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Abstract

Ocean acidification is one the biggest threats to marine ecosystems worldwide, but its ecosystem
wide responses are still poorly understood. This study integrates field and experimental data into a mass
balance food web model of a temperate coastal ecosystem to determine the impacts of specific OA forcing
mechanisms as well as how they interact with one another. Specifically, we forced a food web model of a
kelp forest ecosystem near its southern distribution limit in the California large marine ecosystem to a 0.5
pH drop over the course of 50 years. This study utilizes a modeling approach to determine the impacts of
specific OA forcing mechanisms as well as how they interact. Isolating OA impacts on growth (Production),
mortality (Other Mortality), and predation interactions (Vulnerability) or combining all three mechanisms
together leads to a variety of ecosystem responses, with some taxa increasing in abundance and other
decreasing. Results suggest that carbonate mineralizing groups such as coralline algae, abalone, snails, and
lobsters display the largest decreases in biomass while macroalgae, urchins, and some larger fish species
display the largest increases. Low trophic level groups such as giant kelp and brown algae increase in
biomass by 16% and 71%, respectively. Due to the diverse way in which OA stress manifests at both
individual and population levels, ecosystem-level effects can vary and display nonlinear patterns.
Combined OA forcing leads to initial increases in ecosystem and commercial biomasses followed by a
decrease in commercial biomass below initial values over time, while ecosystem biomass remains high.
Both biodiversity and average trophic level decrease over time. These projections indicate that the kelp
forest community would maintain high productivity with a 0.5 drop in pH, but with a substantially different
community structure characterized by lower biodiversity and relatively greater dominance by lower trophic

level organisms.
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Introduction

Assessing the impact of climate change on marine ecosystems is a challenging task due to the
complexity of interacting variables involved as well as the large spatial and temporal scales that these
changes take place over. Natural equilibria are being affected by a wide range of environmental and
anthropogenic pressures including temperature, deoxygenation, eutrophication, fisheries, and ocean
acidification [1]. These chemical and physical changes influence marine communities on a variety of
scales from organismal physiology to population change and ecosystem-scale structure and function [2].
Approaching a comprehensive understanding of these dynamics is made more difficult by the formidable
requirements of measuring ecosystem change across all these dimensions simultaneously [3]. Despite
such hurdles, significant progress is being made across multiple disciplines and those efforts are being
combined to advance our understanding of ecological change in the face of global warming and

anthropogenic development [4].

Studying the influence of environmental stressors on marine ecosystems is conducted through a
variety of methods that have distinct tradeoffs with respect to forecasting ecosystem-scale responses to
future climate change. One commonly used approach is to analyze paleo-records of marine organisms to
assess the impact of changing climate conditions, which may serve as a proxy for predicting ecosystem
responses under global warming [5]. A major drawback of this approach is the fact that ecosystems have
evolved over long periods since the formation of these records and their response to environmental
change could differ, but also because there are a variety of other variables influencing these records that
are not preserved with the same degree of accuracy (e.g. nutrient availability). Laboratory studies serve as
an optimal way to isolate the effects of specific environmental stressors, or their interactions, and identify
the physiological mechanisms through which they impact organisms [6]. This approach is well suited for
understanding how environmental stressors like temperature, oxygen, and ocean acidification influence

metabolism, reproduction, and survival, but lacks the realism associated with trophic interaction effects
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that take place in natural ecosystems. Mesocosm and field studies can be used to fill this gap [7, 8], which
include a more encompassing understanding of how community dynamics shift with environmental
stressors. However, mesocosm studies generally do not include the full set of species and lack the spatial
scales necessary to recreate the nonlinear dynamics of ecosystem-level change, and field studies have
very little control over stressor gradients. Finally, ecological monitoring programs have proven to be a
successful tool to enhance our understanding of climate change effects on natural ecosystems,
contributing disproportionally to policy and management than any of the previous examples [9].
However, these are demanding, costly, and it’s difficult to identify the causation underlying patterns as

one can generally only measure correlations.

Ecological models have the capacity to integrate results from all of these different methods. In
addition, ecological modeling is well suited for making quantitative predictions of marine ecosystem
change under future climate conditions [10]. These models can be used to evaluate the system-level
consequences of environmental change by scaling up physiological relationships to populations and entire
ecosystems. Data from field and laboratory studies can be incorporated into these models and combined
with food web dynamics to create a mechanistic understanding of how ecosystems respond to external
forcing. A major advantage of this approach is the ability to identify indirect, cumulative, and second
order effects that are often missed or unable to be measured in field or laboratory settings [11]. The
importance of indirect effects in driving ecosystem dynamics has been linked to a wide variety of
mechanisms including the evolution of selective traits across species [12], coupled ecosystem interactions
and energy flow [13], and community stability in the face of climate perturbations [14]. Given the far-
reaching consequences of global climate change, assessing species and population vulnerabilities requires
a quantitative understanding of indirect effects [15], which serves as the foundation for effective

mitigation strategies [16].

‘End-to-End’ ecosystem models that tie together climate, physical, and chemical aspects of an

ecosystem to biotic and anthropogenic interactions are an increasingly important and widely used tool in
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quantifying the indirect ecosystem effects of climate change [17, 18]. Yet while the field of ecosystem
modeling computation continues to advance, the extensive data collection needed to build and drive them
is lagging. Considering end-to-end models encompass a broad scope of physical, chemical, and biological
components, expansive and long-term field monitoring datasets are necessary for proper validation and
accuracy [19, 20]. Furthermore, detailed physiological responses to environmental conditions across
functional groups and trophic levels are needed to optimally parameterize ecosystem responses. Due to
the difficulty of creating such comprehensive and multidisciplinary datasets, the ability to fully model and
predict the interacting effects of multiple environmental stressors under future climate change is still a
major challenge [21]. Therefore, using ecosystem models to forecast the effects of climate change can be
made more effective by focusing on individual stressors for ecosystems that have extensive data
available. Fortunately, ecosystem modeling can simultaneously be used to identify gaps in information to
guide monitoring programs on how to best structure data collection to be more efficient, informative, and
potentially cheaper, which will help make parameterization of interacting environmental constraints more

readily available.

