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Abstract

Cancer is often called a disease of aging. There are numerous ways in which cancer
epidemiology and behaviour change with the age of the patient. The molecular bases for
these relationships remain largely underexplored. To characterize them we analyzed age-
biases in the somatic mutational landscape of 12,774 tumours across 33 tumour-types.
Age influences both the number of mutations in a tumour and their evolutionary timing.
Specific mutational signatures are associated with age, reflecting differences in
exogenous and endogenous oncogenic processes. A subset of known cancer driver
genes were mutated in age-biased patterns, and these alter the transcriptome and predict
for clinical outcomes. These effects were most striking in lower grade glioma where ATRX
mutation is a strongly age-dependent prognostic biomarker. Though cancer genome
sequencing data is not well-balanced in epidemiologic factors, these data suggest that
age shapes the somatic mutational landscape of cancer, with clear clinical implications.
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Introduction

Cancer health disparities across different population stratifiers are common through a
wide range of measures. These include differences in incidence rates, mortality rates,
response to treatment, and survival between individuals of different sexes'®, races or
ancestries’~! and ages'>4, and these differences have been described across a range
of tumour-types. Cancer disparities involving age are particularly well known. Aging is a
leading risk factor for cancer, as it is associated with increased incidence of most tumour-
types®15. Older age is also associated with higher mortality and lower survival®l’. The
links between older age and increased cancer burden such that cancer is often described
as a disease of aging*®1°.

However, there are many nuances in the relationship between aging and cancer.
Pediatric cancers are an obvious exception, as cancers arising in children have different
molecular and clinical characteristics®2%-?2, Tumours arising in young adults (< 50 years
of age) are often more aggressive: early onset prostate?, breast?*, and colorectal?®
cancers are diagnosed at higher stages and associated with lower survival. Molecular
studies have described some striking differences in the mutational landscapes of early
onset vs. later onset disease?®-28, suggesting differences in the underlying oncogenic
processes driving cancer at different ages.

The mechanisms of how age shapes the clinical behaviour of cancers has been subject
to intense study. Many factors and behaviours closely tied to aging have been implicated
in observed epidemiological and clinical cancer health disparities. For example, higher
age is associated with a greater burden of comorbidities such as diabetes and
cardiovascular disease?%. Higher prevalence of chronic disease, frailty and increased
likelihood of adverse drug reactions also influence the choices of clinical interventions
given to older cancer patients®1-33, Nevertheless differences remain even after accounting
for these factors34. Previous work associating somatic molecular changes with age
suggest differences in overall tumour mutation burden3®, transcriptional profiles®¢, and
some mutational differences?®-28, These studies have focused on single tumour-types,
relatively small cohorts, or have only evaluated fractions of the whole-genome, leaving
the landscape of age-associated cancer mutations largely unknown.

To fill this gap, we perform a pan-cancer, genome-wide study of age-associated
molecular differences in 10,218 tumours of 23 tumour-types from The Cancer Genome
Atlas (TCGA) and 2,562 tumours of 30 tumour-types from the International Cancer
Genome Consortium/The Cancer Genome Atlas Pan-cancer Analysis of Whole Genomes
(PCAWG) projects. We quantified age-biases in measures of mutation density, subclonal
architecture, mutation timing, mutational signatures and driver mutations in almost all
tumour-types. We adjusted for potential confounding factors such as sex and ancestry.
Many of these genomic age-biases were linked to clinical phenotypes. In particular, we
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74  identified genomic alterations that were prognostic in specific age contexts, suggesting
75  the clinical utility of age-informed biomarkers.
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76 Results

77 Age Biases in Mutation Density and Timing
78 We investigated TCGA and PCAWG datasets independently and performed pan-cancer

79 analyses spanning all TCGA tumours (pan-TCGA), and all PCAWG tumours (pan-
80 PCAWG); these were supplemented with tumour-type-specific analyses. We used the
81 recorded age at diagnosis for both TCGA and PCAWG?’ (Table 1). Our modeling
82 accounted for a range of confounding variables for each cancer type including sex and
83 genetic ancestry. We adapted a statistical approach previously applied to quantify sex-
84  biases in cancer genomics®: we first used univariate methods to identify putative age-
85 biases, then further modeled these putative hits with multivariate regression to evaluate
86 age effects after adjusting for confounding factors. We modeled each genomic feature
87 and tumour subtype based on available clinical data, a priori knowledge, variable
88 collinearity and model convergence. Model and variable specifications, and results of
89 association tests between model variables and age are presented in Supplementary
90 Table 1.

91 We began by assessing whether measures of mutation density were associated with age.
92 The accumulation of mutations with age is a well-known phenomenon in both cancer and
93 non-cancer cells®*4¢, We examined both genome instability and SNV density to
94 investigate trends across age and test the robustness of our statistical framework in
95 detecting age-associated genomic events. Genome instability is a measure of copy
96 number aberration (CNA) burden and approximated by percent of the genome altered by
97 CNAs (PGA), a surrogate variable associated with poor outcome in several tumour-
98 types*’~*°. We identified univariate age-biases in PGA using Spearman correlation.
99 Putative age-associations identified at a false discovery rate (FDR) threshold of 10% were
100 further analysed by multivariate linear regression (LNR) models to adjust for tumour-type-
101 specific confounding effects (Supplementary Table 1).

102 We discovered significant associations between age and PGA in both pan-TCGA (p
103 =0.14, adjusted LNR p = 1.1 x 10”") and pan-PCAWG (p = 0.19, adjusted LNR p = 0.023)
104  data. Positive correlations were also identified in three TCGA and three PCAWG tumour-
105 types, with prostate cancer showing a statistically significant correlation in both datasets.
106 (Figure 1A, 1B, Supplementary Table 2). Other tumour-type specific associations were
107 statistically significant in only one dataset (Figure 1A, Supplementary Figure 1). For
108 example, we detected similar correlations between age and PGA in TCGA lower grade
109 glioma (LGG) and PCAWG (CNS-Oligo), but the association was significant in only TCGA
110 data (Figure 1A, 1B). This is likely due in part to decreased statistical power in the
111 PCAWG dataset because of smaller sample sizes. Surprisingly, in TCGA both
112 adenocarcinomas and squamous cell carcinomas of the lung showed the inverse trend,
113  with tumours arising in older patients harbouring fewer CNAs (LUAD: p = -0.18, adjusted
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114 LNR p = 6.0x10%, LUSC: p = -0.10, adjusted LNR p = 0.039, Figure 1A). We observed
115 similar negative correlations in the corresponding PCAWG lung data, though these
116  associations were not statistically significant (Lung-AdenoCA: p = -0.13, Lung-SCC: p =
117 -0.065, Figure 1A).

