of  the  non-relapsed  reference  samples                
were  lower  than  samples  from  the  study  cohort,  ( P <10 -6 ; Extended  Data  Fig.  3b ).  These  results  implicate                 
more  transcriptionally  diverse  local  microenvironments  within  the  leukemic  bed  that  may  persist  even  after               
leukemia   remission   following   DLI.   

DLI   response   is   marked   by   expansion   of   states   consistent   with   precursor   exhausted   T   cells  
To  identify  T  cell  clusters  that  expand  after  DLI,  we  compared  the  cluster  proportions  in  baseline  pre-DLI                  
samples  to  those  from  the  remission  timepoint  following  DLI.  To  increase  our  statistical  power  for  detecting                 
changes  induced  by  DLI,  we  grouped  transcriptionally  similar  clusters  into  meta-clusters  ( Extended  Data  Fig.               
3c , Suppl.  Note  2 ).  In  this  fashion,  we  identified  two  meta-clusters  which  consistently  expanded  (M1:{19,28},                
M2:{5,11,23})  and  one  that  consistently  contracted  (M3:{4,7,3,22})  after  DLI  therapy,  only  in  Rs  ( Fig.  2c ).  The  T                  
cell  states  that  expanded  in  response  to  DLI  comprised  both  CD4 +  and  CD8 +  T  cells;  enriched  for  T N (19,  28,                     
and  5),  T CM (11),  or  both  (23)  states;  and  expressed  corresponding  gene  programs  for  proliferation  ( CDK20 ,                 
CDK14 , CDKL3 ),  lymph  node  homing  ( SELL , CCR7 ),  and  survival/self-renewal  ( TCF7 , IL7R , SATB1 )             
( Extended  Data  Fig.  3a ).  Analogous  to  the  clusters  enriched  in  pre-DLI  R  samples,  the  T  cell  states                  
contracting  in  response  to  DLI  comprised  mostly  CD8+  T  cells,  enriched  similarly  for  T EM  and  T TE  states,  and                   
expressed  similar  gene  programs  of  cytotoxicity  and  activation.  In  contrast,  no  clusters  or  meta-clusters               
consistently   changed   in   NRs.  
 
Recent  studies  in  murine  models  of  chronic  viral  infection  and  cancer  have  delineated  two  major  subsets  of                  
exhausted  T  cells  that  can  be  distinguished  on  the  basis  of  gene  expression  signatures:  terminal  exhausted                 
(T EX )  cells,  which  possess  superior  cytotoxicity  but  shorter  lifespan,  and  precursor  exhausted  (T PEX )  cells  which                
have  greater  polyfunctionality,  expand  following  PD-1  blockade,  and  exert  tumor  control 23,24 .  We  hypothesized              
that  the  human  CD8 +  effector-like  T  cell  clusters  enriched  pre-DLI  and  the  rapidly  expanding  naive/memory-like                
T  cell  clusters  enriched  post-DLI  might  be  phenotypically  similar  to  these  two  subsets.  Indeed,  by  scoring  all                  
clusters  for  T EX -  or  T PEX -defining  signatures 24 ,  we  found  that  clusters  enriched  in  pre-DLI  Rs  (4,  14,  21,  27)                   
scored  highest  for  T EX  profiles  whereas  clusters  consistently  expanded  post-DLI  in  Rs  (M1,  M2)  scored  highest                 
for  T PEX  profiles  ( Fig.  2d ).  Cluster  26  was  the  highest  T PEX  scoring  cluster  and  expanded  only  in  R  patient  5309                     
but  did  not  meet  the  threshold  for  significance  due  to  its  small  size  and  patient-dominant  variation.  Because                  
patient  5309  was  the  only  R  without  expansion  in  either  of  the  two  meta-clusters,  M1  or  M2  ( Extended  Data                    
Fig.  3d ),  the  expansion  of  cluster  26  suggests  that  all  six  Rs,  in  fact,  demonstrated  post-DLI  expansion  of  T PEX                    
clusters.  These  T EX -  or  T PEX -defining  signatures  also  segregated  pre-  and  post-DLI  enriched  clusters  in  an                
unsupervised  analysis  ( Fig.  2e ).  While  pre-DLI  enriched  clusters  expressed  transcription  factors  ( TOX , ID2 ,              
PRDM1 ),  co-inhibitory  receptors  ( HAVCR2 , PDCD1 , ENTPD1 , CD160 , CD244 ),  chemokines  and  associated            
receptors  ( CCL3 , CCL4 , CCL5 , CX3CR1 ),  and  effector  molecules  ( PRF1 , GZMA , GZMB )  classically             
associated  with  T EX  cells,  post-DLI  enriched  clusters  expressed  transcription  factors  ( TCF7 , ID3 , LEF1 ),              
surface  receptors  ( CXCR5 , IL7R ),  and  chromatin  regulators  ( SATB1 )  consistent  with  T PEX  cells 23,25–31  ( Fig.  2e ).               
Finally,  unlike  many  studies  using  antigen-specific  models  of  CD8 +  T  cell  responses,  we  found  a  mixture  of                  
both  CD4 +  and  CD8 +  T  cells  to  constitute  these  expanding  T PEX -like  clusters.  Within  the  M1  and  M2                  
meta-clusters,  both  subtypes  exhibited  global  transcriptional  similarity,  with  similar  T PEX  scores  and  similar              
expression  of  key  TFs  such  as TCF7 ,  indicating  the  importance  of  both  CD4 +  and  CD8 +  subtypes  to  DLI                   
response   ( Extended   Data   Fig.   3e ).  
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Having  identified  response-associated  T  cell  meta-clusters  with  diverging  patterns  after  DLI  (expanding  M1  and               
M2,  and  contracting  M3),  we  sought  to  characterize  their  evolution  over  time  by  merging  samples  across  all                  
time-points  and  clinical  outcomes  ( Suppl.  Note  2 ) and  then  modelling  their  temporal  dynamics  over  the  4.5                 
year  time  period.  To  account  for  variability  in  timing,  total  cell  number,  and  meta-cluster  size  on  a  per-sample                   
basis,  we  constructed  a  hierarchical  Gaussian  Process  (GP)  regression  model  to  capture  dependencies              
between  all  pairs  of  time  points  per  clinical  group  (R,NR)  ( Extended  Data  Fig.  3f,g ; Suppl.  Note  2 ).  Our                   
model  revealed  the  M3  meta-cluster  to  gradually  increase  with  leukemic  growth  in  Rs  and  sharply  contract                 
during  DLI  response  (time  shift  of  75  days;  p=0.013, Fig.  2f ,  left)  whereas  both  M1  and  M2  meta-clusters                   
robustly  expanded  as  early  as  3  weeks  and  endured  as  long  as  3  years  after  DLI  ( Fig.  2f,  middle,  right).                     
Notably,  no  association  was  detected  between  these  meta-clusters  and  leukemic  burden  in  NRs  ( Fig.  2g ).                
Taken  together,  our  data  shows  that  reversal  of  T  cell  exhaustion  is  driven  not  by  changes  in  gene  expression,                    
but  rather  by  shifts  in  cell  type  composition  –  specifically,  the  expansion  of  T PEX  populations  and  contraction  of                   
T EX    subsets.   
 
Cell-state   specific   gene   regulatory   networks   affirm   exhausted   subset   identities  

While  recent  work  has  described  epigenetic  T  cell  states  that  drive  dedifferentiation 32 ,  effector  “poising,” 33  and                
exhaustion 34,35 ,  their  relevance  to  clinical  immunotherapeutic  outcomes,  especially  following  DLI,  is  unclear.  To              
investigate  the  regulatory  circuitry  underlying  the  T  cell  transcriptional  states  associated  with  DLI  outcome,  we                
compared  chromatin  accessibility  profiles  between  Rs  and  NRs  ( Suppl.  Note  3 ).  Consistent  with  our               
scRNA-seq  analysis,  we  found  increased  chromatin  accessibility  in  Rs  in  regions  near  T PEX -  and  T EX -associated                
genes  ( Fig.  3a,  Extended  Data  Fig  4a ),  further  supporting  the  association  of  these  exhausted  subsets  with                 
DLI  response.  Notably,  we  found  similar  accessibility  for  these  genes  among  R  samples,  regardless  of  timing                 
relative  to  DLI.  In  fact,  we  observed  that  the  genome-wide  accessibility  landscape  of  T  cells  is  more  similar                   
between  pre-  and  post-DLI  timepoints  of  Rs,  than  between  Rs  and  NRs  ( Fig  3b ),  suggesting  that  DLI  response                   
involves  selection  of  pre-existing  epigenetic  states  as  opposed  to  induction  of  global  rewiring.  This  observation                
is  consistent  with  our  analysis  of  transcriptional  states  demonstrating  that  shifts  in  cell  type  composition                
underlie  T  cell  phenotypic  evolution  during  DLI  response.  Moreover,  these  results  suggest  the  inflexibility  of                
these  epigenetic  states  of  exhaustion  in  response  to  DLI,  consistent  with  findings  in  murine  models  of  chronic                  
infection   in   response   to   PD-1   blockade 34,35 .   

 

To  further  study  the  circuitry  underlying  the  distinct  expanding  T PEX  and  contracting  T EX subsets,  we  developed                 
Symphony 36 ,  a  novel  probabilistic  multi-view  model  to  infer  gene  regulation  in  each  exhausted  cluster               
( Extended  Data  Fig  4b ).  Symphony  uses  co-expression  patterns  between  transcription  factors  (TF)  and              
targets  as  evidence  suggesting  a  potential  regulatory  impact.  However,  since  co-expression  between  genes              
could  be  a  by-product  of  indirect  regulation  or  co-regulation,  Symphony  integrates  scRNA-seq  data  with               
chromatin  accessibility  data  from  ATAC-seq,  together  with  TF  motif  information  to  resolve  direct  links  between                
genes.  We  first  evaluated  the  performance  of  Symphony  on  data  from  well-characterized  PBMCs 36  and  then                
confirmed   the   robustness   of   predicted   links   in   our   cohort   with   leave   one   (patient)   out   analysis   ( Suppl.   Note   3 ).  

 

To  determine  the  strongest  regulators  underlying  the  differences  in  gene  expression  across  the  clusters,  we                
summarized  predicted  regulatory  networks  in  each  cluster  and  defined  master-regulators  as  TFs  with  strong               
average  regulatory  impact  (either  activation  or  repression)  on  the  differentially  expressed  genes  (DEGs)              
characterizing  each  cluster.  Strikingly,  the  inferred  master  regulators  organized  into  distinct  groups  associated              
with  T EX or  T PEX  subsets  ( Fig.  3c ).  From  our  unsupervised  analysis,  we  found  many  TFs  previously  known  to                   
associate  with  exhaustion  in  general  (e.g. EOMES , TBX21 ) 37,38  or  regulate  T EX  (e.g. MYB , NFATC1 , TOX ) 39  and                 
T PEX  subsets  (e.g. TCF7 , PRDM1 , LEF1 ) 37  in  particular.  Two  of  the  identified  TFs, MTF2  and GATA3 ,  were                  
recently  defined  as  mediators  of  intratumoral  CD8 +  T  cell  dysfunction  in  murine  models 22 .  While  master                
regulators  identified  by  T EX -associated  DEGs  were  largely  shared  among  disparate  T EX  clusters,  the  two  T PEX                
meta-clusters  were  well-discriminated  by  two  distinct  sets  of  master  regulators.  We  also  observed  a  smaller                
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group  of  master  regulators  including LEF1  and RORA  that  were  shared  across  T PEX  and  T EX subsets  ( Fig.  3c ),                   
suggesting   a   core   shared   regulatory   program.   

 
Despite  shared  master  regulators  even  within  highly  related  transcriptional  T EX  or  T PEX  states  (dotted  line                
boxes  in Fig.  3c ),  Symphony  revealed  a  distinct  regulatory  network  architecture  for  each  cluster  ( Fig.  3d,                 
Extended  Data  Fig.  5 )  suggesting  differences  in  wiring  and  target  genes  influenced  by  these  regulators.                
Importantly,  these  cluster-specific  regulatory  networks  imply  that  master  regulators  (shown  in  green,  Fig  3d               
e.g. TOX )  for  pre-DLI  enriched  clusters  appear  to  be  directly  linked  to  known  T EX markers;  similarly,  master                  
regulators  (shown  in  pink)  for  post-DLI  enriched  meta-clusters  directly  regulate  known  T PEX markers.  For               
example,  in  pre-DLI  enriched  cluster  27, PDCD1  is  inferred  to  be  activated  by TOX ,  while  the  effector  molecule                   
PRF1  is  predicted  to  be  combinatorially  activated  by TOX , IKZF1 , TBPL1  and STAT2  which  are  all                 
up-regulated  in  this  subset.  Similarly,  in post-DLI  enriched  cluster  11, TCF7  acts  as  a  hub,  predicted  to  be                   
regulated  by ELF1  and  activating  known  T PEX  markers IL7R , SELL  and CXCR5  as  expected.  This  connection                  
between  regulators  found  from  our  unbiased  approach  and  known  exhaustion  markers,  support  the  central  role                
of  these  TFs  in  defining  the  identities  of  exhausted  T  cell  clusters.  Furthermore,  their  regulatory  function,                 
inferred  with  Symphony,  is  supported  by  evidence  in  TF  and  target  gene  co-expression  ( Fig.  3d )  and/or                 
chromatin  accessibility  ( Suppl.  Note  3 ).  Thus,  in  addition  to  identifying  known,  exhaustion-related  regulators              
driving  these  DLI  response-associated  T  cell  clusters,  Symphony  provides  a  roadmap  for  future  investigation               
on   the   role   of   previously   unexplored   regulators.   
 
Confirmation   of   clonal   properties   and   source   of   expanding   T PEX    cells  

In  murine  models,  T PEX  and  T EX  subsets  have  been  reported  to  share  a  lineage  relationship  in  which  the  former                    
self-renews  and  gives  rise  to  the  latter 23 .  For  two  Rs  (5311,  5314),  we  used  paired  single-cell  TCR-  and                   
RNA-seq  to  compare  TCR  clonotype  sequences  of  T PEX  and  T EX  clones  (defined  as  >1  cell  sharing  the  same                   
TCR).  We  observed  that  27%  of  T PEX  clones  overlapped  with  T EX  clones  ( p <10 -14  for  both  patients),  confirming                  
their  lineage  relationship  ( Fig.  4a ; Suppl.  Note  4,  Suppl.  Table  7 ).  The  expanded  clones  with  T PEX  phenotype                  
were  predominantly  CD4+  T  cells  (81%)  and  clones  with  T EX  phenotype  were  predominantly  CD8+  T  cells                 
(99%)  as  were  T EX /T PEX  overlapping  clones  (93%).  T EX  clonotypes  resided  in  larger  clones  than  T PEX  clonotypes                 
( Extended  Data  Fig.  6a ).  Clonotype  diversity  was  higher  in  cells  with  a  T PEX  phenotype  than  in  those  with  a  T EX                     
phenotype   ( P <0.05)   for   both   patients   ( Fig.   4b ),   consistent   with   previous   reports   in   murine   and   human   studies 24 .   
 
To  study  the  dynamics  of  how  clonal  populations  initially  shifted  in  response  to  DLI  in  these  two  patients,  we                    
evaluated  their  TCR  repertoire  within  one  month  before  and  after  DLI  and  identified  significantly  expanding  and                 
contracting  clonotypes  ( Fig.  4c ,  left).  Consistent  with  our  observation  of  expanding  T PEX  states  following  DLI,                
dynamic  clonotypes  from  T PEX  clusters  were  more  likely  to  expand  than  contract  compared  to  those  from  T EX                  
clusters  ( Fig.  4c ,  middle  and  right).  Thus,  the  evolution  of  TCRs  mirrors  that  of  T EX /T PEX  transcriptional  states                  
after   DLI.  
 
