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Abstract

Changes in resting-state functional connectivity (rs-FC) under general anesthesia have
been widely studied with the goal of identifying neural signatures of consciousness. This
work has commonly revealed an apparent fragmentation of whole-brain network structure
during unconsciousness, which has been interpreted as reflecting a break-down in connectivity
and disruption in the brains ability to integrate information. Here we show, by studying rs-
FC under varying depths of isoflurane-induced anesthesia in nonhuman primates, that this
apparent fragmentation, rather than reflecting an actual change in network structure, can
be simply explained as the result of a global reduction in FC. Specifically, by comparing the
actual FC data to surrogate data sets that we derived to test competing hypotheses of how
FC changes as a function of dose, we found that increases in whole-brain modularity and
the number of network communities considered hallmarks of fragmentation are artifacts of
constructing FC networks by thresholding based on correlation magnitude. Taken together,
our findings suggest that deepening levels of unconsciousness are instead associated with the
increasingly muted expression of functional networks, an observation that constrains current
interpretations as to how anesthesia-induced FC changes map onto existing neurobiological

theories of consciousness.
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I. INTRODUCTION

While much work has focused on how different anesthetics affect ion channels and receptor
function at the cellular level (Anis et al. 1983, Franks 2006, Peduto et al. 1991), it remains poorly
understood, by comparison, how anesthetics affect the coordinated activity of distributed whole-
brain networks (Alkire et al. 2008, Brown et al. 2011). In recent years, resting-state functional MRI
(rs-fMRI) has provided important glimpses into the large-scale, network-level effects of anesthesia.
This approach, which measures covariance structure in spontaneous low-frequency oscillations in
neural activity (Biswal et al. 1995), has repeatedly revealed an apparent fragmentation of func-
tional brain network structure during various states of unconsciousness (Boly et al. 2012b, Hudetz
and Mashour 2016, Hutchison et al. 2014). These findings are broadly consistent with work us-
ing electroencephalography and electrocorticography reporting a similar breakdown in long-range
cortical communication under anesthesia (Lee et al. 2009) and during sleep (Ferrarelli et al. 2010).

Several authors (e.g. Boly et al. 2012b, Hudetz and Mashour 2016, Hutchison et al. 2014,
Standage et al. 2019) have, implicitly or explicitly, interpreted these findings through the lens
of various neurobiological theories of consciousness, which posit that conscious experience arises
through the distributed processing of information throughout the neocortex. For example, the
global neuronal workspace theory (Mashour et al. 2020) submits that information is made con-
sciously accessible when it is broadcast widely throughout the cortex by a set of diffusely connected
control regions in the prefrontal and parietal cortices. These regions in particular are frequently
assigned a key role in the neural substrate of consciousness, and imaging research has revealed a
reduction in frontal-parietal connectivity both during sleep (Spoormaker et al. 2012, Tagliazuc-
chi et al. 2013) and under anesthesia (Boly et al. 2012a, Ku et al. 2011). By these, and other
similar accounts (e.g. Tononi 2004), the fragmentation of network structure observed during sleep
or anesthesia can be viewed as a causal signature of unconsciousness, resulting in a disruption of
the brain’s ability to integrate information, or to broadcast it widely enough to create conscious
awareness (Mashour 2013, Mashour and Hudetz 2018).

Network fragmentation is often concluded on the basis of changes in graph properties (e.g.,
increases in modularity or the number of communities) estimated from thresholded correlation
matrices using a fixed, magnitude threshold. However, in this regime, global decreases — or "mut-
ing” — of functional connectivity may also produce the appearance of fragmentation by producing
sparser, more disconnected networks (see Figure 1a). As an illustrative example, we contrast work

which observed an increase in the modularity and number of communities of significance thresh-
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olded networks during sleep (Boly et al. 2012b), with work which found no such effect when using
a relative threshold, chosen to obtain a fixed edge density (Uehara et al. 2014). It is diffcult to
reconcile these results, or to establish that they represent truly distinct phenomena, using graph
summary measures alone, as doing so requires a detailed analysis of the underlying network struc-
ture. This consideration is particularly pertinent in the case of anesthesia, which has been observed
to result in overall decreases in correlation magnitude (Bettinardi et al. 2015, Lv et al. 2016). Fur-
ther, while several authors have highlighted diminished long-range connectivity under anesthesia
— notably between the frontal and parietal cortices (Hudetz and Mashour 2016) — other work has
observed similar decreases in local connectivity (Monti et al. 2013). This suggests that anesthetic
compounds may affect both short and long range cortical connections, and thus do not simply
result in the disconnection of distant cortical regions, but disrupt coordinated neural activity at
the local level (Hudetz et al. 2016, Vizuete et al. 2014).

