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Abstract 11 

Ruminants are essential for maintaining the global population and managing greenhouse gas 12 

emissions. In the rumen, bacterial species belonging to the genera rumen Butyrivibrio and 13 

Pseudobutyrivibrio constitute the core bacterial rumen microbiome and are important degraders 14 

of plant-derived complex polysaccharides. Pseudobutyrivibrio xylanivorans MA3014 was 15 

selected for genome sequencing in order to examine its ability to breakdown and utilize plant 16 

polysaccharides. The complete genome sequence of MA3014 is 3.58 Mb, consists of three 17 

replicons (a chromosome, chromid and plasmid), has an overall G+C content of 39.6% and 18 

encodes 3,265 putative protein-coding genes (PCGs). Comparative pan-genomics of all 19 

cultivated and currently available P. xylanivorans genomes has revealed highly open genomes 20 

and a strong correlation of orthologous genes within this species of rumen bacteria. MA3014 is 21 
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metabolically versatile and capable of utilizing a range of simple mono- or oligosaccharides to 22 

complex plant polysaccharides such as pectins, mannans, starch and hemicelluloses for growth, 23 

with lactate, butyrate and formate as the principal fermentation end-products. The genes 24 

encoding these metabolic pathways have been identified and MA3014 is predicted to encode an 25 

extensive repertoire of Carbohydrate-Active enZYmes (CAZymes) with 80 Glycoside 26 

Hydrolases (GHs), 28 Carbohydrate Esterases (CEs) and 51 Glycosyl Transferases (GTs), that 27 

suggest its role as an initiator of primary solubilization of plant matter in the rumen. 28 

Introduction 29 

Butyrivibrio and Pseudobutyrivibrio represent the most commonly isolated butyrate-producing 30 

anaerobic rumen bacteria (Henderson, et al. 2015), and are among the small number of rumen 31 

genera capable of utilizing the complex plant structural polysaccharide xylan (Bryant and Small 32 

1956; Hungate 1966). Pseudobutyrivibrio [family Lachnospiraceae, order Clostridiales] are 33 

anaerobic, monotrichous, butyrate-producing, curved rods and have been isolated from the 34 

gastrointestinal tracts of various ruminants, monogastric animals and humans (Kopecný, et al. 35 

2003; Willems and Collins 2009). The Butyrivibrio and Pseudobutyrivibrio genera originally 36 

consisted of only one species, Butyrivibrio fibrisolvens (Bryant and Small 1956). In addition to 37 

phenotypic characterisations (Hazlewood, et al. 1986; Shane, et al. 1969), studies have utilized 38 

DNA-DNA hybridization (Mannarelli 1988; Mannarelli, et al. 1990), 16S rRNA gene sequencing 39 

(Forster, et al. 1996; Willems, et al. 1996) and 16S rRNA-based hybridization probes (Forster, et 40 

al. 1997), to differentiate these organisms. To accommodate the observed diversity amongst the 41 

newly discovered bacterial strains, a new genus, Pseudobutyrivibrio, was described in which 42 

only P. ruminis and P. xylanivorans species are currently recognized (Kopecný, et al. 2003; Van 43 

Gylswyk, et al. 1996). P. xylanivorans are common anaerobic rumen bacteria found in domestic 44 
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and wild ruminants and the type strain is Mz 5T (DSM 14809) (Henderson, et al. 2015; Kopecný, 45 

et al. 2003). P. xylanivorans Mz 5T is non-proteolytic but is able to utilize xylan or hemicellulose 46 

and various oligo- and monosaccharides as substrates for growth (Zorec, et al. 2000). Gaining an 47 

insight into the role of these microbial primary plant polysaccharide fermenters is important for 48 

understanding rumen function. Here we present the complete genome sequence of P. 49 

xylanivorans MA3014, a strain isolated from a New Zealand pasture-grazed dairy cow (Seshadri, 50 

et al. 2018), and describe its comparison with other representative P. xylanivorans genomes. 51 

Materials and Methods 52 

Growth Conditions and Fermentation End Product Analysis 53 

P. xylanivorans MA3014 was isolated from the rumen contents of fistulated Friesian dairy cattle 54 

and sequenced (Noel 2013; Seshadri, et al. 2018). MA3014 was grown in RM02 medium 55 