We  noted  that  clonally  expanded  TCRs  following  DLI  were  more  likely  to  be  shared  with  pre-DLI  timepoints                  
than  were  singletons,  and  many  of  these  expanded  clonotypes  persisted  even  3  years  after  DLI  ( Fig.  4d,e ,  left;                   
Extended  Data  Fig.  6b-d; P <10 -15 ,  4  wks  and  144  wks  post-DLI).  Given  that  viral  reactivity  can  be  common  in                    
the  post-transplant  period 40 ,  we  confirmed  that  viral  antigen  recognition  only  minimally  accounted  for  the               
post-DLI  clonotypes  (<1.5%  across  the  2  patients)  and  did  not  explain  the  expansion  or  durability  of  T PEX  cells                   
( Extended  Data  Fig.  6e,  Suppl.  Note  4 ).  Upon  examination  of  the  source  of  expanding  T PEX  states  after  DLI                   
response,  we  found  that  only  1.4%  of  T PEX  cells  from  all  post-DLI  timepoints  share  clonotypes  exclusively  with                  
the  infusion  product.  These  results  demonstrate  that  DLI  does  not  directly  introduce  the  clonotypes  that                
constitute  T PEX  expansion  ( Fig.  4d,e ,  right; Extended  Data  Fig.  6b,c ).  Rather,  post-DLI  T PEX  cells  consisted  of                 
expanding,   pre-existing   clonotypes   as   well   as   those   that   were   not   detected   pre-DLI.  
 
DISCUSSION  
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In  1878,  Leo  Tolstoy  published  his  masterpiece Anna  Karenina  and  its  eponymous  principle  that  “all  happy                 
families  are  alike;  each  unhappy  family  is  unhappy  in  its  own  way.”  Likewise,  our  unbiased  analysis  of  the                   
evolution  of  T  cell  states  following  DLI  unveiled  common,  shared  pathways  defining  DLI  response  whereas                
multiple  dysfunctional  T  cell  states  shaped  DLI  resistance,  evoking  a  clinical  outcome  paradigm  characteristic               
of  other  therapeutic  scenarios  where  a  limited  set  of  targetable  alterations  predicts  response  in  contrast  to                 
development   of   a   diversified   set   of   resistance   mechanisms 41,42 .  

 

To  enable  such  clear  insights  from  a  limited  patient  cohort,  we  leveraged  two  critical  features:  samples                 
collected  from  an  informative  clinical  setting  and  innovative  computational  tools.  Specifically,  we  exploited  a               
scenario  with  unambiguous,  binary  clinical  outcomes  (response  or  resistance)  in  the  absence  of  any  toxicities;                
longitudinal  sample  collection;  and  uniform  patient  treatment  with  CD8-depleted  DLI  for  relapsed  CML  in  the                
absence  of  any  confounding  chemotherapy  or  immunomodulators.  Furthermore,  we  consistently  sampled  the             
same  bone  marrow  leukemic  microenvironment  for  all  patient-timepoints  in  contrast  to  studies  in  solid  tumors                
where   the   sites   of   cancer   involvement   that   are   studied   differ   greatly   even   within   the   same   patient 43 .  

 

To  overcome  limitations  of  experimental  design  inherent  to  clinical  studies  such  as  variable  timing  of  sample                 
collection,  patient  heterogeneity,  measurement  uncertainty,  and  challenges  in  hypothesis  testing  on  key             
populations,  we  adapted  statistical  techniques  and  developed  novel  longitudinal  and  integrative  probabilistic             
models.  Importantly,  these  computational  approaches  for  dissecting  global  heterogeneity,  identifying  immune            
states  related  to  dynamics  of  tumor  burden,  and  integrative  gene  regulatory  network  inference  are  readily                
generalizable  to  other  longitudinal,  clinical  settings.  Indeed,  with  the  increasing  number  of  clinical  correlative               
studies   using   longitudinal   tumor   biopsies 44,45 ,   we   anticipate   a   growing   need   for   such   analytic   frameworks.  

 

Our  findings,  identified  through  direct  interrogation  of  the  human  bone  marrow  microenvironment,  dovetail  with               
discoveries  detected  in  model  systems  of  chronic  viral  infections  and  solid  tumors 21,46,47 .  The  pre-  and  post-DLI                 
enriched  T  cell  states  we  identified  in  Rs  demonstrated  dynamic,  transcriptional,  epigenetic  and  clonal               
hallmarks  of  T EX  and  T PEX  exhaustion  subsets,  previously  identified  from  murine  models.  Remarkably,  the  rapid                
expansion  of  T PEX -like  states  after  DLI  mirrored  similar  observations  in  these  models  during  response  to                
blockade  of  the  PD-1  pathway  in  chronic  viral  infection 24,31,37,48,49 .  In  patients,  recent  studies  have  indicated  a                 
role  for  T PEX  cells  during  clinical  outcomes  to  checkpoint  blockade  in  advanced  melanoma 24,43 .  Our  results  now                 
implicate  the  hierarchy  of  both  T EX  and  T PEX  subsets  for  human  immunotherapeutic  responses,  extending  the                
scope  of  their  relevance  beyond  checkpoint  blockade  to  adoptive  cellular  therapies  for  human  leukemia  and                
nominating  this  cellular  program  as  a  potent  effector  of  GvL.  Furthermore,  these  data  confirm  that  reversal  of  T                   
cell  exhaustion  is  driven  not  by  changes  in  gene  expression,  but  rather  by  shifts  in  cell  type  composition  –                    
namely,  expansion  of  T PEX  populations  and  contraction  of  T EX  subsets  ( Fig.  5 ).  Because  such  distinctions                
cannot  be  delineated  by  bulk  measurements,  our  findings  highlight  the  advantages  of  single  cell               
transcriptomics   for   discriminating   between   these   possibilities.   

 

Our  data  moreover  suggests  novel  mechanistic  insight  into  DLI  efficacy.  Our  scTCR  analysis  not  only                
confirmed  the  lineage  relationship  between  T EX  and  T PEX -like  states  but  now  also  explain  that  previous                
independent  observations  of  increased  TCR  diversity  detected  in  the  setting  of  DLI  response 12  are  a                
consequence  of  T PEX  subset  expansion.  Provocatively,  this  expansion  of  T PEX  cells  during  DLI  response  did  not                 
arise  directly  from  the  DLI  product.  Instead,  we  observed  both  recruitment  of  previously  undetected  clonotypes                
(potential  clonal  replacement 50 )  and  expansion  of  pre-existing  ones  (clonal  expansion),  suggesting  that             
immunologic  ‘help’  from  DLI,  rather  than  direct  transfer  of  anti-leukemic  T  cells,  drove  leukemic  remission.                
Similar  results  have  been  observed  in  murine  models  of  exhaustion  reversal  after  adoptive  transfer  of  CD4+  T                  
cells 51,52 .  These  data  suggest  that  T EX /T PEX  subsets  serve  as  both  marker  and  mechanism  for  DLI  response.                 
Our  findings  motivate  future  clinical  trial  designs  to  test  the  status  of  T EX  cells  as  a  biomarker  for  predicting  DLI                     
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response  and  to  evaluate  therapeutic  strategies  that  enhance  T PEX  recruitment  and  expansion.  Pursuing  such               
approaches   offers   the   possibility   of   enhancing   the   GvL   effect   during   relapse   after   allo-SCT.   

 
Functional  interrogation  of  the  novel  regulatory  networks  proposed  by  our  joint  analysis  of  scRNA-  and  bulk                 
ATAC-seq  datasets  through  Symphony  should  accelerate  these  efforts.  Future  studies  should  also  address  the               
mechanism  of  DLI-induced  T PEX  expansion  and  evaluate  its  relevance  for  newer  adoptive  cellular  therapies               
such  as  chimeric  antigen  receptor  T  cells.  In  addition,  while  these  T  cell  exhausted  subsets  have  now  been                   
observed  in  multiple  clinical  settings,  which  aspects  of  their  underlying  molecular  machinery  and  distinct               
regulatory  circuits  remain  specific  to  the  leukemic  or  GvL  setting  and  which  generally  extend  to  other  cancers                  
and  human  diseases  should  be  explored.  Finally,  our  analytic  approaches  serve  as  a  template  for  future                 
studies   that   seek   to   harness   such   multidimensional   data   sets   for   clinical   and   therapeutic   relevance.   
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Figures  

 

Fig.  1|  Experimental  design  and  global  map  of  T  cell  states.  a ,  Clinical  cohort,  and  flow  chart  of  experimental  and                     
analysis  schema. b ,  t-SNE  projection  of  normalized  scRNA-seq  data  for  all  T  cells  from  41  samples.  Each  dot  represents                    
a  cell  colored  by  cluster,  patient  ID,  clinical  outcome  and  timing  respectively  (expanded  in  Fig.  S3). c , Mean  expression  for                     
a  curated  set  of  transcriptomic  signatures  representing  T  cell  subtypes  and  differentiation  states  for  each  T  cell  cluster;                   
expression  values  are  z-scored  relative  to  all  T  cell  clusters. d ,  Common  Factor  Analysis  of  T  cells  identifying  3  common                     
latent  factors  distinguishing  T  cells  between  responders  (R)  and  non-responders  (NR).  Each  dot  represents  a  cell  colored                  
by  patient  outcome  and  axes  show  factor  loadings. e , Pearson  correlation  between  common  latent  factors  and  mean                  
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expression   of   curated   signatures.  
 

 
Fig.  2|  T  cell  states  defining  DLI  response  correspond  to  exhausted  subsets.  a , Phenotypic  volume  in  log-scale                  
(metric  of  transcriptional  diversity 19 )  of  T  cells  before  and  after  DLI  in  responders  (R)  and  non-responders  (NR). b-c,                   
Proportion  of  T  cells  for  pre-DLI  only (b)  or  paired  pre-/post-DLI (c)  samples  assigned  to  the  indicated  cluster  or                    
meta-cluster. Q -values  determined  from  weighted  t-test  and  empirical  FDR  estimation.  Box  plot  elements  display  center                
line  as  median;  box  limits  as  first  and  third  quartiles;  whiskers  extend  to  maximum/minimum  data  points  ( a )  or  1.5x                    
interquartile  range  with  points  as  outliers  ( b ).  Each  line  in (c)  indicates  one  patient.  Stacked  bars  on  the  right  indicate  the                      
proportion  of  CD4+  and  CD8+  T  cells. d ,  Violin  plots  showing  density  of  T EX  (top)  or  T PEX  (bottom)  viral  signature  scores 24                      
across  T  cells  grouped  by  cluster.  Clusters  are  ordered  by  median  score.  Colored  violins  refer  to  clusters  enriched  in                    
pre-DLI  Rs  (dark  blue)  or  expanding  in  post-DLI  Rs  (light  blue).  Full  labels  provided  in  Fig.  S5. e ,  Unsupervised                    
hierarchical  clustering  based  on  tumor  infiltrating  T PEX  or  T EX  genes 24  segregates  dark/light  blue  clusters. f-g ,  Hierarchical                 
GP  regression  models  (Suppl.  Note  2;  Extended  Data  Fig.  3f,g)  for  both  the  proportion  of  the  indicated  meta-cluster  (in                    
blue  dots  for  Rs  and  in  orange  dots  for  NRs)  and  the  percentage  of  tumor  burden  (in  grey  crosses)  (indicated  by  percent                       
positivity  of  the  Philadelphia  chromosome)  per  sample  for  Rs (f)  or  NRs  ( g ).  Each  dot  is  one  sample  and  dot  size  is                       
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proportional  to  sample  size  (total  cells);  inferred  model  mean  is  shown  with  lines  and  shaded  area  shows  +/-1  standard                    
deviation.  Cross-correlation  plots (f ;  purple )  indicate  the  time  shift  between  the  models  for  meta-cluster  proportion  and                 
tumor   percentage,   showing   in-sync   dynamics   for   M3   and   tumor   (left)   and   a   lag   between   M1/M2   and   tumor   (middle,   right).   
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Fig.  3|  Epigenetic  landscape  and  regulatory  circuitry  underlying  T  cell  subsets.  a,  Chromatin  accessibility  signal                
from  ATAC-seq  data  for  CD8+  CD45RA+  (left)  and  CD8+  CD45RO+  (right)  T  cells  indicating  differential  accessibility                 
( p <0.05  indicated  with  boxes)  between  R  and  NR  in  regions  near  exhaustion  marker  genes. b , Average  pairwise  Pearson                   
correlation  between  normalized  ATAC-seq  peak  heights  for  CD8+  CD45RO+  (top)  and  CD8+  CD45RA+  (bottom)  T  cells                 
from  different  clinical  groups. c ,  Heatmap  showing  scaled  values  of  predicted  regulatory  strength  of  TFs  (i.e.  magnitude  of                   
regulation  independent  of  sign)  from  Symphony  (Suppl.  Note  3;  Extended  Data  Fig.  4b),  averaged  across  differentially                 
expressed  genes  characterizing  each  cluster.  Master  regulators  that  are  differential  (t-test p <0.05)  or  shared  between  T EX                 
and  T PEX  subsets  are  shown  in  dotted  lines. d,  Predicted  regulatory  circuitry  for  two  example  clusters;  arrows  between                   
nodes  indicate  regulatory  impact  of  a  TF  on  a  target  gene.  Master  regulators  that  are  differentially  enriched  in  T EX  and  T PEX                      
subsets  are  shown  in  green  or  pink  nodes,  respectively.  Circuitry  for  other  exhausted  clusters  are  shown  in  Extended  Data                    
Fig   5.  
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Fig.  4|  Confirmation  of  clonal  properties  and  source  of  expanding  T PEX  cells.  a,  Venn  diagrams  showing  clonotype                  
overlap  between  T PEX  and  T EX  cells  from  two  R  patients  (5311  and  5314),  and  stacked  bars  indicating  percentage  of  CD8+                     
and  CD4+  T  cells  in  T PEX,  T EX  and  overlap  categories. P  value  calculated  from  hypergeometric  test. b ,  T PEX  clusters  show                     
increased  TCR  diversity  (quantified  with  Gini  coefficient;  Suppl.  Note  4)  compared  to  T EX  clusters,  Wilcoxon.  Box  plot                  
elements  display  center  line  as  median;  box  limits  as  first  and  third  quartiles;  whiskers  extend  to  1.5x  interquartile  range                    
with  points  as  outliers. c ,  Clonotype  frequencies  1  month  before  and  1  month  after  DLI  from  both  R  patients.  Each  dot                      
represents  a  clonotype  with  dot  size  proportional  to  size  of  clone  for  each  cell  subset.  Expanding/contracting  clonotypes                  
determined  with  Fisher’s  exact  test  ( P <0.05). Left ,  clonotypes  from  all  cells  colored  by  one  of  three  dynamic  patterns:                   
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contracting,  expanding,  persistent. Middle , right  dynamic  clonotypes  from  T PEX  clusters  are  less  likely  to  be  contracting                 
compared  to  clonotypes  from  T EX  clusters  (pie  charts). d-e ,  Frequency  distribution  of  all  ( d )  or  T PEX  ( e )  clonotypes  per                    
time-point  for  patient  5314.  Arrows  indicate  clonotype  expansion  from  pre-DLI  ( P <0.05,  Fisher’s  exact  test).  Post-DLI                
clonotypes  marked  in  red  indicate  unique  match  with  DLI  product  and  their  proportions  are  displayed  in  pie  charts  for  all                     
( d )   or   T PEX    ( e )   post-DLI   clonotypes   (patient   5311   is   shown   in   Extended   Data   Fig.   6b,c).  
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Fig.  5| Summary  model. Evolution  of  exhausted  T  cell  states  during  DLI  response  and  heterogeneity  of  distinct,                   
dysfunctional   T   cell   states   during   DLI   resistance.  
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Extended  Data  Fig.  1|  Clinical  variables,  biological  features,  and  cluster  distributions.  a ,  Time  from  stem  cell                 
transplant  (SCT)  to  DLI  for  each  patient  (left),  from  pre-DLI  sample  to  DLI  (middle)  and  from  DLI  to  post-DLI  sample                     
(right).  Center  line  as  median  with  interquartile  range  and  points  as  outliers. b ,  t-SNEs  of  all  43  T  cell  clusters,  colored  by                       
indicated  gene,  recapitulating  known  immunobiology. c ,  Heatmap  of  differentially  expressed  genes  (DEGs)  per  cluster  for                
all  clusters  (full  list  provided  in Suppl.  Table  3 ).  Indicated  are  informative  genes  for  immune  subtypes  or  differentiation                   
states. d ,  Heatmap  of  mean  expression  for  a  curated  set  of  signatures  for  each  T  cell  cluster;  expression  values  are                     
z-scored  relative  to  all  T  cell  clusters. e ,  Distribution  of  clusters  across  patients  ( top ,  stacked  bar  plots)  and  clinical  groups                     
and   timepoints   ( bottom ,   bubble   plot).  
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Extended  Data  Fig.  2|  Identifying  outcome-associated  gene  expression  programs.  a ,  Top  three  principal  ( left )  or                
diffusion 55  ( right )  components  fail  to  discriminate  clinical  outcomes;  each  dot  is  a  T  cell  colored  by  patient  outcome b ,                    
Cartoon  illustration  for  common  factor  analysis  vs  PCA. c ,  Distribution  of  scores  for  exhaustion  signatures  across  cells,                  
confirming  increased  exhaustion  in  pre-DLI  T  cells  from  Rs  compared  to  NRs. d ,  Low  percentage  overlap  of  dysfunctional                   
gene   sets   indicating   discrete   forms   of   T   cell   dysfunction   associated   with   Factors   2,3   in   Fig   1e.  
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Extended  Data  Fig.  3|  Expression  profiles  and  longitudinal  dynamics  of  pre-  and  post-DLI  enriched  clusters.  a ,                 
Heatmap  of  normalized  gene  expression  values  for  differentially  expressed  genes  from  Ext  Data  Fig  1c,  subsetted  for                  
clusters  enriched  pre-  or  post-DLI.  Center  line  in  boxplots  indicate  the  median  and  boxes  indicate  25th  and  75th                   
percentiles.  Whiskers  extend  to  extreme  data  points. b ,  Phenotypic  volume  in  log-scale  (metric  of  transcriptional  diversity)                 
of  T  cells  from  non-relapse  controls  and  before  and  after  DLI  in  responders  (R)  and  non-responders  (NR). c ,  Heatmap  of                     
Bhattacharyya  distances  (BD)  in  log  scale  between  pairs  of  clusters;  closest  clusters  are  grouped  to  form  meta-clusters                  
(white  boxes).  Meta-clusters  significantly  expanding  (M1,  M2)  or  contracting  (M3)  in  Rs  post-DLI  are  labeled. d ,  Proportion                  
of  T  cells  for  paired  pre-/post-DLI  samples  assigned  to  cluster  26  (left)  or  T PEX  meta-clusters  (middle,  right)  with  patient                    
5309  labeled  in  red. Q  value  determined  from  weighted  t-test  and  empirical  FDR  estimation. e ,  Percentage  of  CD4+  or                    
CD8+  T  cells  within  M1  or  M2  meta-clusters  that  expressed  the TCF7  gene  (top).  Violin  plots  of  T PEX  gene  set  expression                      
for  CD4+  versus  CD8+  T  cells  within  M1  and  M2  meta-clusters  (bottom). f ,  Cartoon  illustration  (left)  and  plate  model                    
(right)  for  a  hierarchical  Gaussian  Process  (GP)  model  for  inferring  dynamics  of  clusters  over  time  while  accounting  for                   
measurement  uncertainty. g ,  Inferred  model  for  proportion  of  M3  meta-cluster  (blue)  using  the  hierarchical  GP  (right)                 
compared  to  a  standard  GP  (left);  each  blue  dot  represents  a  sample  with  dot  size  proportional  to  sample  size  (i.e.  total                      
number  of  T  cells  in  the  sample);  blue  lines  show  model  mean  and  shaded  area  show  +/-1  standard  deviation  (SD);  grey                      
crosses   represent   tumor   burden   data;   grey   line   and   shaded   area   show   mean   and   SD   for   tumor   burden   model.  
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Extended  Data  Fig.  4|  Epigenetic  profiles  of  T  cells  and  integrative  modeling  of  regulation.  a,  Chromatin                 
accessibility  signal  from  ATAC-seq  data  for  CD8+  CD45RA+  (top)  and  CD8+  CD45RO+  (bottom)  T  cells  indicating                 
differential  accessibility  ( p <0.05  indicated  with  boxes)  between  R  and  NR  in  regions  near  exhaustion  marker  genes. b,                  
Generative  process  for  Symphony,  a  novel  probabilistic  model  that  infers  regulation  from  integration  of  ATAC-seq  and                 
scRNA-seq   data.  
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Extended  Data  Fig.  5| Variability  in  regulatory  network  architecture  across  clusters. Predicted  regulatory  circuitry                
for  exhausted  T  cell  clusters.  Arrows  between  nodes  indicate  predicted  regulatory  impact  of  a  TF  on  a  target  gene.  Master                     
regulators   that   are   differentially   enriched   in   T EX    or   T PEX    subsets   are   shown   in   green   or   pink   nodes   respectively.  
 

