

1 Age Influences on the Molecular Presentation of 2 Tumours

3 Constance H. Li^{1,2}, Syed Haider³, Paul C. Boutros^{2,4,5,6,7,8,9}

4

5 ¹Ontario Institute for Cancer Research, Toronto, Ontario, Canada

6 ²Department of Medical Biophysics, University of Toronto; Toronto, Ontario, Canada

7 ³The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer
8 Research; London, United Kingdom

9 ⁴Department of Pharmacology & Toxicology, University of Toronto; Toronto, Ontario,
10 Canada

11 ⁵Vector Institute for Artificial Intelligence, Toronto, Canada

12 ⁶Department of Human Genetics, University of California, Los Angeles, CA, USA

13 ⁷Department of Urology, University of California, Los Angeles, CA, USA

14 ⁸Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA

15 ⁹Institute for Precision Health, University of California, Los Angeles, CA, USA

16

17 Correspondence should be addressed to P.C.B. (PBoutros@mednet.ucla.edu)

18 12-109 CHS

19 10833 Le Conte Avenue

20 Los Angeles, CA, 90095

21 Phone: 310-794-7160

22

23 Abstract

24 Cancer is often called a disease of aging. There are numerous ways in which cancer
25 epidemiology and behaviour change with the age of the patient. The molecular bases for
26 these relationships remain largely underexplored. To characterize them we analyzed age-
27 biases in the somatic mutational landscape of 12,774 tumours across 33 tumour-types.
28 Age influences both the number of mutations in a tumour and their evolutionary timing.
29 Specific mutational signatures are associated with age, reflecting differences in
30 exogenous and endogenous oncogenic processes. A subset of known cancer driver
31 genes were mutated in age-biased patterns, and these alter the transcriptome and predict
32 for clinical outcomes. These effects were most striking in lower grade glioma where *ATRX*
33 mutation is a strongly age-dependent prognostic biomarker. Though cancer genome
34 sequencing data is not well-balanced in epidemiologic factors, these data suggest that
35 age shapes the somatic mutational landscape of cancer, with clear clinical implications.

36 Introduction

37 Cancer health disparities across different population stratifiers are common through a
38 wide range of measures. These include differences in incidence rates, mortality rates,
39 response to treatment, and survival between individuals of different sexes^{1–6}, races or
40 ancestries^{7–11} and ages^{12–14}, and these differences have been described across a range
41 of tumour-types. Cancer disparities involving age are particularly well known. Aging is a
42 leading risk factor for cancer, as it is associated with increased incidence of most tumour-
43 types^{9,15}. Older age is also associated with higher mortality and lower survival^{16,17}. The
44 links between older age and increased cancer burden such that cancer is often described
45 as a disease of aging^{18,19}.

46 However, there are many nuances in the relationship between aging and cancer.
47 Pediatric cancers are an obvious exception, as cancers arising in children have different
48 molecular and clinical characteristics^{9,20–22}. Tumours arising in young adults (< 50 years
49 of age) are often more aggressive: early onset prostate²³, breast²⁴, and colorectal²⁵
50 cancers are diagnosed at higher stages and associated with lower survival. Molecular
51 studies have described some striking differences in the mutational landscapes of early
52 onset vs. later onset disease^{26–28}, suggesting differences in the underlying oncogenic
53 processes driving cancer at different ages.

54 The mechanisms of how age shapes the clinical behaviour of cancers has been subject
55 to intense study. Many factors and behaviours closely tied to aging have been implicated
56 in observed epidemiological and clinical cancer health disparities. For example, higher
57 age is associated with a greater burden of comorbidities such as diabetes and
58 cardiovascular disease^{29,30}. Higher prevalence of chronic disease, frailty and increased
59 likelihood of adverse drug reactions also influence the choices of clinical interventions
60 given to older cancer patients^{31–33}. Nevertheless differences remain even after accounting
61 for these factors³⁴. Previous work associating somatic molecular changes with age
62 suggest differences in overall tumour mutation burden³⁵, transcriptional profiles³⁶, and
63 some mutational differences^{26–28}. These studies have focused on single tumour-types,
64 relatively small cohorts, or have only evaluated fractions of the whole-genome, leaving
65 the landscape of age-associated cancer mutations largely unknown.

66 To fill this gap, we perform a pan-cancer, genome-wide study of age-associated
67 molecular differences in 10,218 tumours of 23 tumour-types from The Cancer Genome
68 Atlas (TCGA) and 2,562 tumours of 30 tumour-types from the International Cancer
69 Genome Consortium/The Cancer Genome Atlas Pan-cancer Analysis of Whole Genomes
70 (PCAWG) projects. We quantified age-biases in measures of mutation density, subclonal
71 architecture, mutation timing, mutational signatures and driver mutations in almost all
72 tumour-types. We adjusted for potential confounding factors such as sex and ancestry.
73 Many of these genomic age-biases were linked to clinical phenotypes. In particular, we

74 identified genomic alterations that were prognostic in specific age contexts, suggesting
75 the clinical utility of age-informed biomarkers.

76 Results

77 Age Biases in Mutation Density and Timing

78 We investigated TCGA and PCAWG datasets independently and performed pan-cancer
79 analyses spanning all TCGA tumours (pan-TCGA), and all PCAWG tumours (pan-
80 PCAWG); these were supplemented with tumour-type-specific analyses. We used the
81 recorded age at diagnosis for both TCGA and PCAWG³⁷ (**Table 1**). Our modeling
82 accounted for a range of confounding variables for each cancer type including sex and
83 genetic ancestry. We adapted a statistical approach previously applied to quantify sex-
84 biases in cancer genomics³⁸: we first used univariate methods to identify putative age-
85 biases, then further modeled these putative hits with multivariate regression to evaluate
86 age effects after adjusting for confounding factors. We modeled each genomic feature
87 and tumour subtype based on available clinical data, *a priori* knowledge, variable
88 collinearity and model convergence. Model and variable specifications, and results of
89 association tests between model variables and age are presented in **Supplementary**
90 **Table 1**.

91 We began by assessing whether measures of mutation density were associated with age.
92 The accumulation of mutations with age is a well-known phenomenon in both cancer and
93 non-cancer cells^{39–46}. We examined both genome instability and SNV density to
94 investigate trends across age and test the robustness of our statistical framework in
95 detecting age-associated genomic events. Genome instability is a measure of copy
96 number aberration (CNA) burden and approximated by percent of the genome altered by
97 CNAs (PGA), a surrogate variable associated with poor outcome in several tumour-
98 types^{47–49}. We identified univariate age-biases in PGA using Spearman correlation.
99 Putative age-associations identified at a false discovery rate (FDR) threshold of 10% were
100 further analysed by multivariate linear regression (LNR) models to adjust for tumour-type-
101 specific confounding effects (**Supplementary Table 1**).

102 We discovered significant associations between age and PGA in both pan-TCGA (ρ
103 = 0.14, adjusted LNR $p = 1.1 \times 10^{-7}$) and pan-PCAWG ($\rho = 0.19$, adjusted LNR $p = 0.023$)
104 data. Positive correlations were also identified in three TCGA and three PCAWG tumour-
105 types, with prostate cancer showing a statistically significant correlation in both datasets.
106 (**Figure 1A, 1B, Supplementary Table 2**). Other tumour-type specific associations were
107 statistically significant in only one dataset (**Figure 1A, Supplementary Figure 1**). For
108 example, we detected similar correlations between age and PGA in TCGA lower grade
109 glioma (LGG) and PCAWG (CNS-Oligo), but the association was significant in only TCGA
110 data (**Figure 1A, 1B**). This is likely due in part to decreased statistical power in the
111 PCAWG dataset because of smaller sample sizes. Surprisingly, in TCGA both
112 adenocarcinomas and squamous cell carcinomas of the lung showed the inverse trend,
113 with tumours arising in older patients harbouring fewer CNAs (LUAD: $\rho = -0.18$, adjusted

114 LNR $p = 6.0 \times 10^{-4}$, LUSC: $p = -0.10$, adjusted LNR $p = 0.039$, **Figure 1A**). We observed
115 similar negative correlations in the corresponding PCAWG lung data, though these
116 associations were not statistically significant (Lung-AdenoCA: $p = -0.13$, Lung-SCC: $p =$
117 -0.065 , **Figure 1A**).

118 Analogous to PGA, somatic single nucleotide variation (SNV) density measures the
119 burden of somatic SNVs. SNV density frequently increased with age, as expected^{39,40}. In
120 addition to pan-cancer age-biases (pan-TCGA: $p = 0.33$, adjusted LNR $p = 2.0 \times 10^{-49}$,
121 pan-PCAWG: $p = 0.41$, adjusted LNR $p = 3.1 \times 10^{-28}$), tumour-type-specific positive
122 correlations occurred in 15/23 TCGA and 14/30 PCAWG tumour-types, including in
123 prostate and gastric cancers (**Figure 1C, 1D Supplementary Figure 1, Supplementary**
124 **Table 2**). Again, there was an inverse relationship in lung tumours, with more SNVs
125 occurring in the squamous cell tumours of younger patients (LUSC: $p = -0.15$, adjusted
126 LNR $p = 0.064$, **Figure 1D**). While not statistically significant, we observed similar
127 negative associations in PCAWG lung tumours (Lung-SCC: $p = -0.14$). The negative
128 association between age and both PGA and SNV density in lung cancers has been
129 attributed to smoking exposure leading to hypermutation in younger lung cancer
130 patients⁵⁰, suggesting differences in disease aetiology between patients of different ages.

131 Another source of of hypermutation is microsatellite instability (MSI), which is frequently
132 detected in colorectal and gastric cancers^{51,52}. Since MSI-positive status is often
133 associated with increased SNV density and age (**Supplementary Figure 2**), we
134 investigated whether age-biases in MSI might explain the associations between age and
135 SNV density in this data. We focused on four tumour-types with high frequency of MSI-
136 positive tumours: stomach & esophageal, colorectal, pancreatic and endometrial
137 cancers^{53,54}. There was a significant association between age and MSI status in gastric
138 cancers, where tumours arising in older individuals were more likely to have high levels
139 of MSI (MSI-H; ANOVA $q = 6.4 \times 10^{-4}$; **Supplementary Figure 2**). While there were no
140 statistically significant associations between age and MSI status in colorectal, pancreatic,
141 or endometrial cancers, we nevertheless assessed the relationship between age and
142 SNV density while accounting for MSI status in all four tumour-types. The associations
143 between age and SNV density remained significant even after adjusting for MSI status in
144 stomach & esophageal, colorectal, and pancreatic tumours (**Supplementary Figure 2**).

