

1
2
3
4
5
6
7
8 **Cell cycle state proteomics and**
9 **classification using in-cell protease digests**
10 **and mass spectrometry**

11
12 Authors:

13 Van Kelly, Aymen al-Rawi, David Lewis and Tony Ly*

14
15
16
17
18
19 Addresses:

- 20 1. Wellcome Centre for Cell Biology, School of Biological Sciences, University of
21 Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF,
22 UK

23
24
25
26
27
28 * Correspondence should be addressed to Tony Ly (tly@ed.ac.uk)

29
30
31
32
33
34
35
36
37 Running title: Cell state proteomics and classification
38 Abbreviations: PRIMMUS, AMPL

40

41 **Abstract** (175 words max)

42 Proteomic analysis of rare cell states is a major challenge. We report an advance to our
43 *PRoteomics of Intracellular iMMUhostained cell Subsets* (PRIMMUS) workflow whereby
44 fixed cells are directly digested by proteases *in cellulo* for mass spectrometry-based
45 proteomics. This decreased the cell number requirement by two orders of magnitude to
46 <2,000 human lymphoblasts. We quantitatively measured the proteomes of 8 interphase
47 and 8 mitotic states, avoiding synchronization. From 8 replicate pseudo-timecourses,
48 we identify a core set of 119 cell cycle-regulated proteins that segregated into five
49 clusters. These clusters varied in mitotic abundance patterns and regulatory short linear
50 sequence motifs controlling their localisation and interaction with E3 ubiquitin ligases.
51 We identified protein signatures that allowed accurate cell cycle state classification. We
52 use this classification to stage an unexpected cell population as similar in proteome to
53 early G0/G1 and telophase cells. Our data indicate DNA damage responses and
54 premature APC/C activation in these cells, consistent with a DNA damage-induced
55 senescent state. The advanced PRIMMUS approach is readily and broadly applicable to
56 characterise rare and abundant cell states.

57

58 **Introduction**

59 The proteome is a functional readout of cellular phenotype, which includes dynamic and
60 persistent molecular features that reflect cell state and cell type, respectively. Rare cell
61 phenotypes play key physiological roles. Quiescent stem cells, while often rare relative
62 to differentiated cell types in a tissue, are essential for tissue homeostasis. Similarly,
63 mitosis is critical for the accurate propagation of genetic material and a phase during
64 which cellular commitment to proliferation is made [1][2]. Mitotic states are generally
65 short-lived and thus rare in an asynchronous population. Proteomic analysis of these
66 critically important cell phenotypes is a major challenge because typical proteomic
67 workflows require $>10^5$ cells as input.

68 Recent advances have been made in methods for low cell number proteome
69 analysis. For example, ~2,700 proteins were identified from 6,250 CD34+ hematopoietic
70 progenitor cells using optimized in-solution digests combined with data-independent
71 acquisition (DIA) [3]. ~3,000 proteins were identified from 10 HeLa cells using
72 'nanodroplet processing in one pot for trace samples' (nanoPOTS) [4]. Single cell
73 proteomic analysis using nanoPOTS with tandem mass tag (TMT) booster channels has
74 been recently described [5]. NanoPOTS requires microfabricated glass chips, robotics
75 that can handle picoliter volumes and sample storage in prepacked nano-LC columns.
76 These requirements are challenging to satisfy in most labs and limit widespread
77 adoption of the technique.

78 We previously developed an approach called 'PRIMMUS' or 'Proteomics of
79 *Intracellular Immunostained Subsets*' to analyse abundant and rare cell cycle states [6].
80 Formaldehyde-fixed cells are fractionated into specific cell states by staining cells for
81 intracellular markers and separating them using Fluorescence-Activated Cell Sorting
82 (FACS). Cells grown in asynchronous culture are immediately fixed, thereby minimizing
83 perturbation to physiological processes. This step is critical, as small molecule-based
84 synchronisation can lead to effects on the proteome that are associated with stress
85 responses arising from arrest rather than cell cycle regulation per se [7]. The application
86 of PRIMMUS was limited to abundant subpopulations where $>10^5$ cells can be collected
87 by FACS within a reasonable time [6]. A more sensitive PRIMMUS approach would
88 enable high resolution mapping of proteomic changes during an unperturbed cell cycle,

89 including the analysis of mitotic states, where major changes in organellar structures,
90 protein abundances and protein post-translational modifications are highly dynamic on
91 the minute timescale.

