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ABSTRACT 33 

BACKGROUND: Cell entry of SARS-CoV-2, the novel coronavirus causing COVID-19, is facilitated 34 

by host cell angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 35 

(TMPRSS2). We aimed to identify and characterize genes that are co-expressed with ACE2 and 36 

TMPRSS2, and to further explore their biological functions and potential as druggable targets. 37 

METHODS: Using the gene expression profiles of 1,038 lung tissue samples, we performed a 38 

weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. We 39 

explored the biology of co-expressed genes using bioinformatics databases, and identified known 40 

drug-gene interactions. RESULTS: ACE2 was in a module of 681 co-expressed genes; 12 genes with 41 

moderate-high correlation with ACE2 (r>0.3, FDR<0.05) had known interactions with existing drug 42 

compounds. TMPRSS2 was in a module of 1,086 co-expressed genes; 15 of these genes were enriched 43 

in the gene ontology biologic process ‘Entry into host cell’, and 53 TMPRSS2-correlated genes had 44 

known interactions with drug compounds. CONCLUSION: Dozens of genes are co-expressed with 45 

ACE2 and TMPRSS2, many of which have plausible links to COVID-19 pathophysiology. Many of 46 

the co-expressed genes are potentially targetable with existing drugs, which may help to fast-track the 47 

development of COVID-19 therapeutics. 48 

 49 
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INTRODUCTION 67 

 68 

Since the outbreak of severe acute respiratory syndrome coronavirus (SARS coronavirus) in 69 

2002 and 2003, coronaviruses have been considered to be highly pathogenic for humans 1–3. A new 70 

coronavirus (SARS-CoV-2) that spreads through respiratory droplets emerged in December of 2019 71 

in Wuhan, Hubei province, China 4. Its rapid spread across China and the rest of the world ultimately 72 

resulted in the global COVID-19 pandemic, which was officially declared in March 2020 by the World 73 

Health Organization (WHO).  74 

 75 

It has since been shown that SARS-CoV-2 shares a common host cell entry mechanism with 76 

the 2002-2003 SARS coronavirus 5,6. The viral genome encodes for multiple viral components, 77 

including the spike protein (S), which facilitates viral entry into the host cell 7,8. The S protein 78 

associates with the angiotensin-converting enzyme 2 (ACE2) to mediate infection of the target cells9. 79 

ACE2 is a type 1 transmembrane metallocarboxypeptidase that is an important negative regulator of 80 

the renin–angiotensin system (RAS). Once SARS-CoV-2 gains entry into epithelial cells, surface 81 

expression of ACE2 is rapidly downregulated in the infected cell 10, which leads to an imbalance in 82 

angiotensin II-mediated signalling and predisposes the host to acute lung injury. SARS-CoV-2 also 83 

employs transmembrane serine protease 2 (TMPRSS2) to proteolytically activate the S protein, which 84 

is essential for viral entry into target cells 11. 85 

 86 

In view of the rapid spread and the mortality of COVID-19 worldwide, there is an urgent need 87 

to find effective treatments against this infection, especially for severe cases. However, the 88 

development of a vaccine and novel treatments may take months to years, requiring billions of dollars 89 

in investment and with no certainty of their ultimate success. Bioinformatic approaches, however, can 90 

rapidly identify relevant gene-drug interactions that may contribute to the understanding of the 91 
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mechanisms of viral infection and reduce the time to finding potential drug targets and existing drugs 92 

that could be repurposed for this indication. Here, we performed a gene expression network analysis 93 

on data generated in the Lung eQTL Consortium Cohort to investigate the mechanisms of ACE2 and 94 

TMPRSS2 expression in lung tissue. We identified potential targets to be explored as possible 95 

treatments for COVID-19. We hypothesized that the mechanisms associated with ACE2 and TMPRSS2 96 

likely encompass protein coding genes involved in the pathogenesis of COVID-19. 97 

 98 

RESULTS 99 

The Lung eQTL Consortium cohort used in this gene network analysis is described in Table 100 

1. Supplementary Fig. S1 shows the expression levels of ACE2 and TMPRSS2 in the three centres 101 

that are part of the Lung eQTL Consortium (see methods); ACE2 had low to moderate expression 102 

levels in lung tissue; whereas TMPRSS2 was highly expressed. Based on the study cohort lung 103 

expression profile, we determined that ACE2 and TMPRSS2 were contained in distinct modules. The 104 

module containing ACE2 (ACE2 module) included 681 unique genes, while the modules containing 105 

TMPRSS2 (TMPRSS2 module) encompassed 1,086 unique genes (Supplementary Tables S1 and S2). 106 

