

1 **Gene Expression Network Analysis Provides Potential Targets Against SARS-CoV-2**

2 Ana I. Hernández Cordero^{1*}, Xuan Li¹, Chen Xi Yang¹, Stephen Milne^{1,2,3}, Yohan Bossé⁴, Philippe
3 Joubert⁴, Wim Timens⁵, Maarten van den Berge⁶, David Nickle⁷, Ke Hao⁸, Don D. Sin^{1,2}

4

5 ¹ Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada

6 ² Division of Respiratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver,
7 BC, Canada

8 ³ Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia

9 ⁴ Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec City,
10 QC, Canada

11 ⁵ University of Groningen, University Medical Centre Groningen, Department of Pathology and
12 Medical Biology, Groningen, The Netherlands

13 ⁶ University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases,
14 Groningen, The Netherlands

15 ⁷ Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, Massachusetts, United
16 States of America

17 ⁸ Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic
18 Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America

19

20 * Corresponding author

21 E-mail: Ana.Hernandez@hli.ubc.ca

22

23

24

25

26

27

28

29

30

31

32

33 **ABSTRACT**

34 **BACKGROUND:** Cell entry of SARS-CoV-2, the novel coronavirus causing COVID-19, is facilitated
35 by host cell angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2
36 (TMPRSS2). We aimed to identify and characterize genes that are co-expressed with *ACE2* and
37 *TMPRSS2*, and to further explore their biological functions and potential as druggable targets.
38 **METHODS:** Using the gene expression profiles of 1,038 lung tissue samples, we performed a
39 weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. We
40 explored the biology of co-expressed genes using bioinformatics databases, and identified known
41 drug-gene interactions. **RESULTS:** *ACE2* was in a module of 681 co-expressed genes; 12 genes with
42 moderate-high correlation with *ACE2* ($r>0.3$, $FDR<0.05$) had known interactions with existing drug
43 compounds. *TMPRSS2* was in a module of 1,086 co-expressed genes; 15 of these genes were enriched
44 in the gene ontology biologic process ‘Entry into host cell’, and 53 *TMPRSS2*-correlated genes had
45 known interactions with drug compounds. **CONCLUSION:** Dozens of genes are co-expressed with
46 *ACE2* and *TMPRSS2*, many of which have plausible links to COVID-19 pathophysiology. Many of
47 the co-expressed genes are potentially targetable with existing drugs, which may help to fast-track the
48 development of COVID-19 therapeutics.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67 **INTRODUCTION**

68

69 Since the outbreak of severe acute respiratory syndrome coronavirus (SARS coronavirus) in
70 2002 and 2003, coronaviruses have been considered to be highly pathogenic for humans 1-3. A new
71 coronavirus (SARS-CoV-2) that spreads through respiratory droplets emerged in December of 2019
72 in Wuhan, Hubei province, China 4. Its rapid spread across China and the rest of the world ultimately
73 resulted in the global COVID-19 pandemic, which was officially declared in March 2020 by the World
74 Health Organization (WHO).

75

76 It has since been shown that SARS-CoV-2 shares a common host cell entry mechanism with
77 the 2002-2003 SARS coronavirus 5,6. The viral genome encodes for multiple viral components,
78 including the spike protein (S), which facilitates viral entry into the host cell 7,8. The S protein
79 associates with the angiotensin-converting enzyme 2 (ACE2) to mediate infection of the target cells9.
80 ACE2 is a type 1 transmembrane metallocarboxypeptidase that is an important negative regulator of
81 the renin-angiotensin system (RAS). Once SARS-CoV-2 gains entry into epithelial cells, surface
82 expression of ACE2 is rapidly downregulated in the infected cell 10, which leads to an imbalance in
83 angiotensin II-mediated signalling and predisposes the host to acute lung injury. SARS-CoV-2 also
84 employs transmembrane serine protease 2 (TMPRSS2) to proteolytically activate the S protein, which
85 is essential for viral entry into target cells 11.

86

87 In view of the rapid spread and the mortality of COVID-19 worldwide, there is an urgent need
88 to find effective treatments against this infection, especially for severe cases. However, the
89 development of a vaccine and novel treatments may take months to years, requiring billions of dollars
90 in investment and with no certainty of their ultimate success. Bioinformatic approaches, however, can
91 rapidly identify relevant gene-drug interactions that may contribute to the understanding of the

92 mechanisms of viral infection and reduce the time to finding potential drug targets and existing drugs
93 that could be repurposed for this indication. Here, we performed a gene expression network analysis
94 on data generated in the Lung eQTL Consortium Cohort to investigate the mechanisms of *ACE2* and
95 *TMPRSS2* expression in lung tissue. We identified potential targets to be explored as possible
96 treatments for COVID-19. We hypothesized that the mechanisms associated with *ACE2* and *TMPRSS2*
97 likely encompass protein coding genes involved in the pathogenesis of COVID-19.

98

99 RESULTS

100 The Lung eQTL Consortium cohort used in this gene network analysis is described in **Table 1**. **Supplementary Fig. S1** shows the expression levels of *ACE2* and *TMPRSS2* in the three centres
101 that are part of the Lung eQTL Consortium (see methods); *ACE2* had low to moderate expression
102 levels in lung tissue; whereas *TMPRSS2* was highly expressed. Based on the study cohort lung
103 expression profile, we determined that *ACE2* and *TMPRSS2* were contained in distinct modules. The
104 module containing *ACE2* (*ACE2* module) included 681 unique genes, while the modules containing
105 *TMPRSS2* (*TMPRSS2* module) encompassed 1,086 unique genes (**Supplementary Tables S1 and S2**).
106 Only 41 genes were found in both modules. The hub gene for the *ACE2* module was *TMEM33*, and
107 hub gene for the *TMPRSS2* module was *PDZD2* (see methods for the definition of ‘hub gene’). **Fig. 1**
108 shows the top 50 genes with the highest connectivity to *ACE2* and *TMPRSS2* within their respective
109 modules, based on the weighted gene correlation network analysis (WGCNA) analysis.
110

