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Abstract

Ruminants are essential for maintaining the global population and managing greenhouse gas
emissions. In the rumen, bacterial species belonging to the genera rumen Butyrivibrio and
Pseudobutyrivibrio constitute the core bacterial rumen microbiome and are important degraders
of plant-derived complex polysaccharides. Pseudobutyrivibrio xylanivorans MA3014 was
selected for genome sequencing in order to examine its ability to breakdown and utilize plant
polysaccharides. The complete genome sequence of MA3014 is 3.58 Mb, consists of three
replicons (a chromosome, chromid and plasmid), has an overall G+C content of 39.6% and
encodes 3,265 putative protein-coding genes (PCGs). Comparative pan-genomics of all
cultivated and currently available P. xylanivorans genomes has revealed highly open genomes
and a strong correlation of orthologous genes within this species of rumen bacteria. MA3014 is
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metabolically versatile and capable of utilizing a range of simple mono- or oligosaccharides to
complex plant polysaccharides such as pectins, mannans, starch and hemicelluloses for growth,
with lactate, butyrate and formate as the principal fermentation end-products. The genes
encoding these metabolic pathways have been identified and MA3014 is predicted to encode an
extensive repertoire of Carbohydrate-Active enZYmes (CAZymes) with 80 Glycoside
Hydrolases (GHs), 28 Carbohydrate Esterases (CES) and 51 Glycosyl Transferases (GTs), that

suggest itsrole as an initiator of primary solubilization of plant matter in the rumen.

I ntroduction

Butyrivibrio and Pseudobutyrivibrio represent the most commonly isolated butyrate-producing
anaerobic rumen bacteria (Henderson, et al. 2015), and are among the small number of rumen
genera capable of utilizing the complex plant structural polysaccharide xylan (Bryant and Small
1956; Hungate 1966). Pseudobutyrivibrio [family Lachnospiraceae, order Clostridiales| are
anaerobic, monotrichous, butyrate-producing, curved rods and have been isolated from the
gastrointestinal tracts of various ruminants, monogastric animals and humans (Kopecny, et al.
2003; Willems and Collins 2009). The Butyrivibrio and Pseudobutyrivibrio genera originaly
consisted of only one species, Butyrivibrio fibrisolvens (Bryant and Small 1956). In addition to
phenotypic characterisations (Hazlewood, et al. 1986; Shane, et al. 1969), studies have utilized
DNA-DNA hybridization (Mannarelli 1988; Mannarelli, et al. 1990), 16SrRNA gene sequencing
(Forster, et al. 1996; Willems, et a. 1996) and 16S rRNA-based hybridization probes (Forster, et
al. 1997), to differentiate these organisms. To accommodate the observed diversity amongst the
newly discovered bacterial strains, a new genus, Pseudobutyrivibrio, was described in which
only P. ruminis and P. xylanivorans species are currently recognized (Kopecny, et al. 2003; Van

Gylswyk, et al. 1996). P. xylanivorans are common anaerobic rumen bacteria found in domestic
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and wild ruminants and the type strainisMz 5" (DSM 14809) (Henderson, et al. 2015; Kopecny,
et al. 2003). P. xylanivoransMz 5" is non-proteolytic but is able to utilize xylan or hemicellulose
and various oligo- and monosaccharides as substrates for growth (Zorec, et a. 2000). Gaining an
insight into the role of these microbial primary plant polysaccharide fermenters is important for
understanding rumen function. Here we present the complete genome sequence of P.
xylanivorans MA3014, a strain isolated from a New Zealand pasture-grazed dairy cow (Seshadri,

et al. 2018), and describe its comparison with other representative P. xylanivorans genomes.