For studies seeking to identify the neural correlates of unconsciousness using functional connec-
tivity, these facts suggest an important distinction — between alterations in network structure on
one hand, versus overall changes in correlation magnitude on the other. These different effects can
be difficult to disentangle, as evidenced by findings of both (1) an increase in the modularity and
number of communities during sleep, and (2) that, despite these network changes, overall network
structure remained relatively preserved (Boly et al. 2012b). Given this general ambiguity, as well
as the ambiguity as to how such results may support theories of consciousness (Tononi 2004), the
goals of the present study were two-fold: First, to ascertain to what extent network fragmentation
under anesthesia-induced unconsciousness is attributable to an overall decrease in connectivity
strength; and second, to characterize the structure of whole-brain functional connectivity across
depths of unconsciousness. To unpack these relationships, we examined changes in rs-fMRI brain
network structure in non-human primates across six increasing levels of anesthesia. This allowed
us to test for fine-graded changes in network strength and structure across sedation levels, while

also assessing critical components of neurobiological theories related to consciousness.

II. RESULTS

A. Reduction in correlation magnitude explains apparent network fragmentation

Figure 2a displays summary statistics for the correlation matrices estimated from each scan.

Consistent with previous work (Xie et al. 2019), increasing dose was associated with an overall de-
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FIG. 1: Competing hypotheses, methods and analytic approaches — a) Alternative accounts of the
apparent network fragmentation observed during unconsciousness. The fragmentation account posits a splitting of
conscious brain networks into smaller subnetworks during unconsciousness. An alternative muting account explains
the apparent fragmentation by a global reduction in correlation magnitude, which results in sparser, more
fragmented networks after applying a magnitude threshold. b) We collected twelve five-minute resting state scans —
two at each of six concentrations of isoflurane. The cortex was parcellated using the LVE atlas (Lewis and

Van Essen 2000), and covariance matrices were estimated for each scan. ¢) We studied dose related changes in
network statistics both in the real data, and in surrogate datasets in which either the correlation structure or
magnitude (the mean absolute value of the pairwise correlations) were held constant. In the former (Constant
Structure), we simply scaled the correlation matrix associated with the lowest dose (1% isoflurane) to match the
observed mean magnitude for each scan. In the second (Constant Magnitude), we scaled all correlation matrices
to have mean magnitude equal to the lowest dose. d) To quantify the degree to which the data supported either a
constant vs. dose dependent covariance structure, we split each subjects data in two datasets, each comprising one
of the two scans at each dose. We then compared the correlation matrices in one half both to the lowest dose (1%
isoflurane) or to the corresponding dose (Dose matched) in the other.
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FIG. 2: Correlation magnitude decreases both globally and locally as a function of increasing
anesthetic dose — a) Descriptive statistics for correlation matrices. In all figures, colored lines denote means for
each each subject. Solid black line denotes the mean across all subjects. Error bars are one standard error. b)
Parcelation of the cortex into primary sensory regions (somatomotor, auditory, and visual), and frontal and parietal
cortices. ¢) Mean absolute correlation within each parcel, as well as between the frontal and parietal cortices
(frontoparietal). d) Mean absolute correlation between bilateral homologues and non-homologous ROIs. €)
Average muting of functional connectivity per ROI. Figures display the mean absolute correlation, as well as the
change in mean absolute correlation relative to the lowest dose (1% isoflurane). f) Surface map of the change in
mean absolute correlation at 2.75% isoflurane relative to the lowest dose.

crease in correlation magnitude, with no clear change in the ratio of positive to negative correlations
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(as in Bettinardi et al. 2015). We also observed a decrease in the spectral radius (the magnitude
of the largest eigenvalue), suggesting an overall loss of low dimensional structure. This reduction
in correlation did not appear to be driven by regions in any single network, but was present both
in primary sensory and somatomotor regions, as well as in the frontal and parietal cortices, and
connections between them (Figures 2b-c). Although bilateral homologs displayed relatively high
functional connectivity compared to non-homologous regions at low doses, this connectivity was
likewise seen to sharply decrease with increasing dose (Figure 2d). Figures 2e-f displays the de-
crease in correlation magnitude at the level of individual ROIs, suggesting that all regions show a
trend towards decreasing mean connectivity with increasing dose. Together, these effects indicate
a global reduction in functional connectivity magnitude as isoflurane dose increases.

