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ABSTRACT

BACKGROUND: Cell entry of SARS-CoV-2, the novel coronavirus causing COVID-19, is facilitated
by host cell angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2
(TMPRSS2). We aimed to identify and characterize genes that are co-expressed with ACE2 and
TMPRSS2, and to further explore their biological functions and potential as druggable targets.
METHODS: Using the gene expression profiles of 1,038 lung tissue samples, we performed a
weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. We
explored the biology of co-expressed genes using bioinformatics databases, and identified known
drug-gene interactions. RESULTS: ACE2 was in a module of 681 co-expressed genes; 12 genes with
moderate-high correlation with ACE2 (r>0.3, FDR<0.05) had known interactions with existing drug
compounds. TMPRSS2 was in a module of 1,086 co-expressed genes; 15 of these genes were enriched
in the gene ontology biologic process ‘Entry into host cell’, and 53 TMPRSS2-correlated genes had
known interactions with drug compounds. CONCLUSION: Dozens of genes are co-expressed with
ACE2 and TMPRSS2, many of which have plausible links to COVID-19 pathophysiology. Many of
the co-expressed genes are potentially targetable with existing drugs, which may help to fast-track the

development of COVID-19 therapeutics.


https://doi.org/10.1101/2020.07.06.182634
http://creativecommons.org/licenses/by-nc-nd/4.0/

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.182634; this version posted July 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Since the outbreak of severe acute respiratory syndrome coronavirus (SARS coronavirus) in
2002 and 2003, coronaviruses have been considered to be highly pathogenic for humans 1-3. A new
coronavirus (SARS-CoV-2) that spreads through respiratory droplets emerged in December of 2019
in Wuhan, Hubei province, China 4. Its rapid spread across China and the rest of the world ultimately
resulted in the global COVID-19 pandemic, which was officially declared in March 2020 by the World

Health Organization (WHO).

It has since been shown that SARS-CoV-2 shares a common host cell entry mechanism with
the 2002-2003 SARS coronavirus s56. The viral genome encodes for multiple viral components,
including the spike protein (S), which facilitates viral entry into the host cell 7s. The S protein
associates with the angiotensin-converting enzyme 2 (ACE2) to mediate infection of the target cellss.
ACE?2 is a type 1 transmembrane metallocarboxypeptidase that is an important negative regulator of
the renin—angiotensin system (RAS). Once SARS-CoV-2 gains entry into epithelial cells, surface
expression of ACE?2 is rapidly downregulated in the infected cell 10, which leads to an imbalance in
angiotensin Il-mediated signalling and predisposes the host to acute lung injury. SARS-CoV-2 also
employs transmembrane serine protease 2 (TMPRSS2) to proteolytically activate the S protein, which

is essential for viral entry into target cells 11.

In view of the rapid spread and the mortality of COVID-19 worldwide, there is an urgent need
to find effective treatments against this infection, especially for severe cases. However, the
development of a vaccine and novel treatments may take months to years, requiring billions of dollars
in investment and with no certainty of their ultimate success. Bioinformatic approaches, however, can

rapidly identify relevant gene-drug interactions that may contribute to the understanding of the
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mechanisms of viral infection and reduce the time to finding potential drug targets and existing drugs
that could be repurposed for this indication. Here, we performed a gene expression network analysis
on data generated in the Lung eQTL Consortium Cohort to investigate the mechanisms of ACE2 and
TMPRSS2 expression in lung tissue. We identified potential targets to be explored as possible
treatments for COVID-19. We hypothesized that the mechanisms associated with ACE2 and TMPRSS2

likely encompass protein coding genes involved in the pathogenesis of COVID-19.

RESULTS

The Lung eQTL Consortium cohort used in this gene network analysis is described in Table
1. Supplementary Fig. S1 shows the expression levels of ACE2 and TMPRSS2 in the three centres
that are part of the Lung eQTL Consortium (see methods); ACE2 had low to moderate expression
levels in lung tissue; whereas TMPRSS2 was highly expressed. Based on the study cohort lung
expression profile, we determined that ACE2 and TMPRSS2 were contained in distinct modules. The
module containing ACE2 (ACE2 module) included 681 unique genes, while the modules containing
TMPRSS2 (TMPRSS2 module) encompassed 1,086 unique genes (Supplementary Tables S1 and S2).
Only 41 genes were found in both modules. The hub gene for the ACE2 module was TMEM33, and
hub gene for the TMPRSS2 module was PDZD2 (see methods for the definition of ‘hub gene’). Fig. 1
shows the top 50 genes with the highest connectivity to ACE2 and TMPRSS2 within their respective

modules, based on the weighted gene correlation network analysis (WGCNA) analysis.