Materials and M ethods

Growth Conditions and Fer mentation End Product Analysis

P. xylanivorans MA3014 was isolated from the rumen contents of fistulated Friesian dairy cattle
and sequenced (Nodl 2013; Seshadri, et al. 2018). MA3014 was grown in RM02 medium
(Kenters, et al. 2011) with 10 mM glucose and 0.1% yeast extract but without rumen fluid and
culture purity was confirmed by Gram stain. The morphological features of MA3014 cells were
determined by both scanning (SEM) and transmission (TEM) electron microscopy of cells grown
on RM02 medium alone or with the addition of neutral detergent fraction (NDF) of plant
material as previously described (Palevich, et al. 2017; Palevich, et al. 2018).

Growth on soluble substrates was assessed as an increase in culture density ODggonm COmMpared to
cultures without carbon source added (all tested at 0.5% w/v final concentration), whereas total
VFA production was used as an indicator of substrate utilization and growth for insoluble
polymers (Supplementary Table S3). VFA production was determined from triplicate broth
cultures grown overnight in RM02 medium with cellobiose as substrate and analysed for

formate, acetate, propionate, n-butyrate, iso-valerate and lactate on a HP 6890 series GC
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(Hewlett Packard) with 2-ethylbutyric acid (Sigma-Aldrich, &. Louis, MO, USA) as the internal
standard. To derivatize formic, lactic and succinic acids, samples were mixed with HCI ACS
reagent (Sigma-Aldrich, St. Louis, MO, USA) and diethyl ether, with the addition of N-methyl-
N-t-butyldimethylsilyltri-fluoroacetamide (MTBSTFA) (Sigma-Aldrich, St. Louis, MO, USA)

(Richardson, et al. 1989).

Preparation of Genomic DNA for Whole-Genome Sequencing

Genomic DNA was extracted from freshly grown cells by a modification of the standard cell
lysis method previously described (Palevich, et al. 2018; Seshadri, et al. 2018), followed by
phenol-chloroform extraction, and purification using the Qiagen Genomic-Tip 500 Maxi Kit
(Qiagen, Hilden, Germany). Specificity of genomic DNA was verified by automated Sanger
sequencing of the 16SrRNA gene following PCR amplification from genomic DNA. Total DNA
amounts were determined using a NanoDrop® ND-1000 (Thermo Scientific Inc.) and a Qubit
Fluorometer dsDNA BR Kit (Invitrogen, USA), in accordance with the manufacturer’s
ingtructions. Genomic DNA integrity was verified by agarose gel electrophoresis and using a

2000 BioAnalyzer (Agilent, USA).

Genome Sequencing, Assembly and Comparison

Pseudobutyrivibrio xylanivorans MA3014 was selected for genome sequencing as a NZ strain
and only representative member of P. xylanivorans from the Hungate1000 collection ((Seshadri,
et al. 2018): Supplementary Table S1). The complete genome sequence of MA3014 was
determined by pyrosequencing 3 kb mate paired-end sequence libraries using the 454 GS FLX
platform with Titanium chemistry (Macrogen, Korea). Pyrosequencing reads provided 55x

coverage of the genome and were assembled using the Newbler assembler (version 2.7, Roche
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89 454 Life Sciences, USA) which resulted in 116 contigs across 13 scaffolds. Gap closure was
90 managed using the Staden package (Staden, et al. 1999) and gaps were closed using additional
91 Sanger sequencing by standard and inverse PCR techniques. In addition, MA3014 genomic DNA
92 was sequenced using shotgun sequencing of 2 kb paired-end sequence libraries using the
93 Illumina MiSeq platform (Macrogen, Korea) which provided 677-fold sequencing coverage. A
94  de novo assembly was performed using the assemblers Velvet version 3.0 (Zerbino and Birney
95 2008), and EDENA version 3.120926 (Hernandez, et a. 2008). The resulting sequences were
96 combined with the Newbler assembly using the Staden package and Geneious, version 8.1
97 (Kearse, et a. 2012). Genome assembly was confirmed by pulsed-field gel electrophoresis
98 (Pdlevich 2011; Palevich N, et a. 2019b) and genome annotation was performed as described
99 previoudy (Kely, et al. 2010). Genome comparisons of orthologous gene clusters within