(Kenters, et al. 2011) with 10 mM glucose and 0.1% yeast extract but without rumen fluid and 56 

culture purity was confirmed by Gram stain. The morphological features of MA3014 cells were 57 

determined by both scanning (SEM) and transmission (TEM) electron microscopy of cells grown 58 

on RM02 medium alone or with the addition of neutral detergent fraction (NDF) of plant 59 

material as previously described (Palevich, et al. 2017; Palevich, et al. 2018).  60 

Growth on soluble substrates was assessed as an increase in culture density OD600nm compared to 61 

cultures without carbon source added (all tested at 0.5% w/v final concentration), whereas total 62 

VFA production was used as an indicator of substrate utilization and growth for insoluble 63 

polymers (Supplementary Table S3). VFA production was determined from triplicate broth 64 

cultures grown overnight in RM02 medium with cellobiose as substrate and analysed for 65 

formate, acetate, propionate, n-butyrate, iso-valerate and lactate on a HP 6890 series GC 66 
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(Hewlett Packard) with 2-ethylbutyric acid (Sigma-Aldrich, St. Louis, MO, USA) as the internal 67 

standard. To derivatize formic, lactic and succinic acids, samples were mixed with HCl ACS 68 

reagent (Sigma-Aldrich, St. Louis, MO, USA) and diethyl ether, with the addition of N-methyl-69 

N-t-butyldimethylsilyltri-fluoroacetamide (MTBSTFA) (Sigma-Aldrich, St. Louis, MO, USA) 70 

(Richardson, et al. 1989). 71 

Preparation of Genomic DNA for Whole-Genome Sequencing 72 

Genomic DNA was extracted from freshly grown cells by a modification of the standard cell 73 

lysis method previously described (Palevich, et al. 2018; Seshadri, et al. 2018), followed by 74 

phenol-chloroform extraction, and purification using the Qiagen Genomic-Tip 500 Maxi kit 75 

(Qiagen, Hilden, Germany). Specificity of genomic DNA was verified by automated Sanger 76 

sequencing of the 16S rRNA gene following PCR amplification from genomic DNA. Total DNA 77 

amounts were determined using a NanoDrop® ND-1000 (Thermo Scientific Inc.) and a Qubit 78 

Fluorometer dsDNA BR Kit (Invitrogen, USA), in accordance with the manufacturer’s 79 

instructions. Genomic DNA integrity was verified by agarose gel electrophoresis and using a 80 

2000 BioAnalyzer (Agilent, USA). 81 

Genome Sequencing, Assembly and Comparison 82 

Pseudobutyrivibrio xylanivorans MA3014 was selected for genome sequencing as a NZ strain 83 

and only representative member of P. xylanivorans from the Hungate1000 collection ((Seshadri, 84 

et al. 2018): Supplementary Table S1). The complete genome sequence of MA3014 was 85 

determined by pyrosequencing 3 kb mate paired-end sequence libraries using the 454 GS FLX 86 

platform with Titanium chemistry (Macrogen, Korea). Pyrosequencing reads provided 55× 87 

coverage of the genome and were assembled using the Newbler assembler (version 2.7, Roche 88 
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454 Life Sciences, USA) which resulted in 116 contigs across 13 scaffolds. Gap closure was 89 

managed using the Staden package (Staden, et al. 1999) and gaps were closed using additional 90 

Sanger sequencing by standard and inverse PCR techniques. In addition, MA3014 genomic DNA 91 

was sequenced using shotgun sequencing of 2 kb paired-end sequence libraries using the 92 

Illumina MiSeq platform (Macrogen, Korea) which provided 677-fold sequencing coverage. A 93 

de novo assembly was performed using the assemblers Velvet version 3.0 (Zerbino and Birney 94 

2008), and EDENA version 3.120926 (Hernandez, et al. 2008). The resulting sequences were 95 

combined with the Newbler assembly using the Staden package and Geneious, version 8.1 96 

(Kearse, et al. 2012). Genome assembly was confirmed by pulsed-field gel electrophoresis 97 

(Palevich 2011; Palevich N, et al. 2019b) and genome annotation was performed as described 98 

previously (Kelly, et al. 2010). Genome comparisons of orthologous gene clusters within 99 

