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ABSTRACT

The continuously developing field of magnetic resonance imaging (MRI) has made a
considerable contribution to the knowledge of brain architecture. It has given shape to a
desire to construct a complete map of functional and structural connections. In particular,
diffusion MRI paired with tractography has facilitated a non-invasive exploration of structural
brain anatomy, which has helped build evidence for the existence of many association,
projection and commissural fiber tracts. However, there is still a scarcity in research studies
related to intralobar association fibers. The Dejerines’ (two of the most notable neurologists
of 19" century France) gave an in-depth description of the intralobar fibers of the occipital
lobe. Unfortunately, their exquisite work has since been sparsely referred to in the modern
literature. This work gives the first modern description of many of the occipital intralobar lobe
fibers described by the Dejerines. We perform a virtual dissection and reconstruct the tracts
using diffusion MRI tractography. The virtual dissection is guided by the Dejerines’ treatise,
Anatomie des Centres Nerveux. As an accompaniment to this article, the authors provided a
French-to-English translation of the treatise portion concerning intra-occipital fiber bundles.
This text provides the original description of five intralober occipital tracts, namely: the
stratum calcarinum, the stratum proprium cunei, the vertical occipital fasciculus of Wernicke,
the transverse fasciculus of the cuneus (TFC) and the transverse fasciculus of the lingual
lobe of Vialet. It was possible to reconstruct all these tracts except for the TFC — possibly
because its trajectory intermingles with a large amount of other fiber bundles. For
completeness, the recently described sledge runner fasciculus, although not one of the

Dejerine tracts, was identified and successfully reconstructed.
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INTRODUCTION

The advent of novel in vivo magnetic resonance imaging (MRI) techniques has
heightened the desire to construct a comprehensive atlas of the human brain
connective network — the so-called human connectome (Van Essen and Ugurbil
2012; Shibata et al 2015; Sotiropoulos and Zalesky 2019). In humans, diffusion MRI
paired with tractography permits a non-invasive three-dimensional reconstruction of
large-scale white matter system organisation, which can then be compiled into an
atlas (Wakana et al 2004) (see review: (Jbabdi and Behrens 2013; Jbabdi et al 2015;
Jeurissen et al. 2017). Diffusion MRI has contributed to the verification of many
association fiber pathways (Meola et al 2015; Bao et al 2017), as well as to the
redefinition of their boundaries and relations (Kamali et al 2014; Sampson et al 2015;
Hau et al 2016; Wu et al 2016; Weiner et al 2017; Panesar et al 2019; Schurr et al
2019). Recent success in discovering novel or forgotten association fibers has
stoked interest in the less conspicuous short-range fiber connections, which can be
more challenging to delineate (Yeatman et al 2014; Uesaki et al 2018; Koutsarnakis
et al 2019; David et al 2019).

Despite the rapid advancement in the technology and the connectome mapping
techniques available, there is a paucity in research related to short-range association
fibers in the occipital lobe. The initial focus of this new field was instead geared
towards the more prominent, and seemingly more physiologically crucial, long-range
association fibers. An additional issue with MRI-based tractography studies is that
the findings tend to remain speculative, devoid of tangible experimental evidence

and ground truth, unlike those of axonal tracer studies (Donahue et al 2016).

To partially overcome the limitations inherent in diffusion tractography, contemporary
researchers can guide their findings through post-mortem dissection studies, by
consulting the tract tracer literature, or by consulting historical neuroanatomy texts.
The 19™-century neurologists were masterfully skilled in gross dissection and
fastidious in the documentation of their composite observations. As such, their
findings remain relevant and still permeate today’s literature. Numerous diffusion
tractography studies have successfully used classical dissections to interpret
imaging results and identify false positives or false negatives, and have been
successful in building on the groundwork made by their predecessors (Schmahmann
and Pandya 2006; Catani et al 2012; Forkel et al 2014; Vergani et al 2014; Yeatman


https://doi.org/10.1101/2020.07.07.191767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.07.191767; this version posted July 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

et al 2014). Pioneering texts have also often been an initial source of inspiration for
explorative neuroanatomical studies (Forkel et al 2014; Yeatman et al 2014). Indeed,
the authors had previously studied dissections by 19"-century neurologists Joseph
and Augusta Dejerine with a view to enriching the field’s knowledge and
perspectives on long-range association fiber anatomy (Bajada et al 2017). It
showcased the pertinence of these historical studies and prompted further
examination into the Dejerines’ other work on association short-range occipital fibers.

The 1900s was a century particularly rich in pivotal studies and debates between
different schools of thoughts. One of the biggest divisions across the
neuroanatomical field towards the end of the 19" century was the definition and
categorisation of association fibers. Meynert was one of the most prominent
authorities on subcortical anatomy at the time. He postulated that true association
fibers only projected in an anterior-posterior direction (Meynert 1892; Yeatman et al
2014). This was contested by Wernicke, who argued for the existence of dorsal-
ventral projecting association fibers, particularly in the occipital region (Wernicke
1876; Yeatman et al 2014). Other neurologists, like the Dejerines and Sachs,
supported the school of thought of Wernicke by acknowledging the existence of the
vertical occipital fasciculus (VOF) (Sachs and Wernicke 1892; Déjerine and Déjerine-
Klumpke 1895). Joseph Jules Dejerine (1849-1917) and his wife, Augusta Dejerine-
Klumpke (1859-1927) frequently collaborated and are both individually celebrated as
two of France’s most renowned 19"-century neurologists (Bogousslavsky 2005;
Shoja and Tubbs 2007; Bajada et al 2017). Together, they pioneered anatomo-
functional studies of the cerebral association fiber tracts and challenged the period’s
paradigm of brain organisation (Shoja and Tubbs 2007; Krestel et al 2013; Bajada et
al 2017). Arguably, the Dejerines’ seminal work is their two-volume neuroanatomical
treatise, Anatomie des Centres Nerveux, originally published in 1895 and 1902 and
then reprinted in 1980 by Mason-Elsevier (Déjerine and Déjerine-Klumpke 1895;
Dejerine and Dejerine-Klumpke 1902). The Dejerines’ impressive histological
sections, accompanied by beautifully intricate illustrations by H. Gillet, are relevant
even in this technological era, and are thus referred to for comparison to new
anatomical findings (Chou et al 2009; Catani et al 2012). Of particular interest to the
authors, the Dejerines dedicated a portion of the first volume to occipital intralobar

