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 40 
Abstract (175 words max) 41 

Proteomic analysis of rare cell states is a major challenge. We report an advance to our 42 

PRoteomics of Intracellular iMMUnostained cell Subsets (PRIMMUS) workflow whereby 43 

fixed cells are directly digested by proteases in cellulo for mass spectrometry-based 44 

proteomics. This decreased the cell number requirement by two orders of magnitude to 45 

<2,000 human lymphoblasts. We quantitatively measured the proteomes of 8 interphase 46 

and 8 mitotic states, avoiding synchronization. From 8 replicate pseudo-timecourses, 47 

we identify a core set of 119 cell cycle-regulated proteins that segregated into five 48 

clusters. These clusters varied in mitotic abundance patterns and regulatory short linear 49 

sequence motifs controlling their localisation and interaction with E3 ubiquitin ligases. 50 

We identified protein signatures that allowed accurate cell cycle state classification. We 51 

use this classification to stage an unexpected cell population as similar in proteome to 52 

early G0/G1 and telophase cells. Our data indicate DNA damage responses and 53 

premature APC/C activation in these cells, consistent with a DNA damage-induced 54 

senescent state. The advanced PRIMMUS approach is readily and broadly applicable to 55 

characterise rare and abundant cell states. 56 

  57 
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Introduction 58 

The proteome is a functional readout of cellular phenotype, which includes dynamic and 59 

persistent molecular features that reflect cell state and cell type, respectively. Rare cell 60 

phenotypes play key physiological roles. Quiescent stem cells, while often rare relative 61 

to differentiated cell types in a tissue, are essential for tissue homeostasis. Similarly, 62 

mitosis is critical for the accurate propagation of genetic material and a phase during 63 

which cellular commitment to proliferation is made [1][2] . Mitotic states are generally 64 

short-lived and thus rare in an asynchronous population. Proteomic analysis of these 65 

critically important cell phenotypes is a major challenge because typical proteomic 66 

workflows require >105 cells as input. 67 

Recent advances have been made in methods for low cell number proteome 68 

analysis. For example, ~2,700 proteins were identified from 6,250 CD34+ hematopoietic 69 

progenitor cells using optimized in-solution digests combined with data-independent 70 

acquisition (DIA) [3]. ~3,000 proteins were identified from 10 HeLa cells using 71 

‘nanodroplet processing in one pot for trace samples’ (nanoPOTS) [4]. Single cell 72 

proteomic analysis using nanoPOTS with tandem mass tag (TMT) booster channels has 73 

been recently described [5]. NanoPOTS requires microfabricated glass chips, robotics 74 

that can handle picoliter volumes and sample storage in prepacked nano-LC columns. 75 

These requirements are challenging to satisfy in most labs and limit widespread 76 

adoption of the technique.  77 

We previously developed an approach called ‘PRIMMUS’ or ‘Proteomics of 78 

Intracellular Immunostained Subsets” to analyse abundant and rare cell cycle states [6]. 79 

Formaldehyde-fixed cells are fractionated into specific cell states by staining cells for 80 

intracellular markers and separating them using Fluorescence-Activated Cell Sorting 81 

(FACS). Cells grown in asynchronous culture are immediately fixed, thereby minimizing 82 

perturbation to physiological processes. This step is critical, as small molecule-based 83 

synchronsation can lead to effects on the proteome that are associated with stress 84 

responses arising from arrest rather than cell cycle regulation per se [7]. The application 85 

of PRIMMUS was limited to abundant subpopulations where >105 cells can be collected 86 

by FACS within a reasonable time [6]. A more sensitive PRIMMUS approach would 87 

enable high resolution mapping of proteomic changes during an unperturbed cell cycle, 88 
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including the analysis of mitotic states, where major changes in organellar structures, 89 

protein abundances and protein post-translational modifications are highly dynamic on 90 

the minute timescale.  91 

Here, we report a major advance in the PRIMMUS method that increases 92 

sensitivity and enables detailed proteomic analysis of rare cell populations. The new 93 

approach makes use of the discovery that formaldehyde-fixed cells are suitable 94 

substrates for tryptic digestion without prior crosslinking removal, which greatly 95 

simplifies sample preparation. We combined this streamlined workflow with MS1-based 96 

library matching and an MS acquisition method that prioritizes quantitative MS1 quality, 97 

called AMPL (Averaged MS1 Precursor with Library matching). These improvements 98 

together enabled reproducible quantitation of ~4,500 proteins from 2,000 human 99 

lymphoblastoid cells with a low data dropout frequency.  100 

We applied the advanced PRIMMUS workflow to analyze the proteomes of 16 101 

cell cycle subsets, including 8 interphase and 8 mitotic subphases. We identified a core 102 

set of 119 cell cycle regulated proteins. Many of these proteins are well-characterized 103 

as having key functions in cell cycle regulation. We now provide detailed resolution on 104 

their variations in protein abundance across an unperturbed cell cycle. Novel cell cycle 105 

regulated proteins include FAM111B, which by sequence similarity to FAM111A, has 106 

putative roles in regulating DNA replication. We showed that the cell cycle regulated 107 

proteome is predictive of cell cycle state. PCA analysis correctly assigns the expected 108 

order of the subsets according to their temporal relationships in the cell cycle. We use 109 

this classification system to group an unexpected, rare subpopulation with 4N DNA 110 

content as more closely resembling G0/early G1 cells, but with an additional DNA 111 

damage response signature. Our data suggest that these cells are G2 cells entering 112 

senescence after DNA damage, consistent with previous reports [8]. The enhanced 113 

resolution in mitosis allowed us to identify two groups of proteins that are characterized 114 

by early versus late decreases in abundance. These two groups likely reflect a switch 115 

from early mitotic E3 ligases, including the APC/C-Cdc20 and SCF(Cyclin-F), to late 116 

mitotic E3 ligases, including APC/C-Cdh1.  117 

Experimental Procedures 118 

Reagents and antibodies 119 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186023
http://creativecommons.org/licenses/by/4.0/


 5 

A description of reagents, including cell lines and antibodies, can be found in the Key 120 

Resources Table (Supplementary Table 1).  121 

Cell culture 122 

TK6 human lymphoblasts [9] were obtained from the Earnshaw laboratory (University of 123 

Edinburgh). Cells were cultured at 37 C in the presence of 5% CO2 as a suspension in 124 

RPMI-1640 + GlutaMAX (Thermo Scientific) supplemented with 10% v/v fetal bovine 125 

serum (FBS, Thermo Scientific). Cell cultures were maintained at densities no higher 126 

than 2 x 106 cells per ml.  MCF10A cells (ATCC) were cultured in phenol red-free 127 

F12/DMEM media (Thermo Scientific) supplemented with 5% horse serum, 10 µg/ml 128 

insulin (Sigma), 100 ng/ml cholera toxin (Sigma), 20 ng/ml EGF (Sigma), 0.5 µg/ml 129 

hydrocortisone (Sigma), 100 units/ml penicillin and 100 µg/ml streptomycin (Thermo 130 

Scientific) at 37 C in the presence of 5% CO2. Cells were maintained at less than 100% 131 

confluency and were discarded when passage number exceed 20 passages.  U2OS 132 

cells (ATCC) were cultured in DMEM media high glucose + GlutaMAX (Thermo 133 

Scientific) supplemented with 10% v/v FBS (Thermo Scientific). Cells were checked for 134 

mycoplasma at the point of cryo-storage using a luminescence-based assay (Lonza). 135 

Cell fixation and immunostaining 136 

Cells were washed with Dulbecco’s phosphate-buffered saline (DPBS, Lonza) and 137 

resuspended in freshly prepared 1% formaldehyde solution (w/v) from a 16% stock (w/v, 138 

Thermo Scientific) in DPBS, fixed for 10 min at room temperature with gentle rotation, 139 

pelleted, washed with DPBS and permeabilized with cold 90% methanol. Cells were 140 

stored at -20°C prior to staining. 141 

Cells stored in methanol were washed with DPBS and resuspended in blocking 142 

buffer, which is composed of 5% bovine serum albumin (BSA) in 0.1 M Tris-buffered 143 

saline, pH 7.4 (TBS). Cells were blocked for 10 min at room temperature, pelleted, and 144 

resuspended in primary antibody solution (1:200 in blocking buffer). Cells were stained 145 

with primary antibody overnight at 4°C. Stained cells were then washed twice with wash 146 

buffer (DPBS + 0.5% BSA) and stained with dye-conjugated secondary antibodies 147 

(1:200 in blocking buffer) for 1 hour at room temperature. Stained cells were washed 148 

twice with DPBS, pelleted, and stained in DAPI solution (20 µg/ml in DPBS + 0.1% BSA) 149 

for at least 1 hour prior to FACS.  150 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186023
http://creativecommons.org/licenses/by/4.0/


 6 

FACS and gating strategy  151 

Cells were collected using a BD FACSAria Fusion Cell Sorter equipped with 355nm UV, 152 

405nm Violet, 488nm Blue, 561nm YG and 640nm Red lasers, and controlled by BD 153 

FACS Diva V8.0.1 software. Cells were first gated into ‘narrow’ (P1 – P8) and ‘wide’ (P9 154 

– P16) populations based on DAPI fluorescence signal width. The narrow population 155 

contains single cells either in interphase, or in mitosis up to late anaphase. These single 156 

cells were then separated based on cyclin B into 8 different stages of interphase. 157 