111

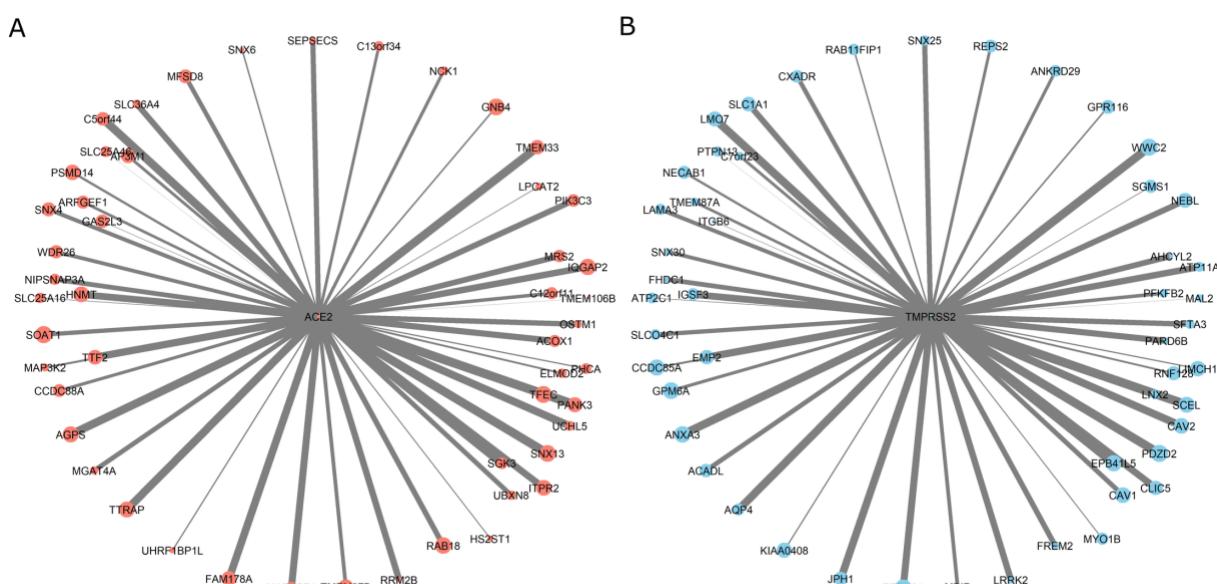
112 **Table 1. Study cohort demographics**

<i>Lung eQTL Consortium Cohort</i>	
<i>n</i>	1,038
<i>Age, years[†]</i>	61 (52-69)
<i>Females, n (%)</i>	472 (45.47)
<i>BMI, kg/m²[†]</i>	24.60 (21.80-27.98)
<i>COPD[‡], n (%)</i>	426 (41.04)
<i>Asthma, n (%)</i>	37 (3.56)

<i>Cardiac disease, n (%)</i>	192 (18.50)
<i>Hypertension, n (%)</i>	142 (13.68)
<i>Diabetes, n (%)</i>	81 (7.80)
<i>Never smokers, n (%)</i>	162 (15.61)
<i>Former smokers, n (%)</i>	631 (60.79)
<i>Current smokers, n (%)</i>	245 (23.60)

113 †Median (interquartile range). ‡ chronic obstructive pulmonary disease

114



115

116 **Figure 1. ACE2 and TMPRSS2 expression modules.** The center of each graph represents *ACE2* (A)
117 or *TMPRSS2* (B), the circles at the edges represent the top 50 genes with the highest connectivity to
118 *ACE2* or *TMPRSS2* based on the WGCNA analysis. The circle size represents the size of each gene
119 node in their respective modules. The arm thickness represents the relative strength of the connection
120 to the *ACE2* or *TMPRSS2* expression.

121

122 ACE2 module

123

124 The median module membership (MM) (see methods) across the genes in the *ACE2* module
125 was 0.40, and the minimum and maximum values were 0.002 and 0.79, respectively. The MM for
126 *ACE2* was 0.25. We utilized genes in the *ACE2* module to execute a pathway enrichment analysis,
127 which showed significant enrichment of four Kyoto Encyclopedia of Genes and Genomes (KEGG)
128 pathways (Lysosome, Metabolic pathways, N-Glycan biosynthesis and Endocytosis) (**Supplementary**

129 **Table S3)** and 34 gene ontology (GO) biologic processes ($FDR < 0.05$) (**Supplementary Table S4**);
130 however *ACE2* was not part of the enriched pathways or processes.

131

132 **ACE2-correlated genes**

133

134 The expression of 646 genes in the *ACE2* module was significantly correlated with *ACE2* levels
135 ($FDR < 0.05$), and only two of those genes were negatively correlated with *ACE2*. The range of their
136 correlation coefficient (r) with *ACE2* expression level in lung tissue is shown in **Supplementary Fig.**
137 **S2**. Although a large proportion of genes were significantly related to *ACE2* expression levels, only
138 76 genes had moderate or high correlations ($r > 0.3$).

139

140 The *PCCB* gene was most strongly correlated with *ACE2* expression ($r = 0.45$, **Supplementary**
141 **Table S1**). Of the top 10 genes most strongly correlated with *ACE2*, three genes (*PCCB*, *PIGN* and
142 *ADK*) were part of the KEGG ‘metabolic pathway’ which showed enrichment with *ACE2* module
143 genes (**Supplementary Table S3**). Furthermore, out of the top 10 genes, four genes (*ITPR2*, *LONP2*,
144 *ADK* and *WDFY3*) were found in multiple GO processes that were enriched with *ACE2* module genes
145 (**Supplementary Table S4**).

146

147 We identified 76 genes that showed moderate correlation ($r > 0.3$) with *ACE2* expression. Of
148 these, 48 genes had biological and/or druggability information available (details are presented in
149 **Supplementary Table S1**). We used these genes to construct a ‘map’ of biological information
150 (**Supplementary Fig. S3**). Based on the druggability scores, we identified 13 genes (*GART*, *DPP4*,
151 *PIGF*, *HDAC8*, *MDM2*, *SOAT1*, *IDE*, *BCAT1*, *SLC11A2*, *ADK*, *KLHL8*, *IL13RA2* and *ITPR2*) that are
152 known drug targets or are part of a key pathway that is targeted by a drug compound (see methods for

153 details on druggability scores). Out of the 13 genes with druggability scores, 12 were found to have of
154 known drug-gene interactions (**Table 2**).

