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Abstract

Ocean acidification is one the biggest threats to marine ecosystems worldwide, but its ecosystem 

wide responses are still poorly understood. This study integrates field and experimental data into a mass 

balance food web model of a temperate coastal ecosystem to determine the impacts of specific OA forcing 

mechanisms as well as how they interact with one another. Specifically, we forced a food web model of a 

kelp forest ecosystem near its southern distribution limit in the California large marine ecosystem to a 0.5 

pH drop over the course of 50 years. This study utilizes a modeling approach to determine the impacts of 

specific OA forcing mechanisms as well as how they interact. Isolating OA impacts on growth (Production), 

mortality (Other Mortality), and predation interactions (Vulnerability) or combining all three mechanisms 

together leads to a variety of ecosystem responses, with some taxa increasing in abundance and other 

decreasing. Results suggest that carbonate mineralizing groups such as coralline algae, abalone, snails, and 

lobsters display the largest decreases in biomass while macroalgae, urchins, and some larger fish species 

display the largest increases. Low trophic level groups such as giant kelp and brown algae increase in 

biomass by 16% and 71%, respectively. Due to the diverse way in which OA stress manifests at both 

individual and population levels, ecosystem-level effects can vary and display nonlinear patterns. 

Combined OA forcing leads to initial increases in ecosystem and commercial biomasses followed by a 

decrease in commercial biomass below initial values over time, while ecosystem biomass remains high. 

Both biodiversity and average trophic level decrease over time. These projections indicate that the kelp 

forest community would maintain high productivity with a 0.5 drop in pH, but with a substantially different 

community structure characterized by lower biodiversity and relatively greater dominance by lower trophic 

level organisms.
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Introduction

Assessing the impact of climate change on marine ecosystems is a challenging task due to the 

complexity of interacting variables involved as well as the large spatial and temporal scales that these 

changes take place over. Natural equilibria are being affected by a wide range of environmental and 

anthropogenic pressures including temperature, deoxygenation, eutrophication, fisheries, and ocean 

acidification [1]. These chemical and physical changes influence marine communities on a variety of 

scales from organismal physiology to population change and ecosystem-scale structure and function [2]. 

Approaching a comprehensive understanding of these dynamics is made more difficult by the formidable 

requirements of measuring ecosystem change across all these dimensions simultaneously [3]. Despite 

such hurdles, significant progress is being made across multiple disciplines and those efforts are being 

combined to advance our understanding of ecological change in the face of global warming and 

anthropogenic development [4]. 

Studying the influence of environmental stressors on marine ecosystems is conducted through a 

variety of methods that have distinct tradeoffs with respect to forecasting ecosystem-scale responses to 

future climate change. One commonly used approach is to analyze paleo-records of marine organisms to 

assess the impact of changing climate conditions, which may serve as a proxy for predicting ecosystem 

responses under global warming [5]. A major drawback of this approach is the fact that ecosystems have 

evolved over long periods since the formation of these records and their response to environmental 

change could differ, but also because there are a variety of other variables influencing these records that 

are not preserved with the same degree of accuracy (e.g. nutrient availability). Laboratory studies serve as 

an optimal way to isolate the effects of specific environmental stressors, or their interactions, and identify 

the physiological mechanisms through which they impact organisms [6]. This approach is well suited for 

understanding how environmental stressors like temperature, oxygen, and ocean acidification influence 

metabolism, reproduction, and survival, but lacks the realism associated with trophic interaction effects 
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that take place in natural ecosystems. Mesocosm and field studies can be used to fill this gap [7, 8], which 

include a more encompassing understanding of how community dynamics shift with environmental 

stressors. However, mesocosm studies generally do not include the full set of species and lack the spatial 

scales necessary to recreate the nonlinear dynamics of ecosystem-level change, and field studies have 

very little control over stressor gradients. Finally, ecological monitoring programs have proven to be a 

successful tool to enhance our understanding of climate change effects on natural ecosystems, 

contributing disproportionally to policy and management than any of the previous examples [9]. 

However, these are demanding, costly, and it’s difficult to identify the causation underlying patterns as 

one can generally only measure correlations.  

Ecological models have the capacity to integrate results from all of these different methods. In 

addition, ecological modeling is well suited for making quantitative predictions of marine ecosystem 

change under future climate conditions [10]. These models can be used to evaluate the system-level 

consequences of environmental change by scaling up physiological relationships to populations and entire 

ecosystems. Data from field and laboratory studies can be incorporated into these models and combined 

with food web dynamics to create a mechanistic understanding of how ecosystems respond to external 

forcing. A major advantage of this approach is the ability to identify indirect, cumulative, and second 

order effects that are often missed or unable to be measured in field or laboratory settings [11]. The 

importance of indirect effects in driving ecosystem dynamics has been linked to a wide variety of 

mechanisms including the evolution of selective traits across species [12], coupled ecosystem interactions 

and energy flow [13], and community stability in the face of climate perturbations [14]. Given the far-

reaching consequences of global climate change, assessing species and population vulnerabilities requires 

a quantitative understanding of indirect effects [15], which serves as the foundation for effective 

mitigation strategies [16].

‘End-to-End’ ecosystem models that tie together climate, physical, and chemical aspects of an 

ecosystem to biotic and anthropogenic interactions are an increasingly important and widely used tool in 
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quantifying the indirect ecosystem effects of climate change [17, 18]. Yet while the field of ecosystem 

modeling computation continues to advance, the extensive data collection needed to build and drive them 

is lagging. Considering end-to-end models encompass a broad scope of physical, chemical, and biological 

components, expansive and long-term field monitoring datasets are necessary for proper validation and 

accuracy [19, 20]. Furthermore, detailed physiological responses to environmental conditions across 

functional groups and trophic levels are needed to optimally parameterize ecosystem responses. Due to 

the difficulty of creating such comprehensive and multidisciplinary datasets, the ability to fully model and 

predict the interacting effects of multiple environmental stressors under future climate change is still a 

major challenge [21]. Therefore, using ecosystem models to forecast the effects of climate change can be 

made more effective by focusing on individual stressors for ecosystems that have extensive data 

available. Fortunately, ecosystem modeling can simultaneously be used to identify gaps in information to 

guide monitoring programs on how to best structure data collection to be more efficient, informative, and 

potentially cheaper, which will help make parameterization of interacting environmental constraints more 

readily available.

Ocean acidification (OA) is a global issue that is quickly becoming a major threat to ecosystem 

health across the world’s oceans [22]. As carbon dioxide concentrations increase due to anthropogenic 

emissions, critical chemical equilibria in ocean surface waters are being disrupted, leading to consistent 

decreases in pH and inhibiting the ability for calcifying organisms to grow, survive, and reproduce [23]. 

