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Abstract

Oat (Avena sativa L.) seed is a rich resource of beneficial lipids, soluble fiber, protein, and
antioxidants, and is considered a healthful food for humans. Despite these characteristics,
little is known regarding the genetic controllers of variation for these compounds in oat
seed. We sought to characterize natural variation in the mature seed metabolome using
untargeted metabolomics on 367 diverse lines and leverage this information to improve
prediction for seed quality traits. We used a latent factor approach to define unobserved
variables that may drive covariance among metabolites. One hundred latent factors were
identified, of which 21% were enriched for compounds associated with lipid metabolism.
Through a combination of whole-genome regression and association mapping, we show
that latent factors that generate covariance for many metabolites tend to have a complex
genetic architecture. Nonetheless, we recovered significant associations for 23% of the
latent factors. These associations were used to inform a multi-kernel genomic prediction
model, which was used to predict seed lipid and protein traits in two independent studies.
Predictions for eight of the 12 traits were significantly improved compared to genomic best
linear unbiased prediction when this prediction model was informed using associations
from lipid-enriched factors. This study provides new insights into variation in the oat seed
metabolome and provides genomic resources for breeders to improve selection for health-
promoting seed quality traits. More broadly, we outline an approach to distill high-
dimensional ‘omics’ data to a set of biologically-meaningful variables and translate
inferences on these data into improved breeding decisions.
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75
76  Introduction

77  The oat seed contains a diverse array of compounds that are beneficial for human health
78  and nutrition (Gulvady et al. 2013). It is widely considered a healthy food due to its high

79  soluble fiber content, which is unique among major cereals and has been shown to improve
80 cardiovascular health and blood glucose levels (Gulvady et al. 2013; Kale et al. 2013). Oat is
81 alsoagood source of protein (12.4-24.5% of seed weight), oil (3-11%), and a rich source of
82  vitamins and minerals (Frey and Holland 1999; Gulvady et al. 2013). The oils found in the
83  oatseed are primarily triglycerides, with palmitic, oleic, and linoleic acids being the

84  primary fatty acids (Youngs 1978). In addition to the benefits from direct consumption,

85 colloidal oatmeal and oat extracts have been used extensively as an effective topical

86  medicine to treat skin dermatitis and reduce inflammation (Cerio et al. 2010; Kurtz and

87  Wallo 2007). These benefits have been attributed to avenanthramides, flavonoids,

88  tocopherol, polysaccharides, and lipids. Thus, the oat seed is a rich source of diverse

89  compounds that have multifaceted effects on human health. To improve specific

90 biochemical properties of oat, breeders must be provided with a suite of tools that allow

91 these compounds to be quantified accurately at low cost, and genomic resources that

92 improve selection for specific seed qualities.

93  Advances in biochemistry have provided a breadth of tools to query the metabolome and
94  quantify known and unknown compounds (Dunn and Ellis 2005). Untargeted
95 metabolomics can quantify 100s-1000s of metabolites in a sample, thus health-promoting
96 and quality-related metabolites, and their intermediate or related compounds can be
97  assessed with relative ease (Dunn et al. 2013; Christ et al. 2018). These data can be used to
98 address basic biological questions regarding biochemical pathways that are represented in
99 the data, and assess natural variation for these pathways. The effectiveness of these
100  methods to characterize natural variation in the metabolome has been highlighted by
101  several studies (Caspi et al. 2014; Chan et al. 2010; Matsuda et al. 2015; Slenter et al. 2018;
102 Wuetal. 2018). Moreover, these data have been used as predictors, often alongside
103  genomic data, to improve prediction for complex traits (Riedelsheimer et al. 2012; Guo et
104  al. 2016; Xu et al. 2016).

105  Parsing these data to understand the biology of the seed metabolome can be challenging.
106  Numerous databases are available that describe primary and secondary metabolic

107  pathways, and are curated using information both across and within species (Kanehisa and
108  others 2002; Wishart et al. 2020). Metabolites can be mapped to these pathways to

109  determine which pathways and their products are enriched in a given set of samples. While
110 these approaches provide greater confidence over unsupervised, data-driven approaches,
111  in many cases only a fraction of the compounds quantified via untargeted metabolomics
112  can be mapped to these pathways (Schrimpe-Rutledge et al. 2016; Cui et al. 2018).

113  Unsupervised, data-driven approaches provide an attractive alternative that utilizes the
114  data more completely. These approaches include co-expression-based analyses and factor
115 analytic models among others. While coexpression-based analyses have been used

116 extensively to characterize high-dimensional ‘omics’ data, these often require users to

117  select several parameters that influence outcomes and may limit reproducibility (DiLeo et
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118 al. 2011; Langfelder and Horvath 2008). Factor analytic models, on the other hand, use a
119 linear model to identify groups of strongly correlated metabolites. The underlying rationale
120  for these approaches is that covariance among metabolites is driven by some unobserved
121  (i.e, latent) underlying variable(s). With this approach, the matrix of metabolites is

122  decomposed into a lower-dimensional linear combination of factor loadings, which

123  describe how each latent factor contributes to each compound, and a set of factor scores
124  thatascribe a phenotypic value for all individuals for a given latent factor. Thus, these

125 frameworks have advantages from both biological and statistical perspectives. While in
126  some respects factor analytic models achieve the same goal as others, such as principal
127  component analysis (PCA) — providing a reduced rank representation of the data — the
128  defining feature of factor analytic models is that latent factors are constructed to preserve
129  correlation among groups of related metabolites. In PCA, new constructs are defined that
130 preserve variance in the observed variables. Thus, constructs from factor analytic models
131 can provide insight into biological processes driving covariation between phenotypes.

132  Moreover, the lower-dimensional set of factor-scores can be treated as any other

133  phenotype and reduce the multiple testing burden often associated with high-dimensional
134  ‘omics’ datasets. With these frameworks we can address: (1) What pathways are

135 represented in the metabolome? and (2) How do these pathways and their products co-vary
136  within a genetic population?

137  Improving health or quality-related compounds requires decomposing phenotypic

138  variation within the metabolome into genetic and non-genetic components, and utilizing
139  these outcomes to inform selection decisions for quality-related phenotypes. Conventional
140 linkage analysis or association mapping approaches have proven to be powerful

141  approaches to identify genetic variants associated with variation in the metabolome (Chan
142  etal. 2010; Eckertet al. 2012; Matsuda et al. 2015; Rowe et al. 2008; Wen et al. 2014; Xu et
143  al. 2017). However, a much greater challenge is to translate genetic signal for health-

144  promoting compounds, and related metabolites, to improve prediction and selection of
145 new crop germplasm.

