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Abstract 23 

Cancer is often called a disease of aging. There are numerous ways in which cancer 24 

epidemiology and behaviour change with the age of the patient. The molecular bases for 25 

these relationships remain largely underexplored. To characterize them we analyzed age-26 

biases in the somatic mutational landscape of 12,774 tumours across 33 tumour-types. 27 

Age influences both the number of mutations in a tumour and their evolutionary timing. 28 

Specific mutational signatures are associated with age, reflecting differences in 29 

exogenous and endogenous oncogenic processes. A subset of known cancer driver 30 

genes were mutated in age-biased patterns, and these alter the transcriptome and predict 31 

for clinical outcomes. These effects were most striking in lower grade glioma where ATRX 32 

mutation is a strongly age-dependent prognostic biomarker. Though cancer genome 33 

sequencing data is not well-balanced in epidemiologic factors, these data suggest that 34 

age shapes the somatic mutational landscape of cancer, with clear clinical implications.  35 
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Introduction 36 

Cancer health disparities across different population stratifiers are common through a 37 

wide range of measures. These include differences in incidence rates, mortality rates, 38 

response to treatment, and survival between individuals of different sexes1–6, races or 39 

ancestries7–11 and ages12–14, and these differences have been described across a range 40 

of tumour-types. Cancer disparities involving age are particularly well known. Aging is a 41 

leading risk factor for cancer, as it is associated with increased incidence of most tumour-42 

types9,15. Older age is also associated with higher mortality and lower survival16,17. The 43 

links between older age and increased cancer burden such that cancer is often described 44 

as a disease of aging18,19.  45 

However, there are many nuances in the relationship between aging and cancer. 46 

Pediatric cancers are an obvious exception, as cancers arising in children have different 47 

molecular and clinical characteristics9,20–22. Tumours arising in young adults (< 50 years 48 

of age) are often more aggressive: early onset prostate23, breast24, and colorectal25 49 

cancers are diagnosed at higher stages and associated with lower survival. Molecular 50 

studies have described some striking differences in the mutational landscapes of early 51 

onset vs. later onset disease26–28, suggesting differences in the underlying oncogenic 52 

processes driving cancer at different ages.   53 

The mechanisms of how age shapes the clinical behaviour of cancers has been subject 54 

to intense study. Many factors and behaviours closely tied to aging have been implicated 55 

in observed epidemiological and clinical cancer health disparities. For example, higher 56 

age is associated with a greater burden of comorbidities such as diabetes and 57 

cardiovascular disease29,30. Higher prevalence of chronic disease, frailty and increased 58 

likelihood of adverse drug reactions also influence the choices of clinical interventions 59 

given to older cancer patients31–33. Nevertheless differences remain even after accounting 60 

for these factors34. Previous work associating somatic molecular changes with age 61 

suggest differences in overall tumour mutation burden35, transcriptional profiles36, and 62 

some mutational differences26–28. These studies have focused on single tumour-types, 63 

relatively small cohorts, or have only evaluated fractions of the whole-genome, leaving 64 

the landscape of age-associated cancer mutations largely unknown. 65 

To fill this gap, we perform a pan-cancer, genome-wide study of age-associated 66 

molecular differences in 10,218 tumours of 23 tumour-types from The Cancer Genome 67 

Atlas (TCGA) and 2,562 tumours of 30 tumour-types from the International Cancer 68 

Genome Consortium/The Cancer Genome Atlas Pan-cancer Analysis of Whole Genomes 69 

(PCAWG) projects. We quantified age-biases in measures of mutation density, subclonal 70 

architecture, mutation timing, mutational signatures and driver mutations in almost all 71 

tumour-types. We adjusted for potential confounding factors such as sex and ancestry. 72 

Many of these genomic age-biases were linked to clinical phenotypes. In particular, we 73 
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identified genomic alterations that were prognostic in specific age contexts, suggesting 74 

the clinical utility of age-informed biomarkers.   75 
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Results 76 

Age Biases in Mutation Density and Timing 77 

We investigated TCGA and PCAWG datasets independently and performed pan-cancer 78 

analyses spanning all TCGA tumours (pan-TCGA), and all PCAWG tumours (pan-79 

PCAWG); these were supplemented with tumour-type-specific analyses. We used the 80 

recorded age at diagnosis for both TCGA and PCAWG37 (Table 1). Our modeling 81 

accounted for a range of confounding variables for each cancer type including sex and 82 

genetic ancestry. We adapted a statistical approach previously applied to quantify sex-83 

biases in cancer genomics38: we first used univariate methods to identify putative age-84 

biases, then further modeled these putative hits with multivariate regression to evaluate 85 

age effects after adjusting for confounding factors. We modeled each genomic feature 86 

and tumour subtype based on available clinical data, a priori knowledge, variable 87 

collinearity and model convergence. Model and variable specifications, and results of 88 

association tests between model variables and age are presented in Supplementary 89 

Table 1. 90 

We began by assessing whether measures of mutation density were associated with age. 91 

The accumulation of mutations with age is a well-known phenomenon in both cancer and 92 

non-cancer cells39–46. We examined both genome instability and SNV density to 93 

investigate trends across age and test the robustness of our statistical framework in 94 

detecting age-associated genomic events. Genome instability is a measure of copy 95 

number aberration (CNA) burden and approximated by percent of the genome altered by 96 

CNAs (PGA), a surrogate variable associated with poor outcome in several tumour-97 

types47–49. We identified univariate age-biases in PGA using Spearman correlation. 98 

Putative age-associations identified at a false discovery rate (FDR) threshold of 10% were 99 

further analysed by multivariate linear regression (LNR) models to adjust for tumour-type-100 

specific confounding effects (Supplementary Table 1).  101 

We discovered significant associations between age and PGA in both pan-TCGA (ρ 102 

=0.14, adjusted LNR p = 1.1 x 10-7) and pan-PCAWG (ρ = 0.19, adjusted LNR p = 0.023) 103 

data. Positive correlations were also identified in three TCGA and three PCAWG tumour-104 

types, with prostate cancer showing a statistically significant correlation in both datasets. 105 