Next, to determine the extent to which network changes across dose can be attributed to actual
changes in network structure, versus an overall decrease in correlation magnitude, we computed
graph summary statistics from the thresholded and binarized correlation matrices, as well as from
two surrogate datasets in which either the average correlation structure or the correlation magni-
tude was held constant across dose. These surrogate datasets were important, as they provided
a critical basis for interpreting effects in the real data; if the appearance of network fragmenta-
tion is due primarily to an overall decrease in correlation magnitude, then the same pattern of
results should be observed when the exact same correlation structure is held constant across doses,
and only the magnitude is allowed to vary. Conversely, fragmentation should be abolished when
correlation matrices are scaled to have the same average magnitude. We created the Constant
Structure surrogate dataset by replacing each correlation matrix (from 1.00% - 2.75% isoflurane)
with a copy of the average of the subjects two correlation matrices at the lowest dose (1.00%),
scaled to have matching correlation magnitude to the real data (defined as the mean absolute
value over all pairwise correlations). By contrast, we created the Constant Magnitude surro-
gate dataset by scaling each correlation matrix to have the same average correlation magnitude
as in the corresponding subjects lowest dose condition (see Figure 1c). We then thresholded and
binarized each correlation matrix using an uncorrected, one-tailed t-test with a significance thresh-
old of a = .05. For further comparison, we also binarized the observed correlation matrices using
a relative threshold chosen to produce an constant edge density equal to the mean edge density at
the lowest dose (Density Threshold). If increasing dose is characterized primarily by a overall
decrease in correlation strengths, rather than a change in network structure, then graph properties
of density thresholded networks should be relatively preserved across dose.

Broadly consistent with previous work (Boly et al. 2012b, Hutchison et al. 2014) — and the in-
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terpretation that brain networks become increasingly fragmented and/or disconnected at increased
levels of sedation — we observed an increase in sparsity, the number of communities, modularity,
and small-worldness with increasing dose, along with a decrease in network efficiency (Figure 3a).
Notably, however, we observed a nearly identical pattern of results in our surrogate dataset in
which the correlation structure was held constant across dose (Constant Structure), and only the
correlation magnitude was varied. Furthermore, these effects were completely abolished in our
surrogate dataset in which the correlations were scaled to have common magnitude across dose,
or when the networks were thresholded to achieve a fixed edge density. These results, when taken
together, suggest that the observed effect of increasing dose on network statistics (i.e., fragmenta-
tion) is better explained as a reduction in overall correlation magnitude, or the muting of constant

network structure.
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FIG. 3: The appearance of network fragmentation is an artifact of an increasingly muted network
structure — a) Network summary statistics. Values denote means across all subjects, while error bars denote one
standard error. Observed denotes the actual, observed correlation matrices. For Constant Magnitude,
correlations at each dose level were scaled to match the average magnitude of the correlations at the lowest dose
(1% isoflurane). For Constant Structure, the correlation matrix for the lowest dose was replicated across all
scans, and scaled to match the observed average magnitude. Networks were constructed by thresholding and
binarizing correlation matrices by significance using a one-tailed t-test with o = .05. For comparison, we also
thresholded the observed correlation matrices using a relative threshold to achieve a fixed edge density of .3
(Density threshold). Communities were estimated using the Louvain clustering algorithm. Note that the effect of
isoflurane on the observed networks is consistent with the scaling of a constant correlation structure. b) Mean
spectrum of the correlation matrices at each dose (top). The x-axis is shown on a log scale to better display the
effects of dose on the leading eigenvalues. After splitting each subjects data into two halves — comprising the first
and second scans at each dose, respectively — we compared the correlation matrices in first half either to the
corresponding dose (Dose Matched), or to the lowest dose (1% Isoflurane) in the other. Correlation matrices
were compared using the distance between the subspaces spanned by the leading five eigenvectors (middle). The
bottom figure displays the correlation between the vectorized correlation matrices from the two scans at each dose,
suggesting that the reliability of functional connectivity estimates decreases with increases depth of anesthesia.
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FIG. 4: Latent structure of brain networks is present across all dose levels, but becomes increasingly
muted — Common principal component analysis (CPCA) of subjects’ centered covariance matrices. The number of
displayed components was selected on the examination of the spectrum of the observed correlation matrices (see
Figure 3b). Prior to CPCA, subject covariance matrices were centered to remove static subject differences in
functional connectivity. a) Two-dimensional embedding of subject covariance matrices by uniform manifold
approximation (UMAP; Mclnnes et al. 2018) using a distance matrix constructed by the pairwise geodesic
distances. Note the subject level clustering in the uncentered data. b). Spatial maps for the top five components.
¢) Component scores for each subject and each scan.
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B. Dose effects are well explained by a constant network structure

