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Abstract	41 

Oat (Avena	sativa L.) seed is a rich resource of beneficial lipids, soluble fiber, protein, and 42 
antioxidants, and is considered a healthful food for humans. Despite these characteristics, 43 
little is known regarding the genetic controllers of variation for these compounds in oat 44 
seed. We sought to characterize natural variation in the mature seed metabolome using 45 
untargeted metabolomics on 367 diverse lines and leverage this information to improve 46 
prediction for seed quality traits. We used a latent factor approach to define unobserved 47 
variables that may drive covariance among metabolites. One hundred latent factors were 48 
identified, of which 21% were enriched for compounds associated with lipid metabolism. 49 
Through a combination of whole-genome regression and association mapping, we show 50 
that latent factors that generate covariance for many metabolites tend to have a complex 51 
genetic architecture. Nonetheless, we recovered significant associations for 23% of the 52 
latent factors. These associations were used to inform a multi-kernel genomic prediction 53 
model, which was used to predict seed lipid and protein traits in two independent studies. 54 
Predictions for eight of the 12 traits were significantly improved compared to genomic best 55 
linear unbiased prediction when this prediction model was informed using associations 56 
from lipid-enriched factors. This study provides new insights into variation in the oat seed 57 
metabolome and provides genomic resources for breeders to improve selection for health-58 
promoting seed quality traits. More broadly, we outline an approach to distill high-59 
dimensional ‘omics’ data to a set of biologically-meaningful variables and translate 60 
inferences on these data into improved breeding decisions. 61 
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 75 

Introduction	76 

The oat seed contains a diverse array of compounds that are beneficial for human health 77 
and nutrition (Gulvady et al. 2013). It is widely considered a healthy food due to its high 78 
soluble fiber content, which is unique among major cereals and has been shown to improve 79 
cardiovascular health and blood glucose levels (Gulvady et al. 2013; Kale et al. 2013). Oat is 80 
also a good source of protein (12.4-24.5% of seed weight), oil (3-11%), and a rich source of 81 
vitamins and minerals (Frey and Holland 1999; Gulvady et al. 2013). The oils found in the 82 
oat seed are primarily triglycerides, with palmitic, oleic, and linoleic acids being the 83 
primary fatty acids (Youngs 1978). In addition to the benefits from direct consumption, 84 
colloidal oatmeal and oat extracts have been used extensively as an effective topical 85 
medicine to treat skin dermatitis and reduce inflammation (Cerio et al. 2010; Kurtz and 86 
Wallo 2007). These benefits have been attributed to avenanthramides, flavonoids, 87 
tocopherol, polysaccharides, and lipids. Thus, the oat seed is a rich source of diverse 88 
compounds that have multifaceted effects on human health. To improve specific 89 
biochemical properties of oat, breeders must be provided with a suite of tools that allow 90 
these compounds to be quantified accurately at low cost, and genomic resources that 91 
improve selection for specific seed qualities. 92 

Advances in biochemistry have provided a breadth of tools to query the metabolome and 93 
quantify known and unknown compounds (Dunn and Ellis 2005). Untargeted 94 
metabolomics can quantify 100s-1000s of metabolites in a sample, thus health-promoting 95 
and quality-related metabolites, and their intermediate or related compounds can be 96 
assessed with relative ease (Dunn et al. 2013; Christ et al. 2018). These data can be used to 97 
address basic biological questions regarding biochemical pathways that are represented in 98 
the data, and assess natural variation for these pathways. The effectiveness of these 99 
methods to characterize natural variation in the metabolome has been highlighted by 100 
several studies (Caspi et al. 2014; Chan et al. 2010; Matsuda et al. 2015; Slenter et al. 2018; 101 
Wu et al. 2018). Moreover, these data have been used as predictors, often alongside 102 
genomic data, to improve prediction for complex traits (Riedelsheimer et al. 2012; Guo et 103 
al. 2016; Xu et al. 2016). 104 

Parsing these data to understand the biology of the seed metabolome can be challenging. 105 
Numerous databases are available that describe primary and secondary metabolic 106 
pathways, and are curated using information both across and within species (Kanehisa and 107 
others 2002; Wishart et al. 2020). Metabolites can be mapped to these pathways to 108 
determine which pathways and their products are enriched in a given set of samples. While 109 
these approaches provide greater confidence over unsupervised, data-driven approaches, 110 
in many cases only a fraction of the compounds quantified via untargeted metabolomics 111 
can be mapped to these pathways (Schrimpe-Rutledge et al. 2016; Cui et al. 2018). 112 
Unsupervised, data-driven approaches provide an attractive alternative that utilizes the 113 
data more completely. These approaches include co-expression-based analyses and factor 114 
analytic models among others. While coexpression-based analyses have been used 115 
extensively to characterize high-dimensional ‘omics’ data, these often require users to 116 
select several parameters that influence outcomes and may limit reproducibility (DiLeo et 117 
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al. 2011; Langfelder and Horvath 2008). Factor analytic models, on the other hand, use a 118 
linear model to identify groups of strongly correlated metabolites. The underlying rationale 119 
for these approaches is that covariance among metabolites is driven by some unobserved 120 
(i.e., latent) underlying variable(s). With this approach, the matrix of metabolites is 121 
decomposed into a lower-dimensional linear combination of factor loadings, which 122 
describe how each latent factor contributes to each compound, and a set of factor scores 123 
that ascribe a phenotypic value for all individuals for a given latent factor. Thus, these 124 
frameworks have advantages from both biological and statistical perspectives. While in 125 
some respects factor analytic models achieve the same goal as others, such as principal 126 
component analysis (PCA) — providing a reduced rank representation of the data — the 127 
defining feature of factor analytic models is that latent factors are constructed to preserve 128 
correlation among groups of related metabolites. In PCA, new constructs are defined that 129 
preserve variance in the observed variables. Thus, constructs from factor analytic models 130 
can provide insight into biological processes driving covariation between phenotypes. 131 
Moreover, the lower-dimensional set of factor-scores can be treated as any other 132 
phenotype and reduce the multiple testing burden often associated with high-dimensional 133 
‘omics’ datasets. With these frameworks we can address: (1) What	pathways	are	134 
represented	in	the	metabolome? and (2) How	do	these	pathways	and	their	products	co‐vary	135 
within	a	genetic	population? 136 

Improving health or quality-related compounds requires decomposing phenotypic 137 
variation within the metabolome into genetic and non-genetic components, and utilizing 138 
these outcomes to inform selection decisions for quality-related phenotypes. Conventional 139 
linkage analysis or association mapping approaches have proven to be powerful 140 
approaches to identify genetic variants associated with variation in the metabolome (Chan 141 
et al. 2010; Eckert et al. 2012; Matsuda et al. 2015; Rowe et al. 2008; Wen et al. 2014; Xu et 142 
al. 2017). However, a much greater challenge is to translate genetic signal for health-143 
promoting compounds, and related metabolites, to improve prediction and selection of 144 
new crop germplasm. 145 