(Figure 1A, 1B, Supplementary Table 2). Other tumour-type specific associations were 106 

statistically significant in only one dataset (Figure 1A, Supplementary Figure 1). For 107 

example, we detected similar correlations between age and PGA in TCGA lower grade 108 

glioma (LGG) and PCAWG (CNS-Oligo), but the association was significant in only TCGA 109 

data (Figure 1A, 1B). This is likely due in part to decreased statistical power in the 110 

PCAWG dataset because of smaller sample sizes. Surprisingly, in TCGA both 111 

adenocarcinomas and squamous cell carcinomas of the lung showed the inverse trend, 112 

with tumours arising in older patients harbouring fewer CNAs (LUAD: ρ = -0.18, adjusted 113 
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LNR p = 6.0x10-4, LUSC: ρ = -0.10, adjusted LNR p = 0.039, Figure 1A). We observed 114 

similar negative correlations in the corresponding PCAWG lung data, though these 115 

associations were not statistically significant (Lung-AdenoCA: ρ = -0.13, Lung-SCC: ρ = 116 

-0.065, Figure 1A). 117 

Analogous to PGA, somatic single nucleotide variation (SNV) density measures the 118 

burden of somatic SNVs. SNV density frequently increased with age, as expected39,40. In 119 

addition to pan-cancer age-biases (pan-TCGA: ρ = 0.33, adjusted LNR p = 2.0 x 10-49, 120 

pan-PCAWG: ρ = 0.41, adjusted LNR p = 3.1 x 10-28), tumour-type-specific positive 121 

correlations occurred in 15/23 TCGA and 14/30 PCAWG tumour-types, including in 122 

prostate and gastric cancers (Figure 1C, 1D Supplementary Figure 1, Supplementary 123 

Table 2). Again, there was an inverse relationship in lung tumours, with more SNVs 124 

occurring in the squamous cell tumours of younger patients (LUSC: ρ = -0.15, adjusted 125 

LNR p = 0.064, Figure 1D). While not statistically significant, we observed similar 126 

negative associations in PCAWG lung tumours (Lung-SCC: ρ = -0.14). The negative 127 

association between age and both PGA and SNV density in lung cancers has been 128 

attributed to smoking exposure leading to hypermutation in younger lung cancer 129 

patients50, suggesting differences in disease aetiology between patients of different ages. 130 

Another source of of hypermutation is microsatellite instability (MSI), which is frequently 131 

detected in colorectal and gastric cancers51,52. Since MSI-positive status is often 132 

associated with increased SNV density and age (Supplementary Figure 2), we 133 

investigated whether age-biases in MSI might explain the associations between age and 134 

SNV density in this data. We focused on four tumour-types with high frequency of MSI-135 

positive tumours: stomach & esophageal, colorectal, pancreatic and endometrial 136 

cancers53,54. There was a significant association between age and MSI status in gastric 137 

cancers, where tumours arising in older individuals were more likely to have high levels 138 

of MSI (MSI-H; ANOVA q = 6.4x10-4; Supplementary Figure 2). While there were no 139 

statistically significant associations between age and MSI status in colorectal, pancreatic, 140 

or endometrial cancers, we nevertheless assessed the relationship between age and 141 

SNV density while accounting for MSI status in all four tumour-types. The associations 142 

between age and SNV density remained significant even after adjusting for MSI status in 143 

stomach & esophageal, colorectal, and pancreatic tumours (Supplementary Figure 2).  144 

After identifying age-biases in mutation density, we next asked whether there were 145 

differences in the timing of when these mutations occurred during tumour evolution. We 146 

leveraged data describing the evolutionary history of PCAWG tumours55 and first 147 

investigated polyclonality, or the number of cancer cell populations detected in each 148 

tumour as assessed by multiple methods in this dataset. Monoclonal tumours, or those 149 

where all tumour cells are derived from one ancestral cell, are associated with better 150 

survival in several tumours types56–58. We also investigated mutation timing in polyclonal 151 

tumours by comparing how frequently SVNs, indels and structural variants (SVs) occurred 152 
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as clonal mutations in the trunk or as subclonal ones in branches. While there were 153 

intriguing univariate associations between age and polyclonality in non-Hodgkin 154 

lymphoma and prostate cancer, they were not significant after multivariate adjustment 155 

(Supplementary Figure 2).  156 

Focusing on polyclonal tumours, we compared how frequently mutations occurred in the 157 

trunk subclone vs. in branch subclones. Differences in the proportion of truncal mutations 158 

suggest difference in mutation timing over the evolution of a tumour. We identified several 159 

significant associations between age and mutation timing. In pan-PCAWG analysis, we 160 

found positive associations between age and proportion of clonal SNVs (ρ = 0.20, 161 

adjusted LNR p = 1.4x10-3, Figure 1E) and proportion of clonal indels (ρ = 0.14, LNR p = 162 

0.013, Supplementary Table 2). Age was also associated with increasing clonal SNV 163 

proportion in two tumour-types: stomach cancer (Stomach-AdenoCA: ρ =0.44, adjusted 164 

LNR p = 0.028), and medulloblastoma (CNS-Medullo: ρ = 0.34, adjusted LNR p = 2.5 x 165 

10-3, Figure 1E). A positive correlation results suggest that in these tumour-types, 166 

tumours arising in older individuals accumulate a greater fraction of SNVs earlier in 167 

tumour evolution. In contrast, an inverted trend occurred in melanoma, where tumours of 168 

younger patients tended to accumulate more subclonal than clonal SNVs (ρ = -0.47, 169 

adjusted LNR p = 7.8x10-3).  170 

Age Biases in Mutational Processes 171 

Differences in mutation density and timing suggest that different oncogenic processes 172 

might be preferentially active depending on the age of a patient. These processes can 173 

result in distinctive mutational patterns, which can be deconvolved and quantified59. We 174 

analysed age-biases in three types of mutational signatures generated by the PCAWG 175 

project: 49 single base substitution (SBS), 11 doublet base substitution (DBS) and 17 176 

small insertion and deletion (ID) signatures60. We also investigated SBS signatures for 177 

TCGA tumours. For each signature, we examined both the proportion of signature-178 

positive tumours as well as relative mutation activity, or the proportion of mutations 179 

attributed to each signature. 180 

Across all 2,562 PCAWG tumours, we identified twelve mutational signatures with age-181 

biased detection frequency (Figure 2A, left) and ten with age-biased mutation activity 182 