These physiological effects are already beginning to manifest at the community level, impacting 

ecosystem health and industries that depend on ecosystem services [24]. As such, predicting ecosystem 

responses to increasing OA in the face of climate change has become a primary international concern for 

scientists and managers. Despite this importance, the study of OA is still a relatively new field and very 

little is known regarding its impacts on ecosystem properties, structure, function and the services 

provided. 
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While various paleo records [25], laboratory experiments [26], and field studies [27] have been 

used to predict the impacts of OA on specific species or functional groups, very few studies have 

investigated the mechanisms through which OA influences ecosystem dynamics [28]. Modeling efforts 

are being used to fill this gap by quantifying organism OA response curves [29] to parameterize 

ecosystem models. This has allowed researchers to identify ecosystem vulnerabilities in areas like the 

California Current [30], predict ecological change in the north Atlantic [31], and assess optimal 

management solutions [32]. However, a major drawback of these modeling efforts is the inclusion of only 

a single mechanism through which OA impacts model components, such as species production or 

mortality. OA affects a broad range of biological functions including metabolism, predator-prey 

interactions, and reproduction, and modeling studies have yet to quantify their cumulative effects. 

Furthermore, these efforts are made more difficult due to the scarcity of comprehensive 

ecosystem-scale datasets and therefore encompass only a select group of ecosystems, generally in open 

ocean environments. Yet nearshore coastal ecosystems serve as ideal study sites for the effects of OA due 

to their exposure to the physical and chemical variability of both surface and deeper waters, the complex 

ecosystems that form there, and the economic value they provide [33]. Their proximity to human 

development and easy access also make them common locations for scientific research, leading to robust 

and long-term datasets for many areas. Due to the importance of these ecosystems, their vulnerability to 

OA, and the existence of extensive field data for marine communities, nearshore coastal ecosystems 

provide an opportunity to model the ecosystem-level effects of climate change. 

This study utilizes a long-term dataset and detailed food web model of a nearshore kelp 

community to quantify the impact of OA on marine ecosystem structure and function. This work builds 

upon past research by quantifying the individual and combined influence of multiple OA forcing 

mechanisms on population abundances as well as how those changes scale to impact ecosystem health, 

complexity, and the economic value of ecosystem services. This is accomplished by 1) identifying the 

differences between OA forcing of production, mortality, and predation, 2) simulating the impact of OA 
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across various species and functional groups of a coastal kelp community, and 3) measuring changes in 

emergent properties related to ecosystem health, complexity, and economic output. We have chosen to 

model a kelp forest community because of the economic and ecological importance of kelp forests [34]. 

This research represents a quantitative modeling approach to assess the cumulative effects of multiple OA 

impacts on ecosystem dynamics. A major goal of this work is to provide a general understanding of 

macro-ecological responses and to highlight opportunities to strengthen field and laboratory validation of 

interacting effects of OA on marine communities.

Methods

Model Development

The ecosystem model used in this study was developed using Ecopath with Ecosim (EwE) [35, 

36]. EwE is a software package that comprises several modules (Ecopath, Ecosim, and Ecospace) for 

building mass balance as well as time and space dynamic models of ecosystems and includes a large set 

of diagnostics for analyzing food webs. These features, plus its flexibility and user-friendly interface, 

make EwE one of the most widely applied modeling approaches for food web representation and 

scientific analysis [37, 38]. The Ecopath component provides a platform for building static ecological 

networks (that is, food webs) where network components are defined as functional groups (representing 

species or groups of species) and the interactions between components are trophic interactions quantified 

using bioenergetics [39]. The major inputs for each component of the network include biomass, 

production and consumption rates, food preferences, unassimilated fraction, and fishing catches. 

Additional inputs include immigration, emigration, and biomass accumulation, while mortality and 

respiration are estimated within the model. Values for these parameters typically represent yearly 

averages over a small number of years. 
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Ecopath calculates a static mass-balanced snapshot of the biomass and energy fluxes between 

functional groups in a food web. The mass balance is set in a way that consumption of any given 

component is subtracted by all losses including bioenergetic ones (respiration, excretion), predation, 

eventual net migration, and mortality due to anthropogenic factors such as fishing. Remaining biomass 

can accumulate or result in an estimate of other mortalities unexplained by the model (summarized into 

the parameter Ecotrophic Efficiency; [39]. Ecosim extends the Ecopath model by providing a dynamic 

simulation capability at the ecosystem level using a system of differential equations that express biomass 

flux rates between pools as a function of time. Ecosim can be used to simulate ecosystem behavior 

through the incorporation of physical, biological, or anthropogenic forcing parameters.

We developed an EwE model for this study due to the practical considerations associated with 

developing, running, and analyzing a suite of OA simulations as well as the availability of previous OA 

studies using this framework for comparison [31, 40, 41], providing a foundation to build upon and 

compare results with. Only a few ecosystem models have been published for kelp forest ecosystems [42-

46]. While other quantitatively robust ecosystem modeling software packages are available for this type 

of ecosystem assessment, such as Atlantis [47], the Atlantis model for the California Current does not 

include a nearshore kelp community component and developing one would have been a multi-year effort 

falling outside the scope of this project.

Ecopath Model

Two temperate coastal ecosystem models developed for the Pacific coast were available for use; 

one for Monterey Bay, California, United States [42] and the other for Isla Natividad, in Baja California 

Mexico, near the southern distributional limit of giant kelp (Macrosystis pyrifera) [46]. The Isla 

Natividad model was selected for this study due to the longer history of development and associated 

publications as well as for the existence of a comprehensive ecological monitoring program dataset to 

support it. Isla Natividad is located in the Mexican Pacific in the middle of the Baja California Peninsula 
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[46]. It is a 7 km long island and is part of the Natural Protected Area of El Vizcaino. The model area 

covers 31.42 km2 of temperate reefs, stretches from the coastline (0m) to the 30m isobath, and is 

predominately made up of kelp forest. The island is inhabited by approximately 300 people, who have 

been living from marine products for more than 75 years [48]. Until 2010, the principal harvested species 

were the pink and green abalone (Haliotis corrugata and H. fulgens, respectively). These abalone species 

have recently suffered a drastic decline in their populations compared to historical records [49]. 