association fibers. The Dejerines observed five fiber bundles specific to the occipital
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lobe: the stratum calcarinum, the vertical occipital fasciculus (VOF) of Wernicke, the
transverse bundle of the lingual lobule of Vialet, the transverse fasciculus of the
cuneus and the stratum proprium cunei. At the time, intralobar white matter fibers
were just being discovered — these were as yet poorly understood and surrounded
by controversies due to inconsistent classification and nomenclature (Yeatman et al
2014; Mandonnet et al 2018), leading to much of the Dejerines’ work on their

trajectory being overlooked.

Of late, the VOF, the largest of the occipital intralobar fibers dissected by the
Dejerines, has been the focus of an increasing number of papers (Weiner et al 2017;
Gungor et al 2017; Oishi et al 2018; Briggs et al 2018; Panesar et al 2019). As of
December 2019, a PubMed search generated thirty hits relating to the “vertical
occipital fasciculus” when used as a key term. In comparison, the other intraoccipital
tracts generate no results and remain overlooked, mostly being listed in passing. An
article by our group revisited the Dejerines’ work and provided access to the first
English translation of the portion of the Dejerines’ book related to the long-range
association fibers of the human brain (Bajada et al 2017). Here, we provide the first
complete translation of the description by the Dejerines of the occipital originating
short-range fibers trajectories, from the original French taken from Anatomie des
Centres Nerveux (1895 p.780-784) (supplementary material 1 and 2). The aim of this
study is to use the observations made by the Dejerines for guidance through a virtual
dissection of the intralobar tracts of the occipital lobe, based on in vivo diffusion
imaging data. The virtual dissections enable us, to have a better discern the three-

dimensional relations of these once forgotten tracts.
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MATERIAL AND METHOD

The study consisted of two principal methods: the first being the translation from
French into English of the Dejerines’ classical study of occipital intralobar fibers. This
was followed by a diffusion weighted MRI (dMRI) based virtual reconstruction of the
Dejerines’ dissection in healthy subjects.

TRANSLATION
The masterful description of intra-occipital fiber tracts in Chapter 5: pp.780-4 by J.J.

Dejerine and A. Dejerine-Klumpke in Anatomie Centre Nerveux; Volume | (1895)
was fully translated (MB) from its original 19™-century French to more universally
accessible English and reviewed for its accuracy by the experts in this field (CB,
MTS). The complete translation is available as supplementary material.

SUBJECT SELECTION
A template-based, probabilistic, fiber tractography study was conducted in 24 healthy

and unrelated consenting volunteers (range 22-35 years, 12 males). The analysed
diffusion MRI dataset was derived from the S1200 release of the publicly available
WU-Minn Human Connectome Project (HCP) database

(https://db.humanconnectome.org/). To ensure data homogeneity, the subjects

selected had none of the following features/criteria: endocrine abnormalities
including hyper and hypothyroidism, a handedness score below zero (people with a
left-handed tendency), color vision abnormalities, illegal drug use, history of
psychiatric problems, hypertensive individuals, alcohol detected by a breathalyser,
data with quality control (QC) issues A or B. This study uses data collected and
processed by the HCP and approved by the Washington University IRB. The
additional data analysis conducted in this present study was approved by the local

ethics committee of the University of Malta (UREC).

IMAGE ACQUISITION
The full details of image acquisition can be found in the following articles (Moeller et

al 2010; Feinberg et al 2010; Xu et al 2012; Setsompop et al 2012; Sotiropoulos et al
2013). In short, the HCP group generated the in vivo Tiw and diffusion weighted
magnetic resonance imaging (MRI) of the human brains through a customised high-
resolution 3-Tesla Siemens Skyra scanner equipped with a 32-channel head coil.
Structural imaging utilised an axial 3D MPRAGE pulse sequence, while the DWI

used a monopolar Sejskal-Tanner sequence (Van Essen et al 2012; Glasser et al
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2013). Following the algorithm in Milchenko et al. (2013) DICOM image files were
defaced and de-identified. For further data analysis, dcm2nii MRIcron was used to
convert DICOM files to (NITRC)(http://www.nitrc.org/projects/mricron).

Diffusion data were rectified for head motion and geometrical distortion, and pre-
processed through the HCP minimally processed pipeline (Jenkinson et al 2002;
Andersson et al 2003; Fischl 2012; Jenkinson et al 2012; Glasser et al 2013;
Andersson and Sotiropoulos 2015; Sampson et al 2015).

MRI DATA PROCESSING
All additional processing was accomplished with the fiber tractography MRTrix3

(RC_3) software toolkit and iFOD2 algorithm (Tournier et al 2012; Tournier et al
2019). The fiber orientation distribution (FOD) functions from the diffusion signal in
each voxel were computed using the multi-shell-multi-tissue constrained spherical
deconvolution (CSD).

