

1 **Short title:** Oat seed metabolome

2

3 **Corresponding Author:**

4 Jean-Luc Jannink

5 R.W. Holley Center for Agriculture & Health

6 US Department of Agriculture, Agricultural Research Service

7 Ithaca, NY 14853

8

9 **Article title:** Translating insights from the seed metabolome into improved prediction for
10 healthful compounds in oat (*Avena sativa L.*)

11

12 **Authors names and affiliations:** Malachy T. Campbell*, Haixiao Hu*, Trevor H. Yeats*,
13 Melanie Caffe-Treml**, Lucía Gutiérrez‡, Kevin P. Smith†, Mark E. Sorrells*, Michael A. Gore*,
14 Jean-Luc Jannink*§

15 * Plant Breeding & Genetics Section

16 School of Integrative Plant Science

17 Cornell University, Ithaca, NY 14853

18 † Department of Agronomy & Plant Genetics

19 University of Minnesota

20 St. Paul, MN, 55108

21 ‡ Department of Agronomy

22 University of Wisconsin-Madison

23 Madison, WI, 53706

24 ** Seed Technology Lab 113

25 Agronomy, Horticulture & Plant Science Box 2108

26 Brookings, SD 57007

27 *§ R.W. Holley Center for Agriculture & Health

28 US Department of Agriculture, Agricultural Research Service

29 Ithaca, NY 14853

30

31 **One sentence summary:** A metabolome-informed genomic prediction model improves
32 prediction for health-related seed-quality traits in oat.

33 **Author contributions:** Metabolomic data were generated by HH and THY; analyses were
34 performed by MTC under the guidance of MAG and JLJ; KPS and THY generated data used
35 for validation; MTC wrote the manuscript with guidance from JLJ and MAG; comments were
36 provided by HH, LG, MES, MAG and JLJ provided; this study was supported by grants
37 secured by KPS, LG, MCT, MES, MAG, and JLJ; all authors read and approved the manuscript.

38 **Funding information:** Funding for this research was provided by USDA-NIFA-AFRI 2017-
39 67007-26502. The USDA is an equal opportunity provider and employer.

40 **Email for author of contact:** mc2755@cornell.edu

41 **Abstract**

42 Oat (*Avena sativa* L.) seed is a rich resource of beneficial lipids, soluble fiber, protein, and
43 antioxidants, and is considered a healthful food for humans. Despite these characteristics,
44 little is known regarding the genetic controllers of variation for these compounds in oat
45 seed. We sought to characterize natural variation in the mature seed metabolome using
46 untargeted metabolomics on 367 diverse lines and leverage this information to improve
47 prediction for seed quality traits. We used a latent factor approach to define unobserved
48 variables that may drive covariance among metabolites. One hundred latent factors were
49 identified, of which 21% were enriched for compounds associated with lipid metabolism.
50 Through a combination of whole-genome regression and association mapping, we show
51 that latent factors that generate covariance for many metabolites tend to have a complex
52 genetic architecture. Nonetheless, we recovered significant associations for 23% of the
53 latent factors. These associations were used to inform a multi-kernel genomic prediction
54 model, which was used to predict seed lipid and protein traits in two independent studies.
55 Predictions for eight of the 12 traits were significantly improved compared to genomic best
56 linear unbiased prediction when this prediction model was informed using associations
57 from lipid-enriched factors. This study provides new insights into variation in the oat seed
58 metabolome and provides genomic resources for breeders to improve selection for health-
59 promoting seed quality traits. More broadly, we outline an approach to distill high-
60 dimensional 'omics' data to a set of biologically-meaningful variables and translate
61 inferences on these data into improved breeding decisions.

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76 **Introduction**

77 The oat seed contains a diverse array of compounds that are beneficial for human health
78 and nutrition (Gulvady et al. 2013). It is widely considered a healthy food due to its high
79 soluble fiber content, which is unique among major cereals and has been shown to improve
80 cardiovascular health and blood glucose levels (Gulvady et al. 2013; Kale et al. 2013). Oat is
81 also a good source of protein (12.4-24.5% of seed weight), oil (3-11%), and a rich source of
82 vitamins and minerals (Frey and Holland 1999; Gulvady et al. 2013). The oils found in the
83 oat seed are primarily triglycerides, with palmitic, oleic, and linoleic acids being the
84 primary fatty acids (Youngs 1978). In addition to the benefits from direct consumption,
85 colloidal oatmeal and oat extracts have been used extensively as an effective topical
86 medicine to treat skin dermatitis and reduce inflammation (Cerio et al. 2010; Kurtz and
87 Wallo 2007). These benefits have been attributed to avenanthramides, flavonoids,
88 tocopherol, polysaccharides, and lipids. Thus, the oat seed is a rich source of diverse
89 compounds that have multifaceted effects on human health. To improve specific
90 biochemical properties of oat, breeders must be provided with a suite of tools that allow
91 these compounds to be quantified accurately at low cost, and genomic resources that
92 improve selection for specific seed qualities.

93 Advances in biochemistry have provided a breadth of tools to query the metabolome and
94 quantify known and unknown compounds (Dunn and Ellis 2005). Untargeted
95 metabolomics can quantify 100s-1000s of metabolites in a sample, thus health-promoting
96 and quality-related metabolites, and their intermediate or related compounds can be
97 assessed with relative ease (Dunn et al. 2013; Christ et al. 2018). These data can be used to
98 address basic biological questions regarding biochemical pathways that are represented in
99 the data, and assess natural variation for these pathways. The effectiveness of these
100 methods to characterize natural variation in the metabolome has been highlighted by
101 several studies (Caspi et al. 2014; Chan et al. 2010; Matsuda et al. 2015; Slenter et al. 2018;
102 Wu et al. 2018). Moreover, these data have been used as predictors, often alongside
103 genomic data, to improve prediction for complex traits (Riedelsheimer et al. 2012; Guo et
104 al. 2016; Xu et al. 2016).

105 Parsing these data to understand the biology of the seed metabolome can be challenging.
106 Numerous databases are available that describe primary and secondary metabolic
107 pathways, and are curated using information both across and within species (Kanehisa and
108 others 2002; Wishart et al. 2020). Metabolites can be mapped to these pathways to
109 determine which pathways and their products are enriched in a given set of samples. While
110 these approaches provide greater confidence over unsupervised, data-driven approaches,
111 in many cases only a fraction of the compounds quantified via untargeted metabolomics
112 can be mapped to these pathways (Schrimpe-Rutledge et al. 2016; Cui et al. 2018).
113 Unsupervised, data-driven approaches provide an attractive alternative that utilizes the
114 data more completely. These approaches include co-expression-based analyses and factor
115 analytic models among others. While coexpression-based analyses have been used
116 extensively to characterize high-dimensional 'omics' data, these often require users to
117 select several parameters that influence outcomes and may limit reproducibility (DiLeo et

118 al. 2011; Langfelder and Horvath 2008). Factor analytic models, on the other hand, use a
119 linear model to identify groups of strongly correlated metabolites. The underlying rationale
120 for these approaches is that covariance among metabolites is driven by some unobserved
121 (i.e., latent) underlying variable(s). With this approach, the matrix of metabolites is
122 decomposed into a lower-dimensional linear combination of factor loadings, which
123 describe how each latent factor contributes to each compound, and a set of factor scores
124 that ascribe a phenotypic value for all individuals for a given latent factor. Thus, these
125 frameworks have advantages from both biological and statistical perspectives. While in
126 some respects factor analytic models achieve the same goal as others, such as principal
127 component analysis (PCA) — providing a reduced rank representation of the data — the
128 defining feature of factor analytic models is that latent factors are constructed to preserve
129 correlation among groups of related metabolites. In PCA, new constructs are defined that
130 preserve variance in the observed variables. Thus, constructs from factor analytic models
131 can provide insight into biological processes driving covariation between phenotypes.
132 Moreover, the lower-dimensional set of factor-scores can be treated as any other
133 phenotype and reduce the multiple testing burden often associated with high-dimensional
134 'omics' datasets. With these frameworks we can address: (1) *What pathways are*
135 *represented in the metabolome?* and (2) *How do these pathways and their products co-vary*
136 *within a genetic population?*

137 Improving health or quality-related compounds requires decomposing phenotypic
138 variation within the metabolome into genetic and non-genetic components, and utilizing
139 these outcomes to inform selection decisions for quality-related phenotypes. Conventional
140 linkage analysis or association mapping approaches have proven to be powerful
141 approaches to identify genetic variants associated with variation in the metabolome (Chan
142 et al. 2010; Eckert et al. 2012; Matsuda et al. 2015; Rowe et al. 2008; Wen et al. 2014; Xu et
143 al. 2017). However, a much greater challenge is to translate genetic signal for health-
144 promoting compounds, and related metabolites, to improve prediction and selection of
145 new crop germplasm.

146 A number of studies have extended the conventional frameworks used for genomic
147 prediction to accommodate prior biological information regarding genetic marker effects
148 (Edwards et al. 2016; MacLeod et al. 2016; Speed and Balding 2014; Turner-Hissong et al.
149 2019). Although these approaches differ in how these data are treated, the motivation is
150 similar for all — effects for variants that are more likely to be causative should be drawn
151 from a different distribution than those lacking evidence for causality. Thus, prediction
152 should be improved when effect sizes differ between genetic marker classes. The
153 approaches described by Speed and Balding (2014) and Edwards et al. (2016) are
154 essentially an extension of the genomic best linear unbiased prediction (gBLUP)
155 framework, in which genomic markers are partitioned and are used to construct separate
156 genomic relationship matrices for each random genetic effect. Genomic values for each
157 individual are sampled from each distribution. The framework described by MacLeod et al.
158 (2016) extends the Bayesian prediction framework, BayesR, and uses biological
159 information to partition markers into classes (Erbe et al. 2012). Marker effects, rather than
160 genomic values, are sampled from each distribution. In the context of the current study, if
161 we know what metabolites are related to quality traits and have identified variants

162 associated with these metabolites, genomic markers can be partitioned to define
163 biologically informed marker-sets. These biologically informed marker-sets should be
164 enriched for causal loci, and should improve prediction of genomic values.

165 In this study, we characterized the seed metabolomes of 375 oat lines and sought to
166 identify loci that potentially influence (co)variation among many metabolites. Specifically,
167 we sought to answer: (1) *What pathways or metabolite classes are enriched in the seed*
168 *metabolome?* (2) *What are the genetic controllers of the metabolome?* and (3) *Can these data*
169 *be leveraged to improve genomic prediction for seed quality traits?* To this end, we assayed
170 the seed metabolome using untargeted LC-MS and GC-MS and used the empirical factor
171 analysis approach described by Wang and Stephens (2018) to identify latent factors that
172 generate covariance among many metabolites. GWAS was performed using this reduced set
173 of latent phenotypes, and these outcomes were used to inform a multi-kernel genomic
174 prediction model to predict seed quality traits in two independent studies. In summary, we
175 extract meaningful basic biological insights from 'omics' data with limited annotations, and
176 translate these outcomes to improve prediction for agriculturally important traits.