The Isla Natividad Ecopath food web is comprised of 40 functional groups including birds, 

marine mammals, fish, invertebrates, algae, phytoplankton, and zooplankton (Figure 1). Data used to 

parameterize this model was provided through an ecological monitoring program that began in 2006 

through the non-governmental environmental organization Comunidad y Biodiversidad A.C. (COBI), the 

fishing cooperatives, and researchers from Stanford University. The model consists of four major trophic 

levels with Macrocystis pyrifera, Ecklonia arborea, snails, urchins, and wrasses, such as the California 

sheephead, having important ecological roles (Table 1). Due to the strong coupling of urchins with giant 

kelp and their influence on ecosystem stability [50], three functional groups were included in the model 

(purple, red, and black urchins). Black urchins include both Centrostephanus coronatus and Arbacia 

stellate. Of the species and groups included in the model, giant kelp and snails have the largest biomass. 

Basses, elasmobranchs, sheephead, marine mammals, sea birds, black urchins, and lingcod are keystone 

groups (i.e., high impact per unit biomass). 

Figure 1. Food web network diagram of the Isla Natividad model. Lines represent diet interactions. 

Circle sizes represent relative size of biomass pools. Numbers along the y-axis and circle color refer 

to trophic level (Blue < Green < Yellow < Orange).

Table 1. Species and functional groups used in the EwE Isla Natividad model along with the OA 
survival scalars associated with their equivalent functional group taken from the Busch and 
McElhany (2016) meta-analysis. For EwE functional groups with more than one functional group 
equivalent, survival scalars were calculated as the mean value across groups.

EwE Groups Scientific Name Meta-Analysis Biomass Survival Scalar
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Groups (tons/ 
km2)

Standard Upper 
Boundary

Lower 
Boundary

Birds 0.08 NA NA NA

Marine 
Mammals

0.8 NA NA NA

Lingcod Ophiodon elongatus
Fish

0.79 0.25 0.51 -0.01

Black Sea 
Bass

Stereolepis gigas
Fish

20.49 0.25 0.51 -0.01

Elamobranchs Heterodontus francisci, 
Rhinobatos productos, 
Squatina californica

Small demersal 
sharks

89.25
0.29 0.58 -0.01

Sheephead Semicossyphus pulcher
Fish

20.6 0.25 0.51 -0.01

Ocean 
whitefish

Caulolatilus princess
Fish

2.27 0.25 0.51 -0.01

Cabezon Scorpaenichthys 
marmoratus Fish

0.02 0.25 0.51 -0.01

Rockfishes Sebastes spp.
Fish

0.14 0.25 0.51 -0.01

Basses Paralabrax clathratus, 
Paralabrax nebulifer Fish

4.95 0.25 0.51 -0.01

Garibaldi Hypsypops rubicundus
Fish

18.69 0.25 0.51 -0.01

Damselfish Chromis punctipinnis
Fish

8.2 0.25 0.51 -0.01

Surf perch Anisotremus davidsonii, 
Rhacochilus vacca, 
Embiotoca jacksoni Fish

2.46
0.25 0.51 -0.01

Opaleye Girella nigricans
Fish

14.54 0.25 0.51 -0.01

Señoritas Halichoeres 
semicinctus, Oxyjulis 
californica Fish

3.3
0.25 0.51 -0.01

Large 
crustaceans

Loxorynchus grandis
Crabs

0.5 0.7 0.95 -0.01

Sessile 
Invertebrates 

Crassadoma gigantea, 
Anemone spp, Muricea 
spp, Leptogorgia 
chilensis

Meiobenthos 
shallow benthic 
filter feeders / 
soft corals

7.63

0.39 0.74 -0.01

Pink abalone Haliotis currugata Benthic Herb 
Grazers

20.79 1 1.22 -0.01

Green abalone Haliotis fulgens Benthic Herb 
Grazers

13 1 1.22 -0.01

Other abalones Haliotis rufescens, 
Haliotis sorenseni

Benthic Herb 
Grazers

0.09 1 1.22 -0.01

Snail Megastraea turbanica, 
Megastraea undosa

Benthic Herb 
Grazers

476.4 1 1.22 -0.01

Mobile 
invertebrates

Megathura crenulata, 
Neobernaya spadicea, 
Kelletia kelletii

Meiobenthos / 
benthic 
herbivorous 
grazers / 

5.87

0.7 0.98 -0.01
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carnivorous 
infauna

Octopuses Octopus bimaculatus Humbolt Squid 
/market squid

0.04 0.22 0.52 -0.01

Lobster Panulirus interrputus
Crabs

103.11 0.7 0.95 -0.01

Sea cucumber Parastichopus 
parvimensis Deposit Feeders

10.63 0.37 0.72 -0.01

Sea stars Patiria miniata, 
Pisaster giganteus, 
Pycnopodia 
heliantoides Sea Stars

0.22

0.21 0.58 -0.01

Purple urchin Strongylocentrotus 
purpuratus

Nearshore sea 
urchins

0.69 0.2 0.6 -0.01

Black urchin Centrostephanus 
coronatus
Arbacia stellata

Nearshore sea 
urchins

1.55
0.2 0.6 -0.01

Red urchin Mesocentrotus 
franciscanus

Nearshore sea 
urchins

1.88 0.2 0.6 -0.01

Other small 
invertebrates

Cancer spp.
Meiobenthos

41.05 0.07 0.38 -0.01

Coralline algae
Coralline algae

30.78 0.77 1.04 -0.01

Brown algae Cystoseira 
osmundacea, 
Laminaria sp. Macroalgae

5.22
-0.1 0.29 -0.01

Sargassum Sargassum horneri, 
Sargassum
muticum Macroalgae

3.34
-0.1 0.29 -0.01

Green algae
Macroalgae

0.2 -0.1 0.29 -0.01

Red algae
Macroalgae

4.28 -0.1 0.29 -0.01

Giant kelp Macrocystis pyrifera
Macroalgae

1064.03 -0.1 0.29 -0.01

Sea palm Ecklonia arborea, 
Pterygophora 
californica, Macroalgae

103.89
-0.1 0.29 -0.01

Zooplankton Large 
zooplankton / 
meso/ micro

5.38
0.4 0.75 -0.01

Phytoplankton Small 
phytoplankton / 
large

2.51
-0.02 0.38 -0.01

A summary of statistics related to ecosystem structure and function can be found in Table 2. In 

general, the summary statistics for Isla Natividad model fall within the average range of published 

Ecopath models [51]. The values of major energy flows per km2 (e.g., production, respiration, total 

system throughput) are comparable with existing models of coastal shelf, open water, estuarine, 
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upwelling, and island ecosystems. However, biomass per km2 for this system is on the higher end. This is 

to be expected for nearshore coastal ecosystems that tend to have a higher density of biomass compared to 

more open water systems, which make up the majority of published Ecopath models. The Isla Natividad 

model also has lower connective index and omnivory index values than most models, meaning that this 

ecosystem displays a less ‘web-like’ structure with lower levels of connectivity between species and 

tighter trophic interactions. This structure is also more common of nearshore coastal communities in 

comparison to open ocean, upwelling, or estuarine ecosystems.

