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Abstract 

Comprehensive metabolomic and lipidomic mass spectrometry methods are in increasing 

demand, for instance in research related to nutrition and aging. The nematode C. elegans is 

a key model organism in these fields, due to the large repository of available C. elegans 

mutants and their convenient natural lifespan. Here, we describe a robust and sensitive 

analytical method for the semi-quantitative analysis of >100 polar (metabolomics) and >1000 

apolar (lipidomics) metabolites in C. elegans, using a single sample preparation. Our method 

is capable of reliably detecting a wide variety of biologically relevant metabolic aberrations 

in, for instance, glycolysis and the TCA cycle, pyrimidine metabolism and complex lipid 

biosynthesis. In conclusion, we provide a powerful analytical tool that maximizes metabolic 

data yield from a single sample. 

 

Graphical abstract  
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Introduction 

Considerable advances in high-performance liquid chromatography (HPLC), mass 

spectrometry (MS), nuclear magnetic resonance (NMR) make it possible to reliably detect 

tens of thousands of compounds1. Additionally, semi-automatic annotation of metabolites 

and data analysis tools have greatly improved the quality and robustness of metabolomic 

platforms, allowing for an improved sample throughput and ease of data analysis and 

interpretation2. As a consequence, metabolomic analysis has seen a surge in popularity 

over the last decades and the importance and intricacies of metabolism in health and 

disease are becoming increasingly evident2. In turn, this has prompted increased demand 

for reliable and robust metabolomic methods for polar and apolar metabolite analyses in 

model organisms and human tissues3.  

For many years, Caenorhabditis elegans nematodes have been used intensively to 

investigate genetics, development, as well as aging. C. elegans is a versatile model system 

as genetic influences can be tested with relative ease due to the availability of large 

repositories of mutants as well as RNAi libraries. Moreover, genetic reference populations 

have been generated for C. elegans in which natural genetic variation is present at a level 

similar to the human population4. This way, meaningful data on population genetics and 

gene-by-environment interactions can be obtained using for instance dietary interventions5,6. 

More recently, C. elegans has become a relevant model to investigate metabolism, since 

metabolism was identified as a key regulator of traits such as aging7-9. Metabolic network 

models for C. elegans were recently constructed10,11 and a curated consensus is currently 

being assembled in a European-led consortium12. The success of such endeavors relies 

heavily on accurate and robust metabolomics methods13. 

Metabolite measurements in mammalian tissues are commonplace1,14,15, however, in C. 

elegans they are sparsely applied16. Methods for C. elegans metabolite analyses are 

predominantly based on gas chromatography-MS (GC-MS)17,18 and nuclear magnetic 

resonance (NMR) spectroscopy16,19. Drawbacks of these approaches include the need for 
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large quantities of worms and a limited number of metabolites that can be quantified (Table 

1). Recent developments using targeted metabolomics with LC-MS allow for the 

measurement of hundreds of metabolites, including fatty acids and amino acids, in a 

sample of around 2,000 worms20,21.  

Although these methods are useful when focusing on specific metabolite classes, they rely 

on separate extraction procedures for both polar and apolar metabolites in biological 

replicates making it less suitable for screening purposes. Hence, we set out to develop an 

easy extraction and measurement protocol, allowing for the analysis of a broad panel of 

polar (metabolome) and apolar (lipidome) metabolites. We shall refer to these as 

metabolomics and lipidomics respectively. The method presented here provides a detailed 

step-by-step protocol for sample collection and processing, metabolite extraction, 

annotation, and relative quantification in C. elegans. We demonstrate that metabolomic 

and lipidomic analysis can be performed on a single sample using a single extraction 

protocol, reducing sample preparation and throughput time without compromising 

metabolite identification. With this protocol we can semi-quantitatively measure >100 polar 

and >1000 apolar metabolites, from all major metabolite classes in a sample of 

approximately 2000 worms. Moreover, this method can be easily adapted for other model 

systems, cells, and tissues. 

Results 

Combined extraction for polar and apolar metabolites 

Endogenous metabolites span a wide range of physicochemical properties, making it difficult 

to extract a large range of the metabolome with a single solvent. Additionally, polar solvents 

typically lack the ability to precipitate interfering proteins in biological samples, making a 

simple water extraction of polar metabolites impractical. An elegant way to remedy this 

issue, is to use a liquid-liquid extraction. In this case, a highly apolar solvent, e.g. chloroform, 

is used to precipitate protein and facilitate the breakdown of biological organization, while a 

polar solvent is added to extract polar metabolites in a separate layer. This type of extraction 
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also doubles as a separation step, removing apolar compounds from the polar layer (and 

vice versa), thereby reducing ion suppression effects during MS analysis. Interestingly, this 

type of two-phase extraction was first applied for extracting lipids in the (predominantly) 

chloroform phase22. We used such a two-phase extraction on C. elegans to perform both 

metabolomics and lipidomics in a single sample. Combining the analysis of metabolomics 

and lipidomics allows for the analysis of a broad spectrum of metabolites in a single 

extraction step, requiring only a single sample. This way, the required number of C. elegans 

cultures is halved, waste is significantly reduced, and comparisons between the two omics 

analyses are more meaningful.  