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197 **Results**

198 **Metabolite differences across subpopulations are primarily generated by drift**

199 To characterize the metabolome of mature oat seed, we generated untargeted metabolite
200 data using two mass spectroscopy (MS) pipelines (gas chromatography MS, GC-MS and
201 liquid chromatography MS, LC-MS) for 367 diverse accessions (Supplemental File S1). The
202 diversity panel consisted of 367 accessions that could be partitioned into six distinct
203 genetic clusters using a k -means clustering approach (Fig. 1A and B; Fig. S1). Despite six
204 clusters being identified, the degree of stratification within the population was minor. For
205 instance, the first and second principal axes explained only 7.3% and 5.9% of the variance
206 in genetic relationships, respectively (Fig. 1A and B). We quantified 1,668 metabolites (601
207 for GC-MS and 1,067 for LC-MS) across the 367 accessions. PCA of the metabolome dataset
208 did not reveal any apparent clustering among accessions, and evidence of stratification
209 between genetically-defined clusters was not visually apparent (Fig. 1C and D).

210 To determine whether individual metabolites differed among clusters, we performed a
211 one-way ANOVA for each of the 1,668 metabolites (Supplemental File S2). Despite no
212 strong differentiation of the metabolome between the six clusters, 41% of the 1,668
213 metabolites showed significant differences between one or more of the subpopulations
214 (Benjamini-Hochberg adjusted p -value; $p_{BH} < 0.01$). We elucidated whether these
215 differences were due to selection or drift by examining P_{ST} , a measure of phenotypic
216 divergence between populations, and compared these values to the distribution of genetic
217 divergence (i.e., F_{st}) for all loci (Storz 2002; Leinonen et al. 2013). This analysis revealed
218 only 12 compounds with P_{st} values that were greater than 80% of the F_{ST} values, indicating
219 that the majority of compounds differing between subpopulations diverged due to drift or
220 weak selection. Only four of these compounds have annotations and were described as a
221 putative steroidal glycosides, terpene glycoside, triterpenoid, and 1-benzopyran. These
222 results suggest that the divergent metabolites are largely due to drift rather than selection.

223 **Latent factor model selection**

224 Given that only a fraction of the metabolites quantified in our population were annotated,
225 we leveraged the correlation between annotated and unannotated metabolites to infer
226 biological processes in the oat seed with the rationale that compounds participating in a
227 related biological process will be correlated. We used an unsupervised learning approach
228 that distills the covariance among a set of observed variables into a lower dimensional set
229 of unobserved constructs that may cause this covariance. In a biological sense, these latent
230 factors may provide insights into the major biochemical features of the metabolome, and
231 can be used to elucidate the genetic factors that shape the metabolome.

232 The covariance among the 1,668 metabolites was decomposed into a set of latent factors
233 using the empirical Bayes matrix factorization (EBMF) approach described by Wang and
234 Stephens (2018). This method constructs latent factors, which are defined by a linear
235 combination of factor loadings and factor scores, by approximating the posterior sampling
236 distribution for these parameters from the data (Wang and Stephens 2018). Three latent
237 factor models that differed in the family of prior distributions (Laplace, point normal, and
238 adaptive shrinkage) for factor loading and scores were evaluated, and the best model was

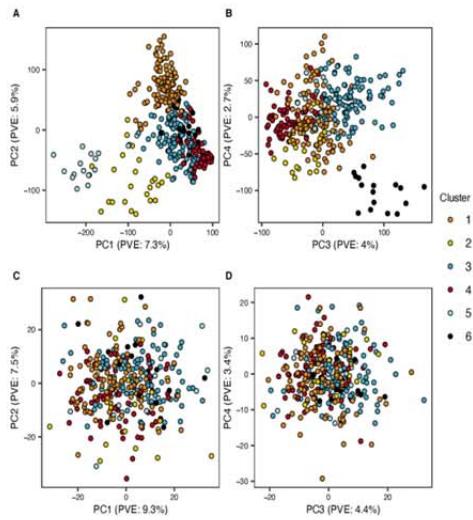


Figure 1. Principal component analysis of genotypic and metabolomic data. The first four principal components (PCs) of genotypic data are shown in panels A and B, while the first four PCs of the metabolomic data are shown in panels C and D. Subpopulations that were defined based on *k*-means clustering of SNP marker data are indicated by different colored points. PC: principal component; PVE: percent variance explained

240 S2). The Laplace family of densities exhibited the lowest RMSE (0.970) and highest
241 correlation between predicted and observed data ($r = 0.520$). The common covariance in
242 the oat seed metabolome could be captured using 100 latent factors that collectively
243 explained 58.82% of the total variance in the metabolite data.

244 **Factor analysis identifies sets of compounds coordinated by biological processes**

245 One possibility is that unobserved latent factors represent an underlying biological process
246 that creates covariation among metabolites. Another possibility is that covariance among
247 metabolites caused by population structure is captured by latent factors. We sought to
248 partition latent factors into those due to a biological process and those due to a
249 confounding effect (Bello et al. 2018). Since we showed that most population structuring of
250 metabolites was caused by drift, we expect their coordination to be largely random, and
251 therefore unrelated to their functional class. We assessed enrichment for functional classes
252 within each factor, as well as the relationship between factors and population structure.

253 To assess biological enrichment, we determined whether the variance explained by a given
254 metabolite functional class within a factor was significantly greater than might be expected
255 by chance. The ontologies described in the preceding section were used to calculate the
256 percentage of variance explained (PVE) by each functional class for each factor. To compute
257 p -values, we compared these values against an empirical null distribution that was
258 generated by randomly sampling loadings for a number of compounds equal to the number
259 of compounds belonging to the functional class. This accounts for both the size of the class
260 and the amount of variation that is explained by each factor. Of the 100 factors identified
261 with the EBMF approach, 37 showed significant enrichment in one or more categories at
262 the super-class level, while 40 and 36 factors showed significant enrichment at the class
263 level and subclass levels, respectively ($q < 0.05$). Functional classes associated with lipids
264 were most frequently enriched in our dataset (Fig. 2A,B), indicating that many factors may
265 be capturing components of lipid metabolism. In addition to lipids, four factors showed
266 enrichment for carbohydrates and carbohydrate conjugates, as well as amino acids. These
267 results suggest that many latent factors are capturing meaningful biological processes that
268 shape the seed metabolome, and can help shed light on the meaning of unannotated
269 metabolites.

270 To address the possibility that latent factors are due to population structure, we examined
271 the PVE by subpopulation. A linear model was fitted to each latent factor that included
272 subpopulation assignment as a fixed effect. The PVE by subpopulation ranged from 0.03 to
273 29.8%, and subpopulation explained more than 20% of the variation for factors 7 and 12.
274 Factor 7 did not show functional class enrichment but factor 12 was enriched across all
275 hierarchies for lipid and lipid-like molecules — specifically steroidal glycosides ($q < 0.05$).
276 Interestingly, P_{st} for this factor (0.27) was higher than the top 80th percentile of F_{st} (0.23),
277 suggesting that the differences between subpopulations for this factor may be due to
278 selection rather than drift. The high frequency of enrichment for functional classes of
279 metabolites, and the relatively small amount of variation that was attributed to
280 subpopulations suggests that these constructs can provide biochemically meaningful
281 insights into the seed metabolome.

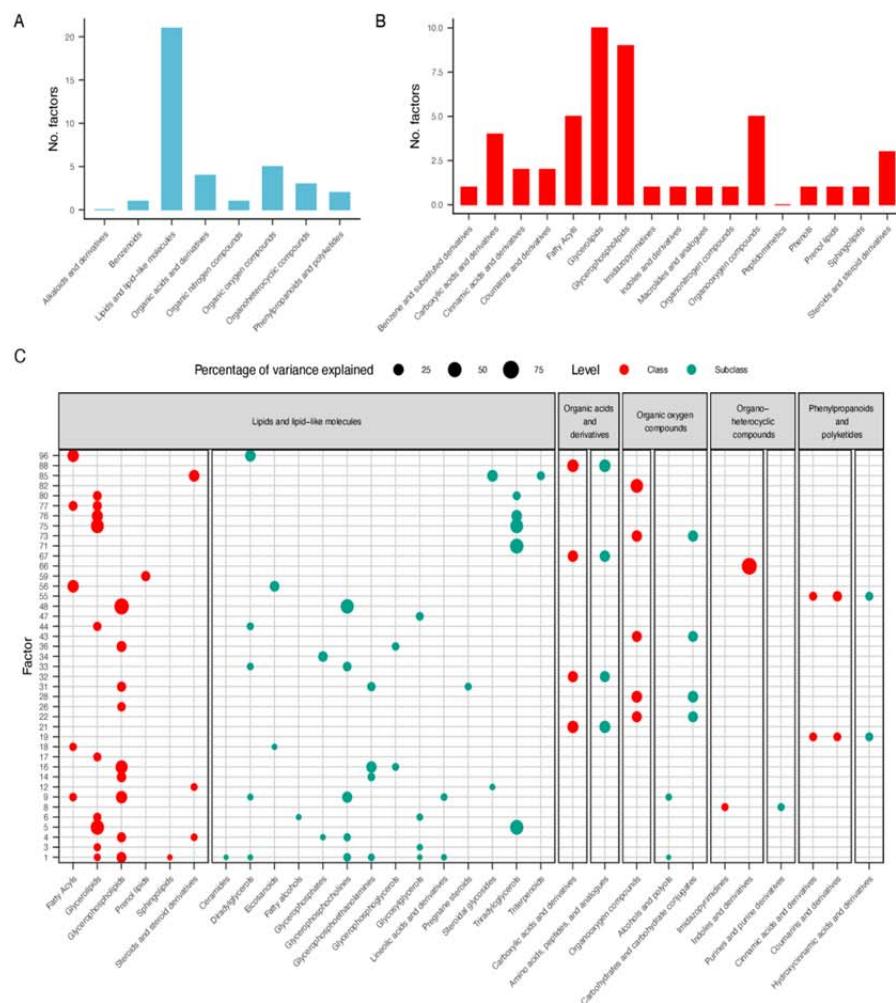


Figure 2. Functional enrichment among latent factors. Number of latent factors enriched (FDR < 0.05) for functional categories at the super-class level (A) and class level (B). Percentage of variance explained for each factor by a given functional category (C). Each point represents a functional class that was significantly enriched for one or more factors with the size of the point being proportional to the percentage of variance explained by that class for a given factor. Only factors and classes that showed significant enrichment ($q < 0.05$) at the super-class level are pictured. Colors differentiate between the class and subclass levels of the taxonomic hierarchy.