A number of studies have extended the conventional frameworks used for genomic 146 
prediction to accommodate prior biological information regarding genetic marker effects 147 
(Edwards et al. 2016; MacLeod et al. 2016; Speed and Balding 2014; Turner-Hissong et al. 148 
2019). Although these approaches differ in how these data are treated, the motivation is 149 
similar for all —effects for variants that are more likely to be causative should be drawn 150 
from a different distribution than those lacking evidence for causality. Thus, prediction 151 
should be improved when effect sizes differ between genetic marker classes. The 152 
approaches described by Speed and Balding (2014) and Edwards et al. (2016) are 153 
essentially an extension of the genomic best linear unbiased prediction (gBLUP) 154 
framework, in which genomic markers are partitioned and are used to construct separate 155 
genomic relationship matrices for each random genetic effect. Genomic values for each 156 
individual are sampled from each distribution. The framework described by MacLeod et al. 157 
(2016) extends the Bayesian prediction framework, BayesR, and uses biological 158 
information to partition markers into classes (Erbe et al. 2012). Marker effects, rather than 159 
genomic values, are sampled from each distribution. In the context of the current study, if 160 
we know what metabolites are related to quality traits and have identified variants 161 
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associated with these metabolites, genomic markers can be partitioned to define 162 
biologically informed marker-sets. These biologically informed marker-sets should be 163 
enriched for causal loci, and should improve prediction of genomic values. 164 

In this study, we characterized the seed metabolomes of 375 oat lines and sought to 165 
identify loci that potentially influence (co)variation among many metabolites. Specifically, 166 
we sought to answer: (1) What	pathways	or	metabolite	classes	are	enriched	in	the	seed	167 
metabolome?	(2) What	are	the	genetic	controllers	of	the	metabolome? and (3) Can	these	data	168 
be	leveraged	to	improve	genomic	prediction	for	seed	quality	traits? To this end, we assayed 169 
the seed metabolome using untargeted LC-MS and GC-MS and used the empirical factor 170 
analysis approach described by Wang and Stephens (2018) to identify latent factors that 171 
generate covariance among many metabolites. GWAS was performed using this reduced set 172 
of latent phenotypes, and these outcomes were used to inform a multi-kernel genomic 173 
prediction model to predict seed quality traits in two independent studies. In summary, we 174 
extract meaningful basic biological insights from ‘omics’ data with limited annotations, and 175 
translate these outcomes to improve prediction for agriculturally important traits.	176 
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Results	197 

Metabolite	differences	across	subpopulations	are	primarily	generated	by	drift	198 

To characterize the metabolome of mature oat seed, we generated untargeted metabolite 199 
data using two mass spectroscopy (MS) pipelines (gas chromotography MS, GC-MS and 200 
liquid chromotography MS, LC-MS) for 367 diverse accessions (Supplemental File S1). The 201 
diversity panel consisted of 367 accessions that could be partitioned into six distinct 202 
genetic clusters using a 𝑘-means clustering approach (Fig. 1A and B; Fig. S1). Despite six 203 
clusters being identified, the degree of stratification within the population was minor. For 204 
instance, the first and second principal axes explained only 7.3% and 5.9% of the variance 205 
in genetic relationships, respectively (Fig. 1A and B). We quantified 1,668 metabolites (601 206 
for GC-MS and 1,067 for LC-MS) across the 367 accessions. PCA of the metabolome dataset 207 
did not reveal any apparent clustering among accessions, and evidence of stratification 208 
between genetically-defined clusters was not visually apparent (Fig. 1C and D). 209 

To determine whether individual metabolites differed among clusters, we performed a 210 
one-way ANOVA for each of the 1,668 metabolites (Supplemental File S2). Despite no 211 
strong differentiation of the metabolome between the six clusters, 41% of the 1,668 212 
metabolites showed significant differences between one or more of the subpopulations 213 
(Benjamini-Hochberg adjusted 𝑝-value; 𝑝஻ு ൏ 0.01). We elucidated whether these 214 
differences were due to selection or drift by examining 𝑃ௌ், a measure of phenotypic 215 
divergence between populations, and compared these values to the distribution of genetic 216 
divergence (i.e., 𝐹௦௧) for all loci (Storz 2002; Leinonen et al. 2013). This analysis revealed 217 
only 12 compounds with 𝑃௦௧ values that were greater than 80% of the 𝐹ௌ் values, indicating 218 
that the majority of compounds differing between subpopulations diverged due to drift or 219 
weak selection. Only four of these compounds have annotations and were described as a 220 
putative steroidal glycosides, terpene glycoside, triterpenoid, and 1-benzopyran. These 221 
results suggest that the divergent metabolites are largely due to drift rather than selection. 222 

Latent	factor	model	selection	223 

Given that only a fraction of the metabolites quantified in our population were annotated, 224 
we leveraged the correlation between annotated and unannotated metabolites to infer 225 
biological processes in the oat seed with the rationale that compounds participating in a 226 
related biological process will be correlated. We used an unsupervised learning approach 227 
that distills the covariance among a set of observed variables into a lower dimensional set 228 
of unobserved constructs that may cause this covariance. In a biological sense, these latent 229 
factors may provide insights into the major biochemical features of the metabolome, and 230 
can be used to elucidate the genetic factors that shape the metabolome. 231 

The covariance among the 1,668 metabolites was decomposed into a set of latent factors 232 
using the empirical Bayes matrix factorization (EBMF) approach described by Wang and 233 
Stephens (2018). This method constructs latent factors, which are defined by a linear 234 
combination of factor loadings and factor scores, by approximating the posterior sampling 235 
distribution for these parameters from the data (Wang and Stephens 2018). Three latent 236 
factor models that differed in the family of prior distributions (Laplace, point normal, and 237 
adaptive shrinkage) for factor loading and scores were evaluated, and the best model was 238 
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selected based on the goodness-of-fit and predictive ability (Owen et al. 2016) (Table I, Fig. 239 
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S2). The Laplace family of densities exhibited the lowest RMSE (0.970) and highest 240 
correlation between predicted and observed data (𝑟 ൌ 0.520). The common covariance in 241 
the oat seed metabolome could be captured using 100 latent factors that collectively 242 
explained 58.82% of the total variance in the metabolite data. 243 

Factor	analysis	identifies	sets	of	compounds	coordinated	by	biological	processes	244 

One possibility is that unobserved latent factors represent an underlying biological process 245 
that creates covariation among metabolites. Another possibility is that covariance among 246 
metabolites caused by population structure is captured by latent factors. We sought to 247 
partition latent factors into those due to a biological process and those due to a 248 
confounding effect (Bello et al. 2018). Since we showed that most population structuring of 249 
metabolites was caused by drift, we expect their coordination to be largely random, and 250 
therefore unrelated to their functional class. We assessed enrichment for functional classes 251 
within each factor, as well as the relationship between factors and population structure. 252 