92 Here, we report a major advance in the PRIMMUS method that increases
93 sensitivity and enables detailed proteomic analysis of rare cell populations. The new
94 approach makes use of the discovery that formaldehyde-fixed cells are suitable
95 substrates for tryptic digestion without prior crosslinking removal, which greatly
96 simplifies sample preparation. We combined this streamlined workflow with MS1-based
97 library matching and an MS acquisition method that prioritizes quantitative MS1 quality,
98 called AMPL (Averaged MS1 Precursor with Library matching). These improvements
99 together enabled reproducible quantitation of ~4,500 proteins from 2,000 human
100 lymphoblastoid cells with a low data dropout frequency.

101 We applied the advanced PRIMMUS workflow to analyze the proteomes of 16
102 cell cycle subsets, including 8 interphase and 8 mitotic subphases. We identified a core
103 set of 119 cell cycle regulated proteins. Many of these proteins are well-characterized
104 as having key functions in cell cycle regulation. We now provide detailed resolution on
105 their variations in protein abundance across an unperturbed cell cycle. Novel cell cycle
106 regulated proteins include FAM111B, which by sequence similarity to FAM111A, has
107 putative roles in regulating DNA replication. We showed that the cell cycle regulated
108 proteome is predictive of cell cycle state. PCA analysis correctly assigns the expected
109 order of the subsets according to their temporal relationships in the cell cycle. We use
110 this classification system to group an unexpected, rare subpopulation with 4N DNA
111 content as more closely resembling G0/early G1 cells, but with an additional DNA
112 damage response signature. Our data suggest that these cells are G2 cells entering
113 senescence after DNA damage, consistent with previous reports [8]. The enhanced
114 resolution in mitosis allowed us to identify two groups of proteins that are characterized
115 by early versus late decreases in abundance. These two groups likely reflect a switch
116 from early mitotic E3 ligases, including the APC/C-Cdc20 and SCF(Cyclin-F), to late
117 mitotic E3 ligases, including APC/C-Cdh1.

118 **Experimental Procedures**

119 *Reagents and antibodies*

120 A description of reagents, including cell lines and antibodies, can be found in the Key
121 Resources Table (Supplementary Table 1).

122 *Cell culture*

123 TK6 human lymphoblasts [9] were obtained from the Earnshaw laboratory (University of
124 Edinburgh). Cells were cultured at 37 °C in the presence of 5% CO₂ as a suspension in
125 RPMI-1640 + GlutaMAX (Thermo Scientific) supplemented with 10% v/v fetal bovine
126 serum (FBS, Thermo Scientific). Cell cultures were maintained at densities no higher
127 than 2 x 10⁶ cells per ml. MCF10A cells (ATCC) were cultured in phenol red-free
128 F12/DMEM media (Thermo Scientific) supplemented with 5% horse serum, 10 µg/ml
129 insulin (Sigma), 100 ng/ml cholera toxin (Sigma), 20 ng/ml EGF (Sigma), 0.5 µg/ml
130 hydrocortisone (Sigma), 100 units/ml penicillin and 100 µg/ml streptomycin (Thermo
131 Scientific) at 37 °C in the presence of 5% CO₂. Cells were maintained at less than 100%
132 confluence and were discarded when passage number exceed 20 passages. U2OS
133 cells (ATCC) were cultured in DMEM media high glucose + GlutaMAX (Thermo
134 Scientific) supplemented with 10% v/v FBS (Thermo Scientific). Cells were checked for
135 mycoplasma at the point of cryo-storage using a luminescence-based assay (Lonza).