118 Analogous to PGA, somatic single nucleotide variation (SNV) density measures the
119 burden of somatic SNVs. SNV density frequently increased with age, as expected3®49, In
120 addition to pan-cancer age-biases (pan-TCGA: p = 0.33, adjusted LNR p = 2.0 x 10°,
121 pan-PCAWG: p = 0.41, adjusted LNR p = 3.1 x 1028), tumour-type-specific positive
122  correlations occurred in 15/23 TCGA and 14/30 PCAWG tumour-types, including in
123  prostate and gastric cancers (Figure 1C, 1D Supplementary Figure 1, Supplementary
124  Table 2). Again, there was an inverse relationship in lung tumours, with more SNVs
125 occurring in the squamous cell tumours of younger patients (LUSC: p = -0.15, adjusted
126 LNR p = 0.064, Figure 1D). While not statistically significant, we observed similar
127 negative associations in PCAWG lung tumours (Lung-SCC: p = -0.14). The negative
128 association between age and both PGA and SNV density in lung cancers has been
129 attributed to smoking exposure leading to hypermutation in younger lung cancer
130 patients®, suggesting differences in disease aetiology between patients of different ages.

131  Another source of of hypermutation is microsatellite instability (MSI), which is frequently
132 detected in colorectal and gastric cancers®>?, Since MSI-positive status is often
133 associated with increased SNV density and age (Supplementary Figure 2), we
134 investigated whether age-biases in MSI might explain the associations between age and
135 SNV density in this data. We focused on four tumour-types with high frequency of MSI-
136 positive tumours: stomach & esophageal, colorectal, pancreatic and endometrial
137 cancers®%* There was a significant association between age and MSI status in gastric
138 cancers, where tumours arising in older individuals were more likely to have high levels
139 of MSI (MSI-H; ANOVA g = 6.4x10% Supplementary Figure 2). While there were no
140 statistically significant associations between age and MSI status in colorectal, pancreatic,
141 or endometrial cancers, we nevertheless assessed the relationship between age and
142 SNV density while accounting for MSI status in all four tumour-types. The associations
143 between age and SNV density remained significant even after adjusting for MSI status in
144  stomach & esophageal, colorectal, and pancreatic tumours (Supplementary Figure 2).

145  After identifying age-biases in mutation density, we next asked whether there were
146 differences in the timing of when these mutations occurred during tumour evolution. We
147 leveraged data describing the evolutionary history of PCAWG tumours® and first
148 investigated polyclonality, or the number of cancer cell populations detected in each
149 tumour as assessed by multiple methods in this dataset. Monoclonal tumours, or those
150 where all tumour cells are derived from one ancestral cell, are associated with better
151  survival in several tumours types®-58, We also investigated mutation timing in polyclonal
152  tumours by comparing how frequently SVNs, indels and structural variants (SVs) occurred

Page 5 of 34


https://doi.org/10.1101/2020.07.07.192237
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.192237; this version posted July 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

153 as clonal mutations in the trunk or as subclonal ones in branches. While there were
154  intriguing univariate associations between age and polyclonality in non-Hodgkin
155 lymphoma and prostate cancer, they were not significant after multivariate adjustment
156 (Supplementary Figure 2).

157  Focusing on polyclonal tumours, we compared how frequently mutations occurred in the
158 trunk subclone vs. in branch subclones. Differences in the proportion of truncal mutations
159 suggest difference in mutation timing over the evolution of a tumour. We identified several
160 significant associations between age and mutation timing. In pan-PCAWG analysis, we
161 found positive associations between age and proportion of clonal SNVs (p = 0.20,
162 adjusted LNR p = 1.4x10°3, Figure 1E) and proportion of clonal indels (p = 0.14, LNR p =
163 0.013, Supplementary Table 2). Age was also associated with increasing clonal SNV
164  proportion in two tumour-types: stomach cancer (Stomach-AdenoCA: p =0.44, adjusted
165 LNR p = 0.028), and medulloblastoma (CNS-Medullo: p = 0.34, adjusted LNR p = 2.5 x
166 103, Figure 1E). A positive correlation results suggest that in these tumour-types,
167 tumours arising in older individuals accumulate a greater fraction of SNVs earlier in
168 tumour evolution. In contrast, an inverted trend occurred in melanoma, where tumours of
169 younger patients tended to accumulate more subclonal than clonal SNVs (p = -0.47,
170 adjusted LNR p = 7.8x103).

171 Age Biases in Mutational Processes
172 Differences in mutation density and timing suggest that different oncogenic processes

173 might be preferentially active depending on the age of a patient. These processes can
174  result in distinctive mutational patterns, which can be deconvolved and quantified®. We
175 analysed age-biases in three types of mutational signatures generated by the PCAWG
176  project: 49 single base substitution (SBS), 11 doublet base substitution (DBS) and 17
177 small insertion and deletion (ID) signatures®®. We also investigated SBS signatures for
178 TCGA tumours. For each signature, we examined both the proportion of signature-
179 positive tumours as well as relative mutation activity, or the proportion of mutations
180 attributed to each signature.