To assess biological enrichment, we determined whether the variance explained by a given 253 
metabolite functional class within a factor was significantly greater than might be expected 254 
by chance. The ontologies described in the preceding section were used to calculate the 255 
percentage of variance explained (PVE) by each functional class for each factor. To compute 256 
𝑝-values, we compared these values against an empirical null distribution that was 257 
generated by randomly sampling loadings for a number of compounds equal to the number 258 
of compounds belonging to the functional class. This accounts for both the size of the class 259 
and the amount of variation that is explained by each factor. Of the 100 factors identified 260 
with the EBMF approach, 37 showed significant enrichment in one or more categories at 261 
the super-class level, while 40 and 36 factors showed significant enrichment at the class 262 
level and subclass levels, respectively (𝑞 ൏ 0.05). Functional classes associated with lipids 263 
were most frequently enriched in our dataset (Fig. 2A,B), indicating that many factors may 264 
be capturing components of lipid metabolism. In addition to lipids, four factors showed 265 
enrichment for carbohydrates and carbohydrate conjugates, as well as amino acids. These 266 
results suggest that many latent factors are capturing meaningful biological processes that 267 
shape the seed metabolome, and can help shed light on the meaning of unannotated 268 
metabolites. 269 

To address the possibility that latent factors are due to population structure, we examined 270 
the PVE by subpopulation. A linear model was fitted to each latent factor that included 271 
subpopulation assignment as a fixed effect. The PVE by subpopulation ranged from 0.03 to 272 
29.8%, and subpopulation explained more than 20% of the variation for factors 7 and 12. 273 
Factor 7 did not show functional class enrichment but factor 12 was enriched across all 274 
hierarchies for lipid and lipid-like molecules — specifically steroidal glycosides (𝑞 ൏ 0.05). 275 
Interestingly, 𝑃௦௧ for this factor (0.27) was higher than the top 80th percentile of 𝐹௦௧ (0.23), 276 
suggesting that the differences between subpopulations for this factor may be due to 277 
selection rather than drift. The high frequency of enrichment for functional classes of 278 
metabolites, and the relatively small amount of variation that was attributed to 279 
subpopulations suggests that these constructs can provide biochemically meaningful 280 
insights into the seed metabolome. 281 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.190512doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.190512
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

Elucidating	the	origin	of	latent	factors	282 
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To determine whether the covariance generated by each factor was due to genetic or 283 
environmental causes, we partitioned variance in latent factors into additive genetic and 284 
non-genetic components, and examined their genetic architecture. A Bayesian whole 285 
genome regression approach, Bayes C𝜋, was used to estimate variance components, and 286 
estimate the degree of polygenicity of each factor (Habier et al. 2011). Bayes C𝜋 assumes 287 
markers have a zero effect with probability 𝜋 and a non-zero effect with probability ሺ1 െ288 
𝜋ሻ. 𝜋 is treated as an unknown and is estimated from the data. Thus, the magnitude of 289 
ሺ1 െ 𝜋ሻ can provide a metric to assess the polygenicity of the trait. Narrow-sense 290 
heritability estimates (ℎଶ) ranged from 0.01 to 0.80, indicating that variation for many of 291 
the latent factors could be attributed to additive genetic effects (Figs S3,4). Moreover, the 292 
range of ሺ1 െ 𝜋ሻ indicates this genetic variance is manifested in a wide range of 293 
architectures (Fig. S4). 294 

The distribution of loading values for each latent factor was not similar — meaning that 295 
some factors show dense loadings (i.e., they generate covariance for many metabolites), 296 
while others show sparse loadings. These loadings are sampled from a scale mixture 297 
distribution where non-zero loadings are sampled from a Laplace distribution with a 298 
probability of ሺ1 െ 𝑣ሻ and a point-mass at zero with a probability of 𝑣. Given that latent 299 
factors with dense loadings will generate covariance for many metabolites, we 300 
hypothesized that these factors will likely have a complex genetic architecture. To test this, 301 
we performed a partial Spearman’s correlation between polygenicity and the density of 302 
factor loadings while accounting for the heritability (ℎଶ) of each factor. A significant 303 
positive correlation between ሺ1 െ 𝑣ሻ and ሺ1 െ 𝜋ሻ was observed (𝜌 ൌ 0.35; 𝑝 ൌ 4.5 ൈ 10ିସ), 304 
indicating that factors that capture (co)variance among many metabolites tend to be 305 
controlled by many loci with small effects (Fig. 3; Figs S3,4). Several exceptions to this 306 
relationship were observed. For instance, factors 4, 13, 17, and 25 exhibited low 307 
polygenicity and dense loading patterns (Table II), indicating that these factors may be 308 
driven by loci with pleiotropic effects on the metabolome. 309 

Biologically‐informed	prediction	of	seed	quality	traits	310 

Ultimately, the aim of this study was to translate insights from the metabolome into genetic 311 
resources that can be used by breeders to make broad changes to oat seed composition. In 312 
this respect, we assume that loci with large effects on multiple metabolites will be a more 313 
valuable resource to oat breeders than loci that affect one or a few metabolites. A 314 
conventional mixed linear model GWAS approach was used to identify loci with large 315 
effects on the latent factors. We identified 666 markers associated with 23 factors 316 
(𝑝 ൏ 2.57 ൈ 10ି଻; File S3; Figs S5-27). 317 

We sought to address whether these associations could be leveraged to improve genomic 318 
prediction for seed quality traits in two independent studies. The first study quantified ten 319 
fatty acids (FA) in mature seed for 338 oat lines grown in two locations using targeted GC-320 
MS. Of the 338 accessions evaluated, 330 overlapped with the factor analysis panel. The 321 
second study assayed seed lipid and protein content using near-infrared spectroscopy 322 
(NIRS) for 210 accessions from six trials with 12 lines overlapping with the factor analysis 323 
panel. Two prediction frameworks, genomic BLUP (gBLUP) and a multi-kernel prediction 324 
model (MK-BLUP), were used to predict seed-quality phenotypes across trials. The MK-325 
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BLUP framework uses two kernels to capture additive genetic effects, one of which is 326 
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constructed from markers associated with latent factors and is referred to as the 327 
“biologically-informed" kernel. The second kernel is constructed from all other markers. 328 
Two biologically-informed kernels were evaluated: one that used markers associated with 329 
any latent factor to improve prediction, and one that only used markers associated with 330 
factors enriched for “Lipid and lipid-like molecules" (factors 4, 17, and 34). Prediction 331 
accuracy was assessed using five-fold cross validation with 50 resampling runs, and the 332 
MK-BLUP models were deemed to significantly improve prediction if prediction accuracies 333 
for MK-BLUP were higher than gBLUP in 90% of resampling runs. 334 