Population P1 has low to no cyclin B protein and 2N DNA content, consistent with low to 158 

no E2F activity and a G0/early G1 cell state. Cyclin B rises monotonically from P2 to P6 159 

and then rises more steeply from P6 to P8. Like cyclin B, cyclin A also increases during 160 

interphase, but at a faster rate from P1 to P6 as compared to P6 to P8. P9 to P13 are 161 

positive for histone H3 phosphorylation at Ser28 (pH3+). Highest levels of pH3+ are 162 

present in prometaphase and metaphase. Rising and declining H3 phosphorylation in 163 

early and late mitosis, respectively, result in low to medium levels of pH3+. Cyclin A and 164 

cyclin B levels are used to further discriminate mitotic subphases, as they are degraded 165 

during prometaphase and the metaphase-to-anaphase transition, respectively.  166 

Finally, late mitotic subphases are enriched in the wide population, but so too are 167 

doublets. We reasoned that most doublets will have cyclin B signal, as single cells with 168 

the exception of P1 are cyclin B positive. Thus, we can further enrich late mitotic stages 169 

by selecting wide, 4N, cyclin B negative cells (P14-P16). P14-P16 are then 170 

discriminated further by pH3+ levels, which decrease during mitotic exit. We note that 171 

P16 may contain doublets of G0/early G1 cells (P1), but P14 and P15 should not as 172 

P14 and P15 are pH3+ and G0/early G1 cells are negative for pH3.  173 

5000 cells for each gated population were collected using 4-way purity using 174 

either a 85 or 100 µm nozzle, into 1.5 ml Eppendorf Protein Lo-Bind tubes. Four 175 

biological replicates were collected. An interphase library sample were collected by 176 

combining 300,000 cells of G0/G1, S, and G2 populations. A mitotic library sample was 177 

composed of 800,000 mitotic cells gated by high DNA content and high Histone H3 178 

Ser28 phosphorylation. Samples were centrifuged and supernatant removed before 179 

storing at -20 ºC. 180 
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In-cell digest  181 

Cell sorted library samples, and unstained unsorted TK6 cells, were resuspended in 182 

DPBS at 2 - 5 million cells per ml and incubated with 1 µl (25 - 29 U) benzonase 183 

(Millipore) at 37 ºC for a minimum of 1 hr. Trypsin was added to approximately 1:25 w/w 184 

and in-cell digested at 37 ºC for ~16 hrs. Digests were acidified with TFA and desalted 185 

over Sep-Pak C18 cartridges (Waters) and dried. 186 

Individual populations of 5,000 cells were diluted with 40 µl PBS and incubated 187 

with 0.25 µl [6 – 7 U] benzonase at 37 ºC for a minimum of 1 hr, then digested with 50 188 

ng trypsin (~1:10 w/w) at 37 ºC for ~16 hrs. Samples were acidified with TFA and 189 

desalted over self-made C18 columns with 3 Empore C18 disks [10] and eluted directly 190 

into Axygen™ 96-well PCR Microplates (Fisher Scientific) and dried. 191 

High pH reverse phase fractionation 192 

Approximately 100 µg interphase, mitotic, and unsorted TK6 cell digests were 193 

fractionated by high-pH reverse phase chromatography using an Ultimate 3000 HPLC 194 

(ThermoFisher Scientific) and a 1 x 100 mm 1.7 µm Acquity UPLC BEH C18 column 195 

(Waters). Peptides were separated using a constant 10 mM ammonium formate (pH 10) 196 

and a gradient of water and 100% acetonitrile. Peptides were loaded at 1% acetonitrile 197 

followed by separation by a 48 min multistep gradient of acetonitrile from 3% to 6%, 198 

25%, 45% and 80% acetonitrile at 4, 34, 44, 45 minutes, respectively, followed by an 80% 199 

wash and re-equilibration. Fractions were collected at 30 sec intervals resulting in 96 200 

fractions which were concatenated into 12, and 1 µg aliquots dried. 201 

LC-MS/MS  202 

Peptide samples were resuspended in 0.1% TFA.  Approximately 0.5 µg of library 203 

fractions were injected for DDA LCMS analysis. A volume equal to half the cell 204 

population (equivalent to ~2,500 cells) was injected and analysed twice by AMPL to 205 

produce two technical replicates for each of the four biological replicates. An Ultimate 206 

3000 RSLCnano HPLC (Dionex, Thermo Fisher Scientific) was coupled via electrospray 207 

ionisation to an Orbitrap Elite Hybrid Ion Trap-Orbitrap (Thermo Fisher Scientific). 208 

Peptides were loaded directly onto a 75 μm x 50 cm PepMap-C18 EASY-Spray LC 209 

Column (Thermo Fisher Scientific) and eluted at 250 nl/min using 0.1% formic acid 210 

(Solvent A) and 80% acetonitrile/0.1% formic acid (Solvent B).  Samples were eluted 211 
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over 90 min stepped linear gradient from 1% to 30% B over 72 min, then to 45% B over 212 

18 min. AMPL analyses included up to 5 MS1 microscans of 1E6 ions in the Orbitrap at 213 

120k resolution and with a 250 ms maximum injection time. MS1 scans were acquired 214 

over 350-1700 m/z and a ‘lock mass’ of 445.120025 m/z was used.  This was followed 215 

by 5 data-dependent MS2 CID events (5E3 target ion accumulation) in the ion trap at 216 

rapid resolution with a 2 Da isolation width, a normalised collision energy of 35, 50 ms 217 

maximum fill time, a requirement of a 10k precursor intensity, and a charge of 2+ or 218 

more. Precursors within 5 ppm were dynamically excluded for 40 sec. DDA analyses 219 

were as for AMPL but with a single MS1 microscan with a 75 ms maximum injection 220 

time, followed by 20 CID events in the ion trap. 221 

Libraries were acquired as for DDA analyses or acquired with 10 data-dependent 222 

MS2 HCD events at 30 NCE of 5E4 ions in the Orbitrap at 15k resolution and a 223 

maximum fill time of 100 ms, with a precursor intensity required to be at least 50k. For 224 

the sample preparation comparisons shown in Fig. 2, a 240 min gradient was used (1% 225 

to 30% B for 210 min, then to 42% B over 30 min). MS data was acquired as for DDA 226 

analysis described above with the exception that MS1 spectra were acquired at 60k 227 

resolution and MS2 events were acquired only on 2+ and 3+ precursors. 228 

MS/MS data analysis  229 

Data was processed using MaxQuant version 1.6.2.6 [11]. LC-MS/MS data was 230 

searched against the "Human Ref Proteome _ALL_2017-10-23.fasta" database allowing 231 

for variable methionine oxidation and protein N-terminal acetylation. Carbamidomethyl 232 

cysteine modification was allowed only for samples that were alkylated by 233 

iodoacetemide. A target-decoy threshold of 1% was set for both PSM and protein false 234 

discovery rate. Match-between-runs was enabled with identification transfer within 0.5 235 

mins and a retention time alignment within 20 min window. Matching was permitted from 236 

the library parameter group, and 'from and to' the unfractionated parameter group. 237 

"Require MS/MS for LFQ comparisons" was deselected, and second peptide search 238 

was enabled. Both modified and unmodified unique and razor peptides were used for 239 

quantification. ‘Evidence’ and ‘proteinGroups’ output files were used for subsequent 240 

analysis in R. 241 

Match-between-runs FDR filtering  242 
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A reference sample was generated by lysing TK6 cells in DPBS with 2% SDS and 243 

cOMPLETE protease inhibitors without EDTA (Roche, 1x concentration) at 70 ºC, 244 

homogenised with a probe sonicator and treated with benzonase. Protein was reduced 245 

with 20 mM TCEP for 2 hr before alkylation with 20 mM iodoacetamide at ambient 246 

temperature in the dark for 1 hr. Protein was precipitated with 4 volumes cold acetone at 247 

-20 ºC overnight, washed with 100% cold acetone and 90% cold ethanol. Protein pellet 248 

was air dried before resuspending in DPBS and digesting with 1:50 w/w trypsin for 249 

~16hrs. Peptides were acidified, desalted, aliquoted, and fractionated as previously 250 

described. For isopropylation, 50 µg peptides were resuspended in 200 µl 90% 251 

acetonitrile containing 0.1% formic acid before addition of 50 µl acetone containing 36 252 

µg/µl NaBH3CN. The reaction was conducted at ambient temperature for ~16 hrs before 253 

quenching with ammonium bicarbonate, drying off solvent and desalting peptides over 254 

C18. For dimethylation, 50 µg peptide was resuspended in 200 µl DPBS before addition 255 

of 0.32% formaldehyde and 50 mM NaBH3CN. The reaction was conducted at ambient 256 

temperature for ~16 hrs before quenching with ammonium bicarbonate and desalting 257 

peptides over C18. 200 ng of unmodified, dimethylated, and isopropylated peptides 258 

were analysed by AMPL and DDA, and unmodified fractionated peptide samples were 259 

analysis by DDA, as previously described. LCMS data were searched using MaxQuant, 260 

as previously described. Note that dimethylation and isopropylation modifications were 261 

not specified in in the search parameters. 262 

Cell cycle proteomic data analysis 263 

All subsequent data analysis on the protein intensity table, including the analysis 264 

of pseudoperiodicity, was performed using R (v. 3.5.0) within the RStudio integrated 265 

development environment. The R script will be made available on http://dynamic-266 

proteomes.squarespace.com. The list of validated APC/C substrates was obtained from 267 

the APC/C degron repository (http://slim.icr.ac.uk/apc/). Proteins that contain D box, 268 

KEN and ABBA SLIMs in the human proteome were found using SLiMsearch with 269 

default settings (Disorder score cut-off: 0.30, Flank length: 5). In order to remove slight 270 

variations in total protein amount in each sample, protein intensities were divided by 271 

total intensities per sample and multiplied by 106 to obtain intensities in parts per million 272 

(ppm). There are four biological replicates analysed in technical duplicate. As described 273 
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above, sample analysis was completely randomized in the second technical repeat. 274 

Each technical repeat (i.e. set of four biological replicates) are considered as one 275 