 
Extended  Data  Fig.  6|  Clonotype  properties,  distributions  and  evolution  during  response  to  DLI.  a,  Probability                
densities  of  clone  sizes  for  all  T EX  and  T PEX  cells  from  samples  derived  from  R  patients  5314  and  5311. b-c,  Frequency                      
distribution  of  all  ( b )  or  T PEX  ( c )  clonotypes  per  timepoint  for  patient  5311.  Arrows  indicate P <0.05,  Exact  Fisher’s  Test,  for                     
clonotype  expansion  from  pre-DLI.  Post-DLI  clonotypes  marked  in  red  indicate  unique  match  with  DLI  product  and  their                  
proportions  are  displayed  in  pie  charts  for  all  ( b )  or  T PEX  ( c )  post-DLI  clonotypes.  d, Barplots  of  proportions  of  expanded                     
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versus  singleton  clonotypes  shared  with  pre-DLI  samples  from  each  post-DLI  timepoint  from  5314  (n=2  post-DLI  samples)                 
and  5311  (n=1  post-DLI  sample). e,  Pie  charts  displaying  the  proportion  of  post-DLI  T PEX  clonotypes  matching  publicly                  
available   viral-specific   clonotypes.   
 

Extended   Data   Table   1.    Patient   characteristics   
 

DFCI  
ID  

Age   at  
SCT  

Donor  
source  

Pt/Dnr  
Sex  

Donor  
type  

Type   of  
transplan 

t  
GvHD  
ppx  Phase  

Time   from  
allo-SCT   to  
DLI   (days)  

Best  
response  

Max   aGvHD  
grade  

Max   cGvHD  
grade  

5309  33  BM  F/M  MRD  MA  TCD  Chronic  362  MR  0  Ext  

5310  34  BM  M/F  MRD  MA  TCD  Chronic  2371  MR  0  N/A  

5311  49  BM  M/M  MRD  MA  TCD  Chronic  817  MR  0  Lim  

5312  47  BM  M/M  MRD  MA  TCD  Chronic  649  MR  0  Lim  

5314  57  BM  F/F  MRD  MA  TCD  Chronic  550  MR  0  N/A  

5317  33  BM  M/F  MRD  MA  TCD  Chronic  755  MR  1  Ext  

5318  31  BM  F/M  MRD  MA  TCD  Chronic  1330  Progression  0  N/A  

5321  50  BM  F/F  MRD  MA  TCD  Chronic  797  Progression  1  N/A  

5322  44  BM  M/M  MRD  MA  TCD  Chronic  1462  Progression  0  N/A  

5324  39  BM  M/M  MRD  MA  TCD  Chronic  422  Progression  0  N/A  

5325  49  BM  F/M  MRD  MA  TCD  Chronic  615  Progression  0  N/A  

5326  48  BM  F/M  MRD  MA  TCD  Blast   crisis  1787  Progression  1  N/A  

5479  31  BM  M/F  MRD  MA  TCD  Accelerated  No   relapse  -  0  0  

5480  33  BM  F/M  MRD  MA  TCD  Chronic  No   relapse  -  0  N/A  

 
BM:  bone  marrow;  F:  female;  M:  male;  MRD:  matched  related  donor;  MA:  myeloablative;  TCD:  T  cell  depletion;                  
MR:   molecular   response;   Ext:   extensive;   Lim:   limited;   N/A:   not   available  
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Extended   Data   Table   2.    Sample   characteristics   and   QC   metrics  

Patient  
ID  Outcome  

Sample  
ID  

Time   relative   to  
DLI   (days)  

Tumor   burden  
(%Ph+)  #   cells  #   reads   (mill)  

median   mols  
per   cell  

5309  Responder  B05  -45  11  7228  294  2955  

  B06  86  0  7462  295  2575  

  B40  -223  0  10346  686  3029  

5310  Responder  B01  -27  94  4274  283  2840  

  B02  190  0  5791  316  3199  

5311  Responder  B09  0  44  8780  321  2656  

  B10  19  ND  4728  255  1540  

  B11  91  0  8589  294  2692  

  B12  268  0  14691  387  2783  

  B29  -451  0  6376  177  1273  

  B30  -94  16  6062  344  1666  

5312  Responder  B21  0  38  7266  212  2009  

  B22  276  0  1279  175  1041  

5314  Responder  B25  -33  94  9011  377  2090  

  B26  1059  0  4465  313  2456  

  B31  -152  78  5994  374  2538  

  B32  29  98  8058  379  2548  

5317  Responder  B23  -5  80  12647  555  6694  

  B24  347  0  14127  201  1893  

  B38  -574  0  10777  409  2756  

  B39  -50  80  8370  307  2389  

5318  Non-Responder  B27  0  100  9971  403  2445  

  B28  182  100  4029  347  1452  

  B41  295  100  4983  351  2313  

5321  Non-Responder  B42  -435  0  10365  434  1867  

  B43  0  100  8720  590  3117  

5322  Non-Responder  B03  -34  100  9789  295  2015  

  B04  164  100  10573  445  3439  

  B33  -652  0  9290  390  1723  

  B34  -540  34  8487  390  2373  

  B35  -428  97  11083  415  1630  

5324  Non-Responder  B07  0  93  7591  353  3042  

  B08  252  ND  7247  306  3024  

  B36  -274  3  6234  318  1282  

  B37  509  0  13874  305  2789  

5325  Non-Responder  B17  -15  100  9027  321  2111  

  B18  710  100  8735  288  2490  
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5326  Non-Responder  B19  -4  100  11720  270  3635  

  B20  129  100  11880  350  7194  

5479  
No   relapse  

control  B44  -  -  9487  410  2602  

5480  
No   relapse  

control  B46  -  -  16247  413  2223  
 
ND:   not   determined  
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Extended   Data   Table   3.    Terminal   and   precursor   exhaustion   signatures 23  

Terminal  
exhaustion  

Precursor  
exhaustion  

CD3G  TCF7  

FASLG  MS4A4A  

ID2  TNFSF8  

LAG3  CXCL10  

RGS1  EEF1B2  

CCL3   CCL3L1  ID3  

KIAA1671  IL7R  

SH2D2A  JUN  

DUSP2  LTB  

PDCD1  XCL1  

CD7  SOCS3  

NR4A2  TRAF1  

CD160  EMB  

PTPN22  CRTAM  

ABI3  EEF1G  

PTGER4  CD9  

GZMK  ITGB1  

GZMA  GPR183  

MBNL1  ZFP36L1  

VMP1  SLAMF6  

PLAC8  LY6E  

RGS3   

EFHD2   

GLRX   

CXCR6   

ARL6IP1   

CCL4   

ISG15   

LAX1   

CD8A   

SERPINA3   

GZMB   
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Supplementary  Note  1: Sample  details  and  library  preparation .  Describes  clinical  cohort  characteristics,  bone              
marrow   sample   processing   and   isolation/preparation   of   cells   for   scRNA-/TCR-seq   as   well   as   bulk   ATAC-seq.  

Supplementary  Note  2: Single-cell  RNA-seq  data  analysis .  Describes  processing  and  analytic  pipelines  for              
scRNA-seq  analysis;  cluster  visualization  and  annotation;  common  factor  analysis  to  identify  factors  relating  to               
clinical  outcome;  identification  of  meta-clusters  and  enriched  clusters;  and  use  of  Gaussian  Process              
Regression   models   to   track   cluster   temporal   dynamics   in   relation   to   tumor   burden.   

Supplementary  Note  3: Integration  of  single-cell  RNA-seq  and  ATAC-seq . Describes  pre-processing  of             
ATAC-seq  data;  correlations  between  accessibility  profiles;  and  development  and  use  of  Symphony  to  infer               
cluster-specific   gene   regulatory   networks.  

Supplementary  Note  4: Analysis  of  paired  single-cell  TCR-  and  RNA-seq .  Describes  preprocessing  and              
identification   of   both   exhausted   clusters   and   TCR   clonotypes.   
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Supplementary   Information  
 

Supplementary   Note   1:   Sample   details   and   library   preparation  
 

Sample   collection  
Bone  marrow  (BM)  biopsies  were  obtained  pre-  and  post-DLI  after  relapse  following  allo-SCT  (or  during                
remission  following  allo-SCT)  from  patients  enrolled  in  Dana-Farber  Cancer  Institute  (DFCI)  clinical  trials              
(94-009,  95-011,  96-372,  96-022,  and  96-277)  between  1994-2001  that  were  approved  by  the  DFCI  Human                
Subjects  Protection  Committee.  These  studies  were  conducted  in  accordance  with  the  Declaration  of  Helsinki.               
Bone  marrow  mononuclear  cells  (BMMCs)  were  isolated  via  Ficoll-Hypaque  density  gradient  centrifugation,             
cryopreserved  with  10%  dimethyl  sulfoxide,  and  stored  in  vapor-phase  liquid  nitrogen until  the  time  of  sample                 
processing.  
 
Cohort   sample   characteristics  
All  14  patients  had  CML  that  was  treated  with  CD6-T  cell  depleted  allo-SCT.  Of  these,  12  patients  had  CML                    
relapse  after  allo-SCT  that  was  treated  with  CD8-depleted  DLI,  and  2  patients  never  had  CML  relapse  and                  
served  as  non-relapse  controls  ( Extended  Data  Table  1 ).  The  median  age  of  all  samples  was  23  years,                  
ranging  from  20-25  years.  A  median  of  3  timepoints  was  available  for  each  R  and  NR  patient  (range:  2-6),  and                     
there  were  no  significant  differences  between  R  and  NR  cohorts  regarding  time  from  allo-SCT  to  DLI  (R:                  
median  702,  range  362-2371  days;  NR:  median  1064,  range  422-1787  days; P =0.6)  ( Extended  Data  Fig.  1a ).                 
Time  from  allo-SCT  to  sample  for  the  non-relapsed  controls  was  1817  days  for  5379  and  1113  days  for  5380.                    
Characteristics   of   samples   are   listed   in    Extended   Data   Table   2 .  
 
Cytogenetic   and   molecular   information   on   CML   tumor   burden  
The  percent  positivity  of  the  Philadelphia  (Ph)  chromosome  for  each  BM  sample  was  extracted  from  the  clinical                  
record  where  available  (as  described  previously 1 ).  Molecular  remission  was  defined  as  achievement  of              
molecular  response  (defined  as  the  absence  of  BCR-ABL  transcripts  by  RT-PCR).  This  data  is  shown  in  grey                  
crosses   in    Fig.   2f,g .  
 
Sample   processing   
Cryopreserved  primary  bone  marrow  mononuclear  cells  (BMMCs)  were  thawed  on  the  day  of  sequencing  at                
37°C  and  dispensed  drop-wise  into  a  warmed  solution  of  10%  FBS,  10%  DNaseI  (StemCell  Technologies,  cat.                 
No.  07900)  in  PBS.  The  cell  suspension  was  centrifuged  at  200g  for  10  minutes  at  room  temperature.  Viable                   
cells  were  negatively  selected  using  MACS  Dead  Cell  Removal  Kit  (Miltenyi  Biotec,  cat.  No.  130-090-101),                
running  on  MS  columns  to  prevent  sample  loss.  Collected  live  cells  were  resuspended  in  0.04%  BSA  in  PBS                   
and  diluted  to  a  concentration  of  1000  cells/uL.  These  cells  were  then  divided  into  portions  taken  immediately                  
for  scRNA-seq  (samples  B1-B46)  or  for  FACS  isolation  (described  below)  for  subsequent  ATAC-seq.  For               
paired  scTCR-  and  scRNA-seq  on  samples  D1-D7  ( Suppl.  Table  6 ),  BMMCs  were  processed  as  described                
here   and   then   taken   for   FACS   enrichment   of   T   cells   described   below.  
 