155

156 **Table 2. Drug-gene interactions of ACE2-correlated genes.**

Gene	Druggability score [†]	No. of known drug-gene interactions [‡]	r (ACE2)	p	FDR
<i>ITPR2</i>	Tier 3	5	0.42	1.88×10^{-46}	8.62×10^{-44}
<i>ADK</i>	Tier 2	12	0.37	9.75×10^{-36}	9.91×10^{-34}
<i>GART</i>	Tier 1	2	0.36	7.77×10^{-34}	4.74×10^{-32}
<i>SOAT1</i>	Tier 2	8	0.35	1.47×10^{-32}	6.71×10^{-31}
<i>SLC11A2</i>	Tier 2	1	0.34	1.28×10^{-30}	4.52×10^{-29}
<i>IDE</i>	Tier 2	3	0.34	8.11×10^{-30}	2.06×10^{-28}
<i>BCAT1</i>	Tier 2	6	0.33	7.58×10^{-29}	1.61×10^{-27}
<i>DPP4</i>	Tier 1	48	0.32	5.95×10^{-27}	9.90×10^{-26}
<i>MDM2</i>	Tier 1	2	0.32	9.56×10^{-27}	1.56×10^{-25}
<i>PIGF</i>	Tier 1	1	0.32	9.87×10^{-27}	1.56×10^{-25}
<i>HDAC8</i>	Tier 1	27	0.32	1.21×10^{-26}	1.87×10^{-25}
<i>IL13RA2</i>	Tier 3	1	0.32	1.30×10^{-26}	1.98×10^{-25}

157 [†]from Finan et al 12 [‡]from Drug-Gene Interaction Database (DGIdb) 13. r(ACE2): Pearson correlation
158 coefficient between gene and ACE2 expression.

159

160 **TMPRSS2 module**

161

162 *TMPrSS2* demonstrated a MM of 0.27 (**Supplementary Table S2**). Genes in the *TMPrSS2*
163 module were enriched in multiple KEGG pathways (**Supplementary Table S5**) and GO biologic
164 processes (**Supplementary Table S6**). Five of the GO biologic processes identified in this study,
165 including ‘entry into host cell’, also contained *TMPrSS2* (**Table 3**).

166

167 **Table 3. GO biological processes involving TMPrSS2 and enriched in the TMPrSS2 module.**

GO biological process	Overlap [†]	Enrichment Ratio	p	FDR
Endocytosis	68/675	1.98	5.39×10^{-08}	5.38×10^{-06}
Vesicle-mediated transport	149/1,942	1.51	1.33×10^{-07}	1.17×10^{-05}
Import into cell	74/792	1.83	2.88×10^{-07}	2.22×10^{-05}
Receptor-mediated endocytosis	34/287	2.32	4.13×10^{-06}	2.26×10^{-04}
Entry into host cell	15/134	2.20	3.42×10^{-03}	4.59×10^{-02}

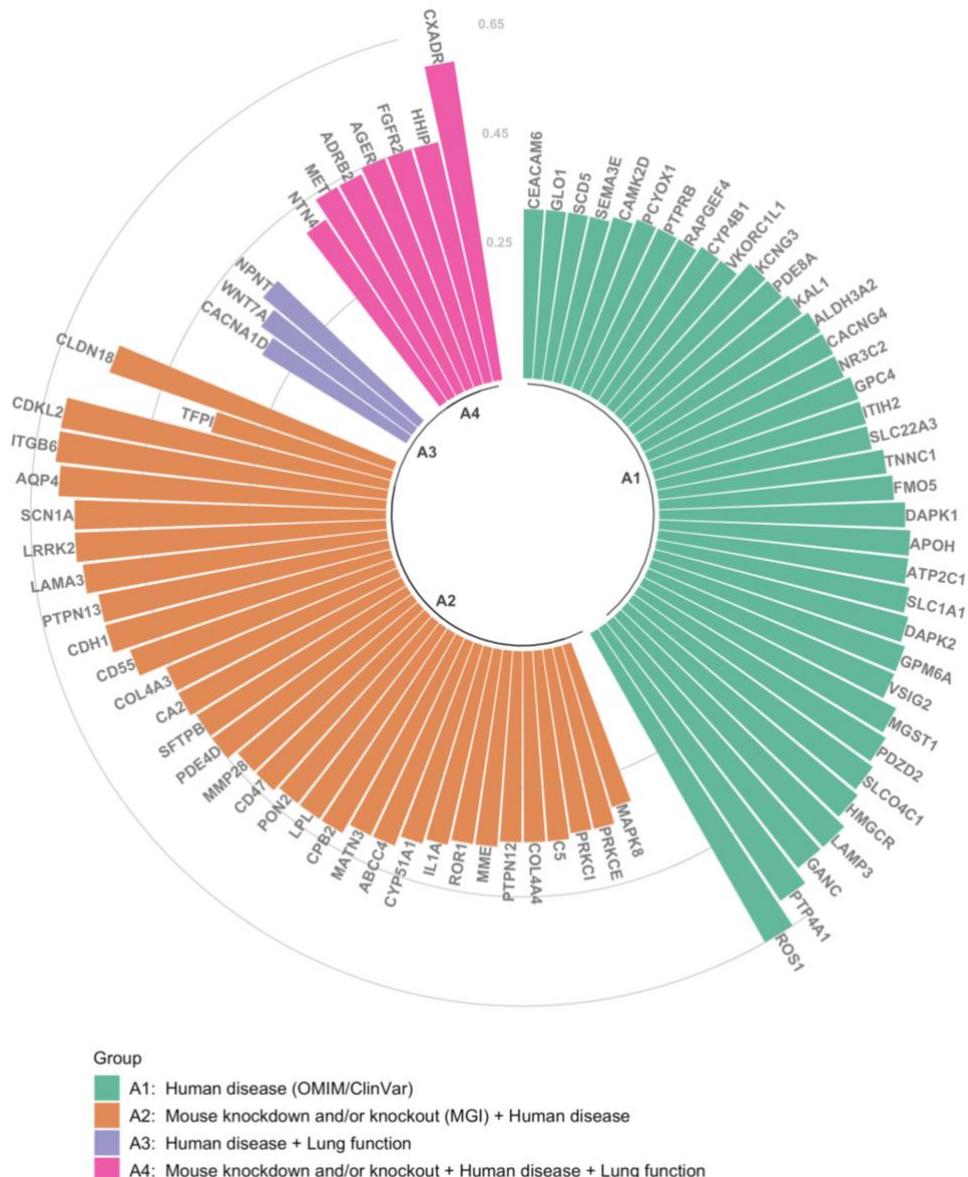
168 [†]Number of genes identified by our research over the total number of genes in the GO biological
169 process