181 Across all 2,562 PCAWG tumours, we identified twelve mutational signatures with age-
182 biased detection frequency (Figure 2A, left) and ten with age-biased mutation activity
183 (Figure 2B, left). For example, tumours arising in older patients were more likely to be
184  SBS3-positive (marginal log odds change = 0.0085, 95%CI = 0.0024-0.015, adjusted
185 LGR p = 0.075), but in these SBS-positive tumours, the proportion of SBS3-attributed
186 mutations decreased with age (p = -0.20, adjusted LNR p = 3.2x10%). SBS3 mutations
187 are thought to be caused by defective homologous recombination-based DNA damage
188 repair. These results imply that while tumours derived from older individuals are more
189 likely to harbour defective DNA damage repair, its relative impact on the burden of SNVs
190 is lower compared with tumours derived of younger individuals. A similar relationship was
191 seen for ID8, which is linked to defective non-homologous DNA end-joining (marginal log
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192 odds change = 0.024, 95%CI = 0.020-0.028, adjusted LGR p = 3.4 x 1073; p = -0.099,
193 adjusted LNR p = 3.7 x 10°) and ID1, associated with slippage during DNA replication
194  (marginal log odds change = 0.013, 95%CI = 0.0059-0.020, adjusted LGR p =0.018; p =
195 -0.059, adjusted LNR p = 0.048). We also identified positive associations between higher
196 age and the tobacco-related signatures SBS4, DBS2 and ID3. Conversely, tumours
197 arising in older individuals were less likely to exhibit defective base excision repair
198 (SBS36). All mutations signatures findings are in Supplementary Table 2.

199 These pan-cancer differences persisted across individual tumour-types. We identified 23
200 age-associated signatures across eleven tumour-types, including six significant
201 signatures in melanoma. In this tumour-type, tumours arising in older patients were
202  preferentially SBS2-positive (marginal log odds change = 0.051, 95%CI = 0.013-0.095,
203 adjusted LGR p =0.029, Figure 2A), attributed to APOBEC cytidine deaminase activity®.
204 Melanomas arising in younger patients were more likely to be positive for signatures
205 related to UV damage (SBS 7a, 7b, 7d, Figure 2A, Supplementary Table 2). The
206 proportion of mutations attributed to UV damage was also higher in younger patients
207 (DBS1, p =-0.29, adjusted LNR p = 0.019, Figure 2B), while the proportion of mutations
208 attributed to slippage during DNA replication was higher in older patients (ID1, p = 0.27,
209 adjusted LNR p = 0.019, Figure 2B). These results suggest that melanomas in younger
210 patients more frequently involve UV exposure and damage, while melanomas in older
211 patients are more influenced by endogenous sources of mutation.

212 Leveraging data describing SBS signatures in TCGA data, we repeated this analysis to
213 identify age-associations in signatures derived from whole exome sequencing (WXS)
214 data. Across pan-TCGA tumours, we detected five signatures that occurred more
215 frequently in older individuals, and three that occurred more frequently in younger
216 individuals (Figure 2A). We also identified five signatures with higher relative activity in
217 younger patients (Figure 2B). In cancer-specific analysis, we identified age-biased SBS
218 signatures across eleven tumour-types, including negative associations between the
219 tobacco-associated signature SBS4 and age in lung adenocarcinoma. SBS4 was more
220 frequently detected in younger patients (LUAD: marginal log odds change = -0.041,
221  95%CI = -0.062 - -0.021, adjusted LGR p = 4.2 x 103, Figure 2A) and also had higher
222  relative activity in younger lung squamous cell cancer patients (p = -0.17, adjusted LNR
223 p = 0.015, Figure 2B). SBS4 activity was similarly negatively associated with age in
224 PCAWG lung squamous cell cancers (Lung-SCC: p = -0.35, adjusted LNR p = 0.099,
225 Figure 2B). Indeed, SBS4 and age were consistently negatively associated across both
226  subtypes of lung cancer and both datasets though not all associations were statistically
227  significant after multiple testing adjustment. This supports previous findings that tobacco
228 has a larger tumorigenesis role in younger patients, with tobacco-associated mutations
229 contributing to a greater portion of the mutational landscape of tumours derived from
230 younger individuals®°.
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231 There was moderate agreement between TCGA and PCAWG findings: some signature
232 like SBS2 and SBS4 were age-biased in the same or closely related tumour subtypes.
233  Other signatures, such as SBS1 and SBS5 were age-biased in detection and relative
234  activity across a range of tumour-types. Still others were age-biased exclusively in either
235 TCGA or PCAWG data. We hypothesized that this was due to differences in signature
236 detection rates between WXS and whole genome sequencing (WGS) data and compared
237  how frequently each signature was detected across all samples (Figure 2C). Signatures
238 with high agreement between datasets had similar detection rates, as observed for SBS2
239 (detection difference = 1.5%) and SBS4 (detection difference = 1.1%). Signatures where
240 findings did not replicate had vastly different detection rates, as was seen for SBS1
241  (detection difference = 7.2%) and SBS5 (detection difference = 10%). We further
242  examined this by comparing signatures data from non-PCAWG WGS and non-TCGA
243 WXS data. Differences in signature detection rates between PCAWG and TCGA data
244  were reflected in non-PCAWG WGS and non-TCGA WXS data (Supplementary Figure
245  3). We also looked specifically at identified age-biases and found high agreement in data
246 generated by the same sequencing strategy (Supplementary Figure 3). The differences
247 in signature detection, sequencing strategy, multivariate models, sample size, and
248  geographic variation distinguishing PCAWG and TCGA datasets motivated our continued
249 analysis of each dataset separately.

250 CNA Differences Associated with Transcriptomic Changes
251  Global mutation characteristics such as genome instability are features of later stages in

252 a tumour’s evolutionary history. In contrast, the early stages are often driven by
253 chromosome- or gene-specific events such as loss of specific chromosomes or mutation
254  of driver genes®®. We therefore narrowed our focus to chromosome segment and gene-
255 level events. We applied our statistical framework to identify putative age-biased copy
256 number gains and losses using univariate logistic regression (ULR). Putative events
257 identified with a false discovery rate threshold of 10% were further analysed by
258  multivariable logistic regression to account for confounding factors.

259 We applied these analyses to PCAWG and TCGA datasets separately to characterize
260 pan-cancer and tumour-type-specific biases. Pan-PCAWG, we identified 1,158 genes in
261 age-associated CNAs (Figure 3A, Supplementary Figure 4). All significant age-biased
262 losses occurred more frequently in older patients. In pan-TCGA data, we identified a
263 greater number of age-biased events with 8,583 genes in age-associated losses and
264 15,497 genes in age-associated gains (Figure 3A, 3B). These global pan-cancer age-
265 associations were reflected in 17 individual TCGA and four PCAWG tumour-types
266 (Figure 3A). PCAWG and TCGA analyses were well-correlated, for example as seen in
267 ovarian cancer (Supplementary Figure 4). We further focused on a set of 133 genes
268  with driver CNAs®2. Across all cancer types, we identified 64 drivers with positive CNA-
269 age associations (41 gains, 23 losses, Figure 3C). In tumour-type specific analysis, we
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270 found age-associated driver CNAs in 16 TCGA and 5 PCAWG tumour-types
271  (Supplementary Tables 3-4).