100  Pseudobutyrivibrio genomes were performed using OrthoVenn version 2 (Wang, et al. 2015).

101 Resultsand Discussion

102  Genome Assembly, Propertiesand Annotation

103  To sequence the genome of P. xylanivorans MA3014, short-read 454 GS FLX Titanium and
104  [llumina technologies based on 9.9 million paired-end (PE) reads was applied (Supplementary
105 Tables S1 and S2). The genome of P. xylanivorans MA3014 consists of three replicons (Palevich
106 2011, 2016); a single chromosome (3,412,851 bp, %G+C 39.7), a chromid or secondary
107  chromosome (Pxyll, 88,942 bp, %G+C 36.9) and a plasmid (pNP95, 82,698 bp, %G+C 37.4)
108 (Figure 1A). Thetotal size of the closed genome is 3,584,491 bp with an overall %G+C content
109  of 39.6%. The MA3014 assembly with high coverage of 677x was achieved using insert sizes

110 that ranged between 238 1bp (Illumina MiSeq) and 2.5kb (454 GS-FLX Titanium). In total, 2.6
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111  Gbof trimmed and filtered sequence data was retained for the reported assembly (Supplementary
112  Table S2). The overall genome assembly statistics of MA3014 are similar to the Mz 5" (DSM
113  14809) and NCFB 2399 (DSM 10317) ((KopeXny, et al. 2003): Supplementary Table $4).

114  Abinitio gene prediction resulted in atotal of 3,365 genes annotated in MA3014, of which 3,265
115 (97.03%) were PCGs (Supplementary Table $4). Among these, a putative function was assigned
116 to 2,364 (70.25%), while 601 PCGs were annotated as hypothetical proteins or proteins of
117  unknown function. In total, 840 (24.96%) genes have clear homology to proteins in the KEGG
118 database, 2,506 (74.47%) and 2,593 (77.06%) of annotated genes have well-defined PFAM and
119 InterPro protein domains, respectively. In contrast, 153 (4.55%) of annotated genes have
120 identified signal peptide protein domain hits and are predicted have extracellular functions. The
121  MA3014 chromosome encodes 3,098 PCGs while the Pxyll and pNP95 encode 96 and 71 genes,
122 respectively. Overall, the coding region comprises 89.77% of the genome, typical of rumen
123  bacterial genomes (Seshadri, et al. 2018; Palevich, et a. 2019b). However, in order to elucidate
124  the actual genetic divergence within the rumen Butyrivibrio and Pseudobutyrivibrio, future
125 efforts should focus on the generation of complete genomes, starting with the Hungate1000

126  collection.

127  Genome Comparison

128 A comparison of the P. xylanivorans MA3014 genome with the draft genomes of P.
129  xylanivorans Mz 5" (DSM 14809) and NCFB 2399 (DSM 10317) (Kopegny, et al. 2003) is
130 shown in Supplementary Table S4. MA3014 is the largest P. xylanivorans genome to date,
131  whereit is 163,567 bp and 370,547 bp larger, also contains 187 and 375 more PCGs than Mz 57
132 and NCFB 2399, respectively. A novel feature of MA3014 and other well-characterized

133  Butyrivibrio genomesis the presence of chromids or secondary chromosomes (Kédlly, et al. 2010;
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134  Pdevich, et al. 20194). Chromids are replicons with %G+C content similar to that of their main
135 chromosome, but have plasmid-type maintenance and replication systems, are usualy smaller
136 than the chromosome (but larger than plasmids) and contain genes essential for growth along
137  with severa core genus-specific genes (Harrison, et a. 2010). The Pxyll replicon has been
138 designated as achromid of MA3014 asit possesses all of these characteristics and contains genes
139 encoding enzymes that have a role in carbohydrate metabolism and transport. Since the Pxyll
140 chromid of MA3014 is 2,834 bp smaller than the Bhu Il chromid of MB2003, it is now the
141 smallest chromid reported for bacteria. Although several plasmid replication genes have been
142  identified in the Mz 5" but not in NCFB 2399 draft genomes, the presence of extrachromosomal
143  elementsrequires experimental validation.