Ocean acidification (OA) is a global issue that is quickly becoming a major threat to ecosystem
health across the world’s oceans [22]. As carbon dioxide concentrations increase due to anthropogenic
emissions, critical chemical equilibria in ocean surface waters are being disrupted, leading to consistent
decreases in pH and inhibiting the ability for calcifying organisms to grow, survive, and reproduce [23].
These physiological effects are already beginning to manifest at the community level, impacting
ecosystem health and industries that depend on ecosystem services [24]. As such, predicting ecosystem
responses to increasing OA in the face of climate change has become a primary international concern for
scientists and managers. Despite this importance, the study of OA is still a relatively new field and very
little is known regarding its impacts on ecosystem properties, structure, function and the services

provided.
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While various paleo records [25], laboratory experiments [26], and field studies [27] have been
used to predict the impacts of OA on specific species or functional groups, very few studies have
investigated the mechanisms through which OA influences ecosystem dynamics [28]. Modeling efforts
are being used to fill this gap by quantifying organism OA response curves [29] to parameterize
ecosystem models. This has allowed researchers to identify ecosystem vulnerabilities in areas like the
California Current [30], predict ecological change in the north Atlantic [31], and assess optimal
management solutions [32]. However, a major drawback of these modeling efforts is the inclusion of only
a single mechanism through which OA impacts model components, such as species production or
mortality. OA affects a broad range of biological functions including metabolism, predator-prey

interactions, and reproduction, and modeling studies have yet to quantify their cumulative effects.

Furthermore, these efforts are made more difficult due to the scarcity of comprehensive
ecosystem-scale datasets and therefore encompass only a select group of ecosystems, generally in open
ocean environments. Yet nearshore coastal ecosystems serve as ideal study sites for the effects of OA due
to their exposure to the physical and chemical variability of both surface and deeper waters, the complex
ecosystems that form there, and the economic value they provide [33]. Their proximity to human
development and easy access also make them common locations for scientific research, leading to robust
and long-term datasets for many areas. Due to the importance of these ecosystems, their vulnerability to
OA, and the existence of extensive field data for marine communities, nearshore coastal ecosystems

provide an opportunity to model the ecosystem-level effects of climate change.

This study utilizes a long-term dataset and detailed food web model of a nearshore kelp
community to quantify the impact of OA on marine ecosystem structure and function. This work builds
upon past research by quantifying the individual and combined influence of multiple OA forcing
mechanisms on population abundances as well as how those changes scale to impact ecosystem health,
complexity, and the economic value of ecosystem services. This is accomplished by 1) identifying the

differences between OA forcing of production, mortality, and predation, 2) simulating the impact of OA
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across various species and functional groups of a coastal kelp community, and 3) measuring changes in
emergent properties related to ecosystem health, complexity, and economic output. We have chosen to
model a kelp forest community because of the economic and ecological importance of kelp forests [34].
This research represents a quantitative modeling approach to assess the cumulative effects of multiple OA
impacts on ecosystem dynamics. A major goal of this work is to provide a general understanding of
macro-ecological responses and to highlight opportunities to strengthen field and laboratory validation of

interacting effects of OA on marine communities.

Methods

Model Development

The ecosystem model used in this study was developed using Ecopath with Ecosim (EwE) [35,
36]. EwE is a software package that comprises several modules (Ecopath, Ecosim, and Ecospace) for
building mass balance as well as time and space dynamic models of ecosystems and includes a large set
of diagnostics for analyzing food webs. These features, plus its flexibility and user-friendly interface,
make EwE one of the most widely applied modeling approaches for food web representation and
scientific analysis [37, 38]. The Ecopath component provides a platform for building static ecological
networks (that is, food webs) where network components are defined as functional groups (representing
species or groups of species) and the interactions between components are trophic interactions quantified
using bioenergetics [39]. The major inputs for each component of the network include biomass,
production and consumption rates, food preferences, unassimilated fraction, and fishing catches.
Additional inputs include immigration, emigration, and biomass accumulation, while mortality and
respiration are estimated within the model. Values for these parameters typically represent yearly

averages over a small number of years.
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Ecopath calculates a static mass-balanced snapshot of the biomass and energy fluxes between
functional groups in a food web. The mass balance is set in a way that consumption of any given
component is subtracted by all losses including bioenergetic ones (respiration, excretion), predation,
eventual net migration, and mortality due to anthropogenic factors such as fishing. Remaining biomass
can accumulate or result in an estimate of other mortalities unexplained by the model (summarized into
the parameter Ecotrophic Efficiency; [39]. Ecosim extends the Ecopath model by providing a dynamic
simulation capability at the ecosystem level using a system of differential equations that express biomass
flux rates between pools as a function of time. Ecosim can be used to simulate ecosystem behavior

through the incorporation of physical, biological, or anthropogenic forcing parameters.

We developed an EwWE model for this study due to the practical considerations associated with
developing, running, and analyzing a suite of OA simulations as well as the availability of previous OA
studies using this framework for comparison [31, 40, 41], providing a foundation to build upon and
compare results with. Only a few ecosystem models have been published for kelp forest ecosystems [42-
46]. While other quantitatively robust ecosystem modeling software packages are available for this type
of ecosystem assessment, such as Atlantis [47], the Atlantis model for the California Current does not
include a nearshore kelp community component and developing one would have been a multi-year effort

falling outside the scope of this project.

Ecopath Model

Two temperate coastal ecosystem models developed for the Pacific coast were available for use;
one for Monterey Bay, California, United States [42] and the other for Isla Natividad, in Baja California
Mexico, near the southern distributional limit of giant kelp (Macrosystis pyrifera) [46]. The Isla
Natividad model was selected for this study due to the longer history of development and associated
publications as well as for the existence of a comprehensive ecological monitoring program dataset to

support it. Isla Natividad is located in the Mexican Pacific in the middle of the Baja California Peninsula
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[46]. Itis a 7 km long island and is part of the Natural Protected Area of El Vizcaino. The model area
covers 31.42 km? of temperate reefs, stretches from the coastline (Om) to the 30m isobath, and is
predominately made up of kelp forest. The island is inhabited by approximately 300 people, who have
been living from marine products for more than 75 years [48]. Until 2010, the principal harvested species
were the pink and green abalone (Haliotis corrugata and H. fulgens, respectively). These abalone species

have recently suffered a drastic decline in their populations compared to historical records [49].