(Figure 2B, left). For example, tumours arising in older patients were more likely to be 183 

SBS3-positive (marginal log odds change = 0.0085, 95%CI = 0.0024-0.015, adjusted 184 

LGR p = 0.075), but in these SBS-positive tumours, the proportion of SBS3-attributed 185 

mutations decreased with age (ρ = -0.20, adjusted LNR p = 3.2x10-3). SBS3 mutations 186 

are thought to be caused by defective homologous recombination-based DNA damage 187 

repair. These results imply that while tumours derived from older individuals are more 188 

likely to harbour defective DNA damage repair, its relative impact on the burden of SNVs 189 

is lower compared with tumours derived of younger individuals. A similar relationship was 190 

seen for ID8, which is linked to defective non-homologous DNA end-joining (marginal log 191 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.07.192237doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.192237
http://creativecommons.org/licenses/by-nc/4.0/


Page 7 of 34 

odds change = 0.024, 95%CI = 0.020-0.028, adjusted LGR p = 3.4 x 10-3; ρ = -0.099, 192 

adjusted LNR p = 3.7 x 10-5) and ID1, associated with slippage during DNA replication 193 

(marginal log odds change = 0.013, 95%CI = 0.0059-0.020, adjusted LGR p = 0.018; ρ = 194 

-0.059, adjusted LNR p = 0.048). We also identified positive associations between higher 195 

age and the tobacco-related signatures SBS4, DBS2 and ID3. Conversely, tumours 196 

arising in older individuals were less likely to exhibit defective base excision repair 197 

(SBS36). All mutations signatures findings are in Supplementary Table 2. 198 

These pan-cancer differences persisted across individual tumour-types. We identified 23 199 

age-associated signatures across eleven tumour-types, including six significant 200 

signatures in melanoma. In this tumour-type, tumours arising in older patients were 201 

preferentially SBS2-positive (marginal log odds change = 0.051, 95%CI = 0.013-0.095, 202 

adjusted LGR p = 0.029, Figure 2A), attributed to APOBEC cytidine deaminase activity61. 203 

Melanomas arising in younger patients were more likely to be positive for signatures 204 

related to UV damage (SBS 7a, 7b, 7d, Figure 2A, Supplementary Table 2). The 205 

proportion of mutations attributed to UV damage was also higher in younger patients 206 

(DBS1, ρ = -0.29, adjusted LNR p = 0.019, Figure 2B), while the proportion of mutations 207 

attributed to slippage during DNA replication was higher in older patients (ID1, ρ = 0.27, 208 

adjusted LNR p = 0.019, Figure 2B). These results suggest that melanomas in younger 209 

patients more frequently involve UV exposure and damage, while melanomas in older 210 

patients are more influenced by endogenous sources of mutation. 211 

Leveraging data describing SBS signatures in TCGA data, we repeated this analysis to 212 

identify age-associations in signatures derived from whole exome sequencing (WXS) 213 

data. Across pan-TCGA tumours, we detected five signatures that occurred more 214 

frequently in older individuals, and three that occurred more frequently in younger 215 

individuals (Figure 2A). We also identified five signatures with higher relative activity in 216 

younger patients (Figure 2B). In cancer-specific analysis, we identified age-biased SBS 217 

signatures across eleven tumour-types, including negative associations between the 218 

tobacco-associated signature SBS4 and age in lung adenocarcinoma. SBS4 was more 219 

frequently detected in younger patients (LUAD: marginal log odds change = -0.041, 220 

95%CI = -0.062 - -0.021, adjusted LGR p = 4.2 x 10-3, Figure 2A) and also had higher 221 

relative activity in younger lung squamous cell cancer patients (ρ = -0.17, adjusted LNR 222 

p = 0.015, Figure 2B). SBS4 activity was similarly negatively associated with age in 223 

PCAWG lung squamous cell cancers (Lung-SCC: ρ = -0.35, adjusted LNR p = 0.099, 224 

Figure 2B). Indeed, SBS4 and age were consistently negatively associated across both 225 

subtypes of lung cancer and both datasets though not all associations were statistically 226 

significant after multiple testing adjustment. This supports previous findings that tobacco 227 

has a larger tumorigenesis role in younger patients, with tobacco-associated mutations 228 

contributing to a greater portion of the mutational landscape of tumours derived from 229 

younger individuals50.  230 
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There was moderate agreement between TCGA and PCAWG findings: some signature 231 

like SBS2 and SBS4 were age-biased in the same or closely related tumour subtypes. 232 

Other signatures, such as SBS1 and SBS5 were age-biased in detection and relative 233 

activity across a range of tumour-types. Still others were age-biased exclusively in either 234 

TCGA or PCAWG data. We hypothesized that this was due to differences in signature 235 

detection rates between WXS and whole genome sequencing (WGS) data and compared 236 

how frequently each signature was detected across all samples (Figure 2C). Signatures 237 

with high agreement between datasets had similar detection rates, as observed for SBS2 238 

(detection difference = 1.5%) and SBS4 (detection difference = 1.1%). Signatures where 239 

findings did not replicate had vastly different detection rates, as was seen for SBS1 240 

(detection difference = 7.2%) and SBS5 (detection difference = 10%). We further 241 

examined this by comparing signatures data from non-PCAWG WGS and non-TCGA 242 

WXS data. Differences in signature detection rates between PCAWG and TCGA data 243 

were reflected in non-PCAWG WGS and non-TCGA WXS data (Supplementary Figure 244 

3). We also looked specifically at identified age-biases and found high agreement in data 245 

generated by the same sequencing strategy (Supplementary Figure 3). The differences 246 

in signature detection, sequencing strategy, multivariate models, sample size, and 247 

geographic variation distinguishing PCAWG and TCGA datasets motivated our continued 248 

analysis of each dataset separately.  249 

CNA Differences Associated with Transcriptomic Changes 250 

Global mutation characteristics such as genome instability are features of later stages in 251 

a tumour’s evolutionary history. In contrast, the early stages are often driven by 252 

chromosome- or gene-specific events such as loss of specific chromosomes or mutation 253 

of driver genes55. We therefore narrowed our focus to chromosome segment and gene-254 

level events. We applied our statistical framework to identify putative age-biased copy 255 

number gains and losses using univariate logistic regression (ULR). Putative events 256 

identified with a false discovery rate threshold of 10% were further analysed by 257 

multivariable logistic regression to account for confounding factors.  258 

We applied these analyses to PCAWG and TCGA datasets separately to characterize 259 

pan-cancer and tumour-type-specific biases. Pan-PCAWG, we identified 1,158 genes in 260 

age-associated CNAs (Figure 3A, Supplementary Figure 4). All significant age-biased 261 

losses occurred more frequently in older patients. In pan-TCGA data, we identified a 262 

greater number of age-biased events with 8,583 genes in age-associated losses and 263 