Validation of polar metabolite (metabolomics) analysis in C. elegans 

In order to enable validation, we used C. elegans pellets containing different numbers of 

worms and extracted polar metabolites from the upper phase of the liquid-liquid extraction 

(Fig. 1a). Polar metabolites were separated using a variation of Hydrophilic Interaction Liquid 

Chromatography (ZIC-cHILIC) and measured using a Q Exactive Plus Orbitrap mass 

spectrometer.  For each of the annotated polar metabolites, we determined their linear 

response since loss of linearity of the MS response is a good measure of bias in sample 

preparation or analysis (Supplementary Table 1). Four example metabolites, i.e. pyruvate, 

cytidine monophosphate (CMP), adenosine triphosphate (ATP), and nicotinamide adenine 

dinucleotide (NAD+) show strong linearity across the range of worms before applying 

normalization for internal standard (Fig. 1b-e, Supplementary Table 1). We then established 

which internal standards to use for each metabolite (Supplementary Table 2). Selection of 

the internal standard was based on the combination of the lowest coefficient of variation for 

duplicates, and highest Pearson correlation coefficient after correction across the number of 

worms (Fig. 1f-i). Applying these internal standards for the data normalization led to even 

better linearity of for pyruvate, CMP, ATP, and NAD+ (Fig. 1j-m, Supplementary Table 2).  
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Altogether, we established optimal internal standard conditions for each of the polar 

metabolites and found that each of these can be reliably measured in a sample of ~2000 

worms. 

Validation of the apolar metabolite (lipidomics) analysis 

Instead of a dedicated single-phase extraction we reported before23, we now used the “left-

over” apolar phase from our two-phase extraction to analyze lipids (Fig. 2a, Supplementary 

Table 3). Lipids were separated using both a normal-phase (NP) and reversed-phase (RP) 

chromatography method and measured on a Q Exactive Plus mass spectrometer. The 

lipidome is an enormously diverse class of metabolites with widely varying polarities. For 

instance, at the apolar end of the spectrum, triacylglycerols (TGs) consist of a glycerol 

backbone and three fatty acids tails. Due to these uniformly apolar qualities, TGs of any 

chain length partition almost exclusively to the chloroform phase during the two-phase 

extraction. This results in a linear relationship between the number of worms and the 

measured abundance of TGs (Fig 2b). A similar pattern is observed for other major lipid 

classes containing multiple acyl side chains, such as diacylglycerols (DGs), 

phosphatidylinositols (PIs), cardiolipins (CLs), phosphatidylserines (PSs), and 

phosphatidylglycerols (PGs) (Fig. 2c-g). Sphingomyelins (SMs) have a different basic 

structure, but also contain two alkyl moieties (the sphingosine backbone and the N-acyl 

group), resulting in good linearity (Fig. 2h). Finally, while the most abundant PL class 

phosphatidylcholines (PCs) has two acyl groups and is extracted in the apolar phase, it has 

a lower r2 of 0.667 (Fig. 2i). This is due to its high abundance, saturating the detector at 

higher worm numbers. Indeed, when considering linearity for ≤4000 worms, the r2 for PC is 

0.832 and even goes up to r2=0.902 when analyzing up to 2000 worms. It is therefore 

advised to use ≤4000 worms in order to accurately measure PCs. 

Phosphatidylethanolamines (PEs) show the same trend though to a lesser extent (Fig. 2j).
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At the other end of the lipid polarity spectrum are lysolipid species such as 

lysophosphatidylcholine (LPC), lysophosphatidic acid (LPA), lysophosphatidylethanolamine 

(LPE), and lysophosphatidylglycerol (LPG), each containing only a single fatty acid side 

chain (R1), and a polar head group. Similar to PC, LPC abundance is high and its detection 

reaches a plateau at higher worm numbers (Fig. 2k). When including all data points, up to 

8000 worms, the r2  is 0.430, but this improves (r2 = 0.872) when including ≤2000 worms. 

Other lyso-phospholipids are poorly detected in chloroform phase of the current two-phase 

method, resulting in loss of linearity (Fig. S1a-c). Interestingly, despite containing two fatty 

acid side chains, phosphatidic acid (PA), and bis(monoacylglycero)phosphate (BMP) show 

r2’s of 0.785 and 0.667, respectively (Supplemental Fig. 1d-e). Due to these complex lipid 

properties relating to solubility, it is likely that these lipids are (partly) extracted to the polar 

phase during the two-phase liquid-liquid extraction.  

To determine the extent of these partitioning effects on the detected lipidome, we made a 

direct comparison between the detected lipidome of the one-phase extraction20 and the new 

two-phase extraction of samples containing ~2000 worms from the exact same biological 

experiment. When plotting all the individual lipid species, we observed that for most lipids the 

measured abundance is highly similar between the one-phase and the two-phase extraction 

(Fig. 2l), suggesting that there was no significant loss of these lipid species in the polar 

extraction phase. However, around 9% of the species that are normally detected using the 

one-phase extraction are not detected when applying the two-phase method, most strikingly 

the entire LPE class (Supplemental Fig.1b). On the other hand, 10% of the lipids were only 

detected in the two-phase extraction, such as some BMPs and other low-abundant lipids 

(Fig. 2l). Possibly, these low-abundant lipids are not detected with the one-phase extraction 

due to suppression effects in the MS. In conclusion, despite the loss of some polar lipid 

species, including the whole LPE class, there were some low abundant lipid species only 

recovered using the two-phase extraction. Most importantly, the vast majority of major lipid 
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classes are detected equally well with the two-phase extraction compared to the one-phase 

extraction. 