The Isla Natividad Ecopath food web is comprised of 40 functional groups including birds,
marine mammals, fish, invertebrates, algae, phytoplankton, and zooplankton (Figure 1). Data used to
parameterize this model was provided through an ecological monitoring program that began in 2006
through the non-governmental environmental organization Comunidad y Biodiversidad A.C. (COBI), the
fishing cooperatives, and researchers from Stanford University. The model consists of four major trophic
levels with Macrocystis pyrifera, Ecklonia arborea, snails, urchins, and wrasses, such as the California
sheephead, having important ecological roles (Table 1). Due to the strong coupling of urchins with giant
kelp and their influence on ecosystem stability [50], three functional groups were included in the model
(purple, red, and black urchins). Black urchins include both Centrostephanus coronatus and Arbacia
stellate. Of the species and groups included in the model, giant kelp and snails have the largest biomass.
Basses, elasmobranchs, sheephead, marine mammals, sea birds, black urchins, and lingcod are keystone

groups (i.e., high impact per unit biomass).

Figure 1. Food web network diagram of the Isla Natividad model. Lines represent diet interactions.
Circle sizes represent relative size of biomass pools. Numbers along the y-axis and circle color refer
to trophic level (Blue < Green < Yellow < Orange).

Table 1. Species and functional groups used in the EwE Isla Natividad model along with the OA
survival scalars associated with their equivalent functional group taken from the Busch and

McElhany (2016) meta-analysis. For EWE functional groups with more than one functional group
equivalent, survival scalars were calculated as the mean value across groups.

EwE Groups | Scientific Name Meta-Analysis Biomass Survival Scalar
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Groups (tons/ Standard Upper Lower
km?) Boundary | Boundary
Birds 0.08 NA NA NA
Marine 0.8 NA NA NA
Mammals
Lingcod Ophiodon elongatus 0.79 0.25 0.51 -0.01
Fish
Black Sea Stereolepis gigas 20.49 0.25 0.51 -0.01
Bass Fish
Elamobranchs | Heterodontus francisci, 89.25
Rhinobatos productos, Small demersal 0.29 0.58 -0.01
Squatina californica sharks
Sheephead Semicossyphus pulcher 20.6 0.25 0.51 -0.01
Fish
Ocean Caulolatilus princess 2.27 0.25 0.51 -0.01
whitefish Fish
Cabezon Scorpaenichthys 0.02 0.25 0.51 -0.01
marmoratus Fish
Rockfishes Sebastes spp. 0.14 0.25 0.51 -0.01
Fish
Basses Paralabrax clathratus, 4.95 0.25 0.51 -0.01
Paralabrax nebulifer Fish
Garibaldi Hypsypops rubicundus 18.69 0.25 0.51 -0.01
Fish
Damselfish Chromis punctipinnis 8.2 0.25 0.51 -0.01
Fish
Surf perch Anisotremus davidsonii, 2.46
Rhacochilus vacca, 0.25 0.51 -0.01
Embiotoca jacksoni Fish
Opaleye Girella nigricans 14.54 0.25 0.51 -0.01
Fish
Sefioritas Halichoeres 33
semicinctus, Oxyjulis 0.25 0.51 -0.01
californica Fish
Large Loxorynchus grandis 0.5 0.7 0.95 -0.01
crustaceans Crabs
Sessile Crassadoma gigantea, | Meiobenthos 7.63
Invertebrates Anemone spp, Muricea | shallow benthic
spp, Leptogorgia filter feeders / 0.39 0.74 -0.01
chilensis soft corals
Pink abalone Haliotis currugata Benthic Herb 20.79 1 1.22 -0.01
Grazers
Green abalone | Haliotis fulgens Benthic Herb 13 1 1.22 -0.01
Grazers
Other abalones | Haliotis rufescens, Benthic Herb 0.09 1 1.22 -0.01
Haliotis sorenseni Grazers
Snail Megastraea turbanica, Benthic Herb 476.4 1 1.22 -0.01
Megastraea undosa Grazers
Mobile Megathura crenulata, Meiobenthos / 5.87
invertebrates Neobernaya spadicea, benthic
Kelletia kelletii herbivorous 0.7 0.98 -0.01
grazers /

10
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carnivorous
infauna
Octopuses Octopus bimaculatus Humbolt Squid 0.04 0.22 0.52 -0.01
/market squid
Lobster Panulirus interrputus 103.11 0.7 0.95 -0.01
Crabs
Sea cucumber | Parastichopus 10.63 0.37 0.72 -0.01
parvimensis Deposit Feeders
Sea stars Patiria miniata, 0.22
Pisaster giganteus,
Pycnopodia 0.21 0.58 -0.01
heliantoides Sea Stars
Purple urchin | Strongylocentrotus Nearshore sea 0.69 0.2 0.6 -0.01
purpuratus urchins
Black urchin Centrostephanus 1.55
coronatus Nearshore sea 0.2 0.6 -0.01
Arbacia stellata urchins
Red urchin Mesocentrotus Nearshore sea 1.88 0.2 0.6 -0.01
franciscanus urchins
Other small Cancer spp. 41.05 0.07 0.38 -0.01
invertebrates Meiobenthos
Coralline algae 30.78 0.77 1.04 -0.01
Coralline algae
Brown algae Cystoseira 5.22
osmundacea, -0.1 0.29 -0.01
Laminaria sp. Macroalgae
Sargassum Sargassum hornerti, 3.34
Sargassum -0.1 0.29 -0.01
muticum Macroalgae
Green algae 0.2 -0.1 0.29 -0.01
Macroalgae
Red algae 4.28 -0.1 0.29 -0.01
Macroalgae
Giant kelp Macrocystis pyrifera 1064.03 -0.1 0.29 -0.01
Macroalgae
Sea palm Ecklonia arborea, 103.89
Pterygophora -0.1 0.29 -0.01
californica, Macroalgae
Zooplankton Large 5.38
zooplankton / 0.4 0.75 -0.01
meso/ micro
Phytoplankton Small 2.51
phytoplankton / -0.02 0.38 -0.01
large

A summary of statistics related to ecosystem structure and function can be found in Table 2. In

general, the summary statistics for Isla Natividad model fall within the average range of published
Ecopath models [51]. The values of major energy flows per km? (e.g., production, respiration, total

system throughput) are comparable with existing models of coastal shelf, open water, estuarine,

11
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upwelling, and island ecosystems. However, biomass per km? for this system is on the higher end. This is
to be expected for nearshore coastal ecosystems that tend to have a higher density of biomass compared to
more open water systems, which make up the majority of published Ecopath models. The Isla Natividad
model also has lower connective index and omnivory index values than most models, meaning that this
ecosystem displays a less ‘web-like’ structure with lower levels of connectivity between species and
tighter trophic interactions. This structure is also more common of nearshore coastal communities in

comparison to open ocean, upwelling, or estuarine ecosystems.