Prediction accuracies were similar between gBLUP and the MK-BLUP models that used 335 
associations for all factors for nearly all traits. The exception was 18:3, which exhibited a 336 
2.27% increase on average over gBLUP. The MK-BLUP approach significantly 337 
outperformed gBLUP for eight of the 12 traits considered when the kernel was informed by 338 
markers associated with lipid-enriched factors. For FA traits, the percent change in 339 
prediction accuracy over gBLUP ranged from -0.57% to 23.10%, with seven compounds 340 
showing significantly greater prediction accuracy compared to gBLUP (Fig. 4). 341 
Improvements were most notable for 14:0 and 16:0, which exhibited more than a 20% 342 
improvement over gBLUP. For NIRS traits, the lipid-enriched MK approach significantly 343 
improved predictions for lipid content on average by 9.9% (Fig. 5). These results show the 344 
latent factors and the genetic signals associated with them are reproducible and can be 345 
extended to new metabolite traits. Most importantly, these genetic signals are robust 346 
across populations and phenotyping technologies.  347 
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Discussion	362 
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The oat seed harbors a rich array of biochemical compounds that are important for human 363 
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health, and considerable variation for these compounds exist in oat germplasm (Peterson 364 
and Wood 1997; Frey and Holland 1999; Gulvady et al. 2013; Zhou et al. 2019). Efficiently 365 
accessing this variation is necessary to rapidly deliver oat varieties with beneficial 366 
nutritional profiles to the consumer. Advances in metabolic profiling over the past 20 years 367 
has provided a suite of tools to comprehensively assess these compounds, along with many 368 
others, in large populations and to elucidate their regulation (Keurentjes et al. 2006; Tohge 369 
and Fernie 2010). Structural elucidation and metabolite identification remain a significant 370 
bottleneck in characterizing the metabolome using untargeted metabolomics (Dunn et al. 371 
2013). Many of the publicly available databases do not adequately capture the rich 372 
diversity of metabolites that are produced in plant species (De Vos et al. 2007; Tohge and 373 
Fernie 2010). Therefore, approaches that uncover the relationships between metabolites, 374 
both known and unknown, may help shed light on the function of these compounds. 375 

Despite being able to reliably detect the abundance of 1,668 compounds in the current 376 
study, less than a third of these compounds were annotated. We used a latent factor 377 
approach that leverages the correlation between metabolites to help elucidate their 378 
function. Our rationale is that metabolites that participate in the same pathway should be 379 
correlated. Thus, by extracting the major correlation patterns in the observed variables we 380 
can begin to elucidate the biochemical pathways that shape the seed metabolome. 381 
Moreover, by studying the relationships among annotated metabolites, we can generate 382 
new hypotheses to understand the function of unannotated compounds. 383 

Characterizing	the	metabolome	using	latent	factors	384 

Our enrichment approach helped shed light on the biochemical processes these latent 385 
factors might affect. For instance, we found significant enrichment for a range of processes 386 
associated with primary metabolism (amino acids, phospholipid metabolism) and 387 
secondary metabolism (coumarin and terpenoid metabolism). Since roughly 30% of the 388 
metabolites assayed had functional annotations, this enrichment approach may shed light 389 
on the function of unannotated metabolites. For instance, factor 4 showed significant 390 
enrichment for “lipid and lipid-like molecules.” Although, only 45 of the top 100 391 
compounds with high loadings were annotated, the high correlation between these 392 
unknown compounds and annotated, lipid-like compounds suggests putative role in lipid 393 
metabolism. Although further analyses are necessary to elucidate the structure of these 394 
unknown metabolites, our enrichment approach provides a data-driven approach to 395 
generate hypotheses for these unannotated metabolites. 396 

One overarching pattern observed across latent factors is the enrichment for compounds 397 
related to lipid metabolism. At the most coarse level, super-class, 21% of factors were 398 
enriched for “lipid and lipid-like molecules,” and these patterns were consistent at more 399 
specialized levels of lipid metabolism. Oat is unique among cereals in both the abundance 400 
and distribution of lipids within the seed (Price and Parsons 1975; Gulvady et al. 2013; 401 
Frey and Holland 1999). And with approximately 57% of the annotated metabolites in our 402 
data classified as lipid-like compounds, it is not surprising that categories associated with 403 
lipid metabolism were most frequently enriched.  404 
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It is possible that other processes are prevalent in the metabolome and are reflected in the 405 
latent constructs, but remain undetected due to the annotations that were used for 406 
functional enrichment. These ontologies are based on structural similarities between 407 
compounds rather than pathway-based relationships. We expect compounds involved in 408 
the same pathway to be correlated, and since latent factors are defined by these 409 
correlations they should in some sense be an abstraction of these pathways. Biochemical 410 
reactions often involve compounds with dissimilar structures, thus enrichment based on 411 
structural similarities may bias enrichment towards pathways composed of structurally 412 
similar metabolites (e.g., lipid metabolism). While this enrichment approach may be 413 
imperfect, other studies have used similar approaches and have proven to be useful in 414 
other species (Barupal and Fiehn 2017; Fan et al. 2018; Marco-Ramell et al. 2018; 415 
Showalter et al. 2019). The ChemRich approach developed by Barupal and Fiehn (2017) 416 
uses the ClassyFire ontology to classify compounds into functional classes and tests for 417 
enrichment using a Kolmogorov–Smirnov test. Annotations that map metabolites to a 418 
pathway can provide additional evidence that these latent factors are indeed due to an 419 
underlying biochemical process; however, current resources do not provide the breadth 420 
and resolution necessary to perform such analyses. 421 

Understanding	the	origin	of	latent	factors	422 

Although it may seem reasonable to suggest that the observed covariance among 423 
metabolites is due to a biological cause that is manifested in the metabolome, making 424 
causal inferences from observational data is nontrivial due to the presence of confounding 425 
factors (Spirtes et al. 2000; Rosa and Valente 2013; Bello et al. 2018). Given these data 426 
were collected on a structured population, it is expected that some of this covariance can be 427 
attributed to population structure. This can influence the construction of latent variables 428 
(Phillips et al. 2001) if not taken into account. There are many ways to account for 429 
structure in the definition of latent factors, either by including the genomic relationship 430 
matrix, or some component(s) of it, in the factor analytic model or by regressing-out these 431 
effects prior to factor analysis; however, it is important to consider whether these steps are 432 
necessary. While such measures will control for confounding due to structure, they will 433 
also remove possibly meaningful biochemical relationships that are associated with 434 
structure. If a set of compounds participating in a common pathway happen to differ 435 
between subpopulations, correcting for structure may remove the latent factor that 436 
describes this process. We identified two latent factors, factors 7 and 12, that were highly 437 
associated with population structure. Enrichment analysis and 𝑃௦௧ െ 𝐹௦௧ suggested that 438 
factor 12 may indeed describe a biological process (steroidal glycoside metabolism) that 439 
was affected by selection. This factor would likely be removed if structure were accounted 440 
for prior to factor analysis. 441 

