

1 **Bidirectional regulation of cognitive and anxiety-like behaviors by**  
2 **dentate gyrus mossy cells in male and female mice.**

3 Abbreviated title: Mossy cells regulate cognitive and anxiety-like behaviors

4 Justin J Botterill<sup>1#</sup>, K Yaragudri Vinod<sup>2,3,4#</sup>, Kathleen J Gerencer<sup>1</sup>, Cátia M Teixeira<sup>3</sup>, John J  
5 LaFrancois<sup>1</sup>, Helen E Scharfman<sup>1,4\*</sup>

6 <sup>1</sup> Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research,  
7 Orangeburg, NY, 10962, USA

8 <sup>2</sup> Department of Analytical Psychopharmacology, The Nathan Kline Institute for Psychiatric  
9 Research, Orangeburg, NY, 10962, USA

10 <sup>3</sup> Emotional Brain Institute, The Nathan Kline Institute for Psychiatric Research, Orangeburg,  
11 NY, 10962, USA

12 <sup>4</sup> Department of Child & Adolescent Psychiatry, Neuroscience & Physiology and Psychiatry and  
13 the New York University Neuroscience Institute, New York University Langone Health, New  
14 York, NY, 10016, USA

15 #The authors contributed equally to this work.

16 **\*Submitting and Corresponding Author:**

17 Helen E. Scharfman  
18 Center for Dementia Research  
19 The Nathan Kline Institute  
20 140 Old Orangeburg Rd. Bldg. 35  
21 Orangeburg, NY, 10962  
22 Phone: 845-398-5427  
23 Fax: 845-398-5422  
24 Email: [helen.scharfman@nki.rfmh.org](mailto:helen.scharfman@nki.rfmh.org)

25 **ABSTRACT**

26 The dentate gyrus (DG) of the hippocampus is important for cognitive and affective behaviors.  
27 However, the circuits underlying these behaviors are unclear. DG mossy cells (MCs) have been  
28 a focus of attention because of their excitatory synapses on the primary DG cell type, granule  
29 cells (GCs). However, MCs also activate DG GABAergic neurons which inhibit GCs. We took  
30 advantage of specific methods and a gain- and loss-of function strategy with Designer  
31 Receptors Exclusively Activated by Designer Drugs (DREADDs) to study MCs in diverse  
32 behaviors. Using this approach, manipulations of MCs could bidirectionally regulate behavior.  
33 The results suggest that inhibiting MCs can reduce anxiety-like behavior and improve cognitive  
34 performance. However, not all cognitive or anxiety-related behaviors were influenced,  
35 suggesting specific roles of MCs in some but not all types of cognition and anxiety. Notably,  
36 several behaviors showed sex-specific effects, with females often showing more pronounced  
37 effects than the males. We also used the immediate early gene c-Fos to address whether  
38 DREADDs bidirectionally regulated MC or GC activity. We confirmed excitatory DREADDs  
39 increased MC c-Fos. However, there was no change in GC c-Fos, consistent with MC activation  
40 leading to GABAergic inhibition of GCs. In contrast, inhibitory DREADDs led to a large increase  
41 in GC c-Fos, consistent with a reduction in MC excitation of GABAergic neurons, and reduced  
42 inhibition of GCs. Taken together, these results suggest that MCs regulate anxiety and cognition  
43 in specific ways. We also raise the possibility that cognitive performance may be improved by  
44 reducing anxiety.

45 **SIGNIFICANCE STATEMENT**

46 The dentate gyrus (DG) has many important cognitive roles as well as being associated with  
47 affective behavior. This study addressed how a glutamatergic DG cell type called mossy cells  
48 (MCs) contributes to diverse behaviors, which is timely because it is known that MCs regulate  
49 the activity of the primary DG cell type, granule cells (GCs), but how MC activity influences  
50 behavior is unclear. We show, surprisingly, that activating MCs can lead to adverse behavioral  
51 outcomes, and inhibiting MCs have an opposite effect. Importantly, the results appeared to be  
52 task-dependent and showed that testing both sexes was important. Additional experiments  
53 indicated what MC and GC circuitry was involved. Taken together, the results suggest how MCs  
54 influence behaviors that involve the DG.

55 **Number of Pages:** 51

56 **Number of Figures:** 11

57 **Number of words:** Abstract (246), Significance (120), Introduction (611), Discussion (1809).

58 **Keywords:** hilus, memory, novelty, object recognition, contextual fear conditioning, immediate  
59 early gene

## 60 1. INTRODUCTION

61 The dentate gyrus (DG) is critical to hippocampal function and is also implicated in psychiatric  
62 disorders (Scharfman, 2007b). Dentate granule cells (GCs) are the primary excitatory cell type  
63 in the DG and receive input from cortical regions such as the entorhinal cortex. GCs represent  
64 the first component of the trisynaptic circuit (GCs→CA3→CA1) and are therefore essential for  
65 propagating information throughout the hippocampus. Within the DG, GCs are regulated by  
66 GABAergic inhibitory neurons and glutamatergic hilar mossy cells (MCs). MCs are in a unique  
67 position to regulate GC activity because they project directly to GC dendrites (MC→GC), but  
68 also indirectly inhibit GCs through their innervation of local GABAergic neurons  
69 (MC→GABAergic neuron→GC). The complex circuitry of MCs in the DG has led to extensive  
70 debate about their net effects on GCs (Ratzliff et al., 2002; Sloviter et al., 2003; Jinde et al.,  
71 2013; Scharfman, 2016, 2017).

72 Several studies have suggested that MCs are important for spatial functions of the DG (Soltesz  
73 et al., 1993; Danielson et al., 2017; GoodSmith et al., 2017; Senzai and Buzsaki, 2017;  
74 GoodSmith et al., 2019). A limited number of studies have also shown that MCs influence other  
75 DG functions, such as contextual discrimination and object learning (Jinde et al., 2012; Bui et  
76 al., 2018; Azevedo et al., 2019). MCs have also been implicated in recognizing novelty in the  
77 environment such as the presence of new objects (Bernstein et al., 2019). Moreover, MCs are  
78 sensitive to restraint stress (Moretto et al., 2017), which is interesting because of studies linking  
79 the DG to affective behaviors, including anxiety (McEwen et al., 2016; Anacker and Hen, 2017).  
80 However, there remains a limited understanding about the role of MCs in anxiety-like behaviors.  
81 Part of this uncertainty is due to conflicting reports about MCs in anxiety-like behaviors from  
82 previous studies (Jinde et al., 2012; Bui et al., 2018; Oh et al., 2019), possibly attributable to the  
83 different methods in targeting and manipulating MCs. In addition, the majority of MC studies to  
84 date have focused on male subjects (Jinde et al., 2012; Duffy et al., 2013; Moretto et al., 2017;  
85 Senzai and Buzsaki, 2017; Oh et al., 2019) or did not provide a clear view of sex differences  
86 (Danielson et al., 2017; GoodSmith et al., 2017; Bui et al., 2018). The focus on male subjects is  
87 problematic because there are known sex differences in GC structure, activity and synaptic  
88 plasticity (Hajszan et al., 2007; Zitman and Richter-Levin, 2013; Harte-Hargrove et al., 2015;  
89 Yagi and Galea, 2019) and some data showing sex differences in MCs (Guidi et al., 2006).  
90 To clarify the role of MCs in cognitive and anxiety-like behaviors, we used a gain- and loss-of-  
91 function approach using Designer Receptors Exclusively Activated by Designer Drugs  
92 (DREADDs) in female and male mice. Remarkably, inhibition of MCs benefited cognitive and

93 anxiety-related behaviors in several tasks, especially those associated with objects in an  
94 environment, which could be interpreted as contextual cues. In contrast, excitation of MCs was  
95 generally associated with adverse behavioral effects. We also used c-Fos as a tool to  
96 understand how DREADDs modified the activity of MCs and GCs. Excitatory DREADDs  
97 (eDREADDs) increased MC but not GC activity, supporting the view that MCs primarily inhibit  
98 GCs by activating intermediary GABAergic neurons. Conversely, inhibitory DREADDs  
99 (iDREADDs) approximately doubled the number of active GCs, consistent with reduced  
100 inhibition of GCs through the MC→GABAergic neuron→GC pathway. Notably, several  
101 behavioral tasks showed female- or male-specific DREADD effects, indicating that both sexes  
102 are necessary to avoid an underestimation of effects on the DG. Taken together, our results  
103 suggest that lowering MC activity can benefit both cognitive and anxiety-related behavior.  
104 Therefore, MCs are an important cell type in cognitive and anxiety-like behaviors.

## 105 **2. METHODS**

### 106 **2.1 Terminology**

107 It is acknowledged that the use of the term anxiety for a mouse is difficult to distinguish from  
108 fear or behavioral stress (Bailey and Crawley, 2009; LeDoux and Pine, 2016; Fanselow and  
109 Pennington, 2017). In many parts of the text we use 'anxiety-like' to reflect the importance of  
110 being cautious about the use of the term anxiety.

### 111 **2.2 Experimental design and controls**

112 All experimental procedures were completed in accordance with the National Institutes of Health  
113 (NIH) guidelines and approved by the Institutional Animal Care and Use Committee at the  
114 Nathan Kline Institute. The present study used transgenic Drd2-Cre<sup>+/−</sup> mice to selectively target  
115 and manipulate the activity of MCs *in vivo* using excitatory and inhibitory DREADDs.  
116 Importantly, electrophysiological studies from our lab (Botterill et al., 2019) and others (Yeh et  
117 al., 2018; Oh et al., 2019) have confirmed the excitatory and inhibitory effects of DREADDs in  
118 MCs. Control mice consisted of Drd2-Cre<sup>−/−</sup> and Cre<sup>+/−</sup> mice injected with a viral control  
119 fluorophore (mCherry). Mice recovered for 3 weeks after surgery to allow for viral expression  
120 and then underwent a series of behavioral tests to evaluate the role of MCs in cognitive and  
121 anxiety-like behaviors. Each behavioral test was spaced at least one week apart, except for  
122 three anxiety tests that were done on the same day. These tests were the open field test (OFT),  
123 light-dark box (LDB), and elevated plus maze (EPM). These tests were done on the same day  
124 because our prior experience suggested they did not influence each other. The order of the

125 behaviors were: week 1, OFT, LDB, EPM; week 2, novel object location (NOL); week 3, novel  
126 object recognition (NOR); week 4, novelty suppressed feeding (NSF); week 5, contextual fear  
127 conditioning (CFC), week 6, home cage novel object exploration (HCNOE).

128 Mice were acclimated to handling by experimenters to minimize stress associated with repeated  
129 handling and injections. DREADDs were activated with clozapine-N-oxide (CNO, 5 mg/kg, i.p.,  
130 #BML-NS105-0005, Enzo Life Sciences) one hour prior to behavioral testing unless noted  
131 otherwise below. The dose of 5mg/kg CNO was selected because it is reported to robustly  
132 activate DREADDs with minimal off-target behavioral effects reported at higher doses  
133 (MacLaren et al., 2016; Manvich et al., 2018). Control mice were also injected with CNO to  
134 further control for potential off-target effects. After behavioral testing was completed, mice were  
135 euthanized, and brain tissue was prepared for immunohistochemical analyses to evaluate viral  
136 expression and immediate early gene (IEG) activity, as described below. Unless noted  
137 otherwise, behavioral scores pertaining to time were measured in seconds (sec) and distance in  
138 meters. Statistical comparisons were made using tests and criteria defined below.

139 **2.3 Animals and genotyping**

140 Male and female Drd2-Cre transgenic mice (8-18 weeks old) maintained on a C57BL/6N  
141 background were used for all experiments. Breeding was done in house as previously described  
142 (Botterill et al., 2019). Mice were weaned at postnatal day 25-30 and housed with same-sex  
143 siblings in standard laboratory cages (2-4 per cage) with corn cob bedding. Mice were  
144 maintained on a 12 hour light-dark cycle with standard rodent chow (Purina 5001, W.F. Fisher)  
145 and water available *ad libitum*. Genotyping was performed by the Genotyping Core Laboratory  
146 at New York University Langone Medical Center.

147 **2.4 Viral targeting of mossy cells**

148 To target MCs and their axons that span the septotemporal extent of the DG, virus was injected  
149 bilaterally into the rostral and caudal hippocampus as previously described (Botterill et al.,  
150 2019). Drd2-Cre<sup>+/−</sup> mice were injected with eDREADDs (AAV2-hSyn-DIO-hM3D(Gq)-mCherry;  
151  $\geq 5 \times 10^{12}$  vg/mL, #44361, Addgene) or iDREADDs (AAV5-hSyn-DIO-hM4D(Gi)-mCherry;  $\geq 8 \times 10^{12}$   
152 vg/mL, #44362, Addgene; Figure 1A). Controls were injected with a mCherry construct (AAV5-  
153 EF1a-DIO-mCherry;  $\geq 3 \times 10^{12}$  vg/mL, University of North Carolina Vector Core).

154 **2.5 Stereotaxic surgery and viral injections**

155 Stereotaxic surgery was performed as described previously (Botterill et al., 2019). Briefly, mice  
156 were anesthetized with isoflurane (5 % induction, 1-2 % maintenance; Aerrane, Henry Schein)  
157 and secured in a rodent stereotaxic apparatus (Model #502063, World Precision Instruments).  
158 Buprenex (Buprenorphine, 0.1 mg/kg, s.c.) was delivered prior to surgical procedures to reduce  
159 discomfort. Body temperature was maintained at 37 °C via a homeothermic blanket system  
160 (Harvard Apparatus). The scalp of each mouse was shaved and swabbed with betadine  
161 (Purdue Products) and lubricating gel was applied to the eyes to prevent dehydration (Patterson  
162 Veterinary).

163 A surgical drill (Model C300, Grobert) was used to make craniotomies bilaterally over the rostral  
164 (-2 mm anterior-posterior, ±1.2 mm medial-lateral) and caudal hippocampus (-3.2 mm anterior-  
165 posterior, ±2.3 mm medial-lateral), relative to bregma. A 500 nL Neuros Syringe (#65457-02,  
166 Hamilton Company) attached to the stereotaxic apparatus was positioned over each craniotomy  
167 and lowered 2.0 mm (rostral) or 2.6 mm (caudal) below the skull surface for viral delivery  
168 (Figure 1B). Each of the 4 injection sites was injected with 160 nL of virus at a rate of 80 nL per  
169 minute. The needle remained in place for at least 5 minutes after the injection to allow for  
170 diffusion of the virus and then the needle was slowly removed from the brain. After all viral  
171 injections were complete, the scalp of each mouse was cleaned with sterile saline and sutured  
172 using tissue adhesive (Vetbond, 3M). Mice were transferred to a clean cage at the end of the  
173 surgery and placed on a heating blanket (37 °C) until fully ambulatory.

## 174 **2.6 Behavioral tests**

175 All behavioral tests were conducted in dedicated procedure rooms. All testing arenas were  
176 made in house and the dimensions are provided below. Mice remained in their home cage after  
177 the CNO injection until behavioral testing. At the end of each behavioral test, mice were  
178 returned to their home cage and left undisturbed until the next test. For all experiments, the  
179 testing arenas and equipment were cleaned thoroughly with 70 % ethanol (EtOH) between  
180 subjects.

181 All behavioral tests were recorded with a Logitech C920 1080P webcam connected to a PC  
182 (Logitech® Webcam software, v. 2.51). Experimenters blinded to the experimental conditions  
183 manually reviewed and scored the behavioral tests offline. ANY-maze tracking software (v. 6.2;  
184 Stoelting Co., USA) was used to score the OFT, LDB, and EPM tests. Notably, we manually  
185 scored a subset of these videos and found a Pearson correlation coefficient of r=0.99 with the  
186 ANY-maze scores.

187 **2.6.1 CFC**

188 CFC was conducted as previously described with minor modifications (Stone et al., 2011).  
189 Briefly, mice were placed inside a Plexiglas fear conditioning chamber (18 cm x 18 cm x 20 cm)  
190 placed inside of a larger arena (34 cm x 45 cm x 34 cm). The floor of the fear conditioning  
191 chamber contained 28 stainless steel rods (0.2 cm diameter, spaced 0.5 cm apart). Mice were  
192 placed inside the Plexiglas chamber and allowed to acclimate for 2 minutes. After the baseline  
193 period, 3 foot shocks (0.5 mA for 2 sec) were delivered once per minute. The mice remained in  
194 the fear conditioning chamber for an additional 2 minutes after the final foot shock (4 minutes  
195 total) and were then returned to their home cage. Contextual fear memory was assessed 24  
196 hours later by placing mice into the same chamber where training occurred for 10 minutes.  
197 Freezing behavior was operationally defined as the termination of all motor movements except  
198 those necessary for respiration (Fanselow, 1980; Botterill et al., 2015a; Botterill et al., 2015b;  
199 Guskjolen et al., 2018). Data are reported as percent freezing, calculated by dividing the time  
200 spent freezing (sec) each minute for RMANOVA analyses or by dividing the total time freezing  
201 (sec) by test duration (i.e., 240 sec training and 600 sec testing) for average freezing scores.

202 **2.6.2 NOR and NOL**

203 To evaluate the role of MCs on spatial and object memory, mice underwent the NOR and NOL  
204 tests as previously described with minor modifications (Leger et al., 2013; Vogel-Ciernia and  
205 Wood, 2014; Brymer et al., 2020). Briefly, both tasks involve presenting two identical objects  
206 during a training session and evaluating object exploration during a subsequent test session.  
207 The difference between the two tasks is that one of the two previously presented objects is an  
208 entirely new object replaces one of the training objects during the NOR test, whereas in the  
209 NOL test, one of the two identical objects is moved to a new location (Vogel-Ciernia and Wood,  
210 2014). Both tasks are based on the premise that rodents have an innate preference for novelty  
211 (e.g., a novel object or moved object). Importantly, both the NOR and NOL tests are thought to  
212 involve the DG (Kinnavane et al., 2015; Kesner, 2018).

213 **2.6.2.1 Acclimation & training**

214 For both tasks, mice underwent 3 acclimation sessions (5 minutes each day) prior to training  
215 (day 4). Each acclimation session consisted of a brief handling session followed by placing the  
216 mouse in a rectangular testing arena (24 cm x 45 cm x 20 cm) that was located inside of a large  
217 arena (40 cm x 62 cm x 46 cm) with visual cues on each wall. Mice were injected with CNO 30  
218 minutes before the training session and then placed in the same rectangular cage described

219 above and allowed to explore two identical novel objects (“A” & “B”) spaced 5 cm apart for 5  
220 minutes. Each training session introduced an identical pair of Legos (3 cm x 4.5 cm x 5 cm) or  
221 bronze pineapples (3.5 cm diameter, 5.5 cm tall) that were secured to the base of the testing  
222 arena. Mice were returned to their home cage after completing the training session.