Table 2: Ecological indicators related to the food web structure of the Isla Natividad model,

statistics, and network flow parameters.

Statistic Value Units

Sum of all consumption 1576.837 | t/km?/year
Sum of all exports 691.1761 | t/km?/year
Sum of all respiratory flows 1042.608 | t/km?/year
Sum of all flows into detritus 1033.012 | t/km?/year
Total system throughput 4343.633 | t/km?/year
Sum of all production 1891.035 | t/km?/year
Mean trophic level of the catch 1.424436

Gross efficiency (catch/net p.p.) 0.007275 | t/km?/year
Calculated total net primary production 1611.629

Total primary production/total respiration 1.545766

Net system production 569.0203 | t/km?/year
Total primary production/total biomass 4.000377

Total biomass/total throughput 0.092749 | t/km?/year
Total biomass (excluding detritus) 402.8692 | t/km2
Total catch 11.7239 | t/km?/year

12
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Connectance Index 0.155819
System Omnivory Index 0.14103
Shannon diversity index 2.038866

Model Parameterization

The incorporation of OA relationships with ecosystem functional groups for this model followed
the approach of Busch and McElhany (2016), which synthesized 393 papers reporting the sensitivity of
temperate species to changes in seawater carbon chemistry. Their methods for quantifying the sensitivity
of functional groups found in the California Current (CC) were based on how well published studies
related to functional groups in pH conditions of the CC, experimental design and quality, and the type of
variables measured. Quantitative relationships between functional groups and pH sensitivity were
provided through ‘relative survival scalars’, which were derived from qualitative scoring of three factors,
1) direction of pH effect from each study, 2) total amount of evidence available, and 3) level of agreement
among studies. These scores were scaled relative to the most sensitive functional group’s score to arrive
at a relative survival scalar, which provides a linear relationship between survival and pH. Additionally,
“high” and “low” pH sensitivity estimates were calculated to provide uncertainty bounds on potential
ecosystem model output. These alternative estimates were used by Busch and McElhany (2016) to

calculate upper and lower boundary pH survival scalars.

Due to the focus on CC organisms, the functional group delineations given in Bush and
McElhany (2016) closely matched the model component aggregations used in the Isla Natividad EwE
model. For example, OA relationships developed for large crustaceans and nearshore sea urchins were
applied to the crab/lobster and purple urchin components in the EWE model, respectively. However, in
many cases the EWE model included more detail with respect to representing specific trophic guilds or

species and this was accounted for by assigning OA relationships from the closest-fitting broader
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functional group. For example, the macroalgae OA relationship from Busch and McElhany was applied to
brown algae, red algae, and Macrocystis pyrifera. Similarly, the fish OA relationship was applied to
lingcod and sea basses, etc. There were also a few instances where the Busch and McElhany (2016)
functional groups included more detail than the EWE model components. In these situations, multiple
functional group relationships from Busch and McElhany (2016) were averaged together to represent the
EwE model component. For example, the average OA relationship from large, meso, and small
zooplankton were used to represent zooplankton in the EWE model. A full list of the Busch and McElhany

(2016) functional groups used to represent EWE model components can be found in Table 1.

The application of OA relationships derived from Busch and McElhany (2016) to an ecosystem
model they weren’t specifically developed for adds a few sources of uncertainty, which may impact
results. For example, the OA relationships developed by Busch and McElhany (2016) were created using
species that span the entire CC, and therefore, their application to a Baja California model may not fully
represent dynamics associated with warmer waters. Aggregation of species’ responses into encompassing
functional groups (e.g., fish or benthic herbivorous grazers) by Busch and McElhany (2016) means that
specific species and genera included in the EWE model, such as cabezon or purple sea urchin, may not be
fully represented or their responses to OA may be overshadowed by species for which there is more
information available in the literature. This should be refined as future research provides better data.
There is also the reverse situation where species are aggregated into groups within the Ecopath model
(e.g., sessile invertebrates) for which relationships from Busch and McElhany (2016) had to be combined,
such as meiobenthos, benthic herviorous grazers, and carnivorous infauna. It has been shown that there
can be considerable variation in the response of individual species within larger taxa [52] and this should
be taken into consideration when interpreting model results. Furthermore, while Busch and McElhany
(2016) described their sensitivity scalars as linear relationships, many species have displayed nonlinear
responses to OA [53]. Unfortunately, not enough information exists to accurately quantify and scale those

nonlinear relationships across entire functional groups.
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When scaling up OA forcing to food web models consisting of biomass components and linked
energy flows, impacts can be primarily applied through three major mechanisms; 1) production, 2) direct
mortality (a subcomponent of total mortality), and 3) trophic interactions. These forcing mechanisms
represent three major mathematical characteristics of network model structure and function that have been
shown to strongly influence nonlinear behaviors related to the stability and resilience of a system to
perturbations; 1) input, 2) storage, and 3) output [54]. Using OA relationships to affect the production of a
model component in the EWE model directly impacts the amount of energy input moving into that
particular functional group as well as the entire ecosystem. This can be done in EWE by changing the
Production Rate for primary producers or the Search Rate for consumers. Search Rate a behavioral
response representing the volume searched per unit time by a predator, but also serves as a proxy for
metabolic changes in production for consumers by modifying the flow of energy from one model
component to another [55]. Storage in EWE models is represented by biomass pools and these can be
directly forced by OA through the Other Mortality parameter. Other Mortality is a subcomponent of Total
Mortality that can be used to represent contributions to mortality that fall outside natural mortality rates,
predation, or fishing mortality. Finally, the energy output of a model component can be forced in EwE
through the Vulnerability parameter, which can be used to scale the flow of energy through trophic
interactions. Vulnerability is a measure of how susceptible a prey species is to predation and directly
impacts the energy output from model components [39]. Generally, forcing model production tends to
have the biggest impact on driving model food webs, followed by changing interaction strengths and
biomass pools through mortality [56], but these forcing mechanisms have not been individually compared

in the context of OA.

The incorporation of OA forcing by the Production and Vulnerability parameters was done
through relative scaling to the pH sensitivity curves developed in Busch and McElhany (2016). In other
words, the original values for these parameters were assumed to occur at a pH of 8.0 (normal conditions),

which coincides with a pH sensitivity factor value of 1. As pH conditions changed, resulting in an
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increase or decrease of the pH sensitivity factor based upon the linear slope of the relationship, the
baseline values of Production and Vulnerability were multiplied by this factor to simulate changes

resulting from OA.