If subsequent genetic analysis are planned for latent factors, regressing-out structure may 442 
also remove meaningful genetic signal. Given the minor structure observed among 443 
accessions in the diversity panel and the importance of preserving genetic signal in the 444 
factor scores, we thought that measures to account for structure could be harmful to the 445 
study as a whole. Moreover, our downstream association mapping approaches accounted 446 
for population structure by using the first two PCs and a kinship matrix based on allele 447 
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dosages. In the event that some latent factors were defined based on kinship, we do not 448 
expect to recover any signal from association mapping with scores for these latent factors. 449 

We should not place too much emphasis on causality in a purely biological sense when 450 
interpreting these latent factors. Rather it is important to consider the limitations of the 451 
study, interpret latent factors with caution, and view them as a means to generate testable 452 
hypotheses. The aims of our study were to (1) elucidate the major biochemical processes in 453 
the oat seed metabolome, and (2) to leverage these insights to improve selection for seed 454 
quality. Thus, hypotheses are generated in the former and are tested in the latter. If latent 455 
factors do not represent a causal effect then we should not see any improvement in 456 
predictions when inferences on these constructs are extended to new studies and/or 457 
populations. 458 

Translating	’omics’	insights	to	crop	improvement	459 

Two independent studies were used to determine whether biological signal in the latent 460 
factors could be generalized to other populations and/or traits. The fatty acid dataset can 461 
be used to test whether the information learned by latent factors is reproducible, while the 462 
NIRS dataset provides a means to test whether this information is transmissible to related 463 
traits in new populations. We distinguish between these two because: (1) the majority of 464 
accessions included in the fatty acid dataset are accessions that were used for the factor 465 
analysis metabolome study, while less than 6% of accessions are common between the 466 
factor analysis and the NIRS studies; (2) the fatty acid data was generated using targeted 467 
metabolomics, meaning there should be a high correspondence between the metabolites 468 
measured in the fatty acids study and those that were assayed for the factor analysis 469 
metabolome study (Carlson et al. 2019). 470 

Considering these aspects, we expect that the information learned from the factor analysis 471 
metabolome study should have the most pronounced effect on predictions for fatty acid 472 
compounds. Consistent with these expectations, we observed the greatest improvements in 473 
prediction accuracy among all traits for the biologically-informed prediction model over 474 
gBLUP for these compounds when the kernel was constructed using associations for lipid-475 
enriched factors. Thus, the genetic signal that is associated with these latent factors is 476 
relevant to both studies and phenotyping approaches (i.e., targeted and untargeted 477 
metabolomics). A comparison of the GWAS hits in (Carlson et al. 2019) and those in our 478 
study showed little overlap, with two common associations identified for factor 13 and the 479 
tenth PC of fatty acid phenotypes in (Carlson et al. 2019), and factor 17 and 14:0 in 480 
(Carlson et al. 2019). Of these two factors, only factor 17 showed enrichment for “lipid and 481 
lipid like molecules” at only the super-class level. While 𝑞 values at more specific functional 482 
classes were above the chosen significance threshold, 𝑞 ൏ 0.05, enrichment for 1-acyl-sn-483 
glycero-3-phosphocholines was the top-ranked category at the parental class (𝑞 ൌ 0.058). 484 
Interestingly, hydrolyzation of these compounds by phospholipase A1 yields a fatty acid. 485 
Although additional studies are necessary to elucidate the biochemical pathways 486 
associated with factor 17, these results provide an interesting link between 1-acyl-sn-487 
glycero-3-phosphocholines catabolism and fatty acid abundances and the possibility of 488 
modifying 1-acyl-sn-glycero-3-phosphocholine metabolism to fine-tune fatty acid profiles 489 
in oat. Although it is difficult to connect loci associated with latent factors with changes in 490 
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specific metabolites, our polygenicity analysis offers a more general explanation – 491 
specifically, that these loci may affect many metabolites. 492 

The second study with NIRS-derived composition measurements provides several realistic 493 
challenges, and should be a reasonable estimate of how the biologically-informed model 494 
would perform in a breeding program. The population that was evaluated for NIRS 495 
phenotypes is largely independent from the population that was used for factor analysis. 496 
Moreover, the NIRS phenotypes are only approximations of total lipid or protein content. 497 
The advantage of using NIRS to estimate seed metabolites is that it is a relatively low cost 498 
phenotyping approach compared to metabolomics and is high-throughput, making it a 499 
tractable solution for many breeding programs interested in improving health-promoting 500 
compounds (Diepenbrock and Gore 2015). Despite these challenges the multi-kernel 501 
prediction approach – when informed using markers associated with lipid-enriched factors 502 
– significantly improved prediction for lipid content compared to gBLUP. 503 

On	the	relationship	between	factor	density	and	polygenicity	504 

The positive relationship observed between the magnitude of polygenicity and loading 505 
densities, indicates that latent factors that influence many metabolites are more likely to 506 
have a complex genetic architecture. These observations are somewhat expected. If these 507 
dense latent factors are representative of some central component of the metabolome, 508 
perturbations on these processes would likely result in large-scale biochemical changes 509 
that may affect fitness. Therefore, it is important that these processes are robust to 510 
mutations and are maintained at, or near some optima. This is the basis of canalization – 511 
important physiological processes will evolve to reach robust optima – and suggests that 512 
much of the oat seed metabolome is under optimizing or stabilizing selection (Gibson 2009; 513 
Slatkin 1970; Waddington 1942). 514 