283 To determine whether the covariance generated by each factor was due to genetic or
284 environmental causes, we partitioned variance in latent factors into additive genetic and
285 non-genetic components, and examined their genetic architecture. A Bayesian whole
286 genome regression approach, Bayes C π , was used to estimate variance components, and
287 estimate the degree of polygenicity of each factor (Habier et al. 2011). Bayes C π assumes
288 markers have a zero effect with probability π and a non-zero effect with probability $(1 - \pi)$. π is treated as an unknown and is estimated from the data. Thus, the magnitude of
289 $(1 - \pi)$ can provide a metric to assess the polygenicity of the trait. Narrow-sense
290 heritability estimates (h^2) ranged from 0.01 to 0.80, indicating that variation for many of
291 the latent factors could be attributed to additive genetic effects (Figs S3,4). Moreover, the
292 range of $(1 - \pi)$ indicates this genetic variance is manifested in a wide range of
293 architectures (Fig. S4).

295 The distribution of loading values for each latent factor was not similar — meaning that
296 some factors show dense loadings (i.e., they generate covariance for many metabolites),
297 while others show sparse loadings. These loadings are sampled from a scale mixture
298 distribution where non-zero loadings are sampled from a Laplace distribution with a
299 probability of $(1 - \nu)$ and a point-mass at zero with a probability of ν . Given that latent
300 factors with dense loadings will generate covariance for many metabolites, we
301 hypothesized that these factors will likely have a complex genetic architecture. To test this,
302 we performed a partial Spearman's correlation between polygenicity and the density of
303 factor loadings while accounting for the heritability (h^2) of each factor. A significant
304 positive correlation between $(1 - \nu)$ and $(1 - \pi)$ was observed ($\rho = 0.35$; $p = 4.5 \times 10^{-4}$),
305 indicating that factors that capture (co)variance among many metabolites tend to be
306 controlled by many loci with small effects (Fig. 3; Figs S3,4). Several exceptions to this
307 relationship were observed. For instance, factors 4, 13, 17, and 25 exhibited low
308 polygenicity and dense loading patterns (Table II), indicating that these factors may be
309 driven by loci with pleiotropic effects on the metabolome.

310 **Biologically-informed prediction of seed quality traits**

311 Ultimately, the aim of this study was to translate insights from the metabolome into genetic
312 resources that can be used by breeders to make broad changes to oat seed composition. In
313 this respect, we assume that loci with large effects on multiple metabolites will be a more
314 valuable resource to oat breeders than loci that affect one or a few metabolites. A
315 conventional mixed linear model GWAS approach was used to identify loci with large
316 effects on the latent factors. We identified 666 markers associated with 23 factors
317 ($p < 2.57 \times 10^{-7}$; File S3; Figs S5-27).

318 We sought to address whether these associations could be leveraged to improve genomic
319 prediction for seed quality traits in two independent studies. The first study quantified ten
320 fatty acids (FA) in mature seed for 338 oat lines grown in two locations using targeted GC-
321 MS. Of the 338 accessions evaluated, 330 overlapped with the factor analysis panel. The
322 second study assayed seed lipid and protein content using near-infrared spectroscopy
323 (NIRS) for 210 accessions from six trials with 12 lines overlapping with the factor analysis
324 panel. Two prediction frameworks, genomic BLUP (gBLUP) and a multi-kernel prediction
325 model (MK-BLUP), were used to predict seed-quality phenotypes across trials. The MK-

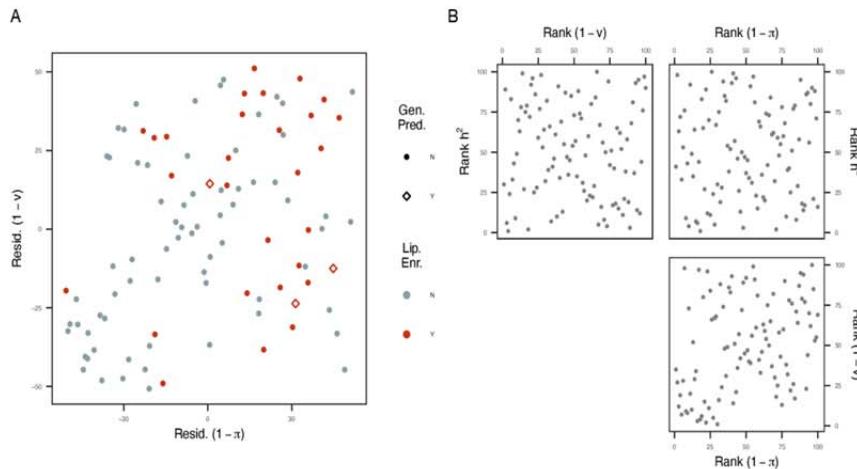


Figure 3. Relationships between polygenicity, density and heritability. (A) Association between polygenicity ($1 - \pi$) and density ranks ($1 - v$) after accounting for heritability (h^2). Each variable was ranked from smallest to largest and the ranks for ($1 - \pi$) and ($1 - v$) were each regressed on ranks for h^2 . The scatter plot depicts the relationship between the residuals (Resid.) for each of these models. Colored points indicate factors that were enriched for lipids (Lip. Enr.), and different shapes indicate whether the factor was used to inform the lipid-enriched kernel for genomic prediction (Gen. Pred.). (B) Pairwise relationships between the ranks for each variable.

327 constructed from markers associated with latent factors and is referred to as the
328 "biologically-informed" kernel. The second kernel is constructed from all other markers.
329 Two biologically-informed kernels were evaluated: one that used markers associated with
330 any latent factor to improve prediction, and one that only used markers associated with
331 factors enriched for "Lipid and lipid-like molecules" (factors 4, 17, and 34). Prediction
332 accuracy was assessed using five-fold cross validation with 50 resampling runs, and the
333 MK-BLUP models were deemed to significantly improve prediction if prediction accuracies
334 for MK-BLUP were higher than gBLUP in 90% of resampling runs.

335 Prediction accuracies were similar between gBLUP and the MK-BLUP models that used
336 associations for all factors for nearly all traits. The exception was 18:3, which exhibited a
337 2.27% increase on average over gBLUP. The MK-BLUP approach significantly
338 outperformed gBLUP for eight of the 12 traits considered when the kernel was informed by
339 markers associated with lipid-enriched factors. For FA traits, the percent change in
340 prediction accuracy over gBLUP ranged from -0.57% to 23.10%, with seven compounds
341 showing significantly greater prediction accuracy compared to gBLUP (Fig. 4).
342 Improvements were most notable for 14:0 and 16:0, which exhibited more than a 20%
343 improvement over gBLUP. For NIRS traits, the lipid-enriched MK approach significantly
344 improved predictions for lipid content on average by 9.9% (Fig. 5). These results show the
345 latent factors and the genetic signals associated with them are reproducible and can be
346 extended to new metabolite traits. Most importantly, these genetic signals are robust
347 across populations and phenotyping technologies.

348

349

350

351

352

353

354

355

356

357

358

359

360

361

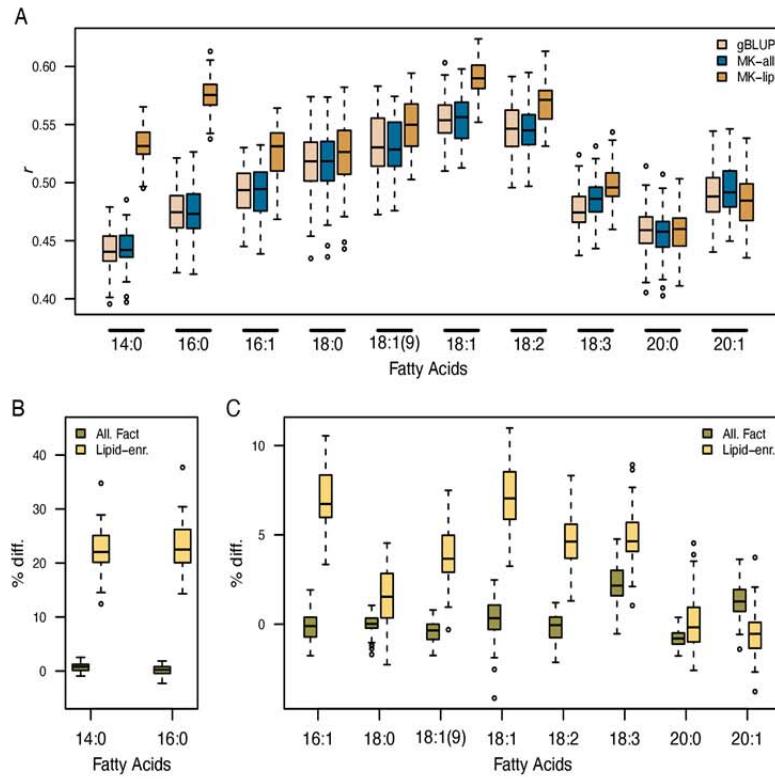


Figure 4. Genomic prediction for fatty acid compounds. Prediction accuracy was assessed using five-fold cross validation with 50 resampling runs. (A) The distribution of Pearson's correlation (r) coefficients between observed phenotypes and genetic values for each fatty acid compound. Panels B and C show the percent difference (% diff.) in prediction accuracy for the multikernel (MK) approach relative to genomic BLUP (gBLUP). The suffixes 'all' and '-lip' indicate models where the biologically-informed kernel was constructed from markers associated with any latent factor or lipid-enriched factors, respectively.

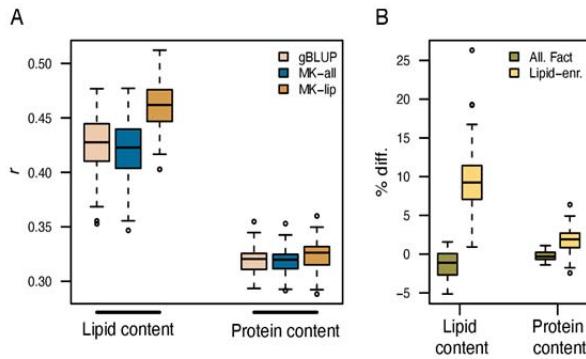


Figure 5. Genomic prediction for lipid and protein content measured via NIRS. Prediction accuracy (r) was assessed using five-fold cross validation with 50 resampling runs. Panel A shows the distribution of Pearson's correlation coefficients between observed phenotypes and genetic values. Panel B shows the percent difference (% diff.) in prediction accuracy for the multikernel (MK) approach relative to genomic BLUP (gBLUP). The suffixes '-all' and '-lip' indicate models where the biologically-informed kernel was constructed from markers associated with any latent factor or lipid-enriched factors, respectively.