Since Other Mortality isn’t directly included in the original EWE model, relative scaling of that
parameter wasn’t an option. Instead, methods developed in Marshall et al. (2017) were applied to quantify
Other Mortality. The relationships developed in Busch and McElhany (2016) were created with the goal
of incorporating them into an Atlantis model of the CC, which was published in Marshall et al. (2017). In

that study, direct mortality effects were calculated as
MPH = (8 —pH) * (- 0.1 * Sf)

Where MPH is mortality at a given environmental pH, Sf'is the survival scalar developed in Busch and
McElhany (2016), and -0.1 is a scaling factor derived in Marshall et al. (2017). After testing a number of
scaling factors, they chose -0.1 because it led to an induced mortality rate twice that of the maximum
predation mortality on benthic invertebrates when pH dropped from 8.0 to 7.0. For this study, we used a
scaling factor of -0.2 because it led to the same proportional increase in Other Mortality with respect to

predation mortality as Marshall et al. (2017) for the equivalent functional group within the EwWE model.

All three forcing mechanisms were also applied at the same time to create Combined forcing
simulations. Combined forcing best represents real world conditions as OA impacts a variety of
ecosystem dynamics simultaneously. This was done by activating Production, Other Mortality, and
Vulnerability forcing functions in conjunction with one another during the same model simulation. By
modeling each forcing mechanisms individually at first, it’s possible to assess their relative importance in
contributing to OA impacts, while Combined forcing can elucidate potential feedbacks between forcing

mechanisms and better capture realistic ecosystem-level change.

OA interacts with other environmental constraints, such as temperature and oxygen. Currently,
individual quantifications of the respective relationships between temperature, oxygen, and all of the
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functional groups used in this study do not exist. Furthermore, while there is extensive literature
investigating the individual effects of temperature, oxygen, and OA on marine organisms, very few
studies have addressed their interactive effects [57-60]. As such, temperature and oxygen are not included
in this study. External trophic constraints, such as disease, were also not included in this analysis for

similar reasons, although climate change is predicted to increase the incidence of disease [61].

Simulations

OA impact relationships were used to simulate a drop in pH from 8.0 to 7.5 over the course of 50
years. This decrease in pH was selected because it encompasses the predicted pH levels of 7.8 in
nearshore areas of the CC by 2050 [62] and then continues to decrease in order to identify any potential
major ecosystem shifts resulting from extreme stress. Simulations were run using each forcing type
(Production, Other Mortality, and Vulnerability) individually as well as all forcing types simultaneously
under Combined forcing. Besides responses on individual taxa, ecosystem-level indicators were used to
assess a variety of emergent ecosystem properties related to ecological and economic health, including
Ecosystem Biomass (summed biomass of all ecosystem components), Commercial Biomass (summed
biomass of commercially fished components), Biodiversity (Shannon diversity), and Average Trophic
Level of the community (ATL). The above analyses were repeated using the high and low boundary pH
sensitivity scalars for each forcing type individually as well as combined in order to establish upper and

lower confidence boundaries across model simulation results.

Results

Simulating a 0.5 drop in pH over 50 years results in a diverse set of changes across species and
functional groups for all forcing types. Within each simulation, there is a wide distribution of responses,

which are generally consistent across forcing types. Carbonate mineralizing groups such as coralline
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algae, abalone, snails, and lobsters display the largest decreases in abundance while macroalgae and some
larger fish species display the largest increases. Black urchins also show an increase in biomass despite
being a carbonate mineralizing group. However, there are some distinctions in abundance change for
specific species and functional groups across simulations resulting from differences in trophic interactions
driven by each OA forcing type. The rest of this section focuses on a subset of ecologically and
commercially important species and functional groups that synthesize ecosystem-scale responses to OA
forcing, which include giant kelp, brown algae, coralline algae, pink abalone, black urchins, snails,

lobster, cabezon, and the basses.

Functional Group Responses

With Production forcing, by the end of the simulation lower trophic level groups, such as giant
kelp and brown algae, increase in abundance by approximately 16% and 71%, respectively (Figure 2A)
due to a slight increase in production from OA as well as a decrease in the predation rate from snails.
Snails are particularly influential in this ecosystem because they represent the second-highest biomass,
after giant kelp. Coralline algae display a large decrease in abundance by 62% caused by the decrease in
production from OA as well as increased predation from crabs, which have a high biomass in this model.
Snails drop by approximately 33% as a direct effect of OA; this decrease has a large trophic impact on
other groups in the ecosystem, especially brown algae. Lobster and pink abalone display similar decreases
in abundance of 13% and 20% from OA, respectively, but increased predation rates on lobster by
sheephead also contribute. Black urchin abundance increased by 32% as a result of increases in prey
groups such as giant kelp, brown algae, and red algae. Higher trophic level fish groups increased in

abundance, with cabezon growing by 4% and basses by 15.

Figure 2: Plot of percent biomass change across giant kelp, brown algae, coralline algae, pink
abalone, snails, lobster, cabezon, and bass species and functional groups under Production, Other

Mortality, Vulnerability and Combined forcing. Error bars represent percent biomass change
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under upper and lower boundary survival scalars. Upper boundary scalar simulations are
associated with error bars of the same directional change of the normal survival scalar while lower
boundary simulations are associated with error bars of the opposite direction change (ex.
Macrocystis and brown algae upper boundary simulations are represented by the right error bars,

while snails and lobster upper boundary simulations are represented by the left error bars).

Applying the upper and lower confidence boundary pH sensitivity scalars to the Production
forcing simulations result in a wide range of responses across most ecosystem components, with only
coralline algae showing little sensitivity to these boundaries, and only coralline algae, brown algae, and
black urchin have upper and lower boundaries that don’t include zero. For other components, there are
significant amplifications of abundance change under the high sensitivity pH boundary and opposite
abundance changes under the low pH sensitivity boundary. The large distribution in species and
functional group responses are due to the sensitivity of ecosystem models to changes in production rates
of primary producers, especially giant kelp, which are subject to significant changes when using the upper

or lower boundary pH sensitivity scalars.