223 **2.6.2.2 Testing**

224 One hour after the training session, mice were returned to the rectangular testing arena and  
225 allowed to explore for 5 minutes. For the NOR test, one familiar object from the training session  
226 was replaced with a novel object (object “B”) spaced 5 cm from object “A”. In the NOR test,  
227 novel object “B” was a 20 mL scintillating vial (2.5 cm diameter x 6 cm tall) filled with an opaque  
228 gel. For the NOL test, object “A” remained in the same location as training, but object “B” was  
229 moved approximately 20 cm to the other side of the testing arena.

230 **2.6.2.3 Analysis**

231 For both the training and testing procedures, the amount of time mice spent exploring each  
232 object was measured. The preference for the novel or moved object “B” in the NOR and NOL  
233 test was determined by calculating an object discrimination index;  $[DI = (T_B - T_A) / (T_B + T_A)]$   
234 \*100, where  $T_B$  represents time spent exploring object “B” and  $T_A$  represents time spent  
235 exploring object “A”. Mice were considered to explore an object when their head was facing the  
236 object and the nose was approximately within 1 cm of the object. Mice that failed to explore  
237 objects during training (i.e., less than 1 sec) were removed from the analysis, similar to criteria  
238 reported elsewhere (Bui et al., 2018).

239 **2.6.3 HCNOE**

240 To evaluate the role of MCs on object exploration in a familiar environment, we used a modified  
241 version of the HCNOE test recently described by our laboratory (Bernstein et al., 2019). At least  
242 3 days prior to testing, mice were transferred into a clean cage and allowed to acclimate to the  
243 behavioral testing room. On the test day, mice were injected with CNO 90 minutes prior to  
244 testing. Two identical novel objects (Legos: 3 cm x 4.5 cm x 5 cm) were placed in the home  
245 cage, spaced approximately 15 cm apart and 5 cm from the cage walls. Mice were allowed to  
246 explore the two objects for a total of 10 minutes. We used the same criteria for object  
247 exploration as described for NOL and NOR tests. The percent of time spent exploring objects  
248 was calculated by the amount of time (sec) exploring objects each minute for RMANOVA  
249 analyses or by summing the total time exploring objects and dividing it by 240 sec (first 4

250 minutes). Mice were sacrificed 90 minutes after completing the test to evaluate immunoreactivity  
251 of the IEG c-Fos (see section 2.7 below).

252 **2.6.4 NSF**

253 To evaluate whether MCs contribute to feeding behaviors in a novel environment, mice  
254 underwent the NSF test as previously described with minor modifications (Dulawa and Hen,  
255 2005; Demireva et al., 2018). Briefly, mice were food deprived for 24 hours and water deprived  
256 for 2 hours prior to the start of the test. At the start of each session, the mouse was placed in  
257 the corner of a brightly illuminated novel arena (51 cm x 51 cm x 17 cm) and allowed to explore  
258 for 10 minutes. A rodent chow pellet was placed in the middle of the open field arena. The  
259 latency to feed was measured, defined as the interval between placing the mouse in the  
260 chamber and the time to begin eating the chow pellet. Mice that did not feed during the test  
261 received a maximum score of 600 sec.

262 **2.6.5 LDB**

263 Mice were tested in the LDB which is designed to probe the innate aversion of rodents to  
264 brightly illuminated areas (Klemenhagen et al., 2006; Takao and Miyakawa, 2006). Mice were  
265 placed in a chamber containing a brightly illuminated light compartment and a dimly lit dark  
266 compartment of equal size (20 cm x 20 cm x 22 cm). The light and dark compartments were  
267 connected through an open partition (7 cm wide x 7 cm high) that allowed the mice to freely  
268 move throughout the two chambers. At the start of each test, mice were placed in the center of  
269 the arena facing the dark compartment. Mice were removed from the testing arena after 5  
270 minutes. Anxiety-like and locomotor behaviors were evaluated by measuring the time spent in  
271 the light compartment, the latency to enter the light compartment, and the distance traveled in  
272 the light compartment.

273 **2.6.6 OFT**

274 We also evaluated exploratory and anxiety-like behaviors in the OFT (Seibenhener and Wooten,  
275 2015; Teixeira et al., 2018). Mice were placed in the periphery of a brightly illuminated open field  
276 (42 cm x 42 cm x 30 cm) and allowed to explore the arena for 10 minutes and then returned to  
277 their home cage. Anxiety-like behavior was assessed by measuring the time spent in the center  
278 of the open field (24 cm x 24 cm). Locomotor behavior was assessed by measuring the total  
279 distance traveled during the task.

280 **2.6.7 EPM**

281 The EPM was used to test exploratory and anxiety-like behavior (Komada et al., 2008). The  
282 EPM apparatus consisted of two open and closed arms of identical dimensions (5 cm x 22 cm).  
283 The closed arms had 15 cm high walls whereas the open arms had 3 mm high ledges to  
284 prevent mice from falling off the apparatus. Arms of the same type were arranged at opposite  
285 sides to each other and were raised 55 cm above the floor. At the start of each test, the mouse  
286 was placed in the central square (6 cm x 6 cm) of the EPM apparatus facing one of the closed  
287 arms. Mice were allowed to explore the apparatus for 5 minutes. The measures of interest were  
288 the percent of time spent in the open arms of the apparatus which was determined by  
289 calculating time spent in the open arms (sec) divided by test duration (300 sec), the number of  
290 open arm entries, and the total distance traveled during the task.

291 **2.7 Anatomy**

292 **2.7.1 Perfusion-fixation and sectioning**

293 Mice were initially anesthetized with isoflurane, followed by urethane (2.5 g/kg; i.p.). Once under  
294 deep anesthesia, the abdominal cavity was opened and the subject was transcardially perfused  
295 with ~10 mL of room temperature saline, followed by ~20 mL of cold 4 % paraformaldehyde in  
296 0.1 M phosphate buffer (PB; pH =7.4). The brains were extracted and stored overnight at 4 °C  
297 in 4 % paraformaldehyde in 0.1 M PB. The brains were then hemisected and sectioned in the  
298 coronal (right hemisphere) or horizontal (left hemisphere) plane at 50 µm (Vibratome 3000, Ted  
299 Pella). Sections were collected using a 1 in 12 series (600 µm apart). For subsequent analyses,  
300 we used at least 3 sections for each region of interest (e.g., rostral vs caudal and dorsal vs  
301 ventral measurements). To evaluate the dorsal hippocampus, sections were cut in the coronal  
302 plane because it maintains the lamination of the DG well. For the ventral hippocampus, where  
303 coronal sections make the different parts of the DG hard to interpret, sections were cut in the  
304 horizontal plane. Sections were stored in 24-well tissue culture plates containing cryoprotectant  
305 (30 % sucrose, 30 % ethylene glycol in 0.1 M PB) at -20 °C until use.

306 **2.7.2 Viral expression**

307 The expression of hM4D(Gi) or hM3D(Gq) in Drd2-Cre<sup>+/−</sup> mice was visualized by the mCherry  
308 tag (Figure 1C). Viral expression in Drd2-Cre<sup>+/−</sup> mice was characterized by large hilar mCherry<sup>+</sup>  
309 cells proximal to the injection site and a dense band of mCherry<sup>+</sup> labeling in the inner molecular  
310 layer (IML) throughout the septotemporal axis of the DG, consistent with the location of MCs  
311 and their major axon projection (Figure 1C-D; Scharfman, 2016). The pattern of viral expression  
312 has been validated in previous work by our laboratory (Botterill et al., 2019; Bernstein et al.,

313 2020) and confirmed by others (Danielson et al., 2017; Bui et al., 2018; Yeh et al., 2018;  
314 Azevedo et al., 2019; Oh et al., 2019).

315 Briefly, sections were rinsed in 0.1 M Tris Buffer (TB, 3 x 5 minutes), followed by 0.1 M TB  
316 containing 0.25 % Triton X-100 (Tris A), and 0.1M TB containing 0.25 % Triton X-100 and 1 %  
317 bovine serum albumin (Tris B). The sections were blocked with 5 % normal goat serum in Tris B  
318 for 30 minutes and incubated overnight at 4 °C with a rabbit polyclonal primary antibody against  
319 mCherry (1:3000, #167453, Abcam) diluted in blocking solution. On the following day, the  
320 sections were incubated with goat anti-rabbit Alexa Fluor 568 secondary antibody (1:1000,  
321 #A11036, Invitrogen) in Tris B. The sections were counterstained with Hoechst 33342  
322 (1:20000), mounted onto microscope slides, and coverslipped with Citifluor (Electron  
323 Microscopy Sciences) mounting medium. Images were acquired with a LSM 880 laser scanning  
324 confocal microscope (Zeiss) using a 10 x objective and frame size of 2048 x 2048 pixels. Any  
325 mouse that was injected with virus encoding DREADDs that lacked viral expression (due to  
326 mistargeted injections or incorrect genotype) was removed from the study.

### 327 **2.7.3 C-Fos immunoreactivity**

328 Mice were euthanized 90 minutes after completing HCNOE (180 minutes after CNO) to evaluate  
329 the effect of DREADDs on c-Fos immunoreactivity. We examined c-Fos after HCNOE because  
330 we have previously reported that c-Fos is effective in staining active MCs and GCs following  
331 HCNOE (Bernstein et al., 2019). Sections spaced approximately 600 µm apart were rinsed in  
332 0.1M TB (3 x 5 minutes) followed by 1 % H<sub>2</sub>O<sub>2</sub> in 0.1 M TB for 5 minutes to block endogenous  
333 peroxidase activity. Sections were then rinsed in Tris A and Tris B (10 minutes each) and then  
334 incubated for 30 minutes in 5 % (v/v) normal goat serum diluted in Tris B (blocking solution).  
335 The sections were then incubated overnight at 4 °C in rabbit polyclonal anti-c-Fos primary  
336 antibody (1:2000, #226003, Synaptic Systems) diluted in blocking solution. This antibody is  
337 widely used and highly specific for c-Fos protein (Zhou et al., 2019; Kim and Cho, 2020). On the  
338 following day, sections were rinsed in 0.1 M TB (3 x 5 minutes) and incubated in biotinylated  
339 goat anti-rabbit secondary antibody (1:500, Vector) diluted in Tris B for 2 hours. The sections  
340 were then rinsed in 0.1 M TB (2 x 5 minutes) and incubated in avidin-biotin complex (1:500,  
341 #PK-6100 VECTASTAIN Elite, Vector) for 1 hour. Sections were visualized by incubating them  
342 in a solution containing 0.5 mg/mL 3,3'-diaminobenzidine tetrahydrochloride (Sigma), 40 µg/mL  
343 ammonium chloride (Sigma), 25 mg/mL (D+)-glucose (Sigma), and 3 µg/mL glucose oxidase  
344 (Sigma) in 0.1 M TB. The reaction was halted by rinsing sections in 0.1 M TB (3 x 5 minutes).  
345 Sections were mounted on gelatin-coated slides and dried overnight at room temperature. On

346 the following day, the sections were dehydrated using a graded EtOH series (70 %, 95 %, 100  
347 %), cleared in Xylene, and coverslipped with Permount (Electron Microscopy Sciences).  
348 Photomicrographs were captured using a 10 x objective on an Olympus BX61 microscope  
349 equipped with a CCD camera (Retiga 2000R, QImaging).

350 **2.7.4 C-Fos quantification**

351 We analyzed c-Fos immunoreactivity across the septotemporal axis of the DG using criteria  
352 previously reported by our laboratory (Duffy et al., 2013; Moretto et al., 2017; Bernstein et al.,  
353 2019). Immunoreactive cells were manually counted at 16 x at similar locations across the  
354 septotemporal axis between subjects as previously described (Botterill et al., 2014; Moretto et  
355 al., 2017). The total number of c-Fos immunoreactive cells in the hilus and GCL were divided by  
356 the number of sections to determine the average number of cells per section.

357 **2.8 Data analysis and statistics**

358 All results are presented as mean  $\pm$  standard error of the mean (SEM). For all analyses,  
359 statistical significance was achieved if the *p* value was  $<0.05$  (denoted on all graphs by an  
360 asterisk). Statistical comparisons were conducted in Prism 8.4 (GraphPad).

361 For parametric data with multiple comparisons, two-way ANOVAs were performed. When a  
362 statistically significant main effect was observed (e.g., treatment or sex), post-hoc tests (Tukey's  
363 or Sidak) were used with corrections for multiple comparisons. When the main effect of  
364 treatment (e.g., control, eDREADD, iDREADD) was significant, main effects within the female  
365 and male cohorts were analyzed using the above mentioned post-hoc tests. When the  
366 interaction of factors was not significant, it was not reported in the Results. For all data sets, the  
367 ROUT method (Prism) was used to detect and remove outliers using nonlinear regression.  
368 When Bartlett's tests showed that the variance of groups was not equal, data were transformed  
369 using a log10 function. Notably, the statistical results of transformed data were similar to the raw  
370 data. Statistical values for the transformed data are reported in the Results. Graphs show raw  
371 data.

372 Sample sizes were determined with power analysis (G\*Power software). We determined that for  
373 a two-tailed analysis with significance set at  $\alpha = 0.05$  and power  $> 80\%$ , approximately 8-10  
374 subjects per treatment were required. For all analyses, at least 10 subjects per treatment were  
375 used when sex was pooled. We acknowledge some of the data sets have less than 10 subjects  
376 per treatment when evaluating male and female differences and this could impact statistical

377 power. However, several analyses within the male and female cohorts detected treatment  
378 differences with as few as 5-6 subjects, suggesting that the study was adequately powered.

379 **2.9 Additional technical considerations**

380 This study targeted most MCs. However, the observed effects may have been more robust if all  
381 MCs expressed DREADDs. On the other hand, activating all MCs may lead to different effects  
382 than activating only those that are dorsal or ventral. In addition, there could be different effects  
383 in a different background strain or species. Regarding females, we did not examine effects of  
384 the estrous cycle. One of the reasons is that females that are stressed usually have irregular  
385 estrous cycles, and our study involved stressors (e.g., CNO injections). In addition, it is  
386 important to bear in mind that there are considerable sex differences in the response to stress in  
387 rodents (Luine et al., 2007; Bale and Epperson, 2015). On the other hand, other studies in  
388 mice and rats have found some of the effects we observed, such as sex differences in  
389 exploration and cognition (Galea et al., 2017; Yagi and Galea, 2019). Regardless, the results  
390 suggest we think is very important, that restricting studies to males may underestimate the role  
391 of the DG in some experiments and overestimate it in others.

392 **3. RESULTS**

393 **3.1 Behavioral tests**

394 **3.1.1 CFC**

395 Given the importance of the DG in contextual learning and memory (Phillips and LeDoux, 1992),  
396 we were interested to determine whether MCs contribute to CFC. Our primary measurement  
397 was conditioned freezing, as defined in the Methods. Notably, CNO was administered prior to  
398 training, but not testing.

399 **3.1.1.1 CFC Training**

400 We first measured freezing behavior during the training session (Figure 2A). Baseline (B)  
401 freezing (time points B1, B2 in Figure 2B) and post-shock (PS) freezing (PS1 through PS4 in  
402 Figure 2B) were evaluated on a minute by minute basis for the training session. Note that only 3  
403 shocks were delivered during training, so PS4 represents the final minute of the training  
404 session. A two-way RMANOVA found a main effect of time ( $F(5,195)=41.96, p<0.001$ ) and a  
405 time by treatment interaction ( $F(10,195)=2.185, p=0.020$ ). Tukey's post-hoc test revealed that  
406 there was no effect of treatment on baseline freezing (all  $p$  values  $>0.612$ ; Figure 2B). Similarly,  
407 there was no effect of treatment on freezing behavior on PS1 or PS2 (all  $p$  values  $>0.051$ ;

408 Figure 2B). However, Tukey's post-hoc test revealed that control mice ( $28.69 \pm 4.95\%$ )  
409 engaged in significantly greater freezing behavior than eDREADD mice ( $14.45 \pm 2.71\%$ ;  
410  $p=0.017$ ) in the minute after the third shock (PS3; Figure 2B). By the final minute of the training  
411 session (PS4), both control ( $34.96 \pm 5.19\%$ ) and iDREADD mice ( $38.43 \pm 5.86\%$ ) engaged in  
412 approximately twice as much freezing behavior as eDREADD mice ( $19.99 \pm 3.27\%$ ; all  $p$  values  
413  $<0.011$ ; Figure 2B).

414 In Figure 2C, the average post-shock freezing across the 4 minutes of the training session is  
415 shown. A two-way ANOVA revealed an overall effect of treatment ( $F(2,36)=4.711$ ,  $p=0.015$ ).  
416 Tukey's post-hoc test found that the total time freezing during the training session was  
417 significantly greater in iDREADD ( $23.34 \pm 3.51\%$ ) and control mice ( $23.59 \pm 3.98\%$ ) compared  
418 to eDREADD mice ( $11.46 \pm 2.08\%$ ; all  $p$  values  $<0.037$ ; Figure 2C). Control and iDREADD  
419 mice did not differ ( $p=0.997$ ).

420 In the two-way ANOVA, sex was also a significant main factor ( $F(1,36)=14.43$ ,  $p<0.001$ ). Figure  
421 2D separates female and male data to compare the data more easily. Notably, there was a  
422 greater percent of freezing in females ( $26.38 \pm 3.22\%$ ) than males ( $12.56 \pm 1.57\%$ ; Figure 2D).  
423 Also, Tukey's post-hoc test showed that female control mice ( $30.98 \pm 5.97\%$ ) froze significantly  
424 more than female eDREADD mice ( $15.70 \pm 4.12\%$ ;  $p=0.036$ ). Female iDREADD mice showed  
425 a similar pattern of freezing behavior as control mice ( $30.27 \pm 4.60\%$ ), but they did not  
426 statistically differ from eDREADD mice ( $p=0.052$ ). Interestingly, male control, eDREADD and  
427 iDREADD mice did not differ in freezing behavior during training (all  $p$  values  $>0.443$ ),  
428 suggesting the female mice were primarily driving the treatment differences observed during  
429 training (Figures 2B-D). The higher freezing scores in female mice are consistent with a recent  
430 study that reported females show greater fear generalization and freezing (Keiser et al., 2017).

### 431 3.1.1.2 CFC Testing

432 Mice were tested for contextual fear memory 24 hours after training by placement in the same  
433 chamber without a shock (Figure 2E). Minute-by-minute comparisons are shown in Figure 2F  
434 and pooled data from all 10 minutes of the test are shown in Figure 2G. Minute-by-minute data,  
435 analyzed with a RMANOVA, showed a significant effect of treatment ( $F(2,39)=6.033$ ,  $p=0.005$ )  
436 and a significant effect of time ( $F(4,156)=5.314$ ,  $p<0.001$ ). Tukey's post-hoc test found that  
437 eDREADD mice froze significantly less than iDREADD mice for each of the first 5 minutes of the  
438 memory test (all  $p$  values  $<0.047$ ). Furthermore, eDREADD mice froze significantly less than  
439 control mice in the second and third minute of the memory test (all  $p$  values  $<0.033$ ). Note that

440 greater freezing during the memory test is considered a reflection of better recall of the noxious  
441 stimulus delivered during the training session.