145 After identifying age-biases in mutation density, we next asked whether there were
146 differences in the timing of when these mutations occurred during tumour evolution. We
147 leveraged data describing the evolutionary history of PCAWG tumours⁵⁵ and first
148 investigated polyclonality, or the number of cancer cell populations detected in each
149 tumour as assessed by multiple methods in this dataset. Monoclonal tumours, or those
150 where all tumour cells are derived from one ancestral cell, are associated with better
151 survival in several tumours types⁵⁶⁻⁵⁸. We also investigated mutation timing in polyclonal
152 tumours by comparing how frequently SVNs, indels and structural variants (SVs) occurred

153 as clonal mutations in the trunk or as subclonal ones in branches. While there were
154 intriguing univariate associations between age and polyclonality in non-Hodgkin
155 lymphoma and prostate cancer, they were not significant after multivariate adjustment
156 (**Supplementary Figure 2**).

157 Focusing on polyclonal tumours, we compared how frequently mutations occurred in the
158 trunk subclone vs. in branch subclones. Differences in the proportion of truncal mutations
159 suggest difference in mutation timing over the evolution of a tumour. We identified several
160 significant associations between age and mutation timing. In pan-PCAWG analysis, we
161 found positive associations between age and proportion of clonal SNVs ($p = 0.20$,
162 adjusted LNR $p = 1.4 \times 10^{-3}$, **Figure 1E**) and proportion of clonal indels ($p = 0.14$, LNR $p =$
163 0.013, **Supplementary Table 2**). Age was also associated with increasing clonal SNV
164 proportion in two tumour-types: stomach cancer (Stomach-AdenoCA: $p = 0.44$, adjusted
165 LNR $p = 0.028$), and medulloblastoma (CNS-Medullo: $p = 0.34$, adjusted LNR $p = 2.5 \times$
166 10^{-3} , **Figure 1E**). A positive correlation results suggest that in these tumour-types,
167 tumours arising in older individuals accumulate a greater fraction of SNVs earlier in
168 tumour evolution. In contrast, an inverted trend occurred in melanoma, where tumours of
169 younger patients tended to accumulate more subclonal than clonal SNVs ($p = -0.47$,
170 adjusted LNR $p = 7.8 \times 10^{-3}$).

171 **Age Biases in Mutational Processes**

172 Differences in mutation density and timing suggest that different oncogenic processes
173 might be preferentially active depending on the age of a patient. These processes can
174 result in distinctive mutational patterns, which can be deconvolved and quantified⁵⁹. We
175 analysed age-biases in three types of mutational signatures generated by the PCAWG
176 project: 49 single base substitution (SBS), 11 doublet base substitution (DBS) and 17
177 small insertion and deletion (ID) signatures⁶⁰. We also investigated SBS signatures for
178 TCGA tumours. For each signature, we examined both the proportion of signature-
179 positive tumours as well as relative mutation activity, or the proportion of mutations
180 attributed to each signature.

181 Across all 2,562 PCAWG tumours, we identified twelve mutational signatures with age-
182 biased detection frequency (**Figure 2A, left**) and ten with age-biased mutation activity
183 (**Figure 2B, left**). For example, tumours arising in older patients were more likely to be
184 SBS3-positive (marginal log odds change = 0.0085, 95%CI = 0.0024-0.015, adjusted
185 LGR $p = 0.075$), but in these SBS-positive tumours, the proportion of SBS3-attributed
186 mutations decreased with age ($p = -0.20$, adjusted LNR $p = 3.2 \times 10^{-3}$). SBS3 mutations
187 are thought to be caused by defective homologous recombination-based DNA damage
188 repair. These results imply that while tumours derived from older individuals are more
189 likely to harbour defective DNA damage repair, its relative impact on the burden of SNVs
190 is lower compared with tumours derived of younger individuals. A similar relationship was
191 seen for ID8, which is linked to defective non-homologous DNA end-joining (marginal log

192 odds change = 0.024, 95%CI = 0.020-0.028, adjusted LGR $p = 3.4 \times 10^{-3}$; $p = -0.099$,
193 adjusted LNR $p = 3.7 \times 10^{-5}$) and ID1, associated with slippage during DNA replication
194 (marginal log odds change = 0.013, 95%CI = 0.0059-0.020, adjusted LGR $p = 0.018$; $p =$
195 -0.059, adjusted LNR $p = 0.048$). We also identified positive associations between higher
196 age and the tobacco-related signatures SBS4, DBS2 and ID3. Conversely, tumours
197 arising in older individuals were less likely to exhibit defective base excision repair
198 (SBS36). All mutations signatures findings are in **Supplementary Table 2**.

199 These pan-cancer differences persisted across individual tumour-types. We identified 23
200 age-associated signatures across eleven tumour-types, including six significant
201 signatures in melanoma. In this tumour-type, tumours arising in older patients were
202 preferentially SBS2-positive (marginal log odds change = 0.051, 95%CI = 0.013-0.095,
203 adjusted LGR $p = 0.029$, **Figure 2A**), attributed to APOBEC cytidine deaminase activity⁶¹.
204 Melanomas arising in younger patients were more likely to be positive for signatures
205 related to UV damage (SBS 7a, 7b, 7d, **Figure 2A, Supplementary Table 2**). The
206 proportion of mutations attributed to UV damage was also higher in younger patients
207 (DBS1, $p = -0.29$, adjusted LNR $p = 0.019$, **Figure 2B**), while the proportion of mutations
208 attributed to slippage during DNA replication was higher in older patients (ID1, $p = 0.27$,
209 adjusted LNR $p = 0.019$, **Figure 2B**). These results suggest that melanomas in younger
210 patients more frequently involve UV exposure and damage, while melanomas in older
211 patients are more influenced by endogenous sources of mutation.

212 Leveraging data describing SBS signatures in TCGA data, we repeated this analysis to
213 identify age-associations in signatures derived from whole exome sequencing (WXS)
214 data. Across pan-TCGA tumours, we detected five signatures that occurred more
215 frequently in older individuals, and three that occurred more frequently in younger
216 individuals (**Figure 2A**). We also identified five signatures with higher relative activity in
217 younger patients (**Figure 2B**). In cancer-specific analysis, we identified age-biased SBS
218 signatures across eleven tumour-types, including negative associations between the
219 tobacco-associated signature SBS4 and age in lung adenocarcinoma. SBS4 was more
220 frequently detected in younger patients (LUAD: marginal log odds change = -0.041,
221 95%CI = -0.062 - -0.021, adjusted LGR $p = 4.2 \times 10^{-3}$, **Figure 2A**) and also had higher
222 relative activity in younger lung squamous cell cancer patients ($p = -0.17$, adjusted LNR
223 $p = 0.015$, **Figure 2B**). SBS4 activity was similarly negatively associated with age in
224 PCAWG lung squamous cell cancers (Lung-SCC: $p = -0.35$, adjusted LNR $p = 0.099$,
225 **Figure 2B**). Indeed, SBS4 and age were consistently negatively associated across both
226 subtypes of lung cancer and both datasets though not all associations were statistically
227 significant after multiple testing adjustment. This supports previous findings that tobacco
228 has a larger tumorigenesis role in younger patients, with tobacco-associated mutations
229 contributing to a greater portion of the mutational landscape of tumours derived from
230 younger individuals⁵⁰.

231 There was moderate agreement between TCGA and PCAWG findings: some signature
232 like SBS2 and SBS4 were age-biased in the same or closely related tumour subtypes.
233 Other signatures, such as SBS1 and SBS5 were age-biased in detection and relative
234 activity across a range of tumour-types. Still others were age-biased exclusively in either
235 TCGA or PCAWG data. We hypothesized that this was due to differences in signature
236 detection rates between WXS and whole genome sequencing (WGS) data and compared
237 how frequently each signature was detected across all samples (**Figure 2C**). Signatures
238 with high agreement between datasets had similar detection rates, as observed for SBS2
239 (detection difference = 1.5%) and SBS4 (detection difference = 1.1%). Signatures where
240 findings did not replicate had vastly different detection rates, as was seen for SBS1
241 (detection difference = 7.2%) and SBS5 (detection difference = 10%). We further
242 examined this by comparing signatures data from non-PCAWG WGS and non-TCGA
243 WXS data. Differences in signature detection rates between PCAWG and TCGA data
244 were reflected in non-PCAWG WGS and non-TCGA WXS data (**Supplementary Figure**
245 **3**). We also looked specifically at identified age-biases and found high agreement in data
246 generated by the same sequencing strategy (**Supplementary Figure 3**). The differences
247 in signature detection, sequencing strategy, multivariate models, sample size, and
248 geographic variation distinguishing PCAWG and TCGA datasets motivated our continued
249 analysis of each dataset separately.

250 **CNA Differences Associated with Transcriptomic Changes**

251 Global mutation characteristics such as genome instability are features of later stages in
252 a tumour's evolutionary history. In contrast, the early stages are often driven by
253 chromosome- or gene-specific events such as loss of specific chromosomes or mutation
254 of driver genes⁵⁵. We therefore narrowed our focus to chromosome segment and gene-
255 level events. We applied our statistical framework to identify putative age-biased copy
256 number gains and losses using univariate logistic regression (ULR). Putative events
257 identified with a false discovery rate threshold of 10% were further analysed by
258 multivariable logistic regression to account for confounding factors.

259 We applied these analyses to PCAWG and TCGA datasets separately to characterize
260 pan-cancer and tumour-type-specific biases. Pan-PCAWG, we identified 1,158 genes in
261 age-associated CNAs (**Figure 3A, Supplementary Figure 4**). All significant age-biased
262 losses occurred more frequently in older patients. In pan-TCGA data, we identified a
263 greater number of age-biased events with 8,583 genes in age-associated losses and
264 15,497 genes in age-associated gains (**Figure 3A, 3B**). These global pan-cancer age-
265 associations were reflected in 17 individual TCGA and four PCAWG tumour-types
266 (**Figure 3A**). PCAWG and TCGA analyses were well-correlated, for example as seen in
267 ovarian cancer (**Supplementary Figure 4**). We further focused on a set of 133 genes
268 with driver CNAs⁶². Across all cancer types, we identified 64 drivers with positive CNA-
269 age associations (41 gains, 23 losses, **Figure 3C**). In tumour-type specific analysis, we

270 found age-associated driver CNAs in 16 TCGA and 5 PCAWG tumour-types
271 (**Supplementary Tables 3-4**).

272 We next asked whether statistically significant age-biased CNAs perturb the
273 transcriptome by investigating TCGA tumour-matched mRNA abundance data. We used
274 linear models with age, copy number status, and the interaction between age and copy
275 number status as predictors. These terms tell us when mRNA abundance differs by age,
276 when the CNA event itself is significantly associated with mRNA abundance, and when
277 the effect of the CNA event on mRNA depends on age. We also adjusted for tumour purity
278 (as estimated by study pathologists) in all mRNA analyses. In glioblastoma our CNA
279 analysis identified 3,829 genes in age-associated gains and 3,754 genes in age-
280 associated losses (**Figure 3D, Supplementary Tables 3-4**). For example, *DBNDD2* was
281 more frequently gained (marginal log odds change = 0.025, 95%CI = 0.013-0.037,
282 adjusted MLR p = 6.6x10⁻⁵) and *RASSF4* was more frequently lost (marginal log odds
283 change = 0.059, 95%CI = 0.043-0.076, adjusted MLR p = 8.5x10⁻¹¹) in tumours of older
284 individuals (**Figure 3E**).