Table 2: Ecological indicators related to the food web structure of the Isla Natividad model, 
statistics, and network flow parameters.

Statistic Value Units

Sum of all consumption 1576.837 t/km2/year

Sum of all exports 691.1761 t/km2/year

Sum of all respiratory flows 1042.608 t/km2/year

Sum of all flows into detritus 1033.012 t/km2/year

Total system throughput 4343.633 t/km2/year

Sum of all production 1891.035 t/km2/year

Mean trophic level of the catch 1.424436

Gross efficiency (catch/net p.p.) 0.007275 t/km2/year

Calculated total net primary production 1611.629

Total primary production/total respiration 1.545766

Net system production 569.0203 t/km2/year

Total primary production/total biomass 4.000377

Total biomass/total throughput 0.092749 t/km2/year

Total biomass (excluding detritus) 402.8692 t/km2

Total catch 11.7239 t/km2/year
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Connectance Index 0.155819

System Omnivory Index 0.14103

Shannon diversity index 2.038866

Model Parameterization

The incorporation of OA relationships with ecosystem functional groups for this model followed 

the approach of Busch and McElhany (2016), which synthesized 393 papers reporting the sensitivity of 

temperate species to changes in seawater carbon chemistry. Their methods for quantifying the sensitivity 

of functional groups found in the California Current (CC) were based on how well published studies 

related to functional groups in pH conditions of the CC, experimental design and quality, and the type of 

variables measured. Quantitative relationships between functional groups and pH sensitivity were 

provided through ‘relative survival scalars’, which were derived from qualitative scoring of three factors, 

1) direction of pH effect from each study, 2) total amount of evidence available, and 3) level of agreement 

among studies. These scores were scaled relative to the most sensitive functional group’s score to arrive 

at a relative survival scalar, which provides a linear relationship between survival and pH. Additionally, 

“high” and “low” pH sensitivity estimates were calculated to provide uncertainty bounds on potential 

ecosystem model output. These alternative estimates were used by Busch and McElhany (2016) to 

calculate upper and lower boundary pH survival scalars.

Due to the focus on CC organisms, the functional group delineations given in Bush and 

McElhany (2016) closely matched the model component aggregations used in the Isla Natividad EwE 

model. For example, OA relationships developed for large crustaceans and nearshore sea urchins were 

applied to the crab/lobster and purple urchin components in the EwE model, respectively. However, in 

many cases the EwE model included more detail with respect to representing specific trophic guilds or 

species and this was accounted for by assigning OA relationships from the closest-fitting broader 
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functional group. For example, the macroalgae OA relationship from Busch and McElhany was applied to 

brown algae, red algae, and Macrocystis pyrifera. Similarly, the fish OA relationship was applied to 

lingcod and sea basses, etc. There were also a few instances where the Busch and McElhany (2016) 

functional groups included more detail than the EwE model components. In these situations, multiple 

functional group relationships from Busch and McElhany (2016) were averaged together to represent the 

EwE model component. For example, the average OA relationship from large, meso, and small 

zooplankton were used to represent zooplankton in the EwE model. A full list of the Busch and McElhany 

(2016) functional groups used to represent EwE model components can be found in Table 1. 

The application of OA relationships derived from Busch and McElhany (2016) to an ecosystem 

model they weren’t specifically developed for adds a few sources of uncertainty, which may impact 

results. For example, the OA relationships developed by Busch and McElhany (2016) were created using 

species that span the entire CC, and therefore, their application to a Baja California model may not fully 

represent dynamics associated with warmer waters. Aggregation of species’ responses into encompassing 

functional groups (e.g., fish or benthic herbivorous grazers) by Busch and McElhany (2016) means that 

specific species and genera included in the EwE model, such as cabezon or purple sea urchin, may not be 

fully represented or their responses to OA may be overshadowed by species for which there is more 

information available in the literature. This should be refined as future research provides better data. 

There is also the reverse situation where species are aggregated into groups within the Ecopath model 

(e.g., sessile invertebrates) for which relationships from Busch and McElhany (2016) had to be combined, 

such as meiobenthos, benthic herviorous grazers, and carnivorous infauna. It has been shown that there 

can be considerable variation in the response of individual species within larger taxa [52] and this should 

be taken into consideration when interpreting model results. Furthermore, while Busch and McElhany 

(2016) described their sensitivity scalars as linear relationships, many species have displayed nonlinear 

responses to OA [53]. Unfortunately, not enough information exists to accurately quantify and scale those 

nonlinear relationships across entire functional groups. 
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When scaling up OA forcing to food web models consisting of biomass components and linked 

energy flows, impacts can be primarily applied through three major mechanisms; 1) production, 2) direct 

mortality (a subcomponent of total mortality), and 3) trophic interactions. These forcing mechanisms 

represent three major mathematical characteristics of network model structure and function that have been 

shown to strongly influence nonlinear behaviors related to the stability and resilience of a system to 

perturbations; 1) input, 2) storage, and 3) output [54]. Using OA relationships to affect the production of a 

model component in the EwE model directly impacts the amount of energy input moving into that 

particular functional group as well as the entire ecosystem. This can be done in EwE by changing the 

Production Rate for primary producers or the Search Rate for consumers. Search Rate a behavioral 

response representing the volume searched per unit time by a predator, but also serves as a proxy for 

metabolic changes in production for consumers by modifying the flow of energy from one model 

component to another [55]. Storage in EwE models is represented by biomass pools and these can be 

directly forced by OA through the Other Mortality parameter. Other Mortality is a subcomponent of Total 

Mortality that can be used to represent contributions to mortality that fall outside natural mortality rates, 

predation, or fishing mortality. Finally, the energy output of a model component can be forced in EwE 

through the Vulnerability parameter, which can be used to scale the flow of energy through trophic 

interactions. Vulnerability is a measure of how susceptible a prey species is to predation and directly 

impacts the energy output from model components [39]. Generally, forcing model production tends to 

have the biggest impact on driving model food webs, followed by changing interaction strengths and 

biomass pools through mortality [56], but these forcing mechanisms have not been individually compared 

in the context of OA.

The incorporation of OA forcing by the Production and Vulnerability parameters was done 

through relative scaling to the pH sensitivity curves developed in Busch and McElhany (2016). In other 

words, the original values for these parameters were assumed to occur at a pH of 8.0 (normal conditions), 

which coincides with a pH sensitivity factor value of 1. As pH conditions changed, resulting in an 
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increase or decrease of the pH sensitivity factor based upon the linear slope of the relationship, the 

baseline values of Production and Vulnerability were multiplied by this factor to simulate changes 

resulting from OA. 