146 A number of studies have extended the conventional frameworks used for genomic

147  prediction to accommodate prior biological information regarding genetic marker effects
148 (Edwards et al. 2016; MacLeod et al. 2016; Speed and Balding 2014; Turner-Hissong et al.
149  2019). Although these approaches differ in how these data are treated, the motivation is
150 similar for all —effects for variants that are more likely to be causative should be drawn
151 from a different distribution than those lacking evidence for causality. Thus, prediction
152  should be improved when effect sizes differ between genetic marker classes. The

153  approaches described by Speed and Balding (2014) and Edwards et al. (2016) are

154  essentially an extension of the genomic best linear unbiased prediction (gBLUP)

155 framework, in which genomic markers are partitioned and are used to construct separate
156  genomic relationship matrices for each random genetic effect. Genomic values for each
157  individual are sampled from each distribution. The framework described by MacLeod et al.
158 (2016) extends the Bayesian prediction framework, BayesR, and uses biological

159 information to partition markers into classes (Erbe et al. 2012). Marker effects, rather than
160  genomic values, are sampled from each distribution. In the context of the current study, if
161  we know what metabolites are related to quality traits and have identified variants
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162  associated with these metabolites, genomic markers can be partitioned to define
163  biologically informed marker-sets. These biologically informed marker-sets should be
164  enriched for causal loci, and should improve prediction of genomic values.

165 In this study, we characterized the seed metabolomes of 375 oat lines and sought to

166 identify loci that potentially influence (co)variation among many metabolites. Specifically,
167  we sought to answer: (1) What pathways or metabolite classes are enriched in the seed

168  metabolome? (2) What are the genetic controllers of the metabolome? and (3) Can these data
169  be leveraged to improve genomic prediction for seed quality traits? To this end, we assayed
170  the seed metabolome using untargeted LC-MS and GC-MS and used the empirical factor
171  analysis approach described by Wang and Stephens (2018) to identify latent factors that
172  generate covariance among many metabolites. GWAS was performed using this reduced set
173  of latent phenotypes, and these outcomes were used to inform a multi-kernel genomic

174  prediction model to predict seed quality traits in two independent studies. In summary, we
175  extract meaningful basic biological insights from ‘omics’ data with limited annotations, and
176  translate these outcomes to improve prediction for agriculturally important traits.

177
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197 Results
198 Metabolite differences across subpopulations are primarily generated by drift

199  To characterize the metabolome of mature oat seed, we generated untargeted metabolite
200  data using two mass spectroscopy (MS) pipelines (gas chromotography MS, GC-MS and
201  liquid chromotography MS, LC-MS) for 367 diverse accessions (Supplemental File S1). The
202  diversity panel consisted of 367 accessions that could be partitioned into six distinct

203  genetic clusters using a k-means clustering approach (Fig. 1A and B; Fig. S1). Despite six
204  clusters being identified, the degree of stratification within the population was minor. For
205 instance, the first and second principal axes explained only 7.3% and 5.9% of the variance
206  in genetic relationships, respectively (Fig. 1A and B). We quantified 1,668 metabolites (601
207  for GC-MS and 1,067 for LC-MS) across the 367 accessions. PCA of the metabolome dataset
208  did notreveal any apparent clustering among accessions, and evidence of stratification
209  between genetically-defined clusters was not visually apparent (Fig. 1C and D).

210 To determine whether individual metabolites differed among clusters, we performed a
211  one-way ANOVA for each of the 1,668 metabolites (Supplemental File S2). Despite no

212 strong differentiation of the metabolome between the six clusters, 41% of the 1,668

213  metabolites showed significant differences between one or more of the subpopulations
214  (Benjamini-Hochberg adjusted p-value; pgy < 0.01). We elucidated whether these

215 differences were due to selection or drift by examining Pg;, a measure of phenotypic

216  divergence between populations, and compared these values to the distribution of genetic
217  divergence (i.e., F;;) for all loci (Storz 2002; Leinonen et al. 2013). This analysis revealed
218  only 12 compounds with P,; values that were greater than 80% of the Fg values, indicating
219  that the majority of compounds differing between subpopulations diverged due to drift or
220  weak selection. Only four of these compounds have annotations and were described as a
221  putative steroidal glycosides, terpene glycoside, triterpenoid, and 1-benzopyran. These
222 results suggest that the divergent metabolites are largely due to drift rather than selection.

223 Latent factor model selection

224  Given that only a fraction of the metabolites quantified in our population were annotated,
225 weleveraged the correlation between annotated and unannotated metabolites to infer
226  biological processes in the oat seed with the rationale that compounds participating in a
227  related biological process will be correlated. We used an unsupervised learning approach
228  that distills the covariance among a set of observed variables into a lower dimensional set
229  ofunobserved constructs that may cause this covariance. In a biological sense, these latent
230 factors may provide insights into the major biochemical features of the metabolome, and
231  can be used to elucidate the genetic factors that shape the metabolome.

232 The covariance among the 1,668 metabolites was decomposed into a set of latent factors
233  using the empirical Bayes matrix factorization (EBMF) approach described by Wang and
234  Stephens (2018). This method constructs latent factors, which are defined by a linear

235  combination of factor loadings and factor scores, by approximating the posterior sampling
236  distribution for these parameters from the data (Wang and Stephens 2018). Three latent
237  factor models that differed in the family of prior distributions (Laplace, point normal, and
238 adaptive shrinkage) for factor loading and scores were evaluated, and the best model was
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Figure 1. Principal component analysis of genotypic and metabolomic data. The first four
principal components (PCs) of gentoypic data are shown in panels A and B, while the first four PCs of
the metabolomic data are shown in panels C and D. Subpopulations that were defined based on k-means
clustering of SNP marker data are indicated by different colored points. PC: prineipal component; PVE:

percent variance explained

8
239  selected based on the goodness-of-fit and predictive ability (Owen et al. 2016) (Table I, Fig.
8
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240  S2).The Laplace family of densities exhibited the lowest RMSE (0.970) and highest

241  correlation between predicted and observed data (r = 0.520). The common covariance in
242  the oat seed metabolome could be captured using 100 latent factors that collectively

243  explained 58.82% of the total variance in the metabolite data.