285 Of these age-biased CNAs, we identified 379 genes with significant copy number-mRNA
286 associations and 27 with significant CNA-age interactions (**Figure 3F**). For instance, gain
287 of the gene *DBNDD2* is itself associated with increased mRNA abundance (adjusted CNA
288 p = 1.2x10⁻³), but there is also a strong age-dependent effect: *DBNDD2* gain is associated
289 with increased mRNA abundance in tumours arising in older individuals, but decreased
290 mRNA abundance in tumours of younger individuals, (adjusted CNA-age p = 3.5x10⁻³,
291 **Figure 3G**). Other examples of this significant interaction include loss of *SMPD1* which
292 affects mRNA abundance more in tumours arising in younger patients (**Supplementary**
293 **Figure 4, Supplementary Table 5**). Thus, these age-biased CNAs not only preferentially
294 occur in tumours derived of individuals of a certain age group, they are also associated
295 with changes in mRNA that are often biased by age as well. These data highlight the
296 complex interplay between CNAs, age and mRNA abundance.

297 To investigate potential clinical significance of these age-associated CNAs, we performed
298 survival analysis to identify prognostic events. We used Cox Proportional-Hazards (Cox
299 PH) models with overall survival as the end point. Similar to our mRNA models, we used
300 predictors including copy number status, age and their interaction (**Figure 3H**). In
301 glioblastoma, age itself is a known prognostic feature with older patients having poorer
302 outcome (HR = 2.1, 95%CI = 1.7-2.6, Wald p = 1.4x10⁻¹³). We found that loss of a
303 segment on chromosome 10q containing 31 genes including *RASSF4* and *RSU1P2* was
304 also prognostic, with loss of this region associated with poorer survival (HR = 1.9, 95%CI
305 = 1.4 - 2.7, adjusted Wald p = 2.6x10⁻³). Integrating age and this 10q segment loss reveals
306 three groups with distinct survival trajectories: older individuals have the worst outcomes
307 regardless of copy number loss status, but younger individuals with the loss have poorer
308 outcome than those without it (**Figure 3I**). We performed survival modeling for 5,251

309 genes on affected by age-biased CNAs in glioblastoma and found 1,821 genes showed
310 associations between copy number change and prognosis and 142 genes had significant
311 CNA-age interactions.

312 We repeated these mRNA and survival analyses for all TCGA tumour-types with age-
313 biased CNAs. Genes in biased CNAs were associated with altered mRNA abundance in
314 12 tumour-types and interacted with age in age-dependent mRNA change in seven
315 tumour-types. We observed a range of synergistic and antagonistic interactions for both
316 gains and losses. In most cases, an age-biased copy number altered gene was
317 associated with a greater mRNA abundance change in tumours of younger patients. In
318 lower grade glioma, we observed synergy between CNA and age where the change in
319 mRNA abundance was greatest in tumours of older patients. Six tumour-types also
320 showed that biased CNAs can be prognostic and that the prognostic value can also differ
321 based on the age of the individual. We were unable to repeat these analyses in PCAWG
322 data due the small number of patients with mRNA abundance and outcome data but
323 present all mRNA and survival analysis results in **Supplementary Table 5**.

324 **SNVs Differences Associated with Functional Changes**

325 Finally, we investigated gene-level SNVs for age-biases. In PCAWG analysis, we used a
326 predefined set of driver mutations⁶³. In TCGA analysis, we used a recurrent threshold to
327 filter out genes mutated in less than 1% of tumours. We included SNV density in our
328 multivariate models in addition to other confounding factors as previously described. We
329 identified 15 age-biased genes across six PCAWG tumour contexts (**Figure 4A**),
330 including a pan-cancer association with *CREBBP* (marginal log odds change = 0.027,
331 95%CI = 0.0089 – 0.047, adjusted LGR p = 8.7x10⁻³). *CREBBP* was also associated with
332 age in pan-cancer TCGA analysis (marginal log odds change = 0.032, 95%CI = 0.024 –
333 0.040, adjusted LGR p = 0.055). Pan-TCGA, we identified 401 genes that were mutated
334 more frequently in older patients and four that were mutated more frequently in younger
335 patients (**Supplementary Table 6**).

336 There were also tumour-type specific age-biases in SNV frequency, including age-
337 associations of oncogenic *BRAF* mutations in PCAWG melanoma (marginal log odds
338 change = -0.043, 95%CI = -0.072 - -0.017, adjusted LGR p = 2.4x10⁻³), and *TERT*
339 promoter mutations in PCAWG thyroid cancer (marginal log odds change = 0.10, 95%CI
340 = 0.044 - 0.18, LGR p = 0.016). Age-biases in PCAWG medulloblastoma highlighted
341 differences between paediatric and adult cases (**Figure 4A**), and tumours arising in older
342 PCAWG prostate cancer patients were more likely to harbour *FOXA1* (marginal log odds
343 change = 0.11, 95%CI = 0.041 - 0.18, adjusted LGR p = 0.013) and *SPOP* (marginal log
344 odds change = 0.099, 95%CI = 0.032 - 0.18, adjusted LGR p = 0.060) mutations. We also
345 confirmed known associations between lower age and mutations in tumour suppressors
346 *IDH1* and *ATRX*, which were mutated in the same patients in PCAWG glioblastoma
347 (marginal log odds change = -0.15, 95%CI = -0.31 - -0.052, adjusted LGR p = 0.017).

348 Similarly in TCGA data, we found higher frequency of *IDH1* and *ATRX* mutations in
349 glioblastomas (**Figure 4B**) and lower grade gliomas of younger patients (**Figure 4C**).
350 Other age-biased mutations occurred in pan-TCGA analysis for breast cancer, head &
351 neck cancer, and stomach & esophageal cancer (**Supplementary Table 6**).
352 As with the age-biased CNAs, we evaluated the impact of SNVs on mRNA abundance
353 and survival in TCGA data. We identified significant associations between age-biased
354 SNVs and mRNA abundance for *ATRX* and *IDH1* in lower grade glioma (**Supplementary**
355 **Table 6**). Mutations in *ATRX* and *IDH1* were associated with lowered mRNA abundance
356 in both genes. There was also a significant interaction effect between age and *IDH1*
357 mutation (adjusted $p = 9.7 \times 10^{-4}$, **Figure 4D**) indicating an age-dependent effect on
358 mRNA abundance: mutated *IDH1* was associated with a greater mRNA decrease in
359 tumours arising in younger patients. In contrast while there was only a trending interaction
360 between age and mutation status on mRNA abundance (adjusted $p = 0.16$, **Figure 4D**),
361 *ATRX* and age were synergistically associated with outcome, stratifying lower grade
362 glioma patients into four groups (**Figure 4E**). While inactivating mutations in *ATRX*
363 mutation are known to be generally associated with improved survival, younger patients
364 without *ATRX* mutations have the best overall survival while high age patients without
365 mutated *ATRX* have the worst survival, revealing its role as a strong age-dependent
366 prognostic biomarker.

367 Discussion

368 Despite modest statistical power, suboptimal study designs and limited clinical
369 annotation, we identified myriad age-associated differences in cancer genomes. Age-
370 biased genomic features occur at the pan-cancer level and also across almost all
371 individual tumour-types. Combined with similar reports of sex- and ancestry-associated
372 differences in cancer genomes^{38,64}, these data reveal a set of host influences on the
373 mutational characteristics of tumours (**Figure 5**). Characteristics of the tumour host
374 appears to influence all aspects of the cancer genome: mutation density, evolutionary
375 timing, mutational processes and driver genes. Some of these lead to age-, ancestry- and
376 sex-specific transcriptomic and clinical impacts.

377 The mechanisms for these genomic associations are largely unknown. Our data suggest
378 some endogenous or exogenous mutational processes preferentially occur in individuals
379 of different age groups. Some of these mutational processes are related to aging-
380 associated phenomena such as declining DNA damage repair^{65,66}, somatic mosaicism
381 and the accumulation of mutations over time^{59,67,68}. However, other processes related to
382 immune surveillance, evolutionary selection, disease aetiology and epigenetics are also
383 likely involved^{69–71}. In addition to such biological factors, lifestyle and socioeconomic
384 considerations like diet⁷² and microbiome composition⁷³ can continuously shape tumour
385 evolution from its earlier steps. Many of these factors are deeply linked to not only an
386 individual's age, but other fundamental characteristics over which we have limited control,
387 such as ancestry or sex. A tumour's mutational history reflects a complex interplay of
388 biological, lifestyle and healthcare factors, and we have little understanding of how these
389 diverse processes interact to produce molecular phenotypes.

390 The TCGA and PCAWG datasets sometimes identified different molecular biases,
391 highlighting the differences between the two datasets. TCGA patients were largely North
392 American while PCAWG had a greater international component. While the ages
393 represented in TCGA and PCAWG tumour-types were similar (**Table 1**), the cohorts differ
394 in other host and clinical characteristics. For instance, the representation of ancestry
395 groups was dissimilar, with many tumour-types differing vastly in ancestry proportions
396 (**Supplementary Table 1**). Furthermore, differences in sequencing targets also
397 contributed to variation in our results, most conspicuously in the detection rates of some
398 mutational signatures. We customized our analyses to take advantage of the contrasting
399 strengths of each dataset: WGS in PCAWG allowed us to interrogate a greater breadth
400 of mutation types, while the larger sample size and clinical annotation of TCGA data
401 improved statistical power and controls for confounders. Indeed, while we were able to
402 identify more age-biases in TCGA data, many of these findings were reflected in PCAWG
403 data by similar effects that did not reach our statistical significance threshold. More
404 sequencing data reflecting greater and more balanced diversity is needed to distinguish

405 those age-biases that are intrinsic to differences in biology, and those that are tied to
406 differences in lifestyle and geography.

407 Our findings have wide-reaching implications for both basic and translational cancer
408 research. Since cancer host characteristics like age, ancestry and sex widely shape the
409 somatic cancer landscape, we cannot consider discovery genomics complete they are
410 explicitly considered. Elderly individuals are underrepresented in cancer sequencing
411 studies and clinical trials^{36,74,75}: better inclusion is needed to identify somatic changes
412 specific to older individuals and to leverage these changes to improve clinical care. In our
413 analysis, we found that some age-associated genomic differences associate with
414 transcriptional and clinical changes, but many do not – identifying the functional
415 consequences and mechanisms of these will be a long-term challenge. Finally, these
416 epidemiological factors should be considered and controlled for in personalized therapy
417 strategies. Indeed, every type of analysis from driver-discovery to biomarker-
418 development should explicitly test for and model the powerful influence of patient biology
419 and behaviour on tumour evolution.