The individual FODs across the 24 subjects were used to create a population
template within MRtrix3. A manually defined occipital lobe mask on the template was
then used to produce occipital lobe specific connectomes. The safety margins
between the occipital lobe and the exclusion border were large and included
posterior aspects of the temporal and parietal lobe. The mask excluded the
brainstem, the cerebellum. The anterior border of the mask was defined by a coronal
line at the anterior aspect of the splenium of the corpus callosum that extended
straight to the lateral convexity of the cerebrum. Figures of the mask are provided in
supplementary material 3. The connectome derived from 10 million randomly
seeded fibers from within it (iIFOD2, Lmax= 8, Length: 10-150mm, Max angle = 45
degrees, output step size = 0.625mm, FOD cut-off = 0.05, FOD power = 3) (Tournier
et al 2007; Jeurissen et al 2014). Fibers traversing beyond the occipital lobe were
manually assessed. Inclusion and exclusion masks are available in the

supplementary material.
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RESULTS

Using CSD tractography, this study successfully identified and mapped four of the
five occipital intralobar white matter tracts observed by the Dejerines. The translation
of the Dejerines’ work on these fibers, from 19™-century French to accessible English
(Supplementary Material 1), helped guide the tractography findings. Tractography
reconstruction of the occipital intralobar tracts have been overlaid on a 3D Tiw
image and presented in figures 2-5. The relation of each tract to each other and to

the longer association, projection and commissural fibers are provided in figure 6.

Figure 1. The Dejerines’ intraoccipital fibers. A coronal slice of the occipital lobe
illustrated by H. Gillet depicting the occipital intralobar fibers identified by the
Dejerines. VOF: vertical occipital fasciculus; TFV: transverse fasciculus of the lingual
lobe of Vialet, SC: stratum calcarinum, SPC: stratum proprium cunei, TFC:
transverse fasciculus of the cunei. Image adapted from Dejerine & Dejerine 1895, p.
781.
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OCCIPITAL DIFFUSION TRACTOGRAPHY
With regard to short-range association fibers arising from the occipital lobe, the

Dejerines described the vertical occipital fasciculus (VOF) which spans the entirety
of the occipital lobe lateral to the posterior ventricle, and four shorter association
fiber tracts projecting superiorly and inferiorly from the banks of the calcarine fissure:
the stratum calcarinum (SC), stratum proprium cunei (SPC), transverse fasciculus of
the cuneus (TFC) and the transverse fasciculus of the lingual lobe of Vialet (TFV)

(Fig 1).

STRATUM CALCARINUM (SC)
The stratum calcarinum (SC) consists of several U-shaped fibers that connect the

two banks of the calcarine fissure, a major landmark that medially divides each
occipital lobe into the wedge-shaped cuneus superiorly, and the lingual lobule
inferiorly, and represents the boundaries of the primary visual cortex. This group of
U-shaped fibers extends all along the calcarine fissure from the occipital pole to its
junction with the parieto-occipital fissure at anterior border of the occipital lobe (Fig.
2). The SC is an unusually large U-fiber system because it directly connects adjacent
gyri across a long and deep fissure — perhaps the reason the Dejerines devoted

considerable attention to it, describing it alongside other intralobar fibers.
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Figure 2. The stratum calcarinum (SC) A) Sagittal slice showing the right SC (red)
curved around the calcarine fissure. B) Coronal slice showing the left and right SC.
C-D) The two layers of the SC. The deeper and longer layer (orange) lies under the
more superficial and u-shaped layer (red). Where they intersect is shown in bright
yellow.

The SC fibers are composed of two superimposed layers (Fig. 2C). The first, most
superficial layer has a vertical and horizontal orientation that embraces the superior
and inferior edges of the fissure. The second has longer and more deeply
penetrating fibers that join the medial-central aspects of the cuneus to the medial-
central aspects of the lingual gyrus. SC layers lie directly on top of the longitudinal
fibers of the inferior longitudinal fasciculus that joins them to carpet the floor of the
calcarine fissure (Fig.6). These fibers run perpendicular to the vertical SC fibers and
interlink the different U-fiber units along the fissure like rails on a track. This relation
between the inferior longitudinal fasciculus and the U-fibers of the occipital lobe was
depicted by ffytche et al. (2005), however, they did not explicitly mention the SC

system or distinguish it from other U-fibers.
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The horizontal aspect of the SC that projects away from the midline into the bank of
the fissure becomes intertwined with the other intralobar tracts that originate from the
lips of the calcarine fissure: the stratum proprium cunei (SPC in the superior lip) and
the transverse fasciculus of Vialet (TFV in the inferior lip). In the anterior part of the
fissure, the vertical portion of the SC is on the same plane, and slightly overlaps the
sledge runner fibers (not described by the Dejerines) that travel vertically
downwards, beneath the calcarine fissure, prior to continuing transversely to the
anterior lingual gyrus (Fig. 6). Similarly, Meyer’'s loop, the anterior optic radiation

fiber bundle, terminates in the inferior lip amongst the SC.

STRATUM PROPRIUM CUNEI (SPC)
The stratum proprium cunei (SPC) arises from the superior bank of the anterior

calcarine fissure, just posterior to the junction with the parieto-occipital sulcus (Fig.
3). The tract connects the inferior aspect of the cuneus with the most anteromedial
convexity of the occipital lobe, just posterior to the pre-cuneus. The SPC runs deep
to the parieto-occipital sulcus, at the level of the calcar avis, initially coursing laterally
away from the calcarine fissure for a short distance, before ascending vertically to
terminate in what is classically referred to as the first occipital convolution. Unlike the
vertical occipital fasciculus that fans out across the entirety of the first occipital
convolution, the SPC projections remain on a plane medial to the posterior horn of
the ventricle. Though the SPC connects distal regions of the same lobe, it is a
relatively short and narrow association fiber tract. Our findings align with the
Dejerines’, and show that the SCP runs neatly along the anteromedial margins but is

constrained to the occipital lobe.
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Figure 3. The stratum proprium cunei (SPC) A) Coronal view of the SPC
(magenta) that lines the midline of the cuneus. B) Sagittal view of the SPC showing
how it arises from the superior bank of the calcarine fissure. cf. calcarine fissure.