Since Other Mortality isn’t directly included in the original EwE model, relative scaling of that 

parameter wasn’t an option. Instead, methods developed in Marshall et al. (2017) were applied to quantify 

Other Mortality. The relationships developed in Busch and McElhany (2016) were created with the goal 

of incorporating them into an Atlantis model of the CC, which was published in Marshall et al. (2017). In 

that study, direct mortality effects were calculated as

𝑀𝑝𝐻 = (8 ‒ 𝑝𝐻) ∗ ( ‒ 0.1 ∗ 𝑆𝑓)

Where MpH is mortality at a given environmental pH, Sf is the survival scalar developed in Busch and 

McElhany (2016), and -0.1 is a scaling factor derived in Marshall et al. (2017). After testing a number of 

scaling factors, they chose -0.1 because it led to an induced mortality rate twice that of the maximum 

predation mortality on benthic invertebrates when pH dropped from 8.0 to 7.0. For this study, we used a 

scaling factor of -0.2 because it led to the same proportional increase in Other Mortality with respect to 

predation mortality as Marshall et al. (2017) for the equivalent functional group within the EwE model.

All three forcing mechanisms were also applied at the same time to create Combined forcing 

simulations. Combined forcing best represents real world conditions as OA impacts a variety of 

ecosystem dynamics simultaneously. This was done by activating Production, Other Mortality, and 

Vulnerability forcing functions in conjunction with one another during the same model simulation. By 

modeling each forcing mechanisms individually at first, it’s possible to assess their relative importance in 

contributing to OA impacts, while Combined forcing can elucidate potential feedbacks between forcing 

mechanisms and better capture realistic ecosystem-level change.

OA interacts with other environmental constraints, such as temperature and oxygen. Currently, 

individual quantifications of the respective relationships between temperature, oxygen, and all of the 
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functional groups used in this study do not exist. Furthermore, while there is extensive literature 

investigating the individual effects of temperature, oxygen, and OA on marine organisms, very few 

studies have addressed their interactive effects [57-60]. As such, temperature and oxygen are not included 

in this study. External trophic constraints, such as disease, were also not included in this analysis for 

similar reasons, although climate change is predicted to increase the incidence of disease [61].

Simulations

OA impact relationships were used to simulate a drop in pH from 8.0 to 7.5 over the course of 50 

years. This decrease in pH was selected because it encompasses the predicted pH levels of 7.8 in 

nearshore areas of the CC by 2050 [62] and then continues to decrease in order to identify any potential 

major ecosystem shifts resulting from extreme stress. Simulations were run using each forcing type 

(Production, Other Mortality, and Vulnerability) individually as well as all forcing types simultaneously 

under Combined forcing. Besides responses on individual taxa, ecosystem-level indicators were used to 

assess a variety of emergent ecosystem properties related to ecological and economic health, including 

Ecosystem Biomass (summed biomass of all ecosystem components), Commercial Biomass (summed 

biomass of commercially fished components), Biodiversity (Shannon diversity), and Average Trophic 

Level of the community (ATL). The above analyses were repeated using the high and low boundary pH 

sensitivity scalars for each forcing type individually as well as combined in order to establish upper and 

lower confidence boundaries across model simulation results.

Results

Simulating a 0.5 drop in pH over 50 years results in a diverse set of changes across species and 

functional groups for all forcing types. Within each simulation, there is a wide distribution of responses, 

which are generally consistent across forcing types. Carbonate mineralizing groups such as coralline 
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algae, abalone, snails, and lobsters display the largest decreases in abundance while macroalgae and some 

larger fish species display the largest increases. Black urchins also show an increase in biomass despite 

being a carbonate mineralizing group. However, there are some distinctions in abundance change for 

specific species and functional groups across simulations resulting from differences in trophic interactions 

driven by each OA forcing type. The rest of this section focuses on a subset of ecologically and 

commercially important species and functional groups that synthesize ecosystem-scale responses to OA 

forcing, which include giant kelp, brown algae, coralline algae, pink abalone, black urchins, snails, 

lobster, cabezon, and the basses.

Functional Group Responses

With Production forcing, by the end of the simulation lower trophic level groups, such as giant 

kelp and brown algae, increase in abundance by approximately 16% and 71%, respectively (Figure 2A) 

due to a slight increase in production from OA as well as a decrease in the predation rate from snails. 

Snails are particularly influential in this ecosystem because they represent the second-highest biomass, 

after giant kelp. Coralline algae display a large decrease in abundance by 62% caused by the decrease in 

production from OA as well as increased predation from crabs, which have a high biomass in this model. 

Snails drop by approximately 33% as a direct effect of OA; this decrease has a large trophic impact on 

other groups in the ecosystem, especially brown algae. Lobster and pink abalone display similar decreases 

in abundance of 13% and 20% from OA, respectively, but increased predation rates on lobster by 

sheephead also contribute. Black urchin abundance increased by 32% as a result of increases in prey 

groups such as giant kelp, brown algae, and red algae. Higher trophic level fish groups increased in 

abundance, with cabezon growing by 4% and basses by 15. 

Figure 2: Plot of percent biomass change across giant kelp, brown algae, coralline algae, pink 

abalone, snails, lobster, cabezon, and bass species and functional groups under Production, Other 

Mortality, Vulnerability and Combined forcing. Error bars represent percent biomass change 
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under upper and lower boundary survival scalars. Upper boundary scalar simulations are 

associated with error bars of the same directional change of the normal survival scalar while lower 

boundary simulations are associated with error bars of the opposite direction change (ex. 

Macrocystis and brown algae upper boundary simulations are represented by the right error bars, 

while snails and lobster upper boundary simulations are represented by the left error bars).

Applying the upper and lower confidence boundary pH sensitivity scalars to the Production 

forcing simulations result in a wide range of responses across most ecosystem components, with only 

coralline algae showing little sensitivity to these boundaries, and only coralline algae, brown algae, and 

black urchin have upper and lower boundaries that don’t include zero. For other components, there are 

significant amplifications of abundance change under the high sensitivity pH boundary and opposite 

abundance changes under the low pH sensitivity boundary. The large distribution in species and 

functional group responses are due to the sensitivity of ecosystem models to changes in production rates 

of primary producers, especially giant kelp, which are subject to significant changes when using the upper 

or lower boundary pH sensitivity scalars.