 

 

Polar and apolar metabolites change upon knockdown of metabolic genes in C. 

elegans  

In order to test how well our method was able to pick up biologically relevant differences, we 

first targeted four different metabolic pathways using RNAi against either enzymes or other 

factors known to affect metabolic pathways in C. elegans (Supplementary Table 4). 

The first gene targeted was the pyruvate dehydrogenase alpha subunit (pdha-1), which is 

part of the complex that is responsible for converting pyruvate into acetyl-CoA. Since acetyl-

CoA feeds into the TCA cycle it links glycolysis to the TCA cycle, and RNAi of this enzyme is 

expected to affect both of these pathways. Indeed, worms treated with pdha-1 RNAi show 

many significant changes in metabolite abundance (Fig. 3a). A five-fold increase was 

observed for pyruvate in these worms compared to worms treated with an empty vector, and 

a two-fold increase was observed for alanine, which is an amino acid that can be formed 

from pyruvate (Fig. 3b). On the other hand, a significant decrease was observed for all TCA 

cycle intermediates we measured, including: (iso)citrate, α-ketoglutarate, succinate, 

fumarate, malate and oxaloacetate (Fig. 3b). This is in line with a reduced availability of 

acetyl-CoA that can enter the TCA cycle.  

The next enzyme we targeted was dihydropyrimidine dehydrogenase (dpyd-1) involved in 

pyrimidine base degeneration. DPYD-1 is important for nucleic acid metabolism as it 

catalyzes the reduction of uracil and is involved in the degradation of the chemotherapeutic 

drug 5-fluoroacil (5-FU). In this dpyd-1 RNAi condition we also found many significant 

metabolite changes compared to worms treated with empty vector (Fig. 3c). We observed an 

almost five-fold accumulation of uracil, accompanied by a small increase of UMP which can 
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be alternatively metabolized from uracil (Fig. 3c-d). DPYD-1 is also involved in ß-alanine 

biosynthesis24. In line with this, a strong reduction of ß-alanine was observed in the dpyd-1 

RNAi treated worms (Fig. 3c-d) again reflecting the knockdown of this enzyme on the 

metabolite level. 

We next set out to establish biological validation of our lipidomics analysis. With RNAi, we 

targeted an enzyme involved in fatty acid elongation, elo-2 (Fig. 4a). When exploring the lipid 

profile of worms using our method, we could distinguish the control worms from the elo-2 

RNAi-treated worms, as shown with PCA analysis (Fig. 4b). In order to visualize effects on 

the lipid elongation, we then plotted carbon chain length versus the total number of double 

bonds in those chains for individual lipid classes. For instance, TGs in elo-2 RNAi-treated 

worms showed a marked decrease of lipids with long carbon chains and accumulation of 

lipids with shorter carbon chains regardless of the number of double bonds (Fig. 4c). The 

same was observed for PCs, DGs (Fig. 4d-e) and other lipid classes (Supplemental Fig. 2). 

Our data confirm that elongation of carbon chains in fatty acids is inhibited when elo-2 is 

knocked down in C. elegans, which leads to widespread changes across the lipidome. 

Finally, we targeted mdt-15, a subunit of the Mediator complex. Rather than acting on fatty  

acid elongation, mdt-15 transcriptionally regulates fatty acid desaturases including fat-2, fat-

5, fat-6 and fat-7 (Fig. 4f)25. The PCA analysis shows clear separation of the control worms 

from the mdt-15 RNAi treated worms based on their lipid profiles (Fig. 4g). When plotting 

carbon chain length versus the number of double bonds, we observed a strong decrease of 

lipids with multiple double bonds and accumulation of lipids with ≤1 double bond, irrespective 

of the carbon-chain lengths (Fig. 4h, Supplemental Fig. 3). This shift towards saturated TG 

species in worms treated with mdt-15 RNAi is in line with the previously described regulation 

of mdt-15 on fatty acid desaturation enzymes25. 
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Together, these four different RNAi conditions affecting distinct metabolic pathways and 

metabolite classes illustrate that our method can adequately pick up relevant biological 

differences. 