442 Using pooled data (Figure 2G), a two-way ANOVA found a significant effect of treatment  
443 ( $F(2,36)=6.731, p=0.003$ ), with Tukey's post-hoc test finding greater freezing in iDREADD mice  
444 ( $31.84 \pm 3.70 \%$ ) and control mice ( $32.53 \pm 4.01 \%$ ) compared to eDREADD mice ( $18.39 \pm 1.27 \%$ ;  
445 all  $p$  values  $<0.011$ ; Figure 2G). Freezing behavior in iDREADD mice and controls did not  
446 differ significantly ( $p=0.989$ ). There was no difference between male and female cohorts during  
447 testing, indicated by no main effect of sex ( $F(1,36)=2.013, p=0.164$ ). Female and male data are  
448 shown separately in Figure 2H. Tukey's post-hoc test indicated that freezing behavior during the  
449 memory test was significantly greater in female control ( $37.04 \pm 7.12 \%$ ) and iDREADD mice  
450 ( $35.49 \pm 5.30 \%$ ) relative to eDREADD mice ( $19.15 \pm 1.94 \%$ ; all  $p$  values  $<0.043$ ; Figure 2H).  
451 There was no difference between treatments in male mice during the memory test (all  $p$  values  
452  $> 0.094$ ).

453 Overall, the data suggest that eDREADD treatment worsened performance both during the  
454 learning phase and memory phase of the task.

455 **3.1.2 NOR**

456 A recent study suggests that information about objects acquired in the lateral EC (LEC) from  
457 sensory input may influence MCs because the LEC projects to MCs (Azevedo et al., 2019).  
458 Therefore, we evaluated object recognition memory using the NOR task (Figure 3A).

459 *3.1.2.1 NOR Training*

460 A) Discrimination index

461 First, we calculated the DI during training by comparing the amount of time spent exploring  
462 object "A" versus object "B" (see Methods). A two-way ANOVA found that the training DI did not  
463 differ by treatment ( $F(2,53)=1.159, p=0.321$ ) or sex ( $F(1,53)=0.099, p=0.753$ ; Figure 3B-C).

464 B) Total exploration time

465 Next, we evaluated the total time spent exploring objects during training (i.e., "A" + "B"). A two-  
466 way ANOVA found no effect of treatment ( $F(2,53)=2.018, p=0.143$ ), or sex ( $F(1,53)=0.017,$   
467  $p=0.894$ ; Figure 3D) on total object exploration.

468 C) Object exploration time

469 Next, we evaluated object exploration time, meaning the time in seconds that objects “A” and  
470 object “B” were explored. These data reduce the data in the training DI and total exploration  
471 time to the raw data for each object. In female mice, a two-way ANOVA with treatment and  
472 object as factors showed a significant effect of treatment ( $F(2,62)=3.188, p=0.048$ ) but not  
473 object ( $F(1,62)=0.744, p=0.391$ ) on exploration. Tukey’s post-hoc test showed that exploration  
474 by female eDREADD mice was greater than female iDREADD mice ( $p=0.044$ ; Figure 3E). In  
475 male mice, there were no effects of treatment on time spent exploring object “A” versus “B”  
476 ( $F(1,44)=0.065, p=0.799$ ; Figure 3F). Although these data suggest female eDREADD mice  
477 explored slightly more than female iDREADD mice during training, the results also show that  
478 there was no effect of treatment on object preference during training. This is an important  
479 distinction because any preference for one object during training makes the results of testing  
480 hard to interpret (Vogel-Ciernia and Wood, 2014).

481 **3.1.2.2 NOR Testing**

482 **A. Discrimination index**

483 Object recognition memory was evaluated 1 hour after training by replacing object “B” of the  
484 training session with a novel object “B” (Figure 3G). A two-way ANOVA found a significant effect  
485 of treatment ( $F(2,53)=4.636, p=0.013$ ), but no effect of sex ( $F(1,53)=0.280, p=0.598$ ). Tukey’s  
486 post-hoc test showed that iDREADD mice had a significantly greater testing DI ( $34.77 \pm 4.38 \%$ )  
487 than eDREADD mice ( $4.85 \pm 9.80 \%$ ;  $p=0.013$ ; Figure 3H). The iDREADD mice were not  
488 significantly different from control mice ( $18.66 \pm 6.11 \%$ ; all  $p$  values  $>0.127$ ), which were  
489 between eDREADD and iDREADD mice (Figure 3H).

490 To further investigate the treatment effect, we analyzed effects within female and male cohorts.  
491 Notably, Tukey’s post-hoc test found that the testing DI in male eDREADD mice ( $-11.94 \pm 11.97 \%$ )  
492 was significantly lower than control ( $25.88 \pm 6.58 \%$ ) and iDREADD mice ( $40.06 \pm 7.22 \%$ ; all  
493  $p$  values  $<0.034$ ; Figure 3I). This result is consistent with worse performance in eDREADD mice.  
494 The results from female mice showed greater variability than males on testing DI and this is  
495 likely to have contributed to the lack of a treatment difference between control, eDREADD and  
496 iDREADD mice (all  $p$  values  $>0.212$ ).

497 **B. Total exploration time**

498 Next, we evaluated the total time spent exploring objects “A” and “B” during testing. A two-way  
499 ANOVA found no effect of treatment ( $F(2,53)<0.001$ ,  $p=0.999$ ) or sex ( $F(1,53)=0.336$ ,  $p=0.564$ ;  
500 Figure 3J).

501 C. Object exploration time

502 In males, there was no effect of treatment ( $F(2,44)=0.052$ ,  $p=0.949$ ), but a significant difference  
503 in the time spent exploring object “A” versus “B” ( $F(1,44)=6.77$ ,  $p=0.012$ ) during testing. Sidak’s  
504 multiple comparisons test found that male iDREADD mice spent significantly more time  
505 exploring object “B” ( $15.56 \pm 3.02$  sec) than object “A” ( $6.16 \pm 1.39$  sec;  $p=0.008$ ; Figure 3L).  
506 There were no differences between object “A” versus “B” in male control or eDREADD mice (all  
507  $p$  values  $>0.112$ ).

508 For female mice, a two-way ANOVA found no effect of treatment ( $F(2,62)=0.052$ ,  $p=0.949$ ), but  
509 a significant difference in time spent exploring object “A” versus “B” ( $F(1,62)=5.454$ ,  $p=0.022$ ).  
510 Thus, females appeared to have a slight preference for the novel object, independent of  
511 treatment. This preference was small, however, and in support of this interpretation, Sidak’s  
512 multiple comparisons test showed none of the paired comparisons were significantly different  
513 (all  $p$  values  $>0.065$ ; Figure 3K).

514 These data suggest that inhibiting MCs led to improved object recognition memory. Both males  
515 and females showed the effect, but statistical comparisons were significant only for males.  
516 Taken together, the data suggest that inhibiting MCs can benefit cognitive performance in NOR.

### 517 3.1.3 NOL

518 To evaluate object location memory, mice underwent the NOL task (Figure 4A). First, we  
519 evaluated the training DI and a two-way ANOVA found no effect of treatment ( $F(2,53)=0.276$ ,  
520  $p=0.759$ ) or sex ( $F(1,53)=0.288$ ,  $p=0.593$ ; Figure 4B-C). However, there was a statistically  
521 significant interaction ( $F(2,53)=5.337$ ,  $p=0.007$ ), whereby control, eDREADD, and iDREADD  
522 mice showed a pattern of opposing DI scores in their respective female and male cohorts  
523 (Figure 4C).

524 Next, we measured the total amount of time exploring both objects (i.e., “A” + “B”) and a two-  
525 way ANOVA found no effect of treatment ( $F(2,53)=0.355$ ,  $p=0.702$ ) or sex ( $F(1,53)=2.438$ ,  
526  $p=0.124$ ; Figure 4D). Furthermore, there were no effects of treatment on time spent exploring  
527 object “A” versus “B” in female ( $F(1,60)=0.002$ ,  $p=0.959$ ) or male mice ( $F(1,46)=0.001$ ,  $p=0.969$ ;  
528 Figure 4E-F).

529 Object location memory was tested 1 hour later during the test phase by moving object “B” to  
530 the other side of the testing arena (Figure 4G). A two-way ANOVA found that treatment had no  
531 significant effect on the testing DI ( $F(2,53)=1.622, p=0.207$ ) and sex did not either  
532 ( $F(1,53)=0.006, p=0.935$ ; Figure 4H-I).

533 A two-way ANOVA also revealed that there was no effect of treatment on the total time spent  
534 exploring both objects during testing ( $F(2,53)=1.743, p=0.184$ ), and there was no effect of sex  
535 either ( $F(1,53)<0.001, p=0.992$ ; Figure 4J). Furthermore, there was no effect of treatment in the  
536 amount of time spent exploring object “A” versus “B” in female ( $F(1,60)=0.701, p=0.405$ ) or male  
537 mice ( $F(1,46)=0.976, p=0.328$ ; Figure 4K-L).

538 In summary, there appeared to be little effect of treatment in the NOL task. However, there are  
539 several potential reasons for the lack of an effect in NOL (see Discussion).

540 **3.1.4 HCNOE**

541 Next, we used the HCNOE task (Figure 5A), which we have found activates MCs in a robust  
542 manner, but not many other cells in the DG or hippocampus (Duffy et al., 2013; Bernstein et al.,  
543 2019). Interestingly, this task involves the home cage to reduce behavioral stress, so it is highly  
544 relevant to the present study.

545 *3.1.4.1 Average exploration*

546 First, we focused on the percent of time exploring objects during the first 4 minutes of HCNOE.  
547 A two-way ANOVA found a significant effect of treatment ( $F(2,28)=18.32, p<0.001$ ), but not sex  
548 ( $F(1,28)=2.755, p=0.108$ ). Tukey’s post-hoc test reporting that iDREADD mice ( $22.66 \pm 1.64 \%$ )  
549 spent significantly more time exploring objects than control mice ( $16.40 \pm 1.59 \%$ ) and  
550 eDREADD mice ( $10.41 \pm 1.21 \%$ ; all  $p$  values  $<0.019$ ; Figure 5B). Conversely, eDREADD mice  
551 spent significantly less time exploring objects compared to control mice ( $p=0.010$ ), consistent  
552 with worse performance described in other tasks above.

553 The data for each sex are plotted separately in Figure 5C and show the similarities between the  
554 female and male cohorts on HCNOE exploration. Tukey’s post-hoc test showed that some  
555 pairwise comparisons were significant, similar to the pooled data in Figure 5C. For example,  
556 female iDREADD mice spent significantly more time exploring ( $22.20 \pm 2.51 \%$ ) than female  
557 control mice ( $14.95 \pm 0.92 \%$ ) and eDREADD mice ( $8.19 \pm 0.84 \%$ ; all  $p$  values  $<0.039$ ; Figure  
558 5C). Female control and female eDREADD mice did not differ from each other although the  $p$   
559 value approached criterion ( $p=0.058$ ). For males, iDREADD mice spent a greater percent of

560 time exploring objects ( $23.35 \pm 2.03\%$ ) than eDREADD mice ( $12.31 \pm 1.91\%$ ;  $p=0.003$ ). The  
561 male control mice ( $18.14 \pm 3.35\%$ ) scored between iDREADD and eDREADD mice and did not  
562 differ significantly (all  $p$  values  $>0.120$ ).

563 **3.1.4.2 Exploration minute by minute**

564 Next, we analyzed object exploration over each of the first 4 minutes of the HCNOE task (Figure  
565 5D). A two-way RMANOVA revealed an overall effect of treatment ( $F(2,31)=17.57$ ,  $p<0.001$ ) but  
566 not time ( $F(3,93)=1.341$ ,  $p=0.265$ ). Tukey's post-hoc tests revealed that iDREADD mice showed  
567 a greater percent of time exploring than eDREADD mice for each of the 4 minutes (all  $p$  values  
568  $<0.001$ ; Figure 5D). The iDREADD mice also showed a greater percent of exploration than  
569 control mice for the first 2 minutes of the analysis (all  $p$  values  $<0.017$ ). Finally, the control mice  
570 showed a greater percent of exploration than eDREADD mice on the fourth minute of the task  
571 ( $p=0.005$ ).

572 When each sex was examined separately, a two-way RMANOVA in female mice found a  
573 significant effect of treatment ( $F(2,15)=18.34$ ,  $p<0.001$ ) but not time ( $F(3,45)=1.353$ ,  $p=0.269$ ).  
574 Tukey's post-hoc test revealed that for the first 3 minutes of the test, female iDREADD mice  
575 showed a greater percent of exploration than control and eDREADD mice (all  $p$  values  $<0.039$ ;  
576 Figure 5E). In the fourth minute, female iDREADD mice were significantly different than  
577 eDREADD mice ( $p<0.001$ ). Moreover, female eDREADD mice spent a lesser percent of time  
578 exploring objects than control mice during minutes 2 and 4 (all  $p$  values  $<0.029$ ). These data  
579 show a robust effect of treatment in females.

580 In male mice, a two-way RMANOVA revealed a significant effect of treatment ( $F(2,13)=4.884$ ,  
581  $p=0.026$ ) but not time ( $F(3,39)=1.353$ ,  $p=0.269$ ). Tukey's post-hoc test found treatment  
582 differences in the second and fourth minute of the test, with iDREADD mice spending a greater  
583 percent of time exploring objects than eDREADD mice at both times (all  $p$  values  $<0.042$ ; Figure  
584 5F). These data suggest a similar effect of treatment in males as females, but effects in males  
585 were not as robust because all minutes of the session did not show treatment differences.

586 In summary, iDREADDs significantly improved performance in the HCNOE task, and  
587 conversely, eDREADDs worsened performance, consistent with several of the prior tasks.

588 **3.1.5 NSF**

589 NSF is commonly used to evaluate aversion to eating in a brightly illuminated, novel  
590 environment (Figure 6A). In light of a recent study suggesting that MCs may regulate feeding

591 behavior (Azevedo et al., 2019), it was timely to use this test to gain further insight into effects of  
592 MC on behavior.

593 A two-way ANOVA revealed a significant main effect of treatment ( $F(2,67)=4.652, p=0.012$ ) but  
594 no effect of sex ( $F(1,67)=0.187, p=0.666$ ) on the latency to feed. Tukey's post-hoc test showed  
595 that iDREADD mice ( $336.4 \pm 25.92$  sec) had a shorter latency to feed than eDREADD mice  
596 ( $448.7 \pm 32.90$  sec;  $p=0.015$ ; Figure 6B). No other comparisons showed a significant treatment  
597 difference in the latency to feed (all  $p$  values  $>0.069$ ).

598 The data from females and males are shown in Figure 6C. Tukey's post-hoc test found that  
599 female iDREADD mice engaged in feeding behavior significantly sooner ( $313.9 \pm 44.0$  sec) than  
600 control female mice ( $432.1 \pm 31.39$  sec;  $p=0.033$ ; Figure 6C). A similar pattern was seen when  
601 comparing the female iDREADD and eDREADD mice (Figure 6C) but this effect did not reach  
602 criterion ( $p=0.054$ ). There was no significant effect of treatment in the male mice (all  $p$  values  
603  $>0.213$ ).

604 In summary, inhibiting MCs had an effect consistent with reduced anxiety-like behavior. These  
605 data are also consistent with the recent observation that iDREADD treatment in Drd2-Cre mice  
606 facilitates feeding behaviors (Azevedo et al., 2019).

### 607 **3.1.6 LDB**

608 Next, we evaluated anxiety-like behavior associated with the natural aversion of mice to a  
609 brightly illuminated area in the LDB (see Methods).

610 A two-way ANOVA revealed a significant effect of treatment on the percent of time mice spent in  
611 the light compartment ( $F(2,60)=3.525, p=0.035$ ). Tukey's post-hoc test found the iDREADD  
612 mice spent approximately 25% more time in the light compartment ( $77.35 \pm 6.12$  sec) than  
613 control mice ( $60.38 \pm 3.70$  sec;  $p=0.036$ ; Figure 7A), consistent with an anxiolytic effect. The  
614 main effect of sex was not significant ( $F(1,60)=1.027, p=0.315$ ), suggesting that the female and  
615 male cohorts showed similar behaviors in the LDB. To further investigate the effect of treatment,  
616 we evaluated simple main effects within female and male cohorts. The male iDREADD mice  
617 spent a greater percent of time in the light compartment ( $80.84 \pm 8.32$  sec) compared to male  
618 control mice ( $57.46 \pm 5.93$  sec  $p=0.037$ ; Figure 7B-C). Several of the female iDREADD mice  
619 also appeared to spend more time in the light compartment, similar to the iDREADD males, but  
620 there were no statistical differences in the female cohort (all  $p$  values  $>0.185$ ; Figure 7B).

621 Locomotor activity was quantified as the total distance traveled within the lighted compartment.  
622 A two-way ANOVA showed that there were no significant effects of treatment ( $F(2,60)=0.946$ ,  
623  $p=0.394$ ; Figure 7D) or sex ( $F(1,60)=0.103$ ,  $p=0.749$ ; Figure 7E). There also was no effect of  
624 treatment ( $F(2,60)=0.294$ ,  $p=0.746$ ), or sex on the latency to enter the light compartment  
625 ( $F(1,60)=1.498$ ,  $p=0.225$ ; data not shown).

626 In summary, LDB results suggest an anxiolytic effect of inhibiting MCs with males showing a  
627 more robust effect than females.

### 628 **3.1.7 OFT**

629 In the OFT, the time spent in the center of the open field was analyzed using a two-way ANOVA  
630 with treatment and sex as factors. There was no effect of treatment ( $F(2,67)=2.616$ ,  $p=0.080$ ;  
631 Figure 8A), but there was a significant effect of sex ( $F(1,67)=6.768$ ,  $p=0.011$ ) attributable to  
632 female mice spending approximately 25% less time ( $68.25 \pm 5.89$  sec) in the center of the open  
633 field than the male mice ( $89.06 \pm 4.79$  sec; Figure 8B). These data suggest females showed  
634 more anxiety-like behavior than males, an idea that has been discussed extensively before in  
635 humans (Donner and Lowry, 2013; Altemus et al., 2014), but depends on several factors in  
636 rodents (Palanza, 2001; Simpson and Kelly, 2012).

637 Locomotor activity was also monitored (Figure 8C-E). Representative track maps are shown for  
638 female mice (8C1-C3). Note that some of the female eDREADD mice showed higher activity  
639 both within the center and periphery of the open field (Figure 8C2) but others did not, and there  
640 were no significant differences between the treatments. Quantification in Figure 8D-E was  
641 based on total distance traveled in the OFT and was analyzed by two-way ANOVA. There was  
642 no effect of treatment ( $F(2,67)=2.657$ ,  $p=0.077$ ; Figure 8D) or sex ( $F(1,67)=0.002$ ,  $p=0.963$ ;  
643 Figure 8E) on distance traveled in the OFT.