15,497 genes in age-associated gains (Figure 3A, 3B). These global pan-cancer age-264 

associations were reflected in 17 individual TCGA and four PCAWG tumour-types 265 

(Figure 3A). PCAWG and TCGA analyses were well-correlated, for example as seen in 266 

ovarian cancer (Supplementary Figure 4). We further focused on a set of 133 genes 267 

with driver CNAs62. Across all cancer types, we identified 64 drivers with positive CNA-268 

age associations (41 gains, 23 losses, Figure 3C). In tumour-type specific analysis, we 269 
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found age-associated driver CNAs in 16 TCGA and 5 PCAWG tumour-types 270 

(Supplementary Tables 3-4). 271 

We next asked whether statistically significant age-biased CNAs perturb the 272 

transcriptome by investigating TCGA tumour-matched mRNA abundance data. We used 273 

linear models with age, copy number status, and the interaction between age and copy 274 

number status as predictors. These terms tell us when mRNA abundance differs by age, 275 

when the CNA event itself is significantly associated with mRNA abundance, and when 276 

the effect of the CNA event on mRNA depends on age. We also adjusted for tumour purity 277 

(as estimated by study pathologists) in all mRNA analyses. In glioblastoma our CNA 278 

analysis identified 3,829 genes in age-associated gains and 3,754 genes in age-279 

associated losses (Figure 3D, Supplementary Tables 3-4). For example, DBNDD2 was 280 

more frequently gained (marginal log odds change = 0.025, 95%CI = 0.013-0.037, 281 

adjusted MLR p = 6.6x10-5) and RASSF4 was more frequently lost (marginal log odds 282 

change = 0.059, 95%CI = 0.043-0.076, adjusted MLR p = 8.5x10-11) in tumours of older 283 

individuals (Figure 3E).  284 

Of these age-biased CNAs, we identified 379 genes with significant copy number-mRNA 285 

associations and 27 with significant CNA-age interactions (Figure 3F). For instance, gain 286 

of the gene DBNDD2 is itself associated with increased mRNA abundance (adjusted CNA 287 

p = 1.2x10-3), but there is also a strong age-dependent effect: DBNDD2 gain is associated 288 

with increased mRNA abundance in tumours arising in older individuals, but decreased 289 

mRNA abundance in tumours of younger individuals, (adjusted CNA-age p = 3.5x10-3
, 290 

Figure 3G). Other examples of this significant interaction include loss of SMPD1 which 291 

affects mRNA abundance more in tumours arising in younger patients (Supplementary 292 

Figure 4, Supplementary Table 5). Thus, these age-biased CNAs not only preferentially 293 

occur in tumours derived of individuals of a certain age group, they are also associated 294 

with changes in mRNA that are often biased by age as well. These data highlight the 295 

complex interplay between CNAs, age and mRNA abundance. 296 

To investigate potential clinical significance of these age-associated CNAs, we performed 297 

survival analysis to identify prognostic events. We used Cox Proportional-Hazards (Cox 298 

PH) models with overall survival as the end point. Similar to our mRNA models, we used 299 

predictors including copy number status, age and their interaction (Figure 3H). In 300 

glioblastoma, age itself is a known prognostic feature with older patients having poorer 301 

outcome (HR = 2.1, 95%CI = 1.7-2.6, Wald p = 1.4x10-13). We found that loss of a 302 

segment on chromosome 10q containing 31 genes including RASSF4 and RSU1P2 was 303 

also prognostic, with loss of this region associated with poorer survival (HR = 1.9, 95%CI 304 

= 1.4 - 2.7, adjusted Wald p = 2.6x10-3). Integrating age and this 10q segment loss reveals 305 

three groups with distinct survival trajectories: older individuals have the worst outcomes 306 

regardless of copy number loss status, but younger individuals with the loss have poorer 307 

outcome than those without it (Figure 3I). We performed survival modeling for 5,251 308 
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genes on affected by age-biased CNAs in glioblastoma and found 1,821 genes showed 309 

associations between copy number change and prognosis and 142 genes had significant 310 

CNA-age interactions. 311 

We repeated these mRNA and survival analyses for all TCGA tumour-types with age-312 

biased CNAs. Genes in biased CNAs were associated with altered mRNA abundance in 313 

12 tumour-types and interacted with age in age-dependent mRNA change in seven 314 

tumour-types. We observed a range of synergistic and antagonistic interactions for both 315 

gains and losses. In most cases, an age-biased copy number altered gene was 316 

associated with a greater mRNA abundance change in tumours of younger patients. In 317 

lower grade glioma, we observed synergy between CNA and age where the change in 318 

mRNA abundance was greatest in tumours of older patients. Six tumour-types also 319 

showed that biased CNAs can be prognostic and that the prognostic value can also differ 320 

based on the age of the individual. We were unable to repeat these analyses in PCAWG 321 

data due the small number of patients with mRNA abundance and outcome data but 322 

present all mRNA and survival analysis results in Supplementary Table 5. 323 

SNVs Differences Associated with Functional Changes 324 

Finally, we investigated gene-level SNVs for age-biases. In PCAWG analysis, we used a 325 

predefined set of driver mutations63. In TCGA analysis, we used a recurrent threshold to 326 

filter out genes mutated in less than 1% of tumours. We included SNV density in our 327 

multivariate models in addition to other confounding factors as previously described. We 328 

identified 15 age-biased genes across six PCAWG tumour contexts (Figure 4A), 329 

including a pan-cancer association with CREBBP (marginal log odds change = 0.027, 330 