Metabolic diversity in a C. elegans reference population 

Our method also allows for the exploration of the natural variation of metabolite abundances 

occurring due to the differences among genetic backgrounds. To demonstrate this, we 

turned to recombinant inbred lines (RILs) derived from wild-type worm strains N2 and 

CB48564,26. RILs are genetic mosaics of the parental strains N2 and CB4856. We reasoned 

that the sensitivity of our approach could reveal the genome’s more subtle influences due to 

naturally occurring polymorphisms affecting the metabolome. Therefore, we proceeded to 

perform the current metabolomics method on two parental wild type strains (N2 and 

CB4856) and eight different RIL strains resulting from the genetic cross (Fig. 5a, 

Supplementary Table 5). Metabolic profiling revealed the underlying diversity of metabolites 

present in the different genetic backgrounds (Fig. 5b). To explore this in a more systematic 

manner, we calculated the broad-sense heritability (H2) for each metabolite, for both parental 

and offspring strains8. Broad-sense heritability serves as an indication for the percentage of 

variance for a given metabolite that is explained by genetics. Plotting broad-sense heritability 

for the parental versus offspring strains illustrates where new combinations of alleles may 

have severe effects on distinct metabolic profiles and thus indicate genetic complexity of the 

trait (Figure 4c).  

Assessing heritability in this manner, we observed metabolites for which parental strains 

possessed a low heritability score and their offspring possessed a high heritability score, 

indicating that there may be multiple loci of opposing effects regulating the metabolite’s 

abundance. For example uracil, phosphoenolpyruvate, methionine, and xanthosine, 

exhibited such patterns (Figure 4d-g). Conversely, we also observed metabolites for which 

the parental strains possessed a high heritability score and the offspring possessed an equal 

or lower score, which likely indicates that there may be few, or even just a single locus 
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affecting the metabolite’s abundance. Examples of these included acetyl-CoA, tryptophan, 

glutamate, and NAD+ (Figure 4h-k). 

Performing metabolomics and lipidomics on the same samples enables data integration from 

both techniques. To illustrate, we performed cross-correlations between polar metabolites 

and lipid classes and visualized these in a correlation matrix (Fig. 5l). For example, we 

identified metabolites that correlated with cardiolipin (CL), which is an important component 

of the inner mitochondrial membrane27. We found that abundance of CL correlated 

significantly with NAD+ (Fig. 5m), which governs mitochondrial function through its role as an 

enzyme cofactor as well as being a substrate for sirtuins28,29. Likewise, CL significantly 

correlated with acetyl-CoA (Fig. 5n), which is in line with its role in acetyl-CoA synthesis30. 

These correlations are an example of how metabolomics and lipidomics data can be 

integrated and explored to gain deeper insight into their cross-talk and interrelations.  

Discussion 

Changes in metabolism are increasingly recognized as valuable markers of, as well as 

causal contributors to ,the development of metabolic disease and aging. Increasingly 

comprehensive methods for the analysis of both polar (metabolomics) and apolar 

(lipidomics) metabolites have proven essential in these fields. Thus far however, these omics 

methods required dedicated sample preparation, and thus a separate sample, for 

metabolomics and lipidomics respectively. Here, we report a method that uses both the polar 

(metabolomics) and apolar (lipidomics) layer of a two-phase liquid-liquid extraction and 

analyzes these using high resolution MS methods, providing an elegant way of exploring a 

large range of the metabolome and lipidome in a single sample, covering >1100 annotated 

metabolites of different classes. We show here that this method is robust and sensitive 

enough to analyze a wide variety of metabolic pathways using both metabolomics and 

lipidomics, and capable of reliably pinpointing metabolic aberrations in these pathways. 
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Biologically relevant differences in central carbon as well as lipid pathways could be 

determined in detail. The effects of pdha-1 inhibition using RNAi was reflected throughout 

the TCA cycle, and the inhibition caused a decrease of acetyl-CoA and an accumulation of 

its precursor, pyruvate. Additionally, the pyruvate accumulation was accompanied by a 

metabolic diversion leading to higher alanine abundance and reduced levels of TCA 

intermediates. Together, this comprehensive profiling provides a more detailed picture of the 

metabolic state. For instance, changes in less directly related metabolites were also seen, 

like the increase of histidine abundance. In this way, basic profiling of metabolic changes 

following pdha-1 inhibition might uncover new (genetic) factors that contribute to metabolic 

adaptation in these circumstances. Such information is not only valuable for research in C. 

elegans per se, but could also be used to study processes where PDH is involved such as 

the aberrant preferential activation of glycolysis in cancer cells31 or the regulation of brown 

adipose tissue metabolism32. This is also the case for the metabolite changes observed 

upon dpyd-1 RNAi in context to the chemotherapeutic drug 5-FU and for instance its 

toxicities in patients with DPYD variants33.  

Similarly, when knocking down elo-2 using RNAi, robust changes were observed in the total 

chain length of almost all lipid classes. Knockdown of mdt-15 led to significant changes in 

the degree of saturation of a wide variety of lipid species. Combined, this shows that our 

method provides an exceptionally detailed view on complex lipid composition, which can be 

useful for the identification and study of disorders related to the lipidome.  

RILs were used to illustrate that our method is capable of picking up not just large metabolic 

defects caused by knockdown of a single gene, but also more subtle metabolic effects in a 

non-interventional population harbouring genetic variation. While our study is not large 

enough to parse out the complexity of the underlying genetic traits, we clearly show both 

convergent and divergent patterns of inheritance, as expected based on population genetics. 

Future studies using the full panel of RILs will allow the reconstruction of genetic complexity 

that causes individual metabolic variation, and enable studying gene-by-environment 
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interactions, i.e. which genes render the organism susceptible to environmental 

disturbances.  