144  Comparison of MA3014, Mz 5" and NCFB 2399 genomes based on COG category
145 (Supplementary Table S5) and synteny analysis (Figure 1B-C), show that these
146  Pseudobutyrivibrio strains are genetically similar. Despite the differences in genome sizes of
147 MA3014 and Mz 5', the basic metabolism of these two rumen bacteria are comparable.
148  Comparative pan-genomics of these rumen bacterial strains revealed highly open genomes and a
149  strong correlation of orthologous genes among these species (Figure 1D). Most of the predicted
150 MA3014 genes were found to have homologs (BLASTP e-value cut-off 10°) in the other two
151 strains (2,356; 73%), with the P. xylanivorans represented by 768 orthologous clusters and 1,996
152 single-copy genes. In total, 2,036 core genes were found to be orthologous among the three P.
153  xylanivorans genomes compared, with only 58 genes found to be unique to MA3014 (Figure
154 1D). Genomic comparisons with other species within the genera Butyrivibrio and
155  Pseudobutyrivibrio have revealed strong collinearities (Palevich, et a. 2019b), that will facilitate

156  our understanding of genome evolution of rumen bacteria.
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157 Polysaccharide Degradation

158 The Carbohydrate-Active enZY mes database was used to identify glycoside hydrolases (GHS),
159 glycosyl transferases (GTs), polysaccharide lyases (PLs), carbohydrate esterases (CEs) and
160 carbohydrate-binding protein module (CBM) families within the MA3014 genome. Overall,
161 CAZyme profile of MA3014 is similar to other Pseudobutyrivibrio that are in general not as
162 extensive as those of Butyrivibrio (Palevich 2016; Palevich, et a. 2019b). Analysis of the
163 functiona domains of enzymes involved in the breakdown or synthesis of complex
164  carbohydrates, has revealed the polysaccharide-degrading potential of this rumen bacterium
165 (Supplementary Table S6). Approximately 2% of the MA3014 genome (69 CDSs) is predicted to
166 encode either 22 secreted (21 GHs and one CE) and 47 intracellular (41 GHs, 4 CEs and two
167 GTs) proteins dedicated to polysaccharide degradation. The enzymatic profiles of MA3014 and
168 Mz 5" are amost identical, as both possess the same genes encoding predicted secreted and
169 intracellular CAZymes in their genomes. Out of the 22 genes predicted to encode secreted
170  polysaccharide degrading enzymes, only p-glucosidase bgl3K (FXF36_15770) is encoded by the
171  MA3014 chromid (Pxyll). The majority (40) of MA3014 genes encoding intracellular proteins
172  involved in polysaccharide breakdown (excluding GTs), had corresponding homologues in Mz
173  5'. The most abundant Pfam domains included GH families (GH3, GH13 and GH43) and CE1,
174  most of which did not contain signal sequences and predicted to be located intracellularly.
175 Similarly, CAZymes with predicted roles in xylan (GH8, GH51, GH115), dextrin and starch
176  (GH13 and GH77) degradation families were also predicted to be mostly intracellular.

