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Abstract – The use of anatomical networks to study the modular organization of 

morphological systems and their evolution is growing in recent years. A common 

strategy to find the best partition of anatomical networks into modules is to use a 

community detection algorithm that tries to optimize the modularity Q function. 

However, this strategy overlooks the fact that Q has a resolution limit for small 

modules, which is often the case in anatomical networks. This produces two problems. 

One is that some algorithms find inexplicable different modules when we input slightly 

different networks. The other is that algorithms find asymmetric modules in otherwise 

symmetric networks. These problems have discouraged researchers to use anatomical 

network analysis and boost criticisms to this methodology. Here, I propose a Node-

based Informed Modularity Strategy (NIMS) to identify modules in anatomical networks 

that bypass resolution and sensitivity limitations by using a bottom-up approach. 

Starting with the local modularity around every individual node, NIMS returns the 

modular organization of the network by merging non-redundant modules and assessing 

their intersection statistically using combinatorial theory. Instead of acting as a black 

box, NIMS allows researcher to make informed decisions about whether to merge non-

redundant modules. NIMS returns network modules that are robust to minor variation 

and does not require to optimize a global modularity function. NIMS may prove useful 

to identify modules also in small ecological and social networks. 
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INTRODUCTION 

 

Anatomical network analysis has recently emerged as a new framework to study 

anatomy quantitatively using tools from network theory (Rasskin-Gutman & Esteve-

Altava, 2014). This approach first formalizes anatomical systems as network models, in 

which nodes represent individual anatomical elements (e.g., bones) and links represent 

pair-wise relations among them (e.g., articulations), and then quantifies their 

topological organization as a proxy to understand the biological features of the body. 

Anatomical studies using network analysis have focused on comparing the 

development, function, and evolution of morphological systems, from invertebrates to 

vertebrates, including extant and extinct organisms (e.g., Esteve-Altava, Marugán-

Lobón, Botella, & Rasskin-Gutman, 2013; Esteve-Altava, Molnar, Johnston, 

Hutchinson, & Diogo, 2018; Esteve-Altava et al., 2019; Saucède et al., 2015; Dos 

Santos, Fratani, Ponssa, & Abdala, 2017; Kerkman, Daffertshofer, Gollo, Breakspear, 

& Boonstra, 2018; Murphy et al., 2018; Ostachuk, 2019; Plateau & Foth, 2020). 

 

Modularity is one of the most explored features of anatomical networks. In this context, 

a module is a group of nodes with more connections among them than to other nodes 

outside the group. We can classify network-based modules as organizational modules: 

“Organizational morphological modules refer explicitly to the interactions postulated to 

be important in organismal construction or activity. They invite observation or 

description in terms of mechanistic relations, whether variation among organisms is 

present or not. As such, organizational modules are units of stability” (Eble, 2005). The 

vertebrate skull is the most frequently object of study when looking for morphological 

modules (Esteve-Altava, 2017b). In this context, anatomical network studies have tried 

to unveil the topological units of organization to understand how they vary in evolution 

(Esteve-Altava, Boughner, Diogo, Villmoare, & Rasskin-Gutman, 2015; Arnold, Esteve-

Altava, & Fischer, 2017; Werneburg, Esteve-Altava, Bruno, Torres Ladeira, & Diogo, 
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2019; Plateau & Foth, 2020), but also in normal and pathological development (Diogo 

et al., 2019). Moreover, some other studies have applied network methods to identify 

modules of landmark-based morphometric correlations rather than topological relations 

(Ivan Perez, de Aguiar, Guimarães, & dos Reis, 2009; Suzuki, 2013). A connection 

between network-based organizational modules and shape covariation modules would 

be likely (Esteve‐Altava, Marugán‐Lobón, Botella, Bastir, & Rasskin‐Gutman, 2013), 

but it has not been elucidated yet (Esteve-Altava, 2017a). 