Table 1. Study cohort demographics

Lung eQTL Consortium Cohort

n 1,038
Age, years; 61 (52-69)
Females, n (%) 472 (45.47)
BMI, kg/mz; 24.60 (21.80-27.98)
COPDy, n (%) 426 (41.04)
Asthma, n (%) 37 (3.56)
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Cardiac disease, n (%) 192 (18.50)

Hypertension, n (%) 142 (13.68)
Diabetes, n (%) 81 (7.80)

Never smokers, n (%) 162 (15.61)

Former smokers, n (%) 631 (60.79)

Current smokers, n (%) 245 (23.60)

+Median (interquartile range). + chronic obstructive pulmonary disease
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Figure 1. ACE2 and TMPRSS2 expression modules. The center of each graph represents ACE2 (A)
or TMPRSS2 (B), the circles at the edges represent the top 50 genes with the highest connectivity to
ACE2 or TMPRSS2 based on the WGCNA analysis. The circle size represents the size of each gene
node in their respective modules. The arm thickness represents the relative strength of the connection
to the ACE2 or TMPRSS2 expression.

ACE2 module

The median module membership (MM) (see methods) across the genes in the ACE2 module
was 0.40, and the minimum and maximum values were 0.002 and 0.79, respectively. The MM for
ACE2 was 0.25. We utilized genes in the ACE2 module to execute a pathway enrichment analysis,
which showed significant enrichment of four Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways (Lysosome, Metabolic pathways, N-Glycan biosynthesis and Endocytosis) (Supplementary
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Table S3) and 34 gene ontology (GO) biologic processes (FDR<0.05) (Supplementary Table S4);

however ACE2 was not part of the enriched pathways or processes.

ACEZ2-correlated genes

The expression of 646 genes in the ACE2 module was significantly correlated with ACE2 levels
(FDR<0.05), and only two of those genes were negatively correlated with ACE2. The range of their
correlation coefficient (r) with ACE2 expression level in lung tissue is shown in Supplementary Fig.
S2. Although a large proportion of genes were significantly related to ACE2 expression levels, only

76 genes had moderate or high correlations (r>0.3).

The PCCB gene was most strongly correlated with ACE2 expression (r=0.45, Supplementary
Table S1). Of the top 10 genes most strongly correlated with ACE2, three genes (PCCB, PIGN and
ADK) were part of the KEGG ‘metabolic pathway’ which showed enrichment with ACE2 module
genes (Supplementary Table S3). Furthermore, out of the top 10 genes, four genes (ITPR2, LONPZ2,
ADK and WDFY3) were found in multiple GO processes that were enriched with ACE2 module genes

(Supplementary Table S4).

We identified 76 genes that showed moderate correlation (r>0.3) with ACE2 expression. Of
these, 48 genes had biological and/or druggability information available (details are presented in
Supplementary Table S1). We used these genes to construct a ‘map’ of biological information
(Supplementary Fig. S3). Based on the druggability scores, we identified 13 genes (GART, DPP4,
PIGF, HDACS8, MDM2, SOATL, IDE, BCAT1, SLC11A2, ADK, KLHLS, IL13RA2 and ITPR2) that are

known drug targets or are part of a key pathway that is targeted by a drug compound (see methods for
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details on druggability scores). Out of thel3 genes with druggability scores, 12 were found to have of

known drug-gene interactions (Table 2).

Table 2. Drug-gene interactions of ACE2-correlated genes.

Gene Druggability No. of known drug- r (ACE2) p FDR
score+ gene interactions;
ITPR2 Tier 3 5 042 188 x 1046  8.62 x 10-24
ADK Tier 2 12 037 9.75x%x 1036  9.91 x 10-34
GART Tier 1 2 0.36  7.77 x10-3s  4.74 x 10-32
SOAT1 Tier 2 8 035 147x1032 6.71x 1031
SLC11A2 Tier 2 1 0.3 128x1030  4.52 % 10-29
IDE Tier 2 3 0.34 8.11x1030  2.06 x 10-28
BCAT1 Tier 2 6 0.33 758 x10-29 1.61 x 10-27
DPP4 Tier 1 48 0.32 595x10-27 9.90 x 10-26
MDM?2 Tier 1 2 0.32 956 x10-27  1.56 x 10-25
PIGF Tier 1 1 0.32 987 %1027 1.56 % 10-25
HDACS8 Tier 1 27 032 121x102 1.87 % 10-25
IL13RA2 Tier 3 1 0.32 130x10-26 1.98 % 10-25

+from Finan et al 12 ;from Drug-Gene Interaction Database (DGIldb) 13. r((ACEZ2): Pearson correlation
coefficient between gene and ACE2 expression.