244  Factor analysis identifies sets of compounds coordinated by biological processes

245  One possibility is that unobserved latent factors represent an underlying biological process
246  that creates covariation among metabolites. Another possibility is that covariance among
247  metabolites caused by population structure is captured by latent factors. We sought to

248  partition latent factors into those due to a biological process and those due to a

249  confounding effect (Bello et al. 2018). Since we showed that most population structuring of
250 metabolites was caused by drift, we expect their coordination to be largely random, and
251  therefore unrelated to their functional class. We assessed enrichment for functional classes
252  within each factor, as well as the relationship between factors and population structure.

253  To assess biological enrichment, we determined whether the variance explained by a given
254  metabolite functional class within a factor was significantly greater than might be expected
255 by chance. The ontologies described in the preceding section were used to calculate the
256  percentage of variance explained (PVE) by each functional class for each factor. To compute
257  p-values, we compared these values against an empirical null distribution that was

258 generated by randomly sampling loadings for a number of compounds equal to the number
259  of compounds belonging to the functional class. This accounts for both the size of the class
260 and the amount of variation that is explained by each factor. Of the 100 factors identified
261  with the EBMF approach, 37 showed significant enrichment in one or more categories at
262  the super-class level, while 40 and 36 factors showed significant enrichment at the class
263 level and subclass levels, respectively (¢ < 0.05). Functional classes associated with lipids
264  were most frequently enriched in our dataset (Fig. 2A,B), indicating that many factors may
265  be capturing components of lipid metabolism. In addition to lipids, four factors showed
266  enrichment for carbohydrates and carbohydrate conjugates, as well as amino acids. These
267  results suggest that many latent factors are capturing meaningful biological processes that
268  shape the seed metabolome, and can help shed light on the meaning of unannotated

269  metabolites.

270  To address the possibility that latent factors are due to population structure, we examined
271  the PVE by subpopulation. A linear model was fitted to each latent factor that included

272  subpopulation assignment as a fixed effect. The PVE by subpopulation ranged from 0.03 to
273  29.8%, and subpopulation explained more than 20% of the variation for factors 7 and 12.
274  Factor 7 did not show functional class enrichment but factor 12 was enriched across all
275  hierarchies for lipid and lipid-like molecules — specifically steroidal glycosides (q < 0.05).
276 Interestingly, P, for this factor (0.27) was higher than the top 80th percentile of F; (0.23),
277  suggesting that the differences between subpopulations for this factor may be due to

278  selection rather than drift. The high frequency of enrichment for functional classes of

279  metabolites, and the relatively small amount of variation that was attributed to

280  subpopulations suggests that these constructs can provide biochemically meaningful

281  insights into the seed metabolome.
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Figure 2. Functional enrichment among latent factors. Number of latent factors enriched (FDR
< (.05) for functional categories at the super-class level (A) and class level (B). Percentage of variance
explained for each factor by a given functional category (C). Each point represents a functional class that
was significantly enriched for one or more factors with the size of the point being proportional to the
percentage of variance explained by that class for a given factor. Only factors and classes that showed
significant enrichment (g < 0.05) at the super-class level are pictured. Colors differentiate between the

class and subclass levels of the taxonomic hierarchy.

282  Elucidating the origin of latent factors
10
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283  To determine whether the covariance generated by each factor was due to genetic or
284 environmental causes, we partitioned variance in latent factors into additive genetic and
285 non-genetic components, and examined their genetic architecture. A Bayesian whole

286  genome regression approach, Bayes Cr, was used to estimate variance components, and
287  estimate the degree of polygenicity of each factor (Habier et al. 2011). Bayes Crr assumes
288  markers have a zero effect with probability = and a non-zero effect with probability (1 —
289 m).mis treated as an unknown and is estimated from the data. Thus, the magnitude of
290 (1 — m) can provide a metric to assess the polygenicity of the trait. Narrow-sense

291  heritability estimates (h?) ranged from 0.01 to 0.80, indicating that variation for many of
292  the latent factors could be attributed to additive genetic effects (Figs S3,4). Moreover, the
293  range of (1 — m) indicates this genetic variance is manifested in a wide range of

294  architectures (Fig. S4).

295  The distribution of loading values for each latent factor was not similar — meaning that
296  some factors show dense loadings (i.e., they generate covariance for many metabolites),
297  while others show sparse loadings. These loadings are sampled from a scale mixture

298  distribution where non-zero loadings are sampled from a Laplace distribution with a

299  probability of (1 — v) and a point-mass at zero with a probability of v. Given that latent
300 factors with dense loadings will generate covariance for many metabolites, we

301 hypothesized that these factors will likely have a complex genetic architecture. To test this,
302 we performed a partial Spearman’s correlation between polygenicity and the density of
303 factor loadings while accounting for the heritability (h?) of each factor. A significant

304 positive correlation between (1 — v) and (1 — m) was observed (p = 0.35; p = 4.5 x 107%),
305 indicating that factors that capture (co)variance among many metabolites tend to be

306 controlled by many loci with small effects (Fig. 3; Figs S3,4). Several exceptions to this

307 relationship were observed. For instance, factors 4, 13, 17, and 25 exhibited low

308 polygenicity and dense loading patterns (Table II), indicating that these factors may be
309 driven by loci with pleiotropic effects on the metabolome.

310 Biologically-informed prediction of seed quality traits

311  Ultimately, the aim of this study was to translate insights from the metabolome into genetic
312 resources that can be used by breeders to make broad changes to oat seed composition. In
313  this respect, we assume that loci with large effects on multiple metabolites will be a more
314  valuable resource to oat breeders than loci that affect one or a few metabolites. A

315  conventional mixed linear model GWAS approach was used to identify loci with large

316 effects on the latent factors. We identified 666 markers associated with 23 factors

317 (p < 2.57 x 1077; File S3; Figs S5-27).

318 We sought to address whether these associations could be leveraged to improve genomic
319 prediction for seed quality traits in two independent studies. The first study quantified ten
320 fatty acids (FA) in mature seed for 338 oat lines grown in two locations using targeted GC-
321  MS. Of the 338 accessions evaluated, 330 overlapped with the factor analysis panel. The
322  second study assayed seed lipid and protein content using near-infrared spectroscopy

323  (NIRS) for 210 accessions from six trials with 12 lines overlapping with the factor analysis
324  panel. Two prediction frameworks, genomic BLUP (gBLUP) and a multi-kernel prediction
325 model (MK-BLUP), were used to predict seed-quality phenotypes across trials. The MK-

11
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Figure 3. Relationships between polygenicity, density and heritability. (A) Association
between polygenicity (1— ) and density ranks (1 —v) after accounting for heritability (h?). Each variable
was ranked from smallest to largest and the ranks for (1 — ) and (1 — v) were each regressed on ranks
for h%. The scatter plot depicts the relationship between the residnals (Resid.) for each of these models.
Colored points indicate factors that were enriched for lipids (Lip. Enr.), and different shapes indicate
whether the factor was used to inform the lipid-enriched kernel for genomic prediction (Gen. Pred.). (B)

Pairwise relationships between the ranks for each variable.

