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Immune therapies have transformed the cancer therapeutic landscape but fail to benefit most patients.
To elucidate the underlying mechanisms by which T cells mediate elimination of leukemia, we
generated a high-resolution map of longitudinal T cell dynamics within the same tumor
microenvironment (TME) during response or resistance to donor lymphocyte infusion (DLI), a widely
used immunotherapy for relapsed leukemia. We analyzed 87,939 bone marrow-derived single T cell
transcriptomes, along with chromatin accessibility and single T cell receptor clonality profiles, by
developing novel machine learning tools for integrating longitudinal and multimodal data. We found
that pre-treatment enrichment and post-treatment rapid, durable expansion of ‘terminal’ (Tg,) and
‘precursor’ (T,.,) exhausted subsets, respectively, defined DLI response. A contrasting, heterogeneous
pattern of T cell dysfunction marked DLI resistance. Unexpectedly, T, cells that expanded in
responders did not arise from the infusion product but instead from both pre-existing and novel
clonotypes recruited to the TME. Our unbiased dissection of the TME using a Bayesian method,
Symphony, defined the T cell circuitry underlying effective human anti-leukemic immune responses
that may be broadly relevant to other exhaustion antagonists across cancers. Finally, we provide a
general analysis paradigm for exploiting temporal single-cell genomic profiling for deep understanding
of therapeutic scenarios beyond oncology.
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Despite the potency of cancer immunotherapy for a subset of cancer patients, the variability in responses and
efficacy suggests that the fundamental mechanisms, cell types and pathways driving clinical outcomes remain
elusive'. Single-cell transcriptomic profiling is a powerful technology that can characterize the full range of
immune cell states and gene programs in the tumor microenvironment (TME) in a comprehensive and
unbiased manner. Studying the evolution of the TME at single-cell resolution before and after therapy can thus
reveal how heterogeneous cell states evolve in relation to distinct clinical outcomes and illuminate the
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molecular and cellular determinants of immunotherapeutic response or resistance’?. However, high-resolution
studies of such temporal dynamics are typically performed in animal model systems® due to confounding
factors and logistical challenges, and they may not fully capture the response of tumors in patients.

To overcome challenges in human clinical studies, we leveraged a well-annotated longitudinal cohort of
patients treated with DLI, an established adoptive cellular therapy for relapsed leukemia after allogeneic
hematopoietic stem cell transplant (allo-SCT). The clear, binary outcomes of response or resistance; the
clinical samples collected over a multi-year time-span; and the lack of confounding chemotherapy or
immunomodulators has made DLI therapy an attractive immunotherapeutic setting to study the essential
‘search and destroy’ functions of donor-derived T cell responses that underlie the therapeutic
graft-versus-leukemia (GvL) effect of allo-SCT*°. Over the last 30 years, DLI has directly demonstrated the
potency of GvL by inducing durable molecular remissions in ~75% of patients with relapsed chronic
myelogenous leukemia (CML) following allo-SCT, in the absence of further chemo- or radiotherapy®’.

Response to DLI modified by CD8-depletion has been associated with decreased toxicity>"", increased T cell
receptor (TCR) repertoire diversity'?, expansion of endogenous, tumor-specific, marrow resident CD8+ T
cells™, and reversal of T cell exhaustion™. Similar observations in acute myelogenous leukemia® suggest that
the study of DLI in CML can reveal insights that are broadly relevant across hematologic malignancies. Yet
despite the widespread use of DLI for the treatment of relapsed disease following allo-SCT®'®, the mechanistic
basis for its effectiveness remains incompletely understood. Such insight would elucidate the pathways driving
GvL clinical outcomes and inform therapeutic strategies to prevent or treat relapse following allo-SCT.

To elucidate the T cell subsets mediating DLI resistance, response and exhaustion after DLI therapy, we
analyze single-cell T cell transcriptomes, bulk chromatin accessibility profiles, cluster-specific gene regulatory
networks and single T cell clonality data from bone marrow biopsies of a longitudinal cohort of patients with
relapsed CML after allo-SCT treated with DLI'®. We introduce new computational models to integrate data
across multiple timepoints and modalities and use this unbiased framework to reveal the subsets of exhausted
T cells whose enrichment and divergent dynamics define immunotherapeutic responses in human leukemia.
Our findings parallel the role of similar exhausted subsets of T cells during response to checkpoint blockade in
murine models of chronic viral infection and human melanoma, now implicating them in adoptive cellular
therapy and the GvL effect as well as defining their underlying regulatory circuitries. We also present a general
computational framework that can be applied to high-dimensional temporal analyses of other cancer types and
therapeutic scenarios beyond oncology.

A global map of T cell states in the leukemic microenvironment

To delineate the evolving landscape of cellular phenotypic states for marrow-infiltrating T cells in relation to DLI
therapy, we assembled a cohort of 12 patients treated with CD8-depleted DLI for relapsed CML'. Six patients
were long-term DLI responders (“Rs”), defined as having achieved molecular remission (i.e. RT-PCR negative
for the BCR-ABL transcript) after DLI, and 6 were nonresponders (“NRs”), who did not achieve measurable
tumor reduction following DLI. None of the patients developed acute graft-versus-host disease (GvHD) after
DLI, and the development of GvHD was unnecessary for DLI response (Extended Data Table 1). Serial bone
marrow (BM) biopsies were collected before and after DLI treatment at a median of 3 timepoints per patient
(Suppl. Note 1). The cohorts had comparable timing between allo-SCT and DLI therapy (median 702 (R) and
1064 (NR) days), and between pre- and post-DLI sampling (Extended Data Fig. 1a; Suppl. Note 1; Extended
Data Table 1). As reference, we also analyzed post-transplant BM biopsies from 2 CML patients who never
relapsed after allo-SCT. From each of the 41 total BM samples, we obtained scRNA-seq on viable
mononuclear cells and chromatin accessibility profiles (using ATAC-seq) on isolated CD45RA" and CD45RA",
CD4" and CD8" T cells (Fig. 1a, Suppl. Note 1).

In total, we identified 381,462 cells that passed our quality metrics, with a median of 8735 cells/sample
(Extended Data Table 2). We used Phenograph'” to cluster the data into 62 distinct cell states, including
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subtypes of T, B, NK, monocytes, progenitor cells and CD34+ stem cells (Suppl. Note 2). Given the
established critical role of T cells in the anti-leukemic potency of DLI°, we normalized and clustered the 87,939
T cells in our data, using Biscuit''® which robustly accounts for artifacts such as batch effects and library size
variation (Suppl. Note 2). This analysis yielded 43 distinct T cell subsets spanning combinations of subtypes
and differentiation states with variably expressed gene programs related to environmental stimuli (Fig. 1b,c;
Extended Data Fig. 1b-d). For example, clusters 6, 19, 37 and 31 exhibited similar differentiation states and
subtypes, for which we observed differential enrichment of pathways involving adenosine suppression, glucose
deprivation, and anergy. Thus our global T cell map reveals substantial diversity corresponding to established
T cell subtypes and states, marked by known and novel markers, that are shared across groups of patients.

DLI resistance comprises multiple states of T cell dysfunction

While most T cell clusters were shared across patients, they were variably distributed across clinical features
such as timing relative to DLI and clinical outcome (R vs NR) (Extended Data Fig. 1e, Fig. 1b), motivating us
to identify the gene expression programs that might underlie these clinical variables. We tested standard
techniques used to decompose single-cell data to identify trends underlying its variance (Suppl. Note 2,
Extended Data Fig. 2a), but no principal or diffusion component was associated with R or NR status. Instead,
we chose to use common factor analysis®, an unsupervised approach to uncover latent factors that explain
shared variance across T cells, ignoring the portion of variance unique to cells (Extended Data Fig. 2b,
Suppl. Note 2). Our rationale was that covariation across T cells can potentially capture factors underlying
clinical response while de-emphasizing patient-specific variation. We identified 3 factors that explained 67% of
the variation in our data which segregated R and NR T cells; co-variation in R T cells was found to be defined
by Factor 1, while that in NR T cells was defined by Factors 2 and 3 (Fig. 1d). We associated each of these
factors with manually curated gene sets relating to T cell biology and found Factor 1 to correlate with profiles
associated with T cell activation (i.e. cytolytic effectors, interferon response, glycogen metabolism, CD8+ T cell
activation, T cell exhaustion; Fig. 1e). We further confirmed enrichment of T cell exhaustion pre-DLI in R
compared to NR, as previously observed™ (P<10® Extended Data Fig. 2c). In contrast, Factors 2 and 3
correlated with non-overlapping signatures related to multiple, distinct T cell dysfunctional states (i.e. hypoxia,
anergy, peripheral and deletional tolerance, tumor-infiltrating lymphocyte dysfunction; Fig. 1e, Extended Data
Fig. 2d), suggesting that DLI resistance may be driven by not one, but multiple types of T cell dysfunction.

DLI response is heralded by enrichment of activated and cytotoxic T cells prior to DLI

Given the substantial diversity of T cell subsets and gene programs in the leukemic microenvironment, we
aimed to quantify this heterogeneity and study its change with outcome. T cell states are known to reside on
continuous trajectories, which explain the majority of their variation'®?"??, We thus quantified their diversity
across all clusters using phenotypic volume', defined as the pseudo-determinant of covariance between
genes. Phenotypic volume serves as a measure of the diversity of co-expressed transcriptional programs,
which increases with the number and degree of independence of gene programs (Suppl. Note 2). We found
substantially higher phenotypic diversity in pre-DLI Rs compared to pre-DLI NRs (Fig. 2a, log fold
change=104.6, P<10®), suggesting that diverse T cell phenotypes pre-DLI could be essential for response.

In addition to finding increased overall phenotypic diversity in pre-DLI Rs, we next sought to identify distinct
transcriptional states associated with clinical outcome. We tested each cluster for enrichment in baseline,
pre-DLI samples from Rs compared to NRs (Suppl. Table 1). No cluster was consistently enriched in NRs,
attesting to the notion of multiple pathways to DLI resistance rather than a common resistance mechanism
shared across NRs. In contrast, within Rs, we identified four individual clusters (4, 14, 21, 27) that consistently
enriched pre-DLI across responder patients (Fig. 2b, FDR<0.1); comprised predominantly CD8+ T cells; and
shared the expression of genes involved in T cell activation (CD160, HAVCR2, CD38) and cytotoxicity
(CRTAM, GNLY, GZMK, GZMB) (Extended Data Fig. 3a). Nevertheless, their distinct differentiation states (4,
14, 21: Tey/Trg; 27: Tey), subtypes (21: T ), and varied expression of chemokine receptors (14: XCL2, CXCR4;
21: CXCR1, CXCR2), tissue residency (14: ITGA1, RGS7; high score for “CD8+ Tg,") and cell cycle (27:
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CDKNZ2A, TAF5, RRM2) programs indicated the baseline diversity of these T cell states (Fig. 1c, Extended
Data Fig. 3a).

We observed a marked increase in the number of T cell clusters in post-DLI samples compared to matched
pre-DLI samples (mean 41 [range: 35-46] versus mean 38 [range: 34-41], P<0.001; Suppl. Note 2),
suggesting that DLI expands the number of T cell transcriptional states. Indeed, both R and NR cases
exhibited increases in phenotypic volume following DLI (P<107°), (Fig. 2a). Rs displayed higher phenotypic
volume than NRs at both pre- and post-DLI timepoints (P<107°), whereas NRs displayed a far greater increase
in phenotypic volume after DLI than Rs (P<10°®). Thus, despite an absent clinical response, NRs undergo
marked T cell phenotypic remodeling. Of note, the phenotypic volumes of the non-relapsed reference samples
were lower than samples from the study cohort, (P<10°; Extended Data Fig. 3b). These results implicate
more transcriptionally diverse local microenvironments within the leukemic bed that may persist even after
leukemia remission following DLI.

DLI response is marked by expansion of states consistent with precursor exhausted T cells

To identify T cell clusters that expand after DLI, we compared the cluster proportions in baseline pre-DLI
samples to those from the remission timepoint following DLI. To increase our statistical power for detecting
changes induced by DLI, we grouped transcriptionally similar clusters into meta-clusters (Extended Data Fig.
3c, Suppl. Note 2). In this fashion, we identified two meta-clusters which consistently expanded (M1:{19,28},
M2:{5,11,23}) and one that consistently contracted (M3:{4,7,3,22}) after DLI therapy, only in Rs (Fig. 2¢c). The T
cell states that expanded in response to DLI comprised both CD4" and CD8" T cells; enriched for T, (19, 28,
and 5), T, (11), or both (23) states; and expressed corresponding gene programs for proliferation (CDK20,
CDK14, CDKL3), lymph node homing (SELL, CCR7), and survival/self-renewal (TCF7, IL7R, SATBT)
(Extended Data Fig. 3a). Analogous to the clusters enriched in pre-DLI R samples, the T cell states
contracting in response to DLI comprised mostly CD8+ T cells, enriched similarly for T;,, and T, states, and
expressed similar gene programs of cytotoxicity and activation. In contrast, no clusters or meta-clusters
consistently changed in NRs.