Only 41 genes were found in both modules. The hub gene for the ACE2 module was TMEM33, and 107 

hub gene for the TMPRSS2 module was PDZD2 (see methods for the definition of ‘hub gene’). Fig. 1 108 

shows the top 50 genes with the highest connectivity to ACE2 and TMPRSS2 within their respective 109 

modules, based on the weighted gene correlation network analysis (WGCNA) analysis. 110 

 111 

Table 1. Study cohort demographics 112 

  Lung eQTL Consortium Cohort 

n 1,038 

Age, years† 61 (52-69) 

Females, n (%) 472 (45.47) 

BMI, kg/m2† 24.60 (21.80-27.98) 

COPD‡, n (%) 426 (41.04) 

Asthma, n (%) 37 (3.56) 
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Cardiac disease, n (%) 192 (18.50) 

Hypertension, n (%) 142 (13.68) 

Diabetes, n (%) 81 (7.80) 

Never smokers, n (%) 162 (15.61) 

Former smokers, n (%) 631 (60.79) 

Current smokers, n (%) 245 (23.60) 

†Median (interquartile range). ‡ chronic obstructive pulmonary disease 113 

 114 

 115 

Figure 1. ACE2 and TMPRSS2 expression modules. The center of each graph represents ACE2 (A) 116 

or TMPRSS2 (B), the circles at the edges represent the top 50 genes with the highest connectivity to 117 

ACE2 or TMPRSS2 based on the WGCNA analysis. The circle size represents the size of each gene 118 

node in their respective modules. The arm thickness represents the relative strength of the connection 119 

to the ACE2 or TMPRSS2 expression. 120 

 121 

ACE2 module 122 

 123 

The median module membership (MM) (see methods) across the genes in the ACE2 module 124 

was 0.40, and the minimum and maximum values were 0.002 and 0.79, respectively. The MM for 125 

ACE2 was 0.25. We utilized genes in the ACE2 module to execute a pathway enrichment analysis, 126 

which showed significant enrichment of four Kyoto Encyclopedia of Genes and Genomes (KEGG) 127 

pathways (Lysosome, Metabolic pathways, N-Glycan biosynthesis and Endocytosis) (Supplementary 128 
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Table S3) and 34 gene ontology (GO) biologic processes (FDR<0.05) (Supplementary Table S4); 129 

however ACE2 was not part of the enriched pathways or processes.  130 

 131 

ACE2-correlated genes 132 

 133 

The expression of 646 genes in the ACE2 module was significantly correlated with ACE2 levels 134 

(FDR<0.05), and only two of those genes were negatively correlated with ACE2. The range of their 135 

correlation coefficient (r) with ACE2 expression level in lung tissue is shown in Supplementary Fig. 136 

S2. Although a large proportion of genes were significantly related to ACE2 expression levels, only 137 

76 genes had moderate or high correlations (r>0.3). 138 

 139 

The PCCB gene was most strongly correlated with ACE2 expression (r=0.45, Supplementary 140 

Table S1). Of the top 10 genes most strongly correlated with ACE2, three genes (PCCB, PIGN and 141 

ADK) were part of the KEGG ‘metabolic pathway’ which showed enrichment with ACE2 module 142 

genes (Supplementary Table S3). Furthermore, out of the top 10 genes, four genes (ITPR2, LONP2, 143 

ADK and WDFY3) were found in multiple GO processes that were enriched with ACE2 module genes 144 

(Supplementary Table S4). 145 

 146 

We identified 76 genes that showed moderate correlation (r>0.3) with ACE2 expression. Of 147 

these, 48 genes had biological and/or druggability information available (details are presented in 148 

Supplementary Table S1). We used these genes to construct a ‘map’ of biological information 149 

(Supplementary Fig. S3). Based on the druggability scores, we identified 13 genes (GART, DPP4, 150 

PIGF, HDAC8, MDM2, SOAT1, IDE, BCAT1, SLC11A2, ADK, KLHL8, IL13RA2 and ITPR2) that are 151 

known drug targets or are part of a key pathway that is targeted by a drug compound (see methods for 152 
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details on druggability scores). Out of the13 genes with druggability scores, 12 were found to have of 153 