If the observed dose effects can be explained by the muting of a constant network structure,
then the correlation structure at all dose levels should be well approximated by the structure at
the lowest dose (1% isoflurane). We directly tested this by splitting each subject’s data into two
halves, comprising the first and second scans at each dose, respectively. We then compared each
whole-brain correlation matrix in the first set either to the corresponding dose in the second, or
to the lowest dose, using the distance between the subspaces spanned by the leading eigenvectors
(the geodesic distance on the Grassmann manifold; Edelman et al. 1998). We chose the subspace
spanned by the leading five eigenvectors, as this was the range of the spectrum most strongly
affected by dose (Figure 3b, top).

Critically, we found a near identical pattern of results in the lowest dose and in the dose matched
comparisons (Figure 3b, middle), indicating that the dominant patterns of network structure at
higher dosages are well approximated by the structure already present at the lowest dose.

To visualize this structure, we used common principal component analysis (CPCA; Flury 1984,
Trendafilov 2010) to derive a set of components summarizing the correlation structure across
dosages. Prior to applying CPCA, subject correlation matrices were centered to remove subject
differences in functional connectivity. This decision was motivated by previous findings (Gratton
et al. 2018, Xu et al. 2019) that variability in functional connectivity in Humans and non-human
primates is dominated by stable, subject level effects, which may mask the relatively small differ-
ences induced by task manipulations. Consistent with these findings, we found strong clustering
of the correlation matrices at the subject level (Figure 4a, left) in the uncentered data, which we
were able to remove through our centring approach (Figure 4a, right).

Figure 4b-c shows the spatial maps of the components extracted by applying CPCA to the
centered correlation matrices, as well as the contributions of these components at each dose. The
first of these (CPC1) constitutes a gradient separating visual and medial ventrotemporal areas
from parietal, frontal and superior temporal regions. CPC2 constitutes a gradient separating
somatomotor areas from the rest of the cortex. CPC3 constitutes a gradient separating right
parieto-frontal cortex and bilateral superior temporal cortex from the rest of cortex; CPC5 is a
near-mirror image of this same gradient; finally CPC4 constitutes a gradient separating bilateral
frontoparietal cortex from the rest of the cortex. The top components are consistent with some
of the gradients reported by others in both non-human primates (Margulies et al. 2016, Yacoub
et al. 2020), and in humans (Hong et al. 2020). Together, these findings support the notion that
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a constant network structure is present across all dose levels, and that it is only the expression of
this constant network structure that changes across dose. With respect to the latter, indeed we
find that these components decreased almost monotonically with increasing dose, asymptoting at

approximately 2% isoflurane.

III. DISCUSSION

We analyzed static resting state functional connectivity (rs-FC) under increasing depths of
anesthesia in order to characterize dose-related changes in cortical whole-brain network structure.
Increasing dose was associated with an increase in network modularity and the number of com-
munities, as well as a decrease in network efficiency, all of which is consistent with the apparent
fragmentation discussed in previous literature (Hudetz and Mashour 2016). However, comparisons
with surrogate datasets in which either the correlation structure or magnitude were held constant
revealed that these effects, rather than reflecting a qualitative change in network structure (i.e.,
network fragmentation), could be fully explained as an overall reduction in correlation magnitude,
which we refer to as muting. Further supporting the idea that network structure was unchanged
across dose levels, we showed that the principal components of the functional connectivity matrices
at each increasing dose level (from 1.00% - 2.75%) were just as similar to the components at the
lowest dose (1.00% isoflurane) as they were to the components in another, dose-matched scan. This
suggests that there is no explanatory benefit to assuming a change in correlation structure across
dose levels, as this structure can be just as well approximated assuming a fixed structure, already
present at the lowest dose. Finally, we used common principal component analysis to derive a set
of components that summarize the correlation structure across dose, and show that the expression
of these components decreases in a near monotonic fashion as dose increases. Taken together,
these findings suggest that deepening levels of unconsciousness are associated with the increasingly
muted expression of a constant functional network structure, rather than a break-down or frag-
mentation of this structure. We discuss both the methodological and theoretical implications of
these findings below.