272 We next asked whether statistically significant age-biased CNAs perturb the
273 transcriptome by investigating TCGA tumour-matched mRNA abundance data. We used
274 linear models with age, copy number status, and the interaction between age and copy
275 number status as predictors. These terms tell us when mRNA abundance differs by age,
276 when the CNA event itself is significantly associated with mRNA abundance, and when
277  the effect of the CNA event on mRNA depends on age. We also adjusted for tumour purity
278 (as estimated by study pathologists) in all mMRNA analyses. In glioblastoma our CNA
279 analysis identified 3,829 genes in age-associated gains and 3,754 genes in age-
280 associated losses (Figure 3D, Supplementary Tables 3-4). For example, DBNDD2 was
281 more frequently gained (marginal log odds change = 0.025, 95%CIl = 0.013-0.037,
282 adjusted MLR p = 6.6x10°) and RASSF4 was more frequently lost (marginal log odds
283 change = 0.059, 95%CI = 0.043-0.076, adjusted MLR p = 8.5x101) in tumours of older
284  individuals (Figure 3E).

285 Of these age-biased CNAs, we identified 379 genes with significant copy number-mRNA
286  associations and 27 with significant CNA-age interactions (Figure 3F). For instance, gain
287 ofthe gene DBNDD? is itself associated with increased mRNA abundance (adjusted CNA
288 p=1.2x107%), but there is also a strong age-dependent effect: DBNDD2 gain is associated
289  with increased mMRNA abundance in tumours arising in older individuals, but decreased
290 mRNA abundance in tumours of younger individuals, (adjusted CNA-age p = 3.5x1073,
291 Figure 3G). Other examples of this significant interaction include loss of SMPD1 which
292 affects mRNA abundance more in tumours arising in younger patients (Supplementary
293 Figure 4, Supplementary Table 5). Thus, these age-biased CNAs not only preferentially
294  occur in tumours derived of individuals of a certain age group, they are also associated
295 with changes in mRNA that are often biased by age as well. These data highlight the
296 complex interplay between CNAs, age and mRNA abundance.

297 Toinvestigate potential clinical significance of these age-associated CNAs, we performed
298 survival analysis to identify prognostic events. We used Cox Proportional-Hazards (Cox
299 PH) models with overall survival as the end point. Similar to our mRNA models, we used
300 predictors including copy number status, age and their interaction (Figure 3H). In
301 glioblastoma, age itself is a known prognostic feature with older patients having poorer
302 outcome (HR = 2.1, 95%CI = 1.7-2.6, Wald p = 1.4x10%). We found that loss of a
303 segment on chromosome 10g containing 31 genes including RASSF4 and RSU1P2 was
304 also prognostic, with loss of this region associated with poorer survival (HR = 1.9, 95%CI
305 =1.4-2.7,adjusted Wald p =2.6x103). Integrating age and this 10q segment loss reveals
306 three groups with distinct survival trajectories: older individuals have the worst outcomes
307 regardless of copy number loss status, but younger individuals with the loss have poorer
308 outcome than those without it (Figure 3I). We performed survival modeling for 5,251
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309 genes on affected by age-biased CNAs in glioblastoma and found 1,821 genes showed
310 associations between copy number change and prognosis and 142 genes had significant
311 CNA-age interactions.

312 We repeated these mRNA and survival analyses for all TCGA tumour-types with age-
313 biased CNAs. Genes in biased CNAs were associated with altered mMRNA abundance in
314 12 tumour-types and interacted with age in age-dependent mRNA change in seven
315 tumour-types. We observed a range of synergistic and antagonistic interactions for both
316 gains and losses. In most cases, an age-biased copy number altered gene was
317 associated with a greater mRNA abundance change in tumours of younger patients. In
318 lower grade glioma, we observed synergy between CNA and age where the change in
319 mRNA abundance was greatest in tumours of older patients. Six tumour-types also
320 showed that biased CNAs can be prognostic and that the prognostic value can also differ
321 based on the age of the individual. We were unable to repeat these analyses in PCAWG
322 data due the small number of patients with mRNA abundance and outcome data but
323 present all mMRNA and survival analysis results in Supplementary Table 5.

324 SNVs Differences Associated with Functional Changes
325 Finally, we investigated gene-level SNVs for age-biases. In PCAWG analysis, we used a

326 predefined set of driver mutations®3. In TCGA analysis, we used a recurrent threshold to
327 filter out genes mutated in less than 1% of tumours. We included SNV density in our
328 multivariate models in addition to other confounding factors as previously described. We
329 identified 15 age-biased genes across six PCAWG tumour contexts (Figure 4A),
330 including a pan-cancer association with CREBBP (marginal log odds change = 0.027,
331 95%CI =0.0089 — 0.047, adjusted LGR p = 8.7x10-%). CREBBP was also associated with
332 age in pan-cancer TCGA analysis (marginal log odds change = 0.032, 95%CI = 0.024 —
333 0.040, adjusted LGR p = 0.055). Pan-TCGA, we identified 401 genes that were mutated
334 more frequently in older patients and four that were mutated more frequently in younger
335 patients (Supplementary Table 6).

336 There were also tumour-type specific age-biases in SNV frequency, including age-
337 associations of oncogenic BRAF mutations in PCAWG melanoma (marginal log odds
338 change = -0.043, 95%CI = -0.072 - -0.017, adjusted LGR p = 2.4x103%), and TERT
339 promoter mutations in PCAWG thyroid cancer (marginal log odds change = 0.10, 95%CI
340 =0.044 - 0.18, LGR p = 0.016). Age-biases in PCAWG medulloblastoma highlighted
341 differences between paediatric and adult cases (Figure 4A), and tumours arising in older
342 PCAWG prostate cancer patients were more likely to harbour FOXA1 (marginal log odds
343 change =0.11, 95%CI = 0.041 - 0.18, adjusted LGR p = 0.013) and SPOP (marginal log
344  odds change = 0.099, 95%CIl =0.032 - 0.18, adjusted LGR p = 0.060) mutations. We also
345 confirmed known associations between lower age and mutations in tumour suppressors
346 IDH1 and ATRX, which were mutated in the same patients in PCAWG glioblastoma
347 (marginal log odds change = -0.15, 95%CI = -0.31 - -0.052, adjusted LGR p = 0.017).
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348 Similarly in TCGA data, we found higher frequency of IDH1 and ATRX mutations in
349 (glioblastomas (Figure 4B) and lower grade gliomas of younger patients (Figure 4C).
350 Other age-biased mutations occurred in pan-TCGA analysis for breast cancer, head &
351 neck cancer, and stomach & esophageal cancer (Supplementary Table 6).