known drug-gene interactions (Table 2). 154 

 155 

Table 2. Drug-gene interactions of ACE2-correlated genes. 156 

Gene Druggability 

score† 

No. of known drug-

gene interactions‡ 

r (ACE2)  p FDR 

ITPR2 Tier 3 5 0.42 1.88 × 10-46 8.62 × 10-44 

ADK Tier 2 12 0.37 9.75 × 10-36 9.91 × 10-34 

GART Tier 1 2 0.36 7.77 × 10-34 4.74 × 10-32 

SOAT1 Tier 2 8 0.35 1.47 × 10-32 6.71 × 10-31 

SLC11A2 Tier 2 1 0.34 1.28 × 10-30 4.52 × 10-29 

IDE Tier 2 3 0.34 8.11 × 10-30 2.06 × 10-28 

BCAT1 Tier 2 6 0.33 7.58 × 10-29 1.61 × 10-27 

DPP4 Tier 1 48 0.32 5.95 × 10-27 9.90 × 10-26 

MDM2 Tier 1 2 0.32 9.56 × 10-27 1.56 × 10-25 

PIGF Tier 1 1 0.32 9.87 × 10-27 1.56 × 10-25 

HDAC8 Tier 1 27 0.32 1.21 × 10-26 1.87 × 10-25 

IL13RA2 Tier 3 1 0.32 1.30 × 10-26 1.98 × 10-25 

†from Finan et al 12 ‡from Drug-Gene Interaction Database (DGIdb) 13. r(ACE2): Pearson correlation 157 

coefficient between gene and ACE2 expression. 158 

 159 

TMPRSS2 module 160 

 161 

TMPRSS2 demonstrated a MM of 0.27 (Supplementary Table S2). Genes in the TMPRSS2 162 

module were enriched in multiple KEGG pathways (Supplementary Table S5) and GO biologic 163 

processes (Supplementary Table S6). Five of the GO biologic processes identified in this study, 164 

including ‘entry into host cell’, also contained TMPRSS2 (Table 3). 165 

 166 

Table 3. GO biological processes involving TMPRSS2 and enriched in the TMPRSS2 module. 167 

GO biological process Overlap† Enrichment Ratio p FDR 

Endocytosis 68/675 1.98 5.39 × 10-08 5.38 × 10-06 

Vesicle-mediated transport 149/1,942 1.51 1.33 × 10-07 1.17 × 10-05 

Import into cell 74/792 1.83 2.88 × 10-07 2.22 × 10-05 

Receptor-mediated endocytosis 34/287 2.32 4.13 × 10-06 2.26 × 10-04 

Entry into host cell 15/134 2.20 3.42 × 10-03 4.59 × 10-02 

†Number of genes identified by our research over the total number of genes in the GO biological 168 

process 169 
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 170 

TMPRSS2-correlated genes 171 

 172 

We found that 864 unique genes in the TMPRSS2 module were positively correlated with the 173 

TMPRSS2 expression level in lung tissue (FDR<0.05), while 73 demonstrated a negative relationship 174 

with the gene. The absolute r ranged from 0.06 to 0.72, with FHDC1 expression showing the strongest 175 

correlation with TMPRSS2 (r=0.72) (Supplementary Table S2). Next, we identified 368 genes that 176 

were moderately or highly correlated with TMPRSS2 gene expression levels (r>0.30), of those 78 were 177 

drug targets or were part of key pathways that could be targeted by drug compounds (see methods). 178 

The genes are shown in Fig. 2, grouped based on the availability of biological information. The A4 179 

group contained the genes with the most amount of biological information in the explored 180 

bioinformatics databases. Most genes in Fig. 2 only had information on human phenotypes (A1 group); 181 

details on the genes biological information are presented in the Supplementary Table S2. 182 
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 183 

Figure 2. Correlation level and annotation of TMPRSS2-correlated genes. Each bar represents a 184 

single gene (all with druggability scores Tier 1-3 12), and Pearson correlation coefficient (r) between 185 

the gene and TMPRSS2 within the module is shown on the y axis. Colours of bars represent combined 186 

biological information: green (group A1) represents genes related to human diseases based Online 187 

Mendelian Inheritance in Man (OMIM) and ClinVar databases; orange (group A2) are genes 188 

associated with human diseases, which also have phenotypic information on knockdown or knockout 189 

mouse models based on Mouse Genome Informatics (MGI) database; purple (group A3) represents 190 

genes associated with human diseases and with genetic variants associated to lung function traits 14; 191 

pink (group A4) represents genes associated with a human disease, with phenotypic information on 192 

knockdown or knockout mouse, and genetic variants associated with lung function.  193 

 194 

We later explored the drug-gene interactions of the genes described in Fig. 2; 53 of these genes 195 

were found to interact with known drugs. Furthermore, 21 genes with gene-drug interactions (Table 196 
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4) were enriched in the GO biological processes that related to TMPRSS2 (Table 3). The Table 4 197 

includes four out of the 15 genes that are part of the ‘Entry into host cell’ biological process (CD55, 198 