‘pseudotimecourse’ with samples in each biological replicate arranged in order from P1 276 

to P16. Each of the two pseudotimecourse was then independently subjected to a 277 

Fisher’s test for periodicity, as implemented in the ptest R library (v. 1.0-8). Fisher’s 278 

periodicity test p-values were corrected for multiple hypothesis testing using the q value 279 

method as implemented in the qvalue R library (2.15.0). Those proteins that showed q 280 

values <0.10 in both sets of biological replicates and oscillation frequencies of either 281 

0.0625 (1/16) or 0.125 (1/8) were classified as pseudoperiodic. 282 

For clustering, protein ppm values were averaged (mean) to produce a single 283 

pseudotimecourse for each protein. These average abundance profiles were scaled 284 

using the base R function scale and subjected to hierarchal clustering using the Ward 285 

minimum variance algorithm. The appropriate range for cluster number was identified as 286 

3 - 6 clusters using the ‘elbow method’, which involves plotting within-cluster sum of 287 

squares versus number of clusters. Bifurcating leaves of the subsequent dendrogram 288 

were swapped in order to produce a heatmap that follows a logical, sequential order of 289 

peak abundance, i.e. cluster 1 with highest abundance in P0-P8 and cluster 5 with peak 290 

abundance in P3-P7, etc.  291 

For PCA and cell cycle state classification, scaled pseudotimecourses were used. 292 

Cell cycle states were classified using the k-NN model as implemented in the class R 293 

library (v. 7.3-15) using k = 6, with k being the number of nearest neighbours for 294 

classification. Three biological replicates were used as the training set and the 295 

remaining replicate was used as a test set.  296 

For the pairwise comparison of the proteomes of P17 with P1 and P16, t-tests 297 

were performed on ppm intensities. Uncorrected p-values were plotted against mean 298 

fold change in order to identify candidate proteins that were specifically changed in 299 

abundance in P17.  300 

Results 301 

Impact of formaldehyde crosslinking on whole proteome analysis 302 

Heat treatment at 95 C is sufficient to reverse most formaldehyde crosslinks, as shown 303 

previously [9]. However, a pool of crosslinked, multimeric species remained in a protein-304 
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dependent manner. Therefore, we aimed to optimize the PRIMMUS approach by first 305 

focusing on improving the decrosslinking efficiency (Fig. 1A).  306 

Previous reports have suggested that the reversal step is accelerated by co-307 

treatment with a nucleophilic quenching agent [12]. We tested addition of Tris and 308 

hydroxylamine on crosslink removal (Fig. 1B). Banding patterns of extracts from fixed 309 

cells heat treated for 15 and 45 mins (lanes 4 & 5) were similar to cells heated at the 310 

same temperatures in the presence of either 0.5 M Tris (lanes 6 & 7), or 1.25% 311 

hydroxylamine (lanes 8 & 9). Addition of both Tris and hydroxylamine led to a significant 312 

reduction in high MW crosslinked species with 15 min heat treatment (lane 10). A 45 313 

min incubation led to a diffuse banding pattern (lane 11), indicative of protein 314 

degradation as previously reported for hydroxylamine [13]. Indeed, although not as 315 

obvious as with 0.5M Tris and hydroxylamine combined (lane 11), several bands were 316 

less sharp or absent for the 45 min incubation with 1.25% hydroxylamine (lane 9) as 317 

compared with a shorter 15 min incubation (lane 8). We conclude that the combination 318 

of Tris and hydroxylamine treatment shows decreased crosslinked proteins relative to 319 

control, or to either treatment alone. 320 

These samples were then subjected to MS-based proteome characterization. 321 

The extracts from all 11 samples shown in Fig. 1B were trypsin digested, C18 cleaned 322 

and analysed by single-shot LC-MS/MS (Orbitrap Elite). Formaldehyde treatment 323 

produces chemically modified and methylene-bridged peptides [14], which are not 324 

identified with typical MS database search parameters. We were thus surprised to 325 

observe no significant differences observed in protein and peptide coverage between 326 

fixed and fixed+decrosslinked samples (Supplementary Table 2). We then hypothesized 327 

that formaldehyde-induced modifications were present in exceptionally low 328 

stoichiometry and therefore any differences between the samples were masked by the 329 

relatively low peptide coverage in the single-shot analyses. We therefore chose three 330 

samples for HPLC pre-fractionation and deeper proteome analysis: control protein 331 

extract from non-fixed cells, protein extract from fixed cells, and fixed and heat-treated 332 

protein extract from fixed cells (95 C for 45 min). For reference, these samples 333 

correspond to lanes 1, 2, and 5, respectively, in Fig. 1B. Fig. 1C shows that the 334 

numbers of peptides identified are similar among all three samples; in total, 73,885, 335 
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72,785, and 72,779 peptides for control, decrosslinked and fixed samples, respectively. 336 

The numbers of proteins detected are similarly comparable (Fig. 1D), indicating that 337 

formaldehyde fixation has no measurable impact on proteome coverage.  338 

We next used error-tolerant MS searches (MSFragger [15] and Data-dependent 339 

search in MaxQuant) to seek for peptides chemically modified by formaldehyde. 340 

Previous reports on short peptides have shown that formaldehyde produces +30 and 341 

+12 mass shifts, corresponding to methyloyl and imine modifications, respectively. We 342 

saw no appreciable increase in these mass shifts, which is consistent with the instability 343 

of these modifications in acid. Indeed, the pattern and frequency of detected mass shifts 344 

are remarkably similar between control and fixed samples (results for MaxQuant are 345 

shown in Fig. 1E; MSFragger results are shown in Supplementary Figure 1).  346 

From these observations, we concluded that under our reaction conditions, the 347 

stoichiometry of crosslinking and chemical modification by formaldehyde is sufficiently 348 

low such that the non-detection of modified and crosslinked peptides is not detrimental 349 

for characterization of proteomes to a depth of at least 8,000 proteins.  350 

The ‘in-cell digest’: direct protease digestion of fixed cells 351 

Our observation of little to no significant impact of formaldehyde crosslinking on the MS-352 

based proteomic analysis of fixed cell extracts led us to test whether fixed cells 353 

themselves would make suitable substrates for direct protease digestion. Digestion of 354 

fixed cells would significantly simplify the sample processing workflow by making 355 

several steps, including detergent homogenization and heat treatment, unnecessary. 356 

We therefore treated fixed, permeabilized cells suspended in DPBS with either mock 357 

treatment (DPBS), or trypsin, and monitored cell morphology by brightfield microscopy. 358 

As shown in Fig. 2B, prominent structural features visible in control cells, such as 359 

plasma membranes, nuclei and nucleoli, are degraded in a time-dependent manner with 360 

trypsin treatment (see Supplementary Video 1). For LC-MS/MS analysis, fixed cells 361 

were also pre-incubated with benzonase to digest RNA and DNA oligonucleotides, 362 

which may interfere with downstream sample processing. The peptide-containing 363 

supernatant from the digest was then subjected to C18 purification prior to analysis by 364 

LC-MS/MS. As the digestion occurs within the fixed cells, we have called this approach 365 

an ‘in-cell digest’. As shown in Fig. 2C, the proteome coverages are similar for fixed 366 
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cells processed by the in-cell digest method (~4,678 proteins, n = 3), fixed samples that 367 

were subjected to the previously published PRIMMUS protocol (~4,446 proteins, n = 3) 368 

and extracts from non-fixed cells processed by precipitation (see Methods, ~4,561 369 

proteins, n = 3). We conclude that the proteome coverage from the in-cell digest is 370 

similar, or higher, than the other protocols tested.  371 

We did not observe a broad bias in quantitation, as label free intensities 372 

measured in fixed cells prepared by the in-cell digest and by decrosslinking followed by 373 

an in-solution digest showed high correlation (Fig. 2D,  = 0.96). Similarly, a high 374 

correlation was observed between fixed cells prepared by the in-cell digest and non-375 

fixed cells (Fig. 2E,  = 0.97). However, some points lie off-diagonal (Figs. 2D and 2E), 376 

suggesting that a small proportion of proteins show a difference in intensity between 377 

methods. We next asked whether the sample preparation method systematically 378 

affected the abundance of specific proteins, and if so, whether these proteins reflect 379 

particular protein classes. Volcano plots comparing in-cell versus in solution methods of 380 

preparing fixed cells are shown in Figs. 2F and 2G, which highlight proteins with 381 

reproducibly decreased and increased abundance, respectively. Interestingly, RNA-382 

binding proteins, such as proteins involved in mRNA processing, are enriched amongst 383 

proteins showing decreased abundance with the in-cell digest. In contrast, membrane-384 

associated proteins are enriched amongst proteins showing increased abundance.  385 

We conclude that the measurements of protein abundance from the in-cell digest 386 

are quantitative, reproducible and broadly comparable to conventional sample 387 

preparation methods. We note that each sample preparation method will have its own 388 

specific biases. In the case of the in-cell digest, the increased abundance of membrane 389 

proteins may more accurately reflect the abundance of these proteins in cells, as will be 390 

detailed in the Discussion section.  391 

Averaged MS1 Precursors with Library matching (AMPL) improves feature detection 392 

To increase the sensitivity and detection speed of the Orbitrap Elite MS instrument 393 

(release date in 2011), we utilised MS1-based identification and quantitation using 394 

accurate mass and retention time matching, as proposed originally by the Smith lab [16]. 395 

This approach has been recently demonstrated to be highly sensitive in an 396 

implementation called BoxCar [17]. The BoxCar method increases the dynamic range of 397 
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trap-based MS by collecting ions using segmented, spaced windows. Peptide 398 

identification relies on MS1 feature matching to a reference library generated from a 399 

fractionated reference sample using the MaxQuant function ‘Match-between-runs’ 400 