TRANSVERSE FASCICULUS OF THE CUNEUS OF SACHS (TFC)
The transverse fasciculus of the cuneus of Sachs (TFC) is described as a tight,

slender bundle, consisting of relatively few fibers that initially move away from the
upper fold of the calcarine fissure with a strong oblique trajectory, such that they can
course laterally over the roof of the posterior lateral ventricle and cross the cuneus to
terminate in the lateral convexities of the occipital lobe (Sachs and Wernicke 1892;
Vialet 1893; Campbell 1905; Greenblatt 1973; Schmahmann and Pandya 2006;
Vergani et al 2014). Unfortunately, in the present study, it was not possible to identify

a bundle resembling the TFC.

TRANSVERSE FASCICULUS OF THE LINGUAL LOBE OF VIALET
(TFV)
A tract resembling the many aspects of the Dejerines’ description of the transverse

fasciculus of the lingual lobe of Vialet (TFV) was successfully isolated (Fig.4). The
Dejerines depicted the TFV as a mirror counterpart to the transverse fasciculus of
the cuneus, as it connects the inferior gyrus of the calcarine fissure to the infero-
lateral aspects of the occipital lobe, akin to the way in which the transverse
fasciculus of the cuneus connects the fissure to the external surface of the cuneus.

In contrast, the stratum proprium cunei connects the fissure to the medial surface of
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the hemisphere and does not appear to have an inferior lingual gyrus equivalent.
Interestingly, the TFV origin can be found all along the calcarine fissure alongside

the stratum proprium cunei.

The TFV has a morphology that resembles an extended U-fiber; the tract travels
laterally away from the fissure prior to adopting an intense anterior-oblique trajectory
that sharply curves back on itself and continues in a posterior-oblique course toward
the lateral convexity of the occipital lobe. Due to the squatness of the lingual lobe,
the tract appears quite flat and two ends of the fiber tract are nearly on the same
coronal plane, with the lateral terminations slightly inferior to its calcarine fissure
origin. The TFV starts superiorly and medially to the inferior longitudinal fasciculus
and occipital projections of the inferior fronto-occipital fasciculus, and crosses
laterally over these two major association fiber bundles, before descending just
laterally to them.
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Figure 4. Transverse fasciculus of the lingual lobe of Vialet (TFV) A) Axial view
of the TFV (blue) showing it projects anteriorly before it reflects in the anterior aspect
of the lingual gyrus. B) Coronal view of TFV showing it arises from the inferior gyri of
the calcarine fissure and terminates infero-laterally. C) Sagittal and axial view of the
TFV showing how it does a hairpin loop at the anterior edge of the lingual gyrus.
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VERTICAL OCCIPITAL FASCICULUS (VOF)
Using the Dejerines’ classical description, we identified the vertical occipital

fasciculus (VOF) (Fig.5A), and it aligns well with modern tractography findings. Of
the five occipital tracts the Dejerines observed, the VOF is the longest and most
prominent, and consequently has been the focus of many more studies. Often
described as a short, vertical, and ‘sheet-like’ bundle of fibers, the VOF “connects
the superior aspect of occipital lobe to its inferior surface” (Déjerine and Déjerine-
Klumpke 1895) p.779 maintaining a dorsal-ventral course lateral to the posterior
ventricle. More specifically, the inferior terminations of the VOF extend from the
ventral temporo-occipital cortex region, encompassing the inferior temporal gyrus
and its intersection with the anterior aspects of the middle and inferior occipital gyri.
The superior projections of the VOF reach the lateral gyri of the occipital lobe,
including the transverse occipital sulcus, with several fibers reaching the posterior

end of the intra-parietal sulcus and the angular gyrus.

The ‘sheet-like’ stem of the VOF tract, that courses through the central part of the
occipital lobe, is a wide bundle that has a predominantly vertical trajectory, apart
from the ventral and dorsal terminations that flick out laterally and transversely to
reach the convexity of the lateral occipital lobe across a wide area. Whereas the
stratum calcarinum is covered laterally by the inferior longitudinal fasciculus, the
VOF passes laterally to the inferior longitudinal fasciculus along with the inferior
fronto-occipital fasciculus, continuing superiorly to both and coursing vertically,

posterior to the arcuate fasciculus.
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Figure 5. Dorsal to ventral intralobar fibers A) Sagittal view of the right vertical
occipital fasciculus (VOF in green). B) Sagittal view of the right sledge runner
fasciculus (SFR in yellow). C) Coronal slice of the VOF and SFR showing how they
lie lateral and medial to the lateral ventricles, respectively. Both connect dorsal
aspects of the occipital lobe to ventral aspects. VOF: vertical occipital fasciculus,
SFR: sledge runner fasciculus.