CDH1, ITGB6 and MET). 199 

 200 

Table 4. Drug-gene interactions of TMPRSS2-correlated genes 201 

Gene Druggability† No. of drug-gene 

interactions‡ 

r (TMPRSS2) p FDR 

ITGB6 Tier 1 3 0.61 2.40 × 10-114 1.22 × 10-112 

LRRK2 Tier 1 1 0.57 5.14 × 10-96 1.35 × 10-94 

SLCO4C1 Tier 1 1 0.54 7.99 × 10-84 1.55 × 10-82 

CDH1 Tier 3 7 0.54 4.54 × 10-83 8.58 × 10-82 

MGST1 Tier 1 1 0.52 5.13 × 10-77 8.37 × 10-76 

CD55 Tier 1 5 0.51 5.56 × 10-74 8.43 × 10-73 

SLC1A1 Tier 1 11 0.47 8.56 × 10-61 9.64 × 10-60 

AGER Tier 3 1 0.45 1.58 × 10-53 1.40 × 10-52 

MET Tier 1 81 0.44 1.18 × 10-52 9.91 × 10-52 

ADRB2 Tier 1 120 0.44 6.08 × 10-51 4.92 × 10-50 

CD47 Tier 3 1 0.43 7.57 × 10-49 5.67 × 10-48 

ABCC4 Tier 1 13 0.40 2.15 × 10-42 1.28 × 10-41 

SLC22A3 Tier 1 1 0.40 3.89 × 10-42 2.28 × 10-41 

CACNG4 Tier 3 6 0.39 7.04 × 10-39 3.74 × 10-38 

MME Tier 1 13 0.36 1.89 × 10-33 8.26 × 10-33 

PRKCI Tier 1 9 0.34 9.36 × 10-30 3.67 × 10-29 

WNT7A Tier 3 1 0.34 1.14 × 10-29 4.48 × 10-29 

PRKCE Tier 1 14 0.34 1.46 × 10-29 5.70 × 10-29 

PTPRB Tier 2 2 0.33 4.16 × 10-28 1.55 × 10-27 

RAPGEF4 Tier 2 1 0.33 1.69 × 10-27 6.09 × 10-27 

CACNA1D Tier 1 32 0.31 1.94 × 10-24 6.22 × 10-24 

†from Finan et al 12 ‡from Drug-Gene Interaction Database (DGIdb) 13. r(TMPRSS2): Pearson 202 

correlation coefficient between gene and TMPRSS2 expression. 203 

 204 

Differential expression of ACE2- and TMPRSS2-correlated genes 205 

 206 

We investigated the effects of risk factors for COVID-19 on the expression of the genes shown 207 

in Table 2 and Table 4. The full list of differential expressed genes (FDR<0.05) with known drug-208 

gene interactions is presented in Supplementary Table S7. Some illustrative examples are shown in 209 

Fig. 3, including the effect of chronic obstructive pulmonary disease (COPD) on IL13RA2 expression 210 
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(Fig. 3A), and the effect of smoking on ADK, DPP4, MGST1, CD55 and ITGB6 expression (Fig. 3B-211 

F). 212 

 213 

Figure 3. Effects of COVID-19 risk factors on lung tissue gene expression. y axes represent the 214 

expression level in log2(counts per million) in lung tissue for ACE2-correlated genes (IL13RA2 [A], 215 

ADK [B], DPP4 [C]) and TMPRSS2-correlated genes (MGST1 [D], CD55 [E], ITGB6 [F]). Boxes are 216 

median expression ± interquartile range respectively. Numbers at the top of each box plot are FDR 217 

obtained from the robust linear regressions. 218 

 219 

DISCUSSION 220 

 221 

There is a scarcity of therapeutic treatments specific for this virus and for severe COVID-19 222 

pneumonia. ACE2 and TMPRSS2 are key proteins involved in the cellular entry mechanism of SARS-223 

Cov-2 to infect the lungs of the human host. Because one of the rate-limiting step in this process is the 224 

overall availability of these proteins on surface of lung epithelial cells 15, careful evaluation of ACE2 225 

and TMPRSS2 biology may enable identification of possible therapeutic targets against SARS-Cov-2 226 
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infection. In this study, by using a network analysis of genome-wide gene expression in lung tissue, 227 

we were able to identify a set of genes that may interact with ACE2 and TMPRSS2, and thus may be 228 

drug targets. 229 

 230 

One notable gene was ADK. This gene is a key regulator of extracellular and intracellular 231 

adenine nucleotides 16,17. ADK inhibition attenuates lung injury in mice 18, while in humans, cigarette 232 

exposure upregulates expression of ADK in lung tissue. We speculate a role for ADK in COVID-19, 233 

postulating that increased ADK may increase adenosine concentration in the lungs which in turn can 234 

enhance viral replication. Previous work has shown that silencing ADK decreased influenza replication 235 

in an in vitro model 19. Another study showed that ADK can activate didanosine 20, a 236 

dideoxynucleoside analogue of adenosine that inhibits retro-transcription and is used in the treatment 237 

of HIV. Although this drug was recently nominated for drug repurposing as a potential treatment 238 

against COVID-19 21, the biology of this drug is complex, particularly given the detrimental effect of 239 