Several neurobiological theories of consciousness center on the brains capacity for information
exchange across multiple distributed regions, with unconsciousness being a result of the disrup-
tion of this information transmission (Mashour et al. 2020). For instance, the global neuronal
workspace model posits that information, initially encoded by a specialized processing unit, is

made consciously accessible when it is broadcast widely throughout the cortex, to the many other
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specialized processors in the brain (Mashour et al. 2020). By association, conditions that impact
this global broadcasting of information, from sleep and anesthesia to brain damage, can result in
varying levels of unconsciousness (Mashour and Hudetz 2018). Graph theory measures, such as
modularity and network efficiency, have routinely been utilized as indirect estimates of the capac-
ity for information transfer across brain networks, and have often been used to draw inferences
concerning changes in network structure during unconsciousness. For instance, a reduction in net-
work efficiency has been observed in both local and global brain networks during anesthetic- and
sedative-induced unconsciousness, and has been interpreted as reflecting a dysfunction in commu-
nication across the cortex (Hashmi et al. 2017, Monti et al. 2013).

Consistent with this interpretation, decreases in local and global efficiency have also been ob-
served in patients with consciousness disorders, such as unresponsive wakefulness syndrome and
the minimally conscious state, and such decreases have been shown to correlate with reductions
in patient awareness (Chennu et al. 2014). Likewise, increases in whole-brain modularity and the
number of network communities have been observed during both non-rapid eye movement sleep
(Boly et al. 2012b) and isoflurane-induced anesthesia (Hutchison et al. 2014, Standage et al. 2019),
which has been interpreted as reflecting a literal fragmentation of brain networks into smaller, more
isolated processing units. These interpretations are understandably compelling, as graph measures
are thought to quantify key aspects of information transmission in the brain, and many of them,
such as modularity and efficiency, neatly map onto existing frameworks and hypotheses concerning
theories of consciousness (and disruptions thereof).

In the current study, we have demonstrated that changes in graph metrics; such as whole-
brain modularity, network efficiency, path length, and number of communities, can all be simply
explained by an overall reduction in functional connectivity, which we refer to as muting. This
contrasts markedly with the way that changes in graph metrics have been commonly interpreted,
which is that they reflect some qualitative change in underlying brain network structure or or-
ganization. Distinguishing between these two phenomena (muting vs. fragmentation) requires a
detailed analysis of the change in network structure across levels of anesthesia. As we have shown
here, graph summary statistics are highly sensitive both to the threshold techniques used to con-
struct the networks, and to overall changes in correlation strength. This makes it difficult to draw
firm conclusions about changes in network structure from graph statistics alone. As demonstrated
with our surrogate data, the community structure of a thresholded correlation network can be
altered in a manner consistent with fragmentation, even when the overall pattern of correlations is

held constant. This is consistent with what we observe in the real data: using CPCA, we demon-
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strate that, despite a supposed network fractionation (i.e., increased modularity and number of
communities), the exact same network structure is present across all dose levels, with only the
expression of this structure being weakened (or 'muted’) at higher levels of sedation. We also
note although we are wary of drawing conclusions from a single observation that subject M5,
which experienced an adverse reaction to the anesthetic at the highest dose, showed a relatively
flat response to isoflurane, displaying functional connectivity consistent with higher doses even at
the lowest dose (Figure 4). This may suggest that hypersensitivity to isoflurane, or the potential
for adverse reactions, are detectable in functional connectivity even at low doses.

One of the main observations to emerge in the anesthesia literature, and which has been fre-
quently used to bolster neurobiological theories of consciousness, is that disruptions in consciousness
are associated with a break-down in long-range frontal-parietal connectivity. We observed similar
reductions in frontal-parietal connectivity under increasing depths of anesthesia; notably, however,
this effect was not unique to long-range connectivity, as we also observed comparable decreases
within both the frontal and parietal cortices, as well as the primary sensory (visual, auditory) and
somatomotor (primary sensory and motor) areas. Taken together, these findings bolster our inter-
pretation that decreases in long-range functional connectivity do not reflect a literal fragmentation
of these cortices into distinct networks, as much as it is a consequence of a brain-wide, global
reduction in correlation magnitude. This is consistent with previous fundings that propofol anes-
thesia produces disruptions in local as well as long-range connectivity (Monti et al. 2013). While
this seemingly departs from the view that long-range frontal-parietal networks play a unique role
in conscious experience per se, it nevertheless comports with the broader view, shared by sev-
eral theories, that unconsciousness stems from a more global disruption of information processing
throughout the brain. It is also consistent with views which assign frontal-parietal regions a priv-
iledged position due to their role as hub regions facilitating the broadcasting of information widely
across the cortex (Mashour et al. 2020), as this broadcasting may be impaired not only by selective
disruption of frontal-parietal regions, but also by more global impairments in connectivity.