352 As with the age-biased CNAs, we evaluated the impact of SNVs on mRNA abundance
353 and survival in TCGA data. We identified significant associations between age-biased
354 SNVs and mRNA abundance for ATRX and IDH1 in lower grade glioma (Supplementary
355 Table 6). Mutations in ATRX and IDH1 were associated with lowered mRNA abundance
356 in both genes. There was also a significant interaction effect between age and IDH1
357 mutation (adjusted p = 9.7 x 104, Figure 4D) indicating an age-dependent effect on
358 mRNA abundance: mutated IDH1 was associated with a greater mRNA decrease in
359 tumours arising in younger patients. In contrast while there was only a trending interaction
360 between age and mutation status on mRNA abundance (adjusted p = 0.16, Figure 4D),
361 ATRX and age were synergistically associated with outcome, stratifying lower grade
362 glioma patients into four groups (Figure 4E). While inactivating mutations in ATRX
363 mutation are known to be generally associated with improved survival, younger patients
364  without ATRX mutations have the best overall survival while high age patients without
365 mutated ATRX have the worst survival, revealing its role as a strong age-dependent
366 prognostic biomarker.

Page 11 of 34


https://doi.org/10.1101/2020.07.07.192237
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.192237; this version posted July 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

367 Discussion

368 Despite modest statistical power, suboptimal study designs and limited clinical
369 annotation, we identified myriad age-associated differences in cancer genomes. Age-
370 biased genomic features occur at the pan-cancer level and also across almost all
371 individual tumour-types. Combined with similar reports of sex- and ancestry-associated
372 differences in cancer genomes®64 | these data reveal a set of host influences on the
373  mutational characteristics of tumours (Figure 5). Characteristics of the tumour host
374 appears to influence all aspects of the cancer genome: mutation density, evolutionary
375 timing, mutational processes and driver genes. Some of these lead to age-, ancestry- and
376  sex-specific transcriptomic and clinical impacts.

377 The mechanisms for these genomic associations are largely unknown. Our data suggest
378 some endogenous or exogenous mutational processes preferentially occur in individuals
379 of different age groups. Some of these mutational processes are related to aging-
380 associated phenomena such as declining DNA damage repair®®65, somatic mosaicism
381 and the accumulation of mutations over time®67.68. However, other processes related to
382 immune surveillance, evolutionary selection, disease aetiology and epigenetics are also
383 likely involved®-71. In addition to such biological factors, lifestyle and socioeconomic
384 considerations like diet’? and microbiome composition”® can continuously shape tumour
385 evolution from its earlier steps. Many of these factors are deeply linked to not only an
386 individual's age, but other fundamental characteristics over which we have limited control,
387 such as ancestry or sex. A tumour’s mutational history reflects a complex interplay of
388 biological, lifestyle and healthcare factors, and we have little understanding of how these
389 diverse processes interact to produce molecular phenotypes.

390 The TCGA and PCAWG datasets sometimes identified different molecular biases,
391 highlighting the differences between the two datasets. TCGA patients were largely North
392 American while PCAWG had a greater international component. While the ages
393 represented in TCGA and PCAWG tumour-types were similar (Table 1), the cohorts differ
394 in other host and clinical characteristics. For instance, the representation of ancestry
395 groups was dissimilar, with many tumour-types differing vastly in ancestry proportions
396 (Supplementary Table 1). Furthermore, differences in sequencing targets also
397 contributed to variation in our results, most conspicuously in the detection rates of some
398 mutational signatures. We customized our analyses to take advantage of the contrasting
399 strengths of each dataset: WGS in PCAWG allowed us to interrogate a greater breadth
400 of mutation types, while the larger sample size and clinical annotation of TCGA data
401 improved statistical power and controls for confounders. Indeed, while we were able to
402 identify more age-biases in TCGA data, many of these findings were reflected in PCAWG
403 data by similar effects that did not reach our statistical significance threshold. More
404  sequencing data reflecting greater and more balanced diversity is needed to distinguish
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405 those age-biases that are intrinsic to differences in biology, and those that are tied to
406 differences in lifestyle and geography.

407 Our findings have wide-reaching implications for both basic and translational cancer
408 research. Since cancer host characteristics like age, ancestry and sex widely shape the
409 somatic cancer landscape, we cannot consider discovery genomics complete they are
410 explicitly considered. Elderly individuals are underrepresented in cancer sequencing
411 studies and clinical trials36:7475; better inclusion is needed to identify somatic changes
412  specific to older individuals and to leverage these changes to improve clinical care. In our
413 analysis, we found that some age-associated genomic differences associate with
414  transcriptional and clinical changes, but many do not — identifying the functional
415 consequences and mechanisms of these will be a long-term challenge. Finally, these
416 epidemiological factors should be considered and controlled for in personalized therapy
417  strategies. Indeed, every type of analysis from driver-discovery to biomarker-
418 development should explicitly test for and model the powerful influence of patient biology
419  and behaviour on tumour evolution.
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220 Online Methods

421 Data acquisition & Processing

422  Genome-wide somatic copy-number, somatic mutation, and mRNA abundance profiles
423 for the Cancer Genome Atlas (TCGA) datasets were downloaded from Broad GDAC
424  Firehose (https://gdac.broadinstitute.org/), release 2016-01-28. For mRNA abundance,
425  lllumina HiSeq rnaseqv2 level 3 RSEM normalised profiles were used. Genes with >75%
426  of tumours having zero reads were removed from the respective dataset. GISTIC v2 (13)
427 level 4 data was used for somatic copy-number analysis. mRNA abundance data were
428 converted to log2 scale for subsequent analyses. Mutational profiles were based on
429 TCGA-reported MutSig v2.0 calls. All pre-processing was performed in R statistical
430 environment (v3.1.3). Genetic ancestry imputed by Yuan et al. was downloaded from The
431 Cancer Genetic Ancestry Atlas (http://52.25.87.215/TCGAA).