Pseudobutyrivibrio genomes were performed using OrthoVenn version 2 (Wang, et al. 2015).  100 

Results and Discussion 101 

Genome Assembly, Properties and Annotation  102 

To sequence the genome of P. xylanivorans MA3014, short-read 454 GS FLX Titanium and 103 

Illumina technologies based on 9.9 million paired-end (PE) reads was applied (Supplementary 104 

Tables S1 and S2). The genome of P. xylanivorans MA3014 consists of three replicons (Palevich 105 

2011, 2016); a single chromosome (3,412,851 bp, %G+C 39.7), a chromid or secondary 106 

chromosome (PxyII, 88,942 bp, %G+C 36.9) and a plasmid (pNP95, 82,698 bp, %G+C 37.4) 107 

(Figure 1A). The total size of the closed genome is 3,584,491 bp with an overall %G+C content 108 

of 39.6%. The MA3014 assembly with high coverage of 677× was achieved using insert sizes 109 

that ranged between 238�bp (Illumina MiSeq) and 2.5kb (454 GS-FLX Titanium). In total, 2.6 110 
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Gb of trimmed and filtered sequence data was retained for the reported assembly (Supplementary 111 

Table S2). The overall genome assembly statistics of MA3014 are similar to the Mz 5T (DSM 112 

14809) and NCFB 2399 (DSM 10317) ((Kopečný, et al. 2003): Supplementary Table S4).  113 

Ab initio gene prediction resulted in a total of 3,365 genes annotated in MA3014, of which 3,265 114 

(97.03%) were PCGs (Supplementary Table S4). Among these, a putative function was assigned 115 

to 2,364 (70.25%), while 601 PCGs were annotated as hypothetical proteins or proteins of 116 

unknown function. In total, 840 (24.96%) genes have clear homology to proteins in the KEGG 117 

database, 2,506 (74.47%) and 2,593 (77.06%) of annotated genes have well-defined PFAM and 118 

InterPro protein domains, respectively. In contrast, 153 (4.55%) of annotated genes have 119 

identified signal peptide protein domain hits and are predicted have extracellular functions. The 120 

MA3014 chromosome encodes 3,098 PCGs while the PxyII and pNP95 encode 96 and 71 genes, 121 

respectively. Overall, the coding region comprises 89.77% of the genome, typical of rumen 122 

bacterial genomes (Seshadri, et al. 2018; Palevich, et al. 2019b). However, in order to elucidate 123 

the actual genetic divergence within the rumen Butyrivibrio and Pseudobutyrivibrio, future 124 

efforts should focus on the generation of complete genomes, starting with the Hungate1000 125 

collection. 126 

Genome Comparison 127 

A comparison of the P. xylanivorans MA3014 genome with the draft genomes of P. 128 

xylanivorans Mz 5T (DSM 14809) and NCFB 2399 (DSM 10317) (Kopečný, et al. 2003) is 129 

shown in Supplementary Table S4. MA3014 is the largest P. xylanivorans genome to date, 130 

where it is 163,567 bp and 370,547 bp larger, also contains 187 and 375 more PCGs than Mz 5T 131 

and NCFB 2399, respectively. A novel feature of MA3014 and other well-characterized 132 

Butyrivibrio genomes is the presence of chromids or secondary chromosomes (Kelly, et al. 2010; 133 
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Palevich, et al. 2019a). Chromids are replicons with %G+C content similar to that of their main 134 

chromosome, but have plasmid-type maintenance and replication systems, are usually smaller 135 

than the chromosome (but larger than plasmids) and contain genes essential for growth along 136 

with several core genus-specific genes (Harrison, et al. 2010). The PxyII replicon has been 137 

designated as a chromid of MA3014 as it possesses all of these characteristics and contains genes 138 

encoding enzymes that have a role in carbohydrate metabolism and transport. Since the PxyII 139 

chromid of MA3014 is 2,834 bp smaller than the Bhu II chromid of MB2003, it is now the 140 

smallest chromid reported for bacteria. Although several plasmid replication genes have been 141 

identified in the Mz 5T but not in NCFB 2399 draft genomes, the presence of extrachromosomal 142 

elements requires experimental validation. 143 

Comparison of MA3014, Mz 5T and NCFB 2399 genomes based on COG category 144 

(Supplementary Table S5) and synteny analysis (Figure 1B-C), show that these 145 

Pseudobutyrivibrio strains are genetically similar. Despite the differences in genome sizes of 146 