364 health, and considerable variation for these compounds exist in oat germplasm (Peterson
365 and Wood 1997; Frey and Holland 1999; Gulvady et al. 2013; Zhou et al. 2019). Efficiently
366 accessing this variation is necessary to rapidly deliver oat varieties with beneficial
367 nutritional profiles to the consumer. Advances in metabolic profiling over the past 20 years
368 has provided a suite of tools to comprehensively assess these compounds, along with many
369 others, in large populations and to elucidate their regulation (Keurentjes et al. 2006; Tohge
370 and Fernie 2010). Structural elucidation and metabolite identification remain a significant
371 bottleneck in characterizing the metabolome using untargeted metabolomics (Dunn et al.
372 2013). Many of the publicly available databases do not adequately capture the rich
373 diversity of metabolites that are produced in plant species (De Vos et al. 2007; Tohge and
374 Fernie 2010). Therefore, approaches that uncover the relationships between metabolites,
375 both known and unknown, may help shed light on the function of these compounds.

376 Despite being able to reliably detect the abundance of 1,668 compounds in the current
377 study, less than a third of these compounds were annotated. We used a latent factor
378 approach that leverages the correlation between metabolites to help elucidate their
379 function. Our rationale is that metabolites that participate in the same pathway should be
380 correlated. Thus, by extracting the major correlation patterns in the observed variables we
381 can begin to elucidate the biochemical pathways that shape the seed metabolome.
382 Moreover, by studying the relationships among annotated metabolites, we can generate
383 new hypotheses to understand the function of unannotated compounds.

384 *Characterizing the metabolome using latent factors*

385 Our enrichment approach helped shed light on the biochemical processes these latent
386 factors might affect. For instance, we found significant enrichment for a range of processes
387 associated with primary metabolism (amino acids, phospholipid metabolism) and
388 secondary metabolism (coumarin and terpenoid metabolism). Since roughly 30% of the
389 metabolites assayed had functional annotations, this enrichment approach may shed light
390 on the function of unannotated metabolites. For instance, factor 4 showed significant
391 enrichment for “lipid and lipid-like molecules.” Although, only 45 of the top 100
392 compounds with high loadings were annotated, the high correlation between these
393 unknown compounds and annotated, lipid-like compounds suggests putative role in lipid
394 metabolism. Although further analyses are necessary to elucidate the structure of these
395 unknown metabolites, our enrichment approach provides a data-driven approach to
396 generate hypotheses for these unannotated metabolites.

397 One overarching pattern observed across latent factors is the enrichment for compounds
398 related to lipid metabolism. At the most coarse level, super-class, 21% of factors were
399 enriched for “lipid and lipid-like molecules,” and these patterns were consistent at more
400 specialized levels of lipid metabolism. Oat is unique among cereals in both the abundance
401 and distribution of lipids within the seed (Price and Parsons 1975; Gulvady et al. 2013;
402 Frey and Holland 1999). And with approximately 57% of the annotated metabolites in our
403 data classified as lipid-like compounds, it is not surprising that categories associated with
404 lipid metabolism were most frequently enriched.

405 It is possible that other processes are prevalent in the metabolome and are reflected in the
406 latent constructs, but remain undetected due to the annotations that were used for
407 functional enrichment. These ontologies are based on structural similarities between
408 compounds rather than pathway-based relationships. We expect compounds involved in
409 the same pathway to be correlated, and since latent factors are defined by these
410 correlations they should in some sense be an abstraction of these pathways. Biochemical
411 reactions often involve compounds with dissimilar structures, thus enrichment based on
412 structural similarities may bias enrichment towards pathways composed of structurally
413 similar metabolites (e.g., lipid metabolism). While this enrichment approach may be
414 imperfect, other studies have used similar approaches and have proven to be useful in
415 other species (Barupal and Fiehn 2017; Fan et al. 2018; Marco-Ramell et al. 2018;
416 Showalter et al. 2019). The ChemRich approach developed by Barupal and Fiehn (2017)
417 uses the ClassyFire ontology to classify compounds into functional classes and tests for
418 enrichment using a Kolmogorov-Smirnov test. Annotations that map metabolites to a
419 pathway can provide additional evidence that these latent factors are indeed due to an
420 underlying biochemical process; however, current resources do not provide the breadth
421 and resolution necessary to perform such analyses.

422 *Understanding the origin of latent factors*

423 Although it may seem reasonable to suggest that the observed covariance among
424 metabolites is due to a biological cause that is manifested in the metabolome, making
425 causal inferences from observational data is nontrivial due to the presence of confounding
426 factors (Spirtes et al. 2000; Rosa and Valente 2013; Bello et al. 2018). Given these data
427 were collected on a structured population, it is expected that some of this covariance can be
428 attributed to population structure. This can influence the construction of latent variables
429 (Phillips et al. 2001) if not taken into account. There are many ways to account for
430 structure in the definition of latent factors, either by including the genomic relationship
431 matrix, or some component(s) of it, in the factor analytic model or by regressing-out these
432 effects prior to factor analysis; however, it is important to consider whether these steps are
433 necessary. While such measures will control for confounding due to structure, they will
434 also remove possibly meaningful biochemical relationships that are associated with
435 structure. If a set of compounds participating in a common pathway happen to differ
436 between subpopulations, correcting for structure may remove the latent factor that
437 describes this process. We identified two latent factors, factors 7 and 12, that were highly
438 associated with population structure. Enrichment analysis and $P_{st} - F_{st}$ suggested that
439 factor 12 may indeed describe a biological process (steroidal glycoside metabolism) that
440 was affected by selection. This factor would likely be removed if structure were accounted
441 for prior to factor analysis.

442 If subsequent genetic analysis are planned for latent factors, regressing-out structure may
443 also remove meaningful genetic signal. Given the minor structure observed among
444 accessions in the diversity panel and the importance of preserving genetic signal in the
445 factor scores, we thought that measures to account for structure could be harmful to the
446 study as a whole. Moreover, our downstream association mapping approaches accounted
447 for population structure by using the first two PCs and a kinship matrix based on allele

448 dosages. In the event that some latent factors were defined based on kinship, we do not
449 expect to recover any signal from association mapping with scores for these latent factors.

450 We should not place too much emphasis on causality in a purely biological sense when
451 interpreting these latent factors. Rather it is important to consider the limitations of the
452 study, interpret latent factors with caution, and view them as a means to generate testable
453 hypotheses. The aims of our study were to (1) elucidate the major biochemical processes in
454 the oat seed metabolome, and (2) to leverage these insights to improve selection for seed
455 quality. Thus, hypotheses are generated in the former and are tested in the latter. If latent
456 factors do not represent a causal effect then we should not see any improvement in
457 predictions when inferences on these constructs are extended to new studies and/or
458 populations.

459 *Translating 'omics' insights to crop improvement*

460 Two independent studies were used to determine whether biological signal in the latent
461 factors could be generalized to other populations and/or traits. The fatty acid dataset can
462 be used to test whether the information learned by latent factors is reproducible, while the
463 NIRS dataset provides a means to test whether this information is transmissible to related
464 traits in new populations. We distinguish between these two because: (1) the majority of
465 accessions included in the fatty acid dataset are accessions that were used for the factor
466 analysis metabolome study, while less than 6% of accessions are common between the
467 factor analysis and the NIRS studies; (2) the fatty acid data was generated using targeted
468 metabolomics, meaning there should be a high correspondence between the metabolites
469 measured in the fatty acids study and those that were assayed for the factor analysis
470 metabolome study (Carlson et al. 2019).

471 Considering these aspects, we expect that the information learned from the factor analysis
472 metabolome study should have the most pronounced effect on predictions for fatty acid
473 compounds. Consistent with these expectations, we observed the greatest improvements in
474 prediction accuracy among all traits for the biologically-informed prediction model over
475 gBLUP for these compounds when the kernel was constructed using associations for lipid-
476 enriched factors. Thus, the genetic signal that is associated with these latent factors is
477 relevant to both studies and phenotyping approaches (i.e., targeted and untargeted
478 metabolomics). A comparison of the GWAS hits in (Carlson et al. 2019) and those in our
479 study showed little overlap, with two common associations identified for factor 13 and the
480 tenth PC of fatty acid phenotypes in (Carlson et al. 2019), and factor 17 and 14:0 in
481 (Carlson et al. 2019). Of these two factors, only factor 17 showed enrichment for "lipid and
482 lipid like molecules" at only the super-class level. While q values at more specific functional
483 classes were above the chosen significance threshold, $q < 0.05$, enrichment for 1-acyl-sn-
484 glycero-3-phosphocholines was the top-ranked category at the parental class ($q = 0.058$).
485 Interestingly, hydrolyzation of these compounds by phospholipase A1 yields a fatty acid.
486 Although additional studies are necessary to elucidate the biochemical pathways
487 associated with factor 17, these results provide an interesting link between 1-acyl-sn-
488 glycero-3-phosphocholines catabolism and fatty acid abundances and the possibility of
489 modifying 1-acyl-sn-glycero-3-phosphocholine metabolism to fine-tune fatty acid profiles
490 in oat. Although it is difficult to connect loci associated with latent factors with changes in

491 specific metabolites, our polygenicity analysis offers a more general explanation –
492 specifically, that these loci may affect many metabolites.

493 The second study with NIRS-derived composition measurements provides several realistic
494 challenges, and should be a reasonable estimate of how the biologically-informed model
495 would perform in a breeding program. The population that was evaluated for NIRS
496 phenotypes is largely independent from the population that was used for factor analysis.
497 Moreover, the NIRS phenotypes are only approximations of total lipid or protein content.
498 The advantage of using NIRS to estimate seed metabolites is that it is a relatively low cost
499 phenotyping approach compared to metabolomics and is high-throughput, making it a
500 tractable solution for many breeding programs interested in improving health-promoting
501 compounds (Diepenbrock and Gore 2015). Despite these challenges the multi-kernel
502 prediction approach – when informed using markers associated with lipid-enriched factors
503 – significantly improved prediction for lipid content compared to gBLUP.

504 *On the relationship between factor density and polygenicity*

505 The positive relationship observed between the magnitude of polygenicity and loading
506 densities, indicates that latent factors that influence many metabolites are more likely to
507 have a complex genetic architecture. These observations are somewhat expected. If these
508 dense latent factors are representative of some central component of the metabolome,
509 perturbations on these processes would likely result in large-scale biochemical changes
510 that may affect fitness. Therefore, it is important that these processes are robust to
511 mutations and are maintained at, or near some optima. This is the basis of canalization –
512 important physiological processes will evolve to reach robust optima – and suggests that
513 much of the oat seed metabolome is under optimizing or stabilizing selection (Gibson 2009;
514 Slatkin 1970; Waddington 1942).