Recent studies in murine models of chronic viral infection and cancer have delineated two major subsets of
exhausted T cells that can be distinguished on the basis of gene expression signatures: terminal exhausted
(Tgy) cells, which possess superior cytotoxicity but shorter lifespan, and precursor exhausted (T,.,) cells which
have greater polyfunctionality, expand following PD-1 blockade, and exert tumor control®?*. We hypothesized
that the human CD8" effector-like T cell clusters enriched pre-DLI and the rapidly expanding naive/memory-like
T cell clusters enriched post-DLI might be phenotypically similar to these two subsets. Indeed, by scoring all
clusters for Tg,- or T..,-defining signatures®, we found that clusters enriched in pre-DLI Rs (4, 14, 21, 27)
scored highest for T, profiles whereas clusters consistently expanded post-DLI in Rs (M1, M2) scored highest
for Togy profiles (Fig. 2d). Cluster 26 was the highest T, scoring cluster and expanded only in R patient 5309
but did not meet the threshold for significance due to its small size and patient-dominant variation. Because
patient 5309 was the only R without expansion in either of the two meta-clusters, M1 or M2 (Extended Data
Fig. 3d), the expansion of cluster 26 suggests that all six Rs, in fact, demonstrated post-DLI expansion of T,
clusters. These T.,- or T..,-defining signatures also segregated pre- and post-DLI enriched clusters in an
unsupervised analysis (Fig. 2e). While pre-DLI enriched clusters expressed transcription factors (TOX, ID2,
PRDM1), co-inhibitory receptors (HAVCR2, PDCD1, ENTPD1, CD160, CD244), chemokines and associated
receptors (CCL3, CCL4, CCL5, CX3CRT1), and effector molecules (PRF1, GZMA, GZMB) classically
associated with T, cells, post-DLI enriched clusters expressed transcription factors (TCF7, ID3, LEF1),
surface receptors (CXCR5, IL7R), and chromatin regulators (SATB7) consistent with T, cells®***>" (Fig. 2e).
Finally, unlike many studies using antigen-specific models of CD8" T cell responses, we found a mixture of
both CD4" and CD8" T cells to constitute these expanding Tp-like clusters. Within the M1 and M2
meta-clusters, both subtypes exhibited global transcriptional similarity, with similar T, scores and similar
expression of key TFs such as TCF7, indicating the importance of both CD4* and CD8" subtypes to DLI
response (Extended Data Fig. 3e).
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Having identified response-associated T cell meta-clusters with diverging patterns after DLI (expanding M1 and
M2, and contracting M3), we sought to characterize their evolution over time by merging samples across all
time-points and clinical outcomes (Suppl. Note 2) and then modelling their temporal dynamics over the 4.5
year time period. To account for variability in timing, total cell number, and meta-cluster size on a per-sample
basis, we constructed a hierarchical Gaussian Process (GP) regression model to capture dependencies
between all pairs of time points per clinical group (R,NR) (Extended Data Fig. 3f,g; Suppl. Note 2). Our
model revealed the M3 meta-cluster to gradually increase with leukemic growth in Rs and sharply contract
during DLI response (time shift of 75 days; p=0.013, Fig. 2f, left) whereas both M1 and M2 meta-clusters
robustly expanded as early as 3 weeks and endured as long as 3 years after DLI (Fig. 2f, middle, right).
Notably, no association was detected between these meta-clusters and leukemic burden in NRs (Fig. 2g).
Taken together, our data shows that reversal of T cell exhaustion is driven not by changes in gene expression,
but rather by shifts in cell type composition — specifically, the expansion of T, populations and contraction of
Te, subsets.

Cell-state specific gene regulatory networks affirm exhausted subset identities

While recent work has described epigenetic T cell states that drive dedifferentiation®, effector “poising,” and
exhaustion®*®, their relevance to clinical immunotherapeutic outcomes, especially following DLI, is unclear. To
investigate the regulatory circuitry underlying the T cell transcriptional states associated with DLI outcome, we
compared chromatin accessibility profiles between Rs and NRs (Suppl. Note 3). Consistent with our
scRNA-seq analysis, we found increased chromatin accessibility in Rs in regions near T,.,- and T.,-associated
genes (Fig. 3a, Extended Data Fig 4a), further supporting the association of these exhausted subsets with
DLI response. Notably, we found similar accessibility for these genes among R samples, regardless of timing
relative to DLI. In fact, we observed that the genome-wide accessibility landscape of T cells is more similar
between pre- and post-DLI timepoints of Rs, than between Rs and NRs (Fig 3b), suggesting that DLI response
involves selection of pre-existing epigenetic states as opposed to induction of global rewiring. This observation
is consistent with our analysis of transcriptional states demonstrating that shifts in cell type composition
underlie T cell phenotypic evolution during DLI response. Moreover, these results suggest the inflexibility of
these epigenetic states of exhaustion in response to DLI, consistent with findings in murine models of chronic
infection in response to PD-1 blockade®**°.

To further study the circuitry underlying the distinct expanding T, and contracting T, subsets, we developed
Symphony®*, a novel probabilistic multi-view model to infer gene regulation in each exhausted cluster
(Extended Data Fig 4b). Symphony uses co-expression patterns between transcription factors (TF) and
targets as evidence suggesting a potential regulatory impact. However, since co-expression between genes
could be a by-product of indirect regulation or co-regulation, Symphony integrates scRNA-seq data with
chromatin accessibility data from ATAC-seq, together with TF motif information to resolve direct links between
genes. We first evaluated the performance of Symphony on data from well-characterized PBMCs*® and then
confirmed the robustness of predicted links in our cohort with leave one (patient) out analysis (Suppl. Note 3).

To determine the strongest regulators underlying the differences in gene expression across the clusters, we
summarized predicted regulatory networks in each cluster and defined master-regulators as TFs with strong
average regulatory impact (either activation or repression) on the differentially expressed genes (DEGs)
characterizing each cluster. Strikingly, the inferred master regulators organized into distinct groups associated
with T, or T, subsets (Fig. 3c). From our unsupervised analysis, we found many TFs previously known to
associate with exhaustion in general (e.g. EOMES, TBX21)**® or regulate T, (e.g. MYB, NFATC1, TOX)* and
T.ex Subsets (e.g. TCF7, PRDM1, LEF1)* in particular. Two of the identified TFs, MTF2 and GATA3, were
recently defined as mediators of intratumoral CD8* T cell dysfunction in murine models®. While master
regulators identified by T.,-associated DEGs were largely shared among disparate T, clusters, the two T,
meta-clusters were well-discriminated by two distinct sets of master regulators. We also observed a smaller
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group of master regulators including LEF1 and RORA that were shared across T, and T, subsets (Fig. 3c),

suggesting a core shared regulatory program.

Despite shared master regulators even within highly related transcriptional T., or T, states (dotted line
boxes in Fig. 3c), Symphony revealed a distinct regulatory network architecture for each cluster (Fig. 3d,
Extended Data Fig. 5) suggesting differences in wiring and target genes influenced by these regulators.
Importantly, these cluster-specific regulatory networks imply that master regulators (shown in green, Fig 3d
e.g. TOX) for pre-DLI enriched clusters appear to be directly linked to known T, markers; similarly, master
regulators (shown in pink) for post-DLI enriched meta-clusters directly regulate known T, markers. For
example, in pre-DLI enriched cluster 27, PDCD1 is inferred to be activated by TOX, while the effector molecule
PRF1 is predicted to be combinatorially activated by TOX, IKZF1, TBPL1 and STAT2 which are all
up-regulated in this subset. Similarly, in post-DLI enriched cluster 11, TCF7 acts as a hub, predicted to be
regulated by ELF1 and activating known T, markers IL7R, SELL and CXCRb as expected. This connection
between regulators found from our unbiased approach and known exhaustion markers, support the central role
of these TFs in defining the identities of exhausted T cell clusters. Furthermore, their regulatory function,
inferred with Symphony, is supported by evidence in TF and target gene co-expression (Fig. 3d) and/or
chromatin accessibility (Suppl. Note 3). Thus, in addition to identifying known, exhaustion-related regulators
driving these DLI response-associated T cell clusters, Symphony provides a roadmap for future investigation
on the role of previously unexplored regulators.

Confirmation of clonal properties and source of expanding T, cells

In murine models, T, and T, subsets have been reported to share a lineage relationship in which the former
self-renews and gives rise to the latter®®. For two Rs (5311, 5314), we used paired single-cell TCR- and
RNA-seq to compare TCR clonotype sequences of T,., and T, clones (defined as >1 cell sharing the same
TCR). We observed that 27% of T, clones overlapped with T, clones (p<10™ for both patients), confirming
their lineage relationship (Fig. 4a; Suppl. Note 4, Suppl. Table 7). The expanded clones with T, phenotype
were predominantly CD4+ T cells (81%) and clones with T., phenotype were predominantly CD8+ T cells
(99%) as were T, /T, Overlapping clones (93%). T, clonotypes resided in larger clones than T, clonotypes
(Extended Data Fig. 6a). Clonotype diversity was higher in cells with a T, phenotype than in those with a T,
phenotype (P<0.05) for both patients (Fig. 4b), consistent with previous reports in murine and human studies®.

To study the dynamics of how clonal populations initially shifted in response to DLI in these two patients, we
evaluated their TCR repertoire within one month before and after DLI and identified significantly expanding and
contracting clonotypes (Fig. 4c, left). Consistent with our observation of expanding T,., states following DLI,
dynamic clonotypes from T, clusters were more likely to expand than contract compared to those from T,
clusters (Fig. 4c, middle and right). Thus, the evolution of TCRs mirrors that of T, /T, transcriptional states
after DLI.

We noted that clonally expanded TCRs following DLI were more likely to be shared with pre-DLI timepoints
than were singletons, and many of these expanded clonotypes persisted even 3 years after DLI (Fig. 4d,e, left;
Extended Data Fig. 6b-d; P<107°, 4 wks and 144 wks post-DLI). Given that viral reactivity can be common in
the post-transplant period*’, we confirmed that viral antigen recognition only minimally accounted for the
post-DLI clonotypes (<1.5% across the 2 patients) and did not explain the expansion or durability of T, cells
(Extended Data Fig. 6e, Suppl. Note 4). Upon examination of the source of expanding T, states after DLI
response, we found that only 1.4% of T, cells from all post-DLI timepoints share clonotypes exclusively with
the infusion product. These results demonstrate that DLI does not directly introduce the clonotypes that
constitute T,., expansion (Fig. 4d,e, right; Extended Data Fig. 6b,c). Rather, post-DLI T, cells consisted of
expanding, pre-existing clonotypes as well as those that were not detected pre-DLI.

DISCUSSION
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In 1878, Leo Tolstoy published his masterpiece Anna Karenina and its eponymous principle that “all happy
families are alike; each unhappy family is unhappy in its own way.” Likewise, our unbiased analysis of the
evolution of T cell states following DLI unveiled common, shared pathways defining DLI response whereas
multiple dysfunctional T cell states shaped DLI resistance, evoking a clinical outcome paradigm characteristic
of other therapeutic scenarios where a limited set of targetable alterations predicts response in contrast to
development of a diversified set of resistance mechanisms*'*2,

To enable such clear insights from a limited patient cohort, we leveraged two critical features: samples
collected from an informative clinical setting and innovative computational tools. Specifically, we exploited a
scenario with unambiguous, binary clinical outcomes (response or resistance) in the absence of any toxicities;
longitudinal sample collection; and uniform patient treatment with CD8-depleted DLI for relapsed CML in the
absence of any confounding chemotherapy or immunomodulators. Furthermore, we consistently sampled the
same bone marrow leukemic microenvironment for all patient-timepoints in contrast to studies in solid tumors
where the sites of cancer involvement that are studied differ greatly even within the same patient*.

To overcome limitations of experimental design inherent to clinical studies such as variable timing of sample
collection, patient heterogeneity, measurement uncertainty, and challenges in hypothesis testing on key
populations, we adapted statistical techniques and developed novel longitudinal and integrative probabilistic
models. Importantly, these computational approaches for dissecting global heterogeneity, identifying immune
states related to dynamics of tumor burden, and integrative gene regulatory network inference are readily
generalizable to other longitudinal, clinical settings. Indeed, with the increasing number of clinical correlative
studies using longitudinal tumor biopsies***°, we anticipate a growing need for such analytic frameworks.