170

171 **TMPRSS2-correlated genes**

172

173 We found that 864 unique genes in the *TMPRSS2* module were positively correlated with the
174 *TMPRSS2* expression level in lung tissue ($FDR < 0.05$), while 73 demonstrated a negative relationship
175 with the gene. The absolute r ranged from 0.06 to 0.72, with *FHDC1* expression showing the strongest
176 correlation with *TMPRSS2* ($r = 0.72$) (**Supplementary Table S2**). Next, we identified 368 genes that
177 were moderately or highly correlated with *TMPRSS2* gene expression levels ($r > 0.30$), of those 78 were
178 drug targets or were part of key pathways that could be targeted by drug compounds (see methods).
179 The genes are shown in **Fig. 2**, grouped based on the availability of biological information. The A4
180 group contained the genes with the most amount of biological information in the explored
181 bioinformatics databases. Most genes in **Fig. 2** only had information on human phenotypes (A1 group);
182 details on the genes biological information are presented in the **Supplementary Table S2**.



183

184 **Figure 2. Correlation level and annotation of TMPRSS2-correlated genes.** Each bar represents a
185 single gene (all with druggability scores Tier 1-3 12), and Pearson correlation coefficient (r)
186 between the gene and TMPRSS2 within the module is shown on the y axis. Colours of bars represent combined
187 biological information: green (group A1) represents genes related to human diseases based Online
188 Mendelian Inheritance in Man (OMIM) and ClinVar databases; orange (group A2) are genes
189 associated with human diseases, which also have phenotypic information on knockdown or knockout
190 mouse models based on Mouse Genome Informatics (MGI) database; purple (group A3) represents
191 genes associated with human diseases and with genetic variants associated to lung function traits 14;
192 pink (group A4) represents genes associated with a human disease, with phenotypic information on
193 knockdown or knockout mouse, and genetic variants associated with lung function.
194

195 We later explored the drug-gene interactions of the genes described in **Fig. 2**; 53 of these genes
196 were found to interact with known drugs. Furthermore, 21 genes with gene-drug interactions (**Table**

197 4) were enriched in the GO biological processes that related to *TMPRSS2* (**Table 3**). The **Table 4**
198 includes four out of the 15 genes that are part of the ‘*Entry into host cell*’ biological process (*CD55*,
199 *CDH1*, *ITGB6* and *MET*).
200

201 **Table 4. Drug-gene interactions of *TMPRSS2*-correlated genes**

Gene	Druggability†	No. of drug-gene interactions‡	r (TMPRSS2)	p	FDR
<i>ITGB6</i>	Tier 1	3	0.61	2.40×10^{-14}	1.22×10^{-12}
<i>LRRK2</i>	Tier 1	1	0.57	5.14×10^{-9}	1.35×10^{-94}
<i>SLCO4C1</i>	Tier 1	1	0.54	7.99×10^{-8}	1.55×10^{-82}
<i>CDH1</i>	Tier 3	7	0.54	4.54×10^{-8}	8.58×10^{-82}
<i>MGST1</i>	Tier 1	1	0.52	5.13×10^{-7}	8.37×10^{-76}
<i>CD55</i>	Tier 1	5	0.51	5.56×10^{-7}	8.43×10^{-73}
<i>SLC1A1</i>	Tier 1	11	0.47	8.56×10^{-6}	9.64×10^{-60}
<i>AGER</i>	Tier 3	1	0.45	1.58×10^{-5}	1.40×10^{-52}
<i>MET</i>	Tier 1	81	0.44	1.18×10^{-5}	9.91×10^{-52}
<i>ADRB2</i>	Tier 1	120	0.44	6.08×10^{-5}	4.92×10^{-50}
<i>CD47</i>	Tier 3	1	0.43	7.57×10^{-4}	5.67×10^{-48}
<i>ABCC4</i>	Tier 1	13	0.40	2.15×10^{-4}	1.28×10^{-41}
<i>SLC22A3</i>	Tier 1	1	0.40	3.89×10^{-4}	2.28×10^{-41}
<i>CACNG4</i>	Tier 3	6	0.39	7.04×10^{-3}	3.74×10^{-38}
<i>MME</i>	Tier 1	13	0.36	1.89×10^{-3}	8.26×10^{-33}
<i>PRKCI</i>	Tier 1	9	0.34	9.36×10^{-30}	3.67×10^{-29}
<i>WNT7A</i>	Tier 3	1	0.34	1.14×10^{-29}	4.48×10^{-29}
<i>PRKCE</i>	Tier 1	14	0.34	1.46×10^{-29}	5.70×10^{-29}
<i>PTPRB</i>	Tier 2	2	0.33	4.16×10^{-28}	1.55×10^{-27}
<i>RAPGEF4</i>	Tier 2	1	0.33	1.69×10^{-27}	6.09×10^{-27}
<i>CACNA1D</i>	Tier 1	32	0.31	1.94×10^{-24}	6.22×10^{-24}