MA3014 and Mz 5T, the basic metabolism of these two rumen bacteria are comparable. 147 

Comparative pan-genomics of these rumen bacterial strains revealed highly open genomes and a 148 

strong correlation of orthologous genes among these species (Figure 1D). Most of the predicted 149 

MA3014 genes were found to have homologs (BLASTP e-value cut-off 10-5) in the other two 150 

strains (2,356; 73%), with the P. xylanivorans represented by 768 orthologous clusters and 1,996 151 

single-copy genes. In total, 2,036 core genes were found to be orthologous among the three P. 152 

xylanivorans genomes compared, with only 58 genes found to be unique to MA3014 (Figure 153 

1D). Genomic comparisons with other species within the genera Butyrivibrio and 154 

Pseudobutyrivibrio have revealed strong collinearities (Palevich, et al. 2019b), that will facilitate 155 

our understanding of genome evolution of rumen bacteria.  156 
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Polysaccharide Degradation 157 

The Carbohydrate-Active enZYmes database was used to identify glycoside hydrolases (GHs), 158 

glycosyl transferases (GTs), polysaccharide lyases (PLs), carbohydrate esterases (CEs) and 159 

carbohydrate-binding protein module (CBM) families within the MA3014 genome. Overall, 160 

CAZyme profile of MA3014 is similar to other Pseudobutyrivibrio that are in general not as 161 

extensive as those of Butyrivibrio (Palevich 2016; Palevich, et al. 2019b). Analysis of the 162 

functional domains of enzymes involved in the breakdown or synthesis of complex 163 

carbohydrates, has revealed the polysaccharide-degrading potential of this rumen bacterium 164 

(Supplementary Table S6). Approximately 2% of the MA3014 genome (69 CDSs) is predicted to 165 

encode either 22 secreted (21 GHs and one CE) and 47 intracellular (41 GHs, 4 CEs and two 166 

GTs) proteins dedicated to polysaccharide degradation. The enzymatic profiles of MA3014 and 167 

Mz 5T are almost identical, as both possess the same genes encoding predicted secreted and 168 

intracellular CAZymes in their genomes. Out of the 22 genes predicted to encode secreted 169 

polysaccharide degrading enzymes, only β-glucosidase bgl3K (FXF36_15770) is encoded by the 170 

MA3014 chromid (PxyII). The majority (40) of MA3014 genes encoding intracellular proteins 171 

involved in polysaccharide breakdown (excluding GTs), had corresponding homologues in Mz 172 

5T. The most abundant Pfam domains included GH families (GH3, GH13 and GH43) and CE1, 173 

most of which did not contain signal sequences and predicted to be located intracellularly. 174 

Similarly, CAZymes with predicted roles in xylan (GH8, GH51, GH115), dextrin and starch 175 

(GH13 and GH77) degradation families were also predicted to be mostly intracellular.  176 

Growth experiments showed MB2003 to be a metabolically versatile bacterium able to grow on a 177 

wide variety of monosaccharides and disaccharides (Supplementary Table S3). However, unlike 178 

Mz 5T (Kopecný, et al. 2003), MA3014 was unable to utilize the insoluble substrate pectin for 179 
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growth. This difference is due to Mz 5T possession of 4 pectate lyases (1 PL1 and 3 PL3) 180 

predicted to be involved in pectin degradation and utilization, of which MA3014 has none. The 181 

ability of MA3014 to breakdown starch and xylan is predicted to be based on four large (>1,000 182 

aa) cell-associated proteins shown to be significantly up-regulated in related B. hungatei 183 

MB2003 and B. proteoclasticus B316T cells grown on xylan (Kelly, et al. 2010; Palevich, et al. 184 