For  cryopreserved  PBMCs  of  DLI  products  (D8,  D9; Suppl.  Table  6 ),  cells  were  thawed  as  described  above,  T                   
cells  were  enriched  using  the  human  Pan  T  Cell  Isolation  Kit  (Miltenyi  Biotec),  and  then  processed  with  the                   
MACS   Dead   Cell   Removal   Kit   (Miltenyi   Biotec)   before   scRNA-   and   TCR-seq.  
 
Fluorescence   activated   cell   sorting   (FACS)  
For  downstream  ATAC-seq  which  was  performed  on  samples  B1-B46  ( Suppl.  Table  5 ),  viable  BMMC               
single-cell  suspensions  (prepared  as  above)  were  stained  using  antibody  cocktails  in  the  dark  at  4 o C,  washed                 
and  run  on  a  5-laser  FACSAria  II  (BD  Biosciences)  cell  sorter.  Cells  then  underwent  FACS  for  the  following                   
CD14 - CD19 - CD3 +  T  cell  populations:  CD45RA + CD4 + ,  CD45RA - CD4 + ,  CD45RA + CD8 + ,  and  CD45RA - CD8 + .  The           
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following  fluorochrome-conjugated  antibodies  were  used:  CD14-FITC  (M5E2,  BD  Biosciences);  CD19-FITC           
(HIB19,  BD  Biosciences);  CD3-PE  (HIT3A,  BD  Biosciences);  CD4-BUV395  (SK3,  BD  Biosciences);  CD8-APC             
Vio770   (BW135/80,   Miltenyi   Biotec);   CD45RA-BV510   (H100,   BD   Biosciences)   ( Fig.   S1 ).  
 
In  order  to  perform  paired  scRNA-  and  scTCR-seq  on  samples  D1-D7  ( Suppl.  Table  6 ),  BMMCs  were  thawed                  
as  above  without  dead  cell  removal,  stained  with  human  Fc  block  (BD  Pharmingen)  for  10  minutes  in  the  dark                    
at  4 o C,  stained  with  antibody  cocktail,  washed  and  run  on  a  4-laser,  FACSAria  II  (BD  Biosciences)  cell  sorter.                   
DAPI  (BD  Pharmingen)  was  used  to  exclude  dead  cells,  and  the  following  fluorochrome-conjugated  antibodies               
were  used  to  negatively  select  for  T  cells  (to  avoid  stimulation  of  gene  expression  by  anti-CD3  antibodies):                  
Lineage  1 :  CD11c-FITC  (B-ly6,  BD  Biosciences);  CD14-FITC  (M5E2,  BD  Biosciences);  CD36-FITC  (CB38,  BD              
Biosciences);   CD33-FITC   (HIM3-4,   BD   Biosciences);   CD16-FITC   (3G8,   BD   Biosciences)  
Lineage  2 :  CD11b-PE  (ICRF44,  BD  Biosciences);  CD15-PE  (HI98,  BD  Biosciences);  CD34-PE  (8G12,  BD              
Biosciences);  CD56-PE  (B159,  BD  Biosciences);  CD123-PE  (7G3,  BD  Biosciences);  CD235a-PE  (GA-R2,  BD             
Biosciences).   
 

 
 
Figure   S1.    Gating   strategy   for   sorting   T   cells   from   bone   marrow   mononuclear   cells.    a ,   Example   BMMC   sample   shown   of  
gating   strategy   used   to   isolate   CD45RA + CD4 + ,   CD45RA - CD4 + ,   CD45RA + CD8 + ,   and   CD45RA - CD8 +    T   cell   populations   for  

ATAC-seq.    b ,   Example   BMMC   sample   shown   of   gating   strategy   for   negative   enrichment   of   T   (and   B)   cell   populations   used  
for   paired   scRNA-   and   TCR-   seq.   Lineage   1   and   2   cocktails   defined   in   text.   

 
 

Library   preparation   for   scRNA-   and   scTCR-seq  
For  BMMC  samples  B1-B46  ( Extended  Data  Table  2 ),  approximately 17,000  BMMCs  (after  dead  cell  removal)                
were  loaded  across  2  lanes  onto  a  10x  Genomics Chromium TM  instrument  (10x  Genomics)  according  to  the                 
manufacturer’s  instructions. The  scRNAseq  libraries  were  processed  using Chromium  Single  Cell  3’  Library  &               
Gel  Bead  v2  Kit  (10x  Genomics) . Quality  control  for  amplified  cDNA  libraries  and  final  sequencing  libraries                 
were  performed  using  Bioanalyzer  High  Sensitivity  DNA  Kit  (Agilent). scRNAseq  libraries  were  normalized  to               
4nM  concentration  and  pooled  before  loading  onto  Illumina  sequencer.  The  pooled  libraries  were  sequenced               
on  the  Illumina  HiSeq  X  or  NovaSeq  S4  platform.  The  sequencing  data  were  demultiplexed  and  processed  as                  
described   below.   
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For  BMMC  samples  processed  for  scRNA- and sc-TCRseq  (D1-D7; Suppl.  Table  6 ),  17,000  cells were  loaded                 
across  two  lanes  onto  a  10x  Genomics Chromium TM  instrument  (10x  Genomics)  according  to  the               
manufacturer’s  instructions.  The  scRNAseq  libraries  were  processed  using  Chromium TM single  cell  5’  library  &               
gel  bead  kit  and  coupled  scTCRseq  libraries  were  obtained  using  Chromium TM  single  cell  V(D)J  enrichment  kit                 
(human  T  cell)  (10x  Genomics). Quality  control  for  amplified  cDNA  libraries  and  final  sequencing  libraries  were                 
performed  using  Bioanalyzer  High  Sensitivity  DNA  Kit  (Agilent). Both  scRNAseq  and  scTCRseq  libraries  were               
normalized  to  4nM  concentration  and  pooled  in  a  volume  ratio  of  4:1.  The  pooled  libraries  were  sequenced  on                   
an  Illumina  NovaSeq  S4  platform.  The  sequencing  parameters  were:  Read  1  of  150bp,  Read  2  of  150bp  and                   
Index   1   of   8bp.   The   scRNA-   and   TCR-seq   data   were   processed   as   described   in    Suppl.   Note   4 .  
 
Library   preparation   for   ATAC-seq  
After  FACS  isolation  of  CD45RA + CD4 + ,  CD45RA - CD4 + ,  CD45RA + CD8 + ,  and  CD45RA - CD8 +  T  cell  populations ,             
the  Fast-ATAC  protocol  was  then  performed  as  previously  described 2 .  Briefly,  fifty  microliters  of  transposase               
mixture  (25  μl  of  2×  TD  buffer,  2.5  μl  of  TDE1,  0.5  μl  of  1%  digitonin,  and  22  μl  of  nuclease-free  water)                       
(FC-121-1030,  Illumina;  G9441,  Promega)  was  added  to  a  cell  pellet  consisting  of  10000-50000  cells  and                
incubated at  37°C  for  30  minutes.  Transposed  DNA  was  purified  using  a  MinElute  Reaction  Cleanup  kit                 
(Qiagen),  and  purified  DNA  was  eluted  in  10  μl  of  elution  buffer  (10  mM  Tris-HCl,  pH  8).  Libraries  were                    
barcoded  (Nextera  Index  Kit,  Illumina),  amplified  with  NEBNext  High  Fidelity  PCR  Mix  (New  England  Biolabs),                
and  cleaned  using  a  1x  volume  of  AMPure  XP  beads.  Libraries  were  quantified  using  Agilent  BioAnalyzer  and                  
sequenced   on   the   HiSeq   High   Output   and   NovaSeq   Illumina   Sequencers   (25   bp,   paired-end).   
 

 

Supplementary   Note   2:   Single-cell   RNA-seq   data   analysis  
 

Preprocessing   single-cell   RNA-seq   data  

FASTQ  files  were  preprocessed  using  the  Sequence  Quality  Control  (SEQC)  bioinformatics  pipeline 3  with              
aligning  reads  to  the  hg38  genome  and  turning  off  the  mitochondrial  filter  (using  the  option                
--no-filter-mitochondrial-rna ).  Characteristics  of  samples  and  quality  control  (QC)  metrics  are           
provided  in Extended  Data  Table  2. In  total,  381,462  total  cells  including 87,939  T  cells  (identified  in  the  next                    
section)  from  the  combination  of  41  bone  marrow  (BM)  samples  passed  SEQC  QC  metrics,  with  a  median  of                   
2548   UMIs/cell   and   8735   cells/sample.   

 

Constructing   global   single   cell   map   of   T   cells  

Identifying  T  cells. To  select  T  cells,  we  first  normalized  all = 381K  BM  cells  to  median  library  size  and            n         
computed  the  log  of  normalized  expression  as  for  each  cell where contains  the       log(0.1 )    + yj

→     1, .., )j = ( . n   yj
→   

normalized  expression  of  genes  in  cell . To  identify  major  cell  types,  we  filtered  genes  expressed  in  less  than       j              
2%  of  cells  (resulting  in  9767  genes)  and  performed  PCA  on  the  log-transformed  normalized  expression.  The                 
number  of  PCs  was  selected  based  on  the  knee-point  (defined  as  minimum  curvature  radius)  of  eigenvalues.                 
Then  cells  were  clustered  by  applying  Phenograph 4  with  the  number  of  nearest  neighbors  set  to  30,  on  the  first                    
24   principal   components   (PCs),   resulting   in   94   clusters   shown   in    Fig.   S2 .  
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Figure   S2.    tSNE   map   of   all   transcriptomes   from   the   leukemic   microenvironment   collected   from   41   bone   marrow   samples  
colored   by   Phenograph   cluster   (top   left),   DLI   outcome   (top   middle)   and   timing   (top   right)   and   markers   of   major   cell   types  

(bottom).  

The  normalized  expression  of  {CD3D,  CD3E}  gene  markers  were  averaged  across  cells  in  each  Phenograph                
cluster  and  clusters  with  a  high  average  expression  of  CD3  (right  tail  of  distribution  across  all  clusters)  were                   
selected   as   T   cells,   which   consisted   of   97,355   cells   shown   in    Fig.   S3 .  

 

Figure   S3.    Histogram   of   expression   of   T   cell   markers   across   centroids   of   clusters   (left)   and   subset   of   clusters   selected   as  
T   cells   marked   (right)   in   the   same   tSNE   map   coordinates   as   in   Fig.   S2.   These   cells   were   then   merged   and   further   filtered  

for   doublets   and   re-clustered   as   explained   in   the   next   sections   for   refined   characterization   of   T   cells.  
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Biscuit  normalizing  and  clustering. To  construct  a  more  refined  map  of  T  cells,  we  performed  simultaneous                 
clustering  and  cluster-dependent  normalization  on  raw  counts  for  T  cells  using  Biscuit 3,5  .  Using  a         n 7, 55  = 9 3         
hierarchical  Dirichlet  process  mixture  model,  Biscuit  performs  a  cell-type  dependent  normalization  on  the  count               
matrix where  each  column contains  the  expression  (number  of  unique  mRNA  x , ... , ]   X = [ 1 

→ . xn 
→       xj

→ (1,,,,d)        
molecules)  of  genes  in  cell ,  while  simultaneously  inferring  robust  subsets  of  cells  with  denoting   d     j           zj   
assignment  of  cell to  cluster .  Biscuit  assumes  that  the  log  of  counts  follow  a  multivariate    j    k         log(0.1 )  lj 

→

 
=   + xj

→     
Normal  distribution:  where  are  the  mean  and  covariance,  respectively,  of  the    | z   (α μ , Σ )  lj

→

j = k ~ N j k
→

 
βj  k   ,  μk

→ Σk          
-th  mixture  component  (cluster),  and  scalars  are  cell-dependent  scaling  factors  used  for  normalization. k       ,αj βj         

We  have  previously  shown  that  this  cluster-dependent  normalization  removes  batch  effects  while  retaining              
biological  signal 3 .  In  particular,  Biscuit  helps  retain  biological  processes  that  are  entwined  with  library  size.  For                 
example  in  the  case  of  immune  cell  activation,  activated  cells  have  a  higher  number  of  transcripts 6–9  leading                   
to  higher  total  counts  captured,  hence  variation  due  to  real  immune  activation  can  be  partially  removed  with                  
methods  that  normalize  cells  by  library  size,  whereas  Biscuit  performs  a  more  careful  normalization  of  cells                 
conditioned   on   the   cell   state   (captured   by   cluster   assignment).   

For  faster  inference,  we  used  the  implementation  described  in 3  (from            
https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016 )  which  deploys  a  conjugate  prior  for  the         
multivariate  Gaussian,  namely  the  Normal-inverse  Wishart  distribution  for  joint  inference  of  cluster  means  and               
covariances.   

After  fitting  the  model,  we  transform  the  data  from  to  in  which  the  expression  is  corrected  for  cell-specific           lj
→

   y→j          
factors  using  a  linear  transformation with  such  that  imputed  ,αj βj      A l      yj

→ =   j
→

+ b   , b 1 A) μ  A = I

√βj
  = ( ­ αj k

→     

expression  for  cell  follows  and  hence  all  cells  assigned  to  the  same  cluster  follow  the  same    j   (μ , )N k Σk              
distribution   after   correction.  

Using  Biscuit  with  500  iterations;  gene  batch  size  set  to  50,  and  alpha  (dispersion  parameter)  set  to  200,  we                    
identified  65  unique  clusters.  This  choice  of  parameters  led  to  both  relatively  good  mixing  of  samples  ( Fig.  1b                   
and Extended  Data  Fig.  1e),  and  distinct  sets  of  differentially-expressed  genes  ( Extended  Data  Fig.  1c ).  Only                 
3  clusters  were  found  to  be  exclusive  to  one  single  patient  (all  3  in  NR  5326),  who  was  the  only  patient  with                       
CML   in   blast   crisis   ( Extended   Data   Fig.   1e,   Extended   Data   Table   1) .   

Extended  data  Fig  1e  shows  the  distribution  of  each  cluster  across  clinical  groups  of  R/NR  and  pre/post-DLI.                  
Prior  to  computing  the  distribution,  the  number  of  cells  in  each  cluster  was  first  normalized  by  the  total  number                    
of  cells  in  each  clinical  group  to  account  for  imbalanced  cell/sample  numbers.  The  size  of  bubbles  in  each                   
cluster   is   proportional   to   the   distribution   of   normalized   values   and   each   cluster   (column)   sums   to   100%.  

Importantly,  the  interpretability  of  Biscuit  enables  the  use  of  inferred  parameters  in  downstream              
characterization  of  clusters:  The  inferred  cluster  mean  and  its  conjugate  prior  are  used  for        μk      N (μ , )  μ  k

→

~   ′
→

Σ′     
estimating  differentially  expressed  genes  as  detailed  in  the  Cluster  Annotation  section  below.  To  ensure  each                
cluster   is   a   legitimate   cell   population,    we   then   scanned   the   clusters   for   doublets   as   explained   below.  

Removing  doublets. Doublet  cells  were  identified  by  applying  DoubletDetection          
( https://github.com/dpeerlab/DoubletDetection ),  using  the  Biscuit  derived  clusters,  with  50  iterations  and           
p_thresh=1e-6,  voter_thresh=0.8 followed  by  inspection  of  the  co-occurrence  of  contradictory  markers            
(including  T  cell  and  B  cell  markers;  T  cell  and  myeloid  markers,  T  cell  and  erythroid  markers  etc).  With  this                     
approach, 8.4%  of  cells  were  marked  as  doublets,  which  matches  expectations  given  our  cell  loading                
(described  in  Suppl.  Note  1).  This  resulted  in 87,939  cells  in  43  T  cell  clusters  that  were  not  flagged  as                     
doublets   and   retained   for   the   remainder   of   the   analysis.   

5  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.08.194332doi: bioRxiv preprint 

https://paperpile.com/c/acZDaA/jDFs+8IVL
https://paperpile.com/c/acZDaA/8IVL
https://paperpile.com/c/acZDaA/kzTUn+dhBxu+jwVFj+aqYd1
https://paperpile.com/c/acZDaA/8IVL
https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016
https://github.com/dpeerlab/DoubletDetection
https://doi.org/10.1101/2020.07.08.194332
http://creativecommons.org/licenses/by-nc-nd/4.0/


Visualization. The  Biscuit-normalized  data  for  the 87,939  cells  are  projected  to  2D  in Fig.  1b  and  also                  
expanded  in Fig.  S4  using  tSNE 10 , 11  on  the  first  18  PCs  (identified  based  on  knee-point  of  eigenvalues  -                    
defined   as   min   curvature   radius).  