432 PCAWG whole genome sequencing data calls were downloaded from the PCAWG
433 consortium through Synapse. All data pre-processing was performed by the consortium
434 as described®. The individual data sets are available at Synapse
435  (https://www.synapse.org/), and are denoted with synXXXXX accession numbers (listed
436 under Synapse ID); all these datasets are also mirrored at https://dcc.icgc.org. Tumour
437 histological classifications were reviewed and assigned by the PCAWG Pathology and
438  Clinical Correlates Working Group (annotation version 9;
439  https://www.synapse.org/#!Synapse:syn10389158,

440  https://www.synapse.org/#!Synapse:syn10389164). Ancestry imputation was performed
441  using an ADMIXTUREZ23-like algorithm based on germline SNP profiles determined by
442  whole-genome sequencing of the reference sample
443  (https://www.synapse.org/#!Synapse:syn4877977). The consensus somatic SNV and
444  indel (https://www.synapse.org/#!Synapse:syn7357330) file covers 2778 whitelisted
445 samples from 2583 donors. Driver events were called by the PCAWG Drivers and
446  Functional Interpretation Group (https://www.synapse.org/#!Synapse:synl11639581).
447 Consensus CNA calls from the PCAWG Structural Variation Working Group were
448 downloaded in VCF format (https://www.synapse.org/#!Synapse:syn8042988).
449  Subclonal reconstruction was performed by the PCAWG Evolution and Heterogeneity
450 Working Group (https://www.synapse.org/#!Synapse:syn8532460). SigProfiler mutation
451  signatures were determined by the PCAWG Mutation Signatures and Processes Working
452  Group for single base substitution (https://www.synapse.org/#!Synapse:syn11738669),
453 doublet base substitution (https://www.synapse.org/#!Synapse:syn11738667) and indel
454  (https://www.synapse.org/#!Synapse:synl11738668) signatures. Signatures data for
455 TCGA, non-PCAWG WGS and non-TCGA WXS samples were downloaded from
456  Synapse (https://www.synapse.org/#!Synapse:syn11804040).

457
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458 We used TCGA data describing 10,212 distinct TCGA tumour samples across 23 tumour-
459 types and 2,562 distinct PCAWG samples across 29 tumour-types. Tumour-types with no
460 age annotation or insufficient variability in ancestry annotation were excluded from
461 analysis. Age is treated as a continuous variable for both TCGA and PCAWG analyses.
462 A full breakdown of the data is presented in Supplementary Table 1.

463 General Statistical Framework

464  For each genomic feature of interest, we used univariate tests first followed by false
465 discovery rate (FDR) adjustment to identify putative age-biases of interest (q < 0.1). We
466  used two-sided non-parametric univariate tests to minimize assumptions on the data. For
467  putative age-biases, we then follow up the univariate analysis with multivariate modeling
468 to account for potential confounders using bespoke models for each tumour-type.

469 Model variables for each tumour context are presented in Supplementary Table 1 and
470 were included based on availability of data (<15% missing), sufficient variability (at least
471 two levels) and collinearity (as assessed by variance inflation factor). Discrete data was
472 modeled using logistic regression (LGR). Continuous data was first transformed using the
473 Box-Cox family and modeled using linear regression (LNR). The Box-Cox family of
474  transformations is a formalized method to select a power transformation to better
475 approximate a normal-like distribution and stabilize variance. We used the Yeo-Johnson
476  extension to the Box-Cox transformation that allows for zeros and negative values’®.

477 FDR adjustment was performed for p-values for the age variable significance estimate
478 and an FDR threshold of 10% was used to determine statistical significance. More detalil
479 is provided for each analysis below. A summary of all results is presented in
480 Supplementary Table 1. We present 95% confidence intervals for all tests.

481  Mutation Density

482  Performed for both TCGA and PCAWG data. Overall mutation prevalence per patient was
483 calculated as the sum of SNVs across all genes on the autosomes and scaled to
484  mutations/Mbp. Coding mutation prevalence only considers the coding regions of the
485 genome, and noncoding prevalence only considers the noncoding regions. TCGA
486 mutation density reflects coding mutation prevalence. Mutation density was compared
487 age using Spearman correlation for both pan-cancer and tumour-type specific analysis.
488 Comparisons with univariate g-values meeting an FDR threshold of 10% were further
489 analyzed using linear regression to adjust for tumour subtype-specific variables. Mutation
490 density analysis was performed separately for each mutation context, with pan-cancer
491 and tumour subtype p-values adjusted together. Full mutation density results are in
492 Supplementary Table 2.

493 Genome instability
494  Performed for both TCGA and PCAWG data. Genome instability was calculated as the
495 percentage of the genome affected by copy number alterations. The number of base pairs
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496 for each CNA segment was summed to obtain a total number of base pairs altered per
497  patient. The total number of base pairs was divided by the number of assayed bases to
498 obtain the percentage of the genome altered (PGA). Genome instability was compared
499 using Spearman correlation for both pan-cancer and tumour-type specific analysis.
500 Comparisons with univariate g-values meeting an FDR threshold of 10% were further
501 analyzed using linear regression to adjust for tumour subtype-specific variables. Genome
502 instability analysis was performed separately for each mutation context, with pan-cancer
503 and tumour subtype p-values adjusted together. Full mutation density results are in
504 Supplementary Table 2.

505 Clonal structure and mutation timing analysis

506 Performed for PCAGW data only. Subclonal structure data was binarized from number of
507 subclonal clusters per tumour to monoclonal (one cluster) or polyclonal (more than one
508 cluster). Putative age-biases were identified using univariate logistic regression and
509 putative biases were further analysed using multivariate logistic regression.. A
510 multivariate g-value threshold of 0.1 was used to determine statistically significant age-
511 biased clonal structure.