Our finding that functional connectivity is decreased even in sensory regions is consistent with
work showing that anesthetic compounds interfere with neural synchronization even in these re-
gions. For example, local field potentials in the visual cortex form spontaneous, spatially localized
patterns of synchronized activity which grow more variable and entropic under anesthesia (Hudetz
et al. 2016), and local firing patterns become decorrelated (Vizuete et al. 2014). These local dis-
ruptions in coordinated neural activity may result in noise manifesting as a reduction in functional

connectivity. Thus, the results we have observed may reflect not simply a reduction in commu-
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nication within and between brain networks, but the fading of an existing network structure into
a background of neural noise. This account would also be consistent with our observation that
increasing depth of anesthesia was associated with a flattening of the spectrum in the estimated
correlation matrices, but with relatively little change in the dominant eigenstructure (Figure 3, top
and middle). As well as our observation that the reliability of functional connectivity estimates
decreased with increasing dose (Figure 3, bottom).

Our findings should be interpreted in light of a few methodological considerations. First, our
study did not collect neuroimaging data from monkeys during the awake state, limiting our dis-
cussion and interpretations to the network structure present across deepening levels of anesthesia
(and presumably unconsciousness). However, Bettinardi et al. (2015) note a gradual emergence
of coordinated brain activity during the transition from deep sedation to wakefulness, suggesting
that our protocol nonetheless samples a portion of a continuous trajectory spanning waking and
unconsciousness. Second, we induced unconsciousness through isoflurane (Hutchison et al. 2014,
Shmuel and Leopold 2008, Vincent et al. 2007), which is one of only several different anesthetics
that could have been used. Isoflurane is a potent vasodilator (Iida et al. 1998), and has been shown
to have effects on cerebral blood flow and blood volume (Li et al. 2013, Masamoto et al. 2006). As
such, it is possible that its hemodynamic properties could obscure potential neural changes that
occur at higher dose levels. However, studies combining fMRI with electrical recordings, such as
EEG-fMRI (Barttfeld et al. 2015, He et al. 2008, Liu et al. 2013, Ranft et al. 2016, Vincent et al.
2007), have demonstrated a close coupling between changes in neural activity and corresponding
changes in functional connectivity. Moreover, our finding of reduced functional connectivity at
both the small and large-scale is consistent with similar observations under propofol (Monti et al.
2013), and studies examining network dynamics under anesthesia have observed similar effects
under several different types of anesthesia, from propofol and sevoflurane to ketamine (Barttfeld
et al. 2015, Hutchison et al. 2014, Uhrig et al. 2018). Thus, we think it unlikely that our findings
are entirely explainable by the specific mechanisms of action of the anesthetic used here.

Theories relating consciousness to the information processing capacity of the brain must ulti-
mately generate concrete predictions describing the patterns of brain activity supporting conscious
awareness. Functional neuroimaging plays a central role in the testing of these predictions, as
these techniques allow for the precise characterization of brain activity across various states of
consciousness and unconsciousness. Although fMRI affords the opportunity to study the large-
scale, structural features of whole-brain networks, the complexity of this data necessitates careful

analysis. As we have shown, graph summary measures lack the resolution to fully characterize
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whole-brain network structure, or changes in this structure across depths of unconsciousness. Fur-
ther, they are highly sensitive to the methods used to construct the networks, making it difficult
to determine what precise properties of the brain are being quantified by these measures. Our
results suggests that a global muting of functional connectivity is a significant feature of isoflurane
induced anesthesia, and that this fact is sufficient to explain previously reported results which
are commonly attributed to structural changes in whole-brain networks. They also highlight the
need to carefully disentangle putative changes in network structure from effects induced by overall
changes in correlation magnitude, or by the method of network construction; something that is
likely to be difficult through the use of graph summary measures alone. We have not addressed the
causal role of this muting, or whether it may simply mask structural network features underlying
consciousness; although recent work (Pal et al. 2020) suggests that anesthesia induced unconscious-
ness can be dissociated from the effects of anesthesia on the cortex, and so the relationship between
consciousness and cortical information processing may be more complex than can be decoded from

BOLD signal correlations alone.

IV. METHODS

A. Data collection

We reanalyzed data from five Macaque primates (M. Fascicularis; 4 female; Mean age 7.8
yrs) collected as part of the experiment reported in Hutchison et al. (2014). All surgical and
experimental procedures were carried out in accordance with the Canadian Council of Animal
Care policy on the use of laboratory animals and approved by the Animal Use Subcommittee of
the University of Western Ontario Council on Animal Care. As data acquisition is thoroughly
described by the original authors, we present a more condensed description here. Note however,
that our fMRI preprocessing pipeline contains slight differences.