Under Other Mortality forcing (Figure 2B), which represents a sub-component of overall 

mortality (natural + predation + fishing + other), abundance changes differ considerably from the pattern 

under Production forcing. Giant kelp increase in abundance minimally and brown algae increase by only 

13%. Rather than a large decrease, coralline algae abundance increases slightly; the decrease in the 

predation rate by snails is enough to override the deleterious effects of OA. Pink abalone show a decrease 

in abundance by 22% due to the direct effects of Other Mortality (i.e., mortality from OA), while the 

other shell forming species, such as snails and lobsters, experience only a small decrease in abundance of 

4%. Black urchin abundance increases by 14% due to increased availability of macroalgae. Both higher 

trophic level fish groups decrease in abundance. Cabezon drops by approximately 14%, which follow 
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decreasing trends in pink and green abalone prey species abundance, while basses drop by approximately 

3%. Since Other Mortality is just one piece of Total Mortality, its impact can be overshadowed by other 

components, such as predation mortality, through trophic interactions. Consequently, the direct effect of 

OA through Other Mortality leads to relatively small changes in species abundance. 

In contrast to the Production forcing, applying the upper and lower confidence boundary pH 

sensitivity scalars to the Other Mortality simulations result in only very small differences in abundance 

across components, with the direction of change remaining consistent across all simulations except for the 

basses. 

Under Vulnerability forcing (Figure 2C), most responses are similar to Production forcing, except 

for brown algae, snails, and black urchin abundance changes, which are much less, and cabezon 

abundance, which decreases by 18% compared to an increase of 4% under Production forcing. 

Applying the upper and lower confidence boundary pH sensitivity scalars to the Vulnerability 

forcing simulations did not change the results qualitatively from the base sensitivity simulation except for 

brown algae, where the low-sensitivity scalar includes negative values despite the base result of a 20% 

increase in abundance. The high or low sensitivity scalars show slight opposite changes for giant kelp, 

snails, lobsters, pink abalone, and black urchin, but the base responses for all these taxa are small. 

Combining all forcing types (Figure 4D) generally leads to the same pattern of abundance change 

as with Production forcing, but with more extreme responses. Similar to all forcing types, giant kelp and 

brown algae abundance increase, but to a larger magnitude of 21% and 121%, respectively. This is due to 

the combined influence of direct OA effects as well as decreased predation rates across multiple 

functional groups and species. Coralline algae abundance decreases by 93% due to a similar combination 

of direct OA effects and predation rates. Pink abalone abundance shows a larger decrease in abundance of 

55% when compared to any individual forcing type, mainly due to direct OA effects. Snails and lobsters 

also display higher magnitude decreases of 41% and 25%, respectively, resulting from OA, decreased 
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prey availability, and increased predation rates by sheephead. Black urchins increase in abundance by 

approximately 56%, mainly due to increases in macroalgae prey availability. A combination of decreased 

prey abundance, direct mortality, and higher lingcod predation leads to a decrease in cabezon abundance 

by 29%, in contrast to a slight increase under Production forcing, while the abundance of basses increases 

by approximately 23% as a result of decreased predation from elasmobranchs and increases in prey 

abundance. 

Similar to Production forcing, applying the upper and lower confidence boundary pH sensitivity 

scalars result in a wide range of responses across many ecosystem components due to the sensitivity of 

model components to primary production rates at either extreme. However, the two largest responses, 

brown algae and coralline algae, have relatively small confidence bounds and thus are relatively reliable 

estimates.

Comparing Forcing Types

In general, the directional response of functional groups to OA was consistent across forcing 

types. However, there were minor shifts in the opposite direction in cabezon abundance under Production 

forcing as well as basses and coralline algae abundance under Other Mortality forcing. The Production 

forcing simulations resulted in some of the largest increases in abundances across model components due 

to the sensitivity of ecosystem structure and function to changes in the production rates of primary 

producers. OA impacts under Other Mortality forcing, which directly affects biomass storage, resulted in 

the lowest magnitude of change across model components when compared to other forcing types. This 

was likely due to the fact that the additional mortality for each taxon resulting from OA was relatively 

small compared to the effects of the other forcing types on biomass over this pH range. Vulnerability 

forcing resulted in OA impacts similar in magnitude to Other Mortality, excluding coralline algae, which 

displayed a significantly larger decrease. Combining all forcing types together led to the largest changes 

in biomass, linearly consistent with the individual impacts of each forcing.
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Ecosystem Responses

Changes in Ecosystem Biomass across all forcing types display varying responses at the 

beginning of each simulation, but consistently show very little change over the rest of the model run 

(Figure 3A). Production forcing, and consequently Combined forcing, have noticeably larger increases in 

Ecosystem Biomass early in the simulation because of increased production rates for macroalgae. Other 

Mortality forcing shows almost no change throughout the simulation. The Vulnerability forcing 

simulation shows small cycles in variation taking place at approximately 10 year intervals due to varying 

densities of available prey, which cause predators to experience slight shifts in preference that manifest 

through biomass fluctuations. Other Mortality forcing also displays minor fluctuations in Ecosystem 

Biomass at a higher frequency due to the same mechanism.

Figure 3. Plot of changes in Total Biomass, Commercial Biomass, Biodiversity, and Average 

Trophic Level of the Community ecological indicators across Production (green), Other Mortality 

(red), Vulnerability (blue), and Combined (purple) forcing simulations over 50 years, with pH 

dropping from 8.0 to 7.5.

Commercial Biomass responds differently under each forcing type simulation over the 50 year 

period (Figure 3B). Similar to Ecosystem Biomass, there is an increase in Commercial Biomass for the 

Production and Combined forcing types at the beginning of the simulations. The initial observed increases 

for Production and Combined forcing are mostly due to the elevated biomass of macroalgae, which make 

up a large portion of commercial fleet harvest. Commercial Biomass then decreases over the remainder of 

the simulations because of declining snail abundance, dropping by as much as 23 tons/km2. In contrast, 

under Vulnerability forcing, Commercial Biomass steadily increases by approximately 4 tons/km2, which 

is mainly due to snail abundance experiencing a slight decline while commercial macroalgae increase. 

Other Mortality shows a steady decrease in Commercial Biomass over the simulation period, consistent 

with snail abundance biomass change. The rate of change is linear for Vulnerability and Other Mortality 
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forcing, but displays an exponential decrease under Production and Combined forcing. There are also 

small cycles in variation across forcing types similar to Ecosystem Biomass.

Biodiversity generally decreases across all forcing types and is mainly driven by a redistribution 

of biomass across fewer species and functional groups. Production forcing displays a sharp decrease in 

Biodiversity at the beginning of the simulation due to elevated primary producer biomass, but shows very 

little change past that over the 50-year period. Other Mortality forcing shows only minor changes 

throughout the simulation as a result of only small changes to the biomass of model components. 

Biodiversity under Vulnerability and Combined forcing decreases to a larger extent, caused by decline in 

pink, green, and other abalone functional groups as well as some higher trophic level fish. 