644 In summary, there was no significant effect of treatment, but a main effect of sex. Male mice,  
645 regardless of treatment showed similar behaviors, whereas female mice typically spent less  
646 time in the center of the OFT. This observation is consistent with sex differences in basal  
647 anxiety and exploration and can make interpretations of the OFT data challenging.

### 648 **3.1.8 EPM**

649 Next, we evaluated anxiety-like behavior in the EPM. A two-way ANOVA revealed a significant  
650 effect of treatment ( $F(2,67)=3.379$ ,  $p=0.040$ ) but not sex ( $F(1,67)=0.299$ ,  $p=0.586$ ). Tukey's  
651 post-hoc test showed that eDREADD mice spent a greater percent of time in the open arms

652 (23.72 ± 3.64 %) compared to control mice (14.12 ± 0.89 %;  $p=0.033$ ; Figure 9A). Other post-  
653 hoc comparisons were not significant (all  $p$  values  $>0.289$ ). When data were separated so  
654 female and male cohorts could be compared, there were no significant effects of treatment or  
655 sex (Figure 9B). The lack of effect of treatment is consistent with a relatively small effect of  
656 eDREADD treatment in the pooled data (Figure 9A).

657 The total number of open arm entries was also evaluated, and a two-way ANOVA found no  
658 effect of treatment ( $F(2,67)=0.723$ ,  $p=0.488$ ) or sex ( $F(1,67)=0.333$ ,  $p=0.565$ ; Figure 9C-D).

659 Locomotor activity in the EPM was also evaluated by tracking the distance traveled during the  
660 test. A two-way ANOVA found no overall effect of treatment ( $F(2,67)=0.034$ ,  $p=0.965$ ; Figure  
661 9E), but a significant effect of sex ( $F(1,67)=7.473$ ,  $p=0.008$ ), attributable to female mice ( $7.652 \pm$   
662 0.299 meters) traveling a greater distance than male mice ( $6.547 \pm 0.292$  meters; Figure 9F).  
663 Notably, these results are consistent with sex differences in EPM behaviors (Belviranli et al.,  
664 2012; Scholl et al., 2019).

665 In summary, the results of the EPM suggest that eDREADD mice showed a modest increase in  
666 the time spent in the open arms of the EPM. Consistent with this small increase, there were no  
667 treatment differences in female or male cohorts. More time spent in the open arms is often  
668 interpreted as anxiolytic, but the small treatment effect suggest conclusions should be made  
669 with caution. Also, female mice traveled a greater distance than male mice and this result also  
670 suggests the EPM data should be cautiously interpreted.

### 671 **3.2 MC effects on the DG circuit: c-Fos immunohistochemistry**

672 C-fos immunoreactivity was used to confirm that MC activity was increased by eDREADD  
673 treatment and address whether iDREADD treatment reduced MC activity. Examining c-fos  
674 immunoreactivity after HCNOE was chosen because we have previously reported that the  
675 HCNOE task induces expression of c-Fos protein in a subset of MCs (Bernstein et al., 2019).

676 Therefore, mice were sacrificed 90 minutes after HCNOE to evaluate c-Fos protein in MCs. GCs  
677 were also examined to gain insight into potential effects of altered MC activity on GCs. Brains  
678 were cut in the coronal and horizontal plane to best evaluate dorsal and ventral hippocampus,  
679 as described in the Methods.

#### 680 **3.2.1 Hilar c-Fos**

681 First, c-Fos was analyzed in the hilus of coronal sections (as described in the Methods; Figure  
682 10A). A two-way ANOVA revealed an effect of treatment ( $F(2,50)=80.42$ ,  $p<0.001$ ) and no effect

683 of septotemporal location ( $F(1,50)=1.505$ ,  $p=0.225$ ). Tukey's post-hoc test revealed that  
684 eDREADD mice ( $18.34 \pm 2.17$  cells) had a significantly greater average number of hilar c-Fos-  
685 immunoreactive cells compared to control ( $2.26 \pm 0.20$  cells) and iDREADD mice ( $2.32 \pm 0.40$   
686 cells; all  $p$  values  $<0.001$ ; Figure 10B). These findings are an important confirmation that  
687 eDREADD treatment increased neuronal activity of hilar neurons during this task. The hilar  
688 neurons were probably MCs because we previously found that HCNOE preferentially activates  
689 MCs compared to other hilar neurons after HCNOE (Duffy et al., 2013; Moretto et al., 2017;  
690 Bernstein et al., 2019) and DREADDs were preferentially expressed in MCs (Figure 1).

691 We also found that iDREADD treatment resulted in low levels of c-Fos immunoreactivity in the  
692 hilus. The controls also had a low level of hilar c-Fos, so the iDREADD-treated mice did not  
693 differ from controls. However, our prior studies of iDREADDs on patched MCs (using similar  
694 methods to what were used here) showed that CNO hyperpolarizes and reduces firing of MCs  
695 (Botterill et al., 2019). Therefore, it is likely that iDREADDs inhibited MCs, but due to the low c-  
696 Fos levels in control mice, it was difficult to detect a further reduction after iDREADD treatment.  
697 The low number of c-Fos- immunoreactive MCs in dorsal DG is consistent with prior studies of  
698 HCNOE (Bernstein et al., 2019; see also Duffy et al., 2013; Moretto et al., 2017)

699 Next, we compared relatively rostral and more caudal coronal sections. Tukey's post-hoc tests  
700 revealed that in rostral sections, eDREADD mice ( $14.72 \pm 1.87$  cells) had significantly more hilar  
701 c-Fos cells per section than control ( $2.22 \pm 0.31$  cells) and iDREADD mice ( $1.90 \pm 0.32$  cells; all  
702  $p$  values  $<0.001$ ; Figure 10C). A similar result was observed in caudal sections, with more hilar  
703 c-Fos cells per section in eDREADD mice ( $21.96 \pm 3.17$  cells) compared to control ( $2.30 \pm 0.28$   
704 cells) and iDREADD mice ( $2.73 \pm 0.65$  cells; all  $p$  values  $<0.001$ ; Figure 10C).

705 Next we analyzed horizontal sections (Figure 10F). Sections were selected from relatively  
706 dorsal and ventral levels. A two-way ANOVA revealed an effect of treatment ( $F(2,50)=5.540$ ,  
707  $p<0.001$ ) and no effect of septotemporal location ( $F(1,50)=0.121$ ,  $p=0.728$ ). Tukey's post-hoc  
708 test revealed that the average number of hilar c-Fos-immunoreactive cells was greater in  
709 eDREADD mice ( $17.83 \pm 2.45$  cells) compared to iDREADD mice ( $10.17 \pm 1.57$  cells;  $p=0.007$ ;  
710 Figure 10G). Control mice ( $10.20 \pm 0.78$  cells) did not differ from either treatment (all  $p$  values  
711  $>0.051$ ). Tukey's post-hoc test further revealed that in dorsal horizontal sections, eDREADD  
712 mice ( $21.15 \pm 3.53$  cells) had a greater number of c-Fos-immunoreactive cells per section than  
713 control ( $9.56 \pm 1.30$  cells) and iDREADD mice ( $9.08 \pm 2.16$  cells; all  $p$  values  $<0.028$ ; Figure  
714 10H).

715 There were no differences between eDREADD, iDREADD and control mice in the numbers of  
716 hilar c-Fos-immunoreactive cells per section in ventral horizontal sections (all  $p$  values  $>0.529$ ).  
717 The results are likely to be related to the viral injection sites, which were probably did not reach  
718 the most ventral part of the DG (see Methods). Although Figure 1 shows fairly strong expression  
719 in dorsal and caudal coronal sections, the extreme temporal (ventral) pole showed few MC  
720 somata expressing mCherry.

721 In summary, eDREADD treatment increased hilar c-Fos-immunoreactive cells in a robust  
722 manner, except for the most ventral part of the DG which may have had less somatic  
723 expression of DREADDs. iDREADD treatment did not significantly decrease hilar c-Fos  
724 immunoreactivity, which could be due to low numbers of c-Fos cells in controls.

### 725 3.2.2 GCL c-Fos

726 Next, we evaluated c-Fos in the GCL to gain insight into whether MC excitation or inhibition  
727 influenced the activity of GCs. Past studies found that the vast majority of c-Fos-immunoreactive  
728 cells in the GCL after exploration of novel objects express markers of GCs rather than  
729 GABAergic neurons (Duffy et al., 2013; Bernstein et al., 2019), so we infer c-Fos-  
730 immunoreactive cells in the GCL were GCs below. Notably, GABAergic neurons do not appear  
731 to express c-Fos readily after these behaviors (Duffy et al., 2013; Moretto et al., 2017; Bernstein  
732 et al., 2019), limiting what can be concluded about their roles.

733 A two-way ANOVA revealed a significant effect of treatment ( $F(2,50)=11.24$ ,  $p<0.001$ ). Tukey's  
734 post-hoc test indicated that iDREADD mice ( $17.07 \pm 2.13$  cells) had a greater average number  
735 of c-Fos-immunoreactive cells in the GCL compared to control ( $9.60 \pm 1.68$  cells) and  
736 eDREADD mice ( $9.67 \pm 0.98$  cells; all  $p$  values  $<0.001$ ; Figure 10D). This result suggests that  
737 GCs are activated by iDREADD treatment. One explanation is that iDREADD treatment reduces  
738 the activity in the indirect MC→GABAergic neuron→GC pathway, resulting in a net increase in  
739 GC activation, which is a hypothesis supported by prior studies that suggest MC loss promotes  
740 GC excitability (Sloviter, 1991; Jinde et al., 2012).

741 We also observed a main effect of septotemporal location ( $F(1,50)=6.66$ ,  $p=0.012$ ) on coronal  
742 GCL c-Fos immunoreactivity. This effect was attributable to rostral sections having greater c-  
743 Fos immunoreactivity than caudal sections (Figure 10E), consistent with past studies (Bernstein  
744 et al., 2019). In rostral coronal sections, Tukey's post-hoc tests found that number of c-Fos cells  
745 in the GCL was greater in iDREADD mice ( $18.85 \pm 2.69$  cells) compared to control ( $11.54 \pm 1.74$   
746 cells) and eDREADD mice ( $11.65 \pm 1.25$  cells; all  $p$  values  $<0.017$ ; Figure 10E). Similarly, in

747 caudal coronal sections, the number of c-Fos cells in the GCL was significantly greater in  
748 iDREADD mice ( $15.30 \pm 2.06$  cells) compared to control ( $7.67 \pm 1.80$  cells) and eDREADD mice  
749 ( $7.71 \pm 0.89$  cells; all  $p$  values  $<0.013$ ; Figure 10E).

750 We also evaluated the number of c-Fos cells in the GCL of horizontal sections. A two-way  
751 ANOVA revealed significant effect of treatment ( $F(2,50)=10.91$ ,  $p<0.001$ ), septotemporal  
752 location ( $F(1,50)=26.90$ ,  $p<0.001$ ), and a significant interaction ( $F(2,50)=7.112$ ,  $p=0.001$ ).  
753 Tukey's post-hoc tests showed that iDREADD mice had a greater number of c-Fos  
754 immunoreactive cells in the GCL ( $9.87 \pm 1.01$  cells) compared to control ( $6.59 \pm 0.88$  cells) and  
755 eDREADD mice ( $5.24 \pm 0.62$  cells; all  $p$  values  $<0.031$ ; Figure 10I). For dorsal horizontal  
756 sections, the average number of c-Fos cells in the GCL was significantly greater in iDREADD  
757 mice ( $14.22 \pm 1.44$  cells) compared to control ( $7.20 \pm 1.09$  cells) and eDREADD mice ( $6.76 \pm$   
758  $1.17$  cells; all  $p$  values  $<0.001$ ; Figure 10J). In the most ventral horizontal sections, there were  
759 no significant differences between eDREADD, iDREADD and control mice (all  $p$  values  $>0.264$ ).

760 In summary, the results show contrasting effects of DREADDs on the DG circuit. The MC c-Fos  
761 data suggest that eDREADDs significantly increased MC activity as one would predict, given the  
762 excitatory actions of eDREADDs. However, iDREADDs did not have the opposite effect,  
763 presumably due to the low levels of MC c-Fos in control mice.

764 Regarding GC c-Fos, the results can be explained by the two circuits that MCs use to influence  
765 GCs: the direct MC-GC pathway which excites GCs and the indirect MC $\rightarrow$ GABAergic  
766 neuron $\rightarrow$ GC pathway which inhibits GCs (Figure 1E). The indirect pathway appears to  
767 dominate under standard conditions (Jinde et al., 2012; Hsu et al., 2016; Bui et al., 2018; Yeh et  
768 al., 2018). After eDREADD activation by CNO, there would be greater activation of both the  
769 direct and indirect pathways which appeared to cause no net change in GC c-Fos (Figure 11A).  
770 In contrast, iDREADD inhibition of MCs might be effective in reducing the indirect pathway and  
771 disinhibit GCs (Figure 11B). Then when an animal is exposed to novel objects, excitatory input  
772 from entorhinal cortex (carrying spatial and object information; Eichenbaum et al., 2012; Knierim  
773 et al., 2014; Knierim and Neunuebel, 2016) would be much more likely to cause GC firing.

774 Taken together, the results of eDREADD and iDREADD treatment are consistent with a relative  
775 dominance of the indirect pathway under standard conditions (Figure 11). If one now turns to  
776 the implications for behavior, the c-Fos results suggest that increased MC activity by  
777 eDREADDs may cause competing effects on the direct and indirect pathways. If the indirect  
778 pathway is normally dominant, GCs would be more inhibited. That effect appears to worsen

779 some anxiety-like behaviors and cognitive tasks. Conversely, inhibition of MCs would lead to  
780 more activity of GCs if the indirect pathway is dominant. That effect appeared to lessen some of  
781 the anxiety-like behaviors and improve some of the cognitive tasks. The implication is that more  
782 GC activity improves some types of behavior, consistent with increased GC firing allowing a  
783 greater DG influence in the networks regulating behavior. Another possibility is that increased  
784 GC activity promotes GC expression of activity-dependent transcription factors underlying  
785 synaptic plasticity, and greater encoding of experience within the DG.

786 **4. DISCUSSION**

787 The present study examined the role of MCs in cognitive and anxiety-like behaviors using a  
788 gain- and loss-of function approach. Remarkably, exciting versus inhibiting MCs produced  
789 opposing behavioral effects in several tasks (e.g., CFC, NOR, HCNOE, NSF). Exciting or  
790 inhibiting MCs also resulted in behaviors that were significantly different from control mice in  
791 several tasks (e.g., CFC, NOR, HCNOE, NSF, LDB, EPM). These results support the  
792 hypothesis that MCs influence cognitive and anxiety-like behaviors in mice.

793 **4.1 MCs influence cognitive behaviors**

794 There has been a lot of work to understand the role of MCs in DG functions related to spatial  
795 navigation, spatial memory and a widely discussed function of the DG known as pattern  
796 separation (Danielson et al., 2017; GoodSmith et al., 2017; Senzai and Buzsaki, 2017;  
797 GoodSmith et al., 2019; Jung et al., 2019). Past studies have also addressed how MCs and  
798 GCs interact with area CA3 to support these functions (Penttonen et al., 1997; Lisman, 1999;  
799 Scharfman, 2007a; Myers and Scharfman, 2009; Myers and Scharfman, 2011; Knierim and  
800 Neunuebel, 2016; GoodSmith et al., 2019). There also are a number of studies which  
801 addressed the role of MCs in functions of the DG related to novelty, both novelty in location and  
802 object novelty (Jinde et al., 2012; Duffy et al., 2013; Moretto et al., 2017; Bernstein et al., 2019)  
803 but methods involved neuronal damage to MCs, or only used anatomical methods.

804 Therefore, the results are timely. For the tests we discuss as 'cognitive', we investigated  
805 contextual memory (CFC) and novel object tests (NOR, NOL, HCNOE). The results show that  
806 exciting MCs with eDREADDs significantly impaired contextual fear learning and memory. Our  
807 finding contrasts with Jinde and colleagues (Jinde et al., 2012) who reported that ablation of  
808 MCs impaired contextual discrimination. However, Jinde et al. used a different task and reduced  
809 MC activity through MC ablation which are likely to cause complex secondary changes.

810 We found few effects in NOL but robust effects in NOR and HCNOE. In NOL, exciting or  
811 inhibiting MCs had no significant effects on the training or testing DI in the NOL task. In contrast,  
812 exciting MCs significantly impaired the NOR testing DI without an effect on the training DI. Our  
813 results differ from (Bui et al., 2018), who reported that MC photoinhibition during the learning  
814 phase of an object location task impaired location memory, without an effect on object  
815 recognition learning and memory. Notably, methodological differences may account for the  
816 discrepancies. For example, Bui and colleagues moved the object location approximately half  
817 the distance as in the present study, which is notable because it has been reported that the DG  
818 is critical for small but not large spatial discrimination (Clelland et al., 2009; Schmidt et al.,  
819 2012). This idea is supported by a recent optogenetic study that reported MCs were sensitive to  
820 small but not large spatial displacement in a touchscreen task (Jung et al., 2019). Our results  
821 also differ from Bui et al. (Bui et al., 2018) in that their training and testing interval was 24 hours  
822 and photoinhibition was sensitive to learning. In contrast, our training and testing interval was  
823 one hour apart and CNO was injected before training. The effects of DREADDs after CNO  
824 injection are known to last for several hours (Smith et al., 2016), and therefore our approach  
825 provided sustained DREADD effects.

826 In HCNOE, inhibiting and exciting MCs resulted in the highest and lowest levels of object  
827 exploration, respectively. These results support the view that eDREADDs interfere with  
828 processing information about novelty, whereas iDREADDs facilitate exploration. If MCs excite  
829 the circuit too much or for too long, adverse effects would seem likely, as recent study  
830 demonstrates (Botterill et al., 2019). If iDREADDs are anxiolytic, then it seems reasonable that  
831 animals would explore more.

#### 832 **4.2.1 MCs influence anxiety-like behaviors**

833 There is good reason to examine MCs in anxiety-like behavior. One reason is the DG appears  
834 to regulate the response to behavioral stress and associated anxiety-like behavior, especially  
835 the ventral DG (Anacker et al., 2018). Importantly, MCs in dorsal DG project to ventral DG  
836 (Scharfman, 2016). Also, MCs appear to have a role in depression (Oh et al., 2019) which  
837 usually occurs with anxiety. MCs express genes that are linked to schizophrenia (Scharfman  
838 and Bernstein, 2015; Yuan et al., 2015), which is a disease with anxiety (Temmingh and Stein,  
839 2015). In addition, the DG is influenced by behavioral stress (McEwen et al., 2016), which often  
840 leads to anxiety, and stress can reduce c-Fos in MCs (Moretto et al., 2017).