177  Growth experiments showed MB2003 to be a metabolically versatile bacterium able to grow on a
178 wide variety of monosaccharides and disaccharides (Supplementary Table S3). However, unlike

179 Mz 5" (Kopecny, et al. 2003), MA3014 was unable to utilize the insoluble substrate pectin for
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180 growth. This difference is due to Mz 5’ possession of 4 pectate lyases (1 PL1 and 3 PL3)
181 predicted to be involved in pectin degradation and utilization, of which MA3014 has none. The
182  ability of MA3014 to breakdown starch and xylan is predicted to be based on four large (>1,000
183 aa) cel-associated proteins shown to be significantly up-regulated in related B. hungatel
184 MB2003 and B. proteoclasticus B316" cells grown on xylan (Kelly, et al. 2010; Palevich, et al.
185 2019a). These are: a-amylase amyl3E (FXF36_11320), arabinogalactan endo-1,4-B-
186 gaactosidase agn53A (FXF36_02635), xylosidase/arabinofuranosidase xsa43D (FXF36_08285),
187  endo-1,4-B-xylanase xyn10A (FXF36_14365). These proteins contain multiple cell wall binding
188  repeat domains (CW-binding domain, Pfram01473) at their C-termini that are predicted to anchor
189 the protein to the peptidoglycan cell membrane (Dunne, et al. 2011). In addition, the secreted a-
190 amylase amyl3E (FXF36_11320) contains a CBM26 (Pfam16738) domain with predicted
191  starch-binding functions (Gilbert, et al. 2013; McCartney, et al. 2004).

192  Electron microscopy of MA3014 cells grown in liquid media supplemented with plant material
193 has reveaed the copious production of exopolysaccharides (EPS) (Figure 2A-B). EPS is a
194  characteristic of Butyrivibrio strains and is composed of the neutral sugars rhamnose, fucose,
195 mannose, galactose and glucose (Stack 1988), made available by recycling the plant
196 polysaccharides breakdown products. Our findings also show the presence of cytoplasmic
197 inclusions (Figure 2C), similar to those seen in B316' and other Butyrivibrio strains containing
198 glycogen-like material (Hespell, et al. 1993). The MA3014 genome encodes a complete
199 repertoire of genes for glycogen synthesis and degradation, suggesting that a variety of complex
200 oligosaccharides resulting from extracellular hydrolysis are metabolized within the cell and that

201  glycogen hasarolein the storage of excess carbohydrate.
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202 Enolase Loss and Metabolic Flexibility

203  Pseudobutyrivibrio and Butyrivibrio are key members of the degradative microbiota found in a
204 highly carbohydrate-rich environment and appear to have evolved beyond using glycolysis as the
205 central pathway. The pathways for butyrate production for these rumen bacteria presume the
206  possession of a complete Embden-Meyerhof-Parnas (EMP) glycolytic pathway. The lack of an
207  enolase (eno, EC4.2.1.11), that converts 2-phospho-D-glycerate to phosphoenolpyruvate in the
208 second to last step of the EMP pathway, is extremely unusual. As part of the Hungate1000
209  project in which the genomes of 410 rumen microbes were sequenced (Seshadri, et al. 2018), we
210 discovered that many specialized polysaccharide fermenters lacked an enolase gene. Of al 21
211  Pseudobutyrivibrio genomes sequenced, only P. xylanivorans MA3014 and P. ruminis AD2017
212 reported to date lack a detectable enolase. Eno- P. xylanivorans MA3014 and severa
213  Butyrivibrio strains were recently confirmed using PCR screens with eno-specific primers
214 (Kdly, et al. 2010; Palevich, et al. 2018). Given the observed polysaccharide-degrading abilities
215 and lactate production, the Methylglyoxal Shunt (MS) and uronic acid metabolic pathways
216  (Figure 2D), have been suggested as aternatives to the EMP pathway (Cooper 1984). Previous
217 work has aso reported similar findings in other Butyrivibrio strains (Kelly, et al. 2010; Palevich,
218 et a. 2019a). In this pathway the dihydroxyacetone phosphate is transformed to pyruvate via
219 methylglyoxal and D-lactate dehydrogenase encoded by IdhA. The MA3014 genome possesses
220 methylglyoxal synthase, mgsA (FXF36_12340), glyoxalases gloA/B (FXF36_00730,
221 FXF36_01130 and FXF36_09530) and both bD- and L-lactate dehydrogenases |dh (FXF36_04170
222 and FXF36_11135) genes. In addition, MA3014 has the same set of genes as the previously

223 reported and well-characterized B. hungatei MB2003 and B. proteoclasticus B316' for the

10
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224 production of butyrate, formate, acetate and lactate (Kelly, et al. 2010; Palevich, et al. 2019a;
225 Paevich, et a. 2017).