95%CI = 0.0089 – 0.047, adjusted LGR p = 8.7x10-3). CREBBP was also associated with 331 

age in pan-cancer TCGA analysis (marginal log odds change = 0.032, 95%CI = 0.024 – 332 

0.040, adjusted LGR p = 0.055). Pan-TCGA, we identified 401 genes that were mutated 333 

more frequently in older patients and four that were mutated more frequently in younger 334 

patients (Supplementary Table 6).  335 

There were also tumour-type specific age-biases in SNV frequency, including age-336 

associations of oncogenic BRAF mutations in PCAWG melanoma (marginal log odds 337 

change = -0.043, 95%CI = -0.072 - -0.017, adjusted LGR p = 2.4x10-3), and TERT 338 

promoter mutations in PCAWG thyroid cancer (marginal log odds change = 0.10, 95%CI 339 

= 0.044 - 0.18, LGR p = 0.016). Age-biases in PCAWG medulloblastoma highlighted 340 

differences between paediatric and adult cases (Figure 4A), and tumours arising in older 341 

PCAWG  prostate cancer patients were more likely to harbour FOXA1 (marginal log odds 342 

change = 0.11, 95%CI = 0.041 - 0.18, adjusted LGR p = 0.013) and SPOP (marginal log 343 

odds change = 0.099, 95%CI = 0.032 - 0.18, adjusted LGR p = 0.060) mutations. We also 344 

confirmed known associations between lower age and mutations in tumour suppressors 345 

IDH1 and ATRX, which were mutated in the same patients in PCAWG glioblastoma 346 

(marginal log odds change = -0.15, 95%CI = -0.31 - -0.052, adjusted LGR p = 0.017). 347 
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Similarly in TCGA data, we found higher frequency of IDH1 and ATRX mutations in 348 

glioblastomas (Figure 4B) and lower grade gliomas of younger patients (Figure 4C). 349 

Other age-biased mutations occurred in pan-TCGA analysis for breast cancer, head & 350 

neck cancer, and stomach & esophageal cancer (Supplementary Table 6).  351 

As with the age-biased CNAs, we evaluated the impact of SNVs on mRNA abundance 352 

and survival in TCGA data. We identified significant associations between age-biased 353 

SNVs and mRNA abundance for ATRX and IDH1 in lower grade glioma (Supplementary 354 

Table 6). Mutations in ATRX and IDH1 were associated with lowered mRNA abundance 355 

in both genes. There was also a significant interaction effect between age and IDH1 356 

mutation (adjusted p = 9.7 x 10-4, Figure 4D) indicating an age-dependent effect on 357 

mRNA abundance: mutated IDH1 was associated with a greater mRNA decrease in 358 

tumours arising in younger patients. In contrast while there was only a trending interaction 359 

between age and mutation status on mRNA abundance (adjusted p = 0.16, Figure 4D), 360 

ATRX and age were synergistically associated with outcome, stratifying lower grade 361 

glioma patients into four groups (Figure 4E). While inactivating mutations in ATRX 362 

mutation are known to be generally associated with improved survival, younger patients 363 

without ATRX mutations have the best overall survival while high age patients without 364 

mutated ATRX have the worst survival, revealing its role as a strong age-dependent 365 

prognostic biomarker.  366 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.07.192237doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.192237
http://creativecommons.org/licenses/by-nc/4.0/


Page 12 of 34 

Discussion 367 

Despite modest statistical power, suboptimal study designs and limited clinical 368 

annotation, we identified myriad age-associated differences in cancer genomes. Age-369 

biased genomic features occur at the pan-cancer level and also across almost all 370 

individual tumour-types. Combined with similar reports of sex- and ancestry-associated 371 

differences in cancer genomes38,64 , these data reveal a set of host influences on the 372 

mutational characteristics of tumours (Figure 5). Characteristics of the tumour host 373 

appears to influence all aspects of the cancer genome: mutation density, evolutionary 374 

timing, mutational processes and driver genes. Some of these lead to age-, ancestry- and 375 

sex-specific transcriptomic and clinical impacts. 376 

The mechanisms for these genomic associations are largely unknown. Our data suggest 377 

some endogenous or exogenous mutational processes preferentially occur in individuals 378 

of different age groups. Some of these mutational processes are related to aging-379 

associated phenomena such as declining DNA damage repair65,66, somatic mosaicism 380 

and the accumulation of mutations over time59,67,68. However, other processes related to 381 

immune surveillance, evolutionary selection, disease aetiology and epigenetics are also 382 

likely involved69–71. In addition to such biological factors, lifestyle and socioeconomic 383 

considerations like diet72 and microbiome composition73 can continuously shape tumour 384 

evolution from its earlier steps. Many of these factors are deeply linked to not only an 385 

individual’s age, but other fundamental characteristics over which we have limited control, 386 

such as ancestry or sex. A tumour’s mutational history reflects a complex interplay of 387 

biological, lifestyle and healthcare factors, and we have little understanding of how these 388 

diverse processes interact to produce molecular phenotypes. 389 

The TCGA and PCAWG datasets sometimes identified different molecular biases, 390 

highlighting the differences between the two datasets. TCGA patients were largely North 391 

American while PCAWG had a greater international component. While the ages 392 

represented in TCGA and PCAWG tumour-types were similar (Table 1), the cohorts differ 393 

in other host and clinical characteristics. For instance, the representation of ancestry 394 

groups was dissimilar, with many tumour-types differing vastly in ancestry proportions 395 

(Supplementary Table 1). Furthermore, differences in sequencing targets also 396 

contributed to variation in our results, most conspicuously in the detection rates of some 397 

mutational signatures. We customized our analyses to take advantage of the contrasting 398 

strengths of each dataset: WGS in PCAWG allowed us to interrogate a greater breadth 399 

of mutation types, while the larger sample size and clinical annotation of TCGA data 400 

improved statistical power and controls for confounders. Indeed, while we were able to 401 

identify more age-biases in TCGA data, many of these findings were reflected in PCAWG 402 

data by similar effects that did not reach our statistical significance threshold. More 403 

sequencing data reflecting greater and more balanced diversity is needed to distinguish 404 
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those age-biases that are intrinsic to differences in biology, and those that are tied to 405 

differences in lifestyle and geography. 406 

Our findings have wide-reaching implications for both basic and translational cancer 407 

research. Since cancer host characteristics like age, ancestry and sex widely shape the 408 

somatic cancer landscape, we cannot consider discovery genomics complete they are 409 

explicitly considered. Elderly individuals are underrepresented in cancer sequencing 410 

studies and clinical trials36,74,75: better inclusion is needed to identify somatic changes 411 

specific to older individuals and to leverage these changes to improve clinical care. In our 412 

analysis, we found that some age-associated genomic differences associate with 413 

transcriptional and clinical changes, but many do not – identifying the functional 414 

consequences and mechanisms of these will be a long-term challenge. Finally, these 415 

epidemiological factors should be considered and controlled for in personalized therapy 416 

strategies. Indeed, every type of analysis from driver-discovery to biomarker-417 

development should explicitly test for and model the powerful influence of patient biology 418 

and behaviour on tumour evolution.  419 
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Online Methods 420 