2019a). These are: α-amylase amy13E (FXF36_11320), arabinogalactan endo-1,4-β-185 

galactosidase agn53A (FXF36_02635), xylosidase/arabinofuranosidase xsa43D (FXF36_08285), 186 

endo-1,4-β-xylanase xyn10A (FXF36_14365). These proteins contain multiple cell wall binding 187 

repeat domains (CW-binding domain, Pfam01473) at their C-termini that are predicted to anchor 188 

the protein to the peptidoglycan cell membrane (Dunne, et al. 2011). In addition, the secreted α-189 

amylase amy13E (FXF36_11320) contains a CBM26 (Pfam16738) domain with predicted 190 

starch-binding functions (Gilbert, et al. 2013; McCartney, et al. 2004).  191 

Electron microscopy of MA3014 cells grown in liquid media supplemented with plant material 192 

has revealed the copious production of exopolysaccharides (EPS) (Figure 2A-B). EPS is a 193 

characteristic of Butyrivibrio strains and is composed of the neutral sugars rhamnose, fucose, 194 

mannose, galactose and glucose (Stack 1988), made available by recycling the plant 195 

polysaccharides breakdown products. Our findings also show the presence of cytoplasmic 196 

inclusions (Figure 2C), similar to those seen in B316T and other Butyrivibrio strains containing 197 

glycogen-like material (Hespell, et al. 1993). The MA3014 genome encodes a complete 198 

repertoire of genes for glycogen synthesis and degradation, suggesting that a variety of complex 199 

oligosaccharides resulting from extracellular hydrolysis are metabolized within the cell and that 200 

glycogen has a role in the storage of excess carbohydrate. 201 
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Enolase Loss and Metabolic Flexibility 202 

Pseudobutyrivibrio and Butyrivibrio are key members of the degradative microbiota found in a 203 

highly carbohydrate-rich environment and appear to have evolved beyond using glycolysis as the 204 

central pathway. The pathways for butyrate production for these rumen bacteria presume the 205 

possession of a complete Embden-Meyerhof-Parnas (EMP) glycolytic pathway. The lack of an 206 

enolase (eno, EC4.2.1.11), that converts 2-phospho-D-glycerate to phosphoenolpyruvate in the 207 

second to last step of the EMP pathway, is extremely unusual. As part of the Hungate1000 208 

project in which the genomes of 410 rumen microbes were sequenced (Seshadri, et al. 2018), we 209 

discovered that many specialized polysaccharide fermenters lacked an enolase gene. Of all 21 210 

Pseudobutyrivibrio genomes sequenced, only P. xylanivorans MA3014 and P. ruminis AD2017 211 

reported to date lack a detectable enolase. Eno- P. xylanivorans MA3014 and several 212 

Butyrivibrio strains were recently confirmed using PCR screens with eno-specific primers 213 

(Kelly, et al. 2010; Palevich, et al. 2018). Given the observed polysaccharide-degrading abilities 214 

and lactate production, the Methylglyoxal Shunt (MS) and uronic acid metabolic pathways 215 

(Figure 2D), have been suggested as alternatives to the EMP pathway (Cooper 1984). Previous 216 

work has also reported similar findings in other Butyrivibrio strains (Kelly, et al. 2010; Palevich, 217 

et al. 2019a). In this pathway the dihydroxyacetone phosphate is transformed to pyruvate via 218 

methylglyoxal and D-lactate dehydrogenase encoded by ldhA. The MA3014 genome possesses 219 

methylglyoxal synthase, mgsA (FXF36_12340), glyoxalases gloA/B (FXF36_00730, 220 

FXF36_01130 and FXF36_09530) and both D- and L-lactate dehydrogenases ldh (FXF36_04170 221 

and FXF36_11135) genes. In addition, MA3014 has the same set of genes as the previously 222 

reported and well-characterized B. hungatei MB2003 and B. proteoclasticus B316T for the 223 
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production of butyrate, formate, acetate and lactate (Kelly, et al. 2010; Palevich, et al. 2019a; 224 

Palevich, et al. 2017).  225 

In some butyrate-forming anaerobes, crotonyl-CoA reduction is linked to electron transport 226 

phosphorylation (ETP) via flavin-based electron bifurcating ech and rnf complexes which act as 227 

transmembrane ion pumps (Buckel and Thauer 2013; Herrmann, et al. 2008; Li, et al. 2008; 228 

Welte, et al. 2010). A recent analysis of the Hungate1000 dataset (Hackmann and Firkins 2015; 229 