136 *Cell fixation and immunostaining*

137 Cells were washed with Dulbecco's phosphate-buffered saline (DPBS, Lonza) and
138 resuspended in freshly prepared 1% formaldehyde solution (w/v) from a 16% stock (w/v,
139 Thermo Scientific) in DPBS, fixed for 10 min at room temperature with gentle rotation,
140 pelleted, washed with DPBS and permeabilized with cold 90% methanol. Cells were
141 stored at -20°C prior to staining.

142 Cells stored in methanol were washed with DPBS and resuspended in blocking
143 buffer, which is composed of 5% bovine serum albumin (BSA) in 0.1 M Tris-buffered
144 saline, pH 7.4 (TBS). Cells were blocked for 10 min at room temperature, pelleted, and
145 resuspended in primary antibody solution (1:200 in blocking buffer). Cells were stained
146 with primary antibody overnight at 4°C. Stained cells were then washed twice with wash
147 buffer (DPBS + 0.5% BSA) and stained with dye-conjugated secondary antibodies
148 (1:200 in blocking buffer) for 1 hour at room temperature. Stained cells were washed
149 twice with DPBS, pelleted, and stained in DAPI solution (20 µg/ml in DPBS + 0.1% BSA)
150 for at least 1 hour prior to FACS.

151 *FACS and gating strategy*

152 Cells were collected using a BD FACSaria Fusion Cell Sorter equipped with 355nm UV,
153 405nm Violet, 488nm Blue, 561nm YG and 640nm Red lasers, and controlled by BD
154 FACS Diva V8.0.1 software. Cells were first gated into 'narrow' (P1 – P8) and 'wide' (P9
155 – P16) populations based on DAPI fluorescence signal width. The narrow population
156 contains single cells either in interphase, or in mitosis up to late anaphase. These single
157 cells were then separated based on cyclin B into 8 different stages of interphase.
158 Population P1 has low to no cyclin B protein and 2N DNA content, consistent with low to
159 no E2F activity and a G0/early G1 cell state. Cyclin B rises monotonically from P2 to P6
160 and then rises more steeply from P6 to P8. Like cyclin B, cyclin A also increases during
161 interphase, but at a faster rate from P1 to P6 as compared to P6 to P8. P9 to P13 are
162 positive for histone H3 phosphorylation at Ser28 (pH3+). Highest levels of pH3+ are
163 present in prometaphase and metaphase. Rising and declining H3 phosphorylation in
164 early and late mitosis, respectively, result in low to medium levels of pH3+. Cyclin A and
165 cyclin B levels are used to further discriminate mitotic subphases, as they are degraded
166 during prometaphase and the metaphase-to-anaphase transition, respectively.

167 Finally, late mitotic subphases are enriched in the wide population, but so too are
168 doublets. We reasoned that most doublets will have cyclin B signal, as single cells with
169 the exception of P1 are cyclin B positive. Thus, we can further enrich late mitotic stages
170 by selecting wide, 4N, cyclin B negative cells (P14-P16). P14-P16 are then
171 discriminated further by pH3+ levels, which decrease during mitotic exit. We note that
172 P16 may contain doublets of G0/early G1 cells (P1), but P14 and P15 should not as
173 P14 and P15 are pH3+ and G0/early G1 cells are negative for pH3.

174 5000 cells for each gated population were collected using 4-way purity using
175 either a 85 or 100 μ m nozzle, into 1.5 ml Eppendorf Protein Lo-Bind tubes. Four
176 biological replicates were collected. An interphase library sample were collected by
177 combining 300,000 cells of G0/G1, S, and G2 populations. A mitotic library sample was
178 composed of 800,000 mitotic cells gated by high DNA content and high Histone H3
179 Ser28 phosphorylation. Samples were centrifuged and supernatant removed before
180 storing at -20 °C.

181 *In-cell digest*

182 Cell sorted library samples, and unstained unsorted TK6 cells, were resuspended in
183 DPBS at 2 - 5 million cells per ml and incubated with 1 μ l (25 - 29 U) benzonase
184 (Millipore) at 37 °C for a minimum of 1 hr. Trypsin was added to approximately 1:25 w/w
185 and in-cell digested at 37 °C for ~16 hrs. Digests were acidified with TFA and desalted
186 over Sep-Pak C18 cartridges (Waters) and dried.