TMPRSS2 module

TMPRSS2 demonstrated a MM of 0.27 (Supplementary Table S2). Genes in the TMPRSS2

module were enriched in multiple KEGG pathways (Supplementary Table S5) and GO biologic

processes (Supplementary Table S6). Five of the GO biologic processes identified in this study,

including “entry into host cell’, also contained TMPRSS2 (Table 3).

Table 3. GO biological processes involving TMPRSS2 and enriched in the TMPRSS2 module.

GO biological process Overlap+ Enrichment Ratio p FDR
Endocytosis 68/675 1.98 5.39 x 10-08 5.38 x 10-06

Vesicle-mediated transport 149/1,942 1.51 1.33 x10-07  1.17 x 10-05
Import into cell 741792 1.83  2.88x10-07 2.22 x 10-05
Receptor-mediated endocytosis 34/287 2.32 4.13 x 10-06 2.26 x 10-04
Entry into host cell 15/134 220 342 x10-03  4.59 x 10-02

+Number of genes identified by our research over the total number of genes in the GO biological

process
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TMPRSS2-correlated genes

We found that 864 unique genes in the TMPRSS2 module were positively correlated with the
TMPRSS2 expression level in lung tissue (FDR<0.05), while 73 demonstrated a negative relationship
with the gene. The absolute r ranged from 0.06 to 0.72, with FHDCL1 expression showing the strongest
correlation with TMPRSS2 (r=0.72) (Supplementary Table S2). Next, we identified 368 genes that
were moderately or highly correlated with TMPRSS2 gene expression levels (r>0.30), of those 78 were
drug targets or were part of key pathways that could be targeted by drug compounds (see methods).
The genes are shown in Fig. 2, grouped based on the availability of biological information. The A4
group contained the genes with the most amount of biological information in the explored
bioinformatics databases. Most genes in Fig. 2 only had information on human phenotypes (Al group);

details on the genes biological information are presented in the Supplementary Table S2.


https://doi.org/10.1101/2020.07.06.182634
http://creativecommons.org/licenses/by-nc-nd/4.0/

183

184
185
186
187
188
189
190
191
192
193
194

195

196

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.182634; this version posted July 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Group

. A1: Human disease (OMIM/ClinVar)

. A2: Mouse knockdown and/or knockout (MGI) + Human disease

. A3: Human disease + Lung function

- Ad4: Mouse knockdown and/or knockout + Human disease + Lung function

Figure 2. Correlation level and annotation of TMPRSS2-correlated genes. Each bar represents a
single gene (all with druggability scores Tier 1-3 12), and Pearson correlation coefficient (r) between
the gene and TMPRSS2 within the module is shown on the y axis. Colours of bars represent combined
biological information: green (group Al) represents genes related to human diseases based Online
Mendelian Inheritance in Man (OMIM) and ClinVar databases; orange (group A2) are genes
associated with human diseases, which also have phenotypic information on knockdown or knockout
mouse models based on Mouse Genome Informatics (MGI) database; purple (group A3) represents
genes associated with human diseases and with genetic variants associated to lung function traits 14;
pink (group A4) represents genes associated with a human disease, with phenotypic information on
knockdown or knockout mouse, and genetic variants associated with lung function.

We later explored the drug-gene interactions of the genes described in Fig. 2; 53 of these genes

were found to interact with known drugs. Furthermore, 21 genes with gene-drug interactions (Table
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4) were enriched in the GO biological processes that related to TMPRSS2 (Table 3). The Table 4
includes four out of the 15 genes that are part of the ‘Entry into host cell’ biological process (CD55,

CDH1, ITGB6 and MET).