(MBR). The library is analysed separately using data-dependent acquisition (DDA) and 401 

peptides are identified by MS2 and database searches. Using BoxCar enabled 402 

quantitation of ~7,775 on average in single shot analyses of 1 µg HeLa digest on 403 

column using the Orbitrap HF.  404 

As the BoxCar method cannot be directly implemented on the Orbitrap Elite, we 405 

developed a different approach to increase the dynamic range of MS1 feature detection. 406 

MS1 spectral averaging is frequently performed in direct infusion MS, but rarely 407 

employed in LC-MS bottom-up proteomics. We surmised that averaging several MS1 408 

scans would improve signal-to-noise (S/N) and would rapidly plateau as it is known that 409 

averaging improves S/N by a factor of sqrt(n) where n is the number of spectra 410 

averaged. Features would then be matched between the single shot analyses to a 411 

fractionated reference library (Fig. 3A). We call this method Averaged MS1 Precursors 412 

with Library matching (AMPL), or AMP if no library is used. As shown schematically in 413 

Fig. 3B, like BoxCar, AMP(L) prioritises MS1 scans over MS2 scans as compared with 414 

DDA and includes top-5 DDA MS/MS scans to ensure identification of features for 415 

accurate retention time alignment throughout the chromatographic separation. 416 

We therefore tested AMPL by analysing high on-column loads of tryptic digests 417 

of MCF10A (1 µg peptide). Fig. 3C shows the number of chromatographic features 418 

(‘peaks’) detected using DDA (triangle) versus AMP with variable number of MS1 scans 419 

to average (circles). AMP with 1 MS1 scan already increases the number of features 420 

detected (228,724) versus DDA (188,928), with further gains up to 5 averages 421 

(285,049). We then generated a 12-fraction reference library using high pH reverse 422 

phase fractionation for MBR. Fig. 3D and E shows a comparison of AMPL and DDA on 423 

peptide and protein quantitation, respectively. Increasing the frequency of MS1 scans 424 

with no averaging (i.e. AMPL with 1 MS1) performs similarly to DDA with matching to a 425 

library (DDA-L) (Fig. 3D, 47,496 vs 46,455 peptides quantitated, respectively). As 426 

shown in Fig. 3D, Increasing the number of MS1 scans averaged to 3 and 4 increases 427 

the number of peptides quantitated to 51,812 and 54,169 peptides, respectively, 428 
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corresponding to ~17% increase in peptides relative to DDA. AMPL with 4 averages 429 

also increases proteins quantitated by ~12.5% (Fig. 3E, 5,970 DDA versus 6,724 430 

AMPL).  431 

We reasoned that the additional peptides detected by AMPL originate from low-432 

abundance features detected by virtue of the S/N increase due to averaging. Fig. 3F 433 

compares the peptide intensity distributions between DDA-L and AMPL. The 434 

distributions are bimodal, with MS/MS-dependent identification biased towards higher 435 

intensity features (cyan). Consistent with the idea that AMPL improves S/N, AMPL 436 

detects a higher number of matched features (pink) in the low abundance regime.  437 

MS1-based matching approaches have been previously shown to improve 438 

dataset completeness by reducing missing values. Ten technical replicates were 439 

analysed by DDA, DDA-L and AMPL. Fig. 3G shows a histogram of proteins binned by 440 

the number of replicates where an intensity was measured. AMPL shows the highest 441 

data completeness (4,500 proteins with intensities measured in all 10 replicates) as 442 

compared with DDA-L (3,500 proteins) and DDA (2,900 proteins).  Compared to DDA-L, 443 

AMPL consistently quantitates more proteins (Supplementary Figure 2) and shows 444 

slightly improved reproducibility as indicated by higher pairwise Pearson’s correlation 445 

scores (Supplementary Figure 2). 446 

The improvements in detecting low abundance features suggested that AMPL 447 

may be well suited to analysis of low sample loads. AMP (i.e. no library) consistently 448 

detects more features than DDA (Fig. 4A), which leads to significant improvements in 449 

the peptide and protein coverage (Figs. 4B and C, respectively). For example, at 10 ng 450 

loading, 21,483 unique peptides are quantitated by AMPL versus 14,702 by DDA-L, 451 

representing a 46% increase in coverage. AMPL provides 150-535% improvement 452 

relative to conventional DDA with no library and 24-46% improvement relative to DDA-L 453 

for protein coverage at all tested column loads with greatest gains observed at low 454 

column load. At 10 ng, 832 proteins are detected by DDA versus 2,891 proteins by 455 

DDA-L and 3,629 proteins by AMPL.  456 

MS1-based matching significantly increases the sensitivity, coverage and data 457 

completeness of MS-based proteomics, as previously reported and shown here [18]. 458 

However, the lack of MS2-based identification for these matched sequences could lead 459 
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to an increased false discovery rate (FDR). We estimated that the matching FDR is ~4.5% 460 

using an empirical target-decoy approach where decoy proteomes created by chemical 461 

modification (demethylation and isopropylation) are matched against an unmodified 462 

library (Supplementary Figure 2A). By applying more stringent thresholds for match time, 463 

match m/z and match m/z error (Supplementary Figure 2B-D), we reduced the 464 

estimated FDR to 2.2% while retaining 96% of the matches in the target dataset 465 

(Supplementary Figure 2E and Supplementary Table 3).  466 

We conclude the library matching approach dramatically increases sensitivity, 467 

particularly for low column loads, with AMPL providing the highest peptide and protein 468 

coverages overall with relatively low estimated match FDR (<3%).  469 

An improved PRIMMUS for proteomic analysis of low cell number populations 470 

As shown in Fig. 4C, AMPL detects a slightly higher number of proteins in 10 ng on-471 

column load as DDA with 1 µg load, demonstrating a 100x increase in sensitivity. A 10 472 

ng on-column load is equivalent to the protein content of ~67 cells based on the protein 473 

per cell measured in bulk assays. However, the effective number of cells required for 474 

proteome analysis is usually much higher. This is due to losses during sample 475 

preparation. We reasoned that these losses are significantly reduced using the 476 

streamlined in-cell digest.  477 

We combined in-cell digest with AMPL to analyse FACS collected TK6 cells, a 478 

human lymphoblastoid cell line with a stable near-diploid karyotype. Notably, TK6 cells 479 

are smaller than typical adherent human cell lines, such as HeLa and MCF10A. Being 480 

cultured in suspension, TK6 cells are amenable towards cell separation techniques, 481 

including fluorescence-activated cell sorting (FACS) and centrifugal elutriation, without 482 

requiring cell dissociation, which can induce physiological perturbations.  483 

Fig. 4D shows the result of a cell titration analysis of S-phase cells performed in 484 

duplicate whereby two aliquots at each indicated cell number (2,000 cells to 0 cells) 485 

were collected by FACS from the same starting cell population (Supplementary Table 4). 486 

Over 4,500 proteins were quantitated with 2,000 cells, with 4,480 proteins reproducibly 487 

quantitated in two technical repeats. At the lower end of the cell titration (shown in Fig. 488 

4E), over 300 proteins on average were quantitated from 10 cells with 259 reproducibly 489 

quantitated in two cell aliquots that were separately collected by FACS. While approx. 490 
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30 proteins were detected in single cells, with 17 reproducibly detected, nearly all of 491 

these proteins were also detected in the background samples (‘0 cells’).  492 

We conclude that combining in-cell digest and AMPL enables characterization of 493 

proteomes of 2,000 cells to a protein depth comparable to conventional single shot DDA 494 

analysis of 1 µg on-column loads. The advanced PRIMMUS method presented here 495 

significantly reduces the number of cells required, i.e. ~103 versus ~105.  496 

High temporal resolution analysis of an unperturbed cell cycle using PRIMMUS 497 

Scheduled degradation during mitosis is a key regulatory mechanism to control mitotic 498 

progression. Here, we characterised the proteome variation across 16 cell cycle 499 

subpopulations, including 8 interphase and 8 mitotic phases, using the advanced 500 

PRIMMUS workflow that combines the in-cell digest and AMPL (Fig. 5A). TK6 cells 501 

were immunostained for DNA content, cyclin B, cyclin A and histone H3 phosphorylation 502 

(Ser28), which are all markers of cell cycle progression, and separated into cell cycle 503 

populations (P1 – P16). Fig. 5B summarises the populations collected by FACS with 504 

respect to the markers used (Supplementary Figure 3 shows the full gating strategy). 505 

The marker combinations were chosen to produce a pseudo-timecourse. Biochemical 506 

differences are used as a surrogate for time and cell cycle progression. Based on past 507 

literature [18][19] and our previous data [5], we have correlated these biochemical 508 

changes with specific cell cycle states (as illustrated in Fig. 5B, bottom). While a full 509 

description of the gating strategy can be found in the Experimental Procedures, as an 510 

example, cyclin A and cyclin B levels are used to discriminate mitotic subphases, as 511 

they are degraded during prometaphase and the metaphase-to-anaphase transition, 512 

respectively.  513 

The rarest target cells, in late anaphase of mitosis, are 0.01% of a typical 514 

asynchronous TK6 culture. Proteome characterisation of these cells, previously 515 

challenging due to lack of sensitivity, is now possible with the latest developments to 516 

PRIMMUS. Four separate cultures of TK6 cells were independently FACS separated 517 

into 16 populations. For each population, 5,000 cells were collected and processed 518 

using the in-cell digest. Collection of 5,000 cells provided sufficient material for duplicate 519 

injections for LC-MS/MS analysis by AMPL with DDA feature libraries generated from 520 
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interphase, mitotic and asynchronous cells. The data were then processed by 521 