We also used the RILs to highlight examples of direct integration of lipidomic and 

metabolomic data. These multi-omics comparisons will be more meaningful when using our 

method, as both datasets originate from the same material, eliminating the noise of inherent 

biological differences when independent worm cultures are prepared. Integrating 

metabolomics and lipidomics data can be important, as polar and lipid pathways are 

interconnected and often converge in meaningful ways. As an example, we showed that the 

mitochondrial lipid CL correlates with the abundance of polar metabolites with important 

roles in mitochondrial function such as NAD+ and acetyl-CoA across the RIL panel. Such 

integration based on population data can support new hypotheses and its validation in 

natural populations. 

On the technical side, the use of a diverse selection of internal standards allows for 

meaningful semi-quantitative comparisons between sample groups. Due to the ubiquitous 

and essential nature of many of the metabolites analyzed here, this dual extraction method 

can be developed to aid metabolomics and lipidomics in a wide variety of matrices. This is 

especially useful when the amount of available material is limited and two separate 

extractions might not be feasible, such as with human biopsy material or rare cell 

populations. When applying the current method to a new matrix, we strongly advise to 

perform a range-finding experiment to determine a sample quantity where most of the 

analytes of interest are in the linear range of the extraction and MS, as well as appropriate 

internal standards.  

While the aforementioned considerations are important for all metabolite extraction methods, 

one of the main limitations of this method is that some polar lipid species are not ending up 

in the apolar layer but in the polar layer and are therefore not measured in lipidomics. When 

specifically interested in such polar lipid species, a dedicated one-phase lipidomics 
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extraction yields a better result20. In conclusion, the currently presented method is capable of 

robustly analyzing a broad range of the metabolome and lipidome, and detecting biologically 

relevant differences while requiring only a single small sample.  

Methods 

Worm growth conditions for RNAi experiments and Recombinant Inbred Lines (RILs)  

N2 worms and RIL strains were cultured at 20°C on nematode growth medium (NGM) agar 

plates seeded with OP50 strain Escherichia coli. For RNAi knockdown experiments, we 

seeded 2000 synchronized eggs per 10cm NGMi plate (containing 2�mM IPTG) with a 

bacterial lawn of either E. coli HT115 (RNAi control strain, containing an empty vector) or 

pdha-1, dpyd-1, elo-2 or mdt-15 RNAi bacteria. Similarly, for the parental strains (N2 and 

CB4856) and eight different offspring (RILs strains WN038, WN105, WN106, WN128, 

WN134, WN152, WN153, WN186), 2000 synchronized eggs were seeded per 10cm NGM 

plate, with a bacterial lawn of E. coli OP50. After 48 hours, the synchronous population at L4 

larval stage was washed off the plates in M9 buffer and the worm pellet was washed with 

dH2O for three times and then collected in a 2�ml Eppendorf tube and snap frozen and 

stored at -80ºC. Worm pellets were freeze-dried overnight and stored at room temperature 

until extraction. 

Two-phase extraction 

In a 2 mL tube, the following amounts of internal standard dissolved in water were added to 

each sample of freeze dried worms for metabolomics: adenosine-15N5-monophosphate (5 

nmol), adenosine-15N5-triphosphate (5 nmol), 13C6-fructose-1,6-diphosphate (1 nmol), 

guanosine-15N5-monophosphate (5 nmol), guanosine-15N5-triphosphate (5 nmol), 13C6-

glucose (10 nmol), 13C6-glucose-6-phosphate (1 nmol), 13C3-pyruvate (0.5 nmol). In the same 

2 mL tube, the following amounts of internal standards dissolved in 1:1 (v/v) 

methanol:chloroform were added for lipidomics: Bis(monoacylglycero)phosphate BMP(14:0)2 

(0.2 nmol), Cardiolipin CL(14:0)4 (0.1 nmol), Lysophosphatidicacid LPA(14:0) (0.1 nmol), 

Lysophosphatidylcholine LPC(14:0) (0.5 nmol), Lysophosphatidylethanolamine LPE(14:0) 
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(0.1 nmol), Lysophosphatidylglycerol LPG(14:0) (0.02 nmol), Phosphatidic acid PA(14:0)2 

(0.5 nmol), Phosphatidylcholine PC(14:0)2 (0.2 nmol), Phosphatidylethanolamine PE(14:0)2 

(0.5 nmol), Phosphatidylglycerol PG(14:0)2 (0.1 nmol), Phosphatidylserine PS(14:0)2 (5 

nmol), Ceramide phosphocholine SM(d18:1/12:0) (2 nmol) (Avanti Polar Lipids, Alabaster, 

AL). 

After adding IS mixes, a 5�mm steel bead and polar phase solvents (for a total of 500 µL 

water and 500 µL MeOH) were added and samples were homogenized using a TissueLyser 

II (Qiagen) for 5�min at a frequency of 30 times/sec. Chloroform was added for a total of 1 

mL to each sample before thorough mixing. Samples were centrifuged for 10 minutes at 

14,000 rpm. Of the two-phase system that was now created with protein precipitate in the 

middle, the top layer containing the polar phase was transferred to a new 1.5 mL Eppendorf 

tube. The bottom layer, containing the apolar fraction, was transferred to a 4 mL glass vial. 