Data acquisition & Processing 421 

Genome-wide somatic copy-number, somatic mutation, and mRNA abundance profiles 422 

for the Cancer Genome Atlas (TCGA) datasets were downloaded from Broad GDAC 423 

Firehose (https://gdac.broadinstitute.org/), release 2016-01-28. For mRNA abundance, 424 

Illumina HiSeq rnaseqv2 level 3 RSEM normalised profiles were used. Genes with >75% 425 

of tumours having zero reads were removed from the respective dataset. GISTIC v2 (13) 426 

level 4 data was used for somatic copy-number analysis. mRNA abundance data were 427 

converted to log2 scale for subsequent analyses. Mutational profiles were based on 428 

TCGA-reported MutSig v2.0 calls. All pre-processing was performed in R statistical 429 

environment (v3.1.3). Genetic ancestry imputed by Yuan et al. was downloaded from The 430 

Cancer Genetic Ancestry Atlas (http://52.25.87.215/TCGAA). 431 

PCAWG whole genome sequencing data calls were downloaded from the PCAWG 432 

consortium through Synapse. All data pre-processing was performed by the consortium 433 

as described37. The individual data sets are available at Synapse 434 

(https://www.synapse.org/), and are denoted with synXXXXX accession numbers (listed 435 

under Synapse ID); all these datasets are also mirrored at https://dcc.icgc.org. Tumour 436 

histological classifications were reviewed and assigned by the PCAWG Pathology and 437 

Clinical Correlates Working Group (annotation version 9; 438 

https://www.synapse.org/#!Synapse:syn10389158, 439 

https://www.synapse.org/#!Synapse:syn10389164). Ancestry imputation was performed 440 

using an ADMIXTURE23-like algorithm based on germline SNP profiles determined by 441 

whole-genome sequencing of the reference sample 442 

(https://www.synapse.org/#!Synapse:syn4877977). The consensus somatic SNV and 443 

indel (https://www.synapse.org/#!Synapse:syn7357330) file covers 2778 whitelisted 444 

samples from 2583 donors. Driver events were called by the PCAWG Drivers and 445 

Functional Interpretation Group (https://www.synapse.org/#!Synapse:syn11639581). 446 

Consensus CNA calls from the PCAWG Structural Variation Working Group were 447 

downloaded in VCF format (https://www.synapse.org/#!Synapse:syn8042988). 448 

Subclonal reconstruction was performed by the PCAWG Evolution and Heterogeneity 449 

Working Group (https://www.synapse.org/#!Synapse:syn8532460). SigProfiler mutation 450 

signatures were determined by the PCAWG Mutation Signatures and Processes Working 451 

Group for single base substitution (https://www.synapse.org/#!Synapse:syn11738669), 452 

doublet base substitution (https://www.synapse.org/#!Synapse:syn11738667) and indel 453 

(https://www.synapse.org/#!Synapse:syn11738668) signatures. Signatures data for 454 

TCGA, non-PCAWG WGS and non-TCGA WXS samples were downloaded from 455 

Synapse (https://www.synapse.org/#!Synapse:syn11804040). 456 

 457 
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We used TCGA data describing 10,212 distinct TCGA tumour samples across 23 tumour-458 

types and 2,562 distinct PCAWG samples across 29 tumour-types. Tumour-types with no 459 

age annotation or insufficient variability in ancestry annotation were excluded from 460 

analysis. Age is treated as a continuous variable for both TCGA and PCAWG analyses. 461 

A full breakdown of the data is presented in Supplementary Table 1. 462 

General Statistical Framework 463 

For each genomic feature of interest, we used univariate tests first followed by false 464 

discovery rate (FDR) adjustment to identify putative age-biases of interest (q < 0.1). We 465 

used two-sided non-parametric univariate tests to minimize assumptions on the data. For 466 

putative age-biases, we then follow up the univariate analysis with multivariate modeling 467 

to account for potential confounders using bespoke models for each tumour-type.  468 

Model variables for each tumour context are presented in Supplementary Table 1 and 469 

were included based on availability of data (<15% missing), sufficient variability (at least 470 

two levels) and collinearity (as assessed by variance inflation factor). Discrete data was 471 

modeled using logistic regression (LGR). Continuous data was first transformed using the 472 

Box-Cox family and modeled using linear regression (LNR). The Box-Cox family of 473 

transformations is a formalized method to select a power transformation to better 474 

approximate a normal-like distribution and stabilize variance. We used the Yeo-Johnson 475 

extension to the Box-Cox transformation that allows for zeros and negative values76.  476 

FDR adjustment was performed for p-values for the age variable significance estimate 477 

and an FDR threshold of 10% was used to determine statistical significance. More detail 478 

is provided for each analysis below. A summary of all results is presented in 479 

Supplementary Table 1. We present 95% confidence intervals for all tests. 480 

Mutation Density 481 

Performed for both TCGA and PCAWG data. Overall mutation prevalence per patient was 482 

calculated as the sum of SNVs across all genes on the autosomes and scaled to 483 

mutations/Mbp. Coding mutation prevalence only considers the coding regions of the 484 

genome, and noncoding prevalence only considers the noncoding regions. TCGA 485 

mutation density reflects coding mutation prevalence. Mutation density was compared 486 

age using Spearman correlation for both pan-cancer and tumour-type specific analysis. 487 