MaxQuant with MBR and filtered by match parameters as discussed above. 522 

Of the 7,757 proteins quantitated overall (Supplementary Table 5), 4,918 proteins 523 

were quantitated in all 8 replicates (4 biological x 2 technical repeats) in at least one 524 

population (Fig. 5C). Next, to identify cell cycle regulated proteins, we treated each set 525 

of 16 populations as an ordered series of related biochemical states. We have called 526 

each set a pseudotimecourse. While these states can be projected onto a temporal axis 527 

(i.e. cell cycle progression), the link with time is indirect as the duration of each phase 528 

has been shown to vary substantially on a per-cell basis. We then performed a Fisher’s 529 

periodicity test to identify proteins abundance patterns that showed periodic behavior. In 530 

order to increase robustness, the periodicity test was separately performed on each 531 

technical repeat. Only those proteins showing a p-value <= 0.10 and a periodic 532 

frequency of 0.0625 or 0.125 (i.e. one cycle every 8 or 16 pseudo-timepoints) in both 533 

tests were considered further as periodic. Fig. 5D shows the abundance profiles for heat 534 

shock protein HSP90AA1 and ATPase AAA domain-containing protein ATAD2 as 535 

example non-periodic and periodic proteins, respectively. ATAD2 shows highly 536 

reproducible abundance variation in all 8 pseudotimecourses, with peak abundance in 537 

S-phase populations (P5-P6). We note proteins meeting the significance cutoffs are 538 

highly enriched in cell cycle GO terms (Supplementary Table 6) and contain many 539 

proteins previously reported as cell cycle regulated [5][20][21][22][23], suggesting that 540 

the cutoff criteria achieved a final set of proteins with high functional specificity. 541 

Amongst these 119 proteins are cyclins A2 and B1. The MS-measured 542 

abundance patterns (Fig. 5E) show similarity with those measured by immunostaining 543 

(Fig. 6B) with accumulation in interphase and decreased abundance in mitosis. We also 544 

detect cyclin B2, an isoform of cyclin B that is localized to the Golgi apparatus. Cyclins 545 

B2 and B1 show a nearly identical abundance pattern in interphase. However, at 546 

anaphase and late mitosis (P13 – P16), cyclin B2 abundance does not decrease to 547 

background levels, which suggests that unlike cyclin B1, there is a pool of cyclin B2 that 548 

is stable towards degradation (Fig. 5E, right). 549 

Hierarchal clustering of the 119 proteins (Fig. 6A) identified five major classes of 550 

protein abundance patterns (Fig. 6B). Cluster 1 proteins show high abundance in 551 
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interphase, which decreases in early mitosis (P8-P10) and recovers slightly in late 552 

mitotic populations (P15-P16), as illustrated by the example protein hepatoma-derived 553 

growth factor, SRSF6 (Fig. 6C). Like SRSF6, most proteins in this cluster are either 554 

RNA- or DNA-binding (26 / 33). For example, several mRNA splicing factors are in this 555 

group, including serine/arginine-rich proteins (SRRM2, SRSF2, SRSF3, SRSF5, 556 

SRSF6). These proteins decrease in abundance in mitosis with a small fold change ( 2) 557 

compared with, for example, cyclin B1 (Fig. 5E). The remaining proteins with no known 558 

or anticipated oligonucleotide-binding properties are enriched in cytoskeleton-binding 559 

factors, e.g. the actin-binding proteins MARCKS and ZYX. 560 

Cluster 2 contained proteins that had peak abundances in late G1/S populations. 561 

Included in this cluster is the protein SLBP, a histone gene expression factor that peaks 562 

in P4-P5 (Fig. 6D). Indeed, nearly all proteins in this cluster are directly involved in DNA 563 

replication or associated with the DNA damage response, including members of the 564 

MCM helicase (MCM2, MCM5, MCM6), DNA damage checkpoint factors (ATM, RBBP8) 565 

and a replication-dependent histone chaperone (CHAF1B).  566 

These protein clusters vary in their enrichment in short linear (sequence) motifs 567 

(SLIMs). SLIMs mediate protein-protein interactions that lead to changes in post-568 

translational modification, stability and/or subcellular localization of a protein. Using the 569 

eukaryotic linear motif (ELM) database [24], we identified SLIMs that are enriched in 570 

each cluster (p < 0.01, Fisher’s exact test, Supplementary Table 7). In particular, 571 

enriched SLIMs that modulate protein stability (i.e. degrons) could help identify relevant 572 

degradation pathways for each protein cluster. Clusters 1 and 2 show an enrichment in 573 

Skp1-Cullin-F box (SCF)-Fbxw7 motifs (Fig. 6I). Targeted degradation by SCF-Fbxw7 574 

generally requires priming phosphorylation [25], which links the stability of a protein with 575 

kinase activity, e.g. CDK. Cluster 1 is most enriched in the T-P-X-X-[ST] motif (2’ motif), 576 

which requires two priming phosphorylations for recognition by SCF-Fbxw7 and 577 

targeted degradation. Cluster 2 is most enriched in the T-P-X-X-E motif, which requires 578 

only one phosphorylation for substrate recognition. Interestingly, Cluster 1 is also more 579 

highly enriched in CDK consensus sites. We conclude that multisite phosphorylation by 580 

CDK may play a role in directing these proteins for degradation by SCF-Fbxw7. 581 
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Cluster 3 shows peak abundance in G2 and early mitosis (P6 to P9). This cluster 582 

contains several proteins associated with DNA replication and DNA damage repair, 583 

including the dsDNA exonuclease EXO1, PCNA-associated factor (PAF/KIAA0101) and 584 

ribonucleotide reductase M2 (RRM2, Fig. 6E). The abundance pattern of RRM2 is 585 

consistent with previous proteomic studies and targeted degradation of RRM2 in late 586 

G2/early mitosis by the cyclin F-SCF complex [5][26].  587 

Clusters 4 and 5 show peak abundance during mitosis and contain the largest 588 

proportion of proteins with either known roles in mitotic progression or targeted for 589 

degradation in mitosis (9/12 for cluster 4, 38/46 for cluster 5). The distinguishing feature 590 

that separates cluster 4 and 5 is the mitotic abundance pattern. Cluster 4 proteins show 591 

decreased abundance in earlier mitotic populations, particularly in P11 – P12, 592 

coincident with the onset of cyclin A2 and cyclin B1 degradation (c.f. Fig. 5B). The three 593 

mitotic cyclins detected (A2, B1 and B2), the spindle assembly checkpoint kinases 594 

BUB1 (Fig. 6F) and BUB1B (BubR1), the kinesin-8 family member KIF18B, securin 595 

(PTTG1) and shugoshin (SGO2) are in this cluster. Functionally, this cluster is 596 

characterized by proteins that maintain sister chromatid cohesion (securing, shugoshin) 597 

and constitute a checkpoint that prevents anaphase (cyclins, Bub kinases) while proper 598 

microtubule attachment and biorientation of chromosomes takes place. Consistent with 599 

the MS-based proteomics data for KIF18B, the fluorescence of GFP-KIF18B begins to 600 

decrease 10 minutes prior to anaphase onset and is at 20% relative fluorescence by 20 601 

minutes after anaphase onset [27].  602 

By contrast, cluster 5 proteins show a significant increase in abundance at the 603 

end of interphase (P7 – P8) with peak abundance throughout mitosis (P9 – P15) and a 604 

significant decrease only in the last population (P16), i.e. cells undergoing mitotic exit. 605 

Example proteins from this cluster include TPX2 and Aurora A kinase (Fig. 6G). TPX2 is 606 

the activator of Aurora A kinase whose activity is important in centrosome separation in 607 

prophase and mitotic progression. Other proteins in cluster 5 with regulatory roles in 608 

mitotic progression include the catalytic E2 subunits of the APC/C (UBE2C, UBE2S), 609 

the chromosome passenger complex (AURKB, INCENP, BIRC5 – Survivin, CDCA8 – 610 

Borealin) and the spindle-associated protein FAM83D.  611 
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SLIM analysis of these clusters identified differences in the enrichment in nuclear 612 

import and export signals. As shown in Fig. 6I, clusters 1 and 2 are enriched in nuclear 613 

localisation signals (mono- and bi-partite). By contrast, cluster 4 shows a strong 614 

enrichment for the Crm1-mediated nuclear export signal (NES). Eight proteins in cluster 615 

4 matched the NES consensus. Some predicted NES located in globular domains will 616 

likely be constitutively inaccessible to Crm1 but may be recognized upon conformational 617 

change. Notably, cluster 4 includes cyclins B1 and B2, whose constitutive export from 618 

the nucleus is thought to be important in preventing premature mitotic entry. Crm1-619 

binding and/or exclusion from the nucleus of the remaining six proteins (e.g. Bub1, 620 

BubR1, cyclin A2, CLEC16A, MVP, and ARMC1) may also be important in the proper 621 

timing of cell cycle events. 622 

We identified strongly pseudoperiodic proteins that have no reported function in 623 

cell cycle control. These novel cell cycle regulated proteins may, like many of the other 624 

proteins identified in this manner, have significant roles in cell cycle progression. These 625 

candidates include EXO1, the DNA helicase PIF1, the guanine-exchange factor NET1 626 

and the uncharacterized protein FAM111B (Fig. 6H). Potential functional roles for 627 

FAM111B in cell cycle regulation are discussed further below. 628 

Analysis of mitotic protein abundance dynamics in unperturbed cells 629 

A major regulator of protein abundance during the cell cycle is the anaphase promoting 630 

complex/cyclosome (APC/C). The APC/C is an E3 ubiquitin ligase and is active during 631 

the mitotic and G0/G1 phases of the cell cycle [28][29]. Its substrates include key 632 

regulators of the cell cycle, including cyclin A2 and cyclin B1 [18][19]. However, 633 

ubiquitination of APC/C substrates is tightly temporally controlled, with APC/C substrate 634 

specificity changing during the cell cycle. This is mediated through changes in the 635 