The protein pellet in between the two layers was dried and subsequently dissolved in 0.2�M 

NaOH for quantification using a PierceTM BCA Protein Assay following product protocol. 

One-phase lipidomic extraction 

In a 2 mL tube, the following amounts of internal standards dissolved in  1:1 (v/v) 

methanol:chloroform were added to each sample: Bis(monoacylglycero)phosphate 

BMP(14:0)2 (0.2 nmol), Cardiolipin CL(14:0)4 (0.1 nmol), Lysophosphatidicacid LPA(14:0) 

(0.1 nmol), Lysophosphatidylcholine LPC(14:0) (0.5 nmol), Lysophosphatidylethanolamine 

LPE(14:0) (0.1 nmol), Lysophosphatidylglycerol LPG(14:0) (0.02 nmol), Phosphatidic acid 

PA(14:0)2 (0.5 nmol), Phosphatidylcholine PC(14:0)2 (0.2 nmol), Phosphatidylethanolamine 

PE(14:0)2 (0.5 nmol), Phosphatidylglycerol PG(14:0)2 (0.1 nmol), Phosphatidylserine 

PS(14:0)2 (5 nmol), Ceramide phosphocholine SM(d18:1/12:0) (2 nmol) (Avanti Polar Lipids, 

Alabaster, AL). After adding the IS mix, a steel bead and 1.5 mL 1:1 (v/v) 

methanol:chloroform were added to each sample. Samples were homogenized using a 

TissueLyser II (Qiagen) for 5�min at 30 Hz. Each sample was then centrifuged for 10 min at 

14,000 rpm. Supernatant was transferred to a 4 mL glass vial. 
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Metabolomics  

After the polar phase was transferred to a new 1.5 mL tube, it was dried using a miVac 

vacuum concentrator at 60°C and processed as reported before23. The residue was 

dissolved in 100 µL 6:4 (v/v) methanol:water. Metabolites were analyzed using a Thermo 

Scientific Ultimate 3000 binary UPLC coupled to a Q Exactive Plus Orbitrap mass 

spectrometer. Nitrogen was used as the nebulizing gas. The spray voltage used was 

2500�V, and the capillary temperature was 256�°C. S-lens RF level: 50, Auxilary gas: 11, 

Auxiliary gas temperature 300�°C, Sheath gas: 48, Sweep cone gas: 2. Samples were kept 

at 12°C during analysis and 5 µL of each sample was injected. Chromatographic separation 

was achieved using a Merck Millipore SeQuant ZIC-cHILIC column (PEEK 100 x 2.1 mm, 3 

µm particle size). Column temperature was held at 30°C. Mobile phase consisted of (A) 1:9 

(v/v) acetonitrile:water and (B) 9:1 (v/v) acetonitrile:water, both containing 5 mmol/L 

ammonium acetate. Using a flow rate of 0.25 mL/min, the LC gradient consisted of: 100% B 

for 0-2 min, reach 0% B at 28 min, 0% B for 28-30 min, reach 100% B at 31 min, 100% B for 

31-32 min. Column re-equilibration is achieved by increasing the flow rate to 0.4 mL/min at 

100% B for 32-35 min. MS data were acquired using negative ionization in full scan mode 

over the range of m/z 50-1200. Data were analyzed using Thermo Scientific Xcalibur 

software version 4.1.50. All reported metabolite intensities were normalized to appropriate 

internal standards, as well as total protein content in samples, determined using a PierceTM 

BCA Protein Assay Kit. Metabolite identification has been based on a combination of 

accurate mass, (relative) retention times and fragmentation spectra, compared to the 

analysis of relevant standards. 

Lipidomics 

After the solvents containing the lipids were transferred to a 4 mL glass vial, they were 

evaporated under a stream of nitrogen at 45°C. The residue was dissolved in 150 μL of 1:1  

(v/v) chloroform:methanol. Lipids were analyzed using a Thermo Scientific Ultimate 3000 

binary UPLC coupled to a Q Exactive Plus Orbitrap mass spectrometer. Nitrogen was used 
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as the nebulizing gas. The spray voltage used was 2500�V, and the capillary temperature 

was 256�°C. S-lens RF level: 50, Auxilary gas: 11, Auxiliary gas temperature 300�°C, 

Sheath gas: 48, Sweep cone gas: 2. For normal phase separation, 2 μL of each sample was 

injected onto a Phenomenex® LUNA silica, 250 * 2 mm, 5µm 100Å. Column temperature 

was held at 25°C. Mobile phase consisted of (A) 85:15 (v/v) methanol:water containing 

0.0125% formic acid and 3.35 mmol/L ammonia and (B) 97:3 (v/v) chloroform:methanol 

containing 0.0125% formic acid. Using a flow rate of 0.3 mL/min, the LC gradient consisted 

of: 10% A for 0-1 min, reach 20% A at 4 min, reach 85% A at 12 min, reach 100% A at 12.1 

min, 100% A for 12.1-14 min, reach 10% A at 14.1 min, 10% A for 14.1-15 min. For reversed 

phase separation, 5 μL of each sample was injected onto a Waters HSS T3 column (150 x 