187 Individual populations of 5,000 cells were diluted with 40 μ l PBS and incubated
188 with 0.25 μ l [6 – 7 U] benzonase at 37 °C for a minimum of 1 hr, then digested with 50
189 ng trypsin (~1:10 w/w) at 37 °C for ~16 hrs. Samples were acidified with TFA and
190 desalted over self-made C18 columns with 3 Empore C18 disks [10] and eluted directly
191 into Axygen™ 96-well PCR Microplates (Fisher Scientific) and dried.

192 *High pH reverse phase fractionation*

193 Approximately 100 μ g interphase, mitotic, and unsorted TK6 cell digests were
194 fractionated by high-pH reverse phase chromatography using an Ultimate 3000 HPLC
195 (ThermoFisher Scientific) and a 1 x 100 mm 1.7 μ m Acquity UPLC BEH C18 column
196 (Waters). Peptides were separated using a constant 10 mM ammonium formate (pH 10)
197 and a gradient of water and 100% acetonitrile. Peptides were loaded at 1% acetonitrile
198 followed by separation by a 48 min multistep gradient of acetonitrile from 3% to 6%,
199 25%, 45% and 80% acetonitrile at 4, 34, 44, 45 minutes, respectively, followed by an 80%
200 wash and re-equilibration. Fractions were collected at 30 sec intervals resulting in 96
201 fractions which were concatenated into 12, and 1 μ g aliquots dried.

202 *LC-MS/MS*

203 Peptide samples were resuspended in 0.1% TFA. Approximately 0.5 μ g of library
204 fractions were injected for DDA LCMS analysis. A volume equal to half the cell
205 population (equivalent to ~2,500 cells) was injected and analysed twice by AMPL to
206 produce two technical replicates for each of the four biological replicates. An Ultimate
207 3000 RSLCnano HPLC (Dionex, Thermo Fisher Scientific) was coupled via electrospray
208 ionisation to an Orbitrap Elite Hybrid Ion Trap-Orbitrap (Thermo Fisher Scientific).
209 Peptides were loaded directly onto a 75 μ m x 50 cm PepMap-C18 EASY-Spray LC
210 Column (Thermo Fisher Scientific) and eluted at 250 nl/min using 0.1% formic acid
211 (Solvent A) and 80% acetonitrile/0.1% formic acid (Solvent B). Samples were eluted

212 over 90 min stepped linear gradient from 1% to 30% B over 72 min, then to 45% B over
213 18 min. AMPL analyses included up to 5 MS1 microscans of 1E6 ions in the Orbitrap at
214 120k resolution and with a 250 ms maximum injection time. MS1 scans were acquired
215 over 350-1700 m/z and a 'lock mass' of 445.120025 m/z was used. This was followed
216 by 5 data-dependent MS2 CID events (5E3 target ion accumulation) in the ion trap at
217 rapid resolution with a 2 Da isolation width, a normalised collision energy of 35, 50 ms
218 maximum fill time, a requirement of a 10k precursor intensity, and a charge of 2+ or
219 more. Precursors within 5 ppm were dynamically excluded for 40 sec. DDA analyses
220 were as for AMPL but with a single MS1 microscan with a 75 ms maximum injection
221 time, followed by 20 CID events in the ion trap.

222 Libraries were acquired as for DDA analyses or acquired with 10 data-dependent
223 MS2 HCD events at 30 NCE of 5E4 ions in the Orbitrap at 15k resolution and a
224 maximum fill time of 100 ms, with a precursor intensity required to be at least 50k. For
225 the sample preparation comparisons shown in Fig. 2, a 240 min gradient was used (1%
226 to 30% B for 210 min, then to 42% B over 30 min). MS data was acquired as for DDA
227 analysis described above with the exception that MS1 spectra were acquired at 60k
228 resolution and MS2 events were acquired only on 2+ and 3+ precursors.