 

A common strategy to delimit modules in anatomical networks is to use a community 

detection algorithm that optimize a quality function, which measures how well divided is 

the network into modules compared to a random model. The most popular optimization 

function is the modularity Q (Newman & Girvan, 2004). Q measures the number of 

links within modules compared with a random distribution of links between all nodes 

regardless of modules. However, Q has a resolution limit for smaller modules that 

depends on the size of the network and the possibility to distant nodes to connect 

(Fortunato & Barthelemy, 2007). As a result, optimization algorithms may fail to identify 

small modules in relatively larger networks. This is because in large networks 

connections cannot be distributed purely at random. Although anatomical networks are 

smaller compared to other natural networks (e.g., genetic, ecological), the resolution 

limit applies here because geometry and development constrain connectivity (Esteve-

Altava & Rasskin-Gutman, 2014). Despite their limitations, optimization algorithms are 

persistently used to study anatomical networks because they are easy to apply and 

because they are readily available through build-in packages and programs like igraph 

(Csardi & Nepusz, 2006). Other resolution problems originate from the fact that many 

nodes have spread their links evenly between modules. Because most nodes tend to 

have a small number of connections, this makes difficult to delimit modules solely by 

connections in and out of modules. 
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Global optimization and resolution limits produce two problems in many modularity 

studies of anatomical networks. The first problem is that algorithms “inexplicably” find 

different modules when we input slightly different networks. This happens, for example, 

when one fixes a minor mistake in a network and finds out that in the revised network 

the modularity output changes considerably. It also happens when comparing similar 

networks with intraspecific variation (e.g., adding a Wormian bone in a skull), for which 

we would expect no major changes of modularity. The second problem is that 

algorithms sometimes find asymmetric modules in otherwise symmetric networks, 

which challenges basic biological assumptions about symmetry of bilateral body parts. 

These problems can hinder anatomical network analyses and they fuel criticisms to this 

methodology from people unaware of these limitations. 

 

Here I propose a strategy to bypass resolution and sensitivity limitations, using a 

bottom-up approach that frames the problem of finding modules in anatomical networks 

at the level of individual nodes: a Node-based Informed Modularity Strategy (NIMS). 

Starting with the local modularity around every single node, NIMS returns the modular 

organization of the entire network by merging non-redundant modules and statistically 

assessing their degree of intersection. Instead of acting as a black box, NIMS allows to 

make informed decisions about whether to merge non-redundant modules or keep 

them as separated modules, based on the significance and the size of the intersection. 

NIMS returns network modules that are robust to minor variations and avoids common 

pitfalls of other approaches by not requiring to optimize a global modularity function. 

The following section describes NIMS in more detail. Then, the modularity of four skull 

networks is analyzed as case studies: (1) human, (2) human with intraspecific variation, 

(3) tinamou, and (4) crocodile. 
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NODE-BASED INFORMED MODULARITY STRATEGY (NIMS) 

NIMS builds upon existing functions implemented in R packages (R Core Team, 2019). 

This has been done for convenience because R is a popular programming language for 

anatomical network analysis and among biologists. However, NIMS is independent of 

the programming language we used and other implementations are possible. 

 

NIMS has six sequential steps: 

1. Get all node-level modules 

2. Remove extra node-level modules with same elements 

3. Remove node-level modules with all elements included in a larger module 

4. Test multiple-set overlaps 

5. Merge node-level modules (top p-value / max overlap size) 

6. Test cohesion for network-level modules (Wilcoxon test) 

 

Step 1 delimits node-level modules for every node in the network. This can be done 

using the function cluster_spinglass in the package igraph (Csardi & Nepusz, 2006), 

setting the argument vertex sequentially to every node of the network. This function 

finds node-level modules based on their difference between realized and expected 

internal links (cohesion) and between realized and expected external links (adhesion) 

(Reichardt & Bornholdt, 2006). Alternatively, we could use any algorithm that returns 

node-level modules, even those based on criteria. 

 

Steps 2 and 3 cross-check node-level modules to filter out modules with the same 

nodes (duplicated) and modules entirely included as part of a larger module (nested). 