2.1 mm, 1.8 μm particle size). Column temperature was held at 60°C. Mobile phase 

consisted of (A) 4:6 (v/v) methanol:water and B 1:9 (v/v) methanol:isopropanol, both 

containing 0.1% formic acid and 10 mmol/L ammonia. Using a flow rate of 0.4 mL/min, the 

LC gradient consisted of: 100% A at 0 min, reach 80% A at 1 min, reach 0% A at 16 min, 0% 

A for 16-20 min, reach 100% A at 20.1 min, 100% A for 20.1-21 min. MS data were acquired 

using negative and positive ionization using continuous scanning over the range of m/z 150 

to m/z 2000. Data were analyzed using an in-house developed metabolomics pipeline 

written in the R programming language34. In brief, it comprises the following five steps: (1) 

pre-processing using the R package XCMS, (2) identification of metabolites, (3) isotope 

correction, (4) normalization and scaling and (5) statistical analysis14. All reported lipids were 

normalized to corresponding internal standards according to lipid class, as well as total 

protein content in samples, determined using a PierceTM BCA Protein Assay Kit. Lipid 

identification has been based on a combination of accurate mass, (relative) retention times, 

and the injection of relevant standards.  

Heritability estimation of RILs and integration of metabolomics and lipidomics  

Broad-sense heritability (H2) was calculated as described before8. Briefly, using an ANOVA 

explaining the metabolite variation over the offspring strains, the broad-sense heritability was 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.06.190017doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.190017
http://creativecommons.org/licenses/by/4.0/


18 
 

calculated as H2 = Vg /(Vg+Ve), where H2 is the broad-sense heritability, Vg is the variance 

attributed to genetics and Ve is the variance attributed to other factors (e.g. measurement 

uncertainty or other biological factors). Significance of the heritability was calculated by 

permutation, where the trait values were randomly assigned to strains. Over these 

permutated values, the variance captured by strain and the residual variance were 

calculated. This procedure was repeated 1000 times for each trait. The obtained values were 

used as the by-chance distribution, and an FDR = 0.05 was taken as the 50th highest value. 

In the parental strains the broad-sense heritability was calculated as H2 = 0.5Vg /(0.5Vg+Ve), 

The factor 0.5 corrects for the overestimation of the additive variation in inbred strains35. The 

same permutation approach as for the broad-sense heritability was applied, taking the FDR 

= 0.05 threshold as significant. An H2 above the FDR value indates there is only a 5% 

chance the result is a false-positive. 

Cross comparison between metabolites and lipids were performed as follows: Individual 

metabolite abundances were used. Lipid class abundances were calculated by summing the 

abundances of each lipid species from a given lipid class. These were cross-correlated using 

the imgCor function from the mixOmics package v6.6.236 in R. Association and significance 

between lipids and metabolites was tested for using Pearson's product moment correlation 

coefficient. Visualization of data was performed using ggplot237. R v3.4.3 and Bioconductor 

v3.5 were used in these analyses. 
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Table 1. Comparison of commonly used metabolomics methods for C. 

elegans 

Type of 
approach 

Metabolites 
detected 

Metabolite type Required # of 
worms 

Year  

GC-MS ~100 Polar 120,000 2013 38  
GC-MS 186 Polar Unknown 2015 39  
NMR 45 Polar ~8,000  2017 40 
NMR 17 Polar 200,000 2019 41 

LC-MS 18 Polar  
(Amino Acids) 

2,000 2017 20 

LC-MS 105 Polar 2,500 2019 21 

LC-MS 82 Apolar 
(Spingolipids) 

750 mg  
(no amount 
specified) 

2019 42 

LC-MS Untargeted  
(~3000 features) 

Apolar (Lipids) 8,000 2019 43 

LC-MS 44  Apolar  
(Fatty Acids) 

2,500 2017 20 

LC-MS ~600 Apolar 
(Phospholipids) 

2,000 2017 20 

LC-MS >1100  Polar + Apolar 2,000 This protocol 
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Figure 1 

 

 
Fig. 1 | Validation and linearity of metabolites extracted from polar phase. a, Internal standard 
(IS) was added to C. elegans pellet and using a two-phase extraction the upper polar phase was 
processed for ZIC-cHILIC. Linearity of four example metabolites b, Pyruvate, c, CMP, d, ATP, and e, 
NAD+ shows r2 >0.98. For f, Pyruvate, g, CMP, h, ATP, and i, NAD+ the best IS was determined per 
metabolite by plotting Pearson’s correlation coefficient against coefficient of variance. Linearity of j, 
Pyruvate k, CMP l, ATP, and m, NAD+) after correction for their best IS shows r2 >0.99. Data points 
represent mean +/- SD with n=4.  
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Figure 2 

 

Fig. 2 | Validation of lipids extracted from apolar phase and comparison of two-phase vs. one-
phase lipid extraction. a, IS was added to C. elegans pellet and using a two-phase extraction the 
lower apolar phase from the same sample was processed for lipidomics normal phase (NP) and 
reversed phase (RP). Linearity of b, TGs c, DGs d, PIs e, CLs f, PSs g, PGs h, SMs I, PCs j, PEs 
and k, LPCs l, Comparison of relative abundances (log1p) from one-phase extraction vs. two-phase 
extraction.  
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Figure 3. 