APC/C co-activators and substrate recognition factors, Cdc20 and Cdh1. While APC/C-636 

Cdc20 is active in early mitosis, the substrate receptor changes to Cdh1 in late mitosis, 637 

thereby conferring a temporal order to substrate degradation. Cdc20 is itself a substrate 638 

of the APC/C-Cdh1, allowing for switch-like handover in substrate receptor control.  639 

Interestingly, 25 of the 119 core pseudoperiodic proteins are experimentally 640 

validated APC/C substrates and the vast majority (24) are found in clusters 3, 4 and 5. 641 

Substrate recognition by APC/C-Cdc20 and APC/C-Cdh1 is mediated by the interaction 642 
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between WD40 domains on the APC/C-(Cdc20/Cdh1) and SLIMs found on substrates. 643 

The KEN and D-box (RxxL) degrons are well documented SLIMs that bind both APC/C-644 

Cdc20 and APC/C-Cdh1, with APC/C-Cdh1 having a preference for the KEN degron. 645 

More recently, a third SLIM called the ABBA motif was shown to be important in 646 

substrate recognition by APC/C-Cdc20 [30]. Its name comes from the four proteins in 647 

which it is found: Cyclin A, Bub1, BubR1 and the yeast-specific protein Acm1.  648 

Fig. 6J shows the enrichment profile of these SLIMs across the six clusters. The 649 

KEN motif is comparably enriched in 4 out of the 5 clusters (Fig. 6J), with highest 650 

enrichments for the mitotic phase-peaking clusters (clusters 4 and 5). The frequencies 651 

range from 25% of the proteins in a cluster having the KEN motif (cluster 2) to 43% 652 

(cluster 5), representing a 3-5-fold enrichment over the background frequency (8%). All 653 

four clusters show low to non-detectable abundance in P16, P1 and P2, i.e. mitotic exit 654 

and G0/early G1 when APC/C-Cdh1 is active. In total, 35 cell cycle regulated proteins 655 

contain a KEN SLIM, approximately 50% (18 proteins) that have been experimentally 656 

characterized as APC/C substrates. The remaining uncharacterized 17 proteins are 657 

excellent candidates to be APC/C-Cdh1 substrates. Consistent with this prediction, 658 

cluster 1, which is the only cluster showing no enrichment for the KEN motif, contains 659 

proteins that have on average, higher abundance in G0/early G1.  660 

Six out of 12 proteins that peak in mid-mitosis (cluster 4) contain the RxxL D-box 661 

sequence. The 50% frequency is ~8-fold higher than the background frequency (6%). 662 

By contrast, the fold-enrichment is considerably lower in the other clusters (Fig. 6I). 663 

Similarly, 5 out of 12 proteins contain the ABBA motif (42%, Fig. 6I), representing a ~9-664 

fold enrichment over the background frequency (5%). D-box and ABBA motif-containing 665 

proteins in this cluster are mostly mutually exclusive: only two proteins contain both 666 

SLIMs: BubR1 (BUB1B) and shugoshin-2 (SGOL2). Of the D-box and ABBA motif 667 

containing proteins, three have not been previously experimentally characterized as 668 

APC/C substrates: SGOL2, MVP and CLEC16A. 669 

This high-resolution analysis of mitotic proteomes identified three clusters that 670 

differed significantly in their protein abundance patterns and enriched degrons. ~50% of 671 

these APC/C-degron containing proteins are experimentally validated APC/C substrates. 672 

This is now accompanied with measurement of their protein abundance variation in an 673 
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unperturbed mitosis in human cells without fluorescent protein tags. We identify ~20 674 

protein candidates as novel APC/C substrates. As shugoshin-2 (SGOL2) plays key 675 

roles in protecting sister chromatid cohesion [31], direct degradation by APC/C-Cdc20 676 

during prometaphase could have major implications on how cohesion is lost at 677 

chromosome arms during early mitosis.  678 

Proteomic assignment of cell cycle states 679 

MS-based single cell proteome analysis is an emerging area. Recent advances in 680 

sample preparation, including NanoPOTS [4][5] and the in-cell digest described here, 681 

suggest that routine proteome analysis of single somatic mammalian cells will be 682 

possible in the near future. In comparison, single cell transcriptomics as a mature field 683 

with commercial kits now available. In single cell RNA-seq (sc-RNAseq) analysis [32], 684 

the deconvolution of cell cycle state has been critical [33][34]. This is because cell cycle 685 

variation contributes significantly to the variation observed in a cell population. For 686 

example, to identify cell fate trajectories during differentiation, researchers relied on 687 

reference cell cycle regulated genes in order to identify the effect of cell cycle variation 688 

in the gene expression differences observed [35]. A highly validated reference set of cell 689 

cycle regulated proteins will be important for the biological interpretation of single cell 690 

proteomic datasets.  691 

We tested whether the abundances of the core 119 cell cycle regulated proteins 692 

determined in this study were sufficient to assign specific cell cycle states to cellular 693 

proteomes. The abundance patterns for the 119 proteins for each sample (16 timepoints 694 

x 8 replicates = 128 samples) were subjected to principal component analysis (PCA). 695 

The two major principal components, PC1 and PC2, explain 53% and 20.5% of the 696 

variance, respectively, as shown in Fig. 7A. Interphase (circles) and mitotic (triangle) 697 

are separated predominantly along PC1. To a lesser extent, subphases within each (for 698 

example, see arrows indicating P1 and P2) are separated along both principal 699 

components. Moving counterclockwise, starting from the top right for P1, the samples 700 

clearly follow a trajectory that reflects the position of each sample in the cell cycle, 701 

starting from early G1 (P1 and P2) to mitosis (left side, triangles). Telophase/cytokinesis 702 

populations (P16, pink triangles) are situated between the other mitotic populations and 703 

P1. Detection of relevant features is essential as PCA analysis of the entire proteome 704 
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dataset does not result in cell cycle separation. Repeating the PCA analysis with cyclin 705 

A2 and cyclin B1 removed essentially produces identical results, which indicates that 706 

the relationships produced by using ~119 cell cycle marker proteins are robust towards 707 

the absence of individual proteins, including key proteins that drive cell cycle 708 

progression.  709 

A simple kNN-model was used to classify cell cycle states using these data. 710 

Replicates 1 - 3 were used as a training set and replicate 4 was used as the test set. Fig. 711 

7B shows the performance of the classification by plotting predicted versus actual 712 

populations. There is a linear correlation with some minor deviations. We then repeated 713 

this kNN analysis for each combination of the four replicates using 3 replicates as the 714 

training set and the remaining replicate as the test set. We treated the populations as a 715 

circular, progressive series of cell states whereby P1 is the next state after P16. We 716 

then calculated the distance between predicted and actual populations for each 717 

replicate combination (Supplementary Figure 4A). The average distance is 0 in all four 718 

cases with a standard deviation ~1. This indicates that the kNN models are broadly 719 

accurate in predicting the cell cycle state with a precision of ± 1 cell state.  720 

We then asked whether the PCA classification could be used to identify 721 

uncharacterised populations. During the FACS separation to collect the 16 populations 722 

described above, we noticed the presence of an unexpected, rare population (P17) in 723 

two out of the four biological replicates. As shown in Fig. 7C, these cells are similar to 724 

G2-phase cells in DNA content (i.e. 4N DNA content) but significantly differ from most 725 

G2-phase cells by having low cyclin B1 levels. P17 cells were analysed alongside the 726 

other 16 populations using the in-cell digest and AMPL. As shown in the simplified PCA 727 

where replicate data were averaged (Fig. 7D), the PCA places P17 between P16 and 728 

P1. Indeed, using the kNN model described above classifies two replicates of P17 as 729 

P16 and two other replicates as P1. From these observations, we conclude that P17, 730 

while having DNA content consistent with a G2-phase cell, has a cell cycle protein 731 

profile that is more consistent with an early G1/G0-phase cell.  732 

This population may reflect a senescent state consistent with previous reports 733 

where the APC/C is re-activated in G2 phase cells in response to DNA damage, leading 734 

to premature degradation of cyclin B1. Our data suggest that numerous APC/C targets 735 
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are decreased relative to a typical G2 state (Fig. 7E), effectively resetting the cell cycle 736 

state of these cells to an early G1/G0-like state. We then performed pairwise 737 

comparisons proteome-wide between P1, P16 and P17 to identify proteins showing 738 

reproducible changed abundance in P17 cells. Of the top candidates (Supplementary 739 

Figure 4B), three are regulators of the DNA damage response (Fig. 7F): BMI1, HINT1 740 

and PPP6R2. BMI1 and HINT1 show increased abundance in P17 compared to P1 and 741 

P16. Both proteins are recruited to sites of DNA damage and loss of either protein leads 742 

to defective repair [36][37]. PPP6R2 is a regulatory subunit of the protein phosphatase 743 

PP6. PP6 is involved in silencing the DNA damage response by dephosphorylation of -744 