With respect to changes in the Average Trophic Level of the Community, all forcing types show 

a general decrease over the 50 year period. The decrease is most noticeable for Production and Combined 

forcing due to the increase in primary producer biomass resulting from OA. Vulnerability and Other 

Mortality forcing experience similar increases in the biomass of primary producers, leading to a drop in 

the Average Trophic Level, but to a lesser extent.

Overall, the ecosystem-level responses to OA are consistent across forcing types. However, there 

were minor differences in the shape and extent of these trends. Production forcing tends to have the 

largest impact on ecosystem properties due to the sensitivity of ecosystem structure and function to 

changes in total energy input, expressed as the production rates of primary producers. OA impacts under 

Other Mortality forcing result in the lowest magnitude of change when compared to other forcing types, 

indicating that the increased direct mortality resulting from OA is not as significant as other forcing 

impacts with respect to ecosystem responses under the pH range used for these simulations. Vulnerability 

forcing results in more unique patterns across ecosystem properties due to the complex indirect effects 

resulting from changing trophic interaction strengths. In contrast to the additive effects of combining 

forcing types together on the abundance of individual species and functional groups, Combined forcing 
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leads to nonlinear amplifications or reductions of ecosystem-level properties. This is commonly observed 

in complex systems when structural changes scale over multiple dimensions (e.g. changes in 

species/functional group interactions scaled to emergent ecosystem properties).

Discussion

This study shows how OA has the potential to impact nearshore kelp ecosystems, but the shape and 

extent of that impact is strongly influenced by the specific physiological interactions of OA with individual 

species and functional groups. Due to the diverse ways in which OA stress manifests at both individual and 

population levels, ecosystem-level effects vary and can display nonlinear patterns. Our modeling approach 

allows us to predict the different impacts of specific OA forcing mechanisms as well as how they interact. 

Isolating OA impacts on growth (Production), mortality (Other Mortality), and predation interactions 

(Vulnerability) or combining all three mechanisms together leads to a variety of ecosystem responses, with 

some species and functional groups increasing in abundance and others decreasing. These changes 

subsequently lead to shifts in ecosystem structure and function with respect to energy flow and 

organizational complexity. In reality, OA impacts organisms through a wide variety of effects outside of 

the three forcing factors used here, which in turn, are emergent properties of many intracellular processes 

occurring simultaneously [23]. Unfortunately, there are not enough data to individually quantify all those 

effects and there is a high degree of uncertainty surrounding how those mechanisms collectively interact, 

especially with respect to California Current functional groups. However, uncertainty pertaining to 

individual cellular processes can be reduced by utilizing the higher dimensional characteristics that impact 

entire organisms or populations as a whole, such as production, biomass storage, and mortality [63]. These 

emergent properties of the system are easier to measure as well as validate and inherently incorporate all of 

the underlying processes [64]. These forcing types also serve as proxies for model input, output, and 
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connection strengths, which are also the most important mathematical properties to consider when 

simulating the dynamics of food webs represented as networks.

While previous studies have used EwE to assess the ecological impacts of OA, none have focused 

specifically on nearshore coastal kelp ecosystems or quantified the role of different physiological forcing 

mechanisms. Busch et al. (2013) looked at the effects of OA on the Puget Sound food web by linearly 

forcing the production rates of calcifying functional groups only. They found similar distributions in the 

direction and overall extent of change across species and functional group abundance, with calcifying 

groups generally decreasing and other small invertebrate groups increasing. They also observed both 

counteractive and amplifying interactions between the direct effects of OA and subsequent indirect effects 

that manifest through ecological shifts, consistent with the results of this study. Guenette et al. (2014) took 

a different approach to modeling the effects of OA on a western Scotian Shelf EwE model system by 

qualitatively categorizing a group’s vulnerability to OA and using those designations to force production 

parameters along with the influence of temperature and oxygen. They also found that changes in primary 

production led to the largest changes in total biomass and that OA generally had a negative influence on 

large invertebrates and calcareous species. Cornwall et al. (2015) utilized an EwE model of a New Zealand 

temperate coastal ecosystem to predict the impact of OA in conjunction with fishing and marine protected 

area policies, but only forced production and consumption parameters of two groups (lobster and abalone). 

They found that OA decreased the biomass of many groups while indirectly benefiting others. It was also 

shown that fishing had a larger impact on biomass than OA, but that OA effects were more significant in 

the absence of fishing.

Although there are only a handful of studies using EwE to asses ecosystem-scale impacts of OA, 

researchers have also used Atlantis models to address these questions. Using an Atlantis model of the 

northeast US continental shelf, Fay et al. (2017) modeled the effects of OA by independently changing the 

mortality and production rates of impacted groups. With mortality forcing on all components, the majority 

of ecosystem groups decreased in biomass, but the increase in some primary producers led to an increase 
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in biomass of specific higher trophic level fish groups and squid. However, production (growth) forcing on 

all components led to only small changes in the biomass of ecosystem groups. A possible reason for the 

stronger impact of Production forcing found in our study is the role of algae-based primary production in a 

kelp ecosystem versus phytoplankton-based production in an open water ecosystem. OA sensitivity 

relationships from Busch and McElhany (2016) were more positive for algae species when compared to 

phytoplankton, and for the Isla Navidad kelp forest model, algae make up the majority of total ecosystem 

production. Marshall et al. (2017) used the same OA sensitivity relationships derived in Busch and 

McElhany (2016) to assess the impacts of OA on the California Current through mortality forcing. Their 

results were similar to those of this study, with the majority of groups showing a decrease in abundance and 

some primary producers and epibenthos showing an increase. They also identified strong indirect effects 

resulting from ecological shifts. Olsen et al. (2018) looked at a suite of eight Atlantis models to quantify 

the roles of OA, marine protected areas, and fishing pressure on marine ecosystems. In general, OA and 

marine protected areas had a larger impact than fishery pressure (contrary to Cornwall et al. 2015). They 

also observed that OA generally led to decreases in total biomass across ecosystems, but with individual 

groups such as demersal/pelagic fish, primary producers, and certain benthos groups increasing in biomass. 