Table 4. Drug-gene interactions of TMPRSS2-correlated genes

Gene  Druggability+ No. of drug-gene  r (TMPRSS2) p FDR
interactions;
ITGB6 Tier 1 3 0.61 2.40 % 10-114 1.22 x 10-112
LRRK2 Tier 1 1 0.57 514109 1.35% 10-94
SLCO4C1 Tier 1 1 054 7.99 x10-84 1.55x 1082
CDH1 Tier 3 7 054 454 %1083 8.58 x 10-82
MGST1 Tier 1 1 0.52 5.13x1077 8.37 x 10-76
CD55 Tier 1 5 051 556x10-74 8.43 x 1073
SLC1A1 Tier 1 11 0.47 856 x10-61 9.64 x 10-60
AGER Tier 3 1 0.45 158 %1053 1.40 x 10-52
MET Tier 1 81 044 1.18x 1052 9.91 x 1052
ADRB2 Tier 1 120 0.44 6.08x 1051  4.92 x 10-50
CD47 Tier 3 1 0.43 7.57 <1049  5.67 % 10-48
ABCC4 Tier 1 13 0.40 2.15x1042 1.28 x10-21
SLC22A3 Tier 1 1 0.40 3.89x 1042 2.28x10-a
CACNG4 Tier 3 6 0.39 7.04x 1039 3.74 x 10-38
MME Tier 1 13 0.36 1.89x 1033 8.26 x 10-33
PRKCI Tier 1 9 0.34 9.36 x10-30  3.67 x 10-29
WNT7A Tier 3 1 0.34 1.14x1029 4.48 x 10-29
PRKCE Tier 1 14 0.34 1461029 5.70 x 10-29
PTPRB Tier 2 2 0.33 4.16 x10-28  1.55 x 10-27
RAPGEF4 Tier 2 1 0.33 1.69x10-27 6.09 x 10-27
CACNA1D Tier 1 32 031 1.94x1024 6.22 % 10-24

+from Finan et al 12 i;from Drug-Gene Interaction Database (DGldb) 13. r(TMPRSS2): Pearson
correlation coefficient between gene and TMPRSS2 expression.

Differential expression of ACE2- and TMPRSS2-correlated genes

We investigated the effects of risk factors for COVID-19 on the expression of the genes shown

in Table 2 and Table 4. The full list of differential expressed genes (FDR<0.05) with known drug-

gene interactions is presented in Supplementary Table S7. Some illustrative examples are shown in

Fig. 3, including the effect of chronic obstructive pulmonary disease (COPD) on IL13RA2 expression

10
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(Fig. 3A), and the effect of smoking on ADK, DPP4, MGST1, CD55 and ITGB6 expression (Fig. 3B-

F).

1.438-03 1.08-02 8.81e-07

2.39¢-12 7.56e-14

IL13RA2
DPP4

- ever lever
COPD Smoking status Smoking status

2 66a-04 4.97e-01 1.07e-02

1.14e-18 6.58¢-05 a 4.34e-03

CD55

Never Former Current Never Former Current Never Former Current
Smoking status Smoking status Smoking status

Figure 3. Effects of COVID-19 risk factors on lung tissue gene expression. y axes represent the
expression level in logz(counts per million) in lung tissue for ACE2-correlated genes (IL13RA2 [A],
ADK [B], DPP4 [C]) and TMPRSS2-correlated genes (MGST1 [D], CD55 [E], ITGB6 [F]). Boxes are
median expression + interquartile range respectively. Numbers at the top of each box plot are FDR
obtained from the robust linear regressions.

DISCUSSION

There is a scarcity of therapeutic treatments specific for this virus and for severe COVID-19
pneumonia. ACE2 and TMPRSS2 are key proteins involved in the cellular entry mechanism of SARS-
Cov-2 to infect the lungs of the human host. Because one of the rate-limiting step in this process is the
overall availability of these proteins on surface of lung epithelial cells 1s, careful evaluation of ACE2

and TMPRSS2 biology may enable identification of possible therapeutic targets against SARS-Cov-2

11
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infection. In this study, by using a network analysis of genome-wide gene expression in lung tissue,
we were able to identify a set of genes that may interact with ACE2 and TMPRSS2, and thus may be

drug targets.

One notable gene was ADK. This gene is a key regulator of extracellular and intracellular
adenine nucleotides 16,17. ADK inhibition attenuates lung injury in mice 18, while in humans, cigarette
exposure upregulates expression of ADK in lung tissue. We speculate a role for ADK in COVID-19,
postulating that increased ADK may increase adenosine concentration in the lungs which in turn can
enhance viral replication. Previous work has shown that silencing ADK decreased influenza replication
in an in vitro model 19. Another study showed that ADK can activate didanosine 20, a
dideoxynucleoside analogue of adenosine that inhibits retro-transcription and is used in the treatment
of HIV. Although this drug was recently nominated for drug repurposing as a potential treatment
against COVID-19 21, the biology of this drug is complex, particularly given the detrimental effect of

ADK on lung injury.