229 *MS/MS data analysis*

230 Data was processed using MaxQuant version 1.6.2.6 [11]. LC-MS/MS data was
231 searched against the "Human Ref Proteome _ALL_2017-10-23.fasta" database allowing
232 for variable methionine oxidation and protein N-terminal acetylation. Carbamidomethyl
233 cysteine modification was allowed only for samples that were alkylated by
234 iodoacetamide. A target-decoy threshold of 1% was set for both PSM and protein false
235 discovery rate. Match-between-runs was enabled with identification transfer within 0.5
236 mins and a retention time alignment within 20 min window. Matching was permitted from
237 the library parameter group, and 'from and to' the unfractionated parameter group.
238 "Require MS/MS for LFQ comparisons" was deselected, and second peptide search
239 was enabled. Both modified and unmodified unique and razor peptides were used for
240 quantification. 'Evidence' and 'proteinGroups' output files were used for subsequent
241 analysis in R.

242 *Match-between-runs FDR filtering*

243 A reference sample was generated by lysing TK6 cells in DPBS with 2% SDS and
244 cOMPLETE protease inhibitors without EDTA (Roche, 1x concentration) at 70 °C,
245 homogenised with a probe sonicator and treated with benzonase. Protein was reduced
246 with 20 mM TCEP for 2 hr before alkylation with 20 mM iodoacetamide at ambient
247 temperature in the dark for 1 hr. Protein was precipitated with 4 volumes cold acetone at
248 -20 °C overnight, washed with 100% cold acetone and 90% cold ethanol. Protein pellet
249 was air dried before resuspending in DPBS and digesting with 1:50 w/w trypsin for
250 ~16hrs. Peptides were acidified, desalted, aliquoted, and fractionated as previously
251 described. For isopropylation, 50 µg peptides were resuspended in 200 µl 90%
252 acetonitrile containing 0.1% formic acid before addition of 50 µl acetone containing 36
253 µg/µl NaBH₃CN. The reaction was conducted at ambient temperature for ~16 hrs before
254 quenching with ammonium bicarbonate, drying off solvent and desalting peptides over
255 C18. For dimethylation, 50 µg peptide was resuspended in 200 µl DPBS before addition
256 of 0.32% formaldehyde and 50 mM NaBH₃CN. The reaction was conducted at ambient
257 temperature for ~16 hrs before quenching with ammonium bicarbonate and desalting
258 peptides over C18. 200 ng of unmodified, dimethylated, and isopropylated peptides
259 were analysed by AMPL and DDA, and unmodified fractionated peptide samples were
260 analysis by DDA, as previously described. LCMS data were searched using MaxQuant,
261 as previously described. Note that dimethylation and isopropylation modifications were
262 not specified in the search parameters.

263 *Cell cycle proteomic data analysis*

264 All subsequent data analysis on the protein intensity table, including the analysis
265 of pseudoperiodicity, was performed using R (v. 3.5.0) within the RStudio integrated
266 development environment. The R script will be made available on [http://dynamic-
267 proteomes.squarespace.com](http://dynamic-proteomes.squarespace.com). The list of validated APC/C substrates was obtained from
268 the APC/C degron repository (<http://slim.icr.ac.uk/apc/>). Proteins that contain D box,
269 KEN and ABBA SLIMs in the human proteome were found using SLIMsearch with
270 default settings (Disorder score cut-off: 0.30, Flank length: 5). In order to remove slight
271 variations in total protein amount in each sample, protein intensities were divided by
272 total intensities per sample and multiplied by 10⁶ to obtain intensities in parts per million
273 (ppm). There are four biological replicates analysed in technical duplicate. As described

274 above, sample analysis was completely randomized in the second technical repeat.
275 Each technical repeat (i.e. set of four biological replicates) are considered as one
276 'pseudotimecourse' with samples in each biological replicate arranged in order from P1
277 to P16. Each of the two pseudotimecourse was then independently subjected to a
278 Fisher's test for periodicity, as implemented in the ptest R library (v. 1.0-8). Fisher's
279 periodicity test p-values were corrected for multiple hypothesis testing using the q value
280 method as implemented in the qvalue R library (2.15.0). Those proteins that showed q
281 values <0.10 in both sets of biological replicates and oscillation frequencies of either
282 0.0625 (1/16) or 0.125 (1/8) were classified as pseudoperiodic.