This produces a list of non-redundant node-level modules. Finding only one module 

after Steps 2 and 3 means that the nodes of the network are fully integrated and that 

the network has no modules. 
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Step 4 evaluates the intersection of non-redundant node-level modules to reveal 

potential merges of highly overlapping modules. This procedure is co-opted from 

research on gene sets functional enrichment analyses (Subramanian et al., 2005), 

extended to perform multiple-set comparisons (for details, see Wang, Zhao, & Zhang, 

2015). Step 4 returns the size of the overlap (how many nodes) for all combinations of 

node-level modules and the statistical significance of their overlap compared to random 

expectations. In R, we can use the function supertest in the package SuperExactTest 

(Wang et al., 2015), which performs multi-set enrichment analysis and provides tools 

for efficiently plotting the results so we can inspect them visually. To determine when a 

combination of modules is significant, we must first account for multiple testing using 

an appropriate p-value correction, such as the Bonferroni’s correction (Miller, 1966). 

Any combination of modules above the Bonferroni corrected p-value is well supported 

statistically. P-value thresholds can be incorporated in the visualization of Step 4 to 

facilitate the visualization of supported merges. 

 

Step 5 requires the researcher to make an informed decision on whether to merge two 

or more overlapping modules, based on the summary statistics from Step 4. As a rule, 

we can merge modules into a single module when the overlap is large compared to the 

number of nodes of each node-level module and when the merging is statistically well 

supported. Similar well supported merges are possible. For these cases, researchers 

will have to decide and justify the rationale of the decision. 

 

Finally, Step 6 will test whether the final modules fulfill the definition of network module 

as a group of nodes with more links in that out the module. We can do that with a 

paired Wilcoxon signed rank test of the null hypothesis that in-module links are equal 

than the out-module links (not a module), against the alternative hypothesis that in-

module links are greater than out-module links (a module). This test is implemented in 

the function wilcox.test of the stats package (R Core Team, 2019). 
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The next sections demonstrate the application of NIMS to resolve the modular 

organization of four different anatomical networks. Supplementary File 1 includes the 

data and R code to reproduce these examples, as well as an example using the 

benchmark social network Zachary's karate club (Newman & Girvan, 2004). 

 

 

CASE STUDIES 

 

Four anatomical networks were analyzed representing (1) the ‘type’ adult human skull, 

(2) a human skull with intraspecific variation, (3) the adult skull of a tinamou, and (4) 

the adult skull of a crocodile (Figure 1). 

 

 

Figure 1. Anatomical networks used as examples. 
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The first network is the ‘type’ adult human skull and it has been analyzed in previous 

works (Esteve�Altava et al., 2013; Esteve-Altava et al., 2015). Different methods have 

consistently identified two modules: one posterior, grouping the bones of the cranial 

vault and base; and one anterior, grouping the bones of the facial region. Using a local 

optimization method (Lancichinetti, Radicchi, Ramasco, & Fortunato, 2011), which can 

find overlapping modules (covers), another study found that these two modules overlap 

in the frontal and zygomatic bones (Esteve-Altava, 2017a). However, results of this 

algorithm were sensitive to changes in internal arguments. The analysis of the ‘type’ 

human skull will serve to compare NIMS to the modules delimited by other algorithms. 

The expected output is that NIMS can identify the same two modules. 

 

The second network is a modification of the first one that includes anatomical variation 

found in natural populations (Berry & Berry, 1967). It has an extra Wormian bone 

between the left parietal and the occipital. It also has different configurations of the 

pterion region on each side: on the left, the parietal contacts with the sphenoid which 

prevents the contact between temporal and frontal; on the right, the temporal contacts 

with the frontal which prevents the contact between parietal and sphenoid. As a result, 

the network is asymmetric along the left-right axis for the number of links and bones. 

This network is also an example of normal variation that we find when studying actual 

skulls rather than type forms. The analysis of this network will show how NIMS deals 

with intraspecific variation naturally present in anatomical systems, and whether the 

resulting modules are equivalent to those of the ‘type’ skull network. The expected 

output is that NIMS has a robust behavior for small variations and finds a modular 

organization that is consistent with that of the type network. 