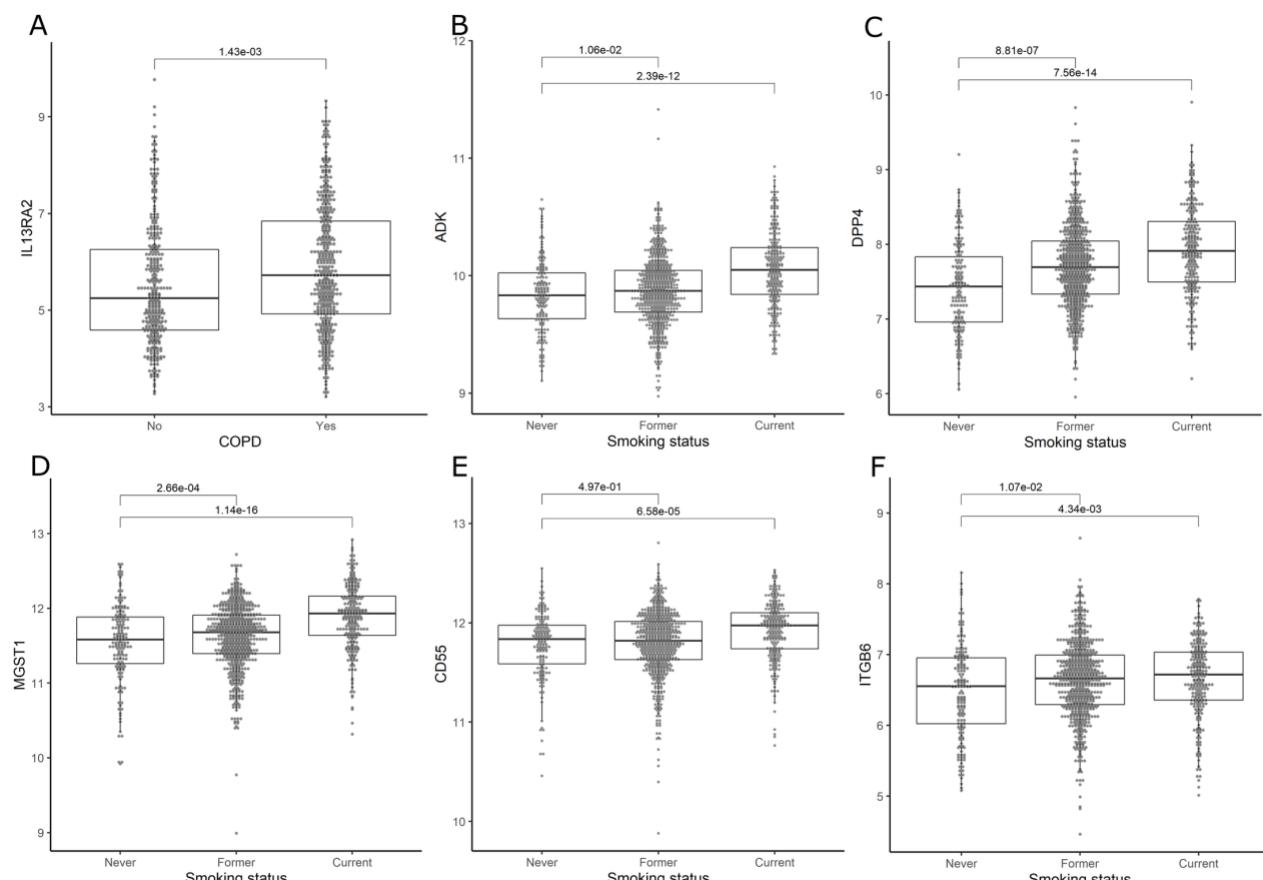
202 †from Finan et al 12 ‡from Drug-Gene Interaction Database (DGIdb) 13. r(TMPrSS2): Pearson
203 correlation coefficient between gene and *TMPrSS2* expression.
204

205 **Differential expression of ACE2- and TMPrSS2-correlated genes**

206

207 We investigated the effects of risk factors for COVID-19 on the expression of the genes shown
208 in **Table 2** and **Table 4**. The full list of differential expressed genes (*FDR*<0.05) with known drug-
209 gene interactions is presented in **Supplementary Table S7**. Some illustrative examples are shown in
210 **Fig. 3**, including the effect of chronic obstructive pulmonary disease (COPD) on *IL13RA2* expression

211 (Fig. 3A), and the effect of smoking on *ADK*, *DPP4*, *MGST1*, *CD55* and *ITGB6* expression (Fig. 3B-F).



213

214 **Figure 3. Effects of COVID-19 risk factors on lung tissue gene expression.** y axes represent the
215 expression level in log₂(counts per million) in lung tissue for ACE2-correlated genes (IL13RA2 [A],
216 ADK [B], DPP4 [C]) and TMPRSS2-correlated genes (MGST1 [D], CD55 [E], ITGB6 [F]). Boxes are
217 median expression \pm interquartile range respectively. Numbers at the top of each box plot are FDR
218 obtained from the robust linear regressions.
219

220 DISCUSSION

221

222 There is a scarcity of therapeutic treatments specific for this virus and for severe COVID-19
223 pneumonia. ACE2 and TMPRSS2 are key proteins involved in the cellular entry mechanism of SARS-
224 Cov-2 to infect the lungs of the human host. Because one of the rate-limiting step in this process is the
225 overall availability of these proteins on surface of lung epithelial cells 15, careful evaluation of ACE2
226 and TMPRSS2 biology may enable identification of possible therapeutic targets against SARS-CoV-2

227 infection. In this study, by using a network analysis of genome-wide gene expression in lung tissue,
228 we were able to identify a set of genes that may interact with *ACE2* and *TMRSS2*, and thus may be
229 drug targets.

230

231 One notable gene was *ADK*. This gene is a key regulator of extracellular and intracellular
232 adenine nucleotides 16,17. *ADK* inhibition attenuates lung injury in mice 18, while in humans, cigarette
233 exposure upregulates expression of *ADK* in lung tissue. We speculate a role for *ADK* in COVID-19,
234 postulating that increased *ADK* may increase adenosine concentration in the lungs which in turn can
235 enhance viral replication. Previous work has shown that silencing *ADK* decreased influenza replication
236 in an *in vitro* model 19. Another study showed that *ADK* can activate didanosine 20, a
237 dideoxynucleoside analogue of adenosine that inhibits retro-transcription and is used in the treatment
238 of HIV. Although this drug was recently nominated for drug repurposing as a potential treatment
239 against COVID-19 21, the biology of this drug is complex, particularly given the detrimental effect of
240 *ADK* on lung injury.

