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Abstract

The teeth of sharks famously form a series of parallel, continuously replacing
files borne directly on the mandibular cartilages. In contrast, bony fishes
possess site-specific shedding dentition borne on dermal plates.
Understanding how these disparate systems evolved is challenging, not least
because of poorly understood relationships and the profusion of
morphologically and terminologically diverse bones, splints and whorls seen in
the earliest chondrichthyans. Here we use tomographic methods to
investigate the nature of mandibular structures in several early branching
‘acanthodian’-grade stem-chondrichthyans. We characterise the gnathal
plates of ischnacanthids as growing bones, and draw similarities between
early chondrichthyan and stem gnathostome teeth and jaws. We further build
the case for Acanthodopsis, a Carboniferous taxon, as an acanthodid, and
show that, unexpectedly, its teeth are borne directly on the mandibular
cartilage. Mandibular splints are formed from dermal bone and appear to be
an acanthodid synapomorphy. The development of a unidirectionally growing
dentition may be a feature of the chondrichthyan total-group. More generally,
ischnacanthid and stem gnathostome gnathal plates share a common
construction and are likely homologous, and shedding teeth evolved twice in

gnathostomes.

Keywords (3-6): dentitions, early vertebrates, acanthodians,
chondrichthyans, tooth evolution, Palaeozoic
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1. Background

The structure and position of teeth and jaws are one of the major anatomical
distinctions between osteichthyans (bony fishes: ray-finned fishes, lobe-finned
fishes, and tetrapods) and chondrichthyans (cartilaginous fishes: sharks, rays,
and chimaeras) (1). In osteichthyans, teeth are partially resorbed, shed, and
replaced in position on dermal bones lateral to and overlying endoskeletal jaw
cartilages. These form inner (dermal: coronoids, dermopalatines;
endoskeletal: Meckel’s cartilage, palatoquadrate) and outer (dermal: dentary,
maxilla, premaxilla) dental arcades. In chondrichthyans, teeth grow, shed, and
are replaced in parallel rows of labially-directed series directly on the jaw
cartilages (endoskeletal: Meckel’s cartilage, palatoquadrate). These two
conditions are difficult to reconcile. Their origins can be observed in the
morphologies of Palaeozoic gnathostome fossils, which suggest that the last
common ancestor of jawed fishes (gnathostomes), as well as crownward stem
gnathostomes (a paraphyletic assemblage referred to as ‘placoderms’),

possessed non-shedding teeth fused to the underlying dermal jaw bone (2—4).

The advent of micro-computed tomography has led to a renewed interest in
tooth evolution and development in ‘placoderms’ (3—5) and osteichthyans (6—
10). However, ‘acanthodians’, the earliest-branching members of the
chondrichthyan total-group, have received comparatively little study (but see:
(11-13)), despite a bewildering array of dermal oral structures (e.g. (11,14—

18)).

Here we provide new tomographic data on teeth and jaws in several early-

diverging stem chondrichthyans. We place this in the context of what we know
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about early chondrichthyan relationships, and discuss its implications for the

early evolution of gnathostome dentitions.

2. Materials and Methods

All specimens studied here are housed at the Natural History Museum,
London (NHM), and comprise: an isolated Taemasacanthus erroli jaw
(NHMUK PV P33706); an isolated Atopacanthus sp. jaw (NHMUK PV
P.10978); an isolated Acanthodopsis sp. jaw (NHMUK PV P.10383); and a
partial head of Acanthodes sp. (NHMUK PV P.8065). Full descriptions, as well
as details of an additional isolated /Ischnacanthus sp. jaw (NHMUK PV

P.40124) are given in the supplement.

CT scanning of two specimens took place at the Imaging and Analysis Centre,
NHMUK, using a Metris X-Tek HMX ST 225 with the following settings:
Taemasacanthus erroli: 3142 projections, 130 kV, 131 pyA, 0.1 mm copper
filter, voxel size 17.3 um; Atopacanthus: 3142 projections, 130 kV, 154 LA,

0.1 mm copper filter, voxel size 19.508/07/2020 18:05:00 ym.

CT scanning of three specimens took place at the Bristol University
Department of Life Sciences using a Nikon XT H 225 ST with the following
settings: Acanthodopsis: 3142 projections, 180 kV, 92 uA, no filter, voxel size
22.6 ym; Acanthodes: 3142 projections, 215 kV, 165 pA, 0.1 mm tin filter,
voxel size 44.9 um; Ischnacanthus: 3142 projections, 222 kV, 105 pA, 0.5 mm

copper filter, voxel size 24.6 um.
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Reconstructed tomographic datasets were segmented in Mimics v.19

(biomedical.materialise.com/mimics; Materialise, Leuven, Belgium). Images of

the resulting models were then generated using Blender (blender.org).