 

The third network is the skull of an adult tinamou Nothura maculosa, which consist of 

only six bones due to a process of fusion during postnatal development. Because of 
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the small size of this network, preliminary reports (Lee, Esteve-Altava, & Abzhanov, 

2020) found either that this network is not modular (i.e., they find one module) or a 

trivial partition of the network. The analysis of this network will show how NIMS deals 

with small, non-modular networks. The expected output is that NIMS find one module. 

 

The fourth network is the adult skull of the crocodile Crocodylus moreletii, which consist 

of a skull with many unpaired bones typical of non-avian archosaurs. For anatomical 

networks with many bilaterally symmetric nodes, community detection algorithms by 

optimization sometimes return oddly asymmetric modules (e.g., a module grouping 

only right-side nodes plus one left bone) or trivially asymmetric by placing unpaired 

nodes with a one-side module when it is equally connected to the left and right sides 

(Lee et al., 2020; Plateau & Foth, 2020). The analysis of this network will show how 

NIMS deals with larger networks with many unpaired bones. The expected output is 

that NIMS will return a modular organization without asymmetries. 

 

 

RESULTS & DISCUSSION 

 

Modularity of the ‘type’ Human Skull Network 

NIMS returns four non-redundant node-level modules, labeled accordingly as occipital, 

sphenoidal, frontal, and ethmoidal. Note that the names of the node-level modules are 

taken from the first node which local module is non-redundant and it is merely a label. 

The statistical analysis of the intersections of the four modules returned two significant 

overlaps (Figure 2), which supports merging node-level modules Ethmoidal + Frontal 

(labeled facial) and Sphenoidal + Occipital (labeled cranial). The two modules overlap 

in the frontal, palatines, and vomer; therefore, we can define them as covers (i.e., 

overlapping modules). The facial cover groups the ethmoid, frontal, lacrimals, maxillas, 

inferior nasal conchae, nasals, palatines, and vomer. The cranial cover groups the 
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frontal, occipital, palatines, parietals, sphenoid, temporals, vomer, and zygomatics. 

Statistical evaluation of the two covers confirms they meet the standard definition of 

module, as a group of nodes with more links in than out the module (facial cover: W = 

161.5, p-value = 3.12e-05; cranial cover: W = 125.5, p-value = 8.38e-04). 

 

Figure 2. Intersection tests for the four non-redundant node-level modules of the ‘type’ adult 

human skull network. Green dots indicate the intersection of modules tested and the high of the 

bar shows the number of bones overlapping between modules. Statistical significance is shown 

in color code. Only two intersection were significant about the Bonferroni-corrected p-value 

(yellow to red colors), Ethmoidal + Frontal and Sphenoidal + Occipital, with 9 and 8 nodes 

overlapping, respectively. 

 

The composition of the two covers resembles that of the anterior and posterior modules 

reported by other studies using Q modularity optimization (Esteve�Altava et al., 2013), 

but the overlapping bones differ from studies using another local optimization approach 

(Esteve-Altava, 2017a). Here the palatal region connecting the base of the face to the 

base of the neurocranium is identified as the overlap of the two covers, while in 

previous reports it was the zygomatic bones who played this role. However, the role of 
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the frontal bone as a bridge between the face and vault is consistently identified using 

NIMS. 

 

Modularity of the Human Skull Network with Natural Variation 

NIMS returns also four non-redundant node-level modules, here labeled as Wormian, 

Sphenoidal, Zygomatic Right, and Ethmoidal. The statistical analysis of their 

intersection returns two statistically significant merges: Ethmoidal + Zygomatic Right 

and Sphenoidal + Wormian (Figure 3). The modules resulting from merging the two 

pairs of node-level modules are the same than for the ‘type’ human skull network. 

Likewise, both covers meet the standard definition of module (facial cover: W = 160, p-

value = 4.42e-05; cranial cover: W = 146.5, p-value = 6.29e-04). Therefore, NIMS 

returns robust modules even in the presence of natural variation on anatomical 

networks. 

 

Figure 3. Intersection tests for the four non-redundant node-level modules of the human skull 

network with variation. See figure 2 for description of the legends. 
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Modularity of the Tinamou Skull Network 

As expected, NIMS returned one single node-level module grouping the six bones after 

removing redundancies (all single node-level grouped the same bones). Therefore, no 

further analysis was required. 