Comparisons with univariate q-values meeting an FDR threshold of 10% were further 488 

analyzed using linear regression to adjust for tumour subtype-specific variables. Mutation 489 

density analysis was performed separately for each mutation context, with pan-cancer 490 

and tumour subtype p-values adjusted together. Full mutation density results are in 491 

Supplementary Table 2. 492 

Genome instability 493 

Performed for both TCGA and PCAWG data. Genome instability was calculated as the 494 

percentage of the genome affected by copy number alterations. The number of base pairs 495 
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for each CNA segment was summed to obtain a total number of base pairs altered per 496 

patient. The total number of base pairs was divided by the number of assayed bases to 497 

obtain the percentage of the genome altered (PGA). Genome instability was compared 498 

using Spearman correlation for both pan-cancer and tumour-type specific analysis. 499 

Comparisons with univariate q-values meeting an FDR threshold of 10% were further 500 

analyzed using linear regression to adjust for tumour subtype-specific variables. Genome 501 

instability analysis was performed separately for each mutation context, with pan-cancer 502 

and tumour subtype p-values adjusted together. Full mutation density results are in 503 

Supplementary Table 2. 504 

Clonal structure and mutation timing analysis 505 

Performed for PCAGW data only. Subclonal structure data was binarized from number of 506 

subclonal clusters per tumour to monoclonal (one cluster) or polyclonal (more than one 507 

cluster). Putative age-biases were identified using univariate logistic regression and 508 

putative biases were further analysed using multivariate logistic regression.. A 509 

multivariate q-value threshold of 0.1 was used to determine statistically significant age-510 

biased clonal structure. 511 

Mutation timing data classified SNVs, indels and SVs into clonal (truncal) or subclonal 512 

groups. The proportion of truncal variants was calculated for each mutation type 513 

(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑡𝑟𝑢𝑛𝑐𝑎𝑙 𝑆𝑁𝑉𝑠

𝑡𝑜𝑡𝑎𝑙 𝑆𝑁𝑉𝑠
, etc.) to obtain proportions of truncal SNVs, indels and SVs for each 514 

tumour. These proportions were compared using Spearman correlation. Univariate p-515 

values were FDR adjusted to identify putatively age-biased mutation timing. Linear 516 

regression was used to adjust for confounding factors and a multivariate q-value threshold 517 

of 0.1 was used to determine statistically significant age-biased mutation timing. The 518 

mutation timing analysis was performed separately for SNVs, indels and SVs. All results 519 

for clonal structure and mutation timing analyses are in Supplementary Table 2. 520 

Mutational Signatures analysis 521 

Performed for both TCGA and PCAWG data. For each signature, we compared the 522 

proportion of tumours with any mutations attributed to the signatures (“signature-positive”) 523 

using logistic regression to identify univariate age-biases. Signatures with putative age-524 

biases were further analysed using multivariable logistic regression. 525 

We also compared relative signature activity using the proportions of mutations attributed 526 

to each signature. The numbers of mutations per signature were divided by total number 527 

of mutations for each tumour to obtain the proportion of mutations attributed to the 528 

signature. Spearman correlation was used. Putative age-biased signatures were further 529 

analysed using multivariable linear regression after Box-cox adjustment. 530 

Signatures that were not detected in a tumour subtype was omitted from analysis for that 531 

tumour subtype. All results for clonal structure and mutation timing analyses are in 532 

Supplementary Table 2. 533 
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Genome-spanning CNA analysis 534 

Performed for both TCGA and PCAWG data. Adjacent genes whose copy number profiles 535 

across patients were highly correlated (Pearson’s r > 95%) were binned. The copy 536 

number call for each patient was taken to be the majority call across all genes in each 537 

bin. Copy number calls were collapsed to ternary (loss, neutral, gain) representation by 538 

combining loss groups (mono-allelic and bi-allelic) and gain groups (low and high). 539 

Logistic regression was used to identify univariate age-associated CNAs. After identifying 540 

candidate pan-cancer univariately significant genes, multivariate logistic regression was 541 

used to adjust ternary CNA data for tumour-type-specific variables. The genome-542 

spanning analysis was performed separately for losses and gains for each tumour 543 

subtype. All CNA results are in Supplementary Tables 3-4. 544 

Genome-spanning SNV analysis 545 

Performed for TCGA data. We focused on genes mutated in at least 1% of patients. 546 

Mutation data was binarized to indicate presence or absence of SNV in each gene per 547 

patient. Univariate logistic regression was used to identify putative age-biased SNVs. 548 

False discovery rate correction was used to adjust p-values and a q-value threshold of 549 

0.1 used to select genes for multivariate analysis using logistic regression. SNV density 550 

was included in all multivariate models. 551 

Driver Event Analysis 552 

Performed for PCAWG data. We focused on driver events described by the PCAWG 553 

consortium63. Driver mutation data was binarized to indicate presence or absence of the 554 

driver event in each patient. Proportions of mutated genes were compared using 555 

univariate logistic regression. A q-value threshold of 0.1 was used to select genes for 556 

further multivariate analysis using binary logistic regression. SNV density was included in 557 

all models. FDR correction was again applied and genes with significant age terms were 558 

extracted from the models (q-value < 0.1). Driver event analysis was performed 559 

separately for pan-cancer analysis and for each tumour subtype. All SNV and driver event 560 

analysis results are in Supplementary Table 6. 561 

mRNA functional analysis 562 

Performed for TCGA data. Genes in bins altered by age-biased CNAs and SNVs after 563 

multivariate adjustment were further investigated to determine functional consequences. 564 

Tumour purity was included in all mRNA models. Tumours with available mRNA 565 

abundance data were matched to those used in CNA analysis. For each gene affected 566 

by an age-biased loss, its mRNA abundance was modeled against age, copy number 567 

loss status, an age-copy number loss interaction term, and tumour purity. The interaction 568 

term was used to identify genes with age-biased mRNA changes. FDR adjusted p-values 569 

and fold-changes were extracted for visualization. A q-value threshold of 0.1 was used 570 

for statistical significance. For genes affected by age-biased gains, the same procedure 571 
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was applied using copy number gains. mRNA modeling results for age-biased CNAs and 572 