226  In some butyrate-forming anaerobes, crotonyl-CoA reduction is linked to electron transport
227  phosphorylation (ETP) via flavin-based electron bifurcating ech and rnf complexes which act as
228 transmembrane ion pumps (Buckel and Thauer 2013; Herrmann, et al. 2008; Li, et al. 2008;
229 Welte, et a. 2010). A recent analysis of the Hungate1000 dataset (Hackmann and Firkins 2015;
230  Seshadri, et al. 2018; Palevich, et al. 2019b), found that Pseudobutyrivibrio and Butyrivibrio
231  genomes encode both Ech and Rnf homologues proposed to act in concert with NifJ and Bed-Etf
232  toform an electrochemical potential and drive ATP synthesis (Gutekunst, et al. 2014; Tremblay,
233 et a. 2013). This allows these rumen bacteria to generate approximately 4.5 ATP/glucose in
234  total, one the highest yields for anaerobic fermentation of glucose (Buckel and Thauer 2013).
235  Given theimportance of eno, Pseudobutyrivibrio and Butyrivibrio may be displaying an example
236 of environment-specific evolution by gene loss that warrants further investigation into the
237 dternative pathways that permit ATP generation. The genome sequence of P. xylanivorans
238 MA3014 presented here is consistent with the genome architecture of other sequenced
239  Pseudobutyrivibrio strains and is a valuable resource for future studies regarding bacterial-driven

240  plant-fibre degradation in ruminants.

241 Supplementary Material

242  Supplementary data are available at Genome Biology and Evolution online.

243  Data deposition: The complete genome sequence of Pseudobutyrivibrio xylanivorans MA3014
244 and its annotations are deposited in Genbank under accession numbers CP043028, CP043029

245  and CP043030.
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385 gmilarities of unique proteins (blue) and highly conserved features (red) relative to sequencesin
386 the nonredundant (nr) database. (B-C) Genome synteny analysis. Alignment of the P.
387  xylanivorans MA3014 genome against the draft genomes of P. xylanivorans Mz 5" (B) and P.
388 xylanivorans NCFB 2399 (C). Whenever the two sequences agree, a colored line or dot is
389 plotted. Units displayed in base-pairs. Color codes:. blue, forward sequence, red, reverse
390 sequence. (D) Venn diagram showing the distribution of shared gene families among the P.
391 xylanivorans genomes. All P. xylanivorans scaffolds with at least a single one-to-one ortholog

392  shared among the genomes were compared.

393 Figure 2. (A-C) Electron micrographs of P. xylanivorans MA3014. (A-B) Scanning EMs of
394 MA3014 cells adherence to the surface (A) and exposed end (B) of NDF plant material, at 5,000
395 x magnification. (C) Transmission EM of negatively stained MA3014 cells grown in liquid
396 medium at 10,000 x magnification. Arrows indicate the presence of glycogen inclusions. (D)
397 Fermentation pathways in rumen Pseudobutyrivibrio and Butyrivibrio. Abbreviations: Bcd-Etf,
398 butyryl-CoA dehydrogenase/electron transferring flavoprotein; Ech, E. coli hydrogenase-3-type
399 hydrogenase; Fd, ferredoxin; Fdo, oxidized Fd; Fd., reduced Fd; Glo, glyoxalase; MsgA,
400 methylglyoxal synthase; NAD, nicotinamide adenine dinucleotide; NADoy, oxidized NAD;
401 NAD., reduced NAD; NifJ, nitrogen fixation J; Rnf, Rhodobacter nitrogen fixation; ATPase =

402  FoF-ATPsynthase.
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