283 For clustering, protein ppm values were averaged (mean) to produce a single
284 pseudotimecourse for each protein. These average abundance profiles were scaled
285 using the base R function scale and subjected to hierachal clustering using the Ward
286 minimum variance algorithm. The appropriate range for cluster number was identified as
287 3 - 6 clusters using the 'elbow method', which involves plotting within-cluster sum of
288 squares versus number of clusters. Bifurcating leaves of the subsequent dendrogram
289 were swapped in order to produce a heatmap that follows a logical, sequential order of
290 peak abundance, i.e. cluster 1 with highest abundance in P0-P8 and cluster 5 with peak
291 abundance in P3-P7, etc.

292 For PCA and cell cycle state classification, scaled pseudotimecourses were used.
293 Cell cycle states were classified using the k-NN model as implemented in the class R
294 library (v. 7.3-15) using $k = 6$, with k being the number of nearest neighbours for
295 classification. Three biological replicates were used as the training set and the
296 remaining replicate was used as a test set.

297 For the pairwise comparison of the proteomes of P17 with P1 and P16, t-tests
298 were performed on ppm intensities. Uncorrected p-values were plotted against mean
299 fold change in order to identify candidate proteins that were specifically changed in
300 abundance in P17.

301 **Results**

302 *Impact of formaldehyde crosslinking on whole proteome analysis*

303 Heat treatment at 95 °C is sufficient to reverse most formaldehyde crosslinks, as shown
304 previously [9]. However, a pool of crosslinked, multimeric species remained in a protein-

305 dependent manner. Therefore, we aimed to optimize the PRIMMUS approach by first
306 focusing on improving the decrosslinking efficiency (Fig. 1A).

307 Previous reports have suggested that the reversal step is accelerated by co-
308 treatment with a nucleophilic quenching agent [12]. We tested addition of Tris and
309 hydroxylamine on crosslink removal (Fig. 1B). Banding patterns of extracts from fixed
310 cells heat treated for 15 and 45 mins (lanes 4 & 5) were similar to cells heated at the
311 same temperatures in the presence of either 0.5 M Tris (lanes 6 & 7), or 1.25%
312 hydroxylamine (lanes 8 & 9). Addition of both Tris and hydroxylamine led to a significant
313 reduction in high MW crosslinked species with 15 min heat treatment (lane 10). A 45
314 min incubation led to a diffuse banding pattern (lane 11), indicative of protein
315 degradation as previously reported for hydroxylamine [13]. Indeed, although not as
316 obvious as with 0.5M Tris and hydroxylamine combined (lane 11), several bands were
317 less sharp or absent for the 45 min incubation with 1.25% hydroxylamine (lane 9) as
318 compared with a shorter 15 min incubation (lane 8). We conclude that the combination
319 of Tris and hydroxylamine treatment shows decreased crosslinked proteins relative to
320 control, or to either treatment alone.

321 These samples were then subjected to MS-based proteome characterization.
322 The extracts from all 11 samples shown in Fig. 1B were trypsin digested, C18 cleaned
323 and analysed by single-shot LC-MS/MS (Orbitrap Elite). Formaldehyde treatment
324 produces chemically modified and methylene-bridged peptides [14], which are not
325 identified with typical MS database search parameters. We were thus surprised to
326 observe no significant differences observed in protein and peptide coverage between
327 fixed and fixed+decrosslinked samples (Supplementary Table 2). We then hypothesized
328 that formaldehyde-induced modifications were present in exceptionally low
329 stoichiometry and therefore any differences between the samples were masked by the
330 relatively low peptide coverage in the single-shot analyses. We therefore chose three
331 samples for HPLC pre-fractionation and deeper proteome analysis: control protein
332 extract from non-fixed cells, protein extract from fixed cells, and fixed and heat-treated
333 protein extract from fixed cells (95 °C for 45 min). For reference, these samples
334 correspond to lanes 1, 2, and 5, respectively, in Fig. 1B. Fig. 1C shows that the
335 numbers of peptides identified are similar among all three samples; in total, 73,885,

336 72,785, and 72,779 peptides for control, decrosslinked and fixed samples, respectively.
337 The numbers of proteins detected are similarly comparable (Fig. 1D), indicating that
338 formaldehyde fixation has no measurable impact on proteome coverage.