3. Results

The left lower jaw of Taemasacanthus (previously described in Long (19): fig.
4A-C) comprises a tooth-bearing dermal gnathal plate (also referred to as a
dentigerous jaw bone: Burrow (15)) with a concave ventral surface overlying a
partially-ossified Meckel’s cartilage (figure 1a,b, figure S1). The Afopacanthus
specimen examined here belongs to either a right lower or left upper jaw
(figure 1d,e, figure S2), and only the gnathal plate is preserved. The jaw
bones of both taxa have a broadly similar construction, which also
corresponds to that of Ischnacanthus (figure S3). The largest component of
the dentigerous jaw bone is the gnathal plate. Internally, this plate is highly
vascularised with interlinked antero-posteriorly polarised canals (figure 1c,f).
Three rows of teeth are borne on the biting edge of the gnathal plate: a lateral,
medial, and lingual row. Teeth within the lateral and lingual rows are fused to
the jaw but histologically separate from the underlying gnathal plate. The
medial row lies on the mesial ridge, formed by the occlusal corner of the
gnathal plate, and comprises small disorganised cusps (one row in
Taemasacanthus, two rows in Atopacanthus). All mesial teeth are
vascularised in Afopacanthus, but only the posteriormost ones are in
Taemasacanthus. The lateral and lingual rows of teeth in both taxa are much

larger, are ridged, and comprise a vascular base topped with an avascular
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crown (figure 1a,c,f). Both grow by the addition of new teeth anteriorly, as
evidenced by anterior teeth partially overlying posterior ones, with cusps
becoming progressively larger in the direction of growth. The sole exception to
this is the penultimate lingual tooth in Taemasacanthus (figure 1a), which
partially overlies and is thus younger than the tooth anterior to it. The lateral
tooth row in both taxa lies on the dorso-lateral (or ventro-lateral) surface of the
gnathal plate. Its teeth are laterally unornamented and continuous with the
lateral surface of the dermal bone, connected to one another via antero-
posterior lateral ridges. The lingual tooth row grows on the lingual side of the
dermal plate, curving away from the occlusal surface anteriorly. These teeth
appear to sit on a bony lingual plate, with a distinct histology from the main

gnathal plate, something particularly obvious in Atopacanthus (figure S2).

The right lower jaw in Acanthodopsis comprises a tooth-bearing Meckel's
cartilage and a mandibular splint (figure 1g,i,j, figure S4). The Meckel’s
cartilage is similar in form to that of Acanthodes (figure 1k—m, figure S5)
(15,20), with an identical articular cotylus and symphyseal fossa, and is
mineralised as a thick shell of perichondral bone which would have contained
cartilage in life. Unlike in Acanthodes, the Meckel’s cartilage in Acanthodopsis
is mineralised along its entire length. A row of ten monocuspid, triangular
teeth runs along the dorsal surface of the Meckel’s cartilage. The largest tooth
is in the middle of the jaw, with teeth becoming smaller and more closely set
anteriorly and posteriorly; they are slightly lingually convex, with a smooth (but
possibly weathered) lateral face and a longitudinally striated lingual face.
Rather than being tooth-shaped extensions of perichondral bone (15) these

are histologically distinct from Meckel’s cartilage, formed from a thick outer
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shell and a vascular inner pulp, with no obvious pulp cavity (figure 1i,j).
Although indistinct, growth lines suggest that the largest tooth is the oldest,
with younger teeth added both anteriorly and posteriorly. The mandibular
splint in Acanthodopsis is an unornamented, slightly sinusoidal bone that fits
into a groove on the ventro-lateral part of Meckel’s cartilage, extending almost
its entire length. Internally, the element is pierced by a series of thin,
longitudinally oriented canals (figure 1i). This, combined with the fact that no
other endochondral mineralisation is preserved in either Meckelian element,
suggest that it is formed from dermal bone (21), rather than endochondral
tissue (15). In all respects the mandibular splint in Acanthodes (figure 11,m,

figure S5) is almost identical to that of Acanthodopsis (20).

4. Discussion

Our new data show conclusively that the gnathal plates (also referred to as
dentigerous jaw bonens) of ischnacanthids were growing bones with new
teeth added in an anterior direction, as supposed by @rvig (22) based on
directional wear. These teeth were fused to, but distinct from, the underlying
gnathal plate, which presumably grew with the rest of the jaw. This mode of
growth is comparable to that of stem-gnathostome arthrodire gnathal plates in
Compagopiscis and an unnamed buchanosteid, in which teeth are added in
multiple directions onto a growing basal dermal bone (3,5,23). This also
appears to be the case in the stem gnathostome acanthothoracid Romundina,
although its exact mode of growth is disputed (4,24—26). This organisation of
dental elements may be a plesiomorphic condition, shared with certain stem-

group gnathostomes (figure 2). Unlike these taxa however, the tooth growth in
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157  ischnacanthids is unidirectional. This is more comparable to what is seen in
158 ‘acanthodian’ tooth whorls (12,13), where non-shedding cusps are added
159 unidirectionally onto a bony base. This unidirectional mode of tooth growth

160  may be a chondrichthyan synapomorphy (figure 2).