SLEDGE RUNNER FASCICULUS (SRF)
Tracts resembling the recently discovered sledge runner fasciculus (SRF) (Vergani

et al. 2014) were identified in both hemispheres and reconstructed successfully
(Fig.5B). The SRF connects the posterior pre-cuneus to the anterior lingual gyrus of

the lingual lobe, taking a strongly inferior anterior oblique trajectory with a couple of
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convexities — giving it a sledge morphology. It is a long occipital tract that traverses
from the dorsal to ventral aspects of the cerebrum like the vertical occipital
fasciculus. However, unlike the vertical occipital fasciculus, it is medial to the
ventricles. With a compact central stalk that widens as the tract descends anteriorly
and narrows superiorly, it is a prominent bundle of similar length to the vertical
occipital fasciculus. As in the first observations of the SRF obtained through fiber
microdissections, the results showed that the dorsal SRF terminations where located
at the anterior border of the cuneus, adjacent to the midline of the cerebrum. The
dorsal SRF terminations are entangled with the anterior fibers of the stratum
proprium cunei bundle (Fig.5C). The ventral terminations are more anteriorly located
and project deep into the lingual gyrus, posterior to the cingulate isthmus and the

posterior part of the parahippocampal gyrus.
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Figure 6. The five intralobar fibers identified in the occipital lobe. A) Sagittal and
axial view. B) Posterior view. C) Sagittal view showing that the SPC is more medial
than the SRF and that the SC extends more widely than the other medial intralobar
tracts. D) Coronal view showing that the intralobar fibers connect all aspects of the
occipital lobe VOF: vertical occipital fasciculus (green), SFR: sledge runner
fasciculus (yellow), SCP: stratum proprium cunei (magenta), SC: stratum calcarinum
(red), TFV: transverse fasciculus of the lingual lobe of Vialet (blue).
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DISCUSSION

The anatomical described in the present study suggests that the occipital lobe has at
least five intrinsic white matter structures that fall between the long association fibers
and the very short U-shaped fibers. These are: the stratum calcarinum, the
transverse fasciculus of the lingual lobule of Vialet, the stratum proprium cunei, the
vertical occipital fasciculus of Wernicke (VOF) — which were described by the
Dejerines, and the recently discovered sledge runner fasciculus (SRF). Apart from
the vertical occipital fasciculus of Wernicke and the sledge runner fasciculus, none
have been the focus of dedicated studies since the turn of the 20" century.

This current study also highlights the persistent utility of historical studies for

guidance of neuroimaging findings.

VERTICAL OCCIPITAL FASCICULUS (VOF)
The VOF’s existence as an association fiber bundle has been extensively verified,

through dMRI studies (Yeatman et al 2014; Keser et al 2016; Briggs et al 2018;
Panesar et al 2019; Schurr et al 2019), post-mortem dissections (Vergani et al 2014;
Gungor et al 2017; Palejwala et al 2019), and it has even been identified and
compared in macaques (Takemura et al 2016). Yet, the boundaries of the pathway
remain unclear and disputed (Bullock et al 2019). Its vertical trajectory, like that of
the stratum proprium cunei, distinguishes it from the other long association fibers
that project into the occipital lobe, and its long dorso-ventral trajectory, located lateral
to the ventricle, sets it apart from the intraoccipital tracts. The Dejerines, like other
early neuroanatomists, admitted to poorly defining the anterior limits of the VOF.
Their descriptions suggest that it extended anteriorly beyond the modern boundaries
of the occipital lobe, descriptions borne out by most recent tractography studies,
including this present one. Hence, it is arguable that the VOF is not strictly an
autochthonous tract restricted to the occipital lobe (Weiner et al., 2017). Depending
on how anterior the ventral terminations of the VOF were, it assumed either an
obligue dorsal and posterior trajectory, or in the case of more posterior ventral
terminations, a vertical trajectory to the occipital cortex. We did not find strong
ventral VOF termination within the ventromedial-fusiform gyrus or the dorsomedial
portion of the occipital lobe. Our findings show that the VOF extends from the dorsal

to ventral aspects of the lateral parietal and occipital lobe as a thin sheet and
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terminates at the lateral-posterior end of the temporo-occipital region. As described
by the Dejerines, the VOF courses laterally to the occipital horn, the inferior fronto-

occipital fasciculus and inferior longitudinal fasciculus.

Studies now aim to better differentiate the VOF fibers from the neighbouring larger
bundles. The VOF projects over the inferior longitudinal fasciculus. Their proximity
once made the VOF difficult to distinguish from the terminal portions of the inferior
longitudinal fasciculus, leading to its misidentification in one of the early studies on
the macaque (Schmahmann and Pandya 2006). Similarly, the posterior arcuate
fasciculus borders the anterior dorsal terminations of the VOF, and the two tracts can
be joint or slightly separated depending on the subject (Curran 1909; Weiner et al
2017). Borders for the VOF, or any other occipital intralobar tract, can manifest small
discrepancies across studies partly due to brain borders being a man-made
construct, high subject variability, the limits of imaging resolution, and the larger
number of more prominent tracts that cross the intralobar tracts (Maier-Hein et al
2017). The occipital intralobar tracts, notably the VOF, have a strong dorsal-ventral
trajectory, whereas many of the major long association fiber pathways that enter the
occipital lobe have an anterior-posterior trajectory. Hence, the intralobar fibers cross
paths with more prominent bundles that can cancel out their signal. The Dejerines
themselves remarked on the limits of even masterful brain dissection skills for
identification of terminations in pathway-dense regions, limiting the extent of
guidance that post-mortem dissections can provide. The continuous improvement in
MRI tractography angular resolution, and the development of alternative models,
have made some headway (Takemura et al 2016; Weiner et al 2017). However, the
extent of the separation between adjacent fiber pathways is subject to the imaging
modality employed (Weiner et al 2017). It has been shown that the VOF and the
posterior arcuate fasciculus are seen to have closer borders when using constrained
spherical deconvolution based probabilistic tractography, compared to tensor based
deterministic tractography (Weiner et al 2017). Recent studies have differentiated the
VOF bundle from the vertical subdivision of the arcuate fasciculus (Panesar et al.
2019). It is important to make these distinctions, for both the VOF and other
intralobar fibers, in order to generate a truly representative map — that is, one that
does not include pathways that appear longer or wider than they truly are because

they artificially contain subsections of adjacent tracts. Knowing the extent of a
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distinct white matter system is useful for future work concerning functional
specialization and pathology. It has been suggested that certain U-fibers, situated
between the VOF and other long association pathways, form artificial connections, or
U-fiber ‘bridges’, between the pathways that can make the two tracts look like one
larger tract (Panesar et al 2019). The intermingling of U-fibers is known to obstruct
the visualisation and interpretation of the deeper underlying subcortical tracts in both
fiber tractography and dissections (Reveley et al 2015).