Perhaps what is more interesting is the factors that deviate from this relationship, 515 
specifically factors 4 and 17. Both exhibited dense loading patterns, oligogenic 516 
architectures (ranked 8th and 17th for density, respectively, and 50th and 73rd for 517 
polygenicity), and were enriched for lipids. The large-effect loci associated with these 518 
latent factors may have pleiotropic effects, or may consist of a set of tightly linked genes 519 
that influence the abundance of lipid-like compounds. In either case, this may explain the 520 
deviance from the density-polygenicity relationship observed for other factors. The 521 
presence of these loci raises a larger question, specifically Why	are	these	loci	segregating	in	522 
the	population? The theoretical and simulation studies by Orr, as well as empirical evidence 523 
in maize and other species may help explain these observations (Orr 1998; Orr 1999; 524 
Boyko et al. 2010; Brown et al. 2011; Carlborg et al. 2006; Colosimo et al. 2004; Doebley et 525 
al. 1997; Van Laere et al. 2003; Wang et al. 2005). For “older” traits – i.e. those associated 526 
with adaptation in natural environments – such large effect alleles at these loci would likely 527 
be removed through negative selection as these alleles may shift phenotypes far from the 528 
optimal values (Orr 1998; Orr 1999). This was proposed by Brown et al. (2011) to explain 529 
the small effect sizes for flowering and leaf traits in maize. This is not necessarily the case 530 
for traits that are relatively “new” in evolutionary history or are not associated with 531 
adaptation. For instance, plant architecture and inflorescence traits have relatively simple 532 
genetic architectures in maize and are recent targets for artificial selection (Brown et al. 533 
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2011; Doebley et al. 1995; Doebley et al. 1997; Wang et al. 2005; Wallace et al. 2014). This 534 
is also the case for traits under recent artificial selection in other species (Boyko et al. 535 
2010; Carlborg et al. 2006; Colosimo et al. 2004; Van Laere et al. 2003). While it is unknown 536 
whether seed lipid content has any adaptive significance in oat, lipid content and traits that 537 
are genetically correlated with lipid content (i.e., 𝛽-glucans) are popular targets for many 538 
breeding programs (Welch and Lloyd 1989; Kibite and Edney 1998; Cervantes-Martinez et 539 
al. 2002). Thus, the oligogenic architectures for factors enriched for lipids may be a 540 
reflection of this relatively recent selection by breeders for lipids or traits that are 541 
genetically correlated with lipids. 542 

Conclusions	543 

This study shows that we can translate biological knowledge obtained from the 544 
characterization of high dimensional ‘omics’ data to improve prediction and selection for 545 
agriculturally important traits. The matrix factorization approach used here provides an 546 
effective means to reduce the dimensionality of the data while preserving important 547 
biological features that generate correlation in the observed phenotypes. This can help 548 
reduce the multiple testing burden often experienced with GWAS on ‘omics’ data and allow 549 
the recovery of meaningful genetic signal. This signal can be leveraged to improve 550 
prediction for low-cost phenotypes that provide an approximation of biochemical 551 
attributes in independent populations. In a broader context, this approach that can be used 552 
to manage the allocation of phenotyping resources and improve breeding decisions. For 553 
instance, breeders can phenotype a single replicate of a ‘discovery’ population with a 554 
costly, high-resolution ‘omics’ technology and these data can be used to inform predictions 555 
for low-cost, lower-resolution phenotypes in new populations or trials. These approaches 556 
can be easily extended to other crops, tissues and ‘omics’ technologies to improve 557 
predictions for complex traits. 558 

 559 

 560 

 561 
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Materials	and	Methods	569 

Plant	materials	and	growth	conditions	570 
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The oat diversity panel consists of 375 accessions derived from breeding programs in 571 
North America and Europe. In 2018, the panel was grown in an augmented field design in 572 
Ithaca, NY, which consisted of 368 unreplicated entries allocated to 18 blocks with 21-23 573 
plots per block. One primary check, ‘Corral’, was included in each of the blocks, while one of 574 
six secondary checks were randomly allocated to each block. These secondary checks were 575 
replicated four times, while the primary check was replicated 19 times (one block had two 576 
‘Corral’ plots). 577 

Latent	factor	analysis	578 

Latent factor analysis seeks to identify a set of 𝑘 unobserved, latent factors that give rise to 579 
the observed covariance among a set 𝑝 of observed variables. Formally, this relationship is 580 
given by 581 

𝐘 ൌ 𝐅𝚪 ൅ 𝐬 

where 𝐘 is a centered and standardized 𝑛 ൈ 𝑝 matrix of observations for 𝑝 metabolites and 582 
𝑛 individuals; 𝐅 is an 𝑛 ൈ 𝑘 matrix of factor scores; 𝚪 is a 𝑘 ൈ 𝑝 matrix of loadings; and 𝐬 is 583 
an 𝑛 ൈ 𝑝 matrix of specific effects. The (co)variance matrix 𝐕 of observations 𝐘 is 584 
decomposed into common covariance and specific covariance: 585 

𝐕 ൌ 𝚪′𝚪 ൅ 𝚿 

All matrices are defined as above, and 𝚿 is a 𝑝 ൈ 𝑝 diagonal matrix of specific variances. 586 

A recent framework described by Wang and Stephens (2018) uses an empirical Bayes 587 
framework to learn appropriate priors from the data given a family of densities. This 588 
approach, Empirical Bayes Matrix Factorization (EBMF), can tailor the sparsity for factor 589 
loadings and scores based on what best fits the data. This was implemented using the 590 
flashr package in R (https://github.com/stephenslab/flashr). Three classes of models 591 
were fit that differed in families of densities used to fit the data: Laplace, point-normal, and 592 
adaptive-shrinkage. A combination of the ‘Greedy’ search algorithm and backfitting was 593 
used to define the model.  594 

We evaluated the classes of models for goodness-of-fit using percent variance explained 595 
(PVE) by the common factors and predictive ability using three-fold orthogonal cross 596 
validation (3-OCV) (Owen, et al. 2016). PVE was defined as 597 

𝑃𝑉𝐸 ൌ
𝑡𝑟ሺ𝚪′𝚪ሻ

𝑡𝑟ሺ𝚪′𝚪 ൅ 𝚿ሻ ൈ 100
 

with 𝑡𝑟 indicating trace of the given matrix and all other matrices defined as above. 3-OCV 598 
is similar to classical CV, but ensures that no rows and columns of the testing data (𝐘𝐭𝐞𝐬𝐭) 599 
have all missing data. The model above was fitted for the training set data and predicted 600 
values for the testing set were calculated via 𝐘̂𝐭𝐞𝐬𝐭 ൌ 𝐅𝐭𝐞𝐬𝐭𝚪𝐭𝐞𝐬𝐭. The accuracy of each model 601 
was evaluated using the root mean square error (RMSE) and the correlation between 602 
predicted and observed values for observations in the testing set for each fold. Ten 603 
independent resamplings were performed. The metrics were averaged over folds, and the 604 
‘best’ model was selected based on the results across the ten repeats. 605 
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Enrichment	analysis	for	latent	factors	606 

We used the ClassyFire taxonomic hierarchies to test for functional enrichment for each 607 
factor (Feunang et al. 2016). Briefly, ClassyFire uses a hierarchy of five levels to describe 608 
chemical compounds. At each level, we calculated the percentage of variance explained 609 
(𝑃𝑉𝐸௞௖) for factor 𝑘 by functional class 𝑐. This is given below 610 