ADK on lung injury. 240 

 241 

Another ACE2-correlated gene that emerged from this study was DPP4. DPP4 encodes the 242 

dipeptidyl-peptidase 4 (DPP-4) glycoprotein, which plays a major role in glucose and insulin 243 

metabolism and is linked to diabetes, now established as a key risk factor for severe COVID-19 244 

including mortality 22. DPP-4 is the functional receptor for the Middle East Respiratory Syndrome 245 

(MERS) coronavirus and interacts with dozens of drugs. DPP-4 inhibitors, which are used in the 246 

treatment of diabetes, appear to reduce macrophage infiltration and insulin resistance but have not 247 

been shown to increase the risk of infection in diabetic patients23. However, the effects of DPP-4 248 

inhibitors on the immune response are not well understood. Because of the similarities between MERS 249 

and SARS-Cov-2, this is an interesting potential target, particularly for patients with diabetes.  250 

 251 
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Another interesting target is IL13RA2, which encodes the alpha-2 receptor subunit for 252 

interleukin-13 (IL-13). The IL-13 pathway has immunoregulatory functions and is implicated in 253 

asthma, idiopathic pulmonary fibrosis (IPF) 24 and COPD 25,26. The IL-13 pathway can activate Janus 254 

kinase 2 (JAK2) while the  inhibition of JAK2 blocks SARS-CoV-2 viral entry 27. IL13RA2 interacts 255 

with cintredekin besudotox, a drug compound that is formed by cross-linking IL-13 with Pseudomonas 256 

exotoxin-A and induces apoptosis by targeting cells that express the IL-13 receptor. Both the IL-13 257 

and DPP-4 pathways could be intriguing possibilities for novel COVID-19 therapeutics.  258 

 259 

The HDAC8 gene is an exciting potential target because of its role in pulmonary fibrosis (PF) 260 

and its interaction with histone deacetylase (HDAC) inhibitors. HDAC inhibitors have shown promise 261 

against fibrotic diseases 28. The overexpression of HDACs is suggested to contribute to the process of 262 

bronchiolization in patients with IPF 29. Viral infection increases the risk of PF 30 and it is reported that 263 

HDAC8 inhibition ameliorates PF 31; moreover we found that cigarette exposure, a known risk factor 264 

for both COVID-19 and IPF, increases the expression of HDAC8 in lung tissue. Therefore, targeting 265 

the PF mechanisms through HDAC inhibitors pose an interesting therapy to further explore. 266 

 267 

The ‘entry into host cell’ biological process was enriched with genes from the TMPRSS2 268 

module. Furthermore, the CD55 or complement decay-accelerating factor, an inhibitor of complement 269 

activation, is one of the few genes that was part of this process. The complement system has a major 270 

role in the immune response to viruses and triggers a proinflammatory cascade 32. CD55, which is 271 

highly expressed in lung tissue, prevents the formation of C3 convertase 33 and therefore also inhibits 272 

the formation of C3 complement. C3-deficient mice show less respiratory dysfunction and lower levels 273 

of cytokines and chemokines in lungs in response to SARS-CoV 34. Thus, it is possible that preventing 274 

the formation of C3 via CD55 could be beneficial in COVID-19. Fortunately, known compounds such 275 

as chloramphenicol already exist that specifically target CD55 32,35.  276 
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 277 

As noted above, we have identified a set of genes that interact with potential therapeutic targets, 278 

which could be explored as treatments against COVID-19. The main strength of our study is the large 279 

number of lung tissue specimens with detailed clinical phenotypic data. This allowed us to not only 280 

identify genes related to ACE2 and TMPRSS2 expression, but also to determine the effects of various 281 

clinical factors on the lung tissue expression of these genes. However, there were limitations to this 282 

study. First, we used an in-silico approach to identify ACE2 and TMPRSS2 correlated genes, but we 283 

did not confirm these association in vivo nor determine how these correlated genes physically 284 

interacted with ACE2 and TMPRSS2. Second, we identified the most promising drugs based on drug-285 

gene interactions from bioinformatic databases, but we are yet to test their effects on gene and/or 286 

protein expression in in vitro experiments. Third, the lungs of our study cohort were not exposed to 287 