420 Online Methods

421 Data acquisition & Processing

422 Genome-wide somatic copy-number, somatic mutation, and mRNA abundance profiles
423 for the Cancer Genome Atlas (TCGA) datasets were downloaded from Broad GDAC
424 Firehose (<https://gdac.broadinstitute.org/>), release 2016-01-28. For mRNA abundance,
425 Illumina HiSeq rnaseqv2 level 3 RSEM normalised profiles were used. Genes with >75%
426 of tumours having zero reads were removed from the respective dataset. GISTIC v2 (13)
427 level 4 data was used for somatic copy-number analysis. mRNA abundance data were
428 converted to \log_2 scale for subsequent analyses. Mutational profiles were based on
429 TCGA-reported MutSig v2.0 calls. All pre-processing was performed in R statistical
430 environment (v3.1.3). Genetic ancestry imputed by Yuan *et al.* was downloaded from The
431 Cancer Genetic Ancestry Atlas (<http://52.25.87.215/TCGAA>).

432 PCAWG whole genome sequencing data calls were downloaded from the PCAWG
433 consortium through Synapse. All data pre-processing was performed by the consortium
434 as described³⁷. The individual data sets are available at Synapse
435 (<https://www.synapse.org/>), and are denoted with synXXXXX accession numbers (listed
436 under Synapse ID); all these datasets are also mirrored at <https://dcc.icgc.org>. Tumour
437 histological classifications were reviewed and assigned by the PCAWG Pathology and
438 Clinical Correlates Working Group (annotation version 9;
439 <https://www.synapse.org/#!Synapse:syn10389158>,
440 <https://www.synapse.org/#!Synapse:syn10389164>). Ancestry imputation was performed
441 using an ADMIXTURE23-like algorithm based on germline SNP profiles determined by
442 whole-genome sequencing of the reference sample
443 (<https://www.synapse.org/#!Synapse:syn4877977>). The consensus somatic SNV and
444 indel (<https://www.synapse.org/#!Synapse:syn7357330>) file covers 2778 whitelisted
445 samples from 2583 donors. Driver events were called by the PCAWG Drivers and
446 Functional Interpretation Group (<https://www.synapse.org/#!Synapse:syn11639581>).
447 Consensus CNA calls from the PCAWG Structural Variation Working Group were
448 downloaded in VCF format (<https://www.synapse.org/#!Synapse:syn8042988>).
449 Subclonal reconstruction was performed by the PCAWG Evolution and Heterogeneity
450 Working Group (<https://www.synapse.org/#!Synapse:syn8532460>). SigProfiler mutation
451 signatures were determined by the PCAWG Mutation Signatures and Processes Working
452 Group for single base substitution (<https://www.synapse.org/#!Synapse:syn11738669>),
453 doublet base substitution (<https://www.synapse.org/#!Synapse:syn11738667>) and indel
454 (<https://www.synapse.org/#!Synapse:syn11738668>) signatures. Signatures data for
455 TCGA, non-PCAWG WGS and non-TCGA WXS samples were downloaded from
456 Synapse (<https://www.synapse.org/#!Synapse:syn11804040>).

457

458 We used TCGA data describing 10,212 distinct TCGA tumour samples across 23 tumour-
459 types and 2,562 distinct PCAWG samples across 29 tumour-types. Tumour-types with no
460 age annotation or insufficient variability in ancestry annotation were excluded from
461 analysis. Age is treated as a continuous variable for both TCGA and PCAWG analyses.
462 A full breakdown of the data is presented in **Supplementary Table 1**.

463 **General Statistical Framework**

464 For each genomic feature of interest, we used univariate tests first followed by false
465 discovery rate (FDR) adjustment to identify putative age-biases of interest ($q < 0.1$). We
466 used two-sided non-parametric univariate tests to minimize assumptions on the data. For
467 putative age-biases, we then follow up the univariate analysis with multivariate modeling
468 to account for potential confounders using bespoke models for each tumour-type.

469 Model variables for each tumour context are presented in **Supplementary Table 1** and
470 were included based on availability of data (<15% missing), sufficient variability (at least
471 two levels) and collinearity (as assessed by variance inflation factor). Discrete data was
472 modeled using logistic regression (LGR). Continuous data was first transformed using the
473 Box-Cox family and modeled using linear regression (LNR). The Box-Cox family of
474 transformations is a formalized method to select a power transformation to better
475 approximate a normal-like distribution and stabilize variance. We used the Yeo-Johnson
476 extension to the Box-Cox transformation that allows for zeros and negative values⁷⁶.

477 FDR adjustment was performed for p-values for the age variable significance estimate
478 and an FDR threshold of 10% was used to determine statistical significance. More detail
479 is provided for each analysis below. A summary of all results is presented in
480 **Supplementary Table 1**. We present 95% confidence intervals for all tests.

481 **Mutation Density**

482 Performed for both TCGA and PCAWG data. Overall mutation prevalence per patient was
483 calculated as the sum of SNVs across all genes on the autosomes and scaled to
484 mutations/Mbp. Coding mutation prevalence only considers the coding regions of the
485 genome, and noncoding prevalence only considers the noncoding regions. TCGA
486 mutation density reflects coding mutation prevalence. Mutation density was compared
487 age using Spearman correlation for both pan-cancer and tumour-type specific analysis.
488 Comparisons with univariate q-values meeting an FDR threshold of 10% were further
489 analyzed using linear regression to adjust for tumour subtype-specific variables. Mutation
490 density analysis was performed separately for each mutation context, with pan-cancer
491 and tumour subtype p-values adjusted together. Full mutation density results are in
492 **Supplementary Table 2**.

493 **Genome instability**

494 Performed for both TCGA and PCAWG data. Genome instability was calculated as the
495 percentage of the genome affected by copy number alterations. The number of base pairs

496 for each CNA segment was summed to obtain a total number of base pairs altered per
497 patient. The total number of base pairs was divided by the number of assayed bases to
498 obtain the percentage of the genome altered (PGA). Genome instability was compared
499 using Spearman correlation for both pan-cancer and tumour-type specific analysis.
500 Comparisons with univariate q-values meeting an FDR threshold of 10% were further
501 analyzed using linear regression to adjust for tumour subtype-specific variables. Genome
502 instability analysis was performed separately for each mutation context, with pan-cancer
503 and tumour subtype p-values adjusted together. Full mutation density results are in
504 **Supplementary Table 2.**

505 **Clonal structure and mutation timing analysis**

506 Performed for PCAGW data only. Subclonal structure data was binarized from number of
507 subclonal clusters per tumour to monoclonal (one cluster) or polyclonal (more than one
508 cluster). Putative age-biases were identified using univariate logistic regression and
509 putative biases were further analysed using multivariate logistic regression.. A
510 multivariate q-value threshold of 0.1 was used to determine statistically significant age-
511 biased clonal structure.

512 Mutation timing data classified SNVs, indels and SVs into clonal (truncal) or subclonal
513 groups. The proportion of truncal variants was calculated for each mutation type
514 ($\frac{\text{Number truncal SNVs}}{\text{total SNVs}}$, etc.) to obtain proportions of truncal SNVs, indels and SVs for each
515 tumour. These proportions were compared using Spearman correlation. Univariate p-
516 values were FDR adjusted to identify putatively age-biased mutation timing. Linear
517 regression was used to adjust for confounding factors and a multivariate q-value threshold
518 of 0.1 was used to determine statistically significant age-biased mutation timing. The
519 mutation timing analysis was performed separately for SNVs, indels and SVs. All results
520 for clonal structure and mutation timing analyses are in **Supplementary Table 2.**

521 **Mutational Signatures analysis**

522 Performed for both TCGA and PCAWG data. For each signature, we compared the
523 proportion of tumours with any mutations attributed to the signatures (“signature-positive”)
524 using logistic regression to identify univariate age-biases. Signatures with putative age-
525 biases were further analysed using multivariable logistic regression.

526 We also compared relative signature activity using the proportions of mutations attributed
527 to each signature. The numbers of mutations per signature were divided by total number
528 of mutations for each tumour to obtain the proportion of mutations attributed to the
529 signature. Spearman correlation was used. Putative age-biased signatures were further
530 analysed using multivariable linear regression after Box-cox adjustment.

531 Signatures that were not detected in a tumour subtype was omitted from analysis for that
532 tumour subtype. All results for clonal structure and mutation timing analyses are in
533 **Supplementary Table 2.**

534 **Genome-spanning CNA analysis**

535 Performed for both TCGA and PCAWG data. Adjacent genes whose copy number profiles
536 across patients were highly correlated (Pearson's $r > 95\%$) were binned. The copy
537 number call for each patient was taken to be the majority call across all genes in each
538 bin. Copy number calls were collapsed to ternary (loss, neutral, gain) representation by
539 combining loss groups (mono-allelic and bi-allelic) and gain groups (low and high).
540 Logistic regression was used to identify univariate age-associated CNAs. After identifying
541 candidate pan-cancer univariately significant genes, multivariate logistic regression was
542 used to adjust ternary CNA data for tumour-type-specific variables. The genome-
543 spanning analysis was performed separately for losses and gains for each tumour
544 subtype. All CNA results are in **Supplementary Tables 3-4**.

545 **Genome-spanning SNV analysis**

546 Performed for TCGA data. We focused on genes mutated in at least 1% of patients.
547 Mutation data was binarized to indicate presence or absence of SNV in each gene per
548 patient. Univariate logistic regression was used to identify putative age-biased SNVs.
549 False discovery rate correction was used to adjust p-values and a q-value threshold of
550 0.1 used to select genes for multivariate analysis using logistic regression. SNV density
551 was included in all multivariate models.

552 **Driver Event Analysis**

553 Performed for PCAWG data. We focused on driver events described by the PCAWG
554 consortium⁶³. Driver mutation data was binarized to indicate presence or absence of the
555 driver event in each patient. Proportions of mutated genes were compared using
556 univariate logistic regression. A q-value threshold of 0.1 was used to select genes for
557 further multivariate analysis using binary logistic regression. SNV density was included in
558 all models. FDR correction was again applied and genes with significant age terms were
559 extracted from the models (q-value < 0.1). Driver event analysis was performed
560 separately for pan-cancer analysis and for each tumour subtype. All SNV and driver event
561 analysis results are in **Supplementary Table 6**.