Our findings, identified through direct interrogation of the human bone marrow microenvironment, dovetail with
discoveries detected in model systems of chronic viral infections and solid tumors®'#54”, The pre- and post-DLI
enriched T cell states we identified in Rs demonstrated dynamic, transcriptional, epigenetic and clonal
hallmarks of T, and T, exhaustion subsets, previously identified from murine models. Remarkably, the rapid
expansion of T..,-like states after DLI mirrored similar observations in these models during response to
blockade of the PD-1 pathway in chronic viral infection®3'374849 |n patients, recent studies have indicated a
role for T, cells during clinical outcomes to checkpoint blockade in advanced melanoma®**. Our results now
implicate the hierarchy of both T, and T, subsets for human immunotherapeutic responses, extending the
scope of their relevance beyond checkpoint blockade to adoptive cellular therapies for human leukemia and
nominating this cellular program as a potent effector of GvL. Furthermore, these data confirm that reversal of T
cell exhaustion is driven not by changes in gene expression, but rather by shifts in cell type composition —
namely, expansion of T,., populations and contraction of T, subsets (Fig. 5). Because such distinctions
cannot be delineated by bulk measurements, our findings highlight the advantages of single cell
transcriptomics for discriminating between these possibilities.

Our data moreover suggests novel mechanistic insight into DLI efficacy. Our scTCR analysis not only
confirmed the lineage relationship between T., and T..-like states but now also explain that previous
independent observations of increased TCR diversity detected in the setting of DLI response' are a
consequence of T, subset expansion. Provocatively, this expansion of T, cells during DLI response did not
arise directly from the DLI product. Instead, we observed both recruitment of previously undetected clonotypes
(potential clonal replacement®®) and expansion of pre-existing ones (clonal expansion), suggesting that
immunologic ‘help’ from DLI, rather than direct transfer of anti-leukemic T cells, drove leukemic remission.
Similar results have been observed in murine models of exhaustion reversal after adoptive transfer of CD4+ T
cells®*2. These data suggest that T, /T, subsets serve as both marker and mechanism for DLI response.
Our findings motivate future clinical trial designs to test the status of T, cells as a biomarker for predicting DLI
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response and to evaluate therapeutic strategies that enhance T, recruitment and expansion. Pursuing such

approaches offers the possibility of enhancing the GvL effect during relapse after allo-SCT.

Functional interrogation of the novel regulatory networks proposed by our joint analysis of scRNA- and bulk
ATAC-seq datasets through Symphony should accelerate these efforts. Future studies should also address the
mechanism of DLI-induced T.., expansion and evaluate its relevance for newer adoptive cellular therapies
such as chimeric antigen receptor T cells. In addition, while these T cell exhausted subsets have now been
observed in multiple clinical settings, which aspects of their underlying molecular machinery and distinct
regulatory circuits remain specific to the leukemic or GvL setting and which generally extend to other cancers
and human diseases should be explored. Finally, our analytic approaches serve as a template for future
studies that seek to harness such multidimensional data sets for clinical and therapeutic relevance.
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Fig. 1] Experimental design and global map of T cell states. a, Clinical cohort, and flow chart of experimental and
analysis schema. b, t-SNE projection of normalized scRNA-seq data for all T cells from 41 samples. Each dot represents
a cell colored by cluster, patient ID, clinical outcome and timing respectively (expanded in Fig. S3). ¢, Mean expression for
a curated set of transcriptomic signatures representing T cell subtypes and differentiation states for each T cell cluster;
expression values are z-scored relative to all T cell clusters. d, Common Factor Analysis of T cells identifying 3 common
latent factors distinguishing T cells between responders (R) and non-responders (NR). Each dot represents a cell colored
by patient outcome and axes show factor loadings. e, Pearson correlation between common latent factors and mean
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Fig. 2| T cell states defining DLI response correspond to exhausted subsets. a, Phenotypic volume in log-scale
(metric of transcriptional diversity') of T cells before and after DLI in responders (R) and non-responders (NR). b-c,
Proportion of T cells for pre-DLI only (b) or paired pre-/post-DLI (¢) samples assigned to the indicated cluster or
meta-cluster. Q-values determined from weighted t-test and empirical FDR estimation. Box plot elements display center
line as median; box limits as first and third quartiles; whiskers extend to maximum/minimum data points (a) or 1.5x
interquartile range with points as outliers (b). Each line in (¢) indicates one patient. Stacked bars on the right indicate the
proportion of CD4+ and CD8+ T cells. d, Violin plots showing density of T, (top) or Tpzy (bottom) viral signature scores®
across T cells grouped by cluster. Clusters are ordered by median score. Colored violins refer to clusters enriched in
pre-DLI Rs (dark blue) or expanding in post-DLI Rs (light blue). Full labels provided in Fig. S5. e, Unsupervised
hierarchical clustering based on tumor infiltrating Toz, or Ty genes? segregates dark/light blue clusters. f-g, Hierarchical
GP regression models (Suppl. Note 2; Extended Data Fig. 3f,g) for both the proportion of the indicated meta-cluster (in
blue dots for Rs and in orange dots for NRs) and the percentage of tumor burden (in grey crosses) (indicated by percent
positivity of the Philadelphia chromosome) per sample for Rs (f) or NRs (g). Each dot is one sample and dot size is
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proportional to sample size (total cells); inferred model mean is shown with lines and shaded area shows +/-1 standard
deviation. Cross-correlation plots (f; purple) indicate the time shift between the models for meta-cluster proportion and
tumor percentage, showing in-sync dynamics for M3 and tumor (left) and a lag between M1/M2 and tumor (middle, right).
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Fig. 3| Epigenetic landscape and regulatory circuitry underlying T cell subsets. a, Chromatin accessibility signal
from ATAC-seq data for CD8+ CD45RA+ (left) and CD8+ CD45RO+ (right) T cells indicating differential accessibility
(p<0.05 indicated with boxes) between R and NR in regions near exhaustion marker genes. b, Average pairwise Pearson
correlation between normalized ATAC-seq peak heights for CD8+ CD45RO+ (top) and CD8+ CD45RA+ (bottom) T cells
from different clinical groups. ¢, Heatmap showing scaled values of predicted regulatory strength of TFs (i.e. magnitude of
regulation independent of sign) from Symphony (Suppl. Note 3; Extended Data Fig. 4b), averaged across differentially
expressed genes characterizing each cluster. Master regulators that are differential (t-test p<0.05) or shared between T,
and Tpg, subsets are shown in dotted lines. d, Predicted regulatory circuitry for two example clusters; arrows between
nodes indicate regulatory impact of a TF on a target gene. Master regulators that are differentially enriched in T, and Tpgy

subsets are shown in green or pink nodes, respectively. Circuitry for other exhausted clusters are shown in Extended Data
Fig 5.
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Fig. 4] Confirmation of clonal properties and source of expanding T, cells. a, Venn diagrams showing clonotype
overlap between T.g, and T cells from two R patients (5311 and 5314), and stacked bars indicating percentage of CD8+
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increased TCR diversity (quantified with Gini coefficient; Suppl. Note 4) compared to T, clusters, Wilcoxon. Box plot
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with points as outliers. ¢, Clonotype frequencies 1 month before and 1 month after DLI from both R patients. Each dot
represents a clonotype with dot size proportional to size of clone for each cell subset. Expanding/contracting clonotypes
determined with Fisher’s exact test (P<0.05). Left, clonotypes from all cells colored by one of three dynamic patterns:
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contracting, expanding, persistent. Middle, right dynamic clonotypes from Tpg Clusters are less likely to be contracting
compared to clonotypes from Tg, clusters (pie charts). d-e, Frequency distribution of all (d) or T, (e) clonotypes per
time-point for patient 5314. Arrows indicate clonotype expansion from pre-DLI (P<0.05, Fisher’s exact test). Post-DLI
clonotypes marked in red indicate unique match with DLI product and their proportions are displayed in pie charts for all
(d) or Trex (€) post-DLI clonotypes (patient 5311 is shown in Extended Data Fig. 6b,c).
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Fig. 5| Summary model. Evolution of exhausted T cell states during DLI response and heterogeneity of distinct,
dysfunctional T cell states during DLI resistance.
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Extended Data Fig. 1| Clinical variables, biological features, and cluster distributions. a, Time from stem cell
transplant (SCT) to DLI for each patient (left), from pre-DLI sample to DLI (middle) and from DLI to post-DLI sample
(right). Center line as median with interquartile range and points as outliers. b, t-SNEs of all 43 T cell clusters, colored by
indicated gene, recapitulating known immunobiology. ¢, Heatmap of differentially expressed genes (DEGs) per cluster for
all clusters (full list provided in Suppl. Table 3). Indicated are informative genes for immune subtypes or differentiation
states. d, Heatmap of mean expression for a curated set of signatures for each T cell cluster; expression values are
z-scored relative to all T cell clusters. e, Distribution of clusters across patients (top, stacked bar plots) and clinical groups
and timepoints (bottom, bubble plot).
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Extended Data Fig. 2| Identifying outcome-associated gene expression programs. a, Top three principal (left) or
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Cartoon illustration for common factor analysis vs PCA. ¢, Distribution of scores for exhaustion signatures across cells,
confirming increased exhaustion in pre-DLI T cells from Rs compared to NRs. d, Low percentage overlap of dysfunctional
gene sets indicating discrete forms of T cell dysfunction associated with Factors 2,3 in Fig 1e.
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Extended Data Fig. 3| Expression profiles and longitudinal dynamics of pre- and post-DLI enriched clusters. a,
Heatmap of normalized gene expression values for differentially expressed genes from Ext Data Fig 1c, subsetted for
clusters enriched pre- or post-DLI. Center line in boxplots indicate the median and boxes indicate 25th and 75th
percentiles. Whiskers extend to extreme data points. b, Phenotypic volume in log-scale (metric of transcriptional diversity)
of T cells from non-relapse controls and before and after DLI in responders (R) and non-responders (NR). ¢, Heatmap of
Bhattacharyya distances (BD) in log scale between pairs of clusters; closest clusters are grouped to form meta-clusters
(white boxes). Meta-clusters significantly expanding (M1, M2) or contracting (M3) in Rs post-DLI are labeled. d, Proportion
of T cells for paired pre-/post-DLI samples assigned to cluster 26 (left) or Tpex meta-clusters (middle, right) with patient
5309 labeled in red. Q value determined from weighted t-test and empirical FDR estimation. e, Percentage of CD4+ or
CD8+ T cells within M1 or M2 meta-clusters that expressed the TCF7 gene (top). Violin plots of T, gene set expression
for CD4+ versus CD8+ T cells within M1 and M2 meta-clusters (bottom). f, Cartoon illustration (left) and plate model
(right) for a hierarchical Gaussian Process (GP) model for inferring dynamics of clusters over time while accounting for
measurement uncertainty. g, Inferred model for proportion of M3 meta-cluster (blue) using the hierarchical GP (right)
compared to a standard GP (left); each blue dot represents a sample with dot size proportional to sample size (i.e. total
number of T cells in the sample); blue lines show model mean and shaded area show +/-1 standard deviation (SD); grey
crosses represent tumor burden data; grey line and shaded area show mean and SD for tumor burden model.
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Extended Data Fig. 5| Variability in regulatory network architecture across clusters. Predicted regulatory circuitry
for exhausted T cell clusters. Arrows between nodes indicate predicted regulatory impact of a TF on a target gene. Master
regulators that are differentially enriched in T, or Ty Subsets are shown in green or pink nodes respectively.
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Extended Data Fig. 6] Clonotype properties, distributions and evolution during response to DLI. a, Probability
densities of clone sizes for all T, and Tpe, cells from samples derived from R patients 5314 and 5311. b-¢, Frequency
distribution of all (b) or Ty (¢) clonotypes per timepoint for patient 5311. Arrows indicate P<0.05, Exact Fisher’s Test, for
clonotype expansion from pre-DLI. Post-DLI clonotypes marked in red indicate unique match with DLI product and their
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versus singleton clonotypes shared with pre-DLI samples from each post-DLI timepoint from 5314 (n=2 post-DLI samples)
and 5311 (n=1 post-DLI sample). e, Pie charts displaying the proportion of post-DLI Ty clonotypes matching publicly
available viral-specific clonotypes.