Prior to image acquisition, subjects were injected intramuscularly with atropine (0.4 mg/kg),
ipratropium (0.025 mg/kg), and ketamine hydrochloride (7.5 mg/kg), followed by intravenous
administration of 3 ml propofol (10 mg/ml) via the saphenous vein. Subjects were then intubated
and switched to 1.5% isoflurane mixed with medical air. Each subject was then placed in a custom-
built chair and inserted into the magnet bore, at which time the isoflurane level was lowered to
1.00%. Prior to image localization, shimming, and echo-planar imaging (EPI), at least 30 min was

allowed for the isoflurane level and global hemodynamics to stabilize at this concentration. We then
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acquired 2 functional EPI scans at each of six increasing isoflurane levels: 1.00, 1.25, 1.50, 1.75, 2.00,
and 2.75% (0.78, 0.98, 1.17, 1.37, 1.56, and 2.15 minimum alveolar concentration, respectively). We
interleaved a 10 min period between each isoflurane level increase to allow for the concentration
to stabilize, during which no fMRI data were collected. Throughout the duration of scanning,
the monkeys spontaneously ventilated and we monitored physiological parameters (temperature,
oxygen saturation, heart rate, respiration, and end-tidal CO2) to ensure that values were within
normal limits. The acquisitions of two anatomical images occurred during the stabilization periods
between isoflurane levels.

The monkeys were scanned on an actively shielded 7-Tesla 68-cm horizontal bore scanner with
a DirectDrive console (Agilent, Santa Clara, California) with a Siemens AC84 gradient subsystem
(Erlangen, Germany). We used a custom in-house conformal five-channel transceive primate-head
Radio Frequency (RF) coil. Each functional run consisted of 150 continuous EPI functional volumes
(repetition time [TR] = 2000 ms; echo time [TE] = 16 ms; flip angle = 700; slices = 36; matrix =
96 x 96; Field of view [FOV] = 96 x 96 mm?2; acquisition voxel size = 1 x 1 x 1 mm3), acquired
with GRAPPA = 2. A high-resolution gradient-echo T2 anatomical image was acquired along the
same orientation as the functional images (TR = 1100 ms, TE = 8 ms, matrix = 256 x 256, FOV
= 96 x 96 mm2, acquisition voxel size = 375 x 375 x 1,000 mm3). We also acquired a T1-weighted
anatomical image (TE = 2.5 ms, TR = 2300 ms, FOV = 96 x 96 mm?2, acquisition voxel size =
750 x 750 x 750 mm3).

B. fMRI preprocessing

Functional image preprocessing was implemented using Nipype (Neuroimaging in Python:
Pipelines and Interfaces; http://nipy.org/nipype). The functional images underwent de-spiking,
motion correction (six-parameter affine transformation), and slice-time correction, before brain
extraction, and highpass temporal filtering (0.01 Hz; Hallquist et al. 2013, Power et al. 2014).
Functional data was co-registered to its respective T1 anatomical (six degrees of freedom rigid
transformation), and then linear (12 degrees of freedom linear affine transformation) and nonlinear
transformed to the F99-template (Van Essen 2002) and parcellated into 174 regions of interest
(ROI) using the LVE atlas (Lewis and Van Essen 2000). All further analyses were done in R
(version 3.6.1; R Core Team 2019).

Nuisance regression was performed using the six motion parameters, their derivatives, their

squares, as well as mean white matter and CSF signals, for a total of 26 regressors. We elected
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to use the unwhitened residuals rather than performing prewhitening, as the overall residual auto-
correlation was minimal (mean Durbin-Watson statistic in the range [1.6-2] for all subjects and all

scans), and did not appear to be related to dose.

C. Functional connectivity estimation and comparison

For each scan, we estimated a covariance matrix from the standardized residuals using the
shrinkage estimator proposed by Ledoit and Wolf (2004), which has been shown to perform better
than the sample covariance matrix in high-dimensional, small-sample settings.

Networks were constructed from the real and surrogate datasets by thresholding the entries of
each correlation matrix using a one-tailed t-test with a threshold of @ = .05. All graph metrics
(Figure 3a) save smallworldness were computed from the binarized correlation matrices using the
R package igraph (Csardi and Nepusz 2006), and community detection was performed using the
Louvain clustering algorithm (Blondel et al. 2008). Smallworldness was computed using the R
package brainGraph (Watson 2019).