562 **mRNA functional analysis**

563 Performed for TCGA data. Genes in bins altered by age-biased CNAs and SNVs after
564 multivariate adjustment were further investigated to determine functional consequences.
565 Tumour purity was included in all mRNA models. Tumours with available mRNA
566 abundance data were matched to those used in CNA analysis. For each gene affected
567 by an age-biased loss, its mRNA abundance was modeled against age, copy number
568 loss status, an age-copy number loss interaction term, and tumour purity. The interaction
569 term was used to identify genes with age-biased mRNA changes. FDR adjusted p-values
570 and fold-changes were extracted for visualization. A q-value threshold of 0.1 was used
571 for statistical significance. For genes affected by age-biased gains, the same procedure

572 was applied using copy number gains. mRNA modeling results for age-biased CNAs and
573 SNVs are in **Supplementary Tables 5-6**.

574 **Survival analysis**

575 Performed for TCGA data. Genes found to have significant (FDR threshold of 10%) age-
576 biased CNAs and SNVs were also analyzed using Cox proportional hazards modelling
577 after checking proportional hazards assumption. Cox proportional hazard regression
578 models incorporating ageest, CNA/SNV status, and an age-CNA/SNV group interaction
579 were fit for overall survival after checking the proportional hazards assumption. Age was
580 treated as a continuous variable for modeling, but median dichotomized into 'low age' and
581 'high age' groups for visualization. FDR-adjusted interaction p-values and \log_2 hazard
582 ratios were extracted for visualization. A q-value threshold of 0.1 was used to identify
583 genes with sex-influenced survival. Survival modeling results for age-biased CNAs and
584 SNVs are in **Supplementary Tables 5 and 6**.

585 **Statistical Analysis & Data Visualization Software**

586 All statistical analyses and data visualization were performed in the R statistical
587 environment (v3.2.1) using the BPG⁷⁷ (v5.9.8) and Survival (v2.44-1.1) packages, and
588 with Inkscape (v0.92.3).

589

590 References

- 591 1. Cook, M. B. *et al.* Sex disparities in cancer incidence by period and age. *Cancer*
592 *Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc.*
593 *Prev. Oncol.* **18**, 1174–1182 (2009).
- 594 2. Edgren, G., Liang, L., Adami, H.-O. & Chang, E. T. Enigmatic sex disparities in cancer
595 incidence. *Eur. J. Epidemiol.* **27**, 187–196 (2012).
- 596 3. Elsaleh, H. *et al.* Association of tumour site and sex with survival benefit from adjuvant
597 chemotherapy in colorectal cancer. *Lancet Lond. Engl.* **355**, 1745–1750 (2000).
- 598 4. Cook, M. B., McGlynn, K. A., Devesa, S. S., Freedman, N. D. & Anderson, W. F. Sex
599 Disparities in Cancer Mortality and Survival. *Cancer Epidemiol. Biomarkers Prev.* **20**,
600 1629–1637 (2011).
- 601 5. Scelo, G., Li, P., Chanudet, E. & Muller, D. C. Variability of Sex Disparities in Cancer
602 Incidence over 30 Years: The Striking Case of Kidney Cancer. *Eur. Urol. Focus* **4**,
603 586–590 (2018).
- 604 6. Zheng, D. *et al.* Sexual dimorphism in the incidence of human cancers. *BMC Cancer*
605 **19**, 684 (2019).
- 606 7. Nipp, R. *et al.* Disparities in cancer outcomes across age, sex, and race/ethnicity
607 among patients with pancreatic cancer. *Cancer Med.* **7**, 525–535 (2018).
- 608 8. Zhang, W., Edwards, A., Flemington, E. K. & Zhang, K. Racial disparities in patient
609 survival and tumor mutation burden, and the association between tumor mutation
610 burden and cancer incidence rate. *Sci. Rep.* **7**, 13639 (2017).
- 611 9. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. *CA. Cancer J. Clin.* **70**,
612 7–30 (2020).

613 10. Torre, L. A. *et al.* Cancer statistics for Asian Americans, Native Hawaiians, and Pacific
614 Islanders, 2016: Converging incidence in males and females: *Cancer Statistics for*
615 *Asian Americans, Native Hawaiians, and Pacific Islanders, 2016. CA. Cancer J. Clin.*
616 **66**, 182–202 (2016).

617 11. DeSantis, C. E., Miller, K. D., Goding Sauer, A., Jemal, A. & Siegel, R. L. *Cancer*
618 *statistics for African Americans, 2019. CA. Cancer J. Clin.* **69**, 211–233 (2019).

619 12. Cook, P. J., Doll, R. & Fellingham, S. A. A mathematical model for the age distribution
620 of cancer in man. *Int. J. Cancer* **4**, 93–112 (1969).

621 13. de Magalhães, J. P. How ageing processes influence cancer. *Nat. Rev. Cancer* **13**,
622 357–365 (2013).

623 14. Harding, C., Pompei, F. & Wilson, R. Peak and decline in cancer incidence, mortality,
624 and prevalence at old ages. *Cancer* **118**, 1371–1386 (2012).

625 15. White, M. C. *et al.* Age and Cancer Risk. *Am. J. Prev. Med.* **46**, S7–S15 (2014).

626 16. DePinho, R. A. The age of cancer. *Nature* **408**, 248 (2000).

627 17. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of
628 carcinogenesis. *Br. J. Cancer* **8**, 1–12 (1954).

629 18. Ershler, W. B. Cancer: a disease of the elderly. *J. Support. Oncol.* **1**, 5–10 (2003).

630 19. Aunan, J. R., Cho, W. C. & Søreide, K. The Biology of Aging and Cancer: A Brief
631 Overview of Shared and Divergent Molecular Hallmarks. *Aging Dis.* **8**, 628 (2017).

632 20. Steliarova-Foucher, E. *et al.* International incidence of childhood cancer, 2001–10: a
633 population-based registry study. *Lancet Oncol.* **18**, 719–731 (2017).

634 21. the St. Jude Children's Research Hospital–Washington University Pediatric Cancer
635 Genome Project. Whole-genome sequencing identifies genetic alterations in pediatric
636 low-grade gliomas. *Nat. Genet.* **45**, 602–612 (2013).

637 22. the St. Jude Children's Research Hospital–Washington University Pediatric Cancer
638 Genome Project. The genomic landscape of diffuse intrinsic pontine glioma and
639 pediatric non-brainstem high-grade glioma. *Nat. Genet.* **46**, 444–450 (2014).

640 23. Trama, A. *et al.* Survival of European adolescents and young adults diagnosed with
641 cancer in 2000–07: population-based data from EUROCARE-5. *Lancet Oncol.* **17**,
642 896–906 (2016).

643 24. Anders, C. K. *et al.* Young Age at Diagnosis Correlates With Worse Prognosis and
644 Defines a Subset of Breast Cancers With Shared Patterns of Gene Expression. *J.*
645 *Clin. Oncol.* **26**, 3324–3330 (2008).

646 25. Katz, M. *et al.* The Effect of Race/Ethnicity on the Age of Colon Cancer Diagnosis. *J.*
647 *Health Disparities Res. Pract.* **6**, 62–69 (2013).

648 26. Willauer, A. N. *et al.* Clinical and molecular characterization of early-onset colorectal
649 cancer. *Cancer* **125**, 2002–2010 (2019).

650 27. Lieu, C. H. *et al.* Comprehensive Genomic Landscapes in Early and Later Onset
651 Colorectal Cancer. *Clin. Cancer Res.* **25**, 5852–5858 (2019).

652 28. Parsons, D. W. *et al.* An Integrated Genomic Analysis of Human Glioblastoma
653 Multiforme. *Science* **321**, 1807–1812 (2008).

654 29. Williams, G. R. *et al.* Comorbidity in older adults with cancer. *J. Geriatr. Oncol.* **7**, 249–
655 257 (2016).

656 30. Jørgensen, T. L., Hallas, J., Friis, S. & Herrstedt, J. Comorbidity in elderly cancer
657 patients in relation to overall and cancer-specific mortality. *Br. J. Cancer* **106**, 1353–
658 1360 (2012).

659 31. Balducci, L., Colloca, G., Cesari, M. & Gambassi, G. Assessment and treatment of
660 elderly patients with cancer. *Surg. Oncol.* **19**, 117–123 (2010).

661 32. Given, B. & Given, C. W. Older adults and cancer treatment. *Cancer* **113**, 3505–3511
662 (2008).

663 33. Chen, R. C., Royce, T. J., Extermann, M. & Reeve, B. B. Impact of Age and
664 Comorbidity on Treatment and Outcomes in Elderly Cancer Patients. *Semin. Radiat.*
665 *Oncol.* **22**, 265–271 (2012).

666 34. Andaya, A. A. *et al.* Race and Colon Cancer Survival in an Equal-Access Health Care
667 System. *Cancer Epidemiol. Biomarkers Prev.* **22**, 1030–1036 (2013).

668 35. Milholland, B., Auton, A., Suh, Y. & Vijg, J. Age-related somatic mutations in the
669 cancer genome. *Oncotarget* **6**, 24627–24635 (2015).

670 36. Wahl, D. R. *et al.* Pan-Cancer Analysis of Genomic Sequencing Among the Elderly.
671 *Int. J. Radiat. Oncol.* **98**, 726–732 (2017).

672 37. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer
673 analysis of whole genomes. *Nature* **578**, 82–93 (2020).

674 38. Li, C. H., Haider, S., Shiah, Y.-J., Thai, K. & Boutros, P. C. Sex Differences in Cancer
675 Driver Genes and Biomarkers. *Cancer Res.* **78**, 5527 (2018).

676 39. Chalmers, Z. R. *et al.* Analysis of 100,000 human cancer genomes reveals the
677 landscape of tumor mutational burden. *Genome Med.* **9**, (2017).

678 40. Martincorena, I. *et al.* Somatic mutant clones colonize the human esophagus with
679 age. *Science* **362**, 911–917 (2018).

680 41. Martincorena, I. *et al.* High burden and pervasive positive selection of somatic
681 mutations in normal human skin. *Science* **348**, 880–886 (2015).

682 42. Lee-Six, H. *et al.* The landscape of somatic mutation in normal colorectal epithelial
683 cells. *Nature* **574**, 532–537 (2019).

684 43. Yokoyama, A. *et al.* Age-related remodelling of oesophageal epithelia by mutated
685 cancer drivers. *Nature* **565**, 312–317 (2019).

686 44. Suda, K. *et al.* Clonal Expansion and Diversification of Cancer-Associated Mutations
687 in Endometriosis and Normal Endometrium. *Cell Rep.* **24**, 1777–1789 (2018).

688 45. Jaiswal, S. *et al.* Age-Related Clonal Hematopoiesis Associated with Adverse
689 Outcomes. *N. Engl. J. Med.* **371**, 2488–2498 (2014).