Under Other Mortality forcing (Figure 2B), which represents a sub-component of overall
mortality (natural + predation + fishing + other), abundance changes differ considerably from the pattern
under Production forcing. Giant kelp increase in abundance minimally and brown algae increase by only
13%. Rather than a large decrease, coralline algae abundance increases slightly; the decrease in the
predation rate by snails is enough to override the deleterious effects of OA. Pink abalone show a decrease
in abundance by 22% due to the direct effects of Other Mortality (i.e., mortality from OA), while the
other shell forming species, such as snails and lobsters, experience only a small decrease in abundance of
4%. Black urchin abundance increases by 14% due to increased availability of macroalgae. Both higher

trophic level fish groups decrease in abundance. Cabezon drops by approximately 14%, which follow
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decreasing trends in pink and green abalone prey species abundance, while basses drop by approximately
3%. Since Other Mortality is just one piece of Total Mortality, its impact can be overshadowed by other
components, such as predation mortality, through trophic interactions. Consequently, the direct effect of

OA through Other Mortality leads to relatively small changes in species abundance.

In contrast to the Production forcing, applying the upper and lower confidence boundary pH
sensitivity scalars to the Other Mortality simulations result in only very small differences in abundance
across components, with the direction of change remaining consistent across all simulations except for the

basses.

Under Vulnerability forcing (Figure 2C), most responses are similar to Production forcing, except
for brown algae, snails, and black urchin abundance changes, which are much less, and cabezon

abundance, which decreases by 18% compared to an increase of 4% under Production forcing.

Applying the upper and lower confidence boundary pH sensitivity scalars to the Vulnerability
forcing simulations did not change the results qualitatively from the base sensitivity simulation except for
brown algae, where the low-sensitivity scalar includes negative values despite the base result of a 20%
increase in abundance. The high or low sensitivity scalars show slight opposite changes for giant kelp,

snails, lobsters, pink abalone, and black urchin, but the base responses for all these taxa are small.

Combining all forcing types (Figure 4D) generally leads to the same pattern of abundance change
as with Production forcing, but with more extreme responses. Similar to all forcing types, giant kelp and
brown algae abundance increase, but to a larger magnitude of 21% and 121%, respectively. This is due to
the combined influence of direct OA effects as well as decreased predation rates across multiple
functional groups and species. Coralline algae abundance decreases by 93% due to a similar combination
of direct OA effects and predation rates. Pink abalone abundance shows a larger decrease in abundance of
55% when compared to any individual forcing type, mainly due to direct OA effects. Snails and lobsters

also display higher magnitude decreases of 41% and 25%, respectively, resulting from OA, decreased
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prey availability, and increased predation rates by sheephead. Black urchins increase in abundance by
approximately 56%, mainly due to increases in macroalgae prey availability. A combination of decreased
prey abundance, direct mortality, and higher lingcod predation leads to a decrease in cabezon abundance
by 29%, in contrast to a slight increase under Production forcing, while the abundance of basses increases
by approximately 23% as a result of decreased predation from elasmobranchs and increases in prey

abundance.

Similar to Production forcing, applying the upper and lower confidence boundary pH sensitivity
scalars result in a wide range of responses across many ecosystem components due to the sensitivity of
model components to primary production rates at either extreme. However, the two largest responses,
brown algae and coralline algae, have relatively small confidence bounds and thus are relatively reliable

estimates.
Comparing Forcing Types

In general, the directional response of functional groups to OA was consistent across forcing
types. However, there were minor shifts in the opposite direction in cabezon abundance under Production
forcing as well as basses and coralline algae abundance under Other Mortality forcing. The Production
forcing simulations resulted in some of the largest increases in abundances across model components due
to the sensitivity of ecosystem structure and function to changes in the production rates of primary
producers. OA impacts under Other Mortality forcing, which directly affects biomass storage, resulted in
the lowest magnitude of change across model components when compared to other forcing types. This
was likely due to the fact that the additional mortality for each taxon resulting from OA was relatively
small compared to the effects of the other forcing types on biomass over this pH range. Vulnerability
forcing resulted in OA impacts similar in magnitude to Other Mortality, excluding coralline algae, which
displayed a significantly larger decrease. Combining all forcing types together led to the largest changes

in biomass, linearly consistent with the individual impacts of each forcing.
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Ecosystem Responses

Changes in Ecosystem Biomass across all forcing types display varying responses at the
beginning of each simulation, but consistently show very little change over the rest of the model run
(Figure 3A). Production forcing, and consequently Combined forcing, have noticeably larger increases in
Ecosystem Biomass early in the simulation because of increased production rates for macroalgae. Other
Mortality forcing shows almost no change throughout the simulation. The Vulnerability forcing
simulation shows small cycles in variation taking place at approximately 10 year intervals due to varying
densities of available prey, which cause predators to experience slight shifts in preference that manifest
through biomass fluctuations. Other Mortality forcing also displays minor fluctuations in Ecosystem

Biomass at a higher frequency due to the same mechanism.

Figure 3. Plot of changes in Total Biomass, Commercial Biomass, Biodiversity, and Average
Trophic Level of the Community ecological indicators across Production (green), Other Mortality
(red), Vulnerability (blue), and Combined (purple) forcing simulations over 50 years, with pH

dropping from 8.0 to 7.5.

Commercial Biomass responds differently under each forcing type simulation over the 50 year
period (Figure 3B). Similar to Ecosystem Biomass, there is an increase in Commercial Biomass for the
Production and Combined forcing types at the beginning of the simulations. The initial observed increases
for Production and Combined forcing are mostly due to the elevated biomass of macroalgae, which make
up a large portion of commercial fleet harvest. Commercial Biomass then decreases over the remainder of
the simulations because of declining snail abundance, dropping by as much as 23 tons/km?. In contrast,
under Vulnerability forcing, Commercial Biomass steadily increases by approximately 4 tons/km?, which
is mainly due to snail abundance experiencing a slight decline while commercial macroalgae increase.
Other Mortality shows a steady decrease in Commercial Biomass over the simulation period, consistent

with snail abundance biomass change. The rate of change is linear for Vulnerability and Other Mortality
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forcing, but displays an exponential decrease under Production and Combined forcing. There are also

small cycles in variation across forcing types similar to Ecosystem Biomass.

Biodiversity generally decreases across all forcing types and is mainly driven by a redistribution
of biomass across fewer species and functional groups. Production forcing displays a sharp decrease in
Biodiversity at the beginning of the simulation due to elevated primary producer biomass, but shows very
little change past that over the 50-year period. Other Mortality forcing shows only minor changes
throughout the simulation as a result of only small changes to the biomass of model components.
Biodiversity under Vulnerability and Combined forcing decreases to a larger extent, caused by decline in

pink, green, and other abalone functional groups as well as some higher trophic level fish.