14/
BLUP framework uses two kernels to capture additive genetic effects, one of which is
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327  constructed from markers associated with latent factors and is referred to as the

328  “biologically-informed" kernel. The second kernel is constructed from all other markers.
329 Two biologically-informed kernels were evaluated: one that used markers associated with
330 any latent factor to improve prediction, and one that only used markers associated with
331 factors enriched for “Lipid and lipid-like molecules" (factors 4, 17, and 34). Prediction

332  accuracy was assessed using five-fold cross validation with 50 resampling runs, and the
333 MK-BLUP models were deemed to significantly improve prediction if prediction accuracies
334  for MK-BLUP were higher than gBLUP in 90% of resampling runs.

335  Prediction accuracies were similar between gBLUP and the MK-BLUP models that used
336  associations for all factors for nearly all traits. The exception was 18:3, which exhibited a
337  2.27% increase on average over gBLUP. The MK-BLUP approach significantly

338  outperformed gBLUP for eight of the 12 traits considered when the kernel was informed by
339  markers associated with lipid-enriched factors. For FA traits, the percent change in

340 prediction accuracy over gBLUP ranged from -0.57% to 23.10%, with seven compounds
341 showing significantly greater prediction accuracy compared to gBLUP (Fig. 4).

342 Improvements were most notable for 14:0 and 16:0, which exhibited more than a 20%
343  improvement over gBLUP. For NIRS traits, the lipid-enriched MK approach significantly
344  improved predictions for lipid content on average by 9.9% (Fig. 5). These results show the
345 latent factors and the genetic signals associated with them are reproducible and can be
346  extended to new metabolite traits. Most importantly, these genetic signals are robust

347  across populations and phenotyping technologies.

348
349
350
351
352
353
354
355
356
357
358
359
360
361
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Figure 4. Genomic prediction for fatty acid compounds. Prediction accuracy was assessed using
five-fold cross validation with 50 resampling runs. (A) The distribution of Pearson’s correlation (r)
coefficients between observed phenotypes and genetic values for each fatty acid compound. Panels B
and C show the percent difference (% diff.) in prediction accuracy for the multikernel (MK) approach
relative to genomic BLUP (gBLUP). The suffixes *-all” and *-lip’ indicate models where the biologically-
informed kernel was constructed from markers associated with any latent factor or lipid-enriched factors,

respectively.

362 Discussion

14


https://doi.org/10.1101/2020.07.06.190512
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.190512; this version posted July 7, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

™ O gBLUP 25 ° @ Al Fact
- | MK-all O Lipid-enr.

T T o MK-lip 20 -
0.45 = I
E. I 15 o
iy .
! ¢ ;
[
-
[}

0.50 —

% diff.
=3
1
be- {4
;

=~ 0.40 ;
1
; ° 5 o
BE| g ]
0.30 = ! O
) L e o 5o 4
I T
Lipid content Protein content Lipid Protein

content content
Figure 5. Genomic prediction for lipid and protein content measured via NIRS. Prediction
accuracy (r) was assessed using five-fold cross validation with 50 resampling runs. Panel A shows the
distribution of Pearson’s correlation coefficients between observed phenotypes and genetic values. Panel
B shows the percent difference (% diff.) in prediction accuracy for the multikernel (MK) approach
relative to genomic BLUP (gBLUP). The suffixes -all’ and ‘-lip’ indicate models where the biologically-
informed kernel was constructed from markers associated with any latent factor or lipid-enriched factors,

respectively.
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363 The oat seed harbors a rich array of biochemical compounds that are important for human
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364  health, and considerable variation for these compounds exist in oat germplasm (Peterson
365 and Wood 1997; Frey and Holland 1999; Gulvady et al. 2013; Zhou et al. 2019). Efficiently
366  accessing this variation is necessary to rapidly deliver oat varieties with beneficial

367 nutritional profiles to the consumer. Advances in metabolic profiling over the past 20 years
368 has provided a suite of tools to comprehensively assess these compounds, along with many
369 others, in large populations and to elucidate their regulation (Keurentjes et al. 2006; Tohge
370  and Fernie 2010). Structural elucidation and metabolite identification remain a significant
371  bottleneck in characterizing the metabolome using untargeted metabolomics (Dunn et al.
372  2013). Many of the publicly available databases do not adequately capture the rich

373  diversity of metabolites that are produced in plant species (De Vos et al. 2007; Tohge and
374  Fernie 2010). Therefore, approaches that uncover the relationships between metabolites,
375  both known and unknown, may help shed light on the function of these compounds.

376  Despite being able to reliably detect the abundance of 1,668 compounds in the current
377  study, less than a third of these compounds were annotated. We used a latent factor

378 approach that leverages the correlation between metabolites to help elucidate their

379  function. Our rationale is that metabolites that participate in the same pathway should be
380 correlated. Thus, by extracting the major correlation patterns in the observed variables we
381 can begin to elucidate the biochemical pathways that shape the seed metabolome.

382  Moreover, by studying the relationships among annotated metabolites, we can generate
383 new hypotheses to understand the function of unannotated compounds.

384  Characterizing the metabolome using latent factors

385  Our enrichment approach helped shed light on the biochemical processes these latent
386  factors might affect. For instance, we found significant enrichment for a range of processes
387  associated with primary metabolism (amino acids, phospholipid metabolism) and

388 secondary metabolism (coumarin and terpenoid metabolism). Since roughly 30% of the
389 metabolites assayed had functional annotations, this enrichment approach may shed light
390 on the function of unannotated metabolites. For instance, factor 4 showed significant

391  enrichment for “lipid and lipid-like molecules.” Although, only 45 of the top 100

392  compounds with high loadings were annotated, the high correlation between these

393  unknown compounds and annotated, lipid-like compounds suggests putative role in lipid
394 metabolism. Although further analyses are necessary to elucidate the structure of these
395 unknown metabolites, our enrichment approach provides a data-driven approach to

396  generate hypotheses for these unannotated metabolites.