The difficulty that arises when studying the work of the Dejerines, like other 19%-
century anatomists, relates to translating their definition of structures into the current
school of thought. Inconsistent landmarks, nomenclatures and methods were used to
define and visualise structures. This discordance makes it difficult to reference a
classic text and persists to the present day. Nevertheless, the congruency between
the Dejerines’ dissection and modern imaging suggests that the other tracts they

described should also be successfully visualised in vivo.

STRATUM CALCARINUM (SC)
In vivo and in vitro dissections of the calcarine fissure reveal a large continuous

bundle of U-fibers, named the stratum calcarinum (SC), connecting the upper and
lower edges of calcarine cortex (Fig.2). This is the first tractography reconstruction of
the SC as U-fiber studies are infrequent. U-fibers typically do not form a clear
pathway or large fiber system. The Dejerines chose to omit the SC from the portion
of their book that concerns U-fibers, in favour of discussing it alongside the
association fibers of the occipital lobe to highlight the prominence and size of the SC.
The Dejerines emphasised that it is not a true association fiber or a single entity.
Instead, it represents a series of tracts forming an oversized U-fiber system that
curves around the whole calcarine fissure and is specific to the primary visual cortex.
It extends from the posterior end of the occipital horn to the intersection with parieto-
occipital fissure and circumnavigates the calcar avis in its full extension. The SC
intermingles with the other association fibers like the transverse fasciculus of Vialet
and stratum proprium cunei, which link the primary visual cortex with the convexity of

the occipital lobe.
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The SC system forms an atypical bundle as it consists of a long and deep layer
underlying a short and more superficial layer. The superficial SC layer, as can be
seen from the results (fig. 2C), has short projections that tightly carpet the floor of the
calcarine fissure and join the superior and inferior gyri that directly border the fissure.
This gives the layer the characteristic ‘U’ appearance. The second underlying layer
has wider projections and a weaker U shape. Its longer fibers connect the medial
aspect of the central cuneus to the inferior-medial aspect of the lingual lobe.

The calcarine fissure receives several white matter bundle pathways that share
similar orientations at the level of the fissure, making it particularly difficult to
differentiate them. Campbell (1905), postulated that the majority of the fibers labelled
by the Dejerines, such as the SC, were actually terminal fibers of the optic radiation.
Indeed, the Dejerines (D¢jerine and Déjerine-Klumpke, 1895) acknowledged that the
histological staining method employed was insufficient to confidently evaluate the
degree to which association fibers, like the SC, contribute to the projection fiber
pathways that are situated along the ventricles. However, more recent studies,
conducted with the improved Klingler’s technique, are congruent with the Dejerines’
description of the SC (Vergani et al 2014; Koutsarnakis et al 2019). Unfortunately, to
date, most mentions of the human SC, transverse fasciculus of Vialet, transverse
fasciculus of the cuneus, and stratum proprium cunei in the literature have been in
reference to historical dissections (Catani and De Schotten 2012; Catani et al 2012;
Takemura et al 2018).

A human post-mortem dissection study had shown the three-dimensional
relationship between the sledge runner fasciculus and SC, with the sledge runner
fasciculus running obliquely, almost perpendicularly, over the SC fibers that lie in the
anterior portion of the calcarine fissure just posterior to the junction it shares with the
parieto-occipital sulcus (Koutsarnakis et al 2019). There is a similar overlap that
occurs between the SC and the stratum proprium cunei (fig.6). The posterior inferior
longitudinal fasciculus projects obliquely toward the calcarine fissure and passes
over the SC, before descending and coating the internal wall of the occipital horn,
separating the ventricle from the SC (Déjerine and Déjerine-Klumpke 1895;

Schmahmann and Pandya 2006).
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The Dejerines considered the SC as one of the most important short-range
connections in the occipital lobe. The proposed importance of the SC arises from its
role in connecting the superior and inferior vision field regions all along the fissure,
likely implicating it in the visual pathways of the macula and the retina. It has been
postulated that the SC, stratum proprium cunei and transverse fasciculus of the
cuneus contribute to coordination and propagation of the visual stimuli of colour,
shape and motion from the primary cortex to higher order association areas,
permitting both dorsal and ventral outflow to the rest of the parietal and temporal
cortex (Greenblatt 1973; Maunsell and van Essen 1983).

STRATUM PROPRIUM CUNEI (SPC)
The SPC is a short and seemingly inconsequential tract that rises in the sagittal

plane from the calcarine fissure at the medial border of the hemisphere (fig.3). Since
the first reports by Sachs (Sachs and Wernicke 1892), it has only been vaguely
mentioned in passing (Campbell 1905; Von Bonin et al 1942; Greenblatt 1973;
Schmahmann and Pandya 2006; Vergani et al 2014). Our current findings align
strongly with the Dejerines’ observation that the SPC “originates from the superior lip
of the calcarine fissure” and projects dorsally to the “cortical region of the superior
border of the hemisphere” (Déjerine and Déjerine-Klumpke 1895), p.782). The
results show a bundle with a clear vertical projection that links the upper border of
the anterior calcarine fissure to the medial aspect of the cuneus convexity. Like the
stratum calcarinum, the SPC extends along the entire length of the calcarine fissure.
It differs, however, by being limited to the cuneus. Schmahmann & Pandya (2006),
speculated that the SPC bundle corresponds to fibers they identified in rhesus
macaque, located in the superior parietal lobule and the dorsal occipital white matter,
caudal to the dorsal component of the superior longitudinal fasciculus. The fibers
connected the medial pre-occipital gyrus of the occipital lobe with the medial part of
the superior parietal lobule. However, the SPC we observed does not extend past
the parieto-occipital fissure and does not correspond with the observations of
Schmahmann & Pandya, 2006, who describe it as more anteriorly projecting
compared to the system we have identified. As this is the first reconstruction of the
SPC with diffusion tractography, it is not clear to what extent the approach’s