SNVs are in Supplementary Tables 5-6. 573 

Survival analysis 574 

Performed for TCGA data. Genes found to have significant (FDR threshold of 10%) age-575 

biased CNAs and SNVs were also analyzed using Cox proportional hazards modelling 576 

after checking proportional hazards assumption. Cox proportional hazard regression 577 

models incorporating ageest, CNA/SNV status, and an age-CNA/SNV group interaction 578 

were fit for overall survival after checking the proportional hazards assumption. Age was 579 

treated as a continuous variable for modeling, but median dichotomized into ‘low age’ and 580 

‘high age’ groups for visualization. FDR-adjusted interaction p-values and log2 hazard 581 

ratios were extracted for visualization. A q-value threshold of 0.1 was used to identify 582 

genes with sex-influenced survival. Survival modeling results for age-biased CNAs and 583 

SNVs are in Supplementary Tables 5 and 6. 584 

Statistical Analysis & Data Visualization Software 585 

All statistical analyses and data visualization were performed in the R statistical 586 
environment (v3.2.1) using the BPG77 (v5.9.8) and Survival (v2.44-1.1) packages, and 587 
with Inkscape (v0.92.3).  588 
  589 
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Figure 1 | Mutation density and timing are biased to age. 783 

Summary of associations between age and (A) percent genome altered and (C) SNV 784 

density in TCGA and PCAWG tumours. The dot size and colour show the Spearman 785 

correlation, and background shading indicate adjusted multivariate p-value. Only tumour-786 

types with at least univariately significant associations are shown. Associations between 787 

(B) PGA and (D) coding SNV density with age in selected tumour-type specific analyses. 788 

Univariate Spearman correlation, adjusted correlation p-value and adjusted multivariate 789 

p-values shown. (E) Correlations between age and proportion of SNVs occurring in the 790 

truncal clone in four PCAWG tumour contexts.  791 
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793 
Figure 2 | Biases in mutational signatures suggest differences in underlying 794 

mutational processes. 795 

(A) Summary of associations between age and the proportion of signature-positive 796 

tumours, where dot size shows the marginal log odds from logistic regression and 797 

background shading show adjusted multivariate p-values. PCAWG data is on left and 798 

TCGA on right. (B) Similarly, the summary of associations between age and relative 799 

signature activity, with dot size showing Spearman correlations and background 800 

indicating adjusted linear regression p-values. (C) Comparison of PCAWG and TCGA 801 

signature detection frequency. Filled in and open circles indicate comparisons where the 802 

differences are statistically significant (proportion test q < 0.05) and not, respectively. 803 
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805 
Figure 3 | Age-biases in copy number alterations are associated with functional 806 

changes in mRNA and survival. 807 

(A) Summary of all detected age-biased CNAs with numbers of gains (above x-axis) and 808 

losses (below x-axis) found in each tumour context. Only tumour-types with at least one 809 

significant event shown. (B) Pan-cancer age-biases in CNAs for TCGA data. Each plot 810 

shows the logistic regression log odds coefficient estimate for the indicated CNA type. 811 

Dot colour indicates statistical significance, where red (copy number gain) and blue (copy 812 

number loss) show adjusted p < 0.05 and yellow (gain) and green (loss) show adjusted p 813 

< 0.1  (C) Summary of age-biased pan-cancer CNA drivers. Both TCGA and PCAWG 814 
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findings shown. Dot size shows the magnitude of the association as the difference in 815 

proportion and the background shading shows adjusted multivariate p-values. Top 816 

covariate indicates copy number gain drivers in red and loss drivers in blue. (D) Age-817 

biases in TCGA glioblastoma CNAs across the genome with (E) specific examples shown 818 

for DBNDD2 gain and RASSF4 loss. Both adjusted univariate and multivariate p-values 819 

shown. Age-biased CNAs in TCGA glioblastoma are associated with (F) mRNA 820 

abundance changes and (H) overall survival. In (F), adjusted p-values are plotted against 821 

the coefficients of the CNA-age interaction for mRNA abundance, with each point 822 

representing a gene. Dot colour shows significant associations between mRNA and age 823 

(green), CNA only (violet) or their interaction (olive). (G) DBNDD2 mRNA abundance 824 

changes between copy number gain (red) or no loss (black) in tumours of low vs. high 825 

age. Adjusted CNA-age interaction p-value is shown. In (H), adjusted p-values and 826 

coefficients of the CNA-age interaction for Cox-PH modeling are shown, with each point 827 

representing a gene. (I) Loss of a region on 10q interacts with age to further stratify patient 828 

prognosis. The adjusted p-value for the copy number loss-age interaction term is shown. 829 

Tukey boxplots are shown with the box indicating quartiles and the whiskers drawn at the 830 

lowest and highest points within 1.5 interquartile range of the lower and upper quartiles, 831 

respectively.  832 
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834 
Figure 4 | Age-biases in single nucleotide variants reveal ATRX as a strong age-835 

biased prognostic biomarker in lower grade glioma. 836 

(A) Pan-PCAWG and PCAWG tumour-specific age-biases in driver mutation frequency 837 

with adjusted multivariate p-values, marginal log odds changes for 10-year age 838 

increment, and age of tumours compared between those with (red) and without (grey) the 839 

mutation. Genes are ordered by tumour-type and adjusted p-value. Similar to (A), genes 840 

with age-associated mutation frequency are shown for (B) TCGA glioblastoma and (C) 841 

TCGA lower grade glioma. (D) mRNA abundance changes for IDH1 and ATRX when the 842 

gene is mutated (red) or not (black) compared by median-dichotomized age. Adjusted 843 

CNA-age interaction p-value is shown. (E) ATRX mutation interacts with age to stratify 844 

patient prognosis into four groups. Log-odds p-value is shown. Tukey boxplots are shown 845 

with the box indicating quartiles and the whiskers drawn at the lowest and highest points 846 

within 1.5 interquartile range of the lower and upper quartiles, respectively.  847 
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 849 
Figure 5 | The landscape of age, sex and ancestry differences in cancer genomics 850 
A summary of age-, ancestry- and sex-associated biases in TCGA and PCAWG analyses. 851 

Dots show associations in PCAWG data and shading shows associations in TCGA data. 852 

Each quadrant of every cell corresponds with age, Asian, African, and Admixed American, 853 

South Asian or Other Ancestry-associated findings. Centre dot indicates sex-associated 854 

findings. 855 
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