The results of this modeling study are also consistent with what has been found through in situ 

ecological observations. Due to the difficulty of artificially changing the pH chemistry of entire ecosystems, 

scientists have relied on naturally unique conditions, such as volcanic vents, to serve as proxies for broader 

oceanic changes. For example, Porzio et al. (2011) described changes in macroalgae assemblages across a 

pH gradient in the Gulf of Naples. They found that the majority of macroalgae species displayed only a 5% 

decrease as pH fell to 7.8 while some species exhibited enhanced growth. However, coralline algae showed 

a disproportionate decrease and were completely absent at a pH of 6.7. Kroeker et al. (2011) similarly 

compared calcareous and fleshy seaweed communities at a CO2 vent site off the coast of Ischia Island. They 

found that at low pH levels, competition dynamics amplify the shift towards ecosystems dominated by 

fleshy seaweed, resulting in potential phase shifts as competitive stabilization becomes imbalanced. This 
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study highlights the importance of indirect trophic interactions playing a major role alongside the direct 

effects of OA. Hall-Spencer et al. (2008) studied the same ecosystem, but also highlighted changes in the 

benthic and macrofauna communities. They found that shell producing organisms, such as gastropods and 

barnacles, decreased in abundance and were completely absent as pH approached 7.4. Unfortunately, there 

is a distinct gap in field observation studies assessing upper trophic level responses to ecosystem change 

resulting from OA.

A notable advantage of ecosystem modeling is the ability to quantify important indirect effects and 

shifts in community dynamics across OA forcing mechanisms. While the direct effects of changing 

production or increasing mortality certainly impact abundances, especially with respect to primary 

producers, the vast majority of consumer species and functional group changes mirrored trends in either 

predation mortality rates or prey abundance. Interspecies interactions (e.g. predator, prey, and competition) 

and energy cycling dynamics of the ecosystem create negative and positive feedback loops that can 

indirectly enhance the effects of OA, and this phenomenon has been frequently observed in both marine 

and terrestrial ecosystems in response to a variety of perturbations [65]. When combining individual forcing 

types together, these impacts are magnified further. Although the combined effects of all forcing types on 

specific species and functional groups leads to additive change of abundances in this model, the emergent 

effects on ecosystem properties are nonlinear (i.e., exponential). In other words, the complexity of natural 

systems has the potential to exacerbate the impacts of OA on individual populations, but those effects can 

subsequently have much larger consequences on measures of ecosystem health and stability. Examples of 

this can be seen in a variety of other circumstances such as bifurcations in coral reefs due to grazing [66] 

or seagrass ecosystems due to eutrophication [67], but few studies have shown these processes occurring 

because of OA impacts.

There are some significant ways that this modeling approach could be improved for future 

applications. The aggregation of species into EwE functional groups means that the responses of more 

sensitive species could be overshadowed by the larger group. The majority of keystone species used in the 
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Isla Natividad model are represented individually, which helps to minimize uncertainty attributable to over 

aggregation. However, a modified version of the model could be created that individually captures more 

target species known to be significantly impacted by pH. The OA response curves derived from Busch and 

McElhany (2016) were also developed for species spanning the entire CC, so they may not fully represent 

physiological adaptations associated with species at the edge of its distribution. Furthermore, the choice of 

response curves by Busch and McElhany (2016) could be modified to better represent species and 

functional groups with more extreme responses to pH or nonlinear behaviors. In other words, the pH 

relationships were derived from the availability, consistency, and comprehensiveness of available studies, 

but quantitative differences in responses were qualitatively categorized. For example, if two groups have 

the same directional response, equal amount of data, and equal agreement, they would have the same pH 

response curve, but one could potentially have a much stronger response than the other. While this is 

indirectly accounted for with groups that have a lot of studies available, one could potentially add the degree 

of response into the methodology to better capture extreme responses. Similarly, using a linear relationship 

when there’s an exponential response to pH could lead to overestimated impacts at low pH levels and 

underestimated impacts at higher pH levels. Conversely, a logarithmic response could lead to the opposite. 

The availability of data needed to properly quantify those relationships is still limited, but this will become 

less of a problem as more studies are published. The potential effects of uncertainty related to these 

components were reduced by using the upper and lower pH response curves to provide confidence 

boundaries on model results.

This study serves as an overview of multiple modeling approaches designed to identify the 

mechanistic differences between different types of OA forcing and their interactive effects. Results show 

that these differences can be significant on both population and ecosystem scales. But it is encouraging to 

see that when combining OA mechanisms, model predictions align with what’s been previously observed 

across both modeling and field OA studies, providing evidence that the inclusion of more numerous and 

complex mechanisms of OA impact do not detract from model realism. Yet, the relative importance of each 
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forcing type in impacting natural communities is still unknown. While there is a broad array of laboratory 

evidence assessing the metabolic, reproduction, and mortality effects of OA on individuals, there is still a 

prominent gap in studies extending these findings to populations and ecosystem dynamics. Future research 

efforts need to focus on not only the relative importance between these OA impacts, but also on how they 

interact with each other, before results can accurately be used to model ecosystem change. Realistic 

quantification of these relationships is vital in developing comprehensive modeling about future climate 

change. Researchers studying these mechanisms should keep modeling applications in mind to more 

effectively facilitate the flow of information for model parameterization. Additionally, large scale field 

studies looking at a wide variety of functional group abundance and variability will be necessary to validate 

these models. The study of OA impacts on ecosystem structure and function is still a novel field, but 

exploratory studies like this provide an important foundation from which to build off. 

Furthermore, similar gaps exist in understanding the roles of temperature and low oxygen pressures 

on community dynamics as well as how they interact with each other and OA. While only pH was used as 

a forcing parameter in this model, interactions with temperature rise and deoxygenation are likely to amplify 

these ecological impacts [68]. For example, pH affects a variety of characteristics such as reproduction, 

behavior, and growth, which decrease an organism’s capacity to compensate for metabolic disturbances 

and result in a narrowing of thermal and hypoxic tolerance windows [28, 58]. Increasing temperature will 

also exacerbate the effects of low pH by stratifying the water column and further decreasing calcium 

carbonate availability as well as inhibiting reoxygenation of the water column and further decreasing 

metabolic capacity [69]. Therefore, the ecological changes observed in this study are expected to be more 

severe under future climate change scenarios because of the influence of multiple stressors.

Due to the potential consequences of these changes on ocean health and natural resource use in the 

California Current, proper management and mitigation is critical. Since kelp forests are very nearshore 

ecosystems, coastal management plays a large role due to the impacts of nutrient runoff on stratification, 

eutrophication, and deoxygenation [70]. By implementing proper water quality policies, the local effects of 
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climate change can be potentially mitigated [71]. Marine protected areas (MPAs), which have the potential 

to not only protect ecosystem structure and function within specific spatial areas, but also provide important 

connections to surrounding ecosystems that help maintain food web functions, biodiversity maintenance, 

and larval dispersal [72, 73] can help achieve these goals. Although the root cause of declining pH in the 

California Current is a global issue that requires widespread international cooperation to tackle effectively, 

local management strategies can help create resilient marine ecosystems that have a better capacity to deal 

with the negative consequences of climate change. A comprehensive understanding of the mechanistic 

impacts of OA on ecosystem dynamics through quantitative modeling will play an important role in 

supporting these management efforts.
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