515 Perhaps what is more interesting is the factors that deviate from this relationship,
516 specifically factors 4 and 17. Both exhibited dense loading patterns, oligogenic
517 architectures (ranked 8th and 17th for density, respectively, and 50th and 73rd for
518 polygenicity), and were enriched for lipids. The large-effect loci associated with these
519 latent factors may have pleiotropic effects, or may consist of a set of tightly linked genes
520 that influence the abundance of lipid-like compounds. In either case, this may explain the
521 deviance from the density-polygenicity relationship observed for other factors. The
522 presence of these loci raises a larger question, specifically *Why are these loci segregating in*
523 *the population?* The theoretical and simulation studies by Orr, as well as empirical evidence
524 in maize and other species may help explain these observations (Orr 1998; Orr 1999;
525 Boyko et al. 2010; Brown et al. 2011; Carlberg et al. 2006; Colosimo et al. 2004; Doebley et
526 al. 1997; Van Laere et al. 2003; Wang et al. 2005). For “older” traits – *i.e.* those associated
527 with adaptation in natural environments – such large effect alleles at these loci would likely
528 be removed through negative selection as these alleles may shift phenotypes far from the
529 optimal values (Orr 1998; Orr 1999). This was proposed by Brown et al. (2011) to explain
530 the small effect sizes for flowering and leaf traits in maize. This is not necessarily the case
531 for traits that are relatively “new” in evolutionary history or are not associated with
532 adaptation. For instance, plant architecture and inflorescence traits have relatively simple
533 genetic architectures in maize and are recent targets for artificial selection (Brown et al.

534 2011; Doebley et al. 1995; Doebley et al. 1997; Wang et al. 2005; Wallace et al. 2014). This
535 is also the case for traits under recent artificial selection in other species (Boyko et al.
536 2010; Carlberg et al. 2006; Colosimo et al. 2004; Van Laere et al. 2003). While it is unknown
537 whether seed lipid content has any adaptive significance in oat, lipid content and traits that
538 are genetically correlated with lipid content (i.e., β -glucans) are popular targets for many
539 breeding programs (Welch and Lloyd 1989; Kibite and Edney 1998; Cervantes-Martinez et
540 al. 2002). Thus, the oligogenic architectures for factors enriched for lipids may be a
541 reflection of this relatively recent selection by breeders for lipids or traits that are
542 genetically correlated with lipids.

543 **Conclusions**

544 This study shows that we can translate biological knowledge obtained from the
545 characterization of high dimensional 'omics' data to improve prediction and selection for
546 agriculturally important traits. The matrix factorization approach used here provides an
547 effective means to reduce the dimensionality of the data while preserving important
548 biological features that generate correlation in the observed phenotypes. This can help
549 reduce the multiple testing burden often experienced with GWAS on 'omics' data and allow
550 the recovery of meaningful genetic signal. This signal can be leveraged to improve
551 prediction for low-cost phenotypes that provide an approximation of biochemical
552 attributes in independent populations. In a broader context, this approach that can be used
553 to manage the allocation of phenotyping resources and improve breeding decisions. For
554 instance, breeders can phenotype a single replicate of a 'discovery' population with a
555 costly, high-resolution 'omics' technology and these data can be used to inform predictions
556 for low-cost, lower-resolution phenotypes in new populations or trials. These approaches
557 can be easily extended to other crops, tissues and 'omics' technologies to improve
558 predictions for complex traits.

559

560

561

562

563

564

565

566

567

568

569 **Materials and Methods**

570 **Plant materials and growth conditions**

571 The oat diversity panel consists of 375 accessions derived from breeding programs in
572 North America and Europe. In 2018, the panel was grown in an augmented field design in
573 Ithaca, NY, which consisted of 368 unreplicated entries allocated to 18 blocks with 21-23
574 plots per block. One primary check, 'Corral', was included in each of the blocks, while one of
575 six secondary checks were randomly allocated to each block. These secondary checks were
576 replicated four times, while the primary check was replicated 19 times (one block had two
577 'Corral' plots).

578 **Latent factor analysis**

579 Latent factor analysis seeks to identify a set of k unobserved, latent factors that give rise to
580 the observed covariance among a set p of observed variables. Formally, this relationship is
581 given by

$$\mathbf{Y} = \mathbf{F}\boldsymbol{\Gamma} + \mathbf{s}$$

582 where \mathbf{Y} is a centered and standardized $n \times p$ matrix of observations for p metabolites and
583 n individuals; \mathbf{F} is an $n \times k$ matrix of factor scores; $\boldsymbol{\Gamma}$ is a $k \times p$ matrix of loadings; and \mathbf{s} is
584 an $n \times p$ matrix of specific effects. The (co)variance matrix \mathbf{V} of observations \mathbf{Y} is
585 decomposed into common covariance and specific covariance:

$$\mathbf{V} = \boldsymbol{\Gamma}'\boldsymbol{\Gamma} + \boldsymbol{\Psi}$$

586 All matrices are defined as above, and $\boldsymbol{\Psi}$ is a $p \times p$ diagonal matrix of specific variances.

587 A recent framework described by Wang and Stephens (2018) uses an empirical Bayes
588 framework to learn appropriate priors from the data given a family of densities. This
589 approach, Empirical Bayes Matrix Factorization (EBMF), can tailor the sparsity for factor
590 loadings and scores based on what best fits the data. This was implemented using the
591 `flashr` package in R (<https://github.com/stephenslab/flashr>). Three classes of models
592 were fit that differed in families of densities used to fit the data: Laplace, point-normal, and
593 adaptive-shrinkage. A combination of the 'Greedy' search algorithm and backfitting was
594 used to define the model.

595 We evaluated the classes of models for goodness-of-fit using percent variance explained
596 (PVE) by the common factors and predictive ability using three-fold orthogonal cross
597 validation (3-OCV) (Owen, et al. 2016). PVE was defined as

$$PVE = \frac{tr(\boldsymbol{\Gamma}'\boldsymbol{\Gamma})}{tr(\boldsymbol{\Gamma}'\boldsymbol{\Gamma} + \boldsymbol{\Psi}) \times 100}$$

598 with tr indicating trace of the given matrix and all other matrices defined as above. 3-OCV
599 is similar to classical CV, but ensures that no rows and columns of the testing data (\mathbf{Y}_{test})
600 have all missing data. The model above was fitted for the training set data and predicted
601 values for the testing set were calculated via $\hat{\mathbf{Y}}_{\text{test}} = \mathbf{F}_{\text{test}}\boldsymbol{\Gamma}_{\text{test}}$. The accuracy of each model
602 was evaluated using the root mean square error (RMSE) and the correlation between
603 predicted and observed values for observations in the testing set for each fold. Ten
604 independent resamplings were performed. The metrics were averaged over folds, and the
605 'best' model was selected based on the results across the ten repeats.

606 **Enrichment analysis for latent factors**

607 We used the ClassyFire taxonomic hierarchies to test for functional enrichment for each
608 factor (Feunang et al. 2016). Briefly, ClassyFire uses a hierarchy of five levels to describe
609 chemical compounds. At each level, we calculated the percentage of variance explained
610 (PVE_{kc}) for factor k by functional class c . This is given below

$$PVE_{kc} = \frac{tr(\lambda_{kc}\lambda'_{kc})}{tr(\lambda_k\lambda'_k)}$$

611 where λ_k is a vector of loadings for a given factor k , and λ_{kc} is a vector of loadings of factor
612 k for compounds in class c . Our null hypothesis is that the variance captured by compounds
613 in a given class will be equivalent to that explained by a random set of compounds of equal
614 size to that class. To test this, we generated an empirical null distribution for each
615 functional class and factor. For each class and factor, we picked a random set of compounds
616 with a size equivalent to the class by sampling the loadings of 1,668 metabolites without
617 replacement and computed PVE. This process was repeated 1,000 times for each
618 combination of functional class and factor. For each class-factor combination, we compared
619 observed PVE with the empirical null distribution for that given combination and
620 calculated p -values. Finally, to account for multiple testing, q -values were calculated across
621 all factors and classes following (Storey 2002). Functional classes with fewer than five
622 compounds were excluded from analyses to ensure that results were not biased to small
623 classes with one or two compounds with very high loadings.

624 **Assessing the genetic architecture of latent factors**

625 *Genome-wide association study*

626 To identify loci associated with latent factors, the following linear mixed model was fit to
627 factor scores for each latent factor (k)

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{w}_i a_i + \mathbf{Z}\mathbf{u} + \mathbf{e}$$

628 where \mathbf{y} is a vector of factor scores; \mathbf{X} is a matrix of the first two PCs and \mathbf{b} is the
629 corresponding vector of effects; \mathbf{w}_i is a vector of allele dosages for marker i and a_i is the
630 corresponding marker effect; and \mathbf{u} is a vector of polygenic effects. The first two PCs
631 explained about 13% of the genomic relatedness among lines. We assume $\mathbf{u} \sim N(0, \mathbf{G}\sigma_u^2)$
632 and $\mathbf{e} \sim N(0, \mathbf{I}\sigma_e^2)$, where \mathbf{G} is a genomic relationship matrix calculated following the
633 second definition provided by VanRaden (2008). These models were fitted using the
634 rrBLUP package in R (Endelman 2011). GWAS was performed using 62,049 SNP markers
635 with a minor allele frequency > 0.05 and 335 individuals with marker data and factor
636 scores.

637 We used the approach described by J. Li and Ji (2005) to account for multiple tests
638 performed both within and across factors. Briefly, we computed the number of effective
639 tests (M_{eff}) by performing eigenvalue decomposition on the correlation matrix for 62,049
640 markers. This provides an estimate of the number of tests performed within each factor.

641 Next, we multiplied this value by the total number of factors. The test criteria was then
642 adjusted using M_{eff} with the Sidak correction below (Šidák 1967).

$$\alpha_p = 1 - (1 - \alpha_e)^{1/(M_{eff} \times 100)}$$

643 This provided a genome-wide significance (α_p) value of 2.57×10^{-7} at $\alpha_e = 0.1$ with
644 $M_{eff} = 4,097$.

645 *Estimating polygenicity with Bayes C π*

646 To estimate polygenicity of each factor, we used Bayes C π (Habier et al. 2011). Bayes C π is
647 a Bayesian whole-genome regression approach that can be used to estimate the proportion
648 of markers with a non-zero effect on the phenotype. Bayes C π assumes that marker effects
649 are drawn from a mixture distribution. Effects drawn from a distribution with a point mass
650 at 0 with a probability π and a univariate Gaussian distribution with probability $(1 - \pi)$.
651 The linear model is given below.

$$y = \mu + \sum_{t=1}^T w_t a_t + e$$
$$a_t | \pi, \sigma_t^2 = \begin{cases} 0 \text{ with prob. } \pi \\ \sim N(0, \sigma_{a_t}^2) \text{ with prob. } (1 - \pi) \end{cases}$$

652 w_t is a vector of marker genotypes for marker t and a_t is the corresponding effect. The
653 above model was fitted using the JIWAS package in Julia using factor scores and 62,049
654 markers (Cheng et al. 2018). We used 200,000 iterations and discarded the first 100,000.
655 Posterior means of $1 - \pi$ were used as estimates of polygenicity.