161  The row of monocuspid dermal teeth borne directly on the Meckelian element
162  of Acanthodopsis is unlike any other known chondrichthyan (with the possible
163  exception of Pucapampella: (27)), and distinct from that seen in any other
164  known gnathostome. Although in the past Acanthodopsis has been

165 considered to have dermal dentigerous jaw bones (15,22), our CT data show
166  conclusively that the main body of the jaw is endoskeletal in origin. A

167 symphyseal fossa and Acanthodes-like mandibular splint further support

168  Burrow’s (15) assertion that Acanthodopsis is closely related to

169 acanthodiforms, rather than ischnacanthiforms. However, beyond this its

170  dental morphology is difficult to interpret. The teeth are comparable to the
171  tooth whorls of more crownward chondrichthyans in that they are borne

172  directly on the Meckelian element and are apparently oriented perpendicular
173  to the direction of the jaw bone. In this sense they could be interpreted as a
174  non-growing tooth whorl with a single generation. However, this interpretation
175 is confounded by the fact that Acanthodes is completely toothless, and

176  phylogenetic analyses recover it as nested within a larger clade of toothless
177  acanthodiforms inferred to be filter-feeders, the earliest members of which
178  existed in the Early Devonian (28). If this phylogeny is correct, and the teeth
179  of Acanthodopsis are homologous with tooth whorls, it would demand at least
180 two convergent losses of teeth in this clade (i.e. in deeper-diverging

181 acanthodiforms and Acanthodes). Alternatively, teeth may simply be
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unobserved in some acanthodiform taxa due to their small size: teeth were
recently found in the supposedly edentulous filter feeder Gladbachus

adentatus (28).

Mandibular splints (variously termed dentohyoids, extramandibular spines,
splenials, and mandibular bones (29)) have been reported in a range of
‘acanthodian’-grade taxa including acanthodids (29,30), mesacanthids
(31,32), cheiracanthids (21), ischnacanthids (33,34), and diplacanthids
(35,36). Their small size and unclear association with other bones of the
mandibular arch has made them difficult to characterise, of unclear homology,
and prone to being mixed up with other mandibular elements; the supposed
mandibular splint in diplacanthids has for example been shown to be an
“occlusal bone” (18). Our characterisation of the mandibular splint in
Acanthodopsis and Acanthodes as a dermal bone with a distinctive shape
allows reassessment of these mandibular bones in other taxa. The
morphology in other acanthodids appears likely to match that in the two taxa
we describe in that they have a slightly sinusoidal shape, for example in other
species of Acanthodes (20,29,37), Halimacanthodes (30), and Howittacanthus
(38). In Ischnacanthus (figure S3), the ventral margin of Meckel’s cartilage is
reinforced and laterally flattened; we suggest this is also likely to be the case
in other ischnacanthids with “mandibular splints” (33). This may also be the
case in mesacanthids, in which the mandibular splint is not convincingly
separate from the Meckel’s cartilage or branchiostegal plates, for example in
Promesacanthus (31). The condition is uncertain in cheiracanthids: a
mandibular splint is absent in Cheiracanthus and Homalacanthus, and while

Protogonacanthus is described as having a mandibular splint (21) its
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morphology looks more similar to the reinforced ventral margin in

ischnacanthids. Thus it is possible that a separate “true” mandibular splint, as
seen in Acanthodopsis and Acanthodes, is an acanthodid synapomorphy. Its
similarity to the ventral branchiostegal rays in Acanthodes suggest that it may

simply be part of this series that has been co-opted to support the jaw.

Our new data on ‘acanthodian’ jaw elements feed into an emerging picture of
stem chondrichthyan evolution. A unidirectional mode of tooth growth appears
to be a chondrichthyan synapomorphy (with a possible reversal in
Acanthodopsis; figure 2). While fine-scale relationships remain poorly
understood, phylogenetic analyses increasingly recover a stemward grade of
ischnacanthiforms, acanthodiforms, and diplacanthiforms (28), with a
climatiid-grade more proximate to the chondrichthyan crown. Consequently, a
dentition consisting entirely of tooth whorls—which extend along the entire jaw
length—as well as absence of dermal gnathal plate, is restricted to climatiids
and more crownward taxa (figure 2), although possibly homologous dentitions
may be seen in ischnacanthid tooth whorls, Acanthodopsis, and
Latviacanthus. Tooth shedding is restricted to the node proximate to the
chondrichthyan crown. Some uncertainty remains, however, largely due to the
uncertain position of edentulous taxa such as Lupopsyrus and
Kathemacanthus, and the peculiar site-specific dentition apparently present in

Pucapampella (27).