690 46. Welch, J. S. *et al.* The Origin and Evolution of Mutations in Acute Myeloid Leukemia.
691 *Cell* **150**, 264–278 (2012).

692 47. Volland, H. K. M. *et al.* A tumor DNA complex aberration index is an independent
693 predictor of survival in breast and ovarian cancer. *Mol. Oncol.* **9**, 115–127 (2015).

694 48. Lalonde, E. *et al.* Tumour genomic and microenvironmental heterogeneity for
695 integrated prediction of 5-year biochemical recurrence of prostate cancer: a
696 retrospective cohort study. *Lancet Oncol.* **15**, 1521–1532 (2014).

697 49. Hieronymus, H. *et al.* Copy number alteration burden predicts prostate cancer
698 relapse. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 11139–11144 (2014).

699 50. Alexandrov, L. B. *et al.* Mutational signatures associated with tobacco smoking in
700 human cancer. *Science* **354**, 618–622 (2016).

701 51. Ratti, M., Lampis, A., Hahne, J. C., Passalacqua, R. & Valeri, N. Microsatellite
702 instability in gastric cancer: molecular bases, clinical perspectives, and new treatment
703 approaches. *Cell. Mol. Life Sci.* **75**, 4151–4162 (2018).

704 52. Boland, C. R. & Goel, A. Microsatellite Instability in Colorectal Cancer.
705 *Gastroenterology* **138**, 2073-2087.e3 (2010).

706 53. Cortes-Ciriano, I., Lee, S., Park, W.-Y., Kim, T.-M. & Park, P. J. A molecular portrait
707 of microsatellite instability across multiple cancers. *Nat. Commun.* **8**, 15180 (2017).

708 54. Bonneville, R. *et al.* Landscape of Microsatellite Instability Across 39 Cancer Types.
709 *JCO Precis. Oncol.* 1–15 (2017) doi:10.1200/PO.17.00073.

710 55. PCAWG Evolution & Heterogeneity Working Group *et al.* The evolutionary history of
711 2,658 cancers. *Nature* **578**, 122–128 (2020).

712 56. Espiritu, S. M. G. *et al.* The Evolutionary Landscape of Localized Prostate Cancers
713 Drives Clinical Aggression. *Cell* **173**, 1003-1013.e15 (2018).

714 57. Landau, D. A. *et al.* Evolution and Impact of Subclonal Mutations in Chronic
715 Lymphocytic Leukemia. *Cell* **152**, 714–726 (2013).

716 58. Shah, S. P. *et al.* The clonal and mutational evolution spectrum of primary triple-
717 negative breast cancers. *Nature* **486**, 395–399 (2012).

718 59. Alexandrov, L. B. *et al.* Signatures of mutational processes in human cancer. *Nature*
719 **500**, 415–421 (2013).

720 60. PCAWG Mutational Signatures Working Group *et al.* The repertoire of mutational
721 signatures in human cancer. *Nature* **578**, 94–101 (2020).

722 61. Alexandrov, L. *et al.* The Repertoire of Mutational Signatures in Human Cancer.
723 (2018) doi:10.1101/322859.

724 62. Zack, T. I. *et al.* Pan-cancer patterns of somatic copy number alteration. *Nat. Genet.*
725 **45**, 1134–1140 (2013).

726 63. PCAWG Drivers and Functional Interpretation Working Group *et al.* Analyses of non-
727 coding somatic drivers in 2,658 cancer whole genomes. *Nature* **578**, 102–111 (2020).

728 64. Li, C. H. *et al.* Sex Differences in Oncogenic Mutational Processes.
729 <http://biorxiv.org/lookup/doi/10.1101/528968> (2019) doi:10.1101/528968.

730 65. Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L. & Bohr, V. A. DNA
731 Damage, DNA Repair, Aging, and Neurodegeneration. *Cold Spring Harb. Perspect.*
732 *Med.* **5**, a025130 (2015).

733 66. Hoeijmakers, J. H. J. DNA Damage, Aging, and Cancer. *N. Engl. J. Med.* **361**, 1475–
734 1485 (2009).

735 67. Fernández, L. C., Torres, M. & Real, F. X. Somatic mosaicism: on the road to cancer.
736 *Nat. Rev. Cancer* **16**, 43–55 (2016).

737 68. Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer
738 etiology, and cancer prevention. *Science* **355**, 1330–1334 (2017).

739 69. Özdemir, B. C. & Dotto, G.-P. Racial Differences in Cancer Susceptibility and Survival:
740 More Than the Color of the Skin? *Trends Cancer* **3**, 181–197 (2017).

741 70. Cramer, D. W. & Finn, O. J. Epidemiologic perspective on immune-surveillance in
742 cancer. *Curr. Opin. Immunol.* **23**, 265–271 (2011).

743 71. Vick, A. D. & Burris, H. H. Epigenetics and Health Disparities. *Curr. Epidemiol. Rep.*
744 **4**, 31–37 (2017).

745 72. Research, W. C. R. F. I. for C. Diet, nutrition, physical activity and cancer: a global
746 perspective. *Contin. Update Proj. Expert Rep.* (2018).

747 73. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The
748 Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy.
749 *Cancer Cell* **33**, 570–580 (2018).

750 74. Talarico, L., Chen, G. & Pazdur, R. Enrollment of Elderly Patients in Clinical Trials for
751 Cancer Drug Registration: A 7-Year Experience by the US Food and Drug
752 Administration. *J. Clin. Oncol.* **22**, 4626–4631 (2004).

753 75. Ruiter, R., Burggraaf, J. & Rissmann, R. Under-representation of elderly in clinical
754 trials: An analysis of the initial approval documents in the Food and Drug
755 Administration database. *Br. J. Clin. Pharmacol.* **85**, 838–844 (2019).

756 76. Yeo, I.-K. & Johnson, R. A. A New Family of Power Transformations to Improve
757 Normality or Symmetry. *Biometrika* **87**, 954–959 (2000).

758 77. P'ng, C. *et al.* BPG: Seamless, automated and interactive visualization of scientific
759 data. *BMC Bioinformatics* **20**, (2019).

760

761 Acknowledgments

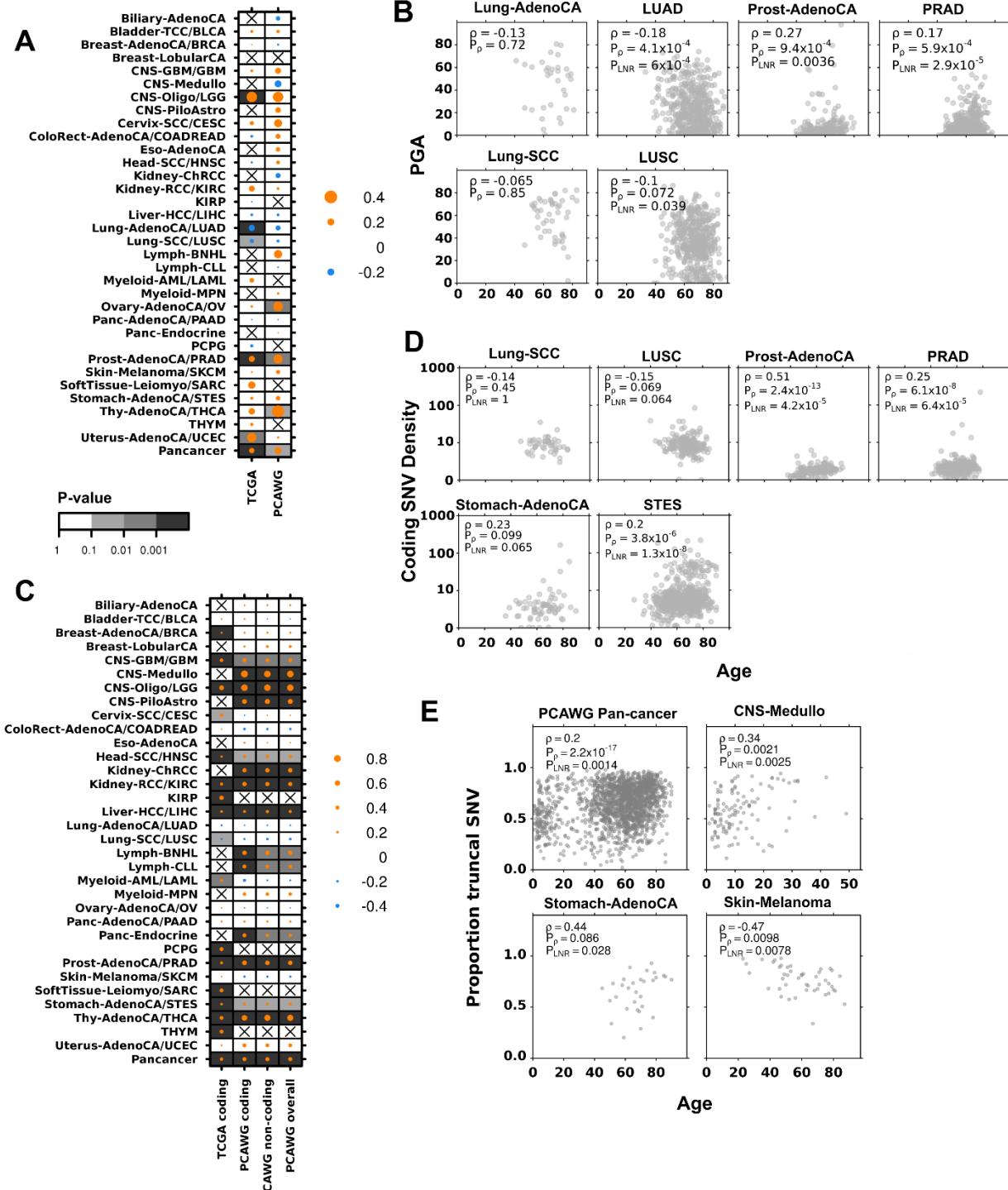
762 The authors thank all the members of the Boutros lab for insightful discussions. This study
763 was conducted with the support of the Ontario Institute for Cancer Research to P.C.B.
764 through funding provided by the Government of Ontario. This work was supported by the
765 Discovery Frontiers: Advancing Big Data Science in Genomics Research program, which
766 is jointly funded by the Natural Sciences and Engineering Research Council (NSERC) of
767 Canada, the Canadian Institutes of Health Research (CIHR), Genome Canada and the
768 Canada Foundation for Innovation (CFI). P.C.B. was supported by a Terry Fox Research
769 Institute New Investigator Award and a CIHR New Investigator Award. This work was
770 supported by an NSERC Discovery grant and by Canadian Institutes of Health Research,
771 grant #SVB-145586, to PCB. The results described here are in part based upon data
772 generated by the TCGA Research Network: <http://cancergenome.nih.gov/>. This work was
773 supported by the NIH/NCI under award number P30CA016042 and by an operating grant
774 from the National Cancer Institute Early Detection Research Network (1U01CA214194-
775 01).