512  Mutation timing data classified SNVs, indels and SVs into clonal (truncal) or subclonal

513 groups. The proportion of truncal variants was calculated for each mutation type
Number truncal SNVs
514 (
total SNVs
515 tumour. These proportions were compared using Spearman correlation. Univariate p-

516 values were FDR adjusted to identify putatively age-biased mutation timing. Linear
517 regression was used to adjust for confounding factors and a multivariate g-value threshold
518 of 0.1 was used to determine statistically significant age-biased mutation timing. The
519 mutation timing analysis was performed separately for SNVs, indels and SVs. All results
520 for clonal structure and mutation timing analyses are in Supplementary Table 2.

, etc.) to obtain proportions of truncal SNVs, indels and SVs for each

521 Mutational Signatures analysis

522 Performed for both TCGA and PCAWG data. For each signature, we compared the
523  proportion of tumours with any mutations attributed to the signatures (“signature-positive”)
524  using logistic regression to identify univariate age-biases. Signatures with putative age-
525 Dbiases were further analysed using multivariable logistic regression.

526  We also compared relative signature activity using the proportions of mutations attributed
527 to each signature. The numbers of mutations per signature were divided by total number
528 of mutations for each tumour to obtain the proportion of mutations attributed to the
529 signature. Spearman correlation was used. Putative age-biased signatures were further
530 analysed using multivariable linear regression after Box-cox adjustment.

531 Signatures that were not detected in a tumour subtype was omitted from analysis for that
532 tumour subtype. All results for clonal structure and mutation timing analyses are in
533 Supplementary Table 2.
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534 Genome-spanning CNA analysis

535 Performed for both TCGA and PCAWG data. Adjacent genes whose copy number profiles
536 across patients were highly correlated (Pearson’s r > 95%) were binned. The copy
537 number call for each patient was taken to be the majority call across all genes in each
538 bin. Copy number calls were collapsed to ternary (loss, neutral, gain) representation by
539 combining loss groups (mono-allelic and bi-allelic) and gain groups (low and high).
540 Logistic regression was used to identify univariate age-associated CNAs. After identifying
541 candidate pan-cancer univariately significant genes, multivariate logistic regression was
542 used to adjust ternary CNA data for tumour-type-specific variables. The genome-
543 spanning analysis was performed separately for losses and gains for each tumour
544  subtype. All CNA results are in Supplementary Tables 3-4.

545 Genome-spanning SNV analysis

546  Performed for TCGA data. We focused on genes mutated in at least 1% of patients.
547  Mutation data was binarized to indicate presence or absence of SNV in each gene per
548 patient. Univariate logistic regression was used to identify putative age-biased SNVSs.
549 False discovery rate correction was used to adjust p-values and a g-value threshold of
550 0.1 used to select genes for multivariate analysis using logistic regression. SNV density
551 was included in all multivariate models.

552  Driver Event Analysis

553 Performed for PCAWG data. We focused on driver events described by the PCAWG
554  consortium®3, Driver mutation data was binarized to indicate presence or absence of the
555 driver event in each patient. Proportions of mutated genes were compared using
556 univariate logistic regression. A g-value threshold of 0.1 was used to select genes for
557 further multivariate analysis using binary logistic regression. SNV density was included in
558 all models. FDR correction was again applied and genes with significant age terms were
559 extracted from the models (g-value < 0.1). Driver event analysis was performed
560 separately for pan-cancer analysis and for each tumour subtype. All SNV and driver event
561 analysis results are in Supplementary Table 6.

562 mRNA functional analysis

563 Performed for TCGA data. Genes in bins altered by age-biased CNAs and SNVs after
564 multivariate adjustment were further investigated to determine functional consequences.
565 Tumour purity was included in all mMRNA models. Tumours with available mRNA
566 abundance data were matched to those used in CNA analysis. For each gene affected
567 by an age-biased loss, its mMRNA abundance was modeled against age, copy number
568 loss status, an age-copy number loss interaction term, and tumour purity. The interaction
569 term was used to identify genes with age-biased mRNA changes. FDR adjusted p-values
570 and fold-changes were extracted for visualization. A g-value threshold of 0.1 was used
571 for statistical significance. For genes affected by age-biased gains, the same procedure
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572  was applied using copy number gains. mRNA modeling results for age-biased CNAs and
573 SNVs are in Supplementary Tables 5-6.

574  Survival analysis

575 Performed for TCGA data. Genes found to have significant (FDR threshold of 10%) age-
576 biased CNAs and SNVs were also analyzed using Cox proportional hazards modelling
577 after checking proportional hazards assumption. Cox proportional hazard regression
578 models incorporating ageest, CNA/SNV status, and an age-CNA/SNV group interaction
579  were fit for overall survival after checking the proportional hazards assumption. Age was
580 treated as a continuous variable for modeling, but median dichotomized into ‘low age’ and
581 ‘high age’ groups for visualization. FDR-adjusted interaction p-values and logz hazard
582 ratios were extracted for visualization. A g-value threshold of 0.1 was used to identify
583 genes with sex-influenced survival. Survival modeling results for age-biased CNAs and
584 SNVs are in Supplementary Tables 5 and 6.

585 Statistical Analysis & Data Visualization Software

586 All statistical analyses and data visualization were performed in the R statistical
587  environment (v3.2.1) using the BPG’’ (v5.9.8) and Survival (v2.44-1.1) packages, and
588  with Inkscape (v0.92.3).

589
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Figure 1 | Mutation density and timing are biased to age.

Summary of associations between age and (A) percent genome altered and (C) SNV
density in TCGA and PCAWG tumours. The dot size and colour show the Spearman
correlation, and background shading indicate adjusted multivariate p-value. Only tumour-
types with at least univariately significant associations are shown. Associations between
(B) PGA and (D) coding SNV density with age in selected tumour-type specific analyses.
Univariate Spearman correlation, adjusted correlation p-value and adjusted multivariate
p-values shown. (E) Correlations between age and proportion of SNVs occurring in the
truncal clone in four PCAWG tumour contexts.
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793
794  Figure 2 | Biases in mutational signatures suggest differences in underlying

795 mutational processes.