Extended Data Table 1. Patient characteristics

Type of Time from
DFCI Ageat Donor Pt/Dnr Donor transplan GvHD allo-SCT to Best Max aGvHD Max cGvHD
ID SCT source Sex type t ppX Phase DLI (days) response grade grade

5309 33 BM F/M  MRD MA TCD  Chronic 362 MR 0 Ext
5310 34 BM M/F MRD MA TCD  Chronic 2371 MR 0 N/A
5311 49 BM M/M = MRD MA TCD  Chronic 817 MR 0 Lim
5312 47 BM M/M = MRD MA TCD  Chronic 649 MR 0 Lim
5314 57 BM F/IF | MRD MA TCD  Chronic 550 MR 0 N/A
5317 33 BM M/F MRD MA TCD  Chronic 755 MR 1 Ext
5318 31 BM F/IM | MRD MA TCD Chronic 1330 Progression 0 N/A
5321 50 BM F/F MRD MA TCD Chronic 797 Progression 1 N/A
5322 44 BM M/M = MRD MA TCD  Chronic 1462 Progression 0 N/A
5324 39 BM M/M | MRD MA TCD Chronic 422 Progression 0 N/A
5325 49 BM FIM = MRD MA TCD Chronic 615 Progression 0 N/A
5326 48 BM FIM  MRD MA TCD  Blast crisis 1787 Progression 1 N/A
5479 31 BM M/F MRD MA TCD Accelerated No relapse - 0 0
5480 33 BM FIM | MRD MA TCD Chronic  No relapse - 0 N/A

BM: bone marrow; F: female; M: male; MRD: matched related donor; MA: myeloablative; TCD: T cell depletion;
MR: molecular response; Ext: extensive; Lim: limited; N/A: not available
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Extended Data Table 2. Sample characteristics and QC metrics

Patient Sample Time relative to Tumor burden median mols
ID Outcome ID DLI (days) (%Ph+) # cells # reads (mill) per cell
5309 Responder B05 -45 11 7228 294 2955
BO6 86 0 7462 295 2575
B40 -223 0 10346 686 3029
5310 Responder BO1 -27 94 4274 283 2840
B02 190 0 5791 316 3199
5311 Responder B09 0 44 8780 321 2656
B10 19 ND 4728 255 1540
B11 91 0 8589 294 2692
B12 268 0 14691 387 2783
B29 -451 0 6376 177 1273
B30 -94 16 6062 344 1666
5312 Responder B21 0 38 7266 212 2009
B22 276 0 1279 175 1041
5314 Responder B25 -33 94 9011 377 2090
B26 1059 0 4465 313 2456
B31 -152 78 5994 374 2538
B32 29 98 8058 379 2548
5317 Responder B23 -5 80 12647 555 6694
B24 347 0 14127 201 1893
B38 -574 0 10777 409 2756
B39 -50 80 8370 307 2389
5318 Non-Responder B27 0 100 9971 403 2445
B28 182 100 4029 347 1452
B41 295 100 4983 351 2313
5321 Non-Responder B42 -435 0 10365 434 1867
B43 0 100 8720 590 3117
5322  Non-Responder BO3 -34 100 9789 295 2015
B0O4 164 100 10573 445 3439
B33 -652 0 9290 390 1723
B34 -540 34 8487 390 2373
B35 -428 97 11083 415 1630
5324  Non-Responder BO7 0 93 7591 353 3042
BO8 252 ND 7247 306 3024
B36 -274 3 6234 318 1282
B37 509 0 13874 305 2789
5325 Non-Responder B17 -15 100 9027 321 2111

B18 710 100 8735 288 2490
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5326 = Non-Responder B19 -4 100 11720 270 3635
B20 129 100 11880 350 7194
No relapse
5479 control B44 - - 9487 410 2602
No relapse
5480 control B46 - - 16247 413 2223

ND: not determined
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Extended Data Table 3. Terminal and precursor exhaustion signatures®

Terminal Precursor
exhaustion exhaustion
CD3G TCF7
FASLG MS4A4A
ID2 TNFSF8
LAG3 CXCL10
RGS1 EEF1B2

CCL3 CcCL3L1 ID3

KIAA1671 IL7TR
SH2D2A JUN
DUSP2 LTB
PDCD1 XCL1
CD7 SOCS3
NR4A2 TRAF1
CD160 EMB
PTPN22 CRTAM
ABI3 EEF1G
PTGER4 CD9
GZMK ITGB1
GZMA GPR183
MBNL1 ZFP36L1
VMP1 SLAMF6
PLACS LY6E
RGS3

EFHD2

GLRX

CXCR6

ARL6IP1

CCL4

ISG15

LAX1

CDSA

SERPINA3

GZMB
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Supplementary Information is available for this paper.

Supplementary Note 1: Sample details and library preparation. Describes clinical cohort characteristics, bone
marrow sample processing and isolation/preparation of cells for scRNA-/TCR-seq as well as bulk ATAC-seq.

Supplementary Note 2: Single-cell RNA-seq data analysis. Describes processing and analytic pipelines for
scRNA-seq analysis; cluster visualization and annotation; common factor analysis to identify factors relating to
clinical outcome; identification of meta-clusters and enriched clusters; and use of Gaussian Process
Regression models to track cluster temporal dynamics in relation to tumor burden.

Supplementary Note 3: Integration of single-cell RNA-seq and ATAC-seq. Describes pre-processing of
ATAC-seq data; correlations between accessibility profiles; and development and use of Symphony to infer
cluster-specific gene regulatory networks.

Supplementary Note 4: Analysis of paired single-cell TCR- and RNA-seq. Describes preprocessing and
identification of both exhausted clusters and TCR clonotypes.

Supplementary Tables

Supplementary Table 1: Clusters, cell numbers, and distributions across patients and samples
Supplementary Table 2: Cluster mean expression

Supplementary Table 3: Differentially expressed genes (DEGs) per cluster

Supplementary Table 4: Signatures

Supplementary Table 5: ATAC-seq samples and QC metrics

Supplementary Table 6: Paired scTCR-seq and RNA-seq samples and QC metrics
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Supplementary Information

Supplementary Note 1: Sample details and library preparation

Sample collection

Bone marrow (BM) biopsies were obtained pre- and post-DLI after relapse following allo-SCT (or during
remission following allo-SCT) from patients enrolled in Dana-Farber Cancer Institute (DFCI) clinical trials
(94-009, 95-011, 96-372, 96-022, and 96-277) between 1994-2001 that were approved by the DFCI Human
Subjects Protection Committee. These studies were conducted in accordance with the Declaration of Helsinki.
Bone marrow mononuclear cells (BMMCs) were isolated via Ficoll-Hypaque density gradient centrifugation,
cryopreserved with 10% dimethyl sulfoxide, and stored in vapor-phase liquid nitrogen until the time of sample
processing.

Cohort sample characteristics

All 14 patients had CML that was treated with CD6-T cell depleted allo-SCT. Of these, 12 patients had CML
relapse after allo-SCT that was treated with CD8-depleted DLI, and 2 patients never had CML relapse and
served as non-relapse controls (Extended Data Table 1). The median age of all samples was 23 years,
ranging from 20-25 years. A median of 3 timepoints was available for each R and NR patient (range: 2-6), and
there were no significant differences between R and NR cohorts regarding time from allo-SCT to DLI (R:
median 702, range 362-2371 days; NR: median 1064, range 422-1787 days; P=0.6) (Extended Data Fig. 1a).
Time from allo-SCT to sample for the non-relapsed controls was 1817 days for 5379 and 1113 days for 5380.
Characteristics of samples are listed in Extended Data Table 2.

Cytogenetic and molecular information on CML tumor burden

The percent positivity of the Philadelphia (Ph) chromosome for each BM sample was extracted from the clinical
record where available (as described previously'). Molecular remission was defined as achievement of
molecular response (defined as the absence of BCR-ABL transcripts by RT-PCR). This data is shown in grey
crosses in Fig. 2f,g.

Sample processing

Cryopreserved primary bone marrow mononuclear cells (BMMCs) were thawed on the day of sequencing at
37°C and dispensed drop-wise into a warmed solution of 10% FBS, 10% DNasel (StemCell Technologies, cat.
No. 07900) in PBS. The cell suspension was centrifuged at 200g for 10 minutes at room temperature. Viable
cells were negatively selected using MACS Dead Cell Removal Kit (Miltenyi Biotec, cat. No. 130-090-101),
running on MS columns to prevent sample loss. Collected live cells were resuspended in 0.04% BSA in PBS
and diluted to a concentration of 1000 cells/uL. These cells were then divided into portions taken immediately
for scRNA-seq (samples B1-B46) or for FACS isolation (described below) for subsequent ATAC-seq. For
paired scTCR- and scRNA-seq on samples D1-D7 (Suppl. Table 6), BMMCs were processed as described
here and then taken for FACS enrichment of T cells described below.

For cryopreserved PBMCs of DLI products (D8, D9; Suppl. Table 6), cells were thawed as described above, T
cells were enriched using the human Pan T Cell Isolation Kit (Miltenyi Biotec), and then processed with the
MACS Dead Cell Removal Kit (Miltenyi Biotec) before scRNA- and TCR-seq.

Fluorescence activated cell sorting (FACS)

For downstream ATAC-seq which was performed on samples B1-B46 (Suppl. Table 5), viable BMMC
single-cell suspensions (prepared as above) were stained using antibody cocktails in the dark at 4°C, washed
and run on a 5-laser FACSAria Il (BD Biosciences) cell sorter. Cells then underwent FACS for the following
CD14CD19CD3" T cell populations: CD45RA*CD4*, CD45RACD4"*, CD45RA*CD8", and CD45RA'CD8". The
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following fluorochrome-conjugated antibodies were used: CD14-FITC (M5E2, BD Biosciences); CD19-FITC
(HIB19, BD Biosciences); CD3-PE (HIT3A, BD Biosciences); CD4-BUV395 (SK3, BD Biosciences); CD8-APC
Vio770 (BW135/80, Miltenyi Biotec); CD45RA-BV510 (H100, BD Biosciences) (Fig. S1).

In order to perform paired scRNA- and scTCR-seq on samples D1-D7 (Suppl. Table 6), BMMCs were thawed
as above without dead cell removal, stained with human Fc block (BD Pharmingen) for 10 minutes in the dark
at 4°C, stained with antibody cocktail, washed and run on a 4-laser, FACSAria Il (BD Biosciences) cell sorter.
DAPI (BD Pharmingen) was used to exclude dead cells, and the following fluorochrome-conjugated antibodies
were used to negatively select for T cells (to avoid stimulation of gene expression by anti-CD3 antibodies):
Lineage 1: CD11c-FITC (B-ly6, BD Biosciences); CD14-FITC (M5E2, BD Biosciences); CD36-FITC (CB38, BD
Biosciences); CD33-FITC (HIM3-4, BD Biosciences); CD16-FITC (3G8, BD Biosciences)

Lineage 2. CD11b-PE (ICRF44, BD Biosciences); CD15-PE (HI98, BD Biosciences); CD34-PE (8G12, BD
Biosciences); CD56-PE (B159, BD Biosciences); CD123-PE (7G3, BD Biosciences); CD235a-PE (GA-R2, BD
Biosciences).
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Figure S1. Gating strategy for sorting T cells from bone marrow mononuclear cells. a, Example BMMC sample shown of
gating strategy used to isolate CD45RA*CD4"*, CD45RA'CD4*, CD45RA*CD8*, and CD45RA'CD8" T cell populations for
ATAC-seq. b, Example BMMC sample shown of gating strategy for negative enrichment of T (and B) cell populations used
for paired scRNA- and TCR- seq. Lineage 1 and 2 cocktails defined in text.

Library preparation for scRNA- and scTCR-seq

For BMMC samples B1-B46 (Extended Data Table 2), approximately 17,000 BMMCs (after dead cell removal)
were loaded across 2 lanes onto a 10x Genomics Chromium™ instrument (10x Genomics) according to the
manufacturer’s instructions. The scRNAseq libraries were processed using Chromium Single Cell 3’ Library &
Gel Bead v2 Kit (10x Genomics). Quality control for amplified cDNA libraries and final sequencing libraries
were performed using Bioanalyzer High Sensitivity DNA Kit (Agilent). scRNAseq libraries were normalized to
4nM concentration and pooled before loading onto lllumina sequencer. The pooled libraries were sequenced
on the lllumina HiSeq X or NovaSeq S4 platform. The sequencing data were demultiplexed and processed as
described below.
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For BMMC samples processed for scRNA- and sc-TCRseq (D1-D7; Suppl. Table 6), 17,000 cells were loaded
across two lanes onto a 10x Genomics Chromium™ instrument (10x Genomics) according to the
manufacturer’s instructions. The scRNAseq libraries were processed using Chromium™ single cell 5’ library &
gel bead kit and coupled scTCRseq libraries were obtained using Chromium™ single cell V(D)J enrichment kit
(human T cell) (10x Genomics). Quality control for amplified cDNA libraries and final sequencing libraries were
performed using Bioanalyzer High Sensitivity DNA Kit (Agilent). Both scRNAseq and scTCRseq libraries were
normalized to 4nM concentration and pooled in a volume ratio of 4:1. The pooled libraries were sequenced on
an lllumina NovaSeq S4 platform. The sequencing parameters were: Read 1 of 150bp, Read 2 of 150bp and
Index 1 of 8bp. The scRNA- and TCR-seq data were processed as described in Suppl. Note 4.

Library preparation for ATAC-seq

After FACS isolation of CD45RA'CD4*, CD45RA'CD4*, CD45RA'CD8", and CD45RACD8" T cell populations,
the Fast-ATAC protocol was then performed as previously described?. Briefly, fifty microliters of transposase
mixture (25 pl of 2x TD buffer, 2.5 ul of TDE1, 0.5 ul of 1% digitonin, and 22 yl of nuclease-free water)
(FC-121-1030, lllumina; G9441, Promega) was added to a cell pellet consisting of 10000-50000 cells and
incubated at 37°C for 30 minutes. Transposed DNA was purified using a MinElute Reaction Cleanup kit
(Qiagen), and purified DNA was eluted in 10 pl of elution buffer (10 mM Tris-HCI, pH 8). Libraries were
barcoded (Nextera Index Kit, lllumina), amplified with NEBNext High Fidelity PCR Mix (New England Biolabs),
and cleaned using a 1x volume of AMPure XP beads. Libraries were quantified using Agilent BioAnalyzer and
sequenced on the HiSeq High Output and NovaSeq lllumina Sequencers (25 bp, paired-end).