776 Author Contributions

777 CHL and PCB initiated the project. CHL, and SH analyzed data. PCB supervised
778 research. CHL and PCB wrote the first draft of the manuscript, which all authors edited
779 and approved.

780 Figures & Figure Legends

Figure 1

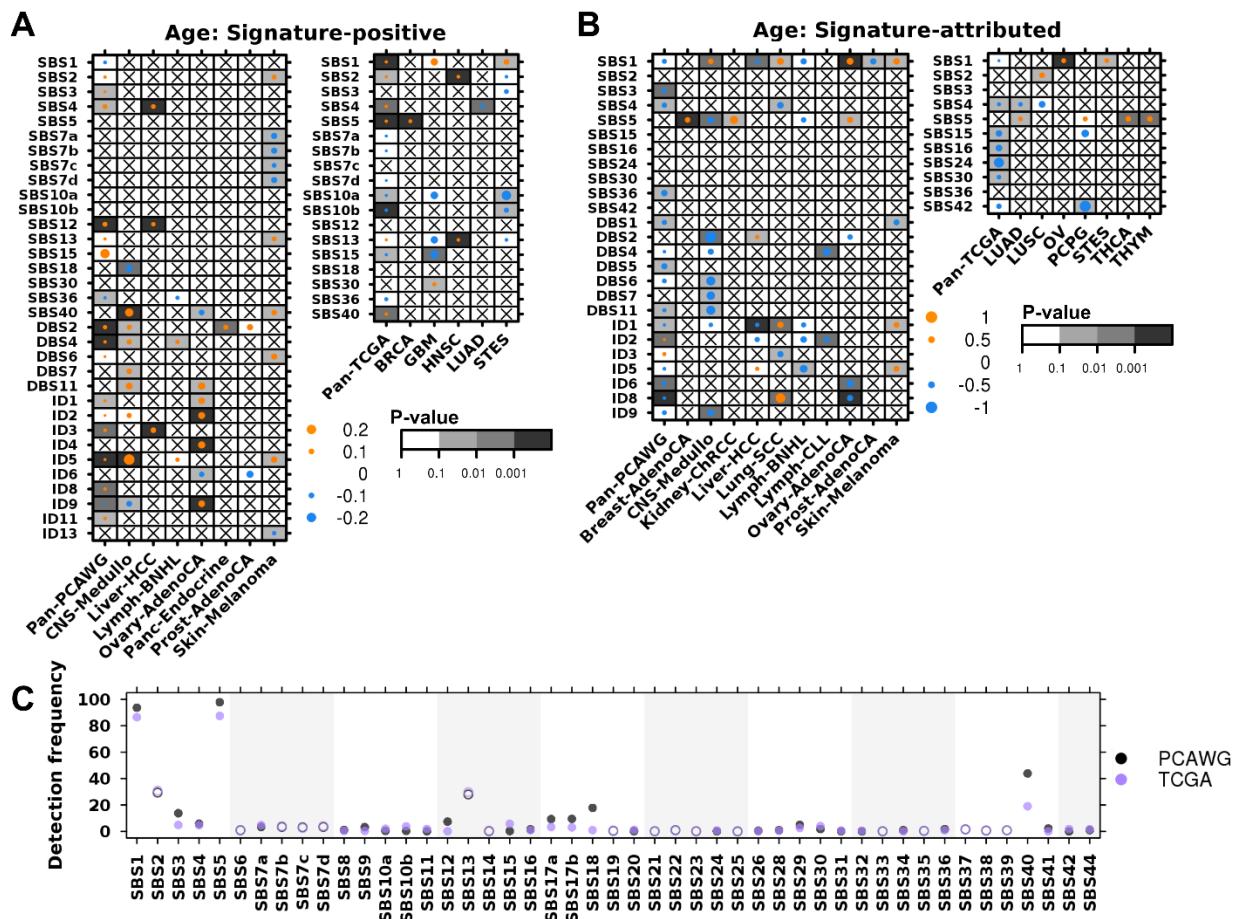


783 **Figure 1 | Mutation density and timing are biased to age.**

784 Summary of associations between age and **(A)** percent genome altered and **(C)** SNV
785 density in TCGA and PCAWG tumours. The dot size and colour show the Spearman
786 correlation, and background shading indicate adjusted multivariate p-value. Only tumour-
787 types with at least univariately significant associations are shown. Associations between
788 **(B)** PGA and **(D)** coding SNV density with age in selected tumour-type specific analyses.
789 Univariate Spearman correlation, adjusted correlation p-value and adjusted multivariate
790 p-values shown. **(E)** Correlations between age and proportion of SNVs occurring in the
791 truncal clone in four PCAWG tumour contexts.

792

Figure 2



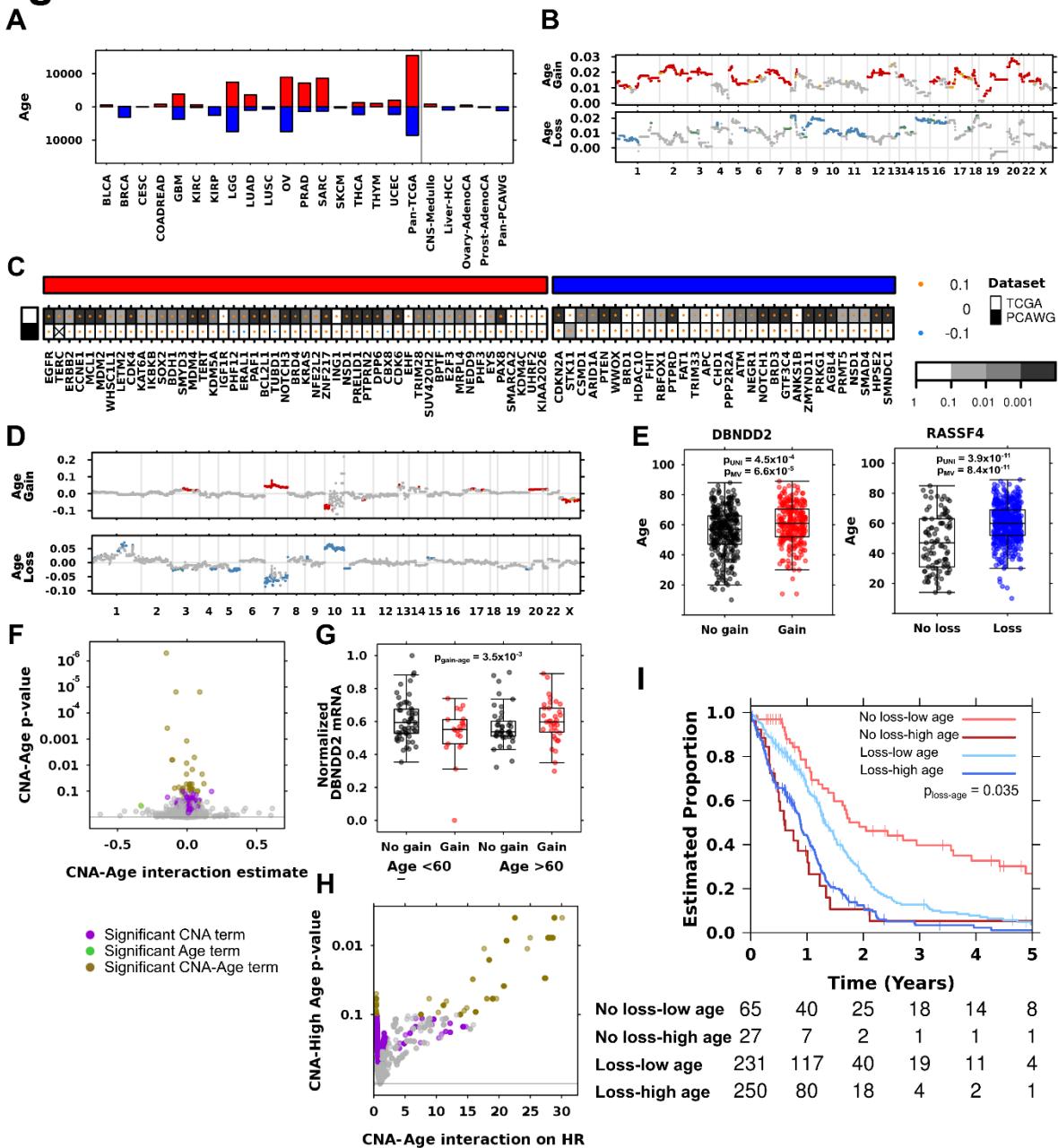
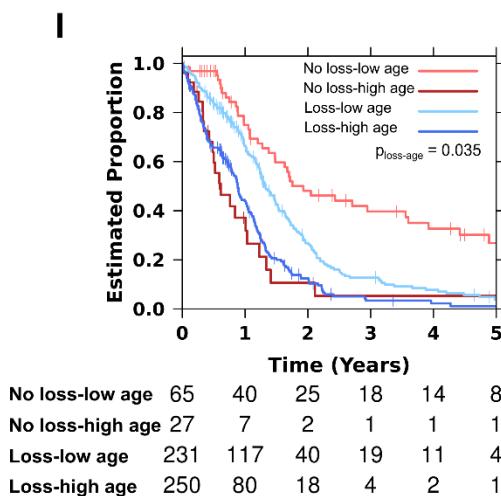
793

794 **Figure 2 | Biases in mutational signatures suggest differences in underlying**
795 **mutational processes.**

796 **(A)** Summary of associations between age and the proportion of signature-positive
797 tumours, where dot size shows the marginal log odds from logistic regression and
798 background shading show adjusted multivariate p-values. PCAWG data is on left and
799 TCGA on right. **(B)** Similarly, the summary of associations between age and relative
800 signature activity, with dot size showing Spearman correlations and background
801 indicating adjusted linear regression p-values. **(C)** Comparison of PCAWG and TCGA
802 signature detection frequency. Filled in and open circles indicate comparisons where the
803 differences are statistically significant (proportion test $q < 0.05$) and not, respectively.