SARS-CoV-2, therefore it is possible that the gene expression of these key identified genes in lung 288 

tissue could be changed upon SARS-CoV-2 infection. Lastly, the cohort used for gene expression was 289 

of European ancestry and the results may not be generalizable to other ethnic groups, which is of 290 

critical importance in a global pandemic. 291 

 292 

In summary, ACE2 and TMPRSS2 gene networks contained genes that could contribute to the 293 

pathophysiology of COVID-19. These findings show that computational in silico approaches can lead 294 

to the rapid identification of potential drugs, which could be repurposed as treatments against COVID-295 

19. Given the exponential spread of COVID-19 across the globe and the unprecedented rise in deaths, 296 

such rapidity is necessary in our ongoing fight against the pandemic. 297 

 298 

METHODS 299 

 300 

Lung expression Quantitative Trait Loci (eQTL) Consortium Cohort and gene expression 301 
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 302 

Using microarray, gene expression profiles of 43,466 non-control probe sets (GEO platform 303 

GPL10379) were obtained from lung tissue samples in the Lung eQTL Consortium Cohort. Briefly, 304 

samples from this cohort included whole non-tumour lung tissue samples from 1,038 participants of 305 

European ancestry who underwent surgical lung resection. Tissue samples were collected based on the 306 

Institutional Review Board guidelines at three different institutions: The University of British 307 

Columbia (UBC), Laval University and University of Groningen. This study was approved by the 308 

ethics committees within each institution. A full description of the cohort and quality controls is 309 

provided by Hao and colleagues 36. 310 

 311 

Gene expression network analysis 312 

 313 

Using the WGCNA 37 R package, we explored gene networks correlated to ACE2 and 314 

TMPRSS2 in order to identify potential interactions in the Lung eQTL Consortium cohort. WGCNA 315 

clusters co-expressed genes into networks and creates “modules”, which are defined as groups of 316 

highly interconnected genes. For this analysis we identified signed consensus modules among the three 317 

centres in our study cohort. Briefly, WGCNA generated a signed co-expression matrix based on the 318 

correlation between genes, which later was transformed into an adjacent matrix by raising the co-319 

expression to a soft threshold power (β). For our study we used a β=6 and a minimum module size of 320 

100 probe sets. A consensus network was built by identifying the overlap of all input datasets. For 321 

each probe set in the modules a ‘Module Membership’ (MM) was calculated by correlating the gene’s 322 

expression with the respective module’s expression (eigengene), i.e. the first principal component of 323 

each module gene expression profile;  the gene with the highest MM was termed the ‘hub gene’. 324 

 325 

Enrichment analysis and correlations of ACE2 and TMPRSS2 modules 326 
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 327 

Enrichment analysis of KEGG pathways and GO biological processes was performed using the 328 

genes in the modules containing ACE2 (ACE2 module) and TMPRSS2 (TMPRSS2 module). Significant 329 

enrichment was established at FDR<0.05. For each gene in the ACE2 and TMPRSS2 modules, we 330 

determined the Pearson correlation between the expression level of the gene and that of ACE2 or 331 

TMPRSS2. We calculated correlation coefficients for the three centres separately and then combined 332 

them using correlation meta-analysis via the R package metafor 38. Significant correlations were set at 333 

FDR<0.05 and in the downstream analyses, we focused on genes that correlated to ACE2 or TMPRSS2 334 

with r>0.30. 335 

 336 

Drug-gene interactions and biological information of ACE2 and TMPRSS2 correlated genes 337 

 338 

We cross-referenced the ACE2 and TMPRSS2 correlated genes with the Mouse Genome 339 

Informatics (MGI), the Online Mendelian Inheritance in Man (OMIM), and the ClinVar databases in 340 

order to identify biologically relevant genes. We determined druggability scores according to methods 341 

of Finan et al 12. Tier 1 refers to genes that are targets of small molecules and/or biotherapeutic drugs; 342 

Tier 2 score indicates gene encoding targets with a known bioactive drug-like small molecule binding 343 

partner and ≥50% identity (over ≥75% of the sequence) with an approved drug target; and Tier 3 344 

denotes protein coding genes with similarities to drug targets and are members of key druggable gene 345 

families. We also interrogated the Drug-Gene Interaction database (DGIdb) 13 of the genes. DGIdb 346 

defines drug-gene interaction as a known interaction (i.e.: inhibition, activation) between a known 347 

drug compound and a target gene. 348 

 349 

Differential expression of ACE2 and TMPRSS2 correlated genes 350 

 351 
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We investigated the effects of possible risk factors for COVID-19 severity (e.g. smoking, 352 

diabetes, asthma, COPD, cardiac disease, and hypertension) on the expression of druggable genes that 353 

were correlated with ACE2 or TMPRSS2. We first combined the gene expression from the three centres 354 

using ComBat from the R package sva to correct for any batch effect 39. Then, the differential 355 

expression was assessed for each gene-risk factor pair by a robust linear regression using the package 356 