 

Figure   S4.    Expanded   t-SNE   projection   of   T   cells   (from   Fig.   1b).   Each   dot   represents   a   cell   colored   by   cluster,   patient   ID,  
clinical   outcome   and   timing   respectively   

Cluster  annotation.  T  cell  clusters  were  annotated  through:  (1)  identifying  cell  type  signatures  enriched  in                
each  cluster  (listed  in Suppl.  Table  4 )  by  computing  the  expression  of  each  signature  (defined  as  average                  
expression  across  all  genes  in  a  signature)  per  cluster  and  comparing  to  all  other  clusters  using  a  t-test  with                    
p<0.1.  The  list  of  signatures  compiled  from  literature  are  provided  in Supplementary  Table  4 .  The  expression                 
of  enriched  cell  type  signatures  are  shown  in Fig.  1c  and Extended  Data  Fig.  1d ;  (2)  differentially  expressed                   
genes  (DEGs)  ( Extended  Data  Fig.  1c,  Extended  Data  Fig.  3a )  were  computed  with  t-test  (p<0.01)                
comparing  inferred  mean  expression  of  a  gene  in  each  cluster (listed  in Supplementary  Table  2 )  to  its            μ  k

→

       
prior  mean  which  represents  expression  across  the  entire  population  of  cells.  Since  Biscuit  fits  a   μ′               
multivariate  Gaussian  mixture  model  to  log-transformed  data,  the  assumptions  for  a  t-test  are  satisfied.               
Extended  Data  Fig.  1c  shows  the  specificity  of  most  DEGs  to  clusters  as  a  block  diagonal  structure.  The                   
DEGs   are   listed   in    Supplementary   Table   3 .  

The  genesets  derived  from  murine  models  of  chronic  viral  infection 12  were  used  for  characterizing  exhausted  T                 
cell  subsets  ( Fig.  2d)  listed  in Extended  Data  Table  3 .  The  T EX  and  T PEX  score  per  cell  was  defined  as                     
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normalized  expression  averaged  across  all  genes  in  the  geneset.  Cell  scores  are  aggregated  by  cluster  in Fig.                  
2d.  

For  signatures  related  to  T  cell  differentiation  states  ( Fig.  1c ,  top),  we  used  genesets  from  Gattinoni  et  al. 13  To                    
consider  both  up-regulated  and  down-regulated  genes,  we  defined  the  expression  of  these  signatures  as  a                
weighted  sum  of  expression  of  genes  in  the  geneset,  with  the  weights  being  +1  or  -1  for  up-regulated  and                    
down-regulated  genes  respectively.  We  replaced CD45RO  with  the  gene HNRNPLL  gene  which  has  been               
shown   to   regulate   alternative   splicing   of   CD45 14 .  

 

Quantifying   Diversity   of   T   cell   states   

We  evaluated  if  response  to  DLI  was  associated  with  a  change  in  the  number  of  distinct  T  cell  transcriptional                    
states.  We  found  a  marked  increase  in  the  number  of  T  cell  clusters  in  post-DLI  samples  compared  to  matched                    
pre-DLI  samples  after  controlling  for  cell  number  (t-test  p-value  <0.001).  For  this  test,  we  corrected  for                 
differences  in  the  number  of  cells.  We  downsampled  each  clinical  group  (R/NR,  pre-/post-DLI,  control)  to  5000                 
cells  by  uniformly  sampling  with  replacement  from  each  group  and  clustering  using  Phenograph  (using  10  PCs,                 
K=30).   This   process   was   repeated   20   times   and   the   number   of   clusters   were   compared   with   a   t-test.  

However,  because  T  cell  states  are  known  to  reside  on  continuous  trajectories  explaining  the  majority  of                 
variation 3 , 15 , 16  we  used  the  Phenotypic  Volume  metric  devised  in 3  to  compare  the  global  transcriptional  diversity                 
between   clinical   groups   and   before/after   DLI.   

Phenotypic  volume  for  a  subpopulation  of  cells  is  defined  as  the  determinant  of  the  gene  expression   V )(                
covariance  matrix  for  that  subpopulation,  which  considers  covariance  between  all  gene  pairs  in  addition  to  their                 
variance.  The  covariance  matrix  can  be  written  as  and  its  pseudo-determinant  is  equal  to  the         Σ d x d     et (Σ)d      
volume  of  a  parallelepiped  spanned  by  vectors  of  the  covariance  matrix 17  and  can  be  computed  as  the  product                    
of  nonzero  eigenvalues  of  the  covariance  matrix.  To  improve  sensitivity  to  noise  and  avoid  multiplication  of                 
small  nonzero  eigenvalues,  we  compute  the  log  of  phenotypic  volume  which  is  the  sum  of  log  of  non-zero                   
eigenvalues:   

  for     representing   the   -th   non-zero   eigenvalue. og (V ) og(det(Σ))  og( ) og(λ )l = l = l ∏
E

e=1
λe  = ∑

E

e=1
l e λe > 0 e  

To  correct  for  differences  in  number  of  cells,  we  downsampled  each  clinical  group  (R/NR,  pre-/post-DLI,                
control)  to  5000  cells  by  uniformly  sampling  with  replacement  from  each  group  and  computing  the  phenotypic                 
volume.  Only  time  points  immediately  pre-DLI  and  at  remission  post  DLI  (in  Rs)  were  considered  in  this                  
analysis.  Patient  5321  was  excluded  in  this  analysis,  as  it  did  not  have  any  post-DLI  samples.  Table  S1  shows                     
the   list   of   samples   used   in   this   analysis.  

 

Patient   ID  Outcome  Time  scRNA-seq   Sample   ID  

5309  Responder  Pre  B05  

5309  Responder  Post  B06  

5310  Responder  Pre  B01  

5310  Responder  Post  B02  

5311  Responder  Pre  B09  

5311  Responder  Post  B12  

5312  Responder  Pre  B21  

5312  Responder  Post  B22  

5314  Responder  Pre  B25  
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5314  Responder  Post  B26  

5317  Responder  Pre  B23  

5317  Responder  Post  B24  

5318  Non-Responder  Pre  B27  

5318  Non-Responder  Post  B28  

5322  Non-Responder  Pre  B03  

5322  Non-Responder  Post  B04  

5324  Non-Responder  Pre  B07  

5324  Non-Responder  Post  B08  

5325  Non-Responder  Pre  B17  

5325  Non-Responder  Post  B18  

5326  Non-Responder  Pre  B19  

5326  Non-Responder  Post  B20  
 

Table   S1.    List   of   scRNA-seq   sample   IDs   from   baseline   pre-DLI   and   the   remission   timepoint   following   DLI.  

This  process  was  repeated  50  times  to  achieve  a  range  summarized  in  boxplots  in Fig.  2a,  Extended  Data  Fig                    
3b  showing  statistically  significant  expansion  of  volume  after  DLI  in  both  Rs  and  NRs.  Importantly,  the                 
phenotypic  volume  is  higher  in  Rs  compared  to  NRs  in  particular  in  baseline  (pre-DLI).  Both  R  and  NR  cases                    
exhibited  increases  in  phenotypic  volume  induced  by  DLI  (log  fold  change=104.6,  p<10 -6 ).  At  both  pre-  and                 
post-DLI  timepoints,  phenotypic  volumes  in  R  cases  were  higher  than  that  of  NR  cases,  (mean  R-pre  vs  mean                   
NR-pre,  log-fold  change  =  199.1,  p<10 -6 ;  mean  R-post  vs  mean  NR-post,  log-fold  change  =  49.3,  p=1.5x10 -6 ),                 
but  a  far  greater  increase  in  phenotypic  volume  was  observed  within  NRs  than  within  R’s  (log-fold  change                  
[NR-post   vs   pre]   =   203.8   vs   log   fold   change   [R-post   vs   pre)   =   54.1;   p<10 -6 ].   

Comparing  the  pre-DLI  volume  to  that  in  non-relapse  control  samples  in Extended  Data  Fig  3b  reveals  greater                  
diversity  of  T  cells  in  the  leukemic  microenvironment  (in  R/NR  pre-DLI  samples)  than  in  non-relapse  control                 
samples  which  are  leukemia-free.  This  increase  in  transcriptional  diversity  is  similar  to  the  expansion  of                
phenotypic  volume  of  T  cells  reported  in  the  breast  tumor  microenvironment  compared  to  normal  tumor-free                
matched   tissue 3 .   

 

Common   Factor   Analysis  

We  aimed  to  decompose  the  T  cells  to  uncover  components  potentially  corresponding  to  response/resistance.               
The  samples  in  Table  S1  were  used  in  this  analysis.  To  correct  for  differences  in  numbers  of  cells  across                    
samples,   we   first   downsampled   T   cells   from   each   sample   to   1000   cells,   resulting   in   a   total   of   20,682   cells.   

Applying  PCA  or  diffusion  component  analysis 18,19  showed  that  the  top  linear/nonlinear  components  explaining              
most  of  the  variance  across  T  cells  are  not  highly  correlated  with  response  ( Extended  data  Fig.  2a ).  Instead,                   
we  used  Common  Factor  Analysis  (CFA),  a  method  that  assumes  there  are  underlying  latent  (unknown)                
factors  that  explain shared  variance  between  cells,  and  thus  explains co-variation  of  cells Extended  Data  Fig.                 
2b  illustrates  an  example  where  cells  are  varying  along  two  trajectories  that  could  be  related  to  different  gene                   
programs,  e.g.  T  cell  activation  and  exhaustion.  If  these  trajectories  are  correlated  but  not  colinear,                
dimensionality  reductions  methods  that  maximize  explained  variance  will  capture  the  two  trajectories.  CFA              
however  will  seek  underlying  (latent)  factors  that  explain  the  shared  variance  between  the  two  trajectories,                
ignoring  the  portion  of  variance  unique  to  cells.  Our  assumption  is  that  response  or  resistance  might  involve                  
underlying  latent  factors  associated  with  multiple  distinct  processes  that  might  co-vary  across  the  cells.  Thus,                
common  factors  identified  through  CFA  could  potentially  be  related  to  response  or  resistance  mechanisms               
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affecting  the  majority  of  cells  through  multiple  pathways  ( Extended  data  Fig.  2b ).  A  brief  description  of  CFA                  
follows:   

Shared   factors   are   denoted   as   for   expression   of     cells   denoted    with   ,...,   : , f , ...,f 1   2   fm n x1 xn  

l f f .. f  x1 = μ1 +   11 1 + l12 2 + . + l1m m + ε1  

...  

l f f .. f  xn = μn +   n1 1 + ln2 2 + . + lnm m + εn  

CFA   assumes   that   and     for and   . , )  cov(f i f j  = 0 , )  cov(ε i εj  = 0 i =    / j , )  cov(ε i f j  = 0  

Common  factors  were  extracted  using factanal  function  in  R          
( https://www.rdocumentation.org/packages/FAiR/versions/0.2-0/topics/Factanal )  with  the  method  of  maximum       
likelihood  and  “ varimax ”  rotation.  Setting  the  number  of  factors  to  two,  a  chi-square  test  rejected  the                 
hypothesis  of  model  fit  (p<0.05).  Hence,  we  increased  the  number  of  factors  to  three  which  indicated  that  the                   
hypothesis  of  perfect  fit  cannot  be  rejected.  The  first  three  common  factors  ( Fig.  1d.)  explain  67%  of  variance                   
and  separate  groups  of  T  cells  enriched  in  Rs  or  NRs.  To  annotate  the  factors,  we  correlated  the  loadings  of                     
cells  on  each  factor  with  expression  of  gene  signatures. Fig.  2e  shows  gene  signatures  with  the  highest                  
correlations  with  factors  1-3. Extended  Data  Fig.  2d  shows  that  the  signatures  enriched  for  factors  2  and  3  are                    
mostly  non-overlapping,  thus  suggesting  the  involvement  of  different  T  cell  dysfunction  mechanisms  in  DLI               
resistance.  Increasing  the  number  of  common  factors  to  4  and  5,  we  did  not  find  any  gene  signatures  highly                    
correlated  with  the  additional  factors  and  factor  4  showed  weak  correlation  with  Hypoxia.  We  repeated  this                 
analysis  on  multiple  downsampled  sets  and  achieved  the  same  conclusions  with  regard  to  signatures  most                
correlated   with   factors.  

 

Identifying   T   cell   clusters   enriched   pre-therapy   

We  aimed  to  find  any  pre-DLI  T  cell  states  that  are  differentially  enriched  between  Rs  and  NRs,  that  could                    
potentially  be  predictive  of  response  or  resistance.  Since  different  samples  had  differences  in  the  total  number                 
of  cells  collected,  this  impacted  our  resolution  of  detecting  a  T  cell  state  (cluster)  in  a  patient.  We  therefore                    
accounted  for  this  uncertainty  using  a  weighted  one-sided  t-test  (using           
statsmodels.stats.weightstats.ttest_ind  in  Python).  Within  each  clinical  group  (Rs  or  NRs),  the            

weight   of   the    i -th   patient   was   given   by:    n  i * P / ∑
P

j=1
nj   

with  denoting  total  number  of  T  cells  in  patient  pre-DLI  and  being  the  total  number  of  patients  in  that  ni          i    P          
group   (R   or   NR).   

We  also  corrected  the  p-values  for  the  size  of  clusters  using  a  bootstrapping  technique:  For  each  cluster                  k  
with  size ,  we  randomly  select  number  of  cells  from  the  pool  of  all  (R  or  NR)  samples,  and  compute  the   uk     uk                 
p-value  using  the  above  test.  Repeating  this  for  2000  iterations,  we  achieve  a  null  hypothesis  for  p-values.  The                   
actual  p-value  for  the  cluster  is  then  compared  to  the  null,  resulting  in  an  empirical  FDR  (q-value)  calculation.                   
Applying  this  to  pre-DLI  samples  shown  in Table  S1 ,  we  found  clusters  4,  14,  21,  and  27  were  differentially                    
enriched  consistently  across  R  patients  compared  to  NRs  (FDR<0.1)  as  shown  in Fig.  2b .  These  clusters  are                  
enriched   for   T EX     gene   signatures   shown   in    Fig.   2d,e .   

Aligned  with  our  global  observation  with  common  factor  analysis,  we  did  not  find  any  clusters  to  be  differentially                   
enriched  consistently  across  NR  patients  compared  to  Rs,  and  we  rather  found  multiple  clusters  each  mostly                 
present  in  one  NR  patient  ( Extended  data  Fig.  1e )  suggesting  that  NR  patients  might  be  driven  by  different                   
resistance   mechanisms   ( Fig   1e,   Extended   data   Fig.   2d ).   
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Identifying   T   cell   dynamics   associated   with   therapy   outcome  

We  used  a  weighted  t-test  similar  to  the  previous  section  to  compare  the  change  in  proportion  of  each  cluster                    
from  pre-DLI  to  post-DLI.  We  performed  a  weighted  one-sided  t-test,  summing  the  total  cells  in  the  pre-  and                   
post-DLI   samples   to   determine   the   weights.   Specifically,   the   expression   we   used   for   weights   was:  

)  (  ))(ni, Pre + ni, Post * P / ∑
P

j=1
( nj, Pre  + nj, Post  

Where  represents  total  number  of  cells  in  the  pre-DLI  sample  of i -th  patient  and  represents  the  ni, Pre               ni, Post    
total   number   of   cells   in   the   post-DLI   sample   of    i -th   patient.   

Compared  to  the  test  in  the  previous  section  which  was  performed  on  cluster  proportions  at  one  time-point                  
(pre-DLI),  this  test  involves  computing  the change  in  proportion  from  pre-DLI  to  post-DLI.  Hence,  the  variance                 
in  the  variable  being  tested  is  higher  while  the  sample  size  (in  this  case  number  of  patients)  remains  the  same,                     
meaning  we  have  lower  statistical  power.  In  fact,  across  paired,  pre-  to  post-DLI  timepoints  shown  in  Table  S1,                   
we  found  no  single  cluster  to  consistently  expand  or  contract  over  time  in  Rs  or  NRs  using  the  above  weighted                     
t-test.  Thus,  to  improve  our  statistical  power  in  detecting  consistent  changes  in  clusters  over  time,  we                 
combined   clusters   that   are   transcriptionally   most   similar   as   described   below.  