241

242 Another *ACE2*-correlated gene that emerged from this study was *DPP4*. *DPP4* encodes the
243 dipeptidyl-peptidase 4 (DPP-4) glycoprotein, which plays a major role in glucose and insulin
244 metabolism and is linked to diabetes, now established as a key risk factor for severe COVID-19
245 including mortality 22. DPP-4 is the functional receptor for the Middle East Respiratory Syndrome
246 (MERS) coronavirus and interacts with dozens of drugs. DPP-4 inhibitors, which are used in the
247 treatment of diabetes, appear to reduce macrophage infiltration and insulin resistance but have not
248 been shown to increase the risk of infection in diabetic patients23. However, the effects of DPP-4
249 inhibitors on the immune response are not well understood. Because of the similarities between MERS
250 and SARS-CoV-2, this is an interesting potential target, particularly for patients with diabetes.

251

252 Another interesting target is *IL13RA2*, which encodes the alpha-2 receptor subunit for
253 interleukin-13 (IL-13). The IL-13 pathway has immunoregulatory functions and is implicated in
254 asthma, idiopathic pulmonary fibrosis (IPF) 24 and COPD 25,26. The IL-13 pathway can activate Janus
255 kinase 2 (JAK2) while the inhibition of JAK2 blocks SARS-CoV-2 viral entry 27. *IL13RA2* interacts
256 with cintredekin besudotox, a drug compound that is formed by cross-linking IL-13 with *Pseudomonas*
257 exotoxin-A and induces apoptosis by targeting cells that express the IL-13 receptor. Both the IL-13
258 and DPP-4 pathways could be intriguing possibilities for novel COVID-19 therapeutics.

259

260 The *HDAC8* gene is an exciting potential target because of its role in pulmonary fibrosis (PF)
261 and its interaction with histone deacetylase (HDAC) inhibitors. HDAC inhibitors have shown promise
262 against fibrotic diseases 28. The overexpression of HDACs is suggested to contribute to the process of
263 bronchiolization in patients with IPF 29. Viral infection increases the risk of PF 30 and it is reported that
264 *HDAC8* inhibition ameliorates PF 31; moreover we found that cigarette exposure, a known risk factor
265 for both COVID-19 and IPF, increases the expression of *HDAC8* in lung tissue. Therefore, targeting
266 the PF mechanisms through HDAC inhibitors pose an interesting therapy to further explore.

267

268 The ‘entry into host cell’ biological process was enriched with genes from the *TMPRSS2*
269 module. Furthermore, the *CD55* or complement decay-accelerating factor, an inhibitor of complement
270 activation, is one of the few genes that was part of this process. The complement system has a major
271 role in the immune response to viruses and triggers a proinflammatory cascade 32. *CD55*, which is
272 highly expressed in lung tissue, prevents the formation of C3 convertase 33 and therefore also inhibits
273 the formation of C3 complement. C3-deficient mice show less respiratory dysfunction and lower levels
274 of cytokines and chemokines in lungs in response to SARS-CoV 34. Thus, it is possible that preventing
275 the formation of C3 via *CD55* could be beneficial in COVID-19. Fortunately, known compounds such
276 as chloramphenicol already exist that specifically target *CD55* 32,35.

277

278 As noted above, we have identified a set of genes that interact with potential therapeutic targets,
279 which could be explored as treatments against COVID-19. The main strength of our study is the large
280 number of lung tissue specimens with detailed clinical phenotypic data. This allowed us to not only
281 identify genes related to *ACE2* and *TMPRSS2* expression, but also to determine the effects of various
282 clinical factors on the lung tissue expression of these genes. However, there were limitations to this
283 study. First, we used an *in-silico* approach to identify *ACE2* and *TMPRSS2* correlated genes, but we
284 did not confirm these association *in vivo* nor determine how these correlated genes physically
285 interacted with *ACE2* and *TMPRSS2*. Second, we identified the most promising drugs based on drug-
286 gene interactions from bioinformatic databases, but we are yet to test their effects on gene and/or
287 protein expression in *in vitro* experiments. Third, the lungs of our study cohort were not exposed to
288 SARS-CoV-2, therefore it is possible that the gene expression of these key identified genes in lung
289 tissue could be changed upon SARS-CoV-2 infection. Lastly, the cohort used for gene expression was
290 of European ancestry and the results may not be generalizable to other ethnic groups, which is of
291 critical importance in a global pandemic.

292

293 In summary, *ACE2* and *TMPRSS2* gene networks contained genes that could contribute to the
294 pathophysiology of COVID-19. These findings show that computational *in silico* approaches can lead
295 to the rapid identification of potential drugs, which could be repurposed as treatments against COVID-
296 19. Given the exponential spread of COVID-19 across the globe and the unprecedented rise in deaths,
297 such rapidity is necessary in our ongoing fight against the pandemic.

298

299 **METHODS**

300

301 **Lung expression Quantitative Trait Loci (eQTL) Consortium Cohort and gene expression**

302

303 Using microarray, gene expression profiles of 43,466 non-control probe sets (GEO platform
304 GPL10379) were obtained from lung tissue samples in the Lung eQTL Consortium Cohort. Briefly,
305 samples from this cohort included whole non-tumour lung tissue samples from 1,038 participants of
306 European ancestry who underwent surgical lung resection. Tissue samples were collected based on the
307 Institutional Review Board guidelines at three different institutions: The University of British
308 Columbia (UBC), Laval University and University of Groningen. This study was approved by the
309 ethics committees within each institution. A full description of the cohort and quality controls is
310 provided by Hao and colleagues 36.

311

312 **Gene expression network analysis**

313

314 Using the WGCNA 37 R package, we explored gene networks correlated to *ACE2* and
315 *TMPRSS2* in order to identify potential interactions in the Lung eQTL Consortium cohort. WGCNA
316 clusters co-expressed genes into networks and creates “modules”, which are defined as groups of
317 highly interconnected genes. For this analysis we identified signed consensus modules among the three
318 centres in our study cohort. Briefly, WGCNA generated a signed co-expression matrix based on the
319 correlation between genes, which later was transformed into an adjacent matrix by raising the co-
320 expression to a soft threshold power (β). For our study we used a $\beta=6$ and a minimum module size of
321 100 probe sets. A consensus network was built by identifying the overlap of all input datasets. For
322 each probe set in the modules a ‘Module Membership’ (MM) was calculated by correlating the gene’s
323 expression with the respective module’s expression (eigengene), i.e. the first principal component of
324 each module gene expression profile; the gene with the highest MM was termed the ‘hub gene’.