656 **Genomic prediction of seed quality traits**

657 Two studies were used to determine whether associations from factor score-based GWAS
658 could improve genomic prediction accuracies. The first consisted of fatty acid
659 measurements for 500 lines, of which 338 had corresponding genotypic data consisting of
660 61,900 markers. These lines were evaluated at two locations in New York in 2014 (Carlson
661 et al. 2019). The second consisted of six trials that evaluated protein and lipid content using
662 near-infrared spectroscopy for 210 lines, of which 12 overlapped with the lines used for
663 factor analysis. For this study 58,293 markers were used for prediction. Table S2 lists the
664 trials used for genomic prediction and links to access these data.

665 A multi-kernel BLUP model was used to predict seed phenotypes across trials. Additive
666 genetic effects were predicted using two kernels. The first is computed using markers that
667 were identified through factor score-based GWAS and is referred to as the biologically-
668 informed kernel, while the second was computed using all other markers. This model is
669 given by

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{Z}_u \mathbf{u}_{in} + \mathbf{Z}_u \mathbf{u}_{out} + \mathbf{Z}_e \mathbf{s} + \mathbf{e}$$

670 where \mathbf{y} is a vector of phenotypes; \mathbf{Z}_u is an $n \times q$ incidence matrix that assigns the q
671 genomic values to n observations; \mathbf{u}_{in} and \mathbf{u}_{out} are genomic values predicted from

672 biologically-informed or non-informed kernels, respectively; and \mathbf{Z}_e is an $n \times e$ incidence
673 matrix that assigns observations to trials and \mathbf{s} are the corresponding effects. Moreover, we
674 assume $\mathbf{u}_{in} \sim N(0, \sigma_{u_{in}}^2 \mathbf{K}_{in})$, $\mathbf{u}_{out} \sim N(0, \sigma_{u_{out}}^2 \mathbf{K}_{out})$, and $\mathbf{s} \sim N(0, \sigma_s^2 \mathbf{Z}_e' \mathbf{Z}_e)$. Where \mathbf{K}_{in} and
675 \mathbf{K}_{out} are biologically-informed and non-informed kernels genomic relationship matrices,
676 respectively, and are computed according to VanRaden (2008). We considered two marker
677 sets to compute these matrices: markers associated with any latent factor, and markers
678 that were associated with latent factors showing enrichment for lipid and lipid-like
679 molecules at the superclass level ($q < 0.05$). Markers that were in weak linkage
680 disequilibrium (LD) ($r^2 > 0.25$) with GWAS hits were included in the biologically-informed
681 kernel. LD was computed separately for each study.

682 Genomic BLUP (gBLUP) served as a base-line to compare the ability of the multi-kernel
683 approach to predict seed phenotypes. The model is similar to the multi-kernel model;
684 however, the relationship matrix was constructed using all available markers for each
685 study. All models were fit using the BGLR package in R, with 20,000 iterations, of which the
686 first 5,000 were discarded (Perez and de los Campos 2014).

687 Prediction accuracy was assessed using five-fold cross validation with 50 resampling runs,
688 and was computed using Pearson's correlation between observed phenotypes and
689 predicted genomic values for accessions in the testing set. Genomic values for the multi-
690 kernel approach were computed as the sum of breeding values from each random genetic
691 effect. Correlation coefficients were averaged across folds.

692

693

694

695

696

697

698

699

700

701

702

703

704 **Data availability**

705 All metabolomic data are provided via Cyverse and can be accessed using the following url
706 <https://de.cyverse.org/de/?type=data\&folder=/iplant/home/mcampbell4>. All R code

707 used for analyses is provided as Rmarkdown files and can be accessed via
708 <https://github.com/malachycampbell/OatLatentFactor>.

709 **Acknowledgements**

710 Funding for this research was provided by USDA-NIFA-AFRI 2017-67007-26502. Mention
711 of a trademark or proprietary product does not constitute a guarantee or warranty of the
712 product by the USDA and does not imply its approval to the exclusion of other products
713 that may also be suitable. The USDA is an equal opportunity provider and employer.

714

715 **Supplemental Data**

716 • **Supplemental Methods**

717 • **Supplemental Table S1.** Genotyping-by-sequencing experiments in Triticeae Toolbox
718 used in this study.

719 • **Supplemental Table S2.** Trials in Triticeae Toolbox used for genomic prediction.

720 • **Supplemental Figure S1.** Summary of subpopulation clusters based on major
721 geographic regions.

722 • **Supplemental Figure S2.** Three-fold orthogonal cross validation results for three
723 EBMF approaches.

724 • **Supplemental Figure S3.** Spearman correlation between factor density ($1 - \nu$),
725 polygenicity ($1 - \pi$) and narrow sense heritability (h^2).

726 • **Supplemental Figure S4.** Distribution of density ($1 - \nu$), polygenicity ($1 - \pi$) and
727 narrow sense heritability (h^2) estimates.

728 • **Supplemental Figures S5-27.** Manhattan plot for factor score-based GWAS.

729 • **Supplemental File S1.** Deregressed best linear unbiased predictions for 1,668
730 metabolites.

731 • **Supplemental File S2.** Metabolites showing significant differences between
732 subpopulations.

733 • **Supplemental File S3.** GWAS summary statistics

734

735

736 **Tables**

737 **Table I. Empirical Bayes matrix factorization model selection.** Each model was fit using
738 degressed BLUPs for 1,668 metabolites. Ad. Shr.: adaptive shrinkage family of densities

739 described by Stephens (2016). Cross-validation (CV) was based on a 3-fold orthogonal CV
740 described by (2018) and Owen et al.(2016) with ten independent resamplings. Point Nor.:
741 point-normal family of densities which are a normal distribution with a point mass at zero; LL
742 indicates log-likelihood; PVE: percent variance explained; R^2_{adj} : adjusted R^2 ; $r_{(Y_{tst}, \hat{Y}_{tst})}$ is the
743 Pearson's correlation between predicted and observed values for observations in the testing
744 set; RMSE: root mean square error.

EBNM Appr.	No. Fact.	LL	PVE	R^2_{adj}	$r_{(Y_{tst}, \hat{Y}_{tst})}$	RMSE
Ad. Shr.	102	-581716.3	59.41	0.438	0.322	1.451
Point Nor.	106	-583809.9	59.36	0.429	0.514	0.978
Laplace	100	-584317.2	58.82	0.434	0.520	0.970

745
746
747 **Table II. Factors capturing covariance between many metabolites with simple genetic**
748 **architectures.** Polygenicity estimates were based on the posterior means of $1 - \pi$ and density
749 of factor loadings are provided as $1 - v$.

Factor	$1 - \pi$	$1 - v$
4	4.69×10^{-3}	0.621
13	7.80×10^{-4}	0.369
17	4.70×10^{-4}	0.413
25	5.54×10^{-4}	0.247

750
751
752
753
754
755
756
757
758
759
760 **Figure Legends**
761 **Figure 1. Principal component analysis of genotypic and metabolomic data.** The first
762 four principal components (PCs) of genotypic data are shown in panels A and B, while the

763 first four PCs of the metabolomic data are shown in panels C and D. Subpopulations that
764 were defined based on k -means clustering of SNP marker data are indicated by different
765 colored points. PC: principal component; PVE: percent variance explained

766 **Figure 2. Functional enrichment among latent factors.** Number of latent factors
767 enriched (FDR < 0.05) for functional categories at the super-class level (A) and class level
768 (B). Percentage of variance explained for each factor by a given functional category (C).
769 Each point represents a functional class that was significantly enriched for one or more
770 factors with the size of the point being proportional to the percentage of variance explained
771 by that class for a given factor. Only factors and classes that showed significant enrichment
772 ($q < 0.05$) at the super-class level are pictured. Colors differentiate between the class and
773 subclass levels of the taxonomic hierarchy.

774 **Figure 3. Relationships between polygenicity, density and heritability.** (A) Association
775 between polygenicity ($1 - \pi$) and density ranks ($1 - \nu$) after accounting for heritability
776 (h^2). Each variable was ranked from smallest to largest and the ranks for ($1 - \pi$) and
777 ($1 - \nu$) were each regressed on ranks for h^2 . The scatter plot depicts the relationship
778 between the residuals (Resid.) for each of these models. Colored points indicate factors that
779 were enriched for lipids (Lip. Enr.), and different shapes indicate whether the factor was
780 used to inform the lipid-enriched kernel for genomic prediction (Gen. Pred.). (B) Pairwise
781 relationships between the ranks for each variable.

782 **Figure 4. Genomic prediction for fatty acid compounds.** Prediction accuracy was
783 assessed using five-fold cross validation with 50 resampling runs. (A) The distribution of
784 Pearson's correlation (r) coefficients between observed phenotypes and genetic values for
785 each fatty acid compound. Panels B and C show the percent difference (% diff.) in
786 prediction accuracy for the multikernel (MK) approach relative to genomic BLUP (gBLUP).
787 The suffixes '-all' and '-lip' indicate models where the biologically-informed kernel was
788 constructed from markers associated with any latent factor or lipid-enriched factors,
789 respectively.

790 **Figure 5. Genomic prediction for lipid and protein content measured via NIRS.**
791 Prediction accuracy (r) was assessed using five-fold cross validation with 50 resampling
792 runs. Panel A shows the distribution of Pearson's correlation coefficients between observed
793 phenotypes and genetic values. Panel B shows the percent difference (% diff.) in prediction
794 accuracy for the multikernel (MK) approach relative to genomic BLUP (gBLUP). The
795 suffixes '-all' and '-lip' indicate models where the biologically-informed kernel was
796 constructed from markers associated with any latent factor or lipid-enriched factors,
797 respectively.