#### 841 **4.2.2 MCs have a role in anxiety**

842 Although there have been several studies about the role of MCs in functions of the DG related  
843 to cognition (see Section 4.1), fewer studies have addressed the role of MCs in anxiety-like  
844 behavior. Also, few studies have examined both anxiety-like behavior and cognition in the same  
845 study. Therefore, our results led to some significant insights.

846 First, the results suggest that MCs have a role in anxiety-like behavior, but it appears to be  
847 selective. This notion is consistent with DG functions, which are critical only to some types of  
848 anxiety-like behavior. DREADD effects were found in tasks that are commonly used to probe  
849 anxiety (NSF, LDB, EPM) except OFT. Notably, a recent study also reported trends but no  
850 significant effects of DREADDs on MCs in OFT (Oh et al., 2019). However, Jinde and  
851 colleagues reported that ablation of MCs resulted in anxiety-like phenotypes in the OFT (Jinde  
852 et al., 2012), but there were methodological limitations as described above.

853 In many tasks we tested, iDREADDs were anxiolytic but eDREADDs were anxiolytic in the  
854 EPM. A similar anxiolytic effect of MC excitation in the EPM was recently reported (Oh et al.,  
855 2019). In contrast, (Bui et al., 2018) found no effect of MC inhibition in the EPM, but their  
856 methods were much different.

857 Taken together, tasks that involved animals moving into a large open field or elevated area  
858 without objects (OFT, EPM) seemed to show different results from tasks that involved a smaller  
859 area (LDB, HCNOE), or involved objects (NSF, HCNOE). Therefore, the context of a large open  
860 space may influence when MCs are involved. The importance of objects is consistent with the  
861 role of the DG in differentiating contexts in CFC but not cued conditioning (Phillips and LeDoux,  
862 1992).

#### 863 **4.2.3 The role of MCs in anxiety could regulate cognitive performance**

864 The results suggest a hypothesis: the role of MCs in cognition could be related to the MC role in  
865 anxiety-like behavior. This hypothesis is suggested by the data showing that iDREADDs often  
866 decreased anxiety-like behavior, and iDREADDs also improved performance on some cognitive  
867 tasks. Conversely, eDREADDs often worsened cognitive tasks. It is intriguing to consider that  
868 cognitive functions of the DG could be gated by the degree of anxiety, and the gate could  
869 involve MCs.

#### 870 **4.3 Roles of MC and GC activity in behavior**

871 A common question is how DG circuitry is involved in anxiety-like and cognitive behavior. Past  
872 studies and the c-Fos data presented here provide a working hypothesis. Thus, two pathways  
873 have been proposed to explain MC effects on GCs, the direct excitatory MC→GC pathway and

874 the indirect inhibitory MC→GABAergic neuron→GC pathway (Figure 1E). Prior work suggests a  
875 relative dominance of the indirect pathway over the direct pathway under standard conditions  
876 (Sloviter, 1991; Jinde et al., 2012; Hsu et al., 2016; Bui et al., 2018; Yeh et al., 2018). Our data  
877 showing that eDREADDs led to little effect on GC c-Fos suggests that increasing the already  
878 strong inhibition of GCs did not have much effect (Figure 11A). However, eDREADDs did have  
879 adverse effects behaviorally, presumably because synchronous, sustained activation of the  
880 majority of MCs is nonphysiological and therefore disrupts normal DG function.

881 Use of iDREADDs to inhibit a large number of MCs led to a robust excitatory effect on GC c-  
882 Fos, suggesting iDREADDs reduced the indirect inhibitory pathway and this led to GC excitation  
883 (Figure 11B). Here the behavioral effect was positive, possibly because the E:I balance of GCs  
884 is normally biased toward inhibition, and for optimal behavior a little more GC activity is  
885 beneficial.

#### 886 **4.4 Sex-dependent behavioral effects.**

887 The majority of studies to date on MCs have focused on male subjects, which is problematic  
888 because females and males have different basal anxiety-like behavior and often utilize different  
889 cognitive strategies than male subjects (Galea et al., 2017). Examples of female-specific effects  
890 include fear learning and memory in the CFC, more robust exploration in the HCNOE task,  
891 latency to feed in the NSF, time in the center of the OFT, and distance traveled in the EPM.  
892 These data suggest that previous studies, which typically used males only, might have  
893 underestimated behavioral effects of MCs by focusing on male subjects alone.

894 There are reasons why some effects might have been more robust in females. For example,  
895 estrogen increases the neurotrophin brain-derived neurotrophic factor (BDNF) in GCs, which is  
896 important to the DG because BDNF regulates DG structure, function, and plasticity (Harte-  
897 Hargrove et al., 2013; Scharfman and MacLusky, 2014). Higher BDNF protein in GC axons  
898 (mossy fibers) increases activation of CA3 by GCs and improves NOL performance (Scharfman  
899 et al., 2003; Scharfman, 2007b; Skucas et al., 2013). BDNF is particularly relevant to MCs  
900 because MCs exhibit a BDNF-dependent form of long-term potentiation specifically at MC→GC  
901 synapses (Hashimotodani et al., 2017).

#### 902 **4.5 Implications for disease**

903 One of the central hypotheses about MCs in disease is about temporal lobe epilepsy (TLE),  
904 where it has been shown that substantial loss of MCs occurs (Scharfman, 2016). Removal of  
905 MCs from the circuitry has been suggested to promote epilepsy because there is reduced

906 activity of the MC→GABAergic neuron→GC pathway (Sloviter et al., 2003). As a result, GCs  
907 become hyperexcitable and lead to hyperexcitability in hippocampus. Support for this  
908 hypothesis, and alternative hypotheses, have been presented intermittently since the 1990's  
909 (Sloviter et al., 2003; Ratzliff et al., 2004; Jinde et al., 2012; Scharfman, 2016; Bui et al., 2018).  
910 In contrast to the view that MC loss has adverse effects in TLE, the data provided here suggest  
911 this is not true in the normal brain, where inhibiting MCs had some beneficial effects and  
912 exciting MCs has some adverse effects. The different roles of MCs in disease compared to  
913 normal conditions might be due to large changes in the DG in TLE (de Lanerolle et al., 2012;  
914 Dingledine et al., 2017; Danzer, 2018), but it is also possible that the role of MCs changes  
915 radically, depending on the behavior.

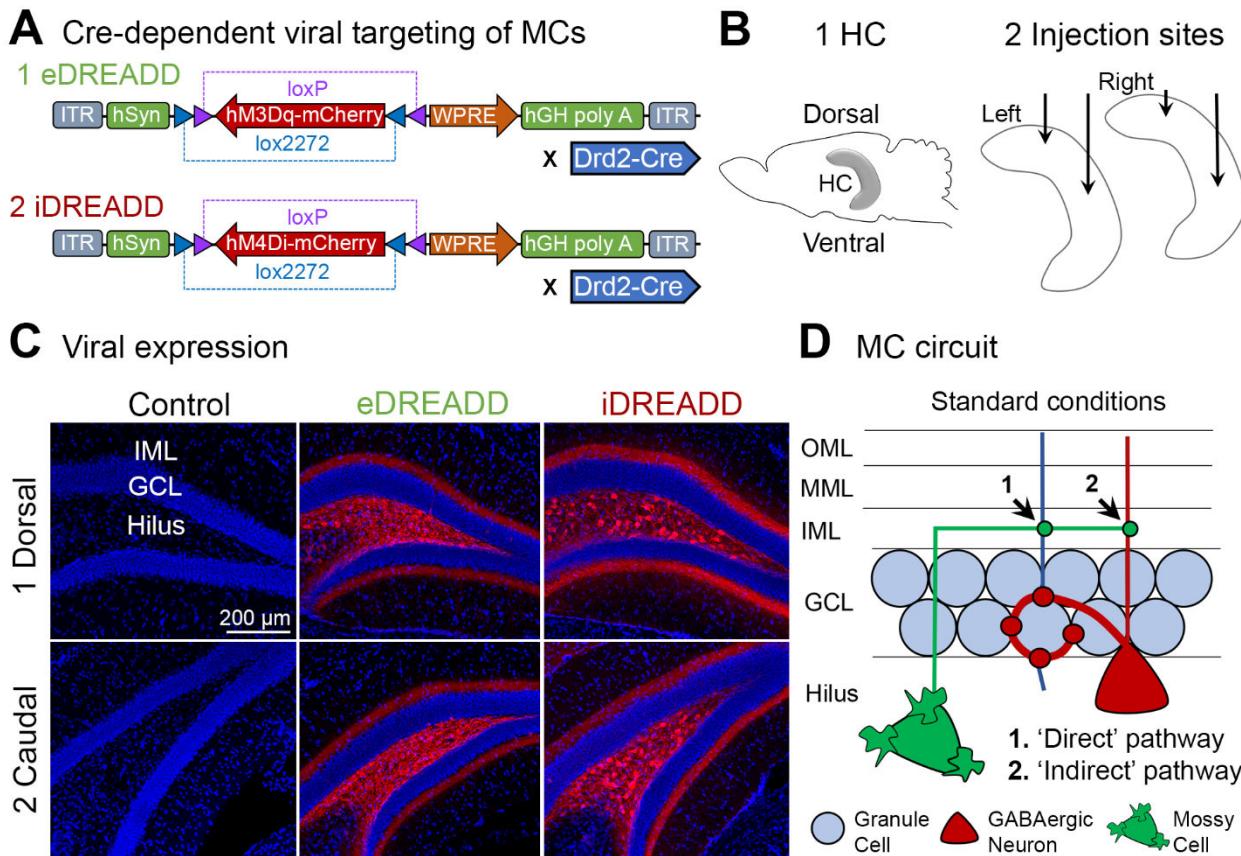
## 916 **5 CONCLUSIONS**

917 Here, we used a gain- and loss-of function approach to study MCs in cognitive and affective  
918 behaviors in female and male mice. Manipulations of MCs led to altered behavioral responses in  
919 numerous cognitive and anxiety-like behaviors. Furthermore, exciting vs inhibiting MCs led to  
920 distinct patterns of hilar and GC c-Fos immunoreactivity, indicating that MC activity influences  
921 the DG. Collectively, this study provides evidence that MCs influence cognitive and anxiety-like  
922 behaviors in male and female mice.

## 923 **6 DATA AVAILABILITY STATEMENT**

924 The datasets generated for this study are available upon request to the corresponding author.

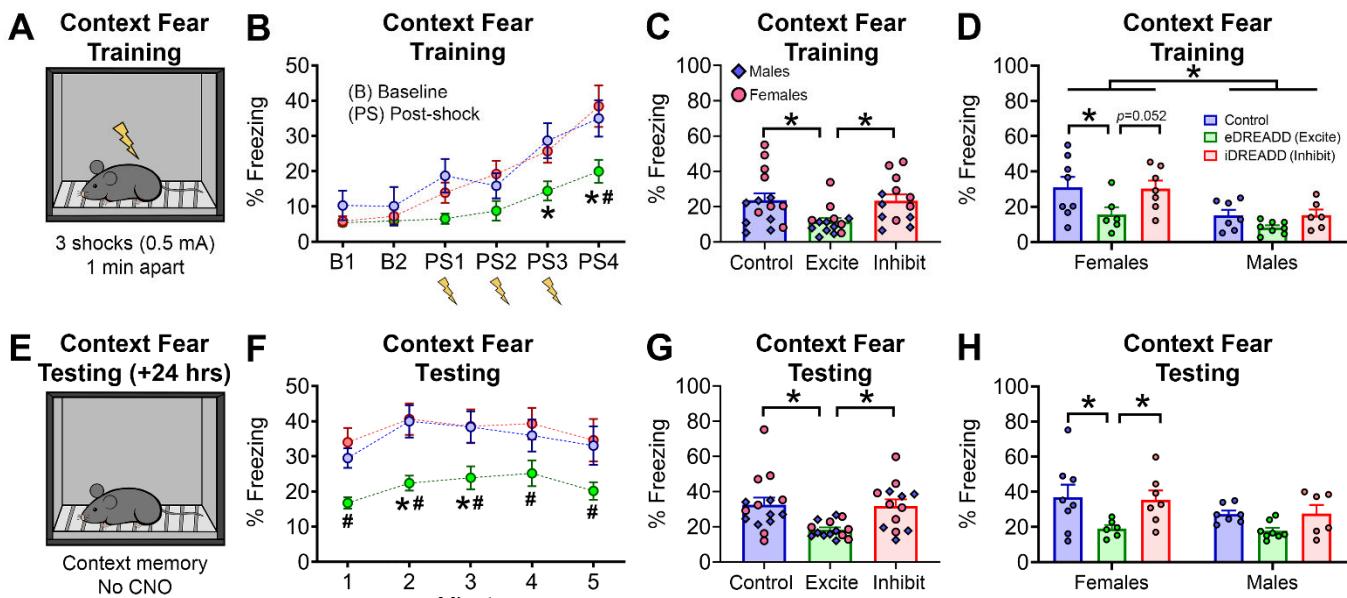
## 925 **7 CONFLICTS OF INTEREST**


926 The authors declare that the research was conducted in the absence of any commercial or  
927 financial relationships that could be construed as a potential conflict of interest.

## 928 **8 AUTHOR CONTRIBUTIONS**

929 *Conceptualization*: JJB, KYV, HES. *Data collection and analysis*: JJB, KYV, KJG, CMT, JJL.  
930 *Wrote the manuscript*: JJB, KYV, HES. All authors reviewed and approved the manuscript.

## 931 **9 FUNDING**


932 This work was supported by the New York State Office of Mental Health and NIH R01 MH-  
933 109305 to HES. JJB was supported by postdoctoral fellowships from the Natural Sciences and  
934 Engineering Research Council of Canada (NSERC).



935

936

**Figure 1. Experimental design**  
**(A)** Viral constructs used for **(A1)** gain-of-function (excitatory DREADD; eDREADD) and **(A2)** loss-of-function (inhibitory DREADD; iDREADD) experiments. **(B1)** Schematic of the hippocampus. **(B2)** 160nL of virus was injected into the rostral and caudal hippocampus, bilaterally. **(C)** Representative viral expression in **(C1)** dorsal and **(C2)** caudal coronal sections of control, eDREADD, and iDREADD mice. Inner molecular layer (IML), granule cell layer (GCL). Scale bar: 200 $\mu$ m. **(D)** Simplified MC circuit diagram. (1) MCs excite GCs through a monosynaptic 'direct' pathway. (2) MCs also inhibit GCs through an 'indirect' MC $\rightarrow$ GABAergic neuron $\rightarrow$ GC inhibitory pathway. The indirect inhibitory pathway is thought to dominate the direct excitatory pathway under normal conditions.