𝑃𝑉𝐸௞௖ ൌ
𝑡𝑟ሺ𝜆௞௖𝜆′௞௖ሻ
𝑡𝑟ሺ𝜆௞𝜆′௞ሻ

 

where 𝜆௞ is a vector of loadings for a given factor 𝑘, and 𝜆௞௖ is a vector of loadings of factor 611 
𝑘 for compounds in class 𝑐. Our null hypothesis is that the variance captured by compounds 612 
in a given class will be equivalent to that explained by a random set of compounds of equal 613 
size to that class. To test this, we generated an empirical null distribution for each 614 
functional class and factor. For each class and factor, we picked a random set of compounds 615 
with a size equivalent to the class by sampling the loadings of 1,668 metabolites without 616 
replacement and computed PVE. This process was repeated 1,000 times for each 617 
combination of functional class and factor. For each class-factor combination, we compared 618 
observed PVE with the empirical null distribution for that given combination and 619 
calculated 𝑝-values. Finally, to account for multiple testing, 𝑞-values were calculated across 620 
all factors and classes following (Storey 2002). Functional classes with fewer than five 621 
compounds were excluded from analyses to ensure that results were not biased to small 622 
classes with one or two compounds with very high loadings. 623 

Assessing	the	genetic	architecture	of	latent	factors	624 

Genome‐wide	association	study	625 

To identify loci associated with latent factors, the following linear mixed model was fit to 626 
factor scores for each latent factor (𝑘) 627 

𝐲 ൌ 𝐗𝐛 ൅ 𝐰𝐢𝑎௜ ൅ 𝐙𝐮 ൅ 𝐞 

where 𝐲 is a vector of factor scores; 𝐗 is a matrix of the first two PCs and 𝐛 is the 628 
corresponding vector of effects; 𝐰𝐢 is a vector of allele dosages for marker 𝑖 and 𝑎௜ is the 629 
corresponding marker effect; and 𝐮 is a vector of polygenic effects. The first two PCs 630 
explained about 13% of the genomic relatedness among lines. We assume 𝐮 ∼ 𝑁ሺ0, 𝐆𝜎௨

ଶሻ 631 
and 𝐞 ∼ 𝑁ሺ0, 𝐈𝜎௘

ଶሻ, where 𝐆 is a genomic relationship matrix calculated following the 632 
second definition provided by VanRaden (2008). These models were fitted using the 633 
rrBLUP package in R (Endelman 2011). GWAS was performed using 62,049 SNP markers 634 
with a minor allele frequency ൐ 0.05 and 335 individuals with marker data and factor 635 
scores. 636 

We used the approach described by J. Li and Ji (2005) to account for multiple tests 637 
performed both within and across factors. Briefly, we computed the number of effective 638 
tests (𝑀௘௙௙) by performing eigenvalue decomposition on the correlation matrix for 62,049 639 
markers. This provides an estimate of the number of tests performed within each factor. 640 
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Next, we multiplied this value by the total number of factors. The test criteria was then 641 
adjusted using 𝑀௘௙௙ with the Sidak correction below (Šidák 1967). 642 

𝛼௣ ൌ 1 െ ሺ1 െ 𝛼௘ሻଵ/ሺெ೐೑೑ൈଵ଴଴ሻ 

This provided a genome-wide significance (𝛼௣) value of 2.57 ൈ 10ି଻ at 𝛼௘ ൌ 0.1 with 643 
𝑀௘௙௙ ൌ 4,097. 644 

Estimating	polygenicity	with	Bayes	C𝜋	645 

To estimate polygenicity of each factor, we used Bayes C𝜋 (Habier et al. 2011). Bayes C𝜋 is 646 
a Bayesian whole-genome regression approach that can be used to estimate the proportion 647 
of markers with a non-zero effect on the phenotype. Bayes C𝜋 assumes that marker effects 648 
are drawn from a mixture distribution. Effects drawn from a distribution with a point mass 649 
at 0 with a probability 𝜋 and a univariate Gaussian distribution with probability ሺ1 െ 𝜋ሻ. 650 
The linear model is given below. 651 

𝑦 ൌ 𝜇 ൅ ෍ 𝑤௧

்

௧ୀଵ

𝑎௧ ൅ 𝑒

𝑎௧|𝜋, 𝜎௧
ଶ ൌ ൜

0 with prob. 𝜋
∼ 𝑁ሺ0, 𝜎௔೟

ଶ ሻ with prob. ሺ1 െ 𝜋ሻ

 

𝑤௧ is a vector of marker genotypes for marker 𝑡 and 𝑎௧ is the corresponding effect. The 652 
above model was fitted using the JWAS package in Julia using factor scores and 62,049 653 
markers (Cheng et al. 2018). We used 200,000 iterations and discarded the first 100,000. 654 
Posterior means of 1 െ 𝜋 were used as estimates of polygenicity. 655 

Genomic	prediction	of	seed	quality	traits	656 

Two studies were used to determine whether associations from factor score-based GWAS 657 
could improve genomic prediction accuracies. The first consisted of fatty acid 658 
measurements for 500 lines, of which 338 had corresponding genotypic data consisting of 659 
61,900 markers. These lines were evaluated at two locations in New York in 2014 (Carlson 660 
et al. 2019). The second consisted of six trials that evaluated protein and lipid content using 661 
near-infrared spectroscopy for 210 lines, of which 12 overlapped with the lines used for 662 
factor analysis. For this study 58,293 markers were used for prediction. Table S2 lists the 663 
trials used for genomic prediction and links to access these data. 664 

A multi-kernel BLUP model was used to predict seed phenotypes across trials. Additive 665 
genetic effects were predicted using two kernels. The first is computed using markers that 666 
were identified through factor score-based GWAS and is referred to as the biologically-667 
informed kernel, while the second was computed using all other markers. This model is 668 
given by 669 

𝐲 ൌ 𝛍 ൅ 𝐙𝐮𝐮𝐢𝐧 ൅ 𝐙𝐮𝐮𝐨𝐮𝐭 ൅ 𝐙𝐞𝐬 ൅ 𝐞 

where 𝐲 is a vector of phenotypes; 𝐙𝐮 is an 𝑛 ൈ 𝑞 incidence matrix that assigns the 𝑞 670 
genomic values to 𝑛 observations; 𝐮𝐢𝐧 and 𝐮𝐨𝐮𝐭 are genomic values predicted from 671 
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biologically-informed or non-informed kernels, respectively; and 𝐙𝐞 is an 𝑛 ൈ 𝑒 incidence 672 
matrix that assigns observations to trials and 𝐬 are the corresponding effects. Moreover, we 673 
assume 𝐮𝐢𝐧 ∼ 𝑁ሺ0, 𝜎௨೔೙

ଶ 𝐊𝐢𝐧ሻ, 𝐮𝐨𝐮𝐭 ∼ 𝑁ሺ0, 𝜎௨೚ೠ೟
ଶ 𝐊𝐨𝐮𝐭ሻ, and 𝐬 ∼ 𝑁ሺ0, 𝜎௦

ଶ𝐙𝐞′𝐙𝐞ሻ. Where 𝐊𝐢𝐧 and 674 
𝐊𝐨𝐮𝐭 are biologically-informed and non-informed kernels genomic relationship matrices, 675 
respectively, and are computed according to VanRaden (2008). We considered two marker 676 
sets to compute these matrices: markers associated with any latent factor, and markers 677 
that were associated with latent factors showing enrichment for lipid and lipid-like 678 
molecules at the superclass level (𝑞 ൏ 0.05). Markers that were in weak linkage 679 
disequilibrium (LD) (𝑟ଶ ൐ 0.25) with GWAS hits were included in the biologically-informed 680 
kernel. LD was computed separately for each study. 681 