Another ACE2-correlated gene that emerged from this study was DPP4. DPP4 encodes the
dipeptidyl-peptidase 4 (DPP-4) glycoprotein, which plays a major role in glucose and insulin
metabolism and is linked to diabetes, now established as a key risk factor for severe COVID-19
including mortality 22. DPP-4 is the functional receptor for the Middle East Respiratory Syndrome
(MERS) coronavirus and interacts with dozens of drugs. DPP-4 inhibitors, which are used in the
treatment of diabetes, appear to reduce macrophage infiltration and insulin resistance but have not
been shown to increase the risk of infection in diabetic patients2s. However, the effects of DPP-4
inhibitors on the immune response are not well understood. Because of the similarities between MERS

and SARS-Cov-2, this is an interesting potential target, particularly for patients with diabetes.

12
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Another interesting target is IL13RA2, which encodes the alpha-2 receptor subunit for
interleukin-13 (IL-13). The IL-13 pathway has immunoregulatory functions and is implicated in
asthma, idiopathic pulmonary fibrosis (IPF) 24 and COPD 25,26. The IL-13 pathway can activate Janus
kinase 2 (JAK2) while the inhibition of JAK2 blocks SARS-CoV-2 viral entry 27. IL13RAZ2 interacts
with cintredekin besudotox, a drug compound that is formed by cross-linking IL-13 with Pseudomonas
exotoxin-A and induces apoptosis by targeting cells that express the IL-13 receptor. Both the IL-13

and DPP-4 pathways could be intriguing possibilities for novel COVID-19 therapeutics.

The HDACS gene is an exciting potential target because of its role in pulmonary fibrosis (PF)
and its interaction with histone deacetylase (HDAC) inhibitors. HDAC inhibitors have shown promise
against fibrotic diseases 2s. The overexpression of HDACs is suggested to contribute to the process of
bronchiolization in patients with IPF 29. Viral infection increases the risk of PF 30 and it is reported that
HDACS inhibition ameliorates PF 31; moreover we found that cigarette exposure, a known risk factor
for both COVID-19 and IPF, increases the expression of HDACS in lung tissue. Therefore, targeting

the PF mechanisms through HDAC inhibitors pose an interesting therapy to further explore.

The ‘entry into host cell’ biological process was enriched with genes from the TMPRSS2
module. Furthermore, the CD55 or complement decay-accelerating factor, an inhibitor of complement
activation, is one of the few genes that was part of this process. The complement system has a major
role in the immune response to viruses and triggers a proinflammatory cascade 32. CD55, which is
highly expressed in lung tissue, prevents the formation of C3 convertase 33 and therefore also inhibits
the formation of C3 complement. C3-deficient mice show less respiratory dysfunction and lower levels
of cytokines and chemokines in lungs in response to SARS-CoV 34. Thus, it is possible that preventing
the formation of C3 via CD55 could be beneficial in COVID-19. Fortunately, known compounds such

as chloramphenicol already exist that specifically target CD55 3235.
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As noted above, we have identified a set of genes that interact with potential therapeutic targets,
which could be explored as treatments against COVID-19. The main strength of our study is the large
number of lung tissue specimens with detailed clinical phenotypic data. This allowed us to not only
identify genes related to ACE2 and TMPRSS2 expression, but also to determine the effects of various
clinical factors on the lung tissue expression of these genes. However, there were limitations to this
study. First, we used an in-silico approach to identify ACE2 and TMPRSS2 correlated genes, but we
did not confirm these association in vivo nor determine how these correlated genes physically
interacted with ACE2 and TMPRSS2. Second, we identified the most promising drugs based on drug-
gene interactions from bioinformatic databases, but we are yet to test their effects on gene and/or
protein expression in in vitro experiments. Third, the lungs of our study cohort were not exposed to
SARS-CoV-2, therefore it is possible that the gene expression of these key identified genes in lung
tissue could be changed upon SARS-CoV-2 infection. Lastly, the cohort used for gene expression was
of European ancestry and the results may not be generalizable to other ethnic groups, which is of

critical importance in a global pandemic.