MASS 40 in R, in which the dependent variable was the gene expression and the explanatory variable 357 

was the risk factor. The differential expression analysis on smoking was adjusted for sex and age, and 358 

the analyses on diabetes, COPD and cardiac disease and hypertension were additionally adjusted for 359 

smoking status. We set statistically significant differential expression FDR<0.05.  360 
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DATA AVAILABILITY 361 

The full results obtained in this analysis are provided in the Supplementary Tables associated to this 362 

manuscript. 363 

REFERENCES 364 

 365 

1. Fouchier, R. A. M. et al. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 423, 240 366 

(2003). 367 

2. Zhong, N. S. et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in 368 

Guangdong, People’s Republic of China, in February, 2003. Lancet Lond. Engl. 362, 1353–1358 369 

(2003). 370 

3. Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory 371 

syndrome. N. Engl. J. Med. 348, 1967–1976 (2003). 372 

4. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, 373 

China. Lancet Lond. Engl. 395, 497–506 (2020). 374 

5. Tai, W. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: 375 

implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. 376 

Mol. Immunol. 1–8 (2020) doi:10.1038/s41423-020-0400-4. 377 

6. Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked 378 

by a Clinically Proven Protease Inhibitor. Cell (2020) doi:10.1016/j.cell.2020.02.052. 379 

7. Marra, M. A. et al. The Genome sequence of the SARS-associated coronavirus. Science 300, 380 

1399–1404 (2003). 381 

8. Rota, P. A. et al. Characterization of a novel coronavirus associated with severe acute respiratory 382 

syndrome. Science 300, 1394–1399 (2003). 383 

9. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. 384 

Nature 426, 450–454 (2003). 385 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.06.182634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.182634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

10. Glowacka, I. et al. Differential Downregulation of ACE2 by the Spike Proteins of Severe Acute 386 

Respiratory Syndrome Coronavirus and Human Coronavirus NL63. J. Virol. 84, 1198–1205 387 

(2010). 388 

11. Glowacka, I. et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome 389 

coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune 390 

response. J. Virol. 85, 4122–4134 (2011). 391 

12. Finan, C. et al. The druggable genome and support for target identification and validation in drug 392 

development. Sci. Transl. Med. 9, (2017). 393 

13. Wagner, A. H. et al. DGIdb 2.0: mining clinically relevant drug–gene interactions. Nucleic Acids 394 

Res. 44, D1036–D1044 (2016). 395 

14. Shrine, N. et al. New genetic signals for lung function highlight pathways and chronic 396 

obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51, 481–493 397 

(2019). 398 

15. Lukassen, S. et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in 399 

bronchial transient secretory cells. EMBO J. n/a, e105114 (2020). 400 

16. Boison, D. Adenosine Kinase: Exploitation for Therapeutic Gain. Pharmacol. Rev. 65, 906–943 401 

(2013). 402 

17. Baldwin, S. A. et al. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. 447, 403 

735–743 (2004). 404 

18. Köhler, D. et al. Inhibition of adenosine kinase attenuates acute lung injury. Crit. Care Med. 44, 405 

e181–e189 (2016). 406 

19. Bakre, A. et al. Identification of Host Kinase Genes Required for Influenza Virus Replication 407 

and the Regulatory Role of MicroRNAs. PloS One 8, e66796 (2013). 408 

20. Johnson, M. A. et al. Metabolic pathways for the activation of the antiretroviral agent 2’,3’-409 

dideoxyadenosine in human lymphoid cells. J. Biol. Chem. 263, 15354–15357 (1988). 410 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.06.182634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.182634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