H2AX [38]. These results support the idea that P17 is a DNA damage-induced 745 

senescent state. 746 

We conclude that we have found a core set of 119 proteins that can be used to 747 

robustly assign cell cycle states with high resolution and to phenotypically characterise 748 

cell populations whose position in the cell cycle is unknown. 749 

Discussion 750 

A major challenge with the comprehensive analysis of proteomes from low cell number 751 

samples is sample preparation. An on-column load of 200 ng peptide, the equivalent to 752 

the protein content of approximately 2,000 TK6 cells, is sufficient material to obtain 753 

proteome coverage of >4,000 proteins with current instrumentation. Removal of 754 

detergents used to produce soluble cell extracts by use of membrane filters, organic 755 

precipitation (with or without the aid of magnetic beads) or SDS-PAGE gel extraction 756 

are protocols involving many steps and repeated exposure to new plastic surfaces that 757 

introduce opportunities for non-specific peptide and protein adsorption. Here, we have 758 

presented a minimalistic approach for preparing cells for proteomics called the ‘in-cell 759 

digest’. Cells are fixed with formaldehyde and methanol to effectively trap them in 760 

biochemical states, then directly digested with trypsin and desalted prior to LC-MS/MS 761 

analysis.  762 

We show that the in-cell digest enables reproducible and quantitative analysis of 763 

proteomes from 2,000 TK6 and MCF10A cells using AMPL analysis. The AMPL 764 

approach overcomes the low duty cycle of the Orbitrap Elite to enable proteome 765 

analysis with a sensitivity comparable with current instruments. Newer instrumentation 766 
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with higher duty cycles, including the TIMS-TOF Pro and Exploris 480, is expected to 767 

enable conventional DDA analysis of proteomes at a similar depth with 2,000 TK6 cells, 768 

or alternatively, improve proteome depth further using MS1-based matching methods.  769 

The in-cell digest is compatible with other approaches of low cell number sample 770 

preparation for MS-based proteomics. In-cell digested samples can be efficiently 771 

labelled by isobaric tags, e.g. TMT and iTRAQ, and therefore compatible with use of 772 

carrier channels to boost the signal of rare or single cell channels (e.g. iBASIL). The 773 

protocol requires no specialized humidified sample handling chambers or direct loading 774 

onto premade, single-use analytical nanoLC columns, such as those described in the 775 

nanoPOTS workflow. While the proteome coverages obtained by nanoPOTS is higher 776 

than reported here, it is possible that a new workflow combining aspects of the in-cell 777 

digest and nanoPOTS could improve both generalizability and performance compared 778 

to either method as originally described.  779 

Each sample preparation method will have its unique advantages and potential 780 

biases, which we evaluated by quantitatively comparing the in-cell digest with a more 781 

conventional in-solution digest. This analysis revealed an overrepresentation of 782 

membrane proteins amongst those proteins with higher abundance measured in the in-783 

cell digest samples. These proteins include mitochondrial membrane proteins (e.g. 784 

TOMM7) and proteins that are known to be localized to the cell surface (ADAM15). 785 

Membrane proteins have been shown to irreversibly aggregate in soluble extracts when 786 

heat-treated and precipitated. Delipidation by methanol, which is used to increase cell 787 

permeability, could also play an important role in increasing digestion efficiency by 788 

trypsin. We suggest that the higher abundances measured for membrane proteins is 789 

unlikely to be an artefact of the in-cell digest; in contrast, the measurements are likely to 790 

more accurately reflect the abundances of these proteins in cells.  791 

By contrast, RNA-binding proteins, including snRNP proteins, were 792 

overrepresented amongst those proteins with lower abundance in the in-cell digest 793 

samples. The lower abundances measured could represent on the one hand, a specific 794 

loss of peptide-RNA crosslinks, or on the other hand, non-specific loss of the RNA-795 

binding proteins into the supernatant. Studies are ongoing examining the RNA-binding 796 

protein bias observed in more detail, and we have preliminary evidence suggesting the 797 
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latter. Interestingly, proteins in cluster 2 (Fig. 6A), which show a robust, pseudoperiodic 798 

change in abundance are nearly all known to interact with either DNA or RNA. Few of 799 

these proteins have been shown to be cell cycle regulated previously. It may be the 800 

changes in MS-measured abundance reflect differences in RNA- and/or DNA- 801 

interactions by these proteins rather than a change in the protein abundance in cells. 802 

We identify novel proteins whose cell cycle function has not been previously 803 

characterized. FAM111B is a pseudoperiodic protein in cluster 1 (Fig. 6B, right, Fisher’s 804 

p1 < 0.001, p2 = 0.06), showing peak levels in S-phase populations (P4 – P6), followed 805 

by a decrease in G2 populations (P7 – P8). FAM111B is poorly characterized despite its 806 

expression being associated with poor prognosis in pancreatic and liver cancers 807 

(Human Protein Atlas [39]) and mutation causative for a rare inherited genetic syndrome 808 

(hereditary fibrosing poikiloderma with tendon contracture, myopathy, and pulmonary 809 

fibrosis) [40]. Interestingly, FAM111A, the only other member of the FAM111 gene 810 

family, localizes to newly synthesized chromatin during S-phase, interacts with PCNA 811 

via its PCNA-interacting protein (PIP) box and its depletion reduces base incorporation 812 

during DNA replication [41]. FAM111B also contains a PIP box (residues 607 – 616). 813 

Data from HeLa S3 cells also suggest that FAM111B is a cell cycle regulated protein 814 

with peak levels in S-phase [22]. Interestingly, the mRNA abundance and translation 815 

rate of FAM111B peaks in G1-phase [22], suggesting that the protein abundance is 816 

subject to significant post-translational control. Consistent with this idea, FAM111B 817 

contains D-box and KEN-box motifs that are recognized by the APC/C E3 ligase to 818 

ubiquitinate targets for proteasomal degradation. Due to the similarity with FAM111A in 819 

sequence, predicted interactions with PCNA and peak protein abundance in S-phase, 820 

we propose that FAM111B also is likely to play a key role in DNA replication.  821 

We present an unbiased pseudotemporal analysis of protein abundance changes 822 

during 8 biochemically resolved mitotic states (P9 to P16 in Fig. 5B) with a resolution 823 

extremely challenging to obtain with high precision using arrest and release 824 

methodologies. The protein clusters are functionally related. For example, clusters 4 825 

and 5 both contain proteins essential for mitotic progression but differ in when during 826 

mitosis the functions are required. Cluster 4 contains proteins directly involved in or 827 

directly downstream of the spindle assembly checkpoint that are degraded upon 828 
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checkpoint satisfaction. These regulatory pathways ensure that proper spindle 829 

microtubule-chromatid attachments are formed prior to loss of sister-chromatid cohesion 830 

and separation of the sister chromatids. By contrast, cluster 5 contains proteins that are 831 

functional throughout mitosis, such as chromosome passenger complex (CPC), or 832 

primarily in cytokinesis, such as ECT2, PRC1, RACGAP1 and ARHGAP11A. 833 

Interestingly, several core subunits of the APC/C E3 ligase are also present in cluster 4. 834 

Their degradation at the end of mitosis is expected to significantly decrease APC/C-835 

mediated substrate degradation promote accumulation of substrates and facilitate rapid 836 

progression into the next cell cycle.  837 

A high proportion of proteins in clusters 4 and 5 (24/69, 35%) are experimentally 838 

validated APC/C substrates, which represents a 70-fold overrepresentation in these two 839 

clusters compared to non-pseudoperiodic proteins (0.5%). Previous studies have 840 

identified APC/C-Cdh1 and APC/C-Cdc20 substrates by bioinformatic analysis of co-841 

regulation, stabilization by siRNA depletion of Cdc20 or Cdh1, and immunoprecipitation 842 

of APC/C at different timepoints during mitosis. Interestingly, the high mitotic phase 843 

resolution and purity obtained in this study enabled unbiased identification and 844 

separation of APC/C substrates. As discussed above, clusters 4 and 5 differ in the 845 

representation of ABBA and D-box short linear motifs, key degrons that are recognized 846 

by APC/C-Cdc20. Note that there are an additional 44 proteins in these two clusters that 847 

have not been previously experimentally validated as APC/C substrates and are 848 

candidates for future follow-up analysis as novel, uncharacterized substrates. 849 

High resolution classification of cell cycle state is an important prerequisite to 850 

obtaining meaningful biological insights into single cell ‘omics’ data. However, datasets 851 

on the cell cycle regulated transcriptome and proteome generally provide low time 852 

resolution, particularly in mitosis. This is more important with single cell proteomics. 853 

Whereas transcriptional and translational activity are dampened during mitosis, there 854 

are tremendous changes in protein phosphorylation and protein abundances, which will 855 

contribute towards single cell proteome variation.  856 

Here we have identified a cell cycle signature composed of the abundances from 857 

119 pseudoperiodic proteins that can be used to classify the cell cycle state of a cell 858 

population by virtue of the proteome. By using a split train/test strategy, we showed a 859 
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kNN model predicted cell cycle state with relatively high accuracy and can provide clues 860 

into the phenotype of uncharacterised, rare populations. We anticipate that the high-861 

resolution cell cycle dataset here will be important to understand the biological 862 

implications of single cell proteomics data, particularly in systems where cell cycle 863 

phase differences are an underlying source of variation but not the primary biological 864 

feature of interest. 865 

Formaldehyde fixation is used frequently as a precursor to intracellular 866 

immunostaining for cellular analysis and for inactivating cells that potentially harbor 867 

infectious agents, e.g. viruses. We have shown that mild formaldehyde treatment is 868 

compatible with comprehensive and quantitative proteomics with low cell numbers. We 869 

anticipate that the in-cell digest will be broadly applicable to characterise the proteomes 870 

of formaldehyde fixed cells. Recently published data suggest that formaldehyde 871 

crosslinks can be directly detected from MS data [42]. We anticipate the in-cell digest 872 

would enhance the sensitivity of crosslink detection and lead to an increase in identified 873 

protein-protein interactions.  874 
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Figures and Figure Legends 1027 

 1028 

Figure 1. Low level formaldehyde crosslinking has negligible impact on proteome 1029 

coverage and quantitation. A) Schematic of the sample processing workflow for 1030 

PRIMMUS. B) Impact of heat, hydroxylamine and/or Tris on decrosslinking efficiency of 1031 

cells fixed with 2% formaldehyde and 90% methanol as measured by total protein stain 1032 

and SDS-PAGE. The red bar indicates bands corresponding to high molecular weight, 1033 

crosslinked proteins. C, D) Comparison of peptides (C) and proteins (D) identified from 1034 

in-solution and in-cell digests. E) Error-tolerant search for formaldehyde-induced 1035 

chemical modifications to peptides using ‘Data-dependent mode’ in MaxQuant. 1036 
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 1037 