With respect to changes in the Average Trophic Level of the Community, all forcing types show
a general decrease over the 50 year period. The decrease is most noticeable for Production and Combined
forcing due to the increase in primary producer biomass resulting from OA. Vulnerability and Other
Mortality forcing experience similar increases in the biomass of primary producers, leading to a drop in

the Average Trophic Level, but to a lesser extent.

Overall, the ecosystem-level responses to OA are consistent across forcing types. However, there
were minor differences in the shape and extent of these trends. Production forcing tends to have the
largest impact on ecosystem properties due to the sensitivity of ecosystem structure and function to
changes in total energy input, expressed as the production rates of primary producers. OA impacts under
Other Mortality forcing result in the lowest magnitude of change when compared to other forcing types,
indicating that the increased direct mortality resulting from OA is not as significant as other forcing
impacts with respect to ecosystem responses under the pH range used for these simulations. Vulnerability
forcing results in more unique patterns across ecosystem properties due to the complex indirect effects
resulting from changing trophic interaction strengths. In contrast to the additive effects of combining

forcing types together on the abundance of individual species and functional groups, Combined forcing
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leads to nonlinear amplifications or reductions of ecosystem-level properties. This is commonly observed
in complex systems when structural changes scale over multiple dimensions (e.g. changes in

species/functional group interactions scaled to emergent ecosystem properties).

Discussion

This study shows how OA has the potential to impact nearshore kelp ecosystems, but the shape and
extent of that impact is strongly influenced by the specific physiological interactions of OA with individual
species and functional groups. Due to the diverse ways in which OA stress manifests at both individual and
population levels, ecosystem-level effects vary and can display nonlinear patterns. Our modeling approach
allows us to predict the different impacts of specific OA forcing mechanisms as well as how they interact.
Isolating OA impacts on growth (Production), mortality (Other Mortality), and predation interactions
(Vulnerability) or combining all three mechanisms together leads to a variety of ecosystem responses, with
some species and functional groups increasing in abundance and others decreasing. These changes
subsequently lead to shifts in ecosystem structure and function with respect to energy flow and
organizational complexity. In reality, OA impacts organisms through a wide variety of effects outside of
the three forcing factors used here, which in turn, are emergent properties of many intracellular processes
occurring simultaneously [23]. Unfortunately, there are not enough data to individually quantify all those
effects and there is a high degree of uncertainty surrounding how those mechanisms collectively interact,
especially with respect to California Current functional groups. However, uncertainty pertaining to
individual cellular processes can be reduced by utilizing the higher dimensional characteristics that impact
entire organisms or populations as a whole, such as production, biomass storage, and mortality [63]. These
emergent properties of the system are easier to measure as well as validate and inherently incorporate all of

the underlying processes [64]. These forcing types also serve as proxies for model input, output, and
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connection strengths, which are also the most important mathematical properties to consider when

simulating the dynamics of food webs represented as networks.

While previous studies have used EwWE to assess the ecological impacts of OA, none have focused
specifically on nearshore coastal kelp ecosystems or quantified the role of different physiological forcing
mechanisms. Busch et al. (2013) looked at the effects of OA on the Puget Sound food web by linearly
forcing the production rates of calcifying functional groups only. They found similar distributions in the
direction and overall extent of change across species and functional group abundance, with calcifying
groups generally decreasing and other small invertebrate groups increasing. They also observed both
counteractive and amplifying interactions between the direct effects of OA and subsequent indirect effects
that manifest through ecological shifts, consistent with the results of this study. Guenette et al. (2014) took
a different approach to modeling the effects of OA on a western Scotian Shelf EwWE model system by
qualitatively categorizing a group’s vulnerability to OA and using those designations to force production
parameters along with the influence of temperature and oxygen. They also found that changes in primary
production led to the largest changes in total biomass and that OA generally had a negative influence on
large invertebrates and calcareous species. Cornwall et al. (2015) utilized an EWE model of a New Zealand
temperate coastal ecosystem to predict the impact of OA in conjunction with fishing and marine protected
area policies, but only forced production and consumption parameters of two groups (lobster and abalone).
They found that OA decreased the biomass of many groups while indirectly benefiting others. It was also
shown that fishing had a larger impact on biomass than OA, but that OA effects were more significant in

the absence of fishing.

Although there are only a handful of studies using EWE to asses ecosystem-scale impacts of OA,
researchers have also used Atlantis models to address these questions. Using an Atlantis model of the
northeast US continental shelf, Fay et al. (2017) modeled the effects of OA by independently changing the
mortality and production rates of impacted groups. With mortality forcing on all components, the majority

of ecosystem groups decreased in biomass, but the increase in some primary producers led to an increase
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in biomass of specific higher trophic level fish groups and squid. However, production (growth) forcing on
all components led to only small changes in the biomass of ecosystem groups. A possible reason for the
stronger impact of Production forcing found in our study is the role of algae-based primary production in a
kelp ecosystem versus phytoplankton-based production in an open water ecosystem. OA sensitivity
relationships from Busch and McElhany (2016) were more positive for algae species when compared to
phytoplankton, and for the Isla Navidad kelp forest model, algae make up the majority of total ecosystem
production. Marshall et al. (2017) used the same OA sensitivity relationships derived in Busch and
McElhany (2016) to assess the impacts of OA on the California Current through mortality forcing. Their
results were similar to those of this study, with the majority of groups showing a decrease in abundance and
some primary producers and epibenthos showing an increase. They also identified strong indirect effects
resulting from ecological shifts. Olsen et al. (2018) looked at a suite of eight Atlantis models to quantify
the roles of OA, marine protected areas, and fishing pressure on marine ecosystems. In general, OA and
marine protected areas had a larger impact than fishery pressure (contrary to Cornwall et al. 2015). They
also observed that OA generally led to decreases in total biomass across ecosystems, but with individual

groups such as demersal/pelagic fish, primary producers, and certain benthos groups increasing in biomass.