397  One overarching pattern observed across latent factors is the enrichment for compounds
398 related to lipid metabolism. At the most coarse level, super-class, 21% of factors were

399  enriched for “lipid and lipid-like molecules,” and these patterns were consistent at more
400  specialized levels of lipid metabolism. Oat is unique among cereals in both the abundance
401  and distribution of lipids within the seed (Price and Parsons 1975; Gulvady et al. 2013;
402  Frey and Holland 1999). And with approximately 57% of the annotated metabolites in our
403  data classified as lipid-like compounds, it is not surprising that categories associated with
404 lipid metabolism were most frequently enriched.
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405 Itis possible that other processes are prevalent in the metabolome and are reflected in the
406 latent constructs, but remain undetected due to the annotations that were used for

407  functional enrichment. These ontologies are based on structural similarities between
408 compounds rather than pathway-based relationships. We expect compounds involved in
409  the same pathway to be correlated, and since latent factors are defined by these

410  correlations they should in some sense be an abstraction of these pathways. Biochemical
411  reactions often involve compounds with dissimilar structures, thus enrichment based on
412  structural similarities may bias enrichment towards pathways composed of structurally
413  similar metabolites (e.g., lipid metabolism). While this enrichment approach may be

414  imperfect, other studies have used similar approaches and have proven to be useful in
415  other species (Barupal and Fiehn 2017; Fan et al. 2018; Marco-Ramell et al. 2018;

416  Showalter et al. 2019). The ChemRich approach developed by Barupal and Fiehn (2017)
417  uses the ClassyFire ontology to classify compounds into functional classes and tests for
418  enrichment using a Kolmogorov-Smirnov test. Annotations that map metabolites to a
419  pathway can provide additional evidence that these latent factors are indeed due to an
420  underlying biochemical process; however, current resources do not provide the breadth
421  and resolution necessary to perform such analyses.

422  Understanding the origin of latent factors

423  Although it may seem reasonable to suggest that the observed covariance among

424  metabolites is due to a biological cause that is manifested in the metabolome, making

425  causal inferences from observational data is nontrivial due to the presence of confounding
426  factors (Spirtes et al. 2000; Rosa and Valente 2013; Bello et al. 2018). Given these data

427  were collected on a structured population, it is expected that some of this covariance can be
428  attributed to population structure. This can influence the construction of latent variables
429  (Phillips et al. 2001) if not taken into account. There are many ways to account for

430  structure in the definition of latent factors, either by including the genomic relationship
431  matrix, or some component(s) of it, in the factor analytic model or by regressing-out these
432  effects prior to factor analysis; however, it is important to consider whether these steps are
433  necessary. While such measures will control for confounding due to structure, they will
434  also remove possibly meaningful biochemical relationships that are associated with

435  structure. If a set of compounds participating in a common pathway happen to differ

436  between subpopulations, correcting for structure may remove the latent factor that

437  describes this process. We identified two latent factors, factors 7 and 12, that were highly
438  associated with population structure. Enrichment analysis and Pg; — F; suggested that

439  factor 12 may indeed describe a biological process (steroidal glycoside metabolism) that
440  was affected by selection. This factor would likely be removed if structure were accounted
441  for prior to factor analysis.

442  If subsequent genetic analysis are planned for latent factors, regressing-out structure may
443  also remove meaningful genetic signal. Given the minor structure observed among

444  accessions in the diversity panel and the importance of preserving genetic signal in the
445  factor scores, we thought that measures to account for structure could be harmful to the
446  study as a whole. Moreover, our downstream association mapping approaches accounted
447  for population structure by using the first two PCs and a kinship matrix based on allele
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448  dosages. In the event that some latent factors were defined based on kinship, we do not
449  expect to recover any signal from association mapping with scores for these latent factors.

450  We should not place too much emphasis on causality in a purely biological sense when

451  interpreting these latent factors. Rather it is important to consider the limitations of the
452  study, interpret latent factors with caution, and view them as a means to generate testable
453  hypotheses. The aims of our study were to (1) elucidate the major biochemical processes in
454  the oat seed metabolome, and (2) to leverage these insights to improve selection for seed
455  quality. Thus, hypotheses are generated in the former and are tested in the latter. If latent
456  factors do not represent a causal effect then we should not see any improvement in

457  predictions when inferences on these constructs are extended to new studies and/or

458  populations.

459  Translating ‘'omics’ insights to crop improvement

460 Two independent studies were used to determine whether biological signal in the latent
461 factors could be generalized to other populations and/or traits. The fatty acid dataset can
462  be used to test whether the information learned by latent factors is reproducible, while the
463  NIRS dataset provides a means to test whether this information is transmissible to related
464  traits in new populations. We distinguish between these two because: (1) the majority of
465  accessions included in the fatty acid dataset are accessions that were used for the factor
466  analysis metabolome study, while less than 6% of accessions are common between the
467  factor analysis and the NIRS studies; (2) the fatty acid data was generated using targeted
468 metabolomics, meaning there should be a high correspondence between the metabolites
469 measured in the fatty acids study and those that were assayed for the factor analysis

470  metabolome study (Carlson et al. 2019).

471  Considering these aspects, we expect that the information learned from the factor analysis
472  metabolome study should have the most pronounced effect on predictions for fatty acid
473  compounds. Consistent with these expectations, we observed the greatest improvements in
474  prediction accuracy among all traits for the biologically-informed prediction model over
475  gBLUP for these compounds when the kernel was constructed using associations for lipid-
476  enriched factors. Thus, the genetic signal that is associated with these latent factors is

477  relevant to both studies and phenotyping approaches (i.e., targeted and untargeted

478  metabolomics). A comparison of the GWAS hits in (Carlson et al. 2019) and those in our
479  study showed little overlap, with two common associations identified for factor 13 and the
480  tenth PC of fatty acid phenotypes in (Carlson et al. 2019), and factor 17 and 14:0 in

481  (Carlson et al. 2019). Of these two factors, only factor 17 showed enrichment for “lipid and
482  lipid like molecules” at only the super-class level. While g values at more specific functional
483  classes were above the chosen significance threshold, g < 0.05, enrichment for 1-acyl-sn-
484  glycero-3-phosphocholines was the top-ranked category at the parental class (g = 0.058).
485 Interestingly, hydrolyzation of these compounds by phospholipase A1 yields a fatty acid.
486  Although additional studies are necessary to elucidate the biochemical pathways

487  associated with factor 17, these results provide an interesting link between 1-acyl-sn-

488  glycero-3-phosphocholines catabolism and fatty acid abundances and the possibility of
489  modifying 1-acyl-sn-glycero-3-phosphocholine metabolism to fine-tune fatty acid profiles
490 in oat. Although it is difficult to connect loci associated with latent factors with changes in
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491  specific metabolites, our polygenicity analysis offers a more general explanation -
492  specifically, that these loci may affect many metabolites.