Supplementary Note 2: Single-cell RNA-seq data analysis

Preprocessing single-cell RNA-seq data

FASTQ files were preprocessed using the Sequence Quality Control (SEQC) bioinformatics pipeline® with
aligning reads to the hg38 genome and turning off the mitochondrial filter (using the option
--no-filter-mitochondrial-rna). Characteristics of samples and quality control (QC) metrics are
provided in Extended Data Table 2. In total, 381,462 total cells including 87,939 T cells (identified in the next
section) from the combination of 41 bone marrow (BM) samples passed SEQC QC metrics, with a median of
2548 UMIls/cell and 8735 cells/sample.

Constructing global single cell map of T cells

Identifying T cells. To select T cells, we first normalized all n=381K BM cells to median library size and
computed the log of normalized expression as log(0.1 +y) for each cell j=(1,...,n)where y; contains the

normalized expression of genes in cell j. To identify major cell types, we filtered genes expressed in less than
2% of cells (resulting in 9767 genes) and performed PCA on the log-transformed normalized expression. The
number of PCs was selected based on the knee-point (defined as minimum curvature radius) of eigenvalues.
Then cells were clustered by applying Phenograph* with the number of nearest neighbors set to 30, on the first
24 principal components (PCs), resulting in 94 clusters shown in Fig. S2.
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Figure S2. tSNE map of all transcriptomes from the leukemic microenvironment collected from 41 bone marrow samples
colored by Phenograph cluster (top left), DLI outcome (top middle) and timing (top right) and markers of major cell types
(bottom).

The normalized expression of {CD3D, CD3E} gene markers were averaged across cells in each Phenograph
cluster and clusters with a high average expression of CD3 (right tail of distribution across all clusters) were
selected as T cells, which consisted of 97,355 cells shown in Fig. S3.
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Figure S3. Histogram of expression of T cell markers across centroids of clusters (left) and subset of clusters selected as
T cells marked (right) in the same tSNE map coordinates as in Fig. S2. These cells were then merged and further filtered
for doublets and re-clustered as explained in the next sections for refined characterization of T cells.
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Biscuit normalizing and clustering. To construct a more refined map of T cells, we performed simultaneous
clustering and cluster-dependent normalization on raw counts for n=97,355 T cells using Biscuit>* . Using a
hierarchical Dirichlet process mixture model, Biscuit performs a cell-type dependent normalization on the count
- (1,,,d

matrix X =[x ,....,x, ] where each column X; ) contains the expression (number of unique mMRNA

molecules) of d genes in cell j, while simultaneously inferring robust subsets of cells with z; denoting
assignment of cell j to cluster k. Biscuit assumes that the log of counts /; = log(0.1 +x;) follow a multivariate
Normal distribution: l;|zj =k ~N(oy ,Bj 2. where .2, are the mean and covariance, respectively, of the
k-th mixture component (cluster), and scalars o;,f3; are cell-dependent scaling factors used for normalization.

We have previously shown that this cluster-dependent normalization removes batch effects while retaining
biological signal®. In particular, Biscuit helps retain biological processes that are entwined with library size. For
example in the case of immune cell activation, activated cells have a higher number of transcripts ®* leading
to higher total counts captured, hence variation due to real immune activation can be partially removed with
methods that normalize cells by library size, whereas Biscuit performs a more careful normalization of cells
conditioned on the cell state (captured by cluster assignment).

For faster inference, we used the implementation described in 3 (from

https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_2016) which deploys a conjugate prior for the
multivariate Gaussian, namely the Normal-inverse Wishart distribution for joint inference of cluster means and
covariances.

After fitting the model, we transform the data from l7 to y; in which the expression is corrected for cell-specific

factors ocj,Bj using a linear transformation )7] = Al; +b with A= \/IF, , b=(1-0,A) W, such that imputed

expression for cell j follows N(uw,,X,) and hence all cells assigned to the same cluster follow the same
distribution after correction.

Using Biscuit with 500 iterations; gene batch size set to 50, and alpha (dispersion parameter) set to 200, we
identified 65 unique clusters. This choice of parameters led to both relatively good mixing of samples (Fig. 1b
and Extended Data Fig. 1e), and distinct sets of differentially-expressed genes (Extended Data Fig. 1¢). Only
3 clusters were found to be exclusive to one single patient (all 3 in NR 5326), who was the only patient with
CML in blast crisis (Extended Data Fig. 1e, Extended Data Table 1).

Extended data Fig 1e shows the distribution of each cluster across clinical groups of R/NR and pre/post-DLI.
Prior to computing the distribution, the number of cells in each cluster was first normalized by the total number
of cells in each clinical group to account for imbalanced cell/’sample numbers. The size of bubbles in each
cluster is proportional to the distribution of normalized values and each cluster (column) sums to 100%.

Importantly, the interpretability of Biscuit enables the use of inferred parameters in downstream
characterization of clusters: The inferred cluster mean p, and its conjugate prior p; ~ N(ﬁ’,Z’) are used for
estimating differentially expressed genes as detailed in the Cluster Annotation section below. To ensure each
cluster is a legitimate cell population, we then scanned the clusters for doublets as explained below.

Removing doublets. Doublet cells were identified by applying DoubletDetection
(https://github.com/dpeerlab/DoubletDetection), using the Biscuit derived clusters, with 50 iterations and
p thresh=1le-6, voter thresh=0.8 followed by inspection of the co-occurrence of contradictory markers
(including T cell and B cell markers; T cell and myeloid markers, T cell and erythroid markers etc). With this
approach, 8.4% of cells were marked as doublets, which matches expectations given our cell loading
(described in Suppl. Note 1). This resulted in 87,939 cells in 43 T cell clusters that were not flagged as
doublets and retained for the remainder of the analysis.
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Visualization. The Biscuit-normalized data for the 87,939 cells are projected to 2D in Fig. 1b and also
expanded in Fig. S4 using tSNE ' on the first 18 PCs (identified based on knee-point of eigenvalues -

defined as min curvature radius).
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Figure S4. Expanded t-SNE projection of T cells (from Fig. 1b). Each dot represents a cell colored by cluster, patient ID,
clinical outcome and timing respectively

Cluster annotation. T cell clusters were annotated through: (1) identifying cell type signatures enriched in
each cluster (listed in Suppl. Table 4) by computing the expression of each signature (defined as average
expression across all genes in a signature) per cluster and comparing to all other clusters using a t-test with
p<0.1. The list of signatures compiled from literature are provided in Supplementary Table 4. The expression
of enriched cell type signatures are shown in Fig. 1¢c and Extended Data Fig. 1d; (2) differentially expressed
genes (DEGs) (Extended Data Fig. 1c, Extended Data Fig. 3a) were computed with t-test (p<0.01)
comparing inferred mean expression of a gene in each cluster M; (listed in Supplementary Table 2) to its
prior mean p’ which represents expression across the entire population of cells. Since Biscuit fits a
multivariate Gaussian mixture model to log-transformed data, the assumptions for a t-test are satisfied.
Extended Data Fig. 1c shows the specificity of most DEGs to clusters as a block diagonal structure. The
DEGs are listed in Supplementary Table 3.

The genesets derived from murine models of chronic viral infection'? were used for characterizing exhausted T
cell subsets (Fig. 2d) listed in Extended Data Table 3. The T., and T, score per cell was defined as
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normalized expression averaged across all genes in the geneset. Cell scores are aggregated by cluster in Fig.

2d.

For signatures related to T cell differentiation states (Fig. 1¢, top), we used genesets from Gattinoni et al.” To
consider both up-regulated and down-regulated genes, we defined the expression of these signatures as a
weighted sum of expression of genes in the geneset, with the weights being +1 or -1 for up-regulated and
down-regulated genes respectively. We replaced CD45R0O with the gene HNRNPLL gene which has been
shown to regulate alternative splicing of CD45".

Quantifying Diversity of T cell states

We evaluated if response to DLI was associated with a change in the number of distinct T cell transcriptional
states. We found a marked increase in the number of T cell clusters in post-DLI samples compared to matched
pre-DLI samples after controlling for cell number (t-test p-value <0.001). For this test, we corrected for
differences in the number of cells. We downsampled each clinical group (R/NR, pre-/post-DLI, control) to 5000
cells by uniformly sampling with replacement from each group and clustering using Phenograph (using 10 PCs,
K=30). This process was repeated 20 times and the number of clusters were compared with a t-test.

However, because T cell states are known to reside on continuous trajectories explaining the majority of
variation®'>'® we used the Phenotypic Volume metric devised in 3 to compare the global transcriptional diversity
between clinical groups and before/after DLI.

Phenotypic volume (V) for a subpopulation of cells is defined as the determinant of the gene expression
covariance matrix for that subpopulation, which considers covariance between all gene pairs in addition to their
variance. The covariance matrix can be written as =*? and its pseudo-determinant det (Z) is equal to the
volume of a parallelepiped spanned by vectors of the covariance matrix ' and can be computed as the product
of nonzero eigenvalues of the covariance matrix. To improve sensitivity to noise and avoid multiplication of
small nonzero eigenvalues, we compute the log of phenotypic volume which is the sum of log of non-zero
eigenvalues:

E E
log (V) =log(det(X)) =1log([1h,) =Y log().) for A, >0 representing the e-th non-zero eigenvalue.

e=1 e=1

To correct for differences in number of cells, we downsampled each clinical group (R/NR, pre-/post-DLI,
control) to 5000 cells by uniformly sampling with replacement from each group and computing the phenotypic
volume. Only time points immediately pre-DLI and at remission post DLI (in Rs) were considered in this
analysis. Patient 5321 was excluded in this analysis, as it did not have any post-DLI samples. Table S1 shows
the list of samples used in this analysis.

Patient ID Outcome Time scRNA-seq Sample ID
5309 Responder Pre B05
5309 Responder Post B06
5310 Responder Pre BO1
5310 Responder Post B02
5311 Responder Pre B09
5311 Responder Post B12
5312 Responder Pre B21
5312 Responder Post B22
5314 Responder Pre B25
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5314 Responder Post B26
5317 Responder Pre B23
5317 Responder Post B24
5318 Non-Responder Pre B27
5318 Non-Responder Post B28
5322 Non-Responder Pre B03
5322 Non-Responder Post B04
5324 Non-Responder Pre BO7
5324 Non-Responder Post B08
5325 Non-Responder Pre B17
5325 Non-Responder Post B18
5326 Non-Responder Pre B19
5326 Non-Responder Post B20

Table S1. List of scRNA-seq sample IDs from baseline pre-DLI and the remission timepoint following DLI.

This process was repeated 50 times to achieve a range summarized in boxplots in Fig. 2a, Extended Data Fig
3b showing statistically significant expansion of volume after DLI in both Rs and NRs. Importantly, the
phenotypic volume is higher in Rs compared to NRs in particular in baseline (pre-DLI). Both R and NR cases
exhibited increases in phenotypic volume induced by DLI (log fold change=104.6, p<10®). At both pre- and
post-DLI timepoints, phenotypic volumes in R cases were higher than that of NR cases, (mean R-pre vs mean
NR-pre, log-fold change = 199.1, p<10®; mean R-post vs mean NR-post, log-fold change = 49.3, p=1.5x10®),
but a far greater increase in phenotypic volume was observed within NRs than within R’s (log-fold change
[NR-post vs pre] = 203.8 vs log fold change [R-post vs pre) = 54.1; p<107].

Comparing the pre-DLI volume to that in non-relapse control samples in Extended Data Fig 3b reveals greater
diversity of T cells in the leukemic microenvironment (in R/NR pre-DLI samples) than in non-relapse control
samples which are leukemia-free. This increase in transcriptional diversity is similar to the expansion of
phenotypic volume of T cells reported in the breast tumor microenvironment compared to normal tumor-free
matched tissue®.

Common Factor Analysis

We aimed to decompose the T cells to uncover components potentially corresponding to response/resistance.
The samples in Table S1 were used in this analysis. To correct for differences in numbers of cells across
samples, we first downsampled T cells from each sample to 1000 cells, resulting in a total of 20,682 cells.