Defining  meta-clusters.  We  computed  the  pairwise  distance  between  each  pair  of  clusters  by  comparing  the                
distribution  of  expression  of  each  gene  across  all  cells  in  one  cluster  (from  Biscuit  normalized  data)  and                  
comparing  it  to  the  distribution  in  another  cluster  using  the  Bhattacharyya  distance  metric 20 ,  which  is  effective                  
in  pairwise  comparisons  of  distributions.  The  advantage  of  computing  cluster  distances  based  on  distribution  is                
that  we  go  beyond  cluster  means  and  also  account  for  within-cluster  variability,  e.g.  two  clusters  can  have  a                   
similar  mean  expression  but  different  variance.  The  total  distance  is  then  summarized  across  all  genes,                
resulting  in  the  distance  matrix  in Extended  Data  Fig.  3c .  We  then  merged  clusters  that  were  most  similar,                   
resulting   in   8   meta-clusters   shown   with   white   boxes.   

Identifying  expanding  or  contracting  meta-clusters. By  applying  the  weighted  t-test  above,  we  identified              
two  metaclusters  consistently  expanded  and  one  consistently  contracted  after  DLI  therapy  (weighted  t-test              
p<0.1),  only  in  Rs,  shown  in Fig.  2c .  The  two  expanding  meta-clusters  (M1  consisting  of  clusters  {19,28}  and                   
M2  consisting  of  clusters  {5,11,23})  are  enriched  for  the  Precursor  Exhausted  T  cell  gene  signature  T PEX  shown                  
in   violinplots   in    Fig.   2d   and   Fig.   S5 .   

Interestingly,  one  expanding  cluster  (19  in  M1)  is  also  enriched  in  the  non-relapse  control  samples  ( Extended                 
Data  Fig  1e ),  suggesting  a  transformation  to  normal  T  cell  states  after  DLI  in  Rs.  It  should  be  noted  that  no                      
meta-clusters  or  clusters  consistently  changed  (expanding  or  contracting)  in  NRs,  mirroring  the Anna  Karenina               
principle 21 .  
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Figure   S5 .   Expansion   of   Fig.   2d   including   all   cluster   IDs.   Violin   plots   showing   density   of    T EX    (top)   or   T PEX    (bottom)   viral  
signature   scores 23    across   T   cells   grouped   by   cluster.   Clusters   are   ordered   by   median   score.   Colored   violins   refer   to  

clusters   enriched   in   pre-DLI   Rs   (dark   blue)   or   expanding   in   post-DLI   Rs   (light   blue).   

 

 

Hierarchical   Gaussian   Process   regression   model  

To  study  the  dynamics  of  meta-clusters  and  tumor  burden  over  time,  we  used  a  Gaussian  Process  (GP)  model.                   
The  advantages  of  a  GP  model  are  (1)  it  is  nonparametric,  hence  we  do  not  assume  a  functional  form  over                     
time  and  rather  learn  a  distribution  over  all  functions  that  explain  temporal  dynamics;  (2)  we  account  for                  
dependencies  between  all  pairs  of  time  points  which  tackles  the  problem  of  non-uniform  distribution  of                
time-points  in  our  cohort  ( Fig.  1a ),  for  example  in  patient  5311,  we  have  time-points  within  19  days  of  each                    
other,  whereas  in  patient  5314  we  have  time-points  2.8  years  (1059-29  days)  apart  from  each  other  post-DLI                  
and  including  them  in  the  study  can  elucidate  long-term  sustainability  of  T  cell  states;  (3)  the  probabilistic                  
framework  is  flexible  and  we  can  therefore  add  priors  representing  uncertainty  in  measurements  as  explained                
below.  
 
Tumor  burden  dynamics.  We  fit  two  GP  regression  models  ( , ),  each  with  an  Radial  Basis  Function          f b

R  f b 
NR        

(RBF)  kernel 22  ,  to  model  the  temporal  changes  in  tumor  burden  in  each  outcome  group  (R  or  NR)  separately                    
in   response   to   DLI   therapy:  

(t )bi
R 
  = f b

R
i
R + ε  

(0, )  ε ~ N σε2  

 | t (0, )f b
R ~ N Kb

R  
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(t , ) ov( f (t ), (t ) ) exp[­ t ) (2λ )]  Kb
R

i tj = c b
R

i
R
  f b

R
j
R = σs2 ( i

R ­ tj
R 2/ 2  

where  is  tumor  burden  (see  definition  in  section  “Cytogenetic  and  molecular  information  on  CML  tumor  bi
R                

burden”  in  Suppl.  Note  1)  in  sample  in  Rs  and  is  time  relative  to  DLI  therapy  in  sample  of  Rs.  Similarly        i     ti
R          i     

for   NR   samples:   

(t )bi
NR 

  = f b
NR

i
NR + ε  

ov( f (t ), (t ) ) exp[­ t ) (2λ )]  c b
NR

i
NR

  f b
NR

j
NR = σs2 ( i

NR ­ tj
NR 2/ 2  

We  optimized  with  the  gradient-based  algorithm  Adam  to  maximize  the  log  likelihood  of  our  observed  data.   σs                
We  set  and  (which  is  median  distance  between  pairs  of  points).  Results  were  robust  to  the   0σε2 = 1   85λ = 2               
choice   of   these   parameters   as   shown   in   the   next   section.   

Prior  to  regression,  the  mean  tumor  burden  in  each  clinical  group  was  subtracted  so  that  our  target  variable                   bi   
would  have  zero  mean,  consistent  with  the  distribution  over .  This  resulted  in  one  model  inferred  for          f b

R NR/         
tumor  burden  in  Rs  ( )  and  one  model  for  tumor  burden  in  NRs  ( )  shown  in  grey  lines  (mean)  and      f b

R          f b
NR        

shaded  grey  area  (+/-1  standard  deviation)  in Fig.  2f,g .  The  data  points  for  tumor  burden  are  shown  in  grey                    
crosses.  

 

Temporal  dynamics  of  T  cell  clusters. Similarly,  we  aimed  to  use  a  GP  regression  model  to  track  the                   
temporal  dynamics  of  proportions  of  T  cell  meta-clusters  in  each  outcome  group.  In  other  words,  we  learn  two                   
models ,  on  the proportion  of  each  meta-cluster  over  time  separately  in  Rs  and  in  NRs  f pk

R  f pk
NR        k          

respectively.  The  proportion  of  a  meta-cluster  in  a  sample  is  defined  as =  with being  the       k     i     ν i,k    n    mi,k / i   mi,k   
number  of  cells  in  meta-cluster  in  sample  and  defined  as  sample  size,  i.e.  total  number  of  T  cells  in      k    i   ni             
sample   . i   

Since  there  were  significant  differences  in  the  size  of  samples  and  meta-clusters,  we  aimed  to  account  for  the                   
uncertainty  in  detecting  a  metacluster  in  each  sample  ( Extended  Data  Fig.  3c) .  For  example,  if  metacluster                 k  
is  not  observed  in  two  samples and  such  that: ,  and  sample  contains  total       i1   i2    ν i , k1

= ν i , k2
= 0    i1   0000ni1 = 1   

cells  compared  to  cells  in  sample ,  we  have  more  certainty  about  the  absence  of  metacluster    000ni2 = 1     i2           k  
(representing  a  T  cell  state)  in  sample than  in  sample  and  the  true  value  for  could  be  missing  or        i1    i2       ν i , k2

     
underestimated   due   to   lack   of   statistical   power.  

To  build  this  uncertainty  into  the  probabilistic  framework,  we  use  a  Gaussian  process  regression  model  that                 
accounts  for  heteroscedastic  noise.  The  measurement  precision  ( )  has  a  conjugate  Gamma  prior,  whose        βi

         
mean  is  inversely  proportional  to  the  number  of  T  cells  measured  in  a  given  sample.  Specifically  we  set  the                    
shape  parameter  of  the  prior  distribution  for  as ,  and  use  the  inverse  of  the  number  of  cells  collected        βi   r = 1            
for  sample  as  the  rate  parameter .  This  places  more  confidence  on  samples  with  larger  sizes.  For  this   i      θ             
model  we  use  the  RBF  kernel ,  with  entries  and  scale  parameter  set  to  the  empirical       K    (t , )K ij = k i tj     σs      
variance   of   the   response   variable.  

(t , ) exp[­ t ) (λ )]  k  i tj = σs ( i
  ­ tj

  2/ 2  

(0, K)f | tp   
~ N    

The   full   generative   model   is   as   follows:  

=   ν i (t )  ε  f p i +     

| f , , ( f , β  )ν i  p t β ~ N i   i
­1  

where:  
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θi =
1 n/ i

n∑
 

j
1/ j 

 

(r, )βi ~ Γ θi  

As  with  standard  GP  regression,  after  we  fit  our  model  to  data  and ,  we  use  the  following  joint  marginal             t   ν          
distribution  to  estimate  the  expected  for  an  input .  Specifically,  let  be  a  vector  representing       ν*      t*    (t , )  k* = k i  t*      
the  kernel  function  computed  between  each  input  time  point  in  our  training  data,  and  our  out  of  sample  point          ti             

,  and  let  be  the  kernel  function  computed  on  the  out-of-sample  time  point.  The  joint  distribution  t*    (ν , )  c* = k * ν*               
between   our   training   data   and   the   new   point     is   then   as   follows: ν    ν*   

 

Because   this   is   a   multivariate   normal   distribution,   we   can   use   this   distribution   to   compute   the   conditional  
distribution   over     given   our   training   data   and   : f p*  t*  

 | t , t, ν (μ , )f p* *     ~ N  p Kp
   

where   the   predicted   mean   and   covariance   are   defined   as   follows:  

K yμ p = k
 *
   
­1

   

K k  Kp = c * ­ k
 *
 
­1  *

 
T

 

The  plate  model  for  this  hierarchical  GP  model  is  shown  in Extended  Data  Fig.  3f .  We  implemented  this                   
model  in  the  probabilistic  programming  language  pyro 23  ( https://pyro.ai/ )  and  inferred  the  weights  and  temporal               
function  with  Stochastic  Variational  Inference,  which  computes  an  efficient  approximation  to  the  posterior  by               
taking  stochastic  gradient  steps  to  maximize  the  evidence  lower  bound  (ELBO) 24 .  The  code  for  our  hierarchical                 
GP   model   is   available   at:    https://github.com/dpeerlab/dli_gpr .   

We  first  benchmarked  this  model  on  data  simulated  from  a  sinusoidal  process  (shown  as  a  grey  line             sin(x)y = 5       
below)  with  two  different  noise  variances  representing  levels  of  uncertainty  in  measurement:             sin(x )  y1 = 5 1 + ε1  
with  (data  points  shown  in  blue)  and  with  (data  points  shown  in  (0, )  ε1 ~ N 1        sin(x )  y2 = 5 2 + ε2   (0, 0)   ε2 ~ N 1      
red)  in Fig.  S6  (top) .  Please  note  the  notation  here  is  not  to  be  confused  with  expression  in  the  Biscuit  or         y               
Symphony   models.  

 

13  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.08.194332doi: bioRxiv preprint 

https://paperpile.com/c/acZDaA/tZiT
https://pyro.ai/
https://paperpile.com/c/acZDaA/LaZK
https://github.com/dpeerlab/dli_gpr
https://doi.org/10.1101/2020.07.08.194332
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure   S6 .   Top:   Data   simulated   from   GPR   models   built   from   a   sinusoidal   wave   (grey   line)   with   two   different   levels   of   noise  
variance.   The   data   points   are   shown   as   red   and   blue   crosses.   Bottom:   Standard   GPR   (left)   and   proposed   hierarchical  

GPR   model   (right)   fit   to   the   simulated   data.   In   the   right   figure,   size   of   data   points   is   inversely   proportional   to   variance   of  
generative   model.   

 

We  combined  these  two  datasets  and  fit  the  above  hierarchical  GPR  model  and  compared  it  to  the  fit  of  a                     
standard  GPR  (without  prior)  showing  that  the  hierarchical  model  performs  better  in  reconstructing  the               
underlying  sinusoidal  function  while  a  standard  GPR  model  can  overfit  the  noisy  portion  of  data  as  shown  in                   
Fig.   S6    (bottom).  

For  quantitative  comparison  of  the  two  models,  we  computed  the  log  likelihood  of  unobserved  noiseless                
simulated   data   along   with   the   R2   score   of   the   noiseless   data   vs.   mean   of   the   conditional   distribution   (Table   S2).  

 

Model  Negative   log   likelihood  R2   score  

Hierarchical   GPR  193.24  0.801  

Standard   GPR  336.68  0.412  

 

Table   S2.    Performance   of   hierarchical   GP   on   simulated   data   compared   to   standard   GP   regression.  

 

We  then  applied  the  hierarchical  GPR  mode  to  all  meta-clusters  in  both  Rs  and  NRs  ( Fig  2f,g) and  use  (T EX )                     
metacluster  M3  in  Rs  as  an  illustration.  As  reference,  we  compared  the  fit  of  the  hierarchical  model  to  a                    
standard  (vanilla)  GP  model  ( Extended  Data  Fig  3g) .  The  blue  dots  show  the  actual  data  points  with  the  size                    
of  dots  proportional  to  sample  size .  The  blue  line  and  shaded  area  shows  mean  and  standard  deviation  of      n  i              

.  f pTE
*   

Interestingly,  the  inferred  hierarchical  GP  model  shows  that  the  T EX  meta-cluster  tracks  the  tumor  burden                
dynamics.  The  strong  similarity  between  the  inferred  and  in  Rs  is  quantified  by  correlation,  i.e.  cross         f pM3

*   f b          
correlation  at  zero  lag.  M1  and  M2  (T PEX )  meta-clusters  did  not  show  a  correlation  with  tumor  burden  (Table  S3                    
and   S4   below).  

 

Metacluster  Correlation   (Pearson   R)   at   lag   =   0   for   Rs  
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M1  -0.7436  

M2  -0.2633  

M3  0.9852  

 

Table   S3.    Similarity   between   inferred   GP   model   for   metacluster   proportion   and   model   for   tumor   burden   in   Rs  

 

We   found   that   the   dynamics   of   M3   do   not   follow   tumor   burden   in   NRs   (Table   S4   below).   

Metacluster  Correlation   (Pearson   R)   at   lag   =   0   for   NR  

M1  0.6907  

M2  -0.7549  

M3  -0.7009  

 

Table   S4.    Similarity   between   inferred   GP   model   for   metacluster   proportion   and   model   for   tumor   burden   in   NRs  

 

Additionally,  the  expansion  of  T PEX  clusters  post-DLI  is  durable  in  Rs  and  nonexistent  in  NRs.  Results  were                  
robust  to  choice  of  of  and .  As  shown  in Fig.  S7 ,  similar  fit  is  achieved  on  a  range  of  values.  This  example      σε   λ                  
shows   tumor   burden   and   proportion   of   T EX    metacluster   M3   in   non-responders.   
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  =   285   (median   distance   between   pairs   of   points,   and   value   used   to   generate   Fig.   2f,g) λ  

 
  =   150: λ  

 
  =200 λ  

 
  =   300 λ  

 
  =   400 λ  

 
 

Figure   S7.    Inferred   hierarchical   GP   models   showing   robustness   to   choice   of   ;   each   dot   is   a   sample   and   size   of   dots   are  λ  
proportional   to   total   number   of   cells   in   the   sample;   x-axis   is   time   from   DLI   and   y-axis   is   tumor   burden   (left)   and   proportion  

of   cells   in   metacluster   M3   (right)   from   each   sample   in   NRs.  
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To  quantify  the  relative  timing  of  T EX  and  T PEX  meta-clusters,  we  computed  the  cross-correlation  between                 f p*

and  shown  as  purple  bars  in Fig.  2f (middle  row).  The  max  cross-correlation  between  M3  and  tumor  burden  f b                   
in  Rs  (  with  indicating  cross-correlation)  is  at  75  days  which  is  1/4  of  median  time  interval   }  max{ f pTE

*
★ f bR    ★               

between  samples  (marked  with  a  red  line  in Fig.  2f  left  middle;  t-statistic=8.58,  p=0)  indicating  they  are  in  sync,                    
whereas  for  the  T PEX  meta-clusters, occurs  at  703  days  (M1:  t-statistic=2.05,  p=0.02;  M2:      }  max{ f pPE

*
★ f bR         

t-statistic=0.72,   p=0.23)   indicating   a   significant   lag   compared   to   the   T EX    M3   meta-cluster   and   tumor   burden.  