796 (A) Summary of associations between age and the proportion of signature-positive
797 tumours, where dot size shows the marginal log odds from logistic regression and
798 background shading show adjusted multivariate p-values. PCAWG data is on left and
799 TCGA on right. (B) Similarly, the summary of associations between age and relative
800 signature activity, with dot size showing Spearman correlations and background
801 indicating adjusted linear regression p-values. (C) Comparison of PCAWG and TCGA
802 signature detection frequency. Filled in and open circles indicate comparisons where the
803 differences are statistically significant (proportion test q < 0.05) and not, respectively.
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Figure 3 | Age-biases in copy number alterations are associated with functional
changes in mRNA and survival.

(A) Summary of all detected age-biased CNAs with numbers of gains (above x-axis) and
losses (below x-axis) found in each tumour context. Only tumour-types with at least one
significant event shown. (B) Pan-cancer age-biases in CNAs for TCGA data. Each plot
shows the logistic regression log odds coefficient estimate for the indicated CNA type.
Dot colour indicates statistical significance, where red (copy humber gain) and blue (copy
number loss) show adjusted p < 0.05 and yellow (gain) and green (loss) show adjusted p
< 0.1 (C) Summary of age-biased pan-cancer CNA drivers. Both TCGA and PCAWG
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815 findings shown. Dot size shows the magnitude of the association as the difference in
816 proportion and the background shading shows adjusted multivariate p-values. Top
817 covariate indicates copy number gain drivers in red and loss drivers in blue. (D) Age-
818 biases in TCGA glioblastoma CNAs across the genome with (E) specific examples shown
819 for DBNDD2 gain and RASSF4 loss. Both adjusted univariate and multivariate p-values
820 shown. Age-biased CNAs in TCGA glioblastoma are associated with (F) mRNA
821 abundance changes and (H) overall survival. In (F), adjusted p-values are plotted against
822 the coefficients of the CNA-age interaction for mRNA abundance, with each point
823 representing a gene. Dot colour shows significant associations between mRNA and age
824  (green), CNA only (violet) or their interaction (olive). (G) DBNDD2 mRNA abundance
825 changes between copy number gain (red) or no loss (black) in tumours of low vs. high
826 age. Adjusted CNA-age interaction p-value is shown. In (H), adjusted p-values and
827  coefficients of the CNA-age interaction for Cox-PH modeling are shown, with each point
828 representing a gene. (I) Loss of a region on 10q interacts with age to further stratify patient
829 prognosis. The adjusted p-value for the copy humber loss-age interaction term is shown.
830 Tukey boxplots are shown with the box indicating quartiles and the whiskers drawn at the
831 lowest and highest points within 1.5 interquartile range of the lower and upper quartiles,
832  respectively.

833
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>
w

107
10* 107
a 3 ) 10’
10 107
; 0.01 1 o 10°
0.01
o Tumour Subtype =
S wm
= PCAWG-Pancancer 0
es 2 1 ) TR ; ‘ ; P F CNS-GBM g5 s
L E=] [ = WRUDEE _ DEEN - NN - EJN - ECAN 0 IRAE - WgEE - | CNS-Medullo c g.
oo ¢ Lymph-BNHL =210
E % -2 1 Prost-AdenaCA gg 1.5
£ g Skin-Melanoma =
[(Sy-1 Thy-AdenoCA s g
Vo
80 :
80 % é Element Type '
o 60 11 I cos 60 { (7
g’ 40 Fa - . . : ’ ] Promoter @ T
: ThHemE 3 E ; E é i 2
20 1 '
. 20
o H X FE A2 X U @ H % N~ A5 Ao w B
=] I £ X I m N g w L = o O ¢ &
= a U
B 2 §F P E W x3EE R o I
5 e O ¥ @ [y E a
. o
108 2 1.0
%g-ﬁ [ ° E
2195 Eos S o 10 1 1 |
2 i ; Rl
0.01 Qo6 =
0.1 - L 038 -
g o. S s
w5 H P 2 06|
sm @ 0.2 e a ™
.g g :g i E 3 . ©
DO 0.0 b oo Soo S Gowag=87x10* 3 0.2 - No ATRX SNV-low age
2 % 0.5 L L4 * No SNV SNV No SNV SNV ] No ATRX SNV-high age
Age <41 Age >41 E o2 | ATRX SNvlow age -
o ﬁ ATRX SNV-high age =~ ———
80 . E 1.0 r W Panvage = 1.7x107
¥ - 3 e 0.0 T T T T
o 60 g = 0.8 s 0 1 z 3 4 5
2 40 I Eos s | Time (Years)
g < e
20 Toa 2 L No SNV-lowage 131 68 42 26 17 13
3 o0 r q
N ¢ - . No SNV-high age 183 84 39 20 16 10
M M E 0.2 . I SNV-low age 136 75 57 42 32 24
=] ) = ° A
& & z i G 0.0 ¢ Ganage=0.16 | SNV-highage g9 31 17 11 7 5
< w = = 2
No SNV SNV No SNV SNV
Age <41 Age >41

834

835 Figure 4 | Age-biases in single nucleotide variants reveal ATRX as a strong age-
836 biased prognostic biomarker in lower grade glioma.

837 (A) Pan-PCAWG and PCAWG tumour-specific age-biases in driver mutation frequency
838 with adjusted multivariate p-values, marginal log odds changes for 10-year age
839 increment, and age of tumours compared between those with (red) and without (grey) the
840 mutation. Genes are ordered by tumour-type and adjusted p-value. Similar to (A), genes
841 with age-associated mutation frequency are shown for (B) TCGA glioblastoma and (C)
842 TCGA lower grade glioma. (D) mRNA abundance changes for IDH1 and ATRX when the
843 gene is mutated (red) or not (black) compared by median-dichotomized age. Adjusted
844 CNA-age interaction p-value is shown. (E) ATRX mutation interacts with age to stratify
845 patient prognosis into four groups. Log-odds p-value is shown. Tukey boxplots are shown
846  with the box indicating quartiles and the whiskers drawn at the lowest and highest points
847 within 1.5 interquartile range of the lower and upper quartiles, respectively.

848
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Figure 5
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849
850 Figure 5| The landscape of age, sex and ancestry differences in cancer genomics

851 A summary of age-, ancestry- and sex-associated biases in TCGA and PCAWG analyses.
852 Dots show associations in PCAWG data and shading shows associations in TCGA data.
853 Each quadrant of every cell corresponds with age, Asian, African, and Admixed American,
854  South Asian or Other Ancestry-associated findings. Centre dot indicates sex-associated
855 findings.
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