325

326 **Enrichment analysis and correlations of ACE2 and TMPRSS2 modules**

327

328 Enrichment analysis of KEGG pathways and GO biological processes was performed using the
329 genes in the modules containing *ACE2* (*ACE2* module) and *TMPRSS2* (*TMPRSS2* module). Significant
330 enrichment was established at $FDR < 0.05$. For each gene in the *ACE2* and *TMPRSS2* modules, we
331 determined the Pearson correlation between the expression level of the gene and that of *ACE2* or
332 *TMPRSS2*. We calculated correlation coefficients for the three centres separately and then combined
333 them using correlation meta-analysis via the R package metafor 38. Significant correlations were set at
334 $FDR < 0.05$ and in the downstream analyses, we focused on genes that correlated to *ACE2* or *TMPRSS2*
335 with $r > 0.30$.

336

337 **Drug-gene interactions and biological information of ACE2 and TMPRSS2 correlated genes**

338

339 We cross-referenced the *ACE2* and *TMPRSS2* correlated genes with the Mouse Genome
340 Informatics (MGI), the Online Mendelian Inheritance in Man (OMIM), and the ClinVar databases in
341 order to identify biologically relevant genes. We determined druggability scores according to methods
342 of Finan et al 12. Tier 1 refers to genes that are targets of small molecules and/or biotherapeutic drugs;
343 Tier 2 score indicates gene encoding targets with a known bioactive drug-like small molecule binding
344 partner and $\geq 50\%$ identity (over $\geq 75\%$ of the sequence) with an approved drug target; and Tier 3
345 denotes protein coding genes with similarities to drug targets and are members of key druggable gene
346 families. We also interrogated the Drug-Gene Interaction database (DGIdb) 13 of the genes. DGIdb
347 defines drug-gene interaction as a known interaction (i.e.: inhibition, activation) between a known
348 drug compound and a target gene.

349

350 **Differential expression of ACE2 and TMPRSS2 correlated genes**

351

352 We investigated the effects of possible risk factors for COVID-19 severity (e.g. smoking,
353 diabetes, asthma, COPD, cardiac disease, and hypertension) on the expression of druggable genes that
354 were correlated with *ACE2* or *TMPRSS2*. We first combined the gene expression from the three centres
355 using ComBat from the R package sva to correct for any batch effect 39. Then, the differential
356 expression was assessed for each gene-risk factor pair by a robust linear regression using the package
357 MASS 40 in R, in which the dependent variable was the gene expression and the explanatory variable
358 was the risk factor. The differential expression analysis on smoking was adjusted for sex and age, and
359 the analyses on diabetes, COPD and cardiac disease and hypertension were additionally adjusted for
360 smoking status. We set statistically significant differential expression $FDR < 0.05$.

361 **DATA AVAILABILITY**

362 The full results obtained in this analysis are provided in the Supplementary Tables associated to this
363 manuscript.

364 **REFERENCES**

365

366 1. Fouchier, R. A. M. *et al.* Aetiology: Koch's postulates fulfilled for SARS virus. *Nature* **423**, 240
367 (2003).

368 2. Zhong, N. S. *et al.* Epidemiology and cause of severe acute respiratory syndrome (SARS) in
369 Guangdong, People's Republic of China, in February, 2003. *Lancet Lond. Engl.* **362**, 1353–1358
370 (2003).

371 3. Drosten, C. *et al.* Identification of a novel coronavirus in patients with severe acute respiratory
372 syndrome. *N. Engl. J. Med.* **348**, 1967–1976 (2003).

373 4. Huang, C. *et al.* Clinical features of patients infected with 2019 novel coronavirus in Wuhan,
374 China. *Lancet Lond. Engl.* **395**, 497–506 (2020).

375 5. Tai, W. *et al.* Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus:
376 implication for development of RBD protein as a viral attachment inhibitor and vaccine. *Cell.*
377 *Mol. Immunol.* 1–8 (2020) doi:10.1038/s41423-020-0400-4.

378 6. Hoffmann, M. *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked
379 by a Clinically Proven Protease Inhibitor. *Cell* (2020) doi:10.1016/j.cell.2020.02.052.

380 7. Marra, M. A. *et al.* The Genome sequence of the SARS-associated coronavirus. *Science* **300**,
381 1399–1404 (2003).

382 8. Rota, P. A. *et al.* Characterization of a novel coronavirus associated with severe acute respiratory
383 syndrome. *Science* **300**, 1394–1399 (2003).

384 9. Li, W. *et al.* Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.
385 *Nature* **426**, 450–454 (2003).

386 10. Glowacka, I. *et al.* Differential Downregulation of ACE2 by the Spike Proteins of Severe Acute
387 Respiratory Syndrome Coronavirus and Human Coronavirus NL63. *J. Virol.* **84**, 1198–1205
388 (2010).

389 11. Glowacka, I. *et al.* Evidence that TMPRSS2 activates the severe acute respiratory syndrome
390 coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune
391 response. *J. Virol.* **85**, 4122–4134 (2011).

392 12. Finan, C. *et al.* The druggable genome and support for target identification and validation in drug
393 development. *Sci. Transl. Med.* **9**, (2017).

394 13. Wagner, A. H. *et al.* DGIdb 2.0: mining clinically relevant drug–gene interactions. *Nucleic Acids
395 Res.* **44**, D1036–D1044 (2016).

396 14. Shrine, N. *et al.* New genetic signals for lung function highlight pathways and chronic
397 obstructive pulmonary disease associations across multiple ancestries. *Nat. Genet.* **51**, 481–493
398 (2019).

399 15. Lukassen, S. *et al.* SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in
400 bronchial transient secretory cells. *EMBO J.* **n/a**, e105114 (2020).

401 16. Boison, D. Adenosine Kinase: Exploitation for Therapeutic Gain. *Pharmacol. Rev.* **65**, 906–943
402 (2013).