 

 

Supplementary   Note   3:   Integration   of   single-cell   RNA-seq   and   ATAC-seq   
 

Preprocessing   ATAC-seq   data  

Bulk  ATAC-seq  data  for  each  sorted  subset  of  T  cells  from  each  bone  marrow  sample  was  processed  using  the                    
automated  end-to-end  quality  control  (QC)  and  processing  pipeline         
( https://github.com/kundajelab/atac_dnase_pipelines )  from  the  ENCODE  consortium  with  configuration        
SPECIES= hg38 .  Alignment  is  performed  using  Bowtie2 25  and  peak  calling  and  normalization  is  done  with               
MACS2 26 .  MACS2  normalization  involves  comparing  ATAC  signal  to  local  background  noise  using  a  Poisson                
test 26 , 27 .    The   full   list   of   samples   and   QC   metrics   for   ATAC-seq   data   are   provided   in    Suppl.   Table   5.  

 

Correlation   between   accessibility   profiles   

We  first  aimed  to  study  the  potential  impact  of  DLI  in  the  global  epigenetic  landscape  of  T  cells.  We  thus                     
compared  ATAC-seq  samples  from  the  same  time-points  as  in  Table  S1,  with  ATAC-seq  ID  listed  below  in                  
Table  S5.  To  compare  chromatin  accessibility  between  pairs  of  samples,  we  first  created  a  consensus  peak  set                  
similar  to  Corces  et  al  2016 2  as  follows:  Peak  summits  were  extended  to  150bp  windows  and  a  set  of                    
maximally  non-overlapping  peaks  was  generated  across  all  samples,  resulting  in  133,968  peaks  for  CD8+               
CD45RO+  and  169,740  peaks  for  CD8+  CD45RA+  samples.  Then  Pearson  correlation  was  computed              
between  all  pairs  of  14  samples  in  each  subset,  and  then  correlations  were  averaged  by  pairs  of  clinical  groups                    
( Fig.   3b ).  

 

Patient  Outcome  Time  
ATAC-seq   sample   ID   for  

CD8   CD45RA   sorted   T   cells   
ATAC-seq   sample   ID   for  

CD8   CD45RA   sorted   T   cells  

5309  Responder  Pre  C44  C45  

5309  Responder  Post  n/a  n/a  

5310  Responder  Pre  C31  C32  

5310  Responder  Post  C35  C36  

5311  Responder  Pre  C63  C66  

5311  Responder  Post  C79  C81  

5312  Responder  Pre  C105,   C106  n/a  

5312  Responder  Post  n/a  n/a  

5314  Responder  Pre  n/a  n/a  

5314  Responder  Post  n/a  C130  

5317  Responder  Pre  n/a  C114  

5317  Responder  Post  C118  C119  
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5318  Non-Responder  Pre  C133,   C134  n/a  

5318  Non-Responder  Post  n/a  C156  

5322  Non-Responder  Pre  C38  C39  

5322  Non-Responder  Post  C41  C42  

5324  Non-Responder  Pre  C48  C49  

5324  Non-Responder  Post  C54  C56  

5325  Non-Responder  Pre  C91  C92  

5325  Non-Responder  Post  C95  n/a  

5326  Non-Responder  Pre  n/a  n/a  

5326  Non-Responder  Post  n/a  n/a  
 

Table   S5.    List   of   ATAC-seq   samples   from   IDs   from   baseline   pre-DLI   and   the   remission   timepoint   following   DLI;   n/a  
denotes   low   sample   quality   or   excluded   based   on   data   preprocessing   QC.  

 

 

Symphony   model   for   cell   type-specific   gene   regulatory   networks  

To  study  the  underlying  circuitry  of  distinct  clusters,  we  developed  a  novel  integrative  model  named                
Symphony 28 ,   for   inferring   gene   regulatory   networks   (GRNs)   specific   to   subsets   of   cells.   

Gene  regulatory  networks  (GRNs)  are  directed  weighted  networks  between  genes  depicting  the  extent  to               
which  a  regulator  gene  influences  (activation  or  repression)  the  expression  of  each  of  its  downstream  target                 
genes.  Symphony  estimates  these  networks  in  each  subset  by  extracting  co-expression  patterns  between  TFs               
and  target  genes  from  scRNA-seq  and  combining  them  with  the  presence  of  TF  motifs  within  regions  of                  
chromatin  accessibility  in  the  vicinity  of  targets  as  derived  from  ATAC-seq.  This  is  accomplished  in  Symphony                 
by   constructing   a   generative   model   that   mimics   transcriptional   regulation   illustrated   in    Extended   Data   Fig   4b .  

Since  the  ATAC-seq  data  in  this  study  measures  accessibility  summarized  across  all  cells  in  a  sorted                 
compartment  (e.g.  CD8+CD45RO+)  each  consisting  of  multiple  T TEX  or  T PEX clusters,  we  also  leveraged  the                
deconvolution  capability  of  Symphony:  bulk  epigenetic  data  is  deconvolved  into  cluster-specific  epigenetic             
profiles.  The  deconvolved  profiles  are  then  used  to  explain  gene  co-expression  patterns  through  GRNs,  and                
thus   resolve   direct   links   from   indirect   links   in   the   network   ( Extended   Data   Fig   4b ).  

Symphony 28  is  an  extension  of  the  Biscuit 3,5  model  which  clusters  cells  while  simultaneously  distinguishing               
biological  heterogeneity  from  technical  noise  in  single-cell  gene  expression  data  (also  explained  in Suppl.               
Note  2 ).  Symphony  extends  this  model  by  replacing  the  hyperparameter  for  gene  co-expression  in  Biscuit  with                 
a  generative  process  exclusively  driven  by  epigenetic  data  (collected  from  the  same  sample  or  a  sample  with                  
similar  composition  of  cell  types).  Thus,  Symphony  models  the  biological  mechanism  responsible  for  the               
observed   gene   co-expressions   per   cell   type.   

The  model  also  simultaneously  deconvolves  the  bulk  epigenetic  profiles  (which  denote  accessible  DNA)  into               
cell-type  (cluster)-specific  accessible  regions  ( Extended  Data  Fig  4b )  within  a  unified  statistical  framework.              
Within  these  regions,  the  binding  of  transcription  factors  (TF  associated  with  open  regions  based  on  known                 
DNA  binding  motifs)  impacts  the  expression  of  nearby  genes,  such  that  accessible  regions  may  help  explain                 
gene-gene   interactions.  

Given  the  observed  bulk  chromatin  accessibility  profiles  and  single-cell  RNA-seq  count  matrix,  the  model  finds                
a  deconvolution  of  the  bulk  accessibility  data  into  cluster-specific  accessibility  profiles  that  are  best  able  to                 
explain  the  gene-gene  relationships  observed  in  scRNA-seq.  We  note  that  Symphony  can  infer  whether  a  TF                 
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impacts  a  target  gene  without  requiring  epigenetic  evidence  as  well,  which  facilitates  inferring  the  regulatory                
influence   of   the   many   TFs   (e.g.    TOX )   for   which   a   binding   motif   is   unknown.   

Symphony   input,   output   and   model   specification   are   provided   below:  

Input   data   to   Symphony.    The   observed   paired   datasets   are:  

(1)  Epigenetic  data  measured  with  ATAC-seq 29 ,  denoted  as  where  is         c , ..., c , ..., c ]Cw×r = [ 1     t     r    ct ∈ ℜ
w   

epigenetic  data  for  one  patient  (as  replicate),  containing  accessibility  (quantified  as  peak  height)  in  genomic                
regions     (identified   from   MACS2 26 ). 1, .., w]m = [ .     

(2)  Single-cell  RNA-seq  data  where  denotes  log-transformed  normalized  single-cell     y , ... , ]  Y = [ 1 
→ . yn 

→      yj
→ (1,,,,d)      

expression   data   for   cell     with     genes. j d  

Symphony   output.    The   main   latent   variables   being   estimated   ( Extended   Data   Fig   4b )   are:   

(1)  Epigenetic  profile  for  each  cluster  represented  as which  contains  estimated  genome       k     pk ∈ ℜ
+w       

accessibility   in     genomic   regions. w  

(2)  Gene  Regulatory  Network  (GRN)  represented  as  for  each  cluster .  is  an  asymmetric  matrix        Rk     k  Rk
d×d      

with  nonzero  entries  if  gene  is  predicted  to  be  regulated  by  gene .  Positive  and  negative  values     R =k
a,b / 0

 
   b         a      

for   suggest   activation   and   repression   respectively. Rk
a,b  

Model  details.  These  latent  parameters  are  estimated  simultaneously  in  an  integrative  model  with  three               
components   explained   below:  

Epigenetic  model .  Bulk  epigenetic  profiles  ( )  are  assumed  to  be  represented  as  a  weighted  sum  of      ct            
cluster-specific   epigenetic   profiles   ( )   such   that: pk   

 | p ,   ( p , I) ct k πk ~ N ∑
 

k
πk k ζ   

where  the  weights  represent  the  proportion  of  clusters  in  the  sample.  This  assumption  is  validated  in 28    πk                
using   data   on   PBMCs   with   ground   truth   deconvolved   profiles.   

We   set   a   Gamma   prior   for   accessibility:     to   ensure   a   positive   domain. amma(η, )pk ~ G Λ   

GRN  model . We  assume  a  regulatory  link  is  dependent  on  genome  accessibility  as  well  as  motif  information                  
within  an  accessible  region.  Specifically, a  genomic  region  in  is  mapped  to  an  interaction  between  genes         m   C         

 in with  a  predefined  function .  We  also  define based  on  prior  knowledge:  if  the ,a b   Y     (a, )g b = m     M d×d     M a,b = 1    
motif  sequence  for  gene  exists  in  region  in  the  vicinity  of  gene ,  suggesting  a  potential  regulatory     a     m       b      
interaction   from   gene     to   gene   .   Motifs   were   scanned   using   FIMO 30    in   this   study. a b  

We   thus   model     as: Rk
a,b  

(S M p , )Rk
a,b ~ N a,b a,b

k
g(a,b) λ  

Where is  a  sign  indicator  representing  activation  or  repression  set  according  to  the  sign  of  empirical  S                
covariance:  

ign(Σ   )Sa,b = s ′
a,b  

 is  an  empirical  prior  set  to  the  covariance  between  genes  across  all  cells  in  the  scRNA-seq  data.  Σ′ a,b            ,a b         
The   variance   allows   for   to   have   non-zero   value,   even   when   . λ Rk

a,b M a,b = 0  

Expression  model.  Similar  to  Biscuit 3,5 ,  Symphony  assumes  that  log-transformed  normalized  single-cell            
expression   data   follows   a   multivariate   Normal   distribution:   

   | z   (μ , )  yj
→ (1,,,,d)

j = k ~ N k
→

  Σk   
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where     denotes   the   assignment   of   cell     to   cluster     modeled   as:  zj j k  

| π ult(z |π ) zj k ~ M j k   

Since  the  single  cell  expression  data  was  already  normalized  and  clustered  with  Biscuit  as  explained  in Suppl.                  
Note  2 ,  we  did  not  use  the  clustering  feature  of  Symphony  and  instead  fixed  the  assignments  ( )  of  cells  to                 zj     
clusters  as  assigned  by  Biscuit;  the  proportions  are  thus  also  fixed.  The  full  normalized  expression  matrix        πk           

(output  from  Biscuit)  is  thus  used  as  the  second  input  to  Symphony  in  this  case.  However,  as y , ... , ]   Y = [ 1 
→ . yn 

→                  
a  more  general  tool  Symphony  is  also  able  to  successfully  cluster  de-novo  as  demonstrated  in  simulated                 
data 28 .   

The  parameters  are  the  mean  and  covariance,  respectively,  of  the -th  cluster.  We  define  the  prior  for   ,  μk
→ Σk          k        

  in   Symphony   as   follows:  μk
→

   

  (μ , )μk ~ N ′ Σ′  

where     is   set   to   the   empirical   mean   expression   across   all   cells   and     was   set   to     (identity)   in   this   study. μ′ Σ′ I   

Importantly,  the  covariance  in  observed  gene  expression  is  related  to  a  graph  power  of  the  regulatory  network,                  
capturing  the  propagated  impact  of  regulation  in  the  network  (indirect  regulation)  as  depicted  in Fig.  S8  below.                  
Specifically,   co-expressed   in   each   cluster   is   modeled   as:  

|R ishart((R ) , )Σk
 

k ~ W k + Rk
T 2 γ  

While  using  a  Wishart  instead  of  Inverse  Wishart  is  not  conjugate,  this  is  valid  as  both  distributions  satisfy  the                    
positive   semi-definite   requirements   for   priors   on   the   covariance   matrix.  

 
Figure   S8.    Symphony   captures   direct   and   indirect   regulation.   The   impact   of    regulation   is   propagated   through   the   network  

up   to   path   length   of   two   and   is   reflected   in   covariance   between   indirectly   connected   genes 28 .  

The   plate   model   for   Symphony   used   in   this   study   is   shown   below   in    Fig.   S9 .   
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Figure   S9.    Plate   model   for   Symphony 28    with   fixed   cluster   assignments   used   in   this   study  

 

Inference,  approximations  and  scalable  implementation.  An  EM-VI  inference  procedure  was  presented  for             
Symphony  in 28 .  We  also  showed  the  performance  of  Symphony  on  well-characterized  peripheral  blood               
mononuclear  cells  (PBMCs),  and  significant  improvement  over  other  deconvolution  methods 28 .  In  this  study,              
given  the  complexity  of  the  model  and  size  of  data,  we  used  a  scalable  implementation  of  Symphony  in  the                    
probabilistic  programming  language  Edward 31 .  This  implementation  in  Edward  is  provided  in            
https://github.com/dpeerlab/Symphony    with   input   data   for   group   1   accessible   for   reviewers.   

The  use  of  variational  algorithms  in  Edward 31  allows  for  fast  approximations  of  the  posterior  for  large                 
gene-by-gene  matrices  including  GRNs  and  covariances  per  cluster,  and  scales  well  to  additional  cells  and                
ATAC-seq  replicates.  Setting  constraints  on  covariance  matrices  of  a  multivariate  normal  distribution  are              
difficult  to  enforce  in  the  optimization  setting  of  variational  inference.  Thus,  to  avoid  non-singularity  issues                
during  optimization,  we  define  the  Wishart  distribution  in  Edward  using  the  Bartlett  Decomposition,  rather  than                
the   built-in   Wishart   function   of   tensorflow,   which   allows   us   to   more   easily   define   variational   parameters.   

Specifically,  we  replace  the  sampling  of  covariance  matrices  with  a  generative  model         |R ishartΣk
 

k ~ W      
constructed  from  univariate  chi-squared  distributions  and  normal  distributions,  which  can  be  shown  to  produce               
a  valid  sample  from  the  Wishart  distribution 32 .  Given  as  a  cholesky  factor  of  the  prior ,  we         Lk         R )( k + Rk

T 2   
sample   the   cluster-specific   covariance   as   follows:  

   A A LΣk = Lk
 

k k  
T
  k

T  

where is  a  lower  triangular  matrix  whose  diagonal  elements  are  composed  of random  variables  with  Ak            χ2    
 degrees  of  freedom,  where  indexes  the  rows  of ,  and  the  off-diagonal  elements  in  the  lower    γ ­ i + 1      i      Ak         

triangle  are  independent  normal  distributions.  Hence  each is  a  positive  semi-definite  matrix  centered  at        Σk        
or  equivalently .  In  this  setting,  we  define  variational  distributions  corresponding  to  the LLk k

T
    R )( k + Rk

T 2            
dummy  variables  and ,  as  opposed  to  defining  a  matrix  variate  distribution  which,     hi squaredh ~ c   ormalv ~ N           
during   the   course   of   optimization,   must   fit   all   the   constraints   of   valid   covariance   matrices.   