Genomic BLUP (gBLUP) served as a base-line to compare the ability of the multi-kernel 682 
approach to predict seed phenotypes. The model is similar to the multi-kernel model; 683 
however, the relationship matrix was constructed using all available markers for each 684 
study. All models were fit using the BGLR package in R, with 20,000 iterations, of which the 685 
first 5,000 were discarded (Perez and de los Campos 2014). 686 

Prediction accuracy was assessed using five-fold cross validation with 50 resampling runs, 687 
and was computed using Pearson’s correlation between observed phenotypes and 688 
predicted genomic values for accessions in the testing set. Genomic values for the multi-689 
kernel approach were computed as the sum of breeding values from each random genetic 690 
effect. Correlation coefficients were averaged across folds. 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

	703 

Data	availability	704 

All metabolomic data are provided via Cyverse and can be accessed using the following url 705 
https://de.cyverse.org/de/?type=data\&folder=/iplant/home/mcampbell4. All R code 706 
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used for analyses is provided as Rmarkdown files and can be accessed via 707 
https://github.com/malachycampbell/OatLatentFactor. 708 
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	734 

	735 

Tables	736 

Table	I.	Empirical	Bayes	matrix	factorization	model	selection.	Each	model	was	fit	using	737 
degressed	BLUPs	for	1,668	metabolites.	Ad.	Shr.:	adaptive	shrinkage	family	of	densities	738 
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described	by	Stephens	(2016).	Cross‐validation	(CV)	was	based	on	a	3‐fold	orthogonal	CV	739 
described	by		(2018)	and	Owen	et	al.(2016)	with	ten	independent	resamplings.	Point	Nor.:	740 
point‐normal	family	of	densities	which	are	a	normal	distribution	with	a	point	mass	at	zero;	LL	741 
indicates	log‐likelihood;	PVE:	percent	variance	explained;	𝑅௔ௗ௝

ଶ :	adjusted	𝑅ଶ;	𝑟ሺ௒೟ೞ೟,௒̂೟ೞ೟ሻ	is	the	742 

Pearson’s	correlation	between	predicted	and	observed	values	for	observations	in	the	testing	743 
set;	RMSE:	root	mean	square	error.	744 

EBNM	Appr. No.	Fact. LL PVE 𝑅௔ௗ௝
ଶ  𝑟ሺ௒೟ೞ೟,௒̂೟ೞ೟ሻ RMSE 

Ad. Shr. 102 -581716.3 59.41 0.438 0.322 1.451 

Point Nor. 106 -583809.9 59.36 0.429 0.514 0.978 

Laplace 100 -584317.2 58.82 0.434 0.520 0.970 
	745 

	746 

Table	II.	Factors	capturing	covariance	between	many	metabolites	with	simple	genetic	747 
architectures.	Polygenicity	estimates	were	based	on	the	posterior	means	of	1 െ 𝜋	and	density	748 
of	factor	loadings	are	provided	as	1 െ 𝑣.	749 

Factor 𝟏 െ 𝛑 𝟏 െ 𝐯 

4 4.69 ൈ 10ିଷ 0.621 

13 7.80 ൈ 10ିସ 0.369 

17 4.70 ൈ 10ିସ 0.413 

25 5.54 ൈ 10ିସ 0.247 

	750 

	751 

	752 

	753 

	754 

	755 

	756 

	757 

	758 

	759 

Figure	Legends	760 

Figure	1.	Principal	component	analysis	of	genotypic	and	metabolomic	data. The first 761 
four principal components (PCs) of gentoypic data are shown in panels A and B, while the 762 
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first four PCs of the metabolomic data are shown in panels C and D. Subpopulations that 763 
were defined based on 𝑘-means clustering of SNP marker data are indicated by different 764 
colored points. PC: principal component; PVE: percent variance explained 765 

Figure	2.	Functional	enrichment	among	latent	factors. Number of latent factors 766 
enriched (FDR ൏ 0.05) for functional categories at the super-class level (A) and class level 767 
(B). Percentage of variance explained for each factor by a given functional category (C). 768 
Each point represents a functional class that was significantly enriched for one or more 769 
factors with the size of the point being proportional to the percentage of variance explained 770 
by that class for a given factor. Only factors and classes that showed significant enrichment 771 
(𝑞 ൏ 0.05) at the super-class level are pictured. Colors differentiate between the class and 772 
subclass levels of the taxonomic hierarchy. 773 

Figure	3.	Relationships	between	polygenicity,	density	and	heritability. (A) Association 774 
between polygenicity (1 െ 𝜋) and density ranks (1 െ 𝑣) after accounting for heritability 775 
(ℎଶ). Each variable was ranked from smallest to largest and the ranks for ሺ1 െ 𝜋ሻ and 776 
ሺ1 െ 𝑣ሻ were each regressed on ranks for ℎଶ. The scatter plot depicts the relationship 777 
between the residuals (Resid.) for each of these models. Colored points indicate factors that 778 
were enriched for lipids (Lip. Enr.), and different shapes indicate whether the factor was 779 
used to inform the lipid-enriched kernel for genomic prediction (Gen. Pred.). (B) Pairwise 780 
relationships between the ranks for each variable. 781 

Figure	4.	Genomic	prediction	for	fatty	acid	compounds. Prediction accuracy was 782 
assessed using five-fold cross validation with 50 resampling runs. (A) The distribution of 783 
Pearson’s correlation (𝑟) coefficients between observed phenotypes and genetic values for 784 
each fatty acid compound. Panels B and C show the percent difference (% diff.) in 785 
prediction accuracy for the multikernel (MK) approach relative to genomic BLUP (gBLUP). 786 
The suffixes ‘-all’ and ‘-lip’ indicate models where the biologically-informed kernel was 787 
constructed from markers associated with any latent factor or lipid-enriched factors, 788 
respectively. 789 

Figure	5.	Genomic	prediction	for	lipid	and	protein	content	measured	via	NIRS. 790 
Prediction accuracy (𝑟) was assessed using five-fold cross validation with 50 resampling 791 
runs. Panel A shows the distribution of Pearson’s correlation coefficients between observed 792 
phenotypes and genetic values. Panel B shows the percent difference (% diff.) in prediction 793 
accuracy for the multikernel (MK) approach relative to genomic BLUP (gBLUP). The 794 
suffixes ‘-all’ and ‘-lip’ indicate models where the biologically-informed kernel was 795 
constructed from markers associated with any latent factor or lipid-enriched factors, 796 
respectively. 797 
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