493  The second study with NIRS-derived composition measurements provides several realistic
494  challenges, and should be a reasonable estimate of how the biologically-informed model
495  would perform in a breeding program. The population that was evaluated for NIRS

496  phenotypes is largely independent from the population that was used for factor analysis.
497  Moreover, the NIRS phenotypes are only approximations of total lipid or protein content.
498  The advantage of using NIRS to estimate seed metabolites is that it is a relatively low cost
499  phenotyping approach compared to metabolomics and is high-throughput, making it a

500 tractable solution for many breeding programs interested in improving health-promoting
501 compounds (Diepenbrock and Gore 2015). Despite these challenges the multi-kernel

502  prediction approach - when informed using markers associated with lipid-enriched factors
503 - significantly improved prediction for lipid content compared to gBLUP.

504  On the relationship between factor density and polygenicity

505 The positive relationship observed between the magnitude of polygenicity and loading

506 densities, indicates that latent factors that influence many metabolites are more likely to
507  have a complex genetic architecture. These observations are somewhat expected. If these
508 dense latent factors are representative of some central component of the metabolome,

509 perturbations on these processes would likely result in large-scale biochemical changes
510 that may affect fitness. Therefore, it is important that these processes are robust to

511 mutations and are maintained at, or near some optima. This is the basis of canalization -
512 important physiological processes will evolve to reach robust optima - and suggests that
513  much of the oat seed metabolome is under optimizing or stabilizing selection (Gibson 2009;
514  Slatkin 1970; Waddington 1942).

515 Perhaps what is more interesting is the factors that deviate from this relationship,

516  specifically factors 4 and 17. Both exhibited dense loading patterns, oligogenic

517  architectures (ranked 8th and 17th for density, respectively, and 50th and 73rd for

518 polygenicity), and were enriched for lipids. The large-effect loci associated with these

519 latent factors may have pleiotropic effects, or may consist of a set of tightly linked genes
520 thatinfluence the abundance of lipid-like compounds. In either case, this may explain the
521 deviance from the density-polygenicity relationship observed for other factors. The

522  presence of these loci raises a larger question, specifically Why are these loci segregating in
523  the population? The theoretical and simulation studies by Orr, as well as empirical evidence
524  in maize and other species may help explain these observations (Orr 1998; Orr 1999;

525 Boyko etal. 2010; Brown et al. 2011; Carlborg et al. 2006; Colosimo et al. 2004; Doebley et
526 al. 1997; Van Laere et al. 2003; Wang et al. 2005). For “older” traits - i.e. those associated
527  with adaptation in natural environments - such large effect alleles at these loci would likely
528 beremoved through negative selection as these alleles may shift phenotypes far from the
529  optimal values (Orr 1998; Orr 1999). This was proposed by Brown et al. (2011) to explain
530 the small effect sizes for flowering and leaf traits in maize. This is not necessarily the case
531 for traits that are relatively “new” in evolutionary history or are not associated with

532  adaptation. For instance, plant architecture and inflorescence traits have relatively simple
533  genetic architectures in maize and are recent targets for artificial selection (Brown et al.
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534  2011; Doebley et al. 1995; Doebley et al. 1997; Wang et al. 2005; Wallace et al. 2014). This
535 s also the case for traits under recent artificial selection in other species (Boyko et al.

536  2010; Carlborg et al. 2006; Colosimo et al. 2004; Van Laere et al. 2003). While it is unknown
537  whether seed lipid content has any adaptive significance in oat, lipid content and traits that
538 are genetically correlated with lipid content (i.e., f-glucans) are popular targets for many
539  breeding programs (Welch and Lloyd 1989; Kibite and Edney 1998; Cervantes-Martinez et
540  al. 2002). Thus, the oligogenic architectures for factors enriched for lipids may be a

541 reflection of this relatively recent selection by breeders for lipids or traits that are

542  genetically correlated with lipids.

543  Conclusions

544  This study shows that we can translate biological knowledge obtained from the

545  characterization of high dimensional ‘omics’ data to improve prediction and selection for
546  agriculturally important traits. The matrix factorization approach used here provides an
547  effective means to reduce the dimensionality of the data while preserving important

548  biological features that generate correlation in the observed phenotypes. This can help

549  reduce the multiple testing burden often experienced with GWAS on ‘omics’ data and allow
550 therecovery of meaningful genetic signal. This signal can be leveraged to improve

551 prediction for low-cost phenotypes that provide an approximation of biochemical

552  attributes in independent populations. In a broader context, this approach that can be used
553  to manage the allocation of phenotyping resources and improve breeding decisions. For
554  instance, breeders can phenotype a single replicate of a ‘discovery’ population with a

555  costly, high-resolution ‘omics’ technology and these data can be used to inform predictions
556  for low-cost, lower-resolution phenotypes in new populations or trials. These approaches
557  can be easily extended to other crops, tissues and ‘omics’ technologies to improve

558  predictions for complex traits.

559
560
561
562
563
564
565
566
567
568
569 Materials and Methods

570 Plant materials and growth conditions
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571 The oat diversity panel consists of 375 accessions derived from breeding programs in

572  North America and Europe. In 2018, the panel was grown in an augmented field design in
573  Ithaca, NY, which consisted of 368 unreplicated entries allocated to 18 blocks with 21-23
574  plots per block. One primary check, ‘Corral’, was included in each of the blocks, while one of
575  six secondary checks were randomly allocated to each block. These secondary checks were
576  replicated four times, while the primary check was replicated 19 times (one block had two
577  ‘Corral’ plots).

578 Latent factor analysis

579 Latent factor analysis seeks to identify a set of k unobserved, latent factors that give rise to
580 the observed covariance among a set p of observed variables. Formally, this relationship is
581 given by

Y=FI+s

582  where Y is a centered and standardized n X p matrix of observations for p metabolites and
583 nindividuals; F is an n X k matrix of factor scores; I' is a k X p matrix of loadings; and s is
584  ann X p matrix of specific effects. The (co)variance matrix V of observations Y is

585 decomposed into common covariance and specific covariance:

V=IT+¥
586  All matrices are defined as above, and W is a p X p diagonal matrix of specific variances.