Our new data also have a bearing on the broader question of jaw and tooth
evolution in gnathostomes. Ischnacanthid gnathal plates (also referred to as
dentigerous jaw bones) appear homologous with the gnathal plates of stem-

gnathostomes: they are positionally, structurally and histologically similar,

10
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being vascularised dermal bones overlying the mandibular cartilage, with non-
shedding tooth cusps added onto an underlying dermal plate. These gnathal
plates have been homologised with the inner dental arcade of osteichthyans
(39-41), and more recently with the outer dental arcade (42,43). In either
case, assuming homology between gnathal plates and either the inner or
outer dental arcade, this is a rare example of a macromeric skeletal structure

preserved on all three branches incident to the gnathostome crown node.

Our reassessment of early chondrichthyan dentitions also presents an
opportunity to reconsider the homology of tooth whorls. The rows of denticles
on the marginal jaw bones of the stem-osteichthyans Lophosteus and
Andreolepis have been said to recall the tooth “families” of chondrichthyans
(6). However, given that multiple rows of tooth whorls are absent in the
deepest-diverging chondrichthyans, and that the parasymphyseal tooth whorls
that are present grow from the lingual side of the jaw cartilage as in living
chondrichthyans (6), we consider any resemblance superficial (9).Similarly,
ischnacanthids cheek scales have been argued to be incipient tooth whorls
formed from cheek denticles (11,44). However, given the phylogenetic
position of ischnacanthids, and the propensity of dermal ornament bordering
the mouth to resemble dentition (e.g. Mimipiscis, Ptomacanthus (45,46)), we
consider these structures removed from hypotheses of early tooth evolution.
Parasymphyseal tooth whorls in which the teeth replace via resporption and
anterior rotation (10) are also known in osteichthyans (e.g. in Onychodus
(10,47)), but these are phylogenetically and structurally removed from
chondrichthyan tooth whorls and unlikely to be homologous. However, it is

difficult to assess whether non-shedding parasymphyseal whorls are

11
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homologous due to the unclear condition in psarolepids (variably interpreted
as stem sarcopterygians or stem osteichthyans (48-52)), in which a whorl is
inferred (48,52) but is yet to be described. Finally, the interposition of many
non-shedding stem-chondrichthyan taxa between shedding chondrichthyans
and shedding osteichthyans confirms that a shedding dentition evolved twice,
in two different ways, in crown-gnathostomes (7,10). The teeth of extant
chondrichthyans, borne directly on endoskeletal mandibular cartilages, are
positionally distinct from both the inner and outer dental arcades of

osteichthyans, where teeth are borne on dermal bones.
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Figure 1. Tomographic models of jaw elements in acanthodian-grade stem-
chondrichthyans: (a-c) the left lower jaw of Taemasacanthus erroli NHMUK
PV P.33706 in (a) medial view, (b) lateral view, and (c) a reconstructed
tomogram showing a sagittal section through the lingual tooth row; (d-f) a
gnathal plate of Atopacanthus sp. NHMUK PV P.10978 in (d) medial view, (e)
lateral view, and (f) a reconstructed tomogram showing a sagittal section
through the lingual tooth row; (g-j) the right lower jaw of Acanthodopsis sp.
NHMUK PV P.10383 in (g) lateral view, (h) medial view, (i,j) reconstructed
tomograms showing (i) a sagittal section through the entire jaw and (j) a
transverse section through the jaw; (k-m) the lower jaws of Acanthodes sp.
NHMUK PV P.8085 in (k) ventral view against the digital cast of the surface
with (I,m) reconstructed tomograms showing (I) a coronal section through the
specimen, and (m) a transverse section through a lower jaw. Abbreviations:
Mand. splint., Mandibular splint; Meck. cart, Meckel’s cartilage; L., Left; R.,

Right.
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Figure 2. Hand-drawn cladogram showing relationships of total-group
gnathostomes pertinent to tooth evolution and schematics of their lower jaw
morphologies. Anterior to right and all specimens in lingual view except for
Compagopiscis, Entelognathus, and Andreolepis. Black arrow indicates
position of initial tooth growth, blue graded arrow indicates direction of
subsequent growth. Colour scheme: grey, Meckel’s cartilage; dark blue,
gnathal plates and attached teeth; green, mandibular splints; light blue, teeth
placed directly on endoskeleton; white, dermal bones of uncertain homology
and attached teeth. Abbreviations: Add., addition; Meck. cart, Meckel's

cartilage. Images redrawn from (3,5,8,11,16,32,41,45,53,54).
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Supplementary information for this manuscript is included as a single
separate file. It includes supplementary figures 1-5, supplementary text
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