The results of this modeling study are also consistent with what has been found through in situ
ecological observations. Due to the difficulty of artificially changing the pH chemistry of entire ecosystems,
scientists have relied on naturally unique conditions, such as volcanic vents, to serve as proxies for broader
oceanic changes. For example, Porzio et al. (2011) described changes in macroalgae assemblages across a
pH gradient in the Gulf of Naples. They found that the majority of macroalgae species displayed only a 5%
decrease as pH fell to 7.8 while some species exhibited enhanced growth. However, coralline algae showed
a disproportionate decrease and were completely absent at a pH of 6.7. Kroeker et al. (2011) similarly
compared calcareous and fleshy seaweed communities at a CO, vent site off the coast of Ischia Island. They
found that at low pH levels, competition dynamics amplify the shift towards ecosystems dominated by

fleshy seaweed, resulting in potential phase shifts as competitive stabilization becomes imbalanced. This
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study highlights the importance of indirect trophic interactions playing a major role alongside the direct
effects of OA. Hall-Spencer et al. (2008) studied the same ecosystem, but also highlighted changes in the
benthic and macrofauna communities. They found that shell producing organisms, such as gastropods and
barnacles, decreased in abundance and were completely absent as pH approached 7.4. Unfortunately, there
is a distinct gap in field observation studies assessing upper trophic level responses to ecosystem change

resulting from OA.

A notable advantage of ecosystem modeling is the ability to quantify important indirect effects and
shifts in community dynamics across OA forcing mechanisms. While the direct effects of changing
production or increasing mortality certainly impact abundances, especially with respect to primary
producers, the vast majority of consumer species and functional group changes mirrored trends in either
predation mortality rates or prey abundance. Interspecies interactions (e.g. predator, prey, and competition)
and energy cycling dynamics of the ecosystem create negative and positive feedback loops that can
indirectly enhance the effects of OA, and this phenomenon has been frequently observed in both marine
and terrestrial ecosystems in response to a variety of perturbations [65]. When combining individual forcing
types together, these impacts are magnified further. Although the combined effects of all forcing types on
specific species and functional groups leads to additive change of abundances in this model, the emergent
effects on ecosystem properties are nonlinear (i.e., exponential). In other words, the complexity of natural
systems has the potential to exacerbate the impacts of OA on individual populations, but those effects can
subsequently have much larger consequences on measures of ecosystem health and stability. Examples of
this can be seen in a variety of other circumstances such as bifurcations in coral reefs due to grazing [66]
or seagrass ecosystems due to eutrophication [67], but few studies have shown these processes occurring

because of OA impacts.

There are some significant ways that this modeling approach could be improved for future
applications. The aggregation of species into EwWE functional groups means that the responses of more

sensitive species could be overshadowed by the larger group. The majority of keystone species used in the
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Isla Natividad model are represented individually, which helps to minimize uncertainty attributable to over
aggregation. However, a modified version of the model could be created that individually captures more
target species known to be significantly impacted by pH. The OA response curves derived from Busch and
McElhany (2016) were also developed for species spanning the entire CC, so they may not fully represent
physiological adaptations associated with species at the edge of its distribution. Furthermore, the choice of
response curves by Busch and McElhany (2016) could be modified to better represent species and
functional groups with more extreme responses to pH or nonlinear behaviors. In other words, the pH
relationships were derived from the availability, consistency, and comprehensiveness of available studies,
but quantitative differences in responses were qualitatively categorized. For example, if two groups have
the same directional response, equal amount of data, and equal agreement, they would have the same pH
response curve, but one could potentially have a much stronger response than the other. While this is
indirectly accounted for with groups that have a lot of studies available, one could potentially add the degree
of response into the methodology to better capture extreme responses. Similarly, using a linear relationship
when there’s an exponential response to pH could lead to overestimated impacts at low pH levels and
underestimated impacts at higher pH levels. Conversely, a logarithmic response could lead to the opposite.
The availability of data needed to properly quantify those relationships is still limited, but this will become
less of a problem as more studies are published. The potential effects of uncertainty related to these
components were reduced by using the upper and lower pH response curves to provide confidence

boundaries on model results.

This study serves as an overview of multiple modeling approaches designed to identify the
mechanistic differences between different types of OA forcing and their interactive effects. Results show
that these differences can be significant on both population and ecosystem scales. But it is encouraging to
see that when combining OA mechanisms, model predictions align with what’s been previously observed
across both modeling and field OA studies, providing evidence that the inclusion of more numerous and

complex mechanisms of OA impact do not detract from model realism. Yet, the relative importance of each
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forcing type in impacting natural communities is still unknown. While there is a broad array of laboratory
evidence assessing the metabolic, reproduction, and mortality effects of OA on individuals, there is still a
prominent gap in studies extending these findings to populations and ecosystem dynamics. Future research
efforts need to focus on not only the relative importance between these OA impacts, but also on how they
interact with each other, before results can accurately be used to model ecosystem change. Realistic
quantification of these relationships is vital in developing comprehensive modeling about future climate
change. Researchers studying these mechanisms should keep modeling applications in mind to more
effectively facilitate the flow of information for model parameterization. Additionally, large scale field
studies looking at a wide variety of functional group abundance and variability will be necessary to validate
these models. The study of OA impacts on ecosystem structure and function is still a novel field, but

exploratory studies like this provide an important foundation from which to build off.

Furthermore, similar gaps exist in understanding the roles of temperature and low oxygen pressures
on community dynamics as well as how they interact with each other and OA. While only pH was used as
a forcing parameter in this model, interactions with temperature rise and deoxygenation are likely to amplify
these ecological impacts [68]. For example, pH affects a variety of characteristics such as reproduction,
behavior, and growth, which decrease an organism’s capacity to compensate for metabolic disturbances
and result in a narrowing of thermal and hypoxic tolerance windows [28, 58]. Increasing temperature will
also exacerbate the effects of low pH by stratifying the water column and further decreasing calcium
carbonate availability as well as inhibiting reoxygenation of the water column and further decreasing
metabolic capacity [69]. Therefore, the ecological changes observed in this study are expected to be more

severe under future climate change scenarios because of the influence of multiple stressors.

Due to the potential consequences of these changes on ocean health and natural resource use in the
California Current, proper management and mitigation is critical. Since kelp forests are very nearshore
ecosystems, coastal management plays a large role due to the impacts of nutrient runoff on stratification,

eutrophication, and deoxygenation [70]. By implementing proper water quality policies, the local effects of
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climate change can be potentially mitigated [71]. Marine protected areas (MPAs), which have the potential
to not only protect ecosystem structure and function within specific spatial areas, but also provide important
connections to surrounding ecosystems that help maintain food web functions, biodiversity maintenance,
and larval dispersal [72, 73] can help achieve these goals. Although the root cause of declining pH in the
California Current is a global issue that requires widespread international cooperation to tackle effectively,
local management strategies can help create resilient marine ecosystems that have a better capacity to deal
with the negative consequences of climate change. A comprehensive understanding of the mechanistic
impacts of OA on ecosystem dynamics through quantitative modeling will play an important role in

supporting these management efforts.
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