In summary, ACE2 and TMPRSS2 gene networks contained genes that could contribute to the
pathophysiology of COVID-19. These findings show that computational in silico approaches can lead
to the rapid identification of potential drugs, which could be repurposed as treatments against COVID-
19. Given the exponential spread of COVID-19 across the globe and the unprecedented rise in deaths,

such rapidity is necessary in our ongoing fight against the pandemic.

METHODS

Lung expression Quantitative Trait Loci (eQTL) Consortium Cohort and gene expression
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Using microarray, gene expression profiles of 43,466 non-control probe sets (GEO platform
GPL10379) were obtained from lung tissue samples in the Lung eQTL Consortium Cohort. Briefly,
samples from this cohort included whole non-tumour lung tissue samples from 1,038 participants of
European ancestry who underwent surgical lung resection. Tissue samples were collected based on the
Institutional Review Board guidelines at three different institutions: The University of British
Columbia (UBC), Laval University and University of Groningen. This study was approved by the
ethics committees within each institution. A full description of the cohort and quality controls is

provided by Hao and colleagues zs.

Gene expression network analysis

Using the WGCNA 37 R package, we explored gene networks correlated to ACE2 and
TMPRSS2 in order to identify potential interactions in the Lung eQTL Consortium cohort. WGCNA
clusters co-expressed genes into networks and creates “modules”, which are defined as groups of
highly interconnected genes. For this analysis we identified signed consensus modules among the three
centres in our study cohort. Briefly, WGCNA generated a signed co-expression matrix based on the
correlation between genes, which later was transformed into an adjacent matrix by raising the co-
expression to a soft threshold power (B). For our study we used a =6 and a minimum module size of
100 probe sets. A consensus network was built by identifying the overlap of all input datasets. For
each probe set in the modules a ‘Module Membership’ (MM) was calculated by correlating the gene’s
expression with the respective module’s expression (eigengene), i.e. the first principal component of

each module gene expression profile; the gene with the highest MM was termed the ‘hub gene’.

Enrichment analysis and correlations of ACE2 and TMPRSS2 modules
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Enrichment analysis of KEGG pathways and GO biological processes was performed using the
genes in the modules containing ACE2 (ACE2 module) and TMPRSS2 (TMPRSS2 module). Significant
enrichment was established at FDR<0.05. For each gene in the ACE2 and TMPRSS2 modules, we
determined the Pearson correlation between the expression level of the gene and that of ACE2 or
TMPRSS2. We calculated correlation coefficients for the three centres separately and then combined
them using correlation meta-analysis via the R package metafor ss. Significant correlations were set at
FDR<0.05 and in the downstream analyses, we focused on genes that correlated to ACE2 or TMPRSS2

with r>0.30.

Drug-gene interactions and biological information of ACE2 and TMPRSS2 correlated genes

We cross-referenced the ACE2 and TMPRSS2 correlated genes with the Mouse Genome
Informatics (MGI), the Online Mendelian Inheritance in Man (OMIM), and the ClinVar databases in
order to identify biologically relevant genes. We determined druggability scores according to methods
of Finan et al 12. Tier 1 refers to genes that are targets of small molecules and/or biotherapeutic drugs;
Tier 2 score indicates gene encoding targets with a known bioactive drug-like small molecule binding
partner and >50% identity (over >75% of the sequence) with an approved drug target; and Tier 3
denotes protein coding genes with similarities to drug targets and are members of key druggable gene
families. We also interrogated the Drug-Gene Interaction database (DGldb) 13 of the genes. DGIdb
defines drug-gene interaction as a known interaction (i.e.: inhibition, activation) between a known

drug compound and a target gene.

Differential expression of ACE2 and TMPRSS2 correlated genes
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We investigated the effects of possible risk factors for COVID-19 severity (e.g. smoking,
diabetes, asthma, COPD, cardiac disease, and hypertension) on the expression of druggable genes that
were correlated with ACE2 or TMPRSS2. We first combined the gene expression from the three centres
using ComBat from the R package sva to correct for any batch effect so. Then, the differential
expression was assessed for each gene-risk factor pair by a robust linear regression using the package
MASS 40 in R, in which the dependent variable was the gene expression and the explanatory variable
was the risk factor. The differential expression analysis on smoking was adjusted for sex and age, and
the analyses on diabetes, COPD and cardiac disease and hypertension were additionally adjusted for

smoking status. We set statistically significant differential expression FDR<0.05.
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The full results obtained in this analysis are provided in the Supplementary Tables associated to this

manuscript.
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