 

Fig. 3 | Metabolite changes in worms treated with either pdha-1 RNAi or dpyd-1 RNAi. a, Heatmap of 
metabolite changes sorted on FDR of pdha-1 RNAi treated worms compared to control worms treated with an 
empty vector. b, RNAi of the pdha-1 enzyme metabolizing pyruvate into acetyl-CoA, providing the primary link 
between glycolysis and the tricarboxylic acid (TCA) cycle, results in significant increases of pyruvate and alanine 
and significant decrease of TCA cycle intermediates (iso)citrate, α-ketoglutarate, succinate, fumarate, malate and 
oxaloacetate. c, Heatmap of metabolite changes sorted on VIP-score of dpyd-1 RNAi treated worms compared to 
control worms treated with an empty vector. d, RNAi of the dpyd-1 enzyme, catalyzing uracil which ultimately 
ends in β-alanine (via 5,6-dihydruracil and N-carbamyl-β-Alanine), results in significant upregulation of uracil and 
UMP and significant downregulation of β-alanine. 
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Figure 4. 

 

Fig.4 | Phospholipid changes in worms treated with either elo-2 RNAi or mdt-15 RNAi. a, RNAi 
of elo-2 which has fatty-acid elongase activity in worms, is expected to increase carbon-chain length 
of phospholipids. b, PCA analysis showing clear distinction between elo-2 RNAi treated worms and 
control worms. c, Changes in the triacylglycerol (TG) composition of elo-2 RNAi versus empty vector 
controls shows significant decrease of phospholipids with long carbon chain length (>55) and 
significant increase of TG species with short carbon chain length (<55). A similar pattern was 
observed in other phospholipid species such as d, PC and e, DG. f, RNAi of mdt-15, a transcription 
factor upregulating fat-2, fat-5, fat-6 and fat-7, affects the level of unsaturation, i.e. carbon-chain 
double bonds. g, PCA analysis showing clear distinction between mdt-15 RNAi treated worms and 
control worms. h, Changes in phospholipids of the triacylglycerol (TG) species shows significant 
decrease of lipids with >2 double bonds and increase of PL with <2 double bonds. 
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Figure 5. 

 

Fig. 5 | Natural diversity of metabolite abundances in Recombinant Inbred Lines (RILs) a, RILs 
strains selected for analysis b, Heatmap showing RILs and metabolites showing diversity in 
metabolite levels present between the different strains (n=5-6). c, broad-sense heritability (H2) of 
offspring versus parental lines. Heritability indicates the percentage of variance for a given metabolite 
that is explained by genetics. Examples diverse heritable outcomes include: d, uracil (offspring H2 
0.794, FDR < 0.05; parental H2 0.131, FDR not significant) e, phosphoenolpyruvate (offspring H2 
0.721, FDR < 0.05; parental H2 0.088, FDR not significant)  f, methionine (offspring H2 0.892, FDR < 
0.05; parental H2 0.006, FDR not significant) g, xanthosine (offspring H2 0.843, FDR < 0.05; parental 
H2 0.000, FDR not significant) h, acetyl-CoA (offspring H2 0.228, FDR not significant; parental H2 
0.392, FDR < 0.05)i, tryptophan (offspring H2 0.252, FDR not significant; parental H2 0.521, FDR < 
0.05) j, glutamate (offspring H20.310, FDR not significant; parental H20.361, FDR < 0.05) k, 
NAD+(offspring H2 0.486, FDR not significant; parental H2 0.319, FDR < 0.05). l, Cross-correlation 
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matrix between polar (blue) metabolites and apolar (grey) lipid classes, highlighting the range of 
strong positive correlations (red) to strong negative correlations (blue) between all metabolites and 
lipid classes. m, Example of correlation between apolar cardiolipins (CL) and polar NAD+ (Pearson’s 
r=0.75, p=3.3e-11), parental lines and strains color coded as highlighted in the legend. n,  example of 
apolar cardiolipins (CL) and polar acetyl-CoA (Pearson’s r=0.65, p=5.7e-8).  
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Figure S1 

 

Supplemental fig. S1 | Validation of lipids extracted from apolar phase on the polar side of the 
lipid spectrum. Linearity of a, LPAa b, LPEs c, LPGs d, PAs e, BMPs. Chemical structure of the 
classes are depicted on the right of each graph.  
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Figure S2 

 

Supplemental fig. S2 | Phospholipid changes in all classes in worms treated with elo-2 RNAi.  
Changes in the composition of almost all classes shows significant decrease of phospholipids with 
long carbon-chain length and significant increase of species with short carbon-chain length.  
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Figure S3 

 

Supplemental fig. S3 | Phospholipid changes in all classes in worms treated with mdt-15 RNAi.  
Changes in phospholipids of many species shows significant decrease of lipids with >2 double bonds 
and increase of PL with <2 double bonds. 
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