 

Modularity of the Crocodile Skull Network 

NIMS returns seven non-redundant node-level modules, labeled following nodes’ name 

as R.Postorbital, L.Postorbital, R.Squamosal, Frontal, R.Vomer, L.Vomer, and 

Pterygoid. The statistical analysis of the intersections for the seven modules returned 

two significant overlaps (Figure 4), which indicate that we can merge these node-level 

modules. One merging joined R.Vomer + L.Vomer which share 20 of their 21 nodes. 

Another merging joined R.Postorbital + L.Postorbital + R.Squamosal which share 15 of 

their 19, 19, and 17 nodes, respectively. Finally, node-level modules Frontal and 

Pterygoid do not significatively overlap with other modules in a way that improves other 

merges. Note that a potential merging Pterygoid + R.Postorbital + L.Postorbital + 

R.Squamosal has not only a lower statistical support (as compared to the merge 

without Pterygoid) but also reduces the overall size of the overlap from 15 to 8 nodes. 

Consequently, the merging excluding the Pterygoid is preferred. 

 

After the two merges, we ended up with four network covers, labeled as frontal, 

postorbital, pterygoid, and vomer. Frontal module covers the frontal, lacrimals, 

laterosphenoids, nasals, parietal, postorbitals, prefrontals, squamosals, and 

supraoccipital. Postorbital module covers the basioccipital, basisphenoid, 

ectopterygoids, jugals, laterosphenoids, otoccipitals, parietal, postorbitals, prootics, 

pterygoid, quadrates, quadratojugals, squamosals, and supraoccipital. Pterygoid 

module covers the basisphenoid, laterosphenoids, palatine, prootics, pterygoid, 

quadrates, quadratojugals, and vomers. Vomer module covers the ectopterygoids, 
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frontal, jugals, lacrimals, maxillas, nasals, palatine, postorbitals, prefrontals, 

premaxillas, quadratojugals, and vomers. 

 

Figure 4. Intersection tests for the seven non-redundant node-level modules of crocodile skull. 

See figure 2 for description of the legends. 

 

The overlap between covers range from two to ten bones (see Supplementary File 1 

for details). Only two covers, vomer and postorbital, show some bones that are 

exclusive of these modules and do not overlap. Despite having four modules, the skull 

of the crocodile is highly integrated due to a substantial overlap. It is not surprising that 

whole-network optimization approaches often return asymmetries since overlapping 

bones can be placed equally well in different modules. However, the four covers 

reported here show no asymmetries; additionally, all of them have a bilateral symmetry 

and group the same bones from the left and right sides. Finally, statistical evaluation of 

the four covers confirms they meet the standard definition of module (frontal cover: W = 

191, p-value = 3.41e-04; postorbital cover: W = 522.5, p-value = 4.6e-09; pterygoid 

cover: W = 142.5, p-value = 1.37e-03; vomer cover: W = 467, p-value = 3.84e-08). 
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CONCLUSION 

NIMS successfully resolved the modular organization of the four skull networks used as 

example of different types of anatomical networks (Figure 5). It found the same 

modules in ‘type’ networks and in networks including intraspecific variation. It also 

identified absence of modular organization due to small size and filters out artificial 

asymmetries. By working under supervision (Step 5), NIMS gives researchers back the 

control of the modularity analysis to decide the most biologically meaningful output. 

 

 

Figure 5. Colored networks by modules. For the human skull network (top), NIMS delimits a 

posterior cover grouping the cranial vault and base (in red) and an anterior cover delimiting the 

face (in blue), overlapping in the frontal, palatines, and vomer (red dots on blue background). 

For the crocodile skull network (bottom), NIMS delimits four covers with a substantial overlap 

(grey). Only two covers, vomer and postorbital, group bones without overlap (blue and red, 

respectively). Background image of Homo sapiens adapted from (Takahashi, Yamashita, & 

Shigehara, 2006) and Crocodylus moreletii adapted from (Morgan et al., 2018). 
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