Seshadri, et al. 2018; Palevich, et al. 2019b), found that Pseudobutyrivibrio and Butyrivibrio 230 

genomes encode both Ech and Rnf homologues proposed to act in concert with NifJ and Bcd-Etf 231 

to form an electrochemical potential and drive ATP synthesis (Gutekunst, et al. 2014; Tremblay, 232 

et al. 2013). This allows these rumen bacteria to generate approximately 4.5 ATP/glucose in 233 

total, one the highest yields for anaerobic fermentation of glucose (Buckel and Thauer 2013). 234 

Given the importance of eno, Pseudobutyrivibrio and Butyrivibrio may be displaying an example 235 

of environment-specific evolution by gene loss that warrants further investigation into the 236 

alternative pathways that permit ATP generation. The genome sequence of P. xylanivorans 237 

MA3014 presented here is consistent with the genome architecture of other sequenced 238 

Pseudobutyrivibrio strains and is a valuable resource for future studies regarding bacterial-driven 239 

plant-fibre degradation in ruminants. 240 

Supplementary Material 241 

Supplementary data are available at Genome Biology and Evolution online. 242 

Data deposition: The complete genome sequence of Pseudobutyrivibrio xylanivorans MA3014 243 

and its annotations are deposited in Genbank under accession numbers CP043028, CP043029 244 

and CP043030.  245 
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Figure 1. (A) Genome atlas for P. xylanivorans MA3014. The figure represents a circular view 373 

of the four replicons that constitute the P. xylanivorans MA3014 genome. The key at the right 374 

describes the concentric circles within each replicon in the outermost to innermost direction. 375 

Circle 1 (innermost circle) indicates GC-skew. Circle 2 shows COG classifications of predicted 376 

and annotated open reading fames (ORFs) grouped into five major categories: information 377 

storage and processing (yellow); cellular processes and signalling (red); metabolism (green); 378 

poorly characterized (blue); uncharacterized or no COG assignment (uncoloured). Circle 3 shows 379 

transmembrane helices (TMH) and SignalP domains grouped into four categories: both absent 380 

(uncoloured); TMH (red); SignalP (blue); both present (black). Circle 4 indicates ORF 381 

orientation in sense (ORF+, blue) or antisense (ORF-, red) directions. Circle 5 shows tRNA 382 

(green) and rRNA (red) ribosomal machinery. Circle 6 shows G+C content deviation from the 383 

average in either green (low GC spike) or orange (high GC spike). Circle 7 shows BLAST 384 
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similarities of unique proteins (blue) and highly conserved features (red) relative to sequences in 385 

the nonredundant (nr) database. (B-C) Genome synteny analysis. Alignment of the P. 386 

xylanivorans MA3014 genome against the draft genomes of P. xylanivorans Mz 5T (B) and P. 387 

xylanivorans NCFB 2399 (C). Whenever the two sequences agree, a colored line or dot is 388 

plotted. Units displayed in base-pairs. Color codes: blue, forward sequence, red, reverse 389 

sequence. (D) Venn diagram showing the distribution of shared gene families among the P. 390 

xylanivorans genomes. All P. xylanivorans scaffolds with at least a single one-to-one ortholog 391 

shared among the genomes were compared.  392 

Figure 2. (A-C) Electron micrographs of P. xylanivorans MA3014. (A-B) Scanning EMs of 393 

MA3014 cells adherence to the surface (A) and exposed end (B) of NDF plant material, at 5,000 394 

× magnification. (C) Transmission EM of negatively stained MA3014 cells grown in liquid 395 

medium at 10,000 × magnification. Arrows indicate the presence of glycogen inclusions. (D) 396 

Fermentation pathways in rumen Pseudobutyrivibrio and Butyrivibrio. Abbreviations: Bcd-Etf, 397 

butyryl-CoA dehydrogenase/electron transferring flavoprotein; Ech, E. coli hydrogenase-3-type 398 

hydrogenase; Fd, ferredoxin; Fdox, oxidized Fd; Fdred, reduced Fd; Glo, glyoxalase; MsgA, 399 

methylglyoxal synthase; NAD, nicotinamide adenine dinucleotide; NADox, oxidized NAD; 400 

NADred, reduced NAD; NifJ, nitrogen fixation J; Rnf, Rhodobacter nitrogen fixation; ATPase = 401 

F0F1-ATPsynthase.  402 
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