403 17. Baldwin, S. A. *et al.* The equilibrative nucleoside transporter family, SLC29. *Pflugers Arch.* **447**,
404 735–743 (2004).

405 18. Köhler, D. *et al.* Inhibition of adenosine kinase attenuates acute lung injury. *Crit. Care Med.* **44**,
406 e181–e189 (2016).

407 19. Bakre, A. *et al.* Identification of Host Kinase Genes Required for Influenza Virus Replication
408 and the Regulatory Role of MicroRNAs. *PLoS One* **8**, e66796 (2013).

409 20. Johnson, M. A. *et al.* Metabolic pathways for the activation of the antiretroviral agent 2',3'-
410 dideoxyadenosine in human lymphoid cells. *J. Biol. Chem.* **263**, 15354–15357 (1988).

411 21. Alakwaa, F. M. Repurposing Didanosine as a Potential Treatment for COVID-19 Using Single-
412 Cell RNA Sequencing Data. *mSystems* **5**, (2020).

413 22. Richardson, S. *et al.* Presenting Characteristics, Comorbidities, and Outcomes Among 5700
414 Patients Hospitalized With COVID-19 in the New York City Area. *JAMA* (2020)
415 doi:10.1001/jama.2020.6775.

416 23. Yang, W., Cai, X., Han, X. & Ji, L. DPP-4 inhibitors and risk of infections: a meta-analysis of
417 randomized controlled trials. *Diabetes Metab. Res. Rev.* **32**, 391–404 (2016).

418 24. Passalacqua, G. *et al.* IL-13 and idiopathic pulmonary fibrosis: Possible links and new
419 therapeutic strategies. *Pulm. Pharmacol. Ther.* **45**, 95–100 (2017).

420 25. van der Pouw Kraan, T. C. T. M. *et al.* Chronic obstructive pulmonary disease is associated with
421 the -1055 IL-13 promoter polymorphism. *Genes Immun.* **3**, 436–439 (2002).

422 26. Lee, J. S. *et al.* Inverse association of plasma IL-13 and inflammatory chemokines with lung
423 function impairment in stable COPD: a cross-sectional cohort study. *Respir. Res.* **8**, 64 (2007).

424 27. Schett, G., Sticherling, M. & Neurath, M. F. COVID-19: risk for cytokine targeting in chronic
425 inflammatory diseases? *Nat. Rev. Immunol.* 1–2 (2020) doi:10.1038/s41577-020-0312-7.

426 28. Pang, M. & Zhuang, S. Histone deacetylase: a potential therapeutic target for fibrotic disorders.
427 *J. Pharmacol. Exp. Ther.* **335**, 266–272 (2010).

428 29. Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary
429 fibrosis. - Abstract - Europe PMC. <http://europepmc.org/article/MED/26359372>.

430 30. Sheng, G. *et al.* Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-
431 Analysis. *Chest* **157**, 1175–1187 (2020).

432 31. Saito, S. *et al.* HDAC8 inhibition ameliorates pulmonary fibrosis. *Am. J. Physiol.-Lung Cell.*
433 *Mol. Physiol.* **316**, L175–L186 (2018).

434 32. Risitano, A. M. *et al.* Complement as a target in COVID-19? *Nat. Rev. Immunol.* 1–2 (2020)
435 doi:10.1038/s41577-020-0320-7.

436 33. Dho, S. H., Lim, J. C. & Kim, L. K. Beyond the Role of CD55 as a Complement Component.

437 *Immune Netw.* **18**, (2018).

438 34. Gralinski, L. E. *et al.* Complement Activation Contributes to Severe Acute Respiratory

439 Syndrome Coronavirus Pathogenesis. *mBio* **9**, (2018).

440 35. Cao, X. COVID-19: immunopathology and its implications for therapy. *Nat. Rev. Immunol.* 1–2

441 (2020) doi:10.1038/s41577-020-0308-3.

442 36. Hao, K. *et al.* Lung eQTLs to help reveal the molecular underpinnings of asthma. *PLoS Genet.* **8**,

443 e1003029 (2012).

444 37. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis.

445 *BMC Bioinformatics* **9**, 559 (2008).

446 38. Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. *J. Stat. Softw.* **36**, 1–

447 48 (2010).

448 39. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for

449 removing batch effects and other unwanted variation in high-throughput experiments.

450 *Bioinformatics* **28**, 882–883 (2012).

451 40. Modern Applied Statistics with S, 4th ed. <http://www.stats.ox.ac.uk/pub/MASS4/>.

452

453 **Acknowledgments**

454

455 The eQTL data from Laval University were generated from tissues obtained through the Quebec

456 Research Respiratory Network Biobank, IUCPQ site. We acknowledge Compute Canada and

457 WestGrid, which provided computational resources to conduct this research.

458

459 **Authors' contributions**

460 A.I.H.C. wrote the draft of the manuscript. X.L. conducted the main analyses with the impute of
461 A.I.H.C and revised the manuscript. C.X.Y. and S.M. revised the manuscript. Y.B., P.J., W.T., M.B.,
462 D.N., and K.H. provided lung expression data and revised the manuscript. D.D.S. supervised this study
463 and revised the manuscript.

464

465 **ADDITIONAL INFORMATION**

466

467 **Competing interests**

468 S.M. reports personal fees from Novartis and Boehringer-Ingelheim, outside the submitted work. W.T.
469 reports fees to Institution from Roche-Ventana, AbbVie, Merck-Sharp-Dohme and Bristol-Myers-
470 Squibb, outside the submitted work. M.B. reports research grants paid to University from Astra
471 Zeneca, Novartis, outside the submitted work. D.D.S. reports research funding from AstraZeneca and
472 received honoraria for speaking engagements from Boehringer Ingelheim and AstraZeneca over the
473 past 36 months, outside of the submitted work.

474

475 **Funding**

476 A.I.H.C. and S.M. are supported by MITACS Accelerate grant. D.D.S. holds the De Lazzari Family
477 Chair at HLI and a Tier 1 Canada Research Chair in COPD. Y.B. holds a Canada Research Chair in
478 Genomics of Heart and Lung Diseases