Applying PCA or diffusion component analysis'®'® showed that the top linear/nonlinear components explaining
most of the variance across T cells are not highly correlated with response (Extended data Fig. 2a). Instead,
we used Common Factor Analysis (CFA), a method that assumes there are underlying latent (unknown)
factors that explain shared variance between cells, and thus explains co-variation of cells Extended Data Fig.
2b illustrates an example where cells are varying along two trajectories that could be related to different gene
programs, e.g. T cell activation and exhaustion. If these trajectories are correlated but not colinear,
dimensionality reductions methods that maximize explained variance will capture the two trajectories. CFA
however will seek underlying (latent) factors that explain the shared variance between the two trajectories,
ignoring the portion of variance unique to cells. Our assumption is that response or resistance might involve
underlying latent factors associated with multiple distinct processes that might co-vary across the cells. Thus,
common factors identified through CFA could potentially be related to response or resistance mechanisms
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affecting the majority of cells through multiple pathways (Extended data Fig. 2b). A brief description of CFA
follows:

Shared factors are denoted as f,, f,, ....f,, for expression of n cells denoted with x, ,..., x,:

xXp =W+ gfy o+ e+ S+ E

Xn=W,+ L f1 +1ofr+ o+ Linf,, + &
CFA assumes that cov(fi.f;) =0 and cov(e ,€)=0 for i#jand cov(€ ..f;)=0.

Common factors were extracted using factanal function in R
(https://www.rdocumentation.org/packages/FAiR/versions/0.2-0/topics/Factanal) with the method of maximum
likelihood and “varimax” rotation. Setting the number of factors to two, a chi-square test rejected the
hypothesis of model fit (p<0.05). Hence, we increased the number of factors to three which indicated that the
hypothesis of perfect fit cannot be rejected. The first three common factors (Fig. 1d.) explain 67% of variance
and separate groups of T cells enriched in Rs or NRs. To annotate the factors, we correlated the loadings of
cells on each factor with expression of gene signatures. Fig. 2e shows gene signatures with the highest
correlations with factors 1-3. Extended Data Fig. 2d shows that the signatures enriched for factors 2 and 3 are
mostly non-overlapping, thus suggesting the involvement of different T cell dysfunction mechanisms in DLI
resistance. Increasing the number of common factors to 4 and 5, we did not find any gene signatures highly
correlated with the additional factors and factor 4 showed weak correlation with Hypoxia. We repeated this
analysis on multiple downsampled sets and achieved the same conclusions with regard to signatures most
correlated with factors.

Identifying T cell clusters enriched pre-therapy

We aimed to find any pre-DLI T cell states that are differentially enriched between Rs and NRs, that could
potentially be predictive of response or resistance. Since different samples had differences in the total number
of cells collected, this impacted our resolution of detecting a T cell state (cluster) in a patient. We therefore
accounted for this uncertainty using a weighted one-sided t-test (using
statsmodels.stats.weightstats.ttest ind in Python). Within each clinical group (Rs or NRs), the

P
weight of the i-th patient was given by: n, =P/ n;
J=1

with n; denoting total number of T cells in patient i pre-DLI and P being the total number of patients in that
group (R or NR).

We also corrected the p-values for the size of clusters using a bootstrapping technique: For each cluster k
with size u, , we randomly select u, number of cells from the pool of all (R or NR) samples, and compute the
p-value using the above test. Repeating this for 2000 iterations, we achieve a null hypothesis for p-values. The
actual p-value for the cluster is then compared to the null, resulting in an empirical FDR (g-value) calculation.
Applying this to pre-DLI samples shown in Table S1, we found clusters 4, 14, 21, and 27 were differentially
enriched consistently across R patients compared to NRs (FDR<0.1) as shown in Fig. 2b. These clusters are
enriched for T, gene signatures shown in Fig. 2d,e.

Aligned with our global observation with common factor analysis, we did not find any clusters to be differentially
enriched consistently across NR patients compared to Rs, and we rather found multiple clusters each mostly
present in one NR patient (Extended data Fig. 1e) suggesting that NR patients might be driven by different
resistance mechanisms (Fig 1e, Extended data Fig. 2d).
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Identifying T cell dynamics associated with therapy outcome

We used a weighted t-test similar to the previous section to compare the change in proportion of each cluster
from pre-DLI to post-DLI. We performed a weighted one-sided t-test, summing the total cells in the pre- and
post-DLI samples to determine the weights. Specifically, the expression we used for weights was:

P
(i, pre + i posy) * P/ ( Zl (1 pre + 1 pos))
]:

Where n, ,,, represents total number of cells in the pre-DLI sample of /-th patient and n

total number of cells in the post-DLI sample of i-th patient.

i.post TEPresents the

Compared to the test in the previous section which was performed on cluster proportions at one time-point
(pre-DLI), this test involves computing the change in proportion from pre-DLI to post-DLI. Hence, the variance
in the variable being tested is higher while the sample size (in this case number of patients) remains the same,
meaning we have lower statistical power. In fact, across paired, pre- to post-DLI timepoints shown in Table S1,
we found no single cluster to consistently expand or contract over time in Rs or NRs using the above weighted
t-test. Thus, to improve our statistical power in detecting consistent changes in clusters over time, we
combined clusters that are transcriptionally most similar as described below.

Defining meta-clusters. We computed the pairwise distance between each pair of clusters by comparing the
distribution of expression of each gene across all cells in one cluster (from Biscuit normalized data) and
comparing it to the distribution in another cluster using the Bhattacharyya distance metric ?°, which is effective
in pairwise comparisons of distributions. The advantage of computing cluster distances based on distribution is
that we go beyond cluster means and also account for within-cluster variability, e.g. two clusters can have a
similar mean expression but different variance. The total distance is then summarized across all genes,
resulting in the distance matrix in Extended Data Fig. 3c. We then merged clusters that were most similar,
resulting in 8 meta-clusters shown with white boxes.

Identifying expanding or contracting meta-clusters. By applying the weighted t-test above, we identified
two metaclusters consistently expanded and one consistently contracted after DLI therapy (weighted t-test
p<0.1), only in Rs, shown in Fig. 2c. The two expanding meta-clusters (M1 consisting of clusters {19,28} and
M2 consisting of clusters {5,11,23}) are enriched for the Precursor Exhausted T cell gene signature T, shown
in violinplots in Fig. 2d and Fig. S5.

Interestingly, one expanding cluster (19 in M1) is also enriched in the non-relapse control samples (Extended
Data Fig 1e), suggesting a transformation to normal T cell states after DLI in Rs. It should be noted that no
meta-clusters or clusters consistently changed (expanding or contracting) in NRs, mirroring the Anna Karenina
principle?'.
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Figure S5. Expansion of Fig. 2d including all cluster IDs. Violin plots showing density of Ty (top) or Tpgy (bottom) viral
signature scores? across T cells grouped by cluster. Clusters are ordered by median score. Colored violins refer to
clusters enriched in pre-DLI Rs (dark blue) or expanding in post-DLI Rs (light blue).

Hierarchical Gaussian Process regression model

To study the dynamics of meta-clusters and tumor burden over time, we used a Gaussian Process (GP) model.
The advantages of a GP model are (1) it is nonparametric, hence we do not assume a functional form over
time and rather learn a distribution over all functions that explain temporal dynamics; (2) we account for
dependencies between all pairs of time points which tackles the problem of non-uniform distribution of
time-points in our cohort (Fig. 1a), for example in patient 5311, we have time-points within 19 days of each
other, whereas in patient 5314 we have time-points 2.8 years (1059-29 days) apart from each other post-DLI
and including them in the study can elucidate long-term sustainability of T cell states; (3) the probabilistic
framework is flexible and we can therefore add priors representing uncertainty in measurements as explained
below.

Tumor burden dynamics. We fit two GP regression models (be, fb MRy each with an Radial Basis Function

(RBF) kernel?? , to model the temporal changes in tumor burden in each outcome group (R or NR) separately
in response to DLI therapy:

b =R+
€~ N(0,0¢2)
5 t~N©,K,
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K (1) = cov(£,5 ). 1,5 @) ) = o 2expl— (1F = 17 /(20)]

where b,.R is tumor burden (see definition in section “Cytogenetic and molecular information on CML tumor
burden” in Suppl. Note 1) in sample i in Rs and tiR is time relative to DLI therapy in sample i of Rs. Similarly
for NR samples:

NR NR,, NR
b" =f, @)+ €

cov(f,"F @&V, 6N = o2expl— (Y - 1V /20

1

We optimized o, with the gradient-based algorithm Adam to maximize the log likelihood of our observed data.
We set 0.2 =10 and A =285 (which is median distance between pairs of points). Results were robust to the
choice of these parameters as shown in the next section.

Prior to regression, the mean tumor burden in each clinical group was subtracted so that our target variable b,

would have zero mean, consistent with the distribution over f,“® . This resulted in one model inferred for
tumor burden in Rs (be) and one model for tumor burden in NRs (beR) shown in grey lines (mean) and
shaded grey area (+/-1 standard deviation) in Fig. 2f,g. The data points for tumor burden are shown in grey
crosses.

Temporal dynamics of T cell clusters. Similarly, we aimed to use a GP regression model to track the
temporal dynamics of proportions of T cell meta-clusters in each outcome group. In other words, we learn two
models fka, fpkNR on the proportion of each meta-cluster k£ over time separately in Rs and in NRs
respectively. The proportion of a meta-cluster k in a sample i is defined as v,, = m,, /n; with m,, being the
number of cells in meta-cluster k in sample i and n; defined as sample size, i.e. total number of T cells in
sample i.

Since there were significant differences in the size of samples and meta-clusters, we aimed to account for the
uncertainty in detecting a metacluster in each sample (Extended Data Fig. 3c). For example, if metacluster k
is not observed in two samples i, and i, such that: v, , =v; , =0, and sample i, contains n; =10000 total

cells compared to n;, = 1000 cells in sample i,, we have more certainty about the absence of metacluster &
(representing a T cell state) in sample i, than in sample i, and the true value for Vi could be missing or
underestimated due to lack of statistical power.

To build this uncertainty into the probabilistic framework, we use a Gaussian process regression model that
accounts for heteroscedastic noise. The measurement precision (3, ) has a conjugate Gamma prior, whose
mean is inversely proportional to the number of T cells measured in a given sample. Specifically we set the
shape parameter of the prior distribution for 3, as r =1, and use the inverse of the number of cells collected
for sample i as the rate parameter 0. This places more confidence on samples with larger sizes. For this
model we use the RBF kernel K, with entries K, = k(;.1;) and scale parameter o, set to the empirical

variance of the response variable. l
k(t.1,) = osexpl— (t; —1,)*/(W)]
folt ~NO, K)
The full generative model is as follows:
v, = fp(t,.) + €
Vil fput B~ N(fis B )

where:

12


https://doi.org/10.1101/2020.07.08.194332
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.194332; this version posted July 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0. = 1/n;
Loz
I?)i ~ r(raei)

As with standard GP regression, after we fit our model to data r and v , we use the following joint marginal
distribution to estimate the expected v* for an input . Specifically, let k" = k(z, ,#') be a vector representing
the kernel function computed between each input time point ¢, in our training data, and our out of sample point
£, and let ¢* = k(v*,v*) be the kernel function computed on the out-of-sample time point. The joint distribution
between our training data v and the new point v* is then as follows:

v o K kY,
~ N\ . - 1
[u"] VIO [I\"“r t-"] ’

Because this is a multivariate normal distribution, we can use this distribution to compute the conditional
distribution over fp* given our training data and ¢ :

fp*ll‘*’ [’V~N(MP,KP)
where the predicted mean and covariance are defined as follows:
w,=k Ky
. o1, T
K,=c"—k K 'k

The plate model for this hierarchical GP model is shown in Extended Data Fig. 3f. We implemented this
model in the probabilistic programming language pyro? (https://pyro.ai/) and inferred the weights and temporal
function with Stochastic Variational Inference, which computes an efficient approximation to the posterior by
taking stochastic gradient steps to maximize the evidence lower bound (ELBO)*. The code for our hierarchical
GP model is available at: https://github.com/dpeerlab/dli_gpr.

We first benchmarked this model on data simulated from a sinusoidal process y = Ssin(x) (shown as a grey line
below) with two different noise variances representing levels of uncertainty in measurement: y, = Ssin(x,) + €,
with €, ~N(0,1) (data points shown in blue) and y, = 5sin(x,) + &, with €, ~N(0,10) (data points shown in
red) in Fig. S6 (top). Please note the y notation here is not to be confused with expression in the Biscuit or
Symphony models.

—— noiseless x X %
x low variance
107 x high variance
X
X,
X X
0 X
X %
Yy X X%
X x
_10.
x x x
-20+ %
x
T T T T T
-4 -2 0 2 4
X
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Figure S6. Top: Data simulated from GPR models built from a sinusoidal wave (grey line) with two different levels of noise
variance. The data points are shown as red and blue crosses. Bottom: Standard GPR (left) and proposed hierarchical
GPR model (right) fit to the simulated data. In the right figure, size of data points is inversely proportional to variance of
generative model.

We combined these two datasets and fit the above hierarchical GPR model and compared it to the fit of a
standard GPR (without prior) showing that the hierarchical model performs better in reconstructing the
underlying sinusoidal function while a standard GPR model can overfit the noisy portion of data as shown in
Fig. S6 (bottom).