587  Arecent framework described by Wang and Stephens (2018) uses an empirical Bayes

588 framework to learn appropriate priors from the data given a family of densities. This

589  approach, Empirical Bayes Matrix Factorization (EBMF), can tailor the sparsity for factor
590 loadings and scores based on what best fits the data. This was implemented using the

591 flashr package in R (https://github.com/stephenslab/flashr). Three classes of models
592  were fit that differed in families of densities used to fit the data: Laplace, point-normal, and
593  adaptive-shrinkage. A combination of the ‘Greedy’ search algorithm and backfitting was
594  used to define the model.

595 We evaluated the classes of models for goodness-of-fit using percent variance explained
596 (PVE) by the common factors and predictive ability using three-fold orthogonal cross
597  validation (3-OCV) (Owen, et al. 2016). PVE was defined as

B tr(I'T)
~ tr(I'T + W) x 100

PVE

598  with tr indicating trace of the given matrix and all other matrices defined as above. 3-OCV
599 issimilar to classical CV, but ensures that no rows and columns of the testing data (Yiest)
600 have all missing data. The model above was fitted for the training set data and predicted

601  values for the testing set were calculated via Qtest = Fiestltest- The accuracy of each model
602  was evaluated using the root mean square error (RMSE) and the correlation between

603 predicted and observed values for observations in the testing set for each fold. Ten

604 independent resamplings were performed. The metrics were averaged over folds, and the
605 ‘best’ model was selected based on the results across the ten repeats.
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606 Enrichment analysis for latent factors

607  We used the ClassyFire taxonomic hierarchies to test for functional enrichment for each
608 factor (Feunang et al. 2016). Briefly, ClassyFire uses a hierarchy of five levels to describe
609 chemical compounds. At each level, we calculated the percentage of variance explained
610 (PVEy.) for factor k by functional class c. This is given below

_ tr (Akc/llkc)

PVE =
fee tr(AeA'y)

611  where 4; is a vector of loadings for a given factor k, and 4, is a vector of loadings of factor
612  k for compounds in class c. Our null hypothesis is that the variance captured by compounds
613 inagiven class will be equivalent to that explained by a random set of compounds of equal
614  size to that class. To test this, we generated an empirical null distribution for each

615 functional class and factor. For each class and factor, we picked a random set of compounds
616  with a size equivalent to the class by sampling the loadings of 1,668 metabolites without
617 replacement and computed PVE. This process was repeated 1,000 times for each

618 combination of functional class and factor. For each class-factor combination, we compared
619  observed PVE with the empirical null distribution for that given combination and

620 calculated p-values. Finally, to account for multiple testing, g-values were calculated across
621  all factors and classes following (Storey 2002). Functional classes with fewer than five

622 compounds were excluded from analyses to ensure that results were not biased to small
623  classes with one or two compounds with very high loadings.

624  Assessing the genetic architecture of latent factors
625  Genome-wide association study

626  To identify loci associated with latent factors, the following linear mixed model was fit to
627  factor scores for each latent factor (k)

y =Xb+wa; +Zu+e

628 wherey is a vector of factor scores; X is a matrix of the first two PCs and b is the

629  corresponding vector of effects; wj; is a vector of allele dosages for marker i and a; is the
630 corresponding marker effect; and u is a vector of polygenic effects. The first two PCs

631  explained about 13% of the genomic relatedness among lines. We assume u ~ N(0, Go;2)
632 ande ~ N(0,I62), where G is a genomic relationship matrix calculated following the
633  second definition provided by VanRaden (2008). These models were fitted using the
634  rrBLUP package in R (Endelman 2011). GWAS was performed using 62,049 SNP markers
635  with a minor allele frequency > 0.05 and 335 individuals with marker data and factor
636  scores.

637  We used the approach described by J. Li and Ji (2005) to account for multiple tests
638 performed both within and across factors. Briefly, we computed the number of effective
639  tests (M,fr) by performing eigenvalue decomposition on the correlation matrix for 62,049

640 markers. This provides an estimate of the number of tests performed within each factor.
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641  Next, we multiplied this value by the total number of factors. The test criteria was then
642  adjusted using M, with the Sidak correction below (Sidak 1967).

ap =1- (1 _ ae)l/(Meffxloo)

643  This provided a genome-wide significance (a,) value of 2.57 X 1077 at a, = 0.1 with
644  M.r = 4,097.

645  Estimating polygenicity with Bayes Crt

646  To estimate polygenicity of each factor, we used Bayes Crt (Habier et al. 2011). Bayes Cr is
647  a Bayesian whole-genome regression approach that can be used to estimate the proportion
648  of markers with a non-zero effect on the phenotype. Bayes Crr assumes that marker effects
649  are drawn from a mixture distribution. Effects drawn from a distribution with a point mass
650 at 0 with a probability = and a univariate Gaussian distribution with probability (1 — ).
651 The linear model is given below.

T
y=u+2wtat+e
t=1

0 with prob.m

2
ac|m, o = {~ N(0, 02,) with prob. (1 — )

652  w, is a vector of marker genotypes for marker t and a; is the corresponding effect. The
653  above model was fitted using the JWAS package in Julia using factor scores and 62,049
654 markers (Cheng et al. 2018). We used 200,000 iterations and discarded the first 100,000.
655  Posterior means of 1 — m were used as estimates of polygenicity.

656 Genomic prediction of seed quality traits

657  Two studies were used to determine whether associations from factor score-based GWAS
658 could improve genomic prediction accuracies. The first consisted of fatty acid

659 measurements for 500 lines, of which 338 had corresponding genotypic data consisting of
660 61,900 markers. These lines were evaluated at two locations in New York in 2014 (Carlson
661 etal. 2019). The second consisted of six trials that evaluated protein and lipid content using
662 near-infrared spectroscopy for 210 lines, of which 12 overlapped with the lines used for
663  factor analysis. For this study 58,293 markers were used for prediction. Table S2 lists the
664 trials used for genomic prediction and links to access these data.