945

946

947

948

949

950

951

952

953

954

955

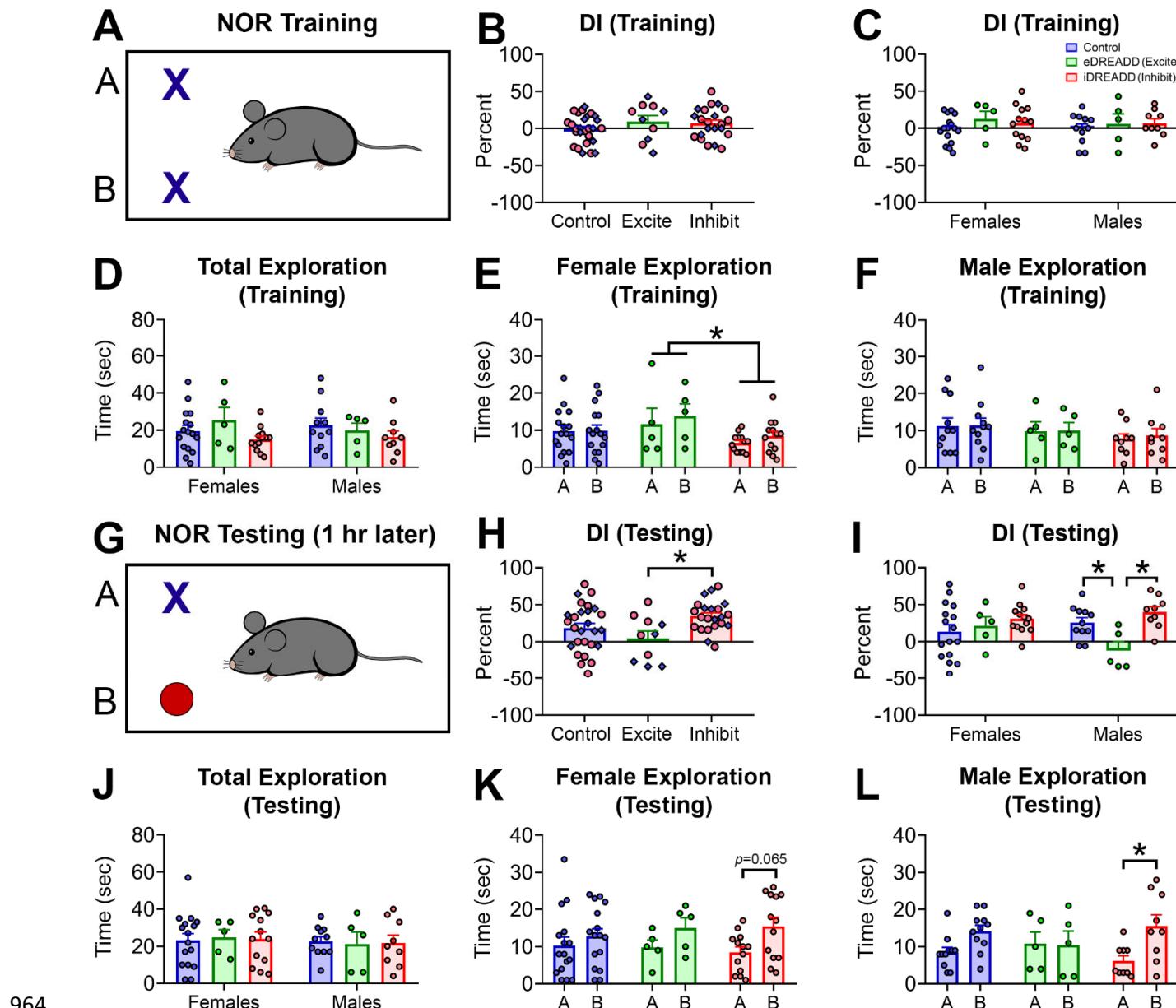
956

957

958

959

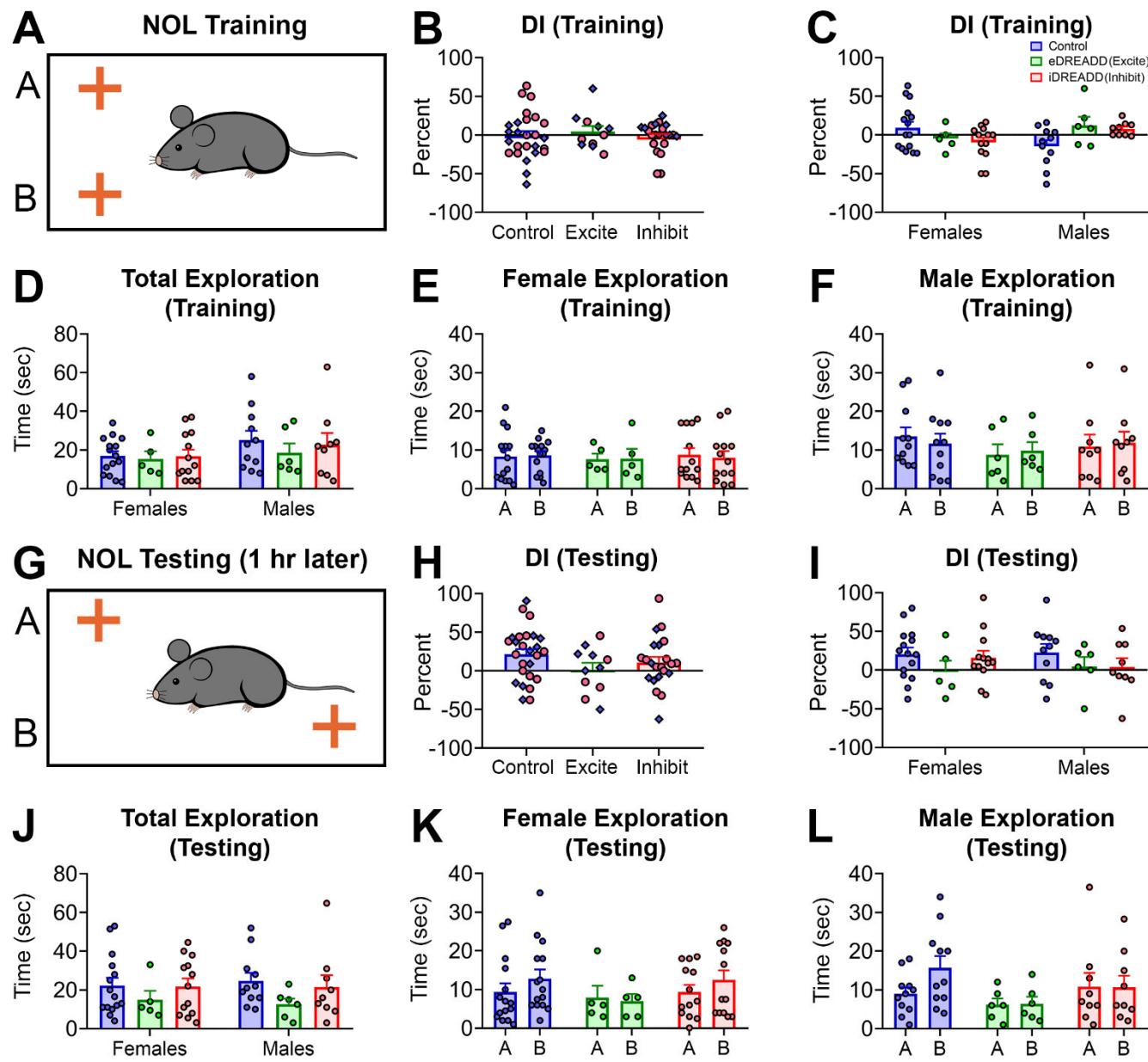
960


961

962

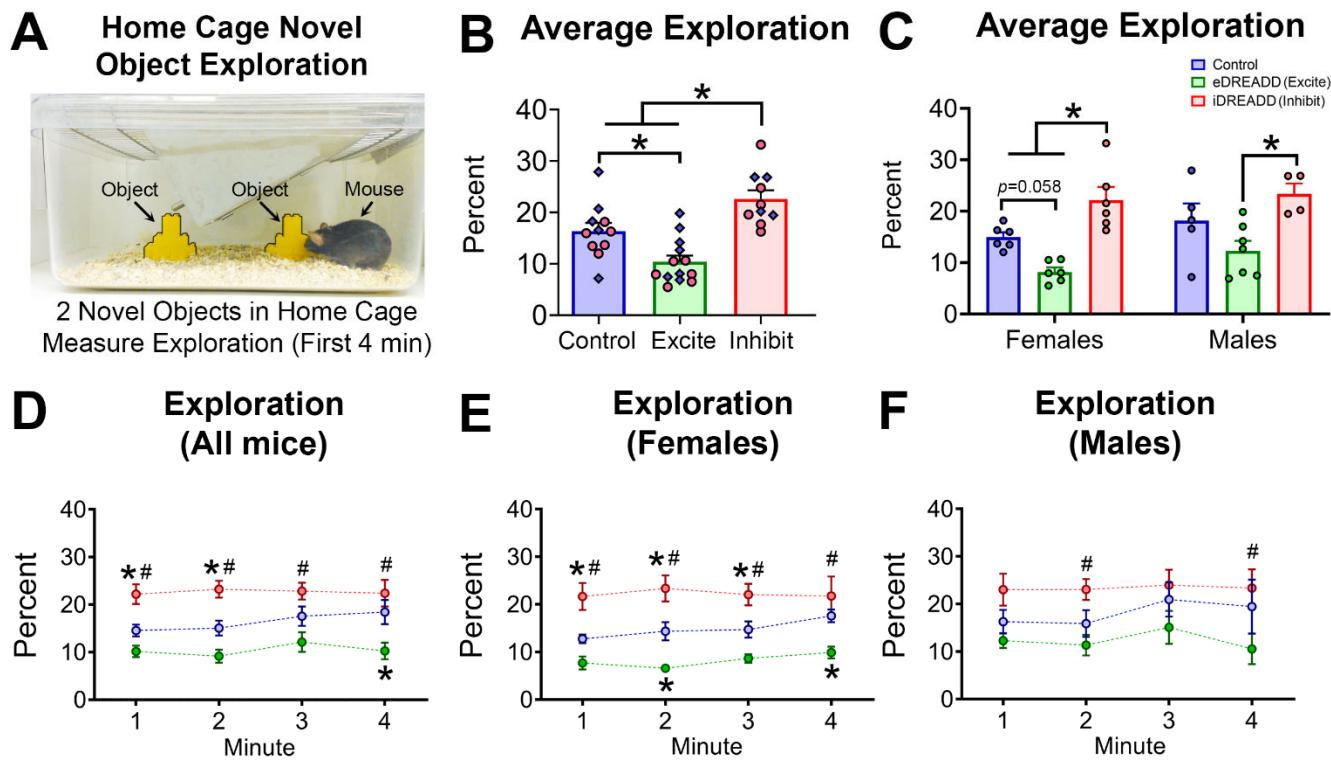
963

**Figure 2. CFC in control, eDREADD and iDREADD mice.**


(A) Mice were placed in a fear conditioning chamber and 3 footshocks (0.5mA) were delivered 1 minute apart. (B) Minute by minute analysis of the training session found no effect of treatment on baseline freezing (B1 & B2) or freezing during the first 2 post-shock minutes (PS1 & PS2). The eDREADD mice froze significantly less than controls in the third post-shock minute (PS3;  $p=0.017$ ) and less than control and iDREADD mice in the fourth minute (PS4; all  $p$  values  $<0.011$ ). (C) When data were averaged across all post-shock minutes, eDREADD mice froze significantly less than control and iDREADD mice (all  $p$  values  $<0.037$ ). (D) Female eDREADD mice froze significantly less than female control mice ( $p=0.036$ ) and female iDREADD mice had a similar pattern ( $p=0.052$ ). There was a sex difference in training, with female mice freezing significantly more than male mice ( $p<0.001$ ). Also, there was no significant effect of treatment in the male cohort. (E) Mice were returned to the same fear conditioning apparatus 24 hours later to assess fear memory. (F) Minute by minute analysis of the first 5 minutes of the context test showed that eDREADD mice froze less than iDREADD (all  $p$  values  $<0.047$ ) and control mice (all  $p$  values  $<0.033$ ). (G) When freezing behavior was averaged across the entire test duration, eDREADD mice showed significantly less freezing than control and iDREADD mice (all  $p$  values  $<0.011$ ). (H) There was a significant effect of treatment in the female cohort, whereby eDREADD mice froze significantly less than control and iDREADD mice (all  $p$  values  $<0.043$ ). There was no effect of treatment in the male cohort. Data are represented as mean  $\pm$  SEM. \* denotes  $p<0.05$ . In panels B & F, \* denotes significantly different from control ( $p<0.05$ ), while # denotes iDREADD significantly different from eDREADD ( $p<0.05$ ).



964

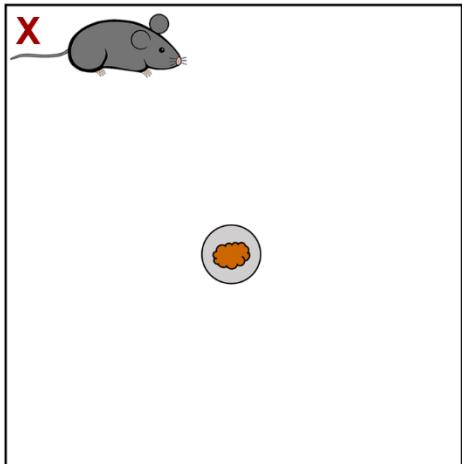

965 **Figure 3. NOR in control, eDREADD and iDREADD mice.**

966 (A) In NOR training, mice explored two identical novel objects for 5 minutes. (B) There was no effect of treatment  
967 on the training discrimination index (DI) when both sexes were pooled. (C) There was no effect of treatment on  
968 training DI in male and female cohorts. (D) There was no effect of treatment on the total time spent exploring  
969 objects ("A" + "B") during NOR training in female and male cohorts. (E) Female iDREADD mice spent significantly  
970 less time exploring objects than female eDREADD mice during NOR training ( $p=0.044$ ). (F) Male mice did not  
971 differ by treatment on time spent exploring object "A" versus "B" during training. (G) Mice were tested for object  
972 recognition memory one hour after training by replacing object "B" with a novel object. (H) iDREADD mice had a  
973 significantly greater testing DI than eDREADD mice ( $p=0.013$ ). (I) Testing DI did not differ by treatment in female  
974 mice. However, male control and iDREADD mice had a significantly greater testing DI than eDREADD mice (all  $p$   
975 values  $<0.034$ ). (J) Female and male mice did not differ by treatment in total object exploration during testing. (K)  
976 There was no effect of treatment in female mice on the time spent exploring object "A" versus "B" during testing  
977 (all  $p$  values  $>0.065$ ). (L) Male iDREADD mice spent significantly more time exploring object "B" than "A" during  
978 testing ( $p=0.008$ ).



**Figure 4. NOL in control, eDREADD and iDREADD mice.**

979  
980 (A) In NOL training, mice explored two identical novel objects for 5 minutes. (B) The overall NOL training  
981 discrimination index (DI) did not differ by treatment. (C) There was no effect of treatment on NOL training DI in the  
982 female and male cohorts. (D) Female and male mice did not differ in total object exploration time ("A" + "B") during  
983 training. (E-F) Female and male mice did not differ by treatment in the time spent exploring object "A" versus "B"  
984 during training. (G) Mice were tested for object location memory one hour later by moving object "B" to the other  
985 side of the testing arena. (H) There was no significant effect of treatment on the testing DI. (I) The testing DI did  
986 not differ by treatment in male and female cohorts. (J) Female and male mice did not differ in their total object  
987 exploration time during testing. (K-L) There was no effect of treatment in female and male mice on spent time  
988 spent exploring object "A" versus "B" during testing.

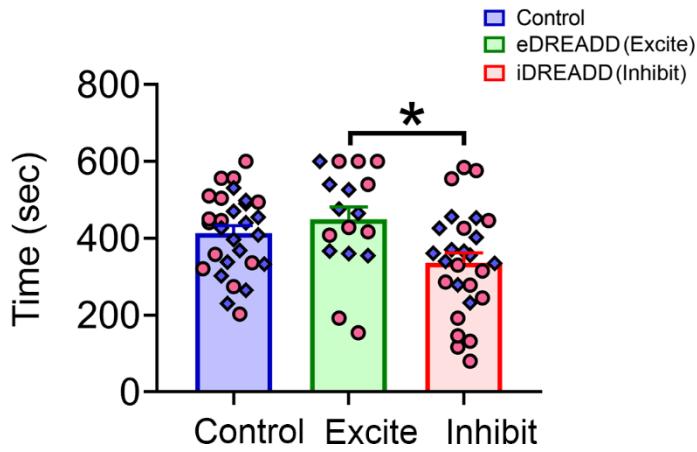



990

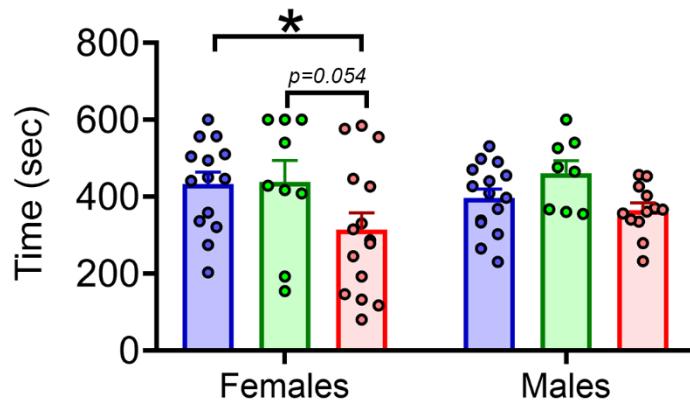
**Figure 5. HCNOE in control, eDREADD and iDREADD mice.**

991 (A) Two identical novel objects (yellow Legos, outlined in black; see arrows) were placed in the home cage.  
992 Object exploration was measured over the first 4 minutes. (B) There was an overall effect of treatment on object  
993 exploration, with iDREADD mice spending a greater percent of time exploring objects than control and eDREADD  
994 mice (all  $p$  values  $<0.019$ ). Furthermore, eDREADD mice spent less time exploring objects compared to control  
995 mice ( $p=0.010$ ). (C) There was a significant effect of treatment in the female cohort, with iDREADD mice spending  
996 a greater percent of time exploring than control and eDREADD mice (all  $p$  values  $<0.039$ ). Also, male iDREADD  
997 mice spent a greater time exploring objects than male eDREADD mice ( $p=0.003$ ). (D) Minute by minute analysis  
998 found that iDREADD mice spent a greater percent of time exploring than eDREADD mice for each of the 4  
999 minutes (all  $p$  values  $<0.001$ ) and greater exploration than control mice for the first 2 minutes (all  $p$  values  
1000  $<0.017$ ). Control mice also showed a greater percent of exploration than eDREADD mice during the fourth minute  
1001 ( $p=0.005$ ). (E-F) Minute by minute exploration in female and male mice. Overall, similar effects were observed as  
1002 in the pooled analysis shown in D. Thus, iDREADD mice generally showed greater exploration than eDREADD  
1003 mice and controls were often between the two treatment groups. In panels D-F, \* denotes significantly different  
1004 from control ( $p<0.05$ ), while # denotes iDREADD significantly different from eDREADD ( $p<0.05$ ).