Parsed Citations

Barupal, Dinesh Kumar, and Oliver Fiehn. 2017. "Chemical Similarity Enrichment Analysis (Chemrich) as Alternative to Biochemical Pathway Mapping for Metabolomic Datasets." *Scientific Reports* 7 (1). Nature Publishing Group: 1–11.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bello, Nora M, Vera C Ferreira, Daniel Gianola, and Guilherme JM Rosa. 2018. "Conceptual Framework for Investigating Causal Effects from Observational Data in Livestock." *Journal of Animal Science* 96 (10). Oxford University Press US: 4045–62.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Berzonsky, William A, and Herbert W Ohm. 2000. "Breeding Cereal Small Grains for Value-Added Uses." *Designing Crops for Added Value* 40. Wiley Online Library: 103–45.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Boyko, Adam R, Pascale Quignon, Lin Li, Jeffrey J Schoenebeck, Jeremiah D Degenhardt, Kirk E Lohmueller, Keyan Zhao, et al. 2010. "A Simple Genetic Architecture Underlies Morphological Variation in Dogs." *Plos Biol* 8 (8). Public Library of Science: e1000451.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Broeckling, Corey D, FA Afsar, S Neumann, A Ben-Hur, and JE Prenni. 2014. "RAMClust: A Novel Feature Clustering Method Enables Spectral-Matching-Based Annotation for Metabolomics Data." *Analytical Chemistry* 86 (14). ACS Publications: 6812–7.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Brown, Patrick J, Narasimham Upadyayula, Gregory S Mahone, Feng Tian, Peter J Bradbury, Sean Myles, James B Holland, et al. 2011. "Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize." *PLoS Genetics* 7 (11). Public Library of Science.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Carlberg, Örjan, Lina Jacobsson, Per Åhgren, Paul Siegel, and Leif Andersson. 2006. "Epistasis and the Release of Genetic Variation During Long-Term Selection." *Nature Genetics* 38 (4). Nature Publishing Group: 418–20.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Carlson, Maryn O, Gracia Montilla-Bascon, Owen A. Hoekenga, Nicholas A. Tinker, Jesse Poland, Matheus Baseggio, Mark E. Sorrells, Jean-Luc Jannink, Michael A. Gore, and Trevor H. Yeats. 2019. "Multivariate Genome-Wide Association Analyses Reveal the Genetic Basis of Seed Fatty Acid Composition in Oat (*Avena Sativa L.*)." *G3: Genes, Genomes, Genetics* 9 (9). *G3: Genes, Genomes, Genetics*: 2963–75. doi:10.1534/g3.119.400228.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Caspi, Ron, Tomer Altman, Richard Billington, Kate Dreher, Hartmut Foerster, Carol A Fulcher, Timothy A Holland, et al. 2014. "The Metacyc Database of Metabolic Pathways and Enzymes and the Biocyc Collection of Pathway/Genome Databases." *Nucleic Acids Research* 42 (D1). Oxford University Press: D459–D471.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cerio, Rino, Magdalene Dohil, Downie Jeanine, Sofia Magina, Emmanuel Mahe, and Alexander J Stratigos. 2010. "Mechanism of Action and Clinical Benefits of Colloidal Oatmeal for Dermatologic Practice." *Journal of Drugs in Dermatology: JDD* 9 (9): 1116–20.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cervantes-Martinez, CT, KJ Frey, Pamela J White, DM Wesenberg, and JB Holland. 2002. "Correlated Responses to Selection for Greater β -Glucan Content in Two Oat Populations." *Crop Science* 42 (3). Crop Science Society of America: 730–38.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chan, Ariel W, Martha T Hamblin, and Jean-Luc Jannink. 2016. "Evaluating Imputation Algorithms for Low-Depth Genotyping-by-Sequencing (Gbs) Data." *PloS One* 11 (8). Public Library of Science.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chan, Eva KF, Heather C Rowe, Bjarne G Hansen, and Daniel J Kliebenstein. 2010. "The Complex Genetic Architecture of the Metabolome." *PLoS Genetics* 6 (11). Public Library of Science.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cheng, Hao, Rohan Fernando, and Dorian Garrick. 2018. "JWAS: Julia Implementation of Whole-Genome Analysis Software." In *Proceedings of the World Congress on Genetics Applied to Livestock Production*, 11:859.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Christ, Bastien, Tomáš Pluskal, Sylvain Aubry, and Jing-Ke Weng. 2018. "Contribution of Untargeted Metabolomics for Future Assessment of Biotech Crops." *Trends in Plant Science* 23 (12). Elsevier: 1047–56.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Colosimo, Pamela F, Catherine L Peichel, Kirsten Nereng, Benjamin K Blackman, Michael D Shapiro, Dolph Schluter, and David M Kingsley. 2004. "The Genetic Architecture of Parallel Armor Plate Reduction in Threespine Sticklebacks." *PLoS Biology* 2 (5). Public Library of Science.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Covarrubias-Pazaran, Giovanny. 2016. "Genome-Assisted Prediction of Quantitative Traits Using the R Package Sommer." *PLoS One* 11 (6). Public Library of Science: e0156744.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cui, Liang, Haitao Lu, and Yie Hou Lee. 2018. "Challenges and Emergent Solutions for LC-MS/MS Based Untargeted Metabolomics in Diseases." *Mass Spectrometry Reviews* 37 (6). Wiley Online Library: 772–92.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

De Vos, Ric CH, Sofia Moco, Arjen Lommen, Joost JB Keurentjes, Raoul J Bino, and Robert D Hall. 2007. "Untargeted Large-Scale Plant Metabolomics Using Liquid Chromatography Coupled to Mass Spectrometry." *Nature Protocols* 2 (4). Nature Publishing Group: 778.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Diepenbrock, Christine H, and Michael A Gore. 2015. "Closing the Divide Between Human Nutrition and Plant Breeding." *Crop Science* 55 (4). The Crop Science Society of America, Inc.: 1437–48.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

DiLeo, Matthew V, Gary D Strahan, Meghan den Bakker, and Owen A Hoekenga. 2011. "Weighted Correlation Network Analysis (WGCNA) Applied to the Tomato Fruit Metabolome." *PLoS One* 6 (10). Public Library of Science.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Doebley, John, Adrian Stec, and Charles Gustus. 1995. "Teosinte Branched1 and the Origin of Maize: Evidence for Epistasis and the Evolution of Dominance." *Genetics* 141 (1). Genetics Soc America: 333–46.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Doebley, John, Adrian Stec, and Lauren Hubbard. 1997. "The Evolution of Apical Dominance in Maize." *Nature* 386 (6624). Nature Publishing Group: 485–88.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dunn, Warwick B, and David I Ellis. 2005. "Metabolomics: Current Analytical Platforms and Methodologies." *TrAC Trends in Analytical Chemistry* 24 (4). Elsevier: 285–94.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dunn, Warwick B, Alexander Erban, Ralf JM Weber, Darren J Creek, Marie Brown, Rainer Breitling, Thomas Hankemeier, et al. 2013. "Mass Appeal: Metabolite Identification in Mass Spectrometry-Focused Untargeted Metabolomics." *Metabolomics* 9 (1). Springer: 44–66.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Eckert, Andrew J, Jill L Wegrzyn, W Patrick Cumbie, Barry Goldfarb, Dudley A Huber, Vladimir Tolstikov, Oliver Fiehn, and David B Neale. 2012. "Association Genetics of the Loblolly Pine (*Pinus taeda*, Pinaceae) Metabolome." *New Phytologist* 193 (4). Wiley Online Library: 890–902.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Edriss, Vahid, Yanxin Gao, Xuecai Zhang, MacDonald Bright Jumbo, Dan Makumbi, Michael Scott Olsen, José Crossa, Kevin C Packard, and Jean-Luc Jannink. 2017. "Genomic Prediction in a Large African Maize Population." *Crop Science* 57 (5). The Crop Science Society of America, Inc.: 2361–71.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Edwards, Stefan M, Izel F Sørensen, Pernille Sarup, Trudy FC Mackay, and Peter Sørensen. 2016. "Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in *Drosophila melanogaster*." *Genetics* 203 (4). Genetics Soc America: 1871–83.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Endelman, J. B. 2011. "Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP." *Plant Genome* 4: 250–55.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Erbe, M, BJ Hayes, LK Matukumalli, S Goswami, PJ Bowman, CM Reich, BA Mason, and ME Goddard. 2012. "Improving Accuracy of Genomic Predictions Within and Between Dairy Cattle Breeds with Imputed High-Density Single Nucleotide Polymorphism Panels." *Journal of Dairy Science* 95 (7). Elsevier: 4114–29.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fan, Sili, Austin Yeon, Muhammad Shahid, Jennifer T Anger, Karyn S Eilber, Oliver Fiehn, and Jayoung Kim. 2018. "Sex-Associated Differences in Baseline Urinary Metabolites of Healthy Adults." *Scientific Reports* 8 (1). Nature Publishing Group: 1–11.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Feunang, Yannick Djoumbou, Roman Eisner, Craig Knox, Leonid Chepelev, Janna Hastings, Gareth Owen, Eoin Fahy, et al. 2016. "ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy." *Journal of Cheminformatics* 8 (1). Springer: 61.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Frey, KJ, and JB Holland. 1999. "Nine Cycles of Recurrent Selection for Increased Groat-Oil Content in Oat." *Crop Science* 39 (6). Crop Science Society of America: 1636–41.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gibson, Greg. 2009. "Decanalization and the Origin of Complex Disease." *Nature Reviews Genetics* 10 (2). Nature Publishing Group: 134–40.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gulvady, Apeksha A, Robert C Brown, and Jenna A Bell. 2013. "Nutritional Comparison of Oats and Other Commonly Consumed Whole Grains." *Oats Nutrition and Technology*. Wiley Online Library, 71–93.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo, Zhigang, Michael M Magwire, Christopher J Bosten, Zhanyou Xu, and Daolong Wang. 2016. "Evaluation of the Utility of Gene Expression and Metabolic Information for Genomic Prediction in Maize." *Theoretical and Applied Genetics* 129 (12). Springer: 2413–27.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Habier, David, Rohan L Fernando, Kadir Kizilkaya, and Dorian J Garrick. 2011. "Extension of the Bayesian Alphabet for Genomic Selection." *BMC Bioinformatics* 12 (1). Springer: 186.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Horai, Hisayuki, Masanori Arita, Shigehiko Kanaya, Yoshito Nihei, Tasuku Ikeda, Kazuhiro Suwa, Yuya Ojima, et al. 2010. "MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences." *Journal of Mass Spectrometry* 45 (7). Wiley Online Library: 703–14.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kale, Madhuvanti, Bruce Hamaker, and Nicolas Bordenave. 2013. "Oat β -Glucans: Physicochemistry and Nutritional Properties." *Oats Nutrition and Technology*. Wiley Online Library, 123–69.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kanehisa, Minoru, and others. 2002. "The Kegg Database." In *Novartis Foundation Symposium*, 91–100. Wiley Online Library.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Keurentjes, Joost JB, Jingyuan Fu, CH Ric De Vos, Arjen Lommen, Robert D Hall, Raoul J Bino, Linus HW van der Plas, Ritsert C Jansen, Dick Vreugdenhil, and Maarten Koornneef. 2006. "The Genetics of Plant Metabolism." *Nature Genetics* 38 (7). Nature Publishing Group: 842–49.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kibite, Solomon, and MJ Edney. 1998. "The Inheritance of β -Glucan Concentration in Three Oat (*Avena Sativa L.*) Crosses." *Canadian Journal of Plant Science* 78 (2). NRC Research Press: 245–50.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kurtz, Ellen S, and Warren Wallo. 2007. "Colloidal Oatmeal: History, Chemistry and Clinical Properties." *Journal of Drugs in Dermatology*: JDD 6 (2): 167–70.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lai, Zijuan, Hiroshi Tsugawa, Gert Wohlgemuth, Sajjan Mehta, Matthew Mueller, Yuxuan Zheng, Atsushi Ogiwara, et al. 2018. "Identifying Metabolites by Integrating Metabolome Databases with Mass Spectrometry Cheminformatics." *Nature Methods* 15 (1). Nature Publishing Group: 53.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Langfelder, Peter, and Steve Horvath. 2008. "WGCNA: An R Package for Weighted Correlation Network Analysis." *BMC Bioinformatics* 9 (1). Springer: 559.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Leinonen, Tuomas, RJ Scott McCairns, Robert B O'hara, and Juha Merilä. 2013. "Q St-F St Comparisons: Evolutionary and Ecological Insights from Genomic Heterogeneity." *Nature Reviews Genetics* 14 (3). Nature Publishing Group: 179–90.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li, J, and L Ji. 2005. "Adjusting Multiple Testing in Multilocus Analyses Using the Eigenvalues of a Correlation Matrix." *Heredity* 95 (3). Nature Publishing Group: 221–27.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Luan, Hemi, Fenfen Ji, Yu Chen, and Zongwei Cai. 2018. "StatTarget: A Streamlined Tool for Signal Drift Correction and Interpretations of Quantitative Mass Spectrometry-Based Omics Data." *Analytica Chimica Acta* 1036. Elsevier: 66–72.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