Still,  in  the  Edward  implementation,  we  observed  that  the  Barlett  product  often  produced  matrices  which  are                 
not  positive  semi-definite  due  to  numerical  instability,  and  hence  did  not  generate  a  valid  covariance  matrix.  As                  
such,  we  approximated  the  mean  of  with  the  highly-related  (unitarily  similar)  matrix ,  which  we       Σk        LLk

T
k    

ensured  produced  a  posterior  in  covariance  which  is  highly  correlated  with  its  mean  derived  from  the  posterior                  
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GRNs  (minimum  correlation  r= 0.745  across  all  groups  in  this  paper).  For  additional  speed,  the  cholesky  factor  was                   
computed  from  Gram  matrix  using  the  QR  decomposition  of  where  given     R )( k + Rk

T 2       R )( k + Rk
T   Rk′ = Lk

T   
R   QR(R ).Qk′ k′ =   k + Rk

T   

In  addition  to  the  use  of  the  Bartlett  Decomposition,  the  Edward  version  of  Symphony  replaces  the  standard                  
Wishart  with  a  scaled  Wishart  for  added  flexibility  of  the  model  in  the  variational  inference  case.  The  scaled                   
Wishart  necessitates  addition  of  a  latent  parameter  per  cluster ,  such  that  and          δk      ishartΣk′ ~ W   ormalδk ~ N  
and   where   . Σ Δ  Σk = Δk k′ k iag(Δ )d k = δk  

Addition  of  the  normal  distribution  above  to  the  generative  process  infuses  flexibility  to  the  Wishart,  whose                 
variance  is  usually  defined  by  a  single  parameter  (degrees  of  freedom 33 ).  In  addition,  the  resulting  matrix  will                  
have  a  diagonal  scaled  by ,  hence  allowing  better  fit  to  the  empirical  per-gene  variances  which  are  not      δki  

2              
captured  directly  by  the  regulatory  model  driving  the  prior  for  covariances.  Off-diagonal  elements  are  scaled  by                 

,  a  transformation  which  decouples  the  correlation  structure  embedded  in  the  off-diagonal  elements  from δδki kj
              

the  scaling  of  the  diagonal.  Specifically,  correlations  between  genes  in  the  original  matrix  are  encoded  as              Σk′     
.  After  scaling, ’s  in  the  numerator  and  denominator  cancel,  hence  allowing  the  overall  structure  to σ σ  Σ′k,ij/ ′i ′j    δ              

be   maintained   under   any   arbitrary   scaling   of   per-gene   variances   to   fit   the   empirical   data   per   cluster.  

We  note  that  with  the  above  approximations,  the  constraint  on  the  sign  of is  not  always  enforced  to  be  the              Rk        
same  as .  Thus,  we  have  more  confidence  in  the  inferred  strength  of  regulation  (magnitude  of ).  The   Σ′               Rk   
estimated  regulatory  strength  is  used  to  identify  master  regulators  in  Fig.  3c (as  explained  in  section  “master                  
regulators”  below).  We  also  show  the  robustness  of  inferred  regulatory  strength  in  the  section  “robustness                
analysis”   below.  

Guide  for  choice  of  parameters. The  variational  inference  implementation  of  Symphony  requires  choice  of               
several  hyperparameters.  By  default,  priors  on  cluster  mean  expression  are  set  with  empirical  means  across                
the  cells  in  that  cluster  as  explained  above,  and  shape  and  rate  parameters  for  the  Gamma  prior  on  peak                    
heights  are  set  as  4.5  and  1  respectively  for  a  relatively  uninformative  prior.  Other  parameters,  particularly                 
those  controlling  the  variance  of  distributions  in  the  generative  model,  are  user-defined  and  should  be  tuned  to                  
each   dataset.   

As  Symphony  is  designed  to  manage  a  trade-off  between  fitting  to  expression  covariance  and  chromatin                
accessibility  in  the  posterior  distribution  over  GRNs,  the  choice  of  variance  parameter  on  the  prior  distribution                 
for  each  denoted  by ,  as  well  as  the  degrees  of  freedom  in  Wishart  linking  to  denoted  by ,  can   Rk    λ            Rk   Σk    γ   
be  chosen  to  prioritize  fit  to  each  type  of  data.  To  inform  the  choice  of  these  parameters,  we  recommend                    
setting  these  parameters  with  small  values  and  checking  the  empirical  fit  of  the  posterior  to  both  data  types.                   
For  example,  the  parameter  settings  used  in  this  study  ( , where  is  the  number  of  genes)          .005λ = 0  γ = d + 1  d       
ensured  strong  correlation  of  posterior  GRNs  with  both  the  inferred  peak  heights,  which  in  turn  associated                 
strongly  with  the  bulk  accessibility  data,  and  further  with  the  posterior  covariance  which  itself  associated  with                 
the  empirical  covariance.  We  also  track  these  correlations  over  inference  to  ensure  they  increase  over                
iterations.   Details   can   be   found   in    https://github.com/dpeerlab/Symphony .  

ATAC-seq  samples  used  in  Symphony. Prior  to  running  Symphony,  T EX  and  T PEX clusters  that  fell  in  the  same                   
sort  compartment  of  CD4  or  CD8,  CD45RA  or  CD45RO  were  grouped  together  as  listed  in  Table  S6  below. Fig                    
3a  and Extended  Data  Fig  4a  show  ATAC-seq  accessibility  profiles  for  these  samples  (full  list  of  samples  and                   
QC  metrics  are  provided  in Suppl.  Table  5 ).  Bigwig  files  were  loaded  to  IGV 34  to  visualize  normalized                  
accessibility   signal   with   differential   accessibility   identified   with   DESeq2 35 .  

 

Symphony  
deconvolution   group  

Enriched  
exhaustion   state  

Enriched   exhausted  
clusters  cell   type  

ATAC-seq   sample  
ID  

1  T_EX  14,27  CD8   CD45RO  C149  
1  T_EX  14,27  CD8   CD45RO  C156  
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1  T_EX  14,27  CD8   CD45RO  C45  
1  T_EX  14,27  CD8   CD45RO  C66  
1  T_EX  14,27  CD8   CD45RO  C75  
2  T_EX  M3   (4,7,3,22)  CD8   CD45RA  C70  
2  T_EX  M3   (4,7,3,22)  CD8   CD45RA  C171  
2  T_EX  M3   (4,7,3,22)  CD8   CD45RA  C167  
2  T_EX  M3   (4,7,3,22)  CD8   CD45RA  C144  
2  T_EX  M3   (4,7,3,22)  CD8   CD45RA  C139  
2  T_EX  M3   (4,7,3,22)  CD8   CD45RA  C106  
3  P_EX  M2   (5,11,23)  CD8   CD45RO  C39  
3  P_EX  M2   (5,11,23)  CD8   CD45RO  C36  
3  P_EX  M2   (5,11,23)  CD8   CD45RO  C156  
3  P_EX  M2   (5,11,23)  CD8   CD45RO  C164  
3  P_EX  M2   (5,11,23)  CD8   CD45RO  C168  
4  P_EX  M2   (5,11,23)  CD4   CD45RO  C37  
4  P_EX  M2   (5,11,23)  CD4   CD45RO  C34  
4  P_EX  M2   (5,11,23)  CD4   CD45RO  C127  
4  P_EX  M2   (5,11,23)  CD4   CD45RO  C158  
4  P_EX  M2   (5,11,23)  CD4   CD45RO  C162  
5  P_EX  M1   (19,28)  CD8   CD45RA  C41  
5  P_EX  M1   (19,28)  CD8   CD45RA  C79  
5  P_EX  M1   (19,28)  CD8   CD45RA  C118  
5  P_EX  M1   (19,28)  CD8   CD45RA  C35  
6  P_EX  M1   (19,28)  CD4   CD45RA  C76  
6  P_EX  M1   (19,28)  CD4   CD45RA  C33  
6  P_EX  M1   (19,28)  CD4   CD45RA  C116  

Table   S6.    Groups   of   ATAC-seq   samples   used   for   deconvolution   of   accessibility   profiles   in   Symphony  

 

In  each  group  1-6  listed  in  Table  S6,  scRNA-seq  data  and  ATAC-seq  data  from  the  same  samples  are  used  as                     
input  to  Symphony.  Bulk  ATAC-seq  samples  from  different  patients  are  assumed  as  biological  replicates,  and                
deconvolved  using  Symphony  to  achieve  accessibility  profiles  for  each  cluster.  Combined  with  scRNA-seq  data               
for  the  clusters,  Symphony  infers  a  GRN  for  each  cluster  shown  in Fig.  3d  and Extended  Data  Fig.  5 .  We                     
limited  target  genes  to  the  pool  of  differentially  expressed  markers  ( Suppl.  Table  3 )  across  clusters.  We  filtered                  
inferred  regulatory  links  (entries  of )  that  had  a  magnitude  less  than  two  (| |<2  selected  based  on      Rk         Rk     
knee-point   of   distribution,   |CV|>0.5).  

With  this  implementation,  the  runtime  for  Symphony  was  1h  52m  on  group  4  containing  2593  cells  and  1305                   
pooled  DEGs  and  5h  54m  on  group  1  with  7181  cells  and  1459  DEGs,  on  a  local  machine  with  64GB  of  RAM                       
and  12  CPU  cores  (2.7  GHz  processors).  This  runtime  is  at  least  40  times  faster  than  MCMC  inference  used  in                     
Biscuit   which   has   a   similar   model   structure.  

Robustness  analysis. To  test  the  robustness  of  GRN  inference,  we  performed  a  leave  one  (patient)  out                 
analysis  in  the  T EX  CD8  and  T PEX  CD4  groups.  Specifically,  we  fit  Symphony  to  scRNA-seq  and  ATAC-seq  data                   
for  each  group  and  excluded  ATAC-seq  data  from  one  patient  at  a  time.  We  then  compared  the  coefficient  of                    
variation  (CV)  of  predicted  regulatory  links  across  the  leave-one-out  iterations  to  the  inferred  regulation  from                
the  entire  data.  As  shown  below  in Fig.  S10  and Fig.  S11,  CV  is  lower  for  stronger  regulatory  links  and  the                      
majority   of   links   have   CV<1.   
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Figure  S10. Absolute  value  of  coefficient  of  variation  (|CV|  in  y-axis)  of  regulation  across  leave-one-out  analyses  vs.                  
inferred  regulation  from  the  full  dataset  (x-axis)  ;  each  dot  is  a  regulatory  link  in  the  network  colored  by  density  of  data                       
points;  top  row  corresponds  to  all  clusters  in  in  group  1  (T EX  )  and  bottom  row  corresponds  to  cluster  28  (deconvolved                      
from   the   group).  

24  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.08.194332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.194332
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure  S11. Similar  to  Figure  S10;  top  row  corresponds  to  inferred  links  from  all  clusters  in  group  4  (T PEX  )  and  bottom  row                        
corresponds   to   cluster   5   (deconvolved   from   the   group).  

 

Master  regulators. We  used  the  output  GRNs  from  Symphony  to  identify  master  regulators  of  each  cluster  as                  
follows:  For  cluster ,  we  averaged  the  inferred  impact  of  each  TF ,  across  all  targets  that  are  differentially    k          a     b     

expressed  genes  (DEGs)  in  the  cluster  (listed  in Suppl.  Table  3 ): with being  the  number            | D∑
 

b ∈ DEGk

|Rk
a,b / k

 

 

 Dk    

of  DEGs  for  cluster .  The  resulting  average  regulatory  strength  of  each  TF  in  each  cluster  is  shown  in Fig.     k                 
3c .  We  performed  a  one-sided  t-test  between  T EX clusters  and  all  other  exhausted  clusters  to  find  “differential                  
regulators”  of  T EX clusters  shown  with  dotted  line  box  in Fig.  3c ,  and  green  nodes  in Fig.  3d  and Extended                     
data  Fig.  5 .  Similarly,  we  identified  differential  regulators  of  T PEX M1  and  M2  subsets  ( Fig.  3c )  shown  as  pink                    
nodes   in    Fig.   3d    and    Extended   data   Fig.   5 .  

Regulatory  network. To  elucidate  the  target  genes  impacted  most  by  these  master  regulators,  we  filtered  the                 
GRNs  by  centrality  or  out-degree  of  regulators  (defined  as  number  of  target  genes  predicted  to  be  regulated  by                   
the  TF)  as  well  as  regulatory  strength  ( |>2). Fig.  3d  and Extended  data  Fig.  5  show  these  subnetworks        |Rk            
containing  individual  known 36 , 37  and  novel  links.  The  circuitry  for  exhausted  clusters  reveals  similarity  and               
differences  in  network  architecture  across  clusters.  We  identified  mediating  regulators  such  as BCL6              
connecting  two  other  regulators  ( TBPL1  and E2F2 )  differentially  regulating  cluster  27.  The  network  link               
predictions  are  supported  by  co-expression  and/or  accessibility  ( Fig.  3d ).  Other  predicted  repressors  such  as               
TCF7L2    are   supported   by   mutually   exclusive   (negative)   co-expression   patterns   with   DEGs.   
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Supplementary   Note   4:   Analysis   of   paired   single-cell   TCR-   and   RNA-seq  
 

Preprocessing  and  identification  of  exhausted  clusters .  Single  cell  5’  RNA-seq  reads  were  processed  with               
the  Cell  Ranger  pipeline  available  from  10x  Genomics.  QC  metrics  for  this  data  is  provided  in Suppl.  Table  S6.                    
A  total  of  23K  total  T  cells  were  identified  based  on  {CD3D,  CD3E}  expression  (similar  to Suppl.  Note  2 )  and                     
normalized   and   clustered   using   Biscuit   with   the   same   parameters   as   in    Suppl.   Note   2    (shown   in    Fig.   S12 ).   
 

 
Figure   S12.    t-SNE   projection   of   normalized   5’   scRNA-seq   data   for   all   T   cells   from   two   Rs   (listed   in   Suppl.   Table   6),   each  

dot   represents   a   cell   colored   by   cluster   (left),   sample   ID   (top   right),   and   markers   (bottom   right).   
 

 
The  29  newly  identified  clusters  (Fig.  S12)  were  scored  for  the  same  T PEX  and  T EX  signatures  (listed  in                   
Extended  Data  Table  3 ),  and  the  clusters  with  the  highest  scores  were  identified  as  T PEX  and  T EX  clusters  ( Fig.                    
S13 ).  
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Figure   S13.    Violin   plots   showing   density   of   T   cell   clusters   from   5’   scRNA-seq   data   along   T EX    (top)   or   T PEX    (bottom)   viral  
gene   set   scores;   x-axis   shows   cluster   IDs   ordered   by   median   score;   clusters   identified   as   exhausted   are   marked   with  

boxes.  
 
Preprocessing  and  analysis  of  TCR  clonotypes.  Single  cell  TCR-seq  reads  were  aligned  to  the  GRCh38                
reference  genome  and  consensus  TCR  annotation  was  performed  using  Cell  Ranger  V(D)J  (10x  Genomics,               
version   2.1.0.).   QC   metrics   are   provided   in    Suppl.   Table   6 .  

Clonotypes  mapping  to TRB  loci  were  used  to  annotate  each  cell,  similar  to  others 38 .  Overlap  between                 
clonotypes  from  T EX  cells  and  T PEX  cells  ( Fig.  4a )  was  measured  by  counting  the  number  of  cells  from  each                    
group  per  clonotype  and  performing  a  hypergeometric  test  using  the phyper  function  with  R.  Venn  diagrams                 
were   drawn   using   the    eulerr    package.   

TCR  diversity  ( Fig.  4b )  was  calculated  between  all  RNA  clusters  on  a  per  patient  basis  via  Gini  coefficient 39                   
using   the    ineq()    function   within   the    ineq    package.   

To  determine  the  kinetics  of  T EX  and  T PEX  clonotypes  after  DLI  ( Fig,  4c,d ),  the  proportion  of  pre-  and                   
post-treatment  cells  were  calculated  for  both  patients  together.  Clonotypes  were  defined  as  expanding  if  they                
significantly  enriched  pre-DLI  (p<0.05  according  to  Fisher’s  exact  test),  contracting  if  they  were  enriched               
post-DLI  (p<0.05  by  Fisher’s  exact  test),  and  persistent  otherwise.  Viral-specific  clonotypes  were  identified  via               
VDJdb 40  and  marked  (V).  Statistical  analysis  was  performed  in  R  version  3.5.3.  Plots  were  generated  using  the                  
ggplot    package.   
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