## A Novelty Suppressed Feeding



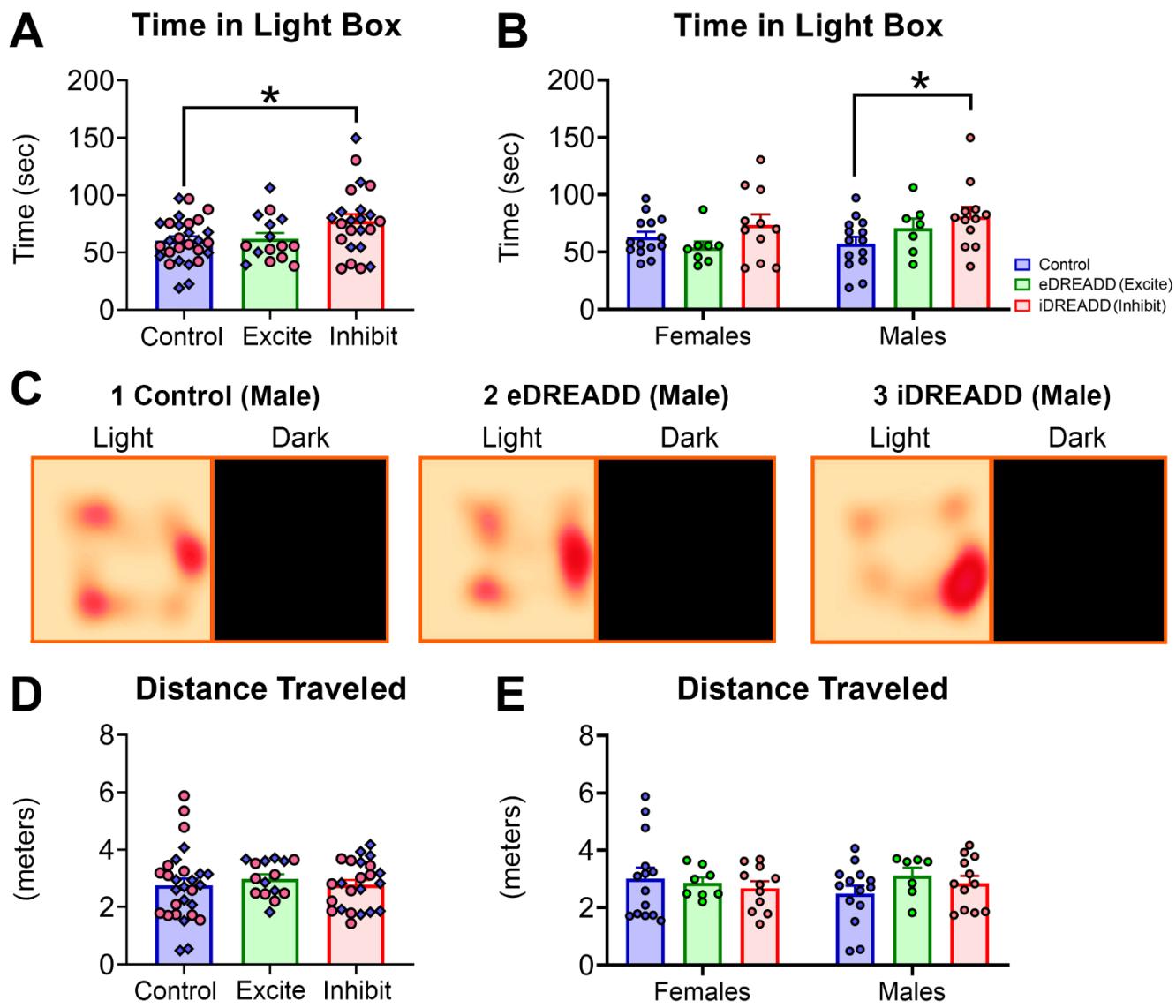

**Food deprived:** 24 hrs  
**Water deprived:** 2 hrs


 Food pellet

 Starting point

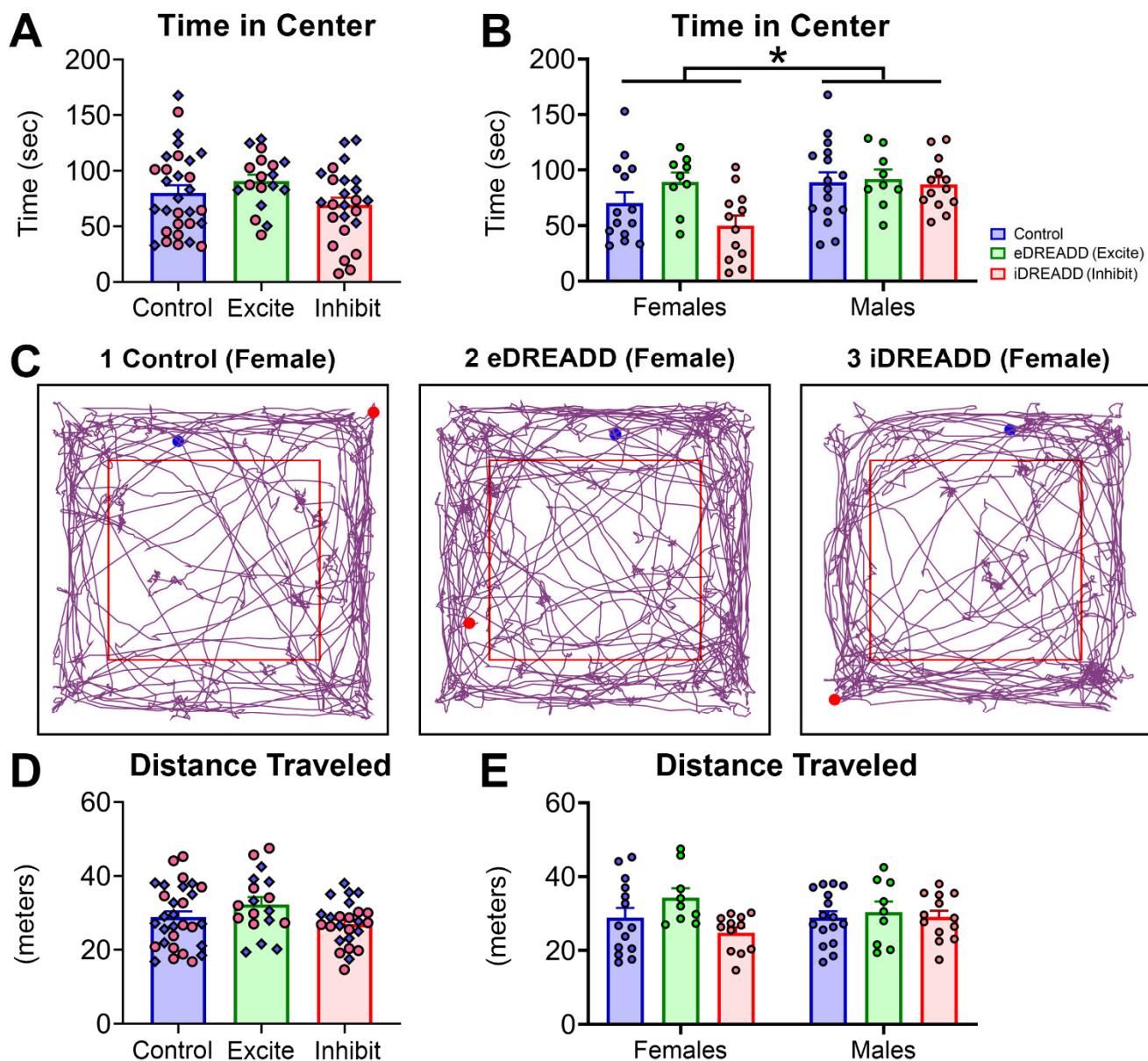
## B Latency to Feed




## C Latency to Feed

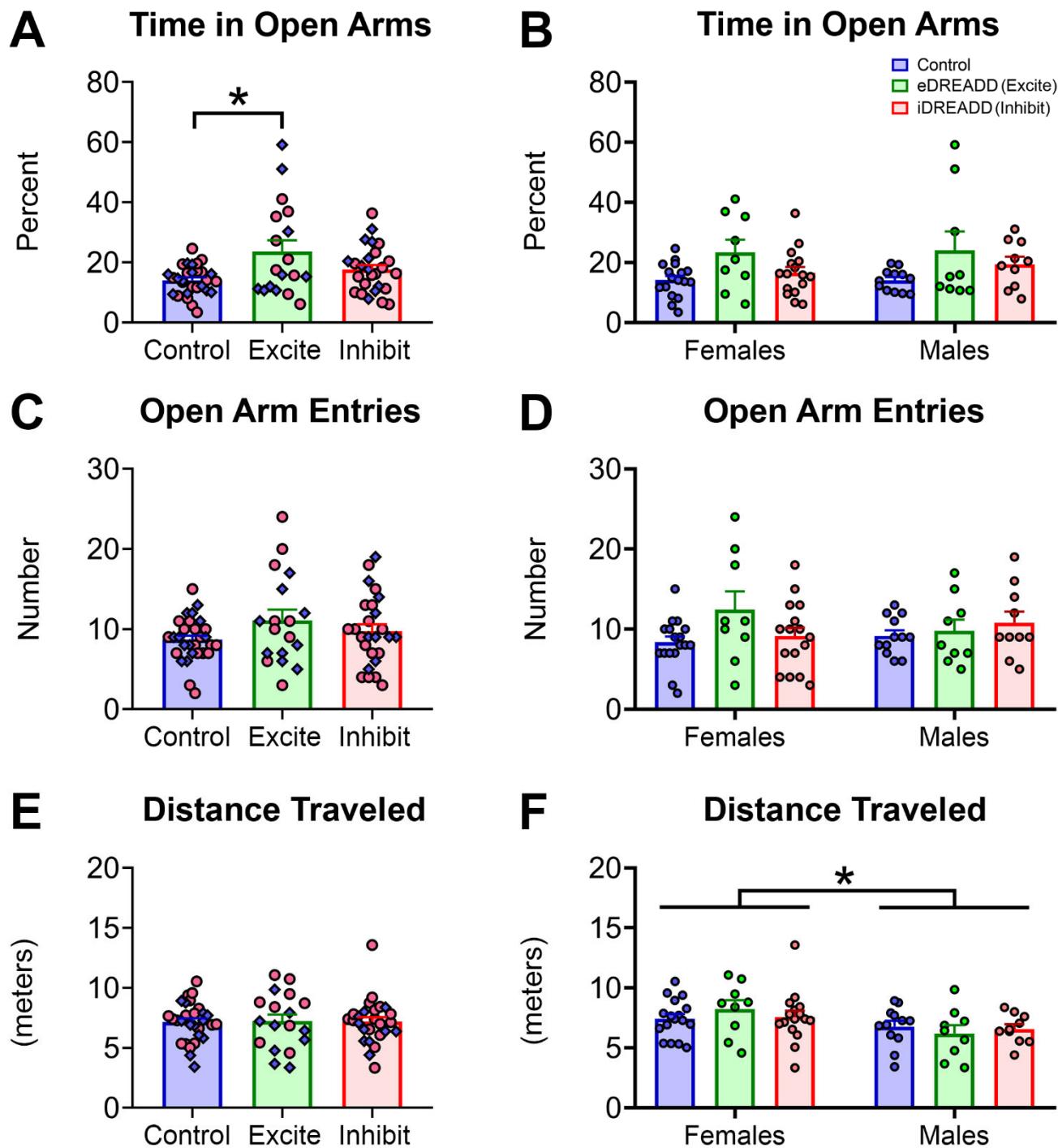


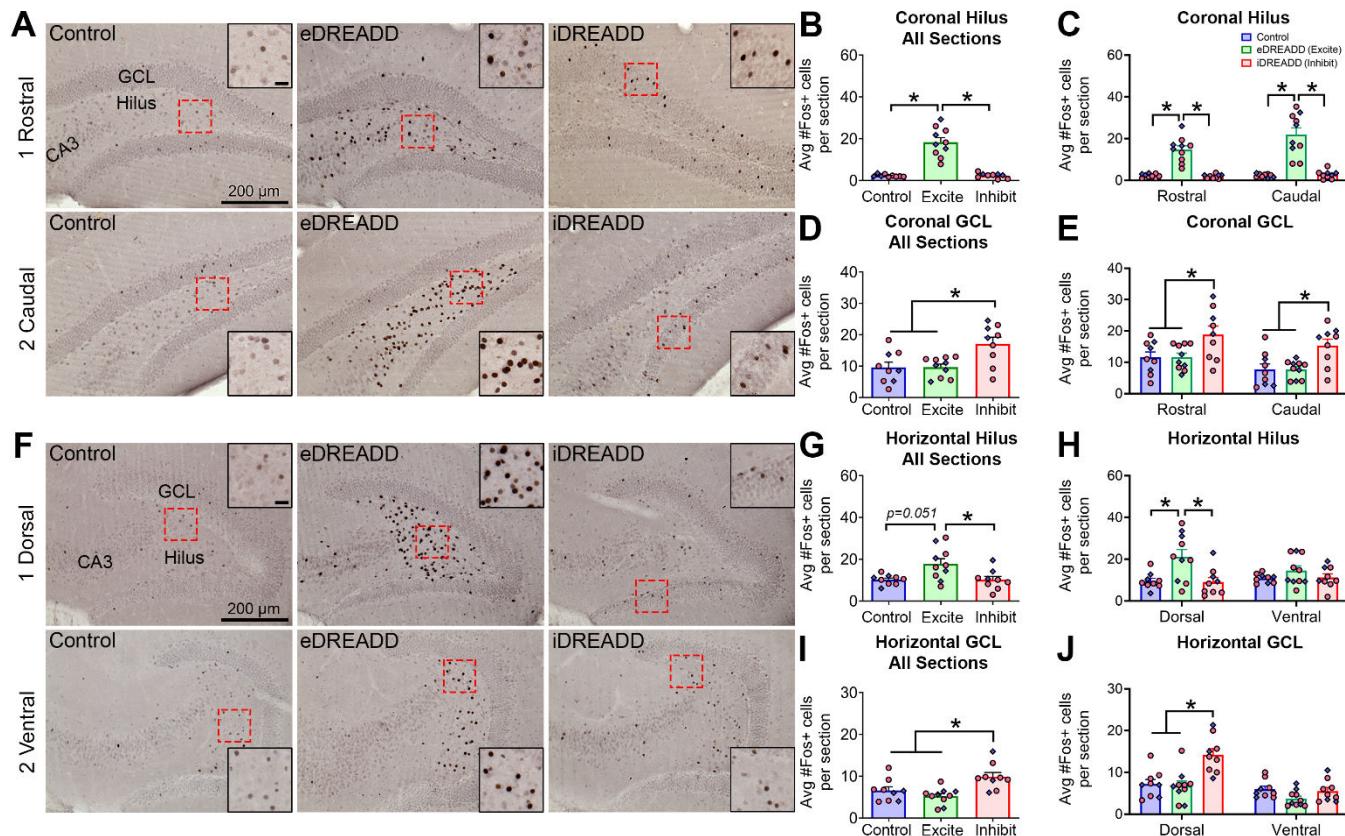
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014

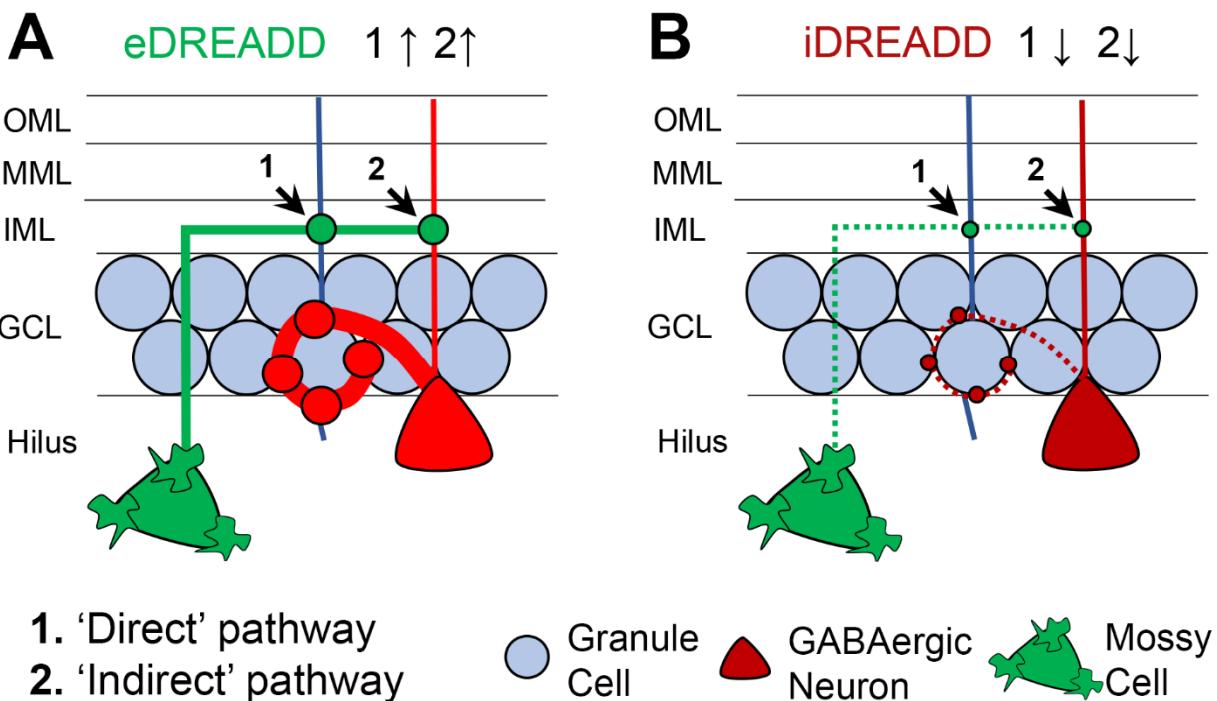

**Figure 6. NSF in control, eDREADD and iDREADD mice.**

(A) Mice were food deprived for 24 hours and water deprived for 2 hours before undergoing the NSF test. Mice were placed in the corner of a brightly illuminated novel arena ("X") and the latency to eat a food pellet in the arena was measured. (B) There was a significant effect of treatment, with iDREADD mice eating approximately 30% sooner than the eDREADD mice ( $p=0.015$ ). There were no other treatment differences in latency to feed. (C) Female iDREADD mice had a significantly shorter latency to feed compared to control mice ( $p=0.033$ ). No other significant treatment differences were found between female mice (all  $p$  values  $>0.054$ ). The latency to feed did not differ between treatments in male mice.




**Figure 7. LDB in control, eDREADD and iDREADD mice.**


1015  
1016 (A) iDREADD mice spent approximately 25% more time in the light compartment of the LDB compared to control  
1017 mice ( $p=0.036$ ). (B) There was no effect of treatment in female mice on the amount of time spent in the light  
1018 compartment of the LDB. However, male iDREADD mice spent more time in the light compartment of the LDB  
1019 compared to male control mice ( $p=0.037$ ). (C) Representative heat maps of male (C1) control, (C2) eDREADD,  
1020 and (C3) iDREADD mice in the light compartment of the LDB. (D-E) There was no effect of treatment on the  
1021 distance traveled in the light compartment of the LDB when subjects were pooled or separated by sex.  
1022




**Figure 8. OFT in control, eDREADD and iDREADD mice.**

(A) DREADD treatment had no significant effect on the amount of time spent in the center of the OFT. (B) Female mice spent significantly less time in the center of the OFT compared to males ( $p=0.011$ ). (C) Representative track map for female (C1) control, (C2) eDREADD, and (C3) iDREADD mice. Blue and red circles denote the start and end of the track path, respectively. (D) There was no difference in the total distance traveled during the OFT. (E) There was no difference in the total distance traveled during the OFT in female and male cohorts.







1058

1059

**Figure 11. DREADD effects on the MC circuit**

1060

**(A)** eDREADD treatment increases MC firing and neurotransmitter release, which would facilitate both the (1) direct MC $\rightarrow$ GC and (2) indirect MC $\rightarrow$ GABAergic neuron $\rightarrow$ GC pathways. Notably, eDREADD-treatment had a minimal effect on GCL c-Fos-ir, possibly due to opposing excitatory and inhibitory effects at the direct and indirect pathways, respectively. **(B)** iDREADD treatment inhibits MC firing and neurotransmitter release, which would reduce MC effects at the (1) direct MC $\rightarrow$ GC and (2) indirect MC $\rightarrow$ GABAergic neuron $\rightarrow$ GC pathways. The reduced drive at the direct and indirect pathways appeared to promote GC firing, since iDREADD-treated mice showed significantly greater GCL c-Fos immunoreactivity. This finding is supported by previous studies that suggest that MC loss promotes GC excitability (Sloviter, 1991; Jinde et al., 2012 but see Ratzliff et al., 2004).

1061

1062

1063

1064

1065

1066

1067

1068 **REFERENCES**

1069 Altemus M, Sarvaiya N, Neill Epperson C (2014) Sex differences in anxiety and depression clinical  
1070 perspectives. *Front Neuroendocrinol* 35:320-330.

1071 Anacker C, Hen R (2017) Adult hippocampal neurogenesis and cognitive flexibility - linking memory and  
1072 mood. *Nat Rev Neurosci* 18:335-346.

1073 Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, Chen B, Hen R (2018)  
1074 Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus.  
1075 *Nature* 559:98-102.

1076 Azevedo EP, Pomeranz L, Cheng J, Schneeberger M, Vaughan R, Stern SA, Tan B, Doerig K,  
1077 Greengard P, Friedman JM (2019) A role of Drd2 hippocampal neurons in context-dependent  
1078 food intake. *Neuron* 102:873-886 e875.

1079 Bailey KR, Crawley JN (2009) Anxiety-related behaviors in mice. In: *Methods of Behavior Analysis in*  
1080 *Neuroscience* (nd, Buccafusco JJ, eds). Boca Raton (FL).

1081 Bale TL, Epperson CN (2015) Sex differences and stress across the lifespan. *Nat Neurosci* 18:1413-  
1082 1420.

1083 Belviranli M, Atalik KE, Okudan N, Gokbel H (2012) Age and sex affect spatial and emotional behaviors  
1084 in rats: the role of repeated elevated plus maze test. *Neuroscience* 227:1-9.