804

Figure 3



805

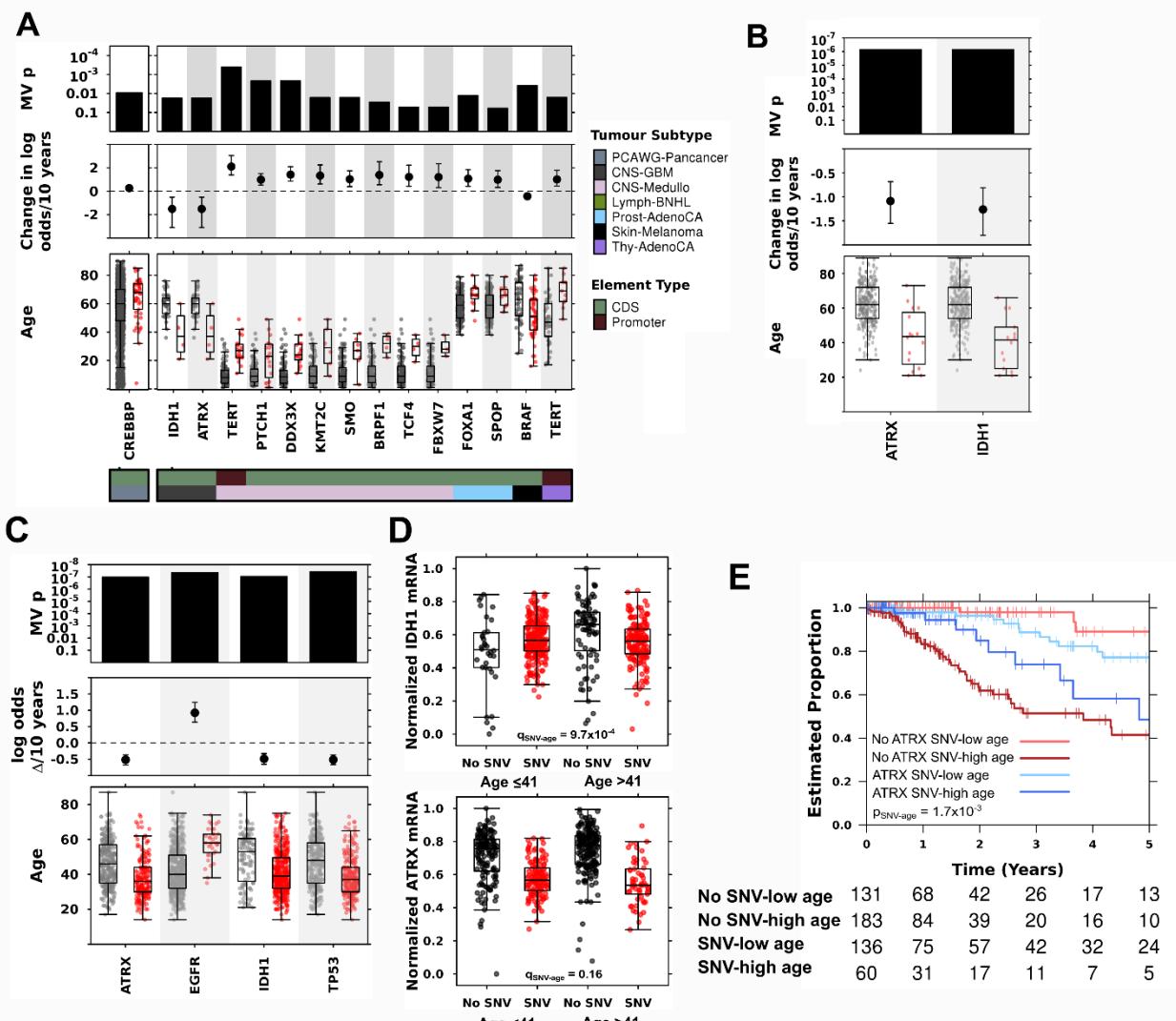
806 **Figure 3 | Age-biases in copy number alterations are associated with functional**
807 **changes in mRNA and survival.**

808 **(A)** Summary of all detected age-biased CNAs with numbers of gains (above x-axis) and
809 losses (below x-axis) found in each tumour context. Only tumour-types with at least one
810 significant event shown. **(B)** Pan-cancer age-biases in CNAs for TCGA data. Each plot
811 shows the logistic regression log odds coefficient estimate for the indicated CNA type.
812 Dot colour indicates statistical significance, where red (copy number gain) and yellow (gain) and green (loss) show adjusted p
813 < 0.1 **(C)** Summary of age-biased pan-cancer CNA drivers. Both TCGA and PCAWG

815 findings shown. Dot size shows the magnitude of the association as the difference in
816 proportion and the background shading shows adjusted multivariate p-values. Top
817 covariate indicates copy number gain drivers in red and loss drivers in blue. **(D)** Age-
818 biases in TCGA glioblastoma CNAs across the genome with **(E)** specific examples shown
819 for *DBNDD2* gain and *RASSF4* loss. Both adjusted univariate and multivariate p-values
820 shown. Age-biased CNAs in TCGA glioblastoma are associated with **(F)** mRNA
821 abundance changes and **(H)** overall survival. In **(F)**, adjusted p-values are plotted against
822 the coefficients of the CNA-age interaction for mRNA abundance, with each point
823 representing a gene. Dot colour shows significant associations between mRNA and age
824 (green), CNA only (violet) or their interaction (olive). **(G)** *DBNDD2* mRNA abundance
825 changes between copy number gain (red) or no loss (black) in tumours of low vs. high
826 age. Adjusted CNA-age interaction p-value is shown. In **(H)**, adjusted p-values and
827 coefficients of the CNA-age interaction for Cox-PH modeling are shown, with each point
828 representing a gene. **(I)** Loss of a region on 10q interacts with age to further stratify patient
829 prognosis. The adjusted p-value for the copy number loss-age interaction term is shown.
830 Tukey boxplots are shown with the box indicating quartiles and the whiskers drawn at the
831 lowest and highest points within 1.5 interquartile range of the lower and upper quartiles,
832 respectively.

833

Figure 4



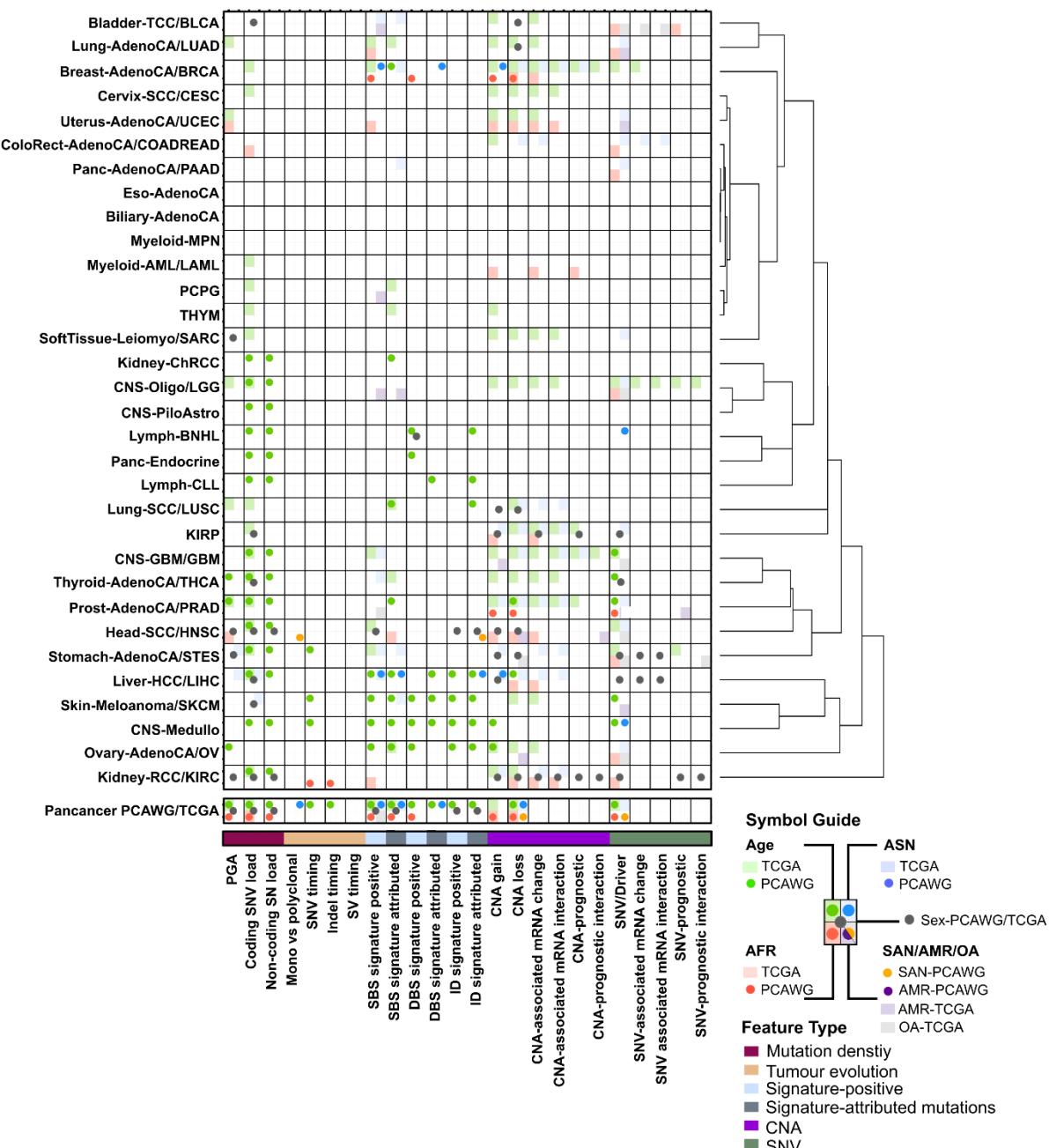
834

835 **Figure 4 | Age-biases in single nucleotide variants reveal ATRX as a strong age-
836 biased prognostic biomarker in lower grade glioma.**

837 **(A)** Pan-PCAWG and PCAWG tumour-specific age-biases in driver mutation frequency
838 with adjusted multivariate p-values, marginal log odds changes for 10-year age
839 increment, and age of tumours compared between those with (red) and without (grey) the
840 mutation. Genes are ordered by tumour-type and adjusted p-value. Similar to **(A)**, genes
841 with age-associated mutation frequency are shown for **(B)** TCGA glioblastoma and **(C)**
842 TCGA lower grade glioma. **(D)** mRNA abundance changes for *IDH1* and *ATRX* when the
843 gene is mutated (red) or not (black) compared by median-dichotomized age. Adjusted
844 CNA-age interaction p-value is shown. **(E)** *ATRX* mutation interacts with age to stratify
845 patient prognosis into four groups. Log-odds p-value is shown. Tukey boxplots are shown
846 with the box indicating quartiles and the whiskers drawn at the lowest and highest points
847 within 1.5 interquartile range of the lower and upper quartiles, respectively.

848

Figure 5



849

850 **Figure 5 | The landscape of age, sex and ancestry differences in cancer genomics**

851 A summary of age-, ancestry- and sex-associated biases in TCGA and PCAWG analyses.

852 Dots show associations in PCAWG data and shading shows associations in TCGA data.

853 Each quadrant of every cell corresponds with age, Asian, African, and Admixed American,

854 South Asian or Other Ancestry-associated findings. Centre dot indicates sex-associated

855 findings.