limitations have affected the reconstruction.
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TRANSVERSE FASCICULUS OF THE LINGUAL LOBE OF VIALET
(TFV)
The Dejerines named the TFV after Nehemie Vialet who described it in detail and

published a paper arguing for its existence as a distinct fascicle (Vialet 1893). The
Dejerines were able to successfully reproduce the observations made by Vialet in
their own dissection studies. Our study succeeded in reconstructing this bundle
(fig.4). This was unexpected, as like the transverse fasciculus of the cuneus, the TFV
tract has not been mentioned in recent occipital fiber dissection or tractography
studies. The TFV tract can be seen as a counterpart to the transverse fasciculus of
the cuneus, as it connects the inferior gyri of the calcarine fissure to the convexity of
the lingual lobule. The TFV can be differentiated from the inferior longitudinal
fasciculus that courses alongside it at the level of the lingual gyrus and posterior
temporal lobe, by its slightly thinner bulk and paler Pal-haematoxylin staining (Vialet
1893; Deéjerine and Déjerine-Klumpke 1895). Vialet considered this bundle to be
functionally important as it seems to represent the inferior portion of the occipital lobe

association fiber system.

The existence of the TFV, as a distinct entity alongside the transverse fasciculus of
the cuneus and vertical occipital fasciculus, was heavily contested shortly after their
discoveries. This resulted in their omission from much of the literature, such as the
neuroatlases of notable and influential neurologists like that of Constantin Von
Monakow. Von Monakow described various subcortical structures with the locations
and gross trajectories that match the TFV, transverse fasciculus of the cuneus and
vertical occipital fasciculus, but was unable to differentiate them from neighbouring
bundles and so negated their existence as distinct tracts (Yeatman et al 2014).
Indeed, Schmahman & Pandya (2006), professed uncertainty as to the existence of
the TFV as a distinct tract and considered the TFV as described by the Dejerines to
be equivalent to the “fransverse inferior longitudinal fasciculus fibers that lie within
the ventral part of the occipital and temporal lobe and that link the lateral cortices
with the medial cortices” (p. 450). However, Schmahmann & Pandya, 2006, had
made a similar comment in relation to the vertical occipital fasciculus and had
interpreted it as part of the vertical component of the inferior longitudinal fasciculus

(Forkel et al 2014), which was later shown to be inaccurate by more focused
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tractography studies. Vergani et al. (2014), conducted a thorough post-mortem
exploration of the intralobar fibers of the occipital lobe, in an effort to replicate the
work of Sachs (Sachs and Wernicke 1892). Interestingly, like Sachs, the authors did
not mention a tract that matches the morphology of the TFV as described later by
Vialet, the Dejerines, and as identified in this study. A recently resurfaced
photograph of a Weigert-stained histological slide of the macaque occipital lobe by
von Bonin et al. (von Bonin et al.,, 1942) clearly depicts the vertical occipital
fasciculus and stratum calcarinum, and somewhat less clearly, the TFV and
transverse fasciculus of the cuneus named the fasciculus transversus lingualis and
fasciculus transversus cunei, respectively (Takemura et al., 2018). The brevity of the
description makes it hard to ascertain in greater detail the course of the TFV in the

macaque.

THE TRANSVERSE FASCICULUS OF THE CUNEUS (TFC)
Our study did not identify a consistent tract in either hemisphere that matches any

previous descriptions. Yet, the Dejerines remarked that the calcarine cortex is
attached to the cuneus and first occipital convolution through both the stratum
proprium cunei and TFC and this observation of the TFC was also made by (Sachs
and Wernicke 1892; Vialet 1893; Campbell 1905; Von Bonin et al 1942; Greenblatt
1973; Vergani et al 2014). The Dejerines, with reference to Sachs’ work, described
the TFC as having a trajectory that “runs slightly obliquely, anteriorly and laterally,
and radiate[s] in the superior parietal lobule and in the angular gyrus” (Dejerine,
1895 pg.781). It was specified by the Dejerines, Sachs and Vialet (Sachs and
Wernicke 1892; Vialet 1893; Déjerine and Déjerine-Klumpke 1895) that the origin of
the TFC is at the level of the calcarine fissure amongst the stratum calcarinum and
stratum proprium cunei. This was more recently supported by Vergani et al., 2014,
(Vergani et al 2014) who conducted an in vitro dissection and identified segments of
the TFC, which they labelled stratum transverse cunei. The cuneus is very compact
with a high density of white matter fibers crossing it. Therefore, there are a large
amount of fibers with an antero-posterior trajectory, crossing paths with the thinner
TFC, either perpendicular or parallel to it, disrupting the fiber orientation. Indeed, a
recent effort to follow the full trajectory of this bundle was unsuccessful (Vergani et
al., 2014).
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The two opposing origins along the calcarine fissure of the transverse fasciculus of
Vialet and TFC, and the mirroring trajectories described by the Dejerines, imply the
possibility of complementary functions related to the upper and lower quadrants of
the visual field, respectively, and integration of visual stimuli to the accessory visual
integration area and the rest of the cerebrum (Campbell 1905; Greenblatt 1973). It
follows that if the transverse fasciculus of Vialet exists to connect the areas of the
cortex involved in the superior vision fields with distal cortical regions, a similar

subcortical system would need to be in place for the inferior vision fields.