1085 Bernstein HL, Lu YL, Botterill JJ, Scharfman HE (2019) Novelty and novel objects increase c-Fos  
1086 immunoreactivity in mossy cells in the mouse dentate gyrus. *Neural Plast* 2019:1815371.

1087 Bernstein HL, Lu YL, Botterill JJ, Duffy AM, LaFrancois J, Scharfman H (2020) Excitatory effects of  
1088 dentate gyrus mossy cells and their ability to influence granule cell firing: an optogenetic study  
1089 in adult mouse hippocampal slices. *bioRxiv* <https://doi.org/10.1101/2020.06.13.207844>.

1090 Botterill JJ, Brymer KJ, Caruncho HJ, Kalynchuk LE (2015a) Aberrant hippocampal neurogenesis after  
1091 limbic kindling: Relationship to BDNF and hippocampal-dependent memory. *Epilepsy Behav*  
1092 47:83-92.

1093 Botterill JJ, Guskjolen AJ, Marks WN, Caruncho HJ, Kalynchuk LE (2015b) Limbic but not non-limbic  
1094 kindling impairs conditioned fear and promotes plasticity of NPY and its Y2 receptor. *Brain*  
1095 *Struct Funct* 220:3641-3655.

1096 Botterill JJ, Fournier NM, Guskjolen AJ, Lussier AL, Marks WN, Kalynchuk LE (2014) Amygdala  
1097 kindling disrupts trace and delay fear conditioning with parallel changes in Fos protein  
1098 expression throughout the limbic brain. *Neuroscience* 265:158-171.

1099 Botterill JJ, Lu YL, LaFrancois JJ, Bernstein HL, Alcantara-Gonzalez D, Jain S, Leary P, Scharfman HE  
1100 (2019) An excitatory and epileptogenic effect of dentate gyrus mossy cells in a mouse model of  
1101 epilepsy. *Cell Rep* 29:2875-2889 e2876.

1102 Brymer KJ, Johnston J, Botterill JJ, Romay-Tallon R, Mitchell MA, Allen J, Pinna G, Caruncho HJ,  
1103 Kalynchuk LE (2020) Fast-acting antidepressant-like effects of Reelin evaluated in the repeated-  
1104 corticosterone chronic stress paradigm. *Neuropsychopharmacology*.

1105 Bui AD, Nguyen TM, Limouse C, Kim HK, Szabo GG, Felong S, Maroso M, Soltesz I (2018) Dentate  
1106 gyrus mossy cells control spontaneous convulsive seizures and spatial memory. *Science*  
1107 359:787-790.

1108 Clelland CD, Choi M, Romberg C, Clemenson GD, Jr., Fragniere A, Tyers P, Jessberger S, Saksida  
1109 LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal  
1110 neurogenesis in spatial pattern separation. *Science* 325:210-213.

1111 Danielson NB, Turi GF, Ladow M, Chavlis S, Petrantonakis PC, Poirazi P, Losonczy A (2017) In vivo  
1112 imaging of dentate gyrus mossy cells in behaving mice. *Neuron* 93:552-559 e554.

1113 Danzer SC (2018) Contributions of adult-generated granule cells to hippocampal pathology in temporal  
1114 lobe epilepsy: a neuronal bestiary. *Brain Plast* 3:169-181.

1115 de Lanerolle NC, Lee TS, Spencer DD (2012) Histopathology of human epilepsy. In: Jasper's Basic  
1116 Mechanisms of the Epilepsies (th, Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-  
1117 Escueta AV, eds). Bethesda (MD).

1118 Demireva EY, Suri D, Morelli E, Mahadevia D, Chuhma N, Teixeira CM, Ziolkowski A, Hersh M, Fifer J,  
1119 Bagchi S, Chemiakine A, Moore H, Gingrich JA, Balsam P, Rayport S, Ansorge MS (2018) 5-

1120 HT2C receptor blockade reverses SSRI-associated basal ganglia dysfunction and potentiates  
1121 therapeutic efficacy. *Mol Psychiatry*.

1122 Dingledine R, Coulter DA, Fritsch B, Gorter JA, Lelutiu N, McNamara J, Nadler JV, Pitkanen A,  
1123 Rogawski MA, Skene P, Sloviter RS, Wang Y, Wadman WJ, Wasterlain C, Roopra A (2017)  
1124 Transcriptional profile of hippocampal dentate granule cells in four rat epilepsy models. *Sci Data*  
1125 4:170061.

1126 Donner NC, Lowry CA (2013) Sex differences in anxiety and emotional behavior. *Pflugers Arch*  
1127 465:601-626.

1128 Duffy AM, Schaner MJ, Chin J, Scharfman HE (2013) Expression of c-fos in hilar mossy cells of the  
1129 dentate gyrus in vivo. *Hippocampus* 23:649-655.

1130 Dulawa SC, Hen R (2005) Recent advances in animal models of chronic antidepressant effects: the  
1131 novelty-induced hypophagia test. *Neurosci Biobehav Rev* 29:771-783.

1132 Eichenbaum H, Sauvage M, Fortin N, Komorowski R, Lipton P (2012) Towards a functional  
1133 organization of episodic memory in the medial temporal lobe. *Neurosci Biobehav Rev* 36:1597-  
1134 1608.

1135 Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. *Pavlov J Biol*  
1136 *Sci* 15:177-182.

1137 Fanselow MS, Pennington ZT (2017) The danger of LeDoux and Pine's two-system framework for fear.  
1138 *Am J Psychiatry* 174:1120-1121.

1139 Galea LAM, Frick KM, Hampson E, Sohrabji F, Choleris E (2017) Why estrogens matter for behavior  
1140 and brain health. *Neurosci Biobehav Rev* 76:363-379.

1141 GoodSmith D, Lee H, Neunuebel JP, Song H, Knierim JJ (2019) Dentate gyrus mossy cells share a  
1142 role in pattern separation with dentate granule cells and proximal CA3 pyramidal cells. *J*  
1143 *Neurosci* 39:9570-9584.

1144 GoodSmith D, Chen X, Wang C, Kim SH, Song H, Burgalossi A, Christian KM, Knierim JJ (2017)  
1145 Spatial representations of granule cells and mossy cells of the dentate gyrus. *Neuron* 93:677-  
1146 690 e675.

1147 Guidi S, Severi S, Ciani E, Bartesaghi R (2006) Sex differences in the hilar mossy cells of the guinea-  
1148 pig before puberty. *Neuroscience* 139:565-576.

1149 Guskjolen A, Kenney JW, de la Parra J, Yeung BA, Josselyn SA, Frankland PW (2018) Recovery of  
1150 "lost" infant memories in mice. *Curr Biol* 28:2283-2290 e2283.

1151 Hajszan T, Milner TA, Leranth C (2007) Sex steroids and the dentate gyrus. *Prog Brain Res* 163:399-  
1152 415.

1153 Harte-Hargrove LC, Maclusky NJ, Scharfman HE (2013) Brain-derived neurotrophic factor-estrogen  
1154 interactions in the hippocampal mossy fiber pathway: implications for normal brain function and  
1155 disease. *Neuroscience* 239:46-66.

1156 Harte-Hargrove LC, Varga-Wesson A, Duffy AM, Milner TA, Scharfman HE (2015) Opioid receptor-  
1157 dependent sex differences in synaptic plasticity in the hippocampal mossy fiber pathway of the  
1158 adult rat. *J Neurosci* 35:1723-1738.

1159 Hashimotodani Y, Nasrallah K, Jensen KR, Chavez AE, Carrera D, Castillo PE (2017) LTP at hilar  
1160 mossy cell-dentate granule cell synapses modulates dentate gyrus output by increasing  
1161 excitation/inhibition balance. *Neuron* 95:928-943 e923.

1162 Hsu TT, Lee CT, Tai MH, Lien CC (2016) Differential recruitment of dentate gyrus interneuron types by  
1163 commissural versus perforant pathways. *Cereb Cortex* 26:2715-2727.

1164 Jinde S, Zsiros V, Nakazawa K (2013) Hilar mossy cell circuitry controlling dentate granule cell  
1165 excitability. *Front Neural Circuits* 7:14.

1166 Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa K (2012) Hilar mossy  
1167 cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern  
1168 separation. *Neuron* 76:1189-1200.

1169 Jung D, Kim S, Sariev A, Sharif F, Kim D, Royer S (2019) Dentate granule and mossy cells exhibit  
1170 distinct spatiotemporal responses to local change in a one-dimensional landscape of visual-  
1171 tactile cues. *Sci Rep* 9:9545.

1172 Keiser AA, Turnbull LM, Darian MA, Feldman DE, Song I, Tronson NC (2017) Sex differences in  
1173 context fear generalization and recruitment of hippocampus and amygdala during retrieval.  
1174 *Neuropsychopharmacology* 42:397-407.

1175 Kesner RP (2018) An analysis of dentate gyrus function (an update). *Behav Brain Res* 354:84-91.

1176 Kim WB, Cho JH (2020) Encoding of contextual fear memory in hippocampal-amygdala circuit. *Nat  
1177 Commun* 11:1382.

1178 Kinnavane L, Albasser MM, Aggleton JP (2015) Advances in the behavioural testing and network  
1179 imaging of rodent recognition memory. *Behav Brain Res* 285:67-78.

1180 Klemenhagen KC, Gordon JA, David DJ, Hen R, Gross CT (2006) Increased fear response to  
1181 contextual cues in mice lacking the 5-HT1A receptor. *Neuropsychopharmacology* 31:101-111.

1182 Knierim JJ, Neunuebel JP (2016) Tracking the flow of hippocampal computation: Pattern separation,  
1183 pattern completion, and attractor dynamics. *Neurobiol Learn Mem* 129:38-49.

1184 Knierim JJ, Neunuebel JP, Deshmukh SS (2014) Functional correlates of the lateral and medial  
1185 entorhinal cortex: objects, path integration and local-global reference frames. *Philos Trans R  
1186 Soc Lond B Biol Sci* 369:20130369.

1187 Komada M, Takao K, Miyakawa T (2008) Elevated plus maze for mice. *J Vis Exp*.

1188 LeDoux JE, Pine DS (2016) Using neuroscience to help understand fear and anxiety: A two-system  
1189 framework. *Am J Psychiatry* 173:1083-1093.

1190 Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object  
1191 recognition test in mice. *Nat Protoc* 8:2531-2537.

1192 Lisman JE (1999) Relating hippocampal circuitry to function: recall of memory sequences by reciprocal  
1193 dentate-CA3 interactions. *Neuron* 22:233-242.

1194 Luine VN, Beck KD, Bowman RE, Frankfurt M, Maclusky NJ (2007) Chronic stress and neural function:  
1195 accounting for sex and age. *J Neuroendocrinol* 19:743-751.

1196 MacLaren DA, Browne RW, Shaw JK, Krishnan Radhakrishnan S, Khare P, Espana RA, Clark SD  
1197 (2016) Clozapine N-oxide administration produces behavioral effects in Long-Evans rats:  
1198 implications for designing DREADD experiments. *eNeuro* 3.

1199 Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, Weinshenker D (2018) The  
1200 DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces  
1201 clozapine-like interoceptive stimulus effects in rats and mice. *Sci Rep* 8:3840.

1202 McEwen BS, Nasca C, Gray JD (2016) Stress effects on neuronal structure: hippocampus, amygdala,  
1203 and prefrontal cortex. *Neuropsychopharmacology* 41:3-23.

1204 Moretto JN, Duffy AM, Scharfman HE (2017) Acute restraint stress decreases c-fos immunoreactivity in  
1205 hilar mossy cells of the adult dentate gyrus. *Brain Struct Funct* 222:2405-2419.

1206 Myers CE, Scharfman HE (2009) A role for hilar cells in pattern separation in the dentate gyrus: a  
1207 computational approach. *Hippocampus* 19:321-337.

1208 Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3  
1209 backprojection. *Hippocampus* 21:1190-1215.

1210 Oh SJ, Cheng J, Jang JH, Arace J, Jeong M, Shin CH, Park J, Jin J, Greengard P, Oh YS (2019)  
1211 Hippocampal mossy cell involvement in behavioral and neurogenic responses to chronic  
1212 antidepressant treatment. *Mol Psychiatry*.

1213 Palanza P (2001) Animal models of anxiety and depression: how are females different? *Neurosci  
1214 Biobehav Rev* 25:219-233.

1215 Penttonen M, Kamondi A, Sik A, Acsady L, Buzsaki G (1997) Feed-forward and feed-back activation of  
1216 the dentate gyrus in vivo during dentate spikes and sharp wave bursts. *Hippocampus* 7:437-  
1217 450.

1218 Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and  
1219 contextual fear conditioning. *Behav Neurosci* 106:274-285.

1220 Ratzliff A, Santhakumar V, Howard A, Soltesz I (2002) Mossy cells in epilepsy: rigor mortis or vigor  
1221 mortis? *Trends Neurosci* 25:140-144.

1222 Ratzliff A, Howard AL, Santhakumar V, Osapay I, Soltesz I (2004) Rapid deletion of mossy cells does  
1223 not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. *J Neurosci*  
1224 24:2259-2269.

1225 Scharfman HE (2007a) The CA3 "backprojection" to the dentate gyrus. *Prog Brain Res* 163:627-637.

1226 Scharfman HE (2007b) The dentate gyrus: a comprehensive guide to structure, function, and clinical  
1227 implications: Elsevier.

1228 Scharfman HE (2016) The enigmatic mossy cell of the dentate gyrus. *Nat Rev Neurosci* 17:562-575.

1229 Scharfman HE (2017) Advances in understanding hilar mossy cells of the dentate gyrus. *Cell Tissue  
1230 Res.*

1231 Scharfman HE, MacLusky NJ (2014) Differential regulation of BDNF, synaptic plasticity and sprouting in  
1232 the hippocampal mossy fiber pathway of male and female rats. *Neuropharmacology* 76 Pt  
1233 C:696-708.

1234 Scharfman HE, Bernstein HL (2015) Potential implications of a monosynaptic pathway from mossy cells  
1235 to adult-born granule cells of the dentate gyrus. *Front Syst Neurosci* 9:112.

1236 Scharfman HE, Mercurio TC, Goodman JH, Wilson MA, MacLusky NJ (2003) Hippocampal excitability  
1237 increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic  
1238 factor. *J Neurosci* 23:11641-11652.

1239 Schmidt B, Marrone DF, Markus EJ (2012) Disambiguating the similar: the dentate gyrus and pattern  
1240 separation. *Behav Brain Res* 226:56-65.

1241 Scholl JL, Afzal A, Fox LC, Watt MJ, Forster GL (2019) Sex differences in anxiety-like behaviors in rats.  
1242 *Physiol Behav* 211:112670.

1243 Seibenbener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like  
1244 behavior in mice. *J Vis Exp*:e52434.

1245 Senzai Y, Buzsaki G (2017) Physiological properties and behavioral correlates of hippocampal granule  
1246 cells and mossy cells. *Neuron* 93:691-704.

1247 Simpson J, Kelly JP (2012) An investigation of whether there are sex differences in certain behavioural  
1248 and neurochemical parameters in the rat. *Behav Brain Res* 229:289-300.

1249 Skucas VA, Duffy AM, Harte-Hargrove LC, Magagna-Poveda A, Radman T, Chakraborty G, Schroeder  
1250 CE, MacLusky NJ, Scharfman HE (2013) Testosterone depletion in adult male rats increases  
1251 mossy fiber transmission, LTP, and sprouting in area CA3 of hippocampus. *J Neurosci* 33:2338-  
1252 2355.

1253 Sloviter RS (1991) Permanently altered hippocampal structure, excitability, and inhibition after  
1254 experimental status epilepticus in the rat: the "dormant basket cell" hypothesis and its possible  
1255 relevance to temporal lobe epilepsy. *Hippocampus* 1:41-66.

1256 Sloviter RS, Zappone CA, Harvey BD, Bumanglag AV, Bender RA, Frotscher M (2003) "Dormant  
1257 basket cell" hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and  
1258 inhibitory interneurons after hippocampal status epilepticus in the rat. *J Comp Neurol* 459:44-76.

1259 Smith KS, Bucci DJ, Luikart BW, Mahler SV (2016) DREADDS: Use and application in behavioral  
1260 neuroscience. *Behav Neurosci* 130:137-155.

1261 Soltesz I, Bourassa J, Deschenes M (1993) The behavior of mossy cells of the rat dentate gyrus during  
1262 theta oscillations in vivo. *Neuroscience* 57:555-564.

1263 Stone SS, Teixeira CM, Zaslavsky K, Wheeler AL, Martinez-Canabal A, Wang AH, Sakaguchi M,  
1264 Lozano AM, Frankland PW (2011) Functional convergence of developmentally and adult-  
1265 generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory.  
1266 *Hippocampus* 21:1348-1362.

1267 Takao K, Miyakawa T (2006) Light/dark transition test for mice. *J Vis Exp*:104.

1268 Teixeira CM, Rosen ZB, Suri D, Sun Q, Hersh M, Sargin D, Dincheva I, Morgan AA, Spivack S, Krok  
1269 AC, Hirschfeld-Stoler T, Lambe EK, Siegelbaum SA, Ansorge MS (2018) Hippocampal 5-HT  
1270 input regulates memory formation and schaffer collateral excitation. *Neuron* 98:992-1004 e1004.

1271 Temmingh H, Stein DJ (2015) Anxiety in patients with schizophrenia: Epidemiology and management.  
1272 *CNS Drugs* 29:819-832.

1273 Vogel-Ciernia A, Wood MA (2014) Examining object location and object recognition memory in mice.  
1274 *Curr Protoc Neurosci* 69:8 31 31-17.

1275 Yagi S, Galea LAM (2019) Sex differences in hippocampal cognition and neurogenesis.  
1276 *Neuropsychopharmacology* 44:200-213.

1277 Yeh CY, Asrican B, Moss J, Quintanilla LJ, He T, Mao X, Casse F, Gebara E, Bao H, Lu W, Toni N,  
1278 Song J (2018) Mossy cells control adult neural stem cell quiescence and maintenance through a  
1279 dynamic balance between direct and indirect pathways. *Neuron* 99:493-510 e494.

1280 Yuan Y, Wang H, Wei Z, Li W (2015) Impaired autophagy in hilar mossy cells of the dentate gyrus and  
1281 its implication in schizophrenia. *J Genet Genomics* 42:1-8.

1282 Zhou QG, Nemes AD, Lee D, Ro EJ, Zhang J, Nowacki AS, Dymecki SM, Najm IM, Suh H (2019)  
1283 Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. *J Clin  
1284 Invest* 129:310-323.

1285 Zitman FM, Richter-Levin G (2013) Age and sex-dependent differences in activity, plasticity and  
1286 response to stress in the dentate gyrus. *Neuroscience* 249:21-30.

1287