21. Alakwaa, F. M. Repurposing Didanosine as a Potential Treatment for COVID-19 Using Single-411 

Cell RNA Sequencing Data. mSystems 5, (2020). 412 

22. Richardson, S. et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 413 

Patients Hospitalized With COVID-19 in the New York City Area. JAMA (2020) 414 

doi:10.1001/jama.2020.6775. 415 

23. Yang, W., Cai, X., Han, X. & Ji, L. DPP-4 inhibitors and risk of infections: a meta-analysis of 416 

randomized controlled trials. Diabetes Metab. Res. Rev. 32, 391–404 (2016). 417 

24. Passalacqua, G. et al. IL-13 and idiopathic pulmonary fibrosis: Possible links and new 418 

therapeutic strategies. Pulm. Pharmacol. Ther. 45, 95–100 (2017). 419 

25. van der Pouw Kraan, T. C. T. M. et al. Chronic obstructive pulmonary disease is associated with 420 

the -1055 IL-13 promoter polymorphism. Genes Immun. 3, 436–439 (2002). 421 

26. Lee, J. S. et al. Inverse association of plasma IL-13 and inflammatory chemokines with lung 422 

function impairment in stable COPD: a cross-sectional cohort study. Respir. Res. 8, 64 (2007). 423 

27. Schett, G., Sticherling, M. & Neurath, M. F. COVID-19: risk for cytokine targeting in chronic 424 

inflammatory diseases? Nat. Rev. Immunol. 1–2 (2020) doi:10.1038/s41577-020-0312-7. 425 

28. Pang, M. & Zhuang, S. Histone deacetylase: a potential therapeutic target for fibrotic disorders. 426 

J. Pharmacol. Exp. Ther. 335, 266–272 (2010). 427 

29. Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary 428 

fibrosis. - Abstract - Europe PMC. http://europepmc.org/article/MED/26359372. 429 

30. Sheng, G. et al. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-430 

Analysis. Chest 157, 1175–1187 (2020). 431 

31. Saito, S. et al. HDAC8 inhibition ameliorates pulmonary fibrosis. Am. J. Physiol.-Lung Cell. 432 

Mol. Physiol. 316, L175–L186 (2018). 433 

32. Risitano, A. M. et al. Complement as a target in COVID-19? Nat. Rev. Immunol. 1–2 (2020) 434 

doi:10.1038/s41577-020-0320-7. 435 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.06.182634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.182634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

33. Dho, S. H., Lim, J. C. & Kim, L. K. Beyond the Role of CD55 as a Complement Component. 436 

Immune Netw. 18, (2018). 437 

34. Gralinski, L. E. et al. Complement Activation Contributes to Severe Acute Respiratory 438 

Syndrome Coronavirus Pathogenesis. mBio 9, (2018). 439 

35. Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 1–2 440 

(2020) doi:10.1038/s41577-020-0308-3. 441 

36. Hao, K. et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet. 8, 442 

e1003029 (2012). 443 

37. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. 444 

BMC Bioinformatics 9, 559 (2008). 445 

38. Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 36, 1–446 

48 (2010). 447 

39. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for 448 

removing batch effects and other unwanted variation in high-throughput experiments. 449 

Bioinformatics 28, 882–883 (2012). 450 

40. Modern Applied Statistics with S, 4th ed. http://www.stats.ox.ac.uk/pub/MASS4/. 451 

 452 

Acknowledgments 453 

 454 

The eQTL data from Laval University were generated from tissues obtained through the Quebec 455 

Research Respiratory Network Biobank, IUCPQ site. We acknowledge Compute Canada and 456 

WestGrid, which provided computational resources to conduct this research. 457 

 458 

Authors' contributions 459 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.06.182634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.182634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

A.I.H.C. wrote the draft of the manuscript. X.L. conducted the main analyses with the impute of 460 

A.I.H.C and revised the manuscript. C.X.Y. and S.M. revised the manuscript. Y.B., P.J., W.T., M.B., 461 

D.N., and K.H. provided lung expression data and revised the manuscript. D.D.S. supervised this study 462 

and revised the manuscript. 463 

 464 

ADDITIONAL INFORMATION 465 

 466 

Competing interests 467 

S.M. reports personal fees from Novartis and Boehringer-Ingelheim, outside the submitted work. W.T. 468 

reports fees to Institution from Roche-Ventana, AbbVie, Merck-Sharp-Dohme and Bristol-Myers-469 

Squibb, outside the submitted work. M.B. reports research grants paid to University from Astra 470 

Zeneca, Novartis, outside the submitted work. D.D.S. reports research funding from AstraZeneca and 471 

received honoraria for speaking engagements from Boehringer Ingelheim and AstraZeneca over the 472 

past 36 months, outside of the submitted work. 473 

 474 

Funding 475 

A.I.H.C. and S.M. are supported by MITACS Accelerate grant. D.D.S. holds the De Lazzari Family 476 

Chair at HLI and a Tier 1 Canada Research Chair in COPD. Y.B. holds a Canada Research Chair in 477 

Genomics of Heart and Lung Diseases 478 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.06.182634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.182634
http://creativecommons.org/licenses/by-nc-nd/4.0/