665 A multi-kernel BLUP model was used to predict seed phenotypes across trials. Additive
666  genetic effects were predicted using two kernels. The first is computed using markers that
667  were identified through factor score-based GWAS and is referred to as the biologically-
668 informed kernel, while the second was computed using all other markers. This model is
669 given by

y=pn+Z,u, +Zugy +Z.S + €

670  where y is a vector of phenotypes; Z, is an n X g incidence matrix that assigns the g
671 genomic values to n observations; u;, and u,; are genomic values predicted from
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672  biologically-informed or non-informed kernels, respectively; and Z,, is an n X e incidence
673  matrix that assigns observations to trials and s are the corresponding effects. Moreover, we
674  assume U, ~ N(0,0;, Kin), Uou ~ N(0,05,  Kou), and s ~ N(0,02Z,'Z,). Where K;, and
675 K,y are biologically-informed and non-informed kernels genomic relationship matrices,
676  respectively, and are computed according to VanRaden (2008). We considered two marker
677  setsto compute these matrices: markers associated with any latent factor, and markers
678  that were associated with latent factors showing enrichment for lipid and lipid-like

679 molecules at the superclass level (g < 0.05). Markers that were in weak linkage

680 disequilibrium (LD) (r? > 0.25) with GWAS hits were included in the biologically-informed
681  kernel. LD was computed separately for each study.

682  Genomic BLUP (gBLUP) served as a base-line to compare the ability of the multi-kernel
683  approach to predict seed phenotypes. The model is similar to the multi-kernel model;

684  however, the relationship matrix was constructed using all available markers for each

685  study. All models were fit using the BGLR package in R, with 20,000 iterations, of which the
686  first 5,000 were discarded (Perez and de los Campos 2014).

687  Prediction accuracy was assessed using five-fold cross validation with 50 resampling runs,
688 and was computed using Pearson’s correlation between observed phenotypes and

689  predicted genomic values for accessions in the testing set. Genomic values for the multi-
690  kernel approach were computed as the sum of breeding values from each random genetic
691 effect. Correlation coefficients were averaged across folds.

692
693
694
695
696
697
698
699
700
701
702
703
704  Data availability

705  All metabolomic data are provided via Cyverse and can be accessed using the following url
706  https://de.cyverse.org/de/?type=data\&folder=/iplant/home/mcampbell4. All R code
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707  used for analyses is provided as Rmarkdown files and can be accessed via
708  https://github.com/malachycampbell/OatLatentFactor.
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725 polygenicity (1 — ) and narrow sense heritability (h?).

726 « Supplemental Figure S4. Distribution of density (1 — v), polygenicity (1 — ) and
727 narrow sense heritability (h?) estimates.

728 e«  Supplemental Figures S5-27. Manhattan plot for factor score-based GWAS.

729 « Supplemental File S1. Deregressed best linear unbiased predictions for 1,668
730 metabolites.

731 e« Supplemental File S2. Metabolites showing significant differences between
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736  Tables

737  Table I. Empirical Bayes matrix factorization model selection. Each model was fit using
738  degressed BLUPs for 1,668 metabolites. Ad. Shr.: adaptive shrinkage family of densities
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739  described by Stephens (2016). Cross-validation (CV) was based on a 3-fold orthogonal CV

740  described by (2018) and Owen et al.(2016) with ten independent resamplings. Point Nor.:
741  point-normal family of densities which are a normal distribution with a point mass at zero; LL
742  indicates log-likelihood; PVE: percent variance explained; Réd i adjusted R?; T oo P ese) is the
743  Pearson’s correlation between predicted and observed values for observations in the testing
744  set; RMSE: root mean square error.

EBNM Appr. No. Fact. LL PVE R, i Tso?es) RMSE
Ad. Shr. 102 -581716.3 59.41 0438 0.322 1451
Point Nor. 106 -583809.9 59.36 0.429 0.514 0.978
Laplace 100 -584317.2 58.82 0.434 0520 0.970
745
746

747  Table II. Factors capturing covariance between many metabolites with simple genetic
748  architectures. Polygenicity estimates were based on the posterior means of 1 — m and density
749  of factor loadings are provided as 1 — v.

Factor 1-m 1-v
4 4.69x 1073 0.621
13 7.80 x 107* 0.369
17 470 x 10™* 0.413
25 5.54 x 107* 0.247

750

751

752

753

754

755

756

757

758

759

760  Figure Legends

761  Figure 1. Principal component analysis of genotypic and metabolomic data. The first
762  four principal components (PCs) of gentoypic data are shown in panels A and B, while the
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763  first four PCs of the metabolomic data are shown in panels C and D. Subpopulations that
764  were defined based on k-means clustering of SNP marker data are indicated by different
765  colored points. PC: principal component; PVE: percent variance explained

766  Figure 2. Functional enrichment among latent factors. Number of latent factors

767  enriched (FDR < 0.05) for functional categories at the super-class level (A) and class level
768  (B). Percentage of variance explained for each factor by a given functional category (C).

769  Each point represents a functional class that was significantly enriched for one or more

770  factors with the size of the point being proportional to the percentage of variance explained
771 by that class for a given factor. Only factors and classes that showed significant enrichment
772 (g < 0.05) at the super-class level are pictured. Colors differentiate between the class and
773  subclass levels of the taxonomic hierarchy.

774  Figure 3. Relationships between polygenicity, density and heritability. (A) Association
775  between polygenicity (1 — ) and density ranks (1 — v) after accounting for heritability
776  (h?).Each variable was ranked from smallest to largest and the ranks for (1 — ) and

777 (1 — v) were each regressed on ranks for h?. The scatter plot depicts the relationship

778  between the residuals (Resid.) for each of these models. Colored points indicate factors that
779  were enriched for lipids (Lip. Enr.), and different shapes indicate whether the factor was
780  used to inform the lipid-enriched kernel for genomic prediction (Gen. Pred.). (B) Pairwise
781  relationships between the ranks for each variable.

782  Figure 4. Genomic prediction for fatty acid compounds. Prediction accuracy was

783  assessed using five-fold cross validation with 50 resampling runs. (A) The distribution of
784  Pearson’s correlation (r) coefficients between observed phenotypes and genetic values for
785  each fatty acid compound. Panels B and C show the percent difference (% diff.) in

786  prediction accuracy for the multikernel (MK) approach relative to genomic BLUP (gBLUP).
787  The suffixes ‘-all’ and ‘-lip’ indicate models where the biologically-informed kernel was
788  constructed from markers associated with any latent factor or lipid-enriched factors,

789  respectively.

790  Figure 5. Genomic prediction for lipid and protein content measured via NIRS.

791  Prediction accuracy (r) was assessed using five-fold cross validation with 50 resampling
792  runs. Panel A shows the distribution of Pearson’s correlation coefficients between observed
793  phenotypes and genetic values. Panel B shows the percent difference (% diff.) in prediction
794  accuracy for the multikernel (MK) approach relative to genomic BLUP (gBLUP). The

795  suffixes ‘-all’ and ‘-lip’ indicate models where the biologically-informed kernel was

796  constructed from markers associated with any latent factor or lipid-enriched factors,

797  respectively.
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