MacLeod, IM, PJ Bowman, CJ Vander Jagt, M Haile-Mariam, KE Kemper, AJ Chamberlain, C Schrooten, BJ Hayes, and ME Goddard. 2016. "Exploiting Biological Priors and Sequence Variants Enhances Qtl Discovery and Genomic Prediction of Complex Traits." *BMC Genomics* 17 (1). Springer: 144.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mahieu, Nathaniel G, Jessica Lloyd Genenbacher, and Gary J Patti. 2016. "A Roadmap for the Xcms Family of Software Solutions in Metabolomics." *Current Opinion in Chemical Biology* 30. Elsevier: 87–93.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Marco-Ramell, Anna, Sara Tulipani, Magali Palau-Rodriguez, Raul Gonzalez-Dominguez, Antonio Miñarro, Olga Jauregui, Alex Sanchez-Pla, et al. 2018. "Untargeted Profiling of Concordant/Discordant Phenotypes of High Insulin Resistance and Obesity to Predict the Risk of Developing Diabetes." *Journal of Proteome Research* 17 (7). ACS Publications: 2307–17.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Matsuda, Fumio, Ryo Nakabayashi, Zhigang Yang, Yozo Okazaki, Jun-ichi Yonemaru, Kaworu Ebana, Masahiro Yano, and Kazuki Saito. 2015. "Metabolome-Genome-Wide Association Study Dissects Genetic Architecture for Generating Natural Variation in Rice Secondary Metabolism." *The Plant Journal* 81 (1). Wiley Online Library: 13–23.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Orr, H Allen. 1998. "The Population Genetics of Adaptation: The Distribution of Factors Fixed During Adaptive Evolution." *Evolution* 52 (4). Wiley Online Library: 935–49.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Orr, H Allen. 1999. "The Evolutionary Genetics of Adaptation: A Simulation Study." *Genetics Research* 74 (3). Cambridge University Press: 207–14.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Owen, Art B, Jingshu Wang, and others. 2016. "Bi-Cross-Validation for Factor Analysis." *Statistical Science* 31 (1). Institute of Mathematical Statistics: 119–39.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Perez, Paulino, and Gustavo de los Campos. 2014. "Genome-Wide Regression and Prediction with the Bglr Statistical Package." *Genetics* 198 (2): 483–95. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196607/>.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Peterson, David M, and Delilah F Wood. 1997. "Composition and Structure of High-Oil Oat." *Journal of Cereal Science* 26 (1). Elsevier: 121–28.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Phillips, Patrick C, Michael C Whitlock, and Kevin Fowler. 2001. "Inbreeding Changes the Shape of the Genetic Covariance Matrix in *Drosophila Melanogaster*." *Genetics* 158 (3). Genetics Soc America: 1137–45.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Price, Peter B, and John G Parsons. 1975. "Lipids of Seven Cereal Grains." *Journal of the American Oil Chemists' Society* 52 (12). Wiley Online Library: 490–93.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
<https://www.R-project.org/>.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Riedelsheimer, Christian, Angelika Czedik-Eysenberg, Christoph Grieder, Jan Lisec, Frank Technow, Ronan Sulpice, Thomas Altmann, Mark Stitt, Lothar Willmitzer, and Albrecht E Melchinger. 2012. "Genomic and Metabolic Prediction of Complex Heterotic Traits in Hybrid Maize." *Nature Genetics* 44 (2). Nature Publishing Group: 217.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Rosa, GJM, and BD Valente. 2013. "Breeding and Genetics Symposium: Inferring Causal Effects from Observational Data in Livestock." *Journal of Animal Science* 91 (2). Oxford University Press: 553–64.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Rowe, Heather C, Bjarne Gram Hansen, Barbara Ann Halkier, and Daniel J Kliebenstein. 2008. "Biochemical Networks and Epistasis Shape the *Arabidopsis Thaliana* Metabolome." *The Plant Cell* 20 (5). Am Soc Plant Biol: 1199–1216.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Schrinpe-Rutledge, Alexandra C, Simona G Codreanu, Stacy D Sherrod, and John A McLean. 2016. "Untargeted Metabolomics Strategies-challenges and Emerging Directions." *Journal of the American Society for Mass Spectrometry* 27 (12). ACS Publications: 1897–1905.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Showalter, Megan R, Benjamin Wancewicz, Oliver Fiehn, Joehleen A Archard, Shannon Clayton, Joseph Wagner, Peter Deng, et al. 2019. "Primed Mesenchymal Stem Cells Package Exosomes with Metabolites Associated with Immunomodulation." *Biochemical and Biophysical Research Communications* 512 (4). Elsevier: 729–35.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Slatkin, Montgomery. 1970. "Selection and Polygenic Characters." *Proceedings of the National Academy of Sciences* 66 (1). National Acad Sciences: 87–93.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Slenter, Denise N, Martina Kutmon, Kristina Hanspers, Anders Ruitta, Jacob Windsor, Nuno Nunes, Jonathan Mélius, et al. 2018. "WikiPathways: A Multifaceted Pathway Database Bridging Metabolomics to Other Omics Research." *Nucleic Acids Research* 46 (D1). Oxford University Press: D661–D667.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Speed, Doug, and David J Balding. 2014. "MultiBLUP: Improved Snp-Based Prediction for Complex Traits." *Genome Research* 24 (9). Cold Spring Harbor Lab: 1550–7.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Spirites, Peter, Clark N Glymour, Richard Scheines, and David Heckerman. 2000. Causation, Prediction, and Search. MIT press.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Stephens, Matthew. 2016. "False Discovery Rates: A New Deal." *Biostatistics* 18 (2). Oxford University Press: 275–94.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Storey, John D. 2002. "A Direct Approach to False Discovery Rates." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 64 (3). Wiley Online Library: 479–98.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Storz, Jay F. 2002. "Contrasting Patterns of Divergence in Quantitative Traits and Neutral Dna Markers: Analysis of Clinal Variation." Molecular Ecology 11 (12). Wiley Online Library: 2537–51.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Šídák, Zbyněk. 1967. "Rectangular Confidence Regions for the Means of Multivariate Normal Distributions." Journal of the American Statistical Association 62 (318). Taylor & Francis: 626–33.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tohge, Takayuki, and Alasdair R Fernie. 2010. "Combining Genetic Diversity, Informatics and Metabolomics to Facilitate Annotation of Plant Gene Function." Nature Protocols 5 (6). Nature Publishing Group: 1210–27.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Turner-Hissong, Sarah D, Kevin A Bird, Alexander E Lipka, Elizabeth G King, Timothy M Beissinger, and Ruthie Angelovici. 2019. "Genomic Prediction Informed by Biological Processes Expands Our Understanding of the Genetic Architecture Underlying Free Amino Acid Traits in Dry *Arabidopsis* Seeds." BioRxiv. Cold Spring Harbor Laboratory, 272047.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Van Laere, Anne-Sophie, Minh Nguyen, Martin Braunschweig, Carine Nezer, Catherine Collette, Laurence Moreau, Alan L Archibald, et al. 2003. "A Regulatory Mutation in *Igf2* Causes a Major Qtl Effect on Muscle Growth in the Pig." Nature 425 (6960). Nature Publishing Group: 832–36.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

VanRaden, Paul M. 2008. "Efficient Methods to Compute Genomic Predictions." Journal of Dairy Science 91 (11). Elsevier: 4414–23.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Waddington, Conrad H. 1942. "Canalization of Development and the Inheritance of Acquired Characters." Nature 150 (3811). Nature Publishing Group: 563–65.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wallace, JG, SJ Larsson, and ES Buckler. 2014. "Entering the Second Century of Maize Quantitative Genetics." Heredity 112 (1). Nature Publishing Group: 30–38.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang, Huai, Tina Nussbaum-Wagler, Bailin Li, Qiong Zhao, Yves Vigouroux, Marianna Faller, Kirsten Bomblies, Lewis Lukens, and John F Doebley. 2005. "The Origin of the Naked Grains of Maize." Nature 436 (7051). Nature Publishing Group: 714–19.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang, Wei, and Matthew Stephens. 2018. "Empirical Bayes Matrix Factorization." arXiv Preprint arXiv:1802.06931.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Welch, Robert W, and Janet D Lloyd. 1989. "Kernel (1→3)(1→4)- \square -d-Glucan Content of Oat Genotypes." Journal of Cereal Science 9 (1). Elsevier: 35–40.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wen, Weiwei, Dong Li, Xiang Li, Yanqiang Gao, Wenqiang Li, Huihui Li, Jie Liu, et al. 2014. "Metabolome-Based Genome-Wide Association Study of Maize Kernel Leads to Novel Biochemical Insights." Nature Communications 5 (1). Nature Publishing Group: 1–10.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wishart, David S, Carin Li, Ana Marcu, Hasan Badran, Allison Pon, Zachary Budinski, Jonas Patron, et al. 2020. "PathBank: A Comprehensive Pathway Database for Model Organisms." Nucleic Acids Research 48 (D1). Oxford University Press: D470–D478.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu, Si, Takayuki Tohge, Álvaro Cuadros-Inostroza, Hao Tong, Hezi Tenenboim, Rik Kooke, Michaël Méret, et al. 2018. "Mapping the *Arabidopsis* Metabolic Landscape by Untargeted Metabolomics at Different Environmental Conditions." Molecular Plant 11 (1). Elsevier: 118–34.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, Shizhong, Yang Xu, Liang Gong, and Qifa Zhang. 2016. "Metabolomic Prediction of Yield in Hybrid Rice." The Plant Journal 88 (2).

Wiley Online Library: 219–27.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, Y, C Xu, and S Xu. 2017. "Prediction and Association Mapping of Agronomic Traits in Maize Using Multiple Omic Data." Heredity 119 (3). Nature Publishing Group: 174–84.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Youngs, VL. 1978. "Oat Lipids." Cereal Chem 55 (5): 591–97.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhou, Sumei, Litao Tong, and Liya Liu. 2019. "Oats." In Bioactive Factors and Processing Technology for Cereal Foods, 185–206. Springer.

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)