Figure 2. Direct tryptic digestion of fixed and permeabilized cells outperforms 1038 

protein precipitation and in solution digest of cellular extracts. A) Schematic of the 1039 

in-cell digest workflow. B) Fixed and permeabilized cells treated either with DPBS (left) 1040 

or with trypsin (right) were imaged at the indicated times in minutes. Scale bar is 50 µm. 1041 

C) Comparison of the proteome coverage reproducibility between in-solution and in-cell 1042 

digests. D, E) Comparison of the intensities measured by in-cell digests and either (D) 1043 

in-solution digest of fixed cells, or (E) in-solution digest of cells with no fixative. F, G) 1044 

Volcano plots comparing an in-cell versus in solution digest of fixed cells. Two protein 1045 

classes enriched amongst proteins reproducibly changing in abundance are RNA 1046 

processing proteins (F) and integral membrane proteins (G).  1047 
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1049 
Figure 3. Averaged MS1 precursors with library matching (AMPL) increases 1050 

peptide detection sensitivity. A) Schematic outlining the AMPL experimental design. 1051 

B) Both the AMPL and BoxCar acquisition methods prioritise MS time to enhance MS1 1052 

scan quality. Schematic comparing duty cycles for DDA, AMPL amd Boxcar acquisition 1053 

methods on the indicated MS instruments (Orbitrap Elite, Orbitrap HF). C-E) The effect 1054 

of increasing MS1 averages on the number of features (C), the number of unique 1055 

peptides (D) and protein groups quantitated (E). Results from DDA acquisition with a 1056 

library (DDA+L) are shown as dashed line. DDA and AMPL select the top 20 and 5 1057 

precursors, respectively, for MS/MS. F) A comparison between AMPL and DDA+L, 1058 

showing intensity distributions of peptide features identified by MS/MS (blue) and 1059 

matching to identified library features (red). G) A bar plot indicating the data 1060 

completeness across 10 replicates either by DDA matching only between replicates, 1061 

DDA+L and AMPL. 1062 
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1064 
Figure 4. In-cell digest and AMPL enable proteomic analysis with 500-2000 cells. 1065 

A-C) The sensitivity of AMPL was tested by measuring the number of features detected 1066 

(A), unique peptides quantitated (B) and protein groups quantitated (C) at the indicated 1067 

on-column peptide loads, ranging from ~2,000 ng (representing the protein content of ~ 1068 

12,000 MCF10A cells) to 10 ng (~ 60 cells). D) The combined in-cell digest and AMPL 1069 

approach was tested by measuring proteins quantitated at the indicated number of 1070 

FACS-isolated TK6 cells. The cell number ranged from 2,000 cells to 1 cell. The cell 1071 

isolation was performed in duplicate. Venn diagrams above the plots show the overlap 1072 

in proteins between the duplicate analyses. Error bars show the range. E) The same 1073 

data as in (D) with the x-axis rescaled to show the low cell number measurements. 1074 
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1076 
Figure 5. Identification of proteins regulated in abundance across sixteen cell 1077 

cycle cell populations, comprising eight interphase and eight mitotic states. A) 1078 

Schematic describing the experimental design and workflow. B) The normalized median 1079 

fluorescence signal from DAPI (DNA content) and indirect immunofluorescence of cyclin 1080 

A2, cyclin B1 an H3S28ph. These four markers and DAPI fluorescence width were used 1081 

to identify and collect the 16 cell cycle populations by FACS. Representative cartoons of 1082 

the cell cycle phases of these populations are shown below the graph. C) The number 1083 

of proteins where that protein was detected in at least n number of replicates is shown. 1084 

For 4,918 proteins, eight replicate intensities were measured in one or more cell cycle 1085 

populations. D) Identification of cell cycle regulated proteins by pseudoperiodicity 1086 

analysis. Each pseudotimecourse, representing one set of P1-P16 is arranged in 1087 

sequence and intensities analysed using a Fisher’s periodicity test. Example 1088 

pseudotimecourses are shown for a non-periodic (HSP90AB1) and periodic (ATAD2) 1089 

protein, respectively. E) Averaged intensities normalised to maximum are shown for 1090 

cyclin A2, cyclin B1 and cyclin B2 across the sixteen cell cycle states. Error bars show 1091 

s.e.m.  1092 
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1094 
Figure 6. Hierarchal clustering of cell cycle regulated proteins shows 1095 

classification by biological functions and differential degron enrichment. A) 1096 

Heatmap of the 119 identified cell cycle regulated proteins organized by cluster. B) 1097 

Average normalized intensity profiles for the five clusters. C-H) Normalized intensity 1098 

profiles for example proteins from each cluster (C-G) and a poorly characterized protein, 1099 

FAM111B (H). I) Enrichment analysis by cluster of SLIMs that mediate interaction with 1100 

SCF-Fbxw7 (top) and are associated with nuclear import/export (bottom) J) Enrichment 1101 

analysis by cluster of APC/C degrons. * indicate p < 0.01 (Fisher’s exact test).  1102 

 1103 
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 1105 

Figure 7. Unbiased classification of proteomes into cell cycle states. A) Principal 1106 

component analysis of the cell cycle populations using the 119 cell cycle regulated 1107 

proteins as features. P1 and P2 are highlighted by arrows. B) A kNN model was used to 1108 

predict the cell population from the abundances of the 119 cell cycle regulated proteins. 1109 

The performance of the kNN model was assessed using one replicate as the test set. 1110 

Predicted versus actual cell populations are shown. C) A pseudocolour plot showing a 1111 

population (P17) that contains 4N DNA content and low cyclin B1 staining. D) PCA 1112 

analysis, as in (A), but using abundances averaged across the replicates (mean) and 1113 

including P17. E) Volcano plot showing that characterized APC/C substrates generally 1114 

show lower abundance in P17 relative to 4N DNA content cells with high cyclin B1 1115 

staining (P8). F) In addition to low abundance for APC/C substrates, P17 cells also 1116 

show high levels of HINT1, BMI1 and low levels of PPP6R2. These proteins have been 1117 

shown to be important in the DNA damage response. Error bars show s.e.m. 1118 
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Supplementary Tables 1120 

Supplementary Table 1. Key resources 1121 

Supplementary Table 1. Impact of formaldehyde fixation on protein coverage. 1122 

Supplementary Table 2. Matching FDR empirical estimation. 1123 

Supplementary Table 3. Summary of cell titration proteome analysis 1124 

Supplementary Table 4. Quantitative data and confidence metrics for protein groups 1125 

identified in the 16 cell cycle populations 1126 

Supplementary Table 5. GO terms and keywords enriched in the group of cell cycle 1127 

regulated proteins 1128 

Supplementary Table 6. Enrichment of short linear sequence motifs (SLIMs) by protein 1129 

cluster 1130 
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Supplementary Figures 1133 

 1134 

 1135 

Supplementary Figure 1. Results from an error-tolerant MS-Fragger search 1136 

comparing control (cells without fixative) and fixed cells.  1137 

  1138 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.07.03.186023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186023
http://creativecommons.org/licenses/by/4.0/


 42 

 1139 

Supplementary Figure 2. Experimental estimation of match-between-runs FDR 1140 

using decoy proteome samples. A) Schematic outlining experimental workflow for 1141 

assessing match-between-runs FDR. For decoy proteomes, TK6 tryptic digests were 1142 

chemically modified. Unmodified tryptic digests were fractionated for the library. Data 1143 

was analyzed by MaxQuant with match-between-runs. Matching occurred from the 1144 

library to unfractionated samples. Chemical modifications were not added to the 1145 

database search. B-D) The impact of filtering based on match time difference (B), match 1146 

ppm difference (C), match ppm error (D) at varying levels of stringency. Shown are 1147 

relative cumulative frequency distributions of the matched peptide features retained in 1148 

the unmodified proteome (blue), matched peptide features retained in the dimethylated 1149 

proteome (green), and relative change in FDR (red) at the indicated filtering thresholds 1150 

(x-axis). E) The number of unmodified peptide and protein quantitations, including both 1151 

MS/MS and matched peptides, and the number of the match decoy matches, which 1152 

contribute to estimated match FDR, in modified proteomes. Data are shown before and 1153 

after filtering at the final thresholds chosen indicated by vertical lines in B-D. F) The 1154 

analysis in (E) was repeated for a sample acquired by DDA, showing comparable 1155 

estimated match FDRs between DDA and AMPL. 1156 
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1158 
Supplementary Figure 3. Pseudocolour plots showing the gating strategy to 1159 

isolate the 16 cell cycle populations by FACS. The red circle indicates P17. 1160 
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 1162 

Supplementary Figure 4. Cell state classification and proteomic characterization 1163 

of P17, a G2-like cell with a DNA damage response protein signature. A) PCA of 1164 

averaged normalized abundances from the 119 cell cycle regulated proteins as in Fig. 1165 

7D but with data from cyclin A and cyclin B2 removed. B) The performance of the kNN 1166 

classification model was evaluated by using three replicates for the training set and one 1167 

replicate for the test set. The difference between the predicted and true populations in 1168 

integer values was calculated for each test set. Because the overall relationship 1169 

between the populations is cyclic, i.e. P1 is the next assumed state after P16, the 1170 

difference between P16 and P1 is considered to be 1. The mean and the standard 1171 

deviation of this difference is shown for all four possible permutations of test and 1172 

training sets. C) Volcano plot comparing P17 and P16. Proteins of interest are 1173 

highlighted with red points (BMI1, HINT1, PPP6R2).  1174 
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