THE SLEDGE RUNNER FASCICULUS (SRF)
The SRF had not been described by Sachs, nor later by the Dejerines or other

neuroanatomists until Vergani and colleagues (Vergani et al 2014). The novel tract
was initially named the ‘sledge-runner fasciculus’ to highlight its undulating shape
due to its anteriorly projecting curve at the level of the calcarine fissure (Vergani et al
2014). Later, in a focused tractography study, the SFR was alternatively named as
the medial occipital longitudinal tract (MOLT) to better reflect its anatomy (Beyh et al
2017). We continue to use the term SRF as it is the more widely known term. The
SRF is a thin tract that lies within the medial aspect of the anterior calcarine fissure
relaying the anterior border of the dorsal occipital lobe to the antero-superior aspect
of the lingual gyrus. Previous tractography studies align with our observation that the
SREF lies deep to the anterior third of the stratum calcarinum. The SRF connects the
anterior border of the medial cuneus to the lingula, isthmus of the cingulum and
posterior parahippocampal gyrus (Vergani et al 2014; Gungor et al 2017,
Koutsarnakis et al 2019). Vergani et al. (2014), supposed that previous anatomists
failed to identify the SRF because they classically examined the brain using coronal
sections. This allowed U-fibers, running in the coronal plane along the medial and
inferior aspects of the hemisphere, to mask the tract. Subsequently, studies
combining both post-mortem dissections and tractography confirmed the
dorsomedial-ventrolateral trajectory of the SRF, specifying that it connects the
posterior part of the precuneus to the lingual gyrus and that it lies predominantly
medial to the occipital horn and the posterior two-thirds of the atrium (Glngor et al
2017; Koutsarnakis et al 2019). The SRF abuts the posterior cingulum and passes

medial to the forceps major with a convex anterior projection.
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Furthermore, based on current functional understanding of the regions near the SRF
tract dorsal origins, specifically the posterior precuneus, it is postulated that the SRF
has a role in processing visual stimuli for visuospatial attention and the recognition of
places (Gungér et al 2017; Koutsarnakis et al 2019). The present study is in
concordance with past findings and shows the SRF’s relations to other intraoccipital
tracts (fig.6).

LIMITATIONS
As we have shown throughout this study, dMRI has permitted the explorative and

comparative studies of subcortical architecture and morphology in large pools of
healthy patients, producing both qualitative and quantifiable in vivo data. Regardless,
it is necessary to acknowledge the inherent limitations of dMRI based tractography
and the specific shortcomings of the technique used in our study. First, it is well
documented that the foundation of all successful white matter studies is a strong
anatomical background to limit tract misinterpretation and erroneous definitions
(Thomas et al 2014; Maier-Hein et al 2016). Interpretation of the results depends on
the expertise of the operator in both physical and virtual dissections. Second,
literature has extensively noted that tractography struggles to discern crossing and
kissing fibers (Maier-Hein et al 2016). Third, the inaccurate localisation of tract
endpoints is a persistent issue despite the improvement in image resolution (Smith et
al 2012; Girard et al 2014). Identification of endpoints requires heuristic selection
techniques and uses varied termination criteria, introducing a considerable operator
bias. Fourth, selecting a method that prevents spurious inferences by limiting the
trade-off between sensitivity and specificity, when reconstructing tracts an unsolved
problem (Thomas et al 2014; Zalesky et al 2016). Furthermore, the anatomical
accuracy of tractography relies on the selected algorithm parameters, with their
optimisation varying from bundle to bundle. The choice of these parameters can lead
to biased characterisation of connectome topography and therefore remains a

source of controversy.

One of the standard approaches to try to reduce the spurious results of tractography,
particularly false positives, is the implementation of anatomical knowledge into the

interpretation of the results. A form of anatomical confirmation is invasive post-
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mortem human brain dissection. This study consulted the work of classical

neuroanatomists, such as the Dejerines, to guide in vivo dissections.

With the growing sparsity of appropriate brain cadavers, the development of
tractography has used the historic work of past neuroanatomists to supplement their
imaging findings (Schmahmann and Pandya 2007; Schmahmann et al 2008; Catani
et al 2012; Dick and Tremblay 2012; Bullock et al 2019). The 19"-century
neuroanatomists were masterful in their blunt post-mortem dissections and
histological staining studies. The Dejerines, and the other neuroanatomists they
reviewed in their work, used brains that were not necessarily healthy, did not use the
Klingler's technique, nor was there a clear consensus on the definition of association
fibers. The first two likely led to artefacts and unclear structures, and the latter
incorporated a bias into the interpretation of their findings. There are therefore limits
to using historical dissection work to guide new findings. This is especially the case
since different neuroanatomists omitted certain tracts from their atlases that they
judged, rightly or wrongly, to be inaccurate. Historical work has proven to be a useful
starting point for reviving unexploited concepts. It also serves as a strong guideline in
helping to determine the potential value of a study. Regardless of the above, they do
not circumvent the need for subsequent validation from the modern post-mortem

dissection literature.

Tractography has generated findings shrouded in controversies, many dating from
the 19" century that are still unresolved. Yet, great strides have been made in
acknowledging and reducing biases. In this study we have shown that there is a
significant concordance between the original anatomical work of the Dejerines and
the recently well-defined VOF, giving us confidence to extrapolate trust in our
findings of the other lesser-known tracts. The results indicate gaps in current
knowledge and encourage future studies based on this new perspective of what the

association fibers of the occipital lobe entail.
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