For quantitative comparison of the two models, we computed the log likelihood of unobserved noiseless
simulated data along with the R2 score of the noiseless data vs. mean of the conditional distribution (Table S2).

Model Negative log likelihood R2 score
Hierarchical GPR 193.24 0.801
Standard GPR 336.68 0.412

Table S2. Performance of hierarchical GP on simulated data compared to standard GP regression.

We then applied the hierarchical GPR mode to all meta-clusters in both Rs and NRs (Fig 2f,g) and use (T,)
metacluster M3 in Rs as an illustration. As reference, we compared the fit of the hierarchical model to a
standard (vanilla) GP model (Extended Data Fig 3g). The blue dots show the actual data points with the size
of dots proportional to sample size n,. The blue line and shaded area shows mean and standard deviation of

prE* ’
Interestingly, the inferred hierarchical GP model shows that the T, meta-cluster tracks the tumor burden
dynamics. The strong similarity between the inferred fpm* and f, in Rsis quantified by correlation, i.e. cross

correlation at zero lag. M1 and M2 (T,.,) meta-clusters did not show a correlation with tumor burden (Table S3
and S4 below).

Metacluster Correlation (Pearson R) at lag = 0 for Rs
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M1 -0.7436
M2 -0.2633
M3 0.9852

Table S3. Similarity between inferred GP model for metacluster proportion and model for tumor burden in Rs

We found that the dynamics of M3 do not follow tumor burden in NRs (Table S4 below).

Metacluster Correlation (Pearson R) at lag = 0 for NR
M1 0.6907
M2 -0.7549
M3 -0.7009

Table S4. Similarity between inferred GP model for metacluster proportion and model for tumor burden in NRs

Additionally, the expansion of T, clusters post-DLI is durable in Rs and nonexistent in NRs. Results were
robust to choice of of o, and A. As shown in Fig. S7, similar fit is achieved on a range of values. This example

shows tumor burden and proportion of T, metacluster M3 in non-responders.
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Figure S7. Inferred hierarchical GP models showing robustness to choice of A ; each dot is a sample and size of dots are
proportional to total number of cells in the sample; x-axis is time from DLI and y-axis is tumor burden (left) and proportion

of cells in metacluster M3 (right) from each sample in NRs.
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To quantify the relative timing of T, and T, meta-clusters, we computed the cross-correlation between fp*
and f, shown as purple bars in Fig. 2f (middle row). The max cross-correlation between M3 and tumor burden
in Rs (max{prE* *fp with x indicating cross-correlation) is at 75 days which is 1/4 of median time interval

between samples (marked with a red line in Fig. 2f left middle; t-statistic=8.58, p=0) indicating they are in sync,
whereas for the T,., meta-clusters, max{ fm** f,,k}occurs at 703 days (M1: t-statistic=2.05, p=0.02; M2:

t-statistic=0.72, p=0.23) indicating a significant lag compared to the T., M3 meta-cluster and tumor burden.

Supplementary Note 3: Integration of single-cell RNA-seq and ATAC-seq

Preprocessing ATAC-seq data

Bulk ATAC-seq data for each sorted subset of T cells from each bone marrow sample was processed using the
automated end-to-end quality control (QC) and processing pipeline
(https://github.com/kundajelab/atac_dnase_pipelines) from the ENCODE consortium with configuration
SPECIES=hg38. Alignment is performed using Bowtie2®® and peak calling and normalization is done with
MACS2 %. MACS2 normalization involves comparing ATAC signal to local background noise using a Poisson
test?®®?’. The full list of samples and QC metrics for ATAC-seq data are provided in Suppl. Table 5.

Correlation between accessibility profiles

We first aimed to study the potential impact of DLI in the global epigenetic landscape of T cells. We thus
compared ATAC-seq samples from the same time-points as in Table S1, with ATAC-seq ID listed below in
Table S5. To compare chromatin accessibility between pairs of samples, we first created a consensus peak set
similar to Corces et al 2016% as follows: Peak summits were extended to 150bp windows and a set of
maximally non-overlapping peaks was generated across all samples, resulting in 133,968 peaks for CD8+
CD45RO+ and 169,740 peaks for CD8+ CD45RA+ samples. Then Pearson correlation was computed
between all pairs of 14 samples in each subset, and then correlations were averaged by pairs of clinical groups
(Fig. 3b).

ATAC-seq sample ID for ATAC-seq sample ID for
Patient Outcome Time CD8 CD45RA sorted T cells [CD8 CD45RA sorted T cells
5309 Responder Pre C44 C45
5309 Responder Post n/a n/a
5310 Responder Pre C31 C32
5310 Responder Post C35 C36
5311 Responder Pre C63 C66
5311 Responder Post C79 C81
5312 Responder Pre C105, C106 n/a
5312 Responder Post n/a n/a
5314 Responder Pre n/a n/a
5314 Responder Post n/a C130
5317 Responder Pre n/a C114
5317 Responder Post C118 C119
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5318 Non-Responder Pre C133,C134 n/a
5318 Non-Responder Post n/a C156
5322 Non-Responder Pre C38 C39
5322 Non-Responder Post C41 C42
5324 Non-Responder Pre C48 C49
5324 Non-Responder Post C54 C56
5325 Non-Responder Pre C9o1 C92
5325 Non-Responder Post C95 n/a
5326 Non-Responder Pre n/a n/a
5326 Non-Responder Post n/a n/a

Table S5. List of ATAC-seq samples from IDs from baseline pre-DLI and the remission timepoint following DLI; n/a
denotes low sample quality or excluded based on data preprocessing QC.

Symphony model for cell type-specific gene regulatory networks

To study the underlying circuitry of distinct clusters, we developed a novel integrative model named
Symphony?, for inferring gene regulatory networks (GRNs) specific to subsets of cells.

Gene regulatory networks (GRNs) are directed weighted networks between genes depicting the extent to
which a regulator gene influences (activation or repression) the expression of each of its downstream target
genes. Symphony estimates these networks in each subset by extracting co-expression patterns between TFs
and target genes from scRNA-seq and combining them with the presence of TF motifs within regions of
chromatin accessibility in the vicinity of targets as derived from ATAC-seq. This is accomplished in Symphony
by constructing a generative model that mimics transcriptional regulation illustrated in Extended Data Fig 4b.

Since the ATAC-seq data in this study measures accessibility summarized across all cells in a sorted
compartment (e.g. CD8+CD45R0O+) each consisting of multiple T, or T, clusters, we also leveraged the
deconvolution capability of Symphony: bulk epigenetic data is deconvolved into cluster-specific epigenetic
profiles. The deconvolved profiles are then used to explain gene co-expression patterns through GRNs, and
thus resolve direct links from indirect links in the network (Extended Data Fig 4b).

Symphony? is an extension of the Biscuit>* model which clusters cells while simultaneously distinguishing
biological heterogeneity from technical noise in single-cell gene expression data (also explained in Suppl.
Note 2). Symphony extends this model by replacing the hyperparameter for gene co-expression in Biscuit with
a generative process exclusively driven by epigenetic data (collected from the same sample or a sample with
similar composition of cell types). Thus, Symphony models the biological mechanism responsible for the
observed gene co-expressions per cell type.

The model also simultaneously deconvolves the bulk epigenetic profiles (which denote accessible DNA) into
cell-type (cluster)-specific accessible regions (Extended Data Fig 4b) within a unified statistical framework.
Within these regions, the binding of transcription factors (TF associated with open regions based on known
DNA binding motifs) impacts the expression of nearby genes, such that accessible regions may help explain
gene-gene interactions.

Given the observed bulk chromatin accessibility profiles and single-cell RNA-seq count matrix, the model finds
a deconvolution of the bulk accessibility data into cluster-specific accessibility profiles that are best able to
explain the gene-gene relationships observed in scRNA-seq. We note that Symphony can infer whether a TF
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impacts a target gene without requiring epigenetic evidence as well, which facilitates inferring the regulatory
influence of the many TFs (e.g. TOX) for which a binding motif is unknown.

Symphony input, output and model specification are provided below:

Input data to Symphony. The observed paired datasets are:

WXr

(1) Epigenetic data measured with ATAC-seq®, denoted as C""' = [¢)s s €y v ¢;] Where ¢, € R" is
epigenetic data for one patient (as replicate), containing accessibility (quantified as peak height) in genomic
regions m =[1,..., w] (identified from MACS2%).

(2) Single-cell RNA-seq data Y =[y;,....,y,] where y; (-4 denotes log-transformed normalized single-cell
expression data for cell j with d genes.

Symphony output. The main latent variables being estimated (Extended Data Fig 4b) are:

(1) Epigenetic profile for each cluster k represented as pke§)‘t+w which contains estimated genome
accessibility in w genomic regions.

(2) Gene Regulatory Network (GRN) represented as R, for each cluster k. R,{dxd

is an asymmetric matrix
with nonzero entries Rk“’b 40 if gene b is predicted to be regulated by gene «. Positive and negative values
for Rk“’b suggest activation and repression respectively.

Model details. These latent parameters are estimated simultaneously in an integrative model with three
components explained below:

Epigenetic model. Bulk epigenetic profiles (c,) are assumed to be represented as a weighted sum of
cluster-specific epigenetic profiles (p, ) such that:

¢ |pk,3'lik ~ N(%Tﬂkpk,?;l)
where the weights =, represent the proportion of clusters in the sample. This assumption is validated in ?®
using data on PBMCs with ground truth deconvolved profiles.
We set a Gamma prior for accessibility: p, ~ Gamma(n,A) to ensure a positive domain.

GRN model. We assume a regulatory link is dependent on genome accessibility as well as motif information
within an accessible region. Specifically, a genomic region m in C is mapped to an interaction between genes
a,b in Y with a predefined function g(a,b) = m. We also define M?* based on prior knowledge: M,, =1 ifthe

motif sequence for gene « exists in region m in the vicinity of gene b, suggesting a potential regulatory
interaction from gene a to gene b . Motifs were scanned using FIMO® in this study.

We thus model R,*’ as:
Rka,b - N(Sa’bMa’bpkg(a’b),X)

Where Sis a sign indicator representing activation or repression set according to the sign of empirical
covariance:

D sign(Z’ aby

> % s an empirical prior set to the covariance between genes a,b across all cells in the scRNA-seq data.
The variance }allows for R,*” to have non-zero value, even when M, =0.

Expression _model. Similar to Biscuit*®, Symphony assumes that log-transformed normalized single-cell
expression data follows a multivariate Normal distribution:

- (1,,, N
v Pz =k~ NQy . Z)
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where z; denotes the assignment of cell j to cluster &k modeled as:
7| ~ Mult(z;|m,)

Since the single cell expression data was already normalized and clustered with Biscuit as explained in Suppl.
Note 2, we did not use the clustering feature of Symphony and instead fixed the assignments (z;) of cells to
clusters as assigned by Biscuit; the proportions m, are thus also fixed. The full normalized expression matrix
Y =[y;,.....y, ] (output from Biscuit) is thus used as the second input to Symphony in this case. However, as
a more general tool Symphony is also able to successfully cluster de-novo as demonstrated in simulated
data®.

The parameters ,,%, are the mean and covariance, respectively, of the k-th cluster. We define the prior for
W, in Symphony as follows:

e ~ N, Z)
where o’ is set to the empirical mean expression across all cells and X’ was set to 7 (identity) in this study.

Importantly, the covariance in observed gene expression is related to a graph power of the regulatory network,
capturing the propagated impact of regulation in the network (indirect regulation) as depicted in Fig. S8 below.
Specifically, co-expressed in each cluster is modeled as:

5 IR, ~ Wishart((R, +R,")*.y)

While using a Wishart instead of Inverse Wishart is not conjugate, this is valid as both distributions satisfy the
positive semi-definite requirements for priors on the covariance matrix.

Ry Ry + Ry (Rx+Rp)’
Directed Network Undirected Network Undirected Network
Direct Interactions Only Direct Interactions Only Indirect and Direct Interactions
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Figure S8. Symphony captures direct and indirect regulation. The impact of regulation is propagated through the network
up to path length of two and is reflected in covariance between indirectly connected genes?.

The plate model for Symphony used in this study is shown below in Fig. S9.
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Figure S9. Plate model for Symphony? with fixed cluster assignments used in this study

Inference, approximations and scalable implementation. An EM-VI inference procedure was presented for
Symphony in %. We also showed the performance of Symphony on well-characterized peripheral blood
mononuclear cells (PBMCs), and significant improvement over other deconvolution methods?. In this study,
given the complexity of the model and size of data, we used a scalable implementation of Symphony in the
probabilistic programming language Edward®'. This implementation in Edward is provided in
https://github.com/dpeerlab/Symphony with input data for group 1 accessible for reviewers.