Structural similarity between correlation matrices was quantified using the distance between the
subspaces spanned by the leading five eigenvectors (Figure 3b). These five eigenvectors constitute
a basis for a five-dimensional subspace of the full space of 174 ROIs. The set of all such subspaces
forms a manifold — called the Grassmann manifold — on which several natural distance measures
can be defined (Edelman et al. 1998). We define the distance between two such subspaces to be
the arc length of the geodesic between them, equivalent to the magnitude of the vector of principle
angles between the subspaces. Specifically, let V1 and V5 be matrices whose columns are the top k
eigenvectors of the correlation matrices S; and So, respectively. Then the principal angles between

1

the subspaces spanned by V; and Vg are given by 6; = cos™ " 0;, where o0 = {01, ...,0%} are the

singular values of VITVQ. The distance between V1 and V4 is then

d(V1, V1) =[] (1)

D. Centering

To center each subject’s correlation matrices, we took the approach advocated by Zhao et al.

(2018), which leverages the natural geometry of the space of covariance matrices. We have
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implemented many of the computations required to replicate the analysis in an R package
spdm (symmetric positive-definite matrix), which is freely available from a Git repository at
https://gitlab.com/fmriToolkit /spdm.

The procedure is as follows. For each subject i, we computed a geometric mean covariance
matrix S; using the fixed-point algorithm described by Congedo et al. (2017), as well as a grand
mean S’gm over all subjects and all scans. We then projected each covariance matrix S;; onto the
tangent space at the corresponding subject mean S; to obtain a tangent vector

al/2 a—1/2a a—1/2\ g1/2
Tij = Si/ log(S; / SijS; / )Si/ ) (3)
where log denotes the matrix logarithm. We then transported each tangent vector to the grand

mean ng using the transport proposed by Zhao et al. (2018), obtaining a centered tangent vector
T
T;; = GT;;G (4)

where G = 591/3 SZ-_ 12 inally, we projected each centered tangent vector back onto the space of
covariance matrices, to obtain the centered covariance matrix

S5 = Som exp(Syn > TS0 *) Sghe (5)
where exp denotes the matrix exponential.

To gain some intuition for this procedure, note that centering a sample of real numbers can
be viewed as the process of computing a sample mean, and then applying a translation which
takes the sample mean to zero. The resulting centered values can then be viewed as vectors
describing the deviations of the observed values from the mean. In the same way, the tangent
vectors computed in Eq. 3 can be viewed as the deviations of each correlation matrix from the
corresponding subject mean. The transport in Eq. 4 translates these deviations to the grand mean,
thus aligning them to a common baseline. A naive approximation to this procedure would involve,
for each subject, simply subtracting the mean covariance matrix from the covariance matrix in
each scan. This approach has several drawbacks; most importantly, the fact that the difference
between two covariance matrices is not necessarily a covariance matrix, and so does not have an
obvious interpretation. The procedure we have described above can be viewed as an adaptation of
this approach, which respects the geometric structure of the space of covariance matrices.

To visualize the effect of centering (Figure 4a), we derived a two-dimensional embedding of
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the set of covariance matrices before and after centering using uniform manifold approximation
(UMAP; Mclnnes et al. 2018). This procedure was applied to the distance matrices computed

from the pairwise distances between covariance matrices (Smith 2005), defined as

n

d(S1,82) = | > _(10log;o A;)? (6)
i=1
where (A1,...,\,) are the generalized eigenvalues of S; and Ss.

E. Common component analysis

After centering, we sought an interpretable, low-dimensional summary of the observed covari-
ance matrices in order to characterize changes in functional connectivity across depths of anesthesia.
For a single covariance matrix, this could be accomplished by principal component analysis (PCA),
where the eigenvectors of the covariance matrix are used as a basis for a low dimensional subspace
capturing the dominant patterns of variability in the BOLD signal observed during a single scan.
As we had observations for multiple scans and multiple subjects, we considered two approaches for
simultaneously decomposing the full set of covariance matrices.

The first is common principal component analysis (CPCA; Flury 1984, Trendafilov 2010). The
CPCA model attempts to simultaneously diagonalize multiple covariance matrices, and so (in-
formally) assumes that the covariance matrices have identical factor structure, though they may
differ in the degree to which they express those factors. As this is a restrictive assumption, we
also considered a second model — the common component analysis (CCA) proposed by Wang et al.
(2011) — which relaxes the assumption that the set of covariance matrices may be simultaneously
diagonalized at the expense of some interpretability. The CPCA model was fit using the R package
cpca (Ziyatdinov et al. 2014), while the CCA model was fit using custom R code implementing
the iterative algorithm proposed by Wang et al. (2011). As both models returned highly similar

results, we present only the results of CPCA.
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