The use of variational algorithms in Edward®' allows for fast approximations of the posterior for large
gene-by-gene matrices including GRNs and covariances per cluster, and scales well to additional cells and
ATAC-seq replicates. Setting constraints on covariance matrices of a multivariate normal distribution are
difficult to enforce in the optimization setting of variational inference. Thus, to avoid non-singularity issues
during optimization, we define the Wishart distribution in Edward using the Bartlett Decomposition, rather than
the built-in Wishart function of tensorflow, which allows us to more easily define variational parameters.

Specifically, we replace the sampling of covariance matrices X, |R, ~ Wishart with a generative model
constructed from univariate chi-squared distributions and normal distributions, which can be shown to produce
a valid sample from the Wishart distribution®2. Given L, as a cholesky factor of the prior (R, +R,")*, we
sample the cluster-specific covariance as follows:

where A, is a lower triangular matrix whose diagonal elements are composed of y?random variables with
vy —i +1 degrees of freedom, where i indexes the rows of A,, and the off-diagonal elements in the lower
triangle are independent normal distributions. Hence each X, is a positive semi-definite matrix centered at
L,.L," or equivalently (R,+R,")*. In this setting, we define variational distributions corresponding to the
dummy variables h ~ chi squared and v ~ Normal , as opposed to defining a matrix variate distribution which,
during the course of optimization, must fit all the constraints of valid covariance matrices.

Still, in the Edward implementation, we observed that the Barlett product often produced matrices which are
not positive semi-definite due to numerical instability, and hence did not generate a valid covariance matrix. As
such, we approximated the mean of X, with the highly-related (unitarily similar) matrix LkTLk, which we
ensured produced a posterior in covariance which is highly correlated with its mean derived from the posterior
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GRNs (minimum correlation r=0.745 across all groups in this paper). For additional speed, the cholesky factor was
computed from Gram matrix (R, +R,’)* using the QR decomposition of (R, +R,") where R'=L," given

In addition to the use of the Bartlett Decomposition, the Edward version of Symphony replaces the standard
Wishart with a scaled Wishart for added flexibility of the model in the variational inference case. The scaled
Wishart necessitates addition of a latent parameter per cluster o, , such that X' ~ Wishart and 0, ~ Normal
and X, = A2, 'A, where diag(A,) =9, .

Addition of the normal distribution above to the generative process infuses flexibility to the Wishart, whose
variance is usually defined by a single parameter (degrees of freedom®). In addition, the resulting matrix will
have a diagonal scaled by &, 2 hence allowing better fit to the empirical per-gene variances which are not

captured directly by the regulatory model driving the prior for covariances. Off-diagonal elements are scaled by
9, 0, , a transformation which decouples the correlation structure embedded in the off-diagonal elements from

the scaling of the diagonal. Specifically, correlations between genes in the original matrix =’ are encoded as
>, ;/0'.0"; . After scaling, &'s in the numerator and denominator cancel, hence allowing the overall structure to

be maintained under any arbitrary scaling of per-gene variances to fit the empirical data per cluster.

We note that with the above approximations, the constraint on the sign of R, is not always enforced to be the
same as X'. Thus, we have more confidence in the inferred strength of regulation (magnitude of R, ). The
estimated regulatory strength is used to identify master regulators in Fig. 3¢ (as explained in section “master
regulators” below). We also show the robustness of inferred regulatory strength in the section “robustness
analysis” below.

Guide for choice of parameters. The variational inference implementation of Symphony requires choice of
several hyperparameters. By default, priors on cluster mean expression are set with empirical means across
the cells in that cluster as explained above, and shape and rate parameters for the Gamma prior on peak
heights are set as 4.5 and 1 respectively for a relatively uninformative prior. Other parameters, particularly
those controlling the variance of distributions in the generative model, are user-defined and should be tuned to
each dataset.

As Symphony is designed to manage a trade-off between fitting to expression covariance and chromatin
accessibility in the posterior distribution over GRNs, the choice of variance parameter on the prior distribution
for each R, denoted by A, as well as the degrees of freedom in Wishart linking R, to X, denoted by vy, can
be chosen to prioritize fit to each type of data. To inform the choice of these parameters, we recommend
setting these parameters with small values and checking the empirical fit of the posterior to both data types.
For example, the parameter settings used in this study (A =0.005, vy =d+ 1 where d is the number of genes)
ensured strong correlation of posterior GRNs with both the inferred peak heights, which in turn associated
strongly with the bulk accessibility data, and further with the posterior covariance which itself associated with
the empirical covariance. We also track these correlations over inference to ensure they increase over
iterations. Details can be found in https://github.com/dpeerlab/Symphony.

ATAC-seq samples used in Symphony. Prior to running Symphony, T, and T, clusters that fell in the same
sort compartment of CD4 or CD8, CD45RA or CD45RO0O were grouped together as listed in Table S6 below. Fig
3a and Extended Data Fig 4a show ATAC-seq accessibility profiles for these samples (full list of samples and
QC metrics are provided in Suppl. Table 5). Bigwig files were loaded to IGV** to visualize normalized
accessibility signal with differential accessibility identified with DESeq2%®.

Symphony Enriched Enriched exhausted ATAC-seq sample
deconvolution group = exhaustion state clusters cell type ID
1 T EX 14,27 CD8 CD45R0O C149
1 T EX 14,27 CD8 CD45RO C156
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1 T _EX 14,27 CD8 CD45R0O c45
1 T_EX 14,27 CD8 CD45R0O C66
1 T EX 14,27 CD8 CD45R0O C75
2 T_EX M3 (4,7,3,22) CD8 CD45RA C70
2 T _EX M3 (4,7,3,22) CD8 CD45RA C171
2 T _EX M3 (4,7,3,22) CD8 CD45RA C167
2 T _EX M3 (4,7,3,22) CD8 CD45RA C144
2 T EX M3 (4,7,3,22) CD8 CD45RA C139
2 T _EX M3 (4,7,3,22) CD8 CD45RA C106
3 P_EX M2 (5,11,23) CD8 CD45R0O C39
3 P_EX M2 (5,11,23) CD8 CD45R0O C36
3 P_EX M2 (5,11,23) CD8 CD45R0O C156
3 P_EX M2 (5,11,23) CD8 CD45R0O C164
3 P_EX M2 (5,11,23) CD8 CD45R0O C168
4 P_EX M2 (5,11,23) CD4 CD45RO C37
4 P_EX M2 (5,11,23) CD4 CD45R0O C34
4 P_EX M2 (5,11,23) CD4 CD45R0O c127
4 P_EX M2 (5,11,23) CD4 CD45R0O C158
4 P_EX M2 (5,11,23) CD4 CD45R0O C162
5 P_EX M1 (19,28) CD8 CD45RA C41
5 P_EX M1 (19,28) CD8 CD45RA C79
5 P_EX M1 (19,28) CD8 CD45RA c118
5 P_EX M1 (19,28) CD8 CD45RA C35
6 P_EX M1 (19,28) CD4 CD45RA C76
6 P_EX M1 (19,28) CD4 CD45RA c33
6 P_EX M1 (19,28) CD4 CD45RA C116

Table S6. Groups of ATAC-seq samples used for deconvolution of accessibility profiles in Symphony

In each group 1-6 listed in Table S6, scRNA-seq data and ATAC-seq data from the same samples are used as
input to Symphony. Bulk ATAC-seq samples from different patients are assumed as biological replicates, and
deconvolved using Symphony to achieve accessibility profiles for each cluster. Combined with scRNA-seq data
for the clusters, Symphony infers a GRN for each cluster shown in Fig. 3d and Extended Data Fig. 5. We
limited target genes to the pool of differentially expressed markers (Suppl. Table 3) across clusters. We filtered
inferred regulatory links (entries of R, ) that had a magnitude less than two (|R, |[<2 selected based on
knee-point of distribution, |CV|>0.5).

With this implementation, the runtime for Symphony was 1h 52m on group 4 containing 2593 cells and 1305
pooled DEGs and 5h 54m on group 1 with 7181 cells and 1459 DEGs, on a local machine with 64GB of RAM
and 12 CPU cores (2.7 GHz processors). This runtime is at least 40 times faster than MCMC inference used in
Biscuit which has a similar model structure.

Robustness analysis. To test the robustness of GRN inference, we performed a leave one (patient) out
analysis in the T, CD8 and T, CD4 groups. Specifically, we fit Symphony to scRNA-seq and ATAC-seq data
for each group and excluded ATAC-seq data from one patient at a time. We then compared the coefficient of
variation (CV) of predicted regulatory links across the leave-one-out iterations to the inferred regulation from
the entire data. As shown below in Fig. S10 and Fig. S11, CV is lower for stronger regulatory links and the
majority of links have CV<1.
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Figure S10. Absolute value of coefficient of variation (JCV| in y-axis) of regulation across leave-one-out analyses vs.
inferred regulation from the full dataset (x-axis) ; each dot is a regulatory link in the network colored by density of data
points; top row corresponds to all clusters in in group 1 (Tgy ) and bottom row corresponds to cluster 28 (deconvolved
from the group).
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Figure S11. Similar to Figure S10; top row corresponds to inferred links from all clusters in group 4 (Tpgx ) and bottom row
corresponds to cluster 5 (deconvolved from the group).

Master regulators. We used the output GRNs from Symphony to identify master regulators of each cluster as
follows: For cluster k, we averaged the inferred impact of each TF a, across all targets 4 that are differentially

expressed genes (DEGSs) in the cluster (listed in Suppl. Table 3): Y |Rk””’|/Dk with D, being the number
b € DEG;,

of DEGs for cluster k. The resulting average regulatory strength of each TF in each cluster is shown in Fig.
3c. We performed a one-sided t-test between T, clusters and all other exhausted clusters to find “differential
regulators” of T, clusters shown with dotted line box in Fig. 3¢, and green nodes in Fig. 3d and Extended
data Fig. 5. Similarly, we identified differential regulators of T, M1 and M2 subsets (Fig. 3c) shown as pink
nodes in Fig. 3d and Extended data Fig. 5.

Regulatory network. To elucidate the target genes impacted most by these master regulators, we filtered the
GRNs by centrality or out-degree of regulators (defined as number of target genes predicted to be regulated by
the TF) as well as regulatory strength (|R, |>2). Fig. 3d and Extended data Fig. 5 show these subnetworks
containing individual known**" and novel links. The circuitry for exhausted clusters reveals similarity and
differences in network architecture across clusters. We identified mediating regulators such as BCL6
connecting two other regulators (TBPL1 and EZ2F2) differentially regulating cluster 27. The network link
predictions are supported by co-expression and/or accessibility (Fig. 3d). Other predicted repressors such as
TCF7L2 are supported by mutually exclusive (negative) co-expression patterns with DEGs.
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Supplementary Note 4: Analysis of paired single-cell TCR- and RNA-seq

Preprocessing and identification of exhausted clusters. Single cell 5 RNA-seq reads were processed with
the Cell Ranger pipeline available from 10x Genomics. QC metrics for this data is provided in Suppl. Table S6.
A total of 23K total T cells were identified based on {CD3D, CD3E} expression (similar to Suppl. Note 2) and
normalized and clustered using Biscuit with the same parameters as in Suppl. Note 2 (shown in Fig. $12).

5’ Clusters Sample ID

sa cD3D cD4

Figure S12. t-SNE projection of normalized 5 scRNA-seq data for all T cells from two Rs (listed in Suppl. Table 6), each
dot represents a cell colored by cluster (left), sample ID (top right), and markers (bottom right).

The 29 newly identified clusters (Fig. S12) were scored for the same T, and T, signatures (listed in
Extended Data Table 3), and the clusters with the highest scores were identified as T,., and T, clusters (Fig.
$13).
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Figure S13. Violin plots showing density of T cell clusters from 5’ scRNA-seq data along T (top) or Tpey (bottom) viral
gene set scores; x-axis shows cluster IDs ordered by median score; clusters identified as exhausted are marked with
boxes.

Preprocessing and analysis of TCR clonotypes. Single cell TCR-seq reads were aligned to the GRCh38
reference genome and consensus TCR annotation was performed using Cell Ranger V(D)J (10x Genomics,
version 2.1.0.). QC metrics are provided in Suppl. Table 6.

Clonotypes mapping to TRB loci were used to annotate each cell, similar to others®. Overlap between
clonotypes from T, cells and T, cells (Fig. 4a) was measured by counting the number of cells from each
group per clonotype and performing a hypergeometric test using the phyper function with R. Venn diagrams
were drawn using the eulerr package.

TCR diversity (Fig. 4b) was calculated between all RNA clusters on a per patient basis via Gini coefficient®
using the ineq () function within the ineq package.

To determine the kinetics of T, and T, clonotypes after DLI (Fig, 4c,d), the proportion of pre- and
post-treatment cells were calculated for both patients together. Clonotypes were defined as expanding if they
significantly enriched pre-DLI (p<0.05 according to Fisher’s exact test), contracting if they were enriched
post-DLI (p<0.05 by Fisher’s exact test), and persistent otherwise. Viral-specific clonotypes were identified via
VDJdb*® and marked (V). Statistical analysis was performed in R version 3.5.3. Plots were generated using the
ggplot package.
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