339 We next used error-tolerant MS searches (MSFragger [15] and Data-dependent
340 search in MaxQuant) to seek for peptides chemically modified by formaldehyde.
341 Previous reports on short peptides have shown that formaldehyde produces +30 and
342 +12 mass shifts, corresponding to methyloyl and imine modifications, respectively. We
343 saw no appreciable increase in these mass shifts, which is consistent with the instability
344 of these modifications in acid. Indeed, the pattern and frequency of detected mass shifts
345 are remarkably similar between control and fixed samples (results for MaxQuant are
346 shown in Fig. 1E; MSFragger results are shown in Supplementary Figure 1).

347 From these observations, we concluded that under our reaction conditions, the
348 stoichiometry of crosslinking and chemical modification by formaldehyde is sufficiently
349 low such that the non-detection of modified and crosslinked peptides is not detrimental
350 for characterization of proteomes to a depth of at least 8,000 proteins.

351 *The ‘in-cell digest’: direct protease digestion of fixed cells*

352 Our observation of little to no significant impact of formaldehyde crosslinking on the MS-
353 based proteomic analysis of fixed cell extracts led us to test whether fixed cells
354 themselves would make suitable substrates for direct protease digestion. Digestion of
355 fixed cells would significantly simplify the sample processing workflow by making
356 several steps, including detergent homogenization and heat treatment, unnecessary.
357 We therefore treated fixed, permeabilized cells suspended in DPBS with either mock
358 treatment (DPBS), or trypsin, and monitored cell morphology by brightfield microscopy.
359 As shown in Fig. 2B, prominent structural features visible in control cells, such as
360 plasma membranes, nuclei and nucleoli, are degraded in a time-dependent manner with
361 trypsin treatment (see Supplementary Video 1). For LC-MS/MS analysis, fixed cells
362 were also pre-incubated with benzonase to digest RNA and DNA oligonucleotides,
363 which may interfere with downstream sample processing. The peptide-containing
364 supernatant from the digest was then subjected to C18 purification prior to analysis by
365 LC-MS/MS. As the digestion occurs within the fixed cells, we have called this approach
366 an ‘in-cell digest’. As shown in Fig. 2C, the proteome coverages are similar for fixed

367 cells processed by the in-cell digest method (~4,678 proteins, n = 3), fixed samples that
368 were subjected to the previously published PRIMMUS protocol (~4,446 proteins, n = 3)
369 and extracts from non-fixed cells processed by precipitation (see Methods, ~4,561
370 proteins, n = 3). We conclude that the proteome coverage from the in-cell digest is
371 similar, or higher, than the other protocols tested.

372 We did not observe a broad bias in quantitation, as label free intensities
373 measured in fixed cells prepared by the in-cell digest and by decrosslinking followed by
374 an in-solution digest showed high correlation (Fig. 2D, $\rho = 0.96$). Similarly, a high
375 correlation was observed between fixed cells prepared by the in-cell digest and non-
376 fixed cells (Fig. 2E, $\rho = 0.97$). However, some points lie off-diagonal (Figs. 2D and 2E),
377 suggesting that a small proportion of proteins show a difference in intensity between
378 methods. We next asked whether the sample preparation method systematically
379 affected the abundance of specific proteins, and if so, whether these proteins reflect
380 particular protein classes. Volcano plots comparing in-cell versus in solution methods of
381 preparing fixed cells are shown in Figs. 2F and 2G, which highlight proteins with
382 reproducibly decreased and increased abundance, respectively. Interestingly, RNA-
383 binding proteins, such as proteins involved in mRNA processing, are enriched amongst
384 proteins showing decreased abundance with the in-cell digest. In contrast, membrane-
385 associated proteins are enriched amongst proteins showing increased abundance.

386 We conclude that the measurements of protein abundance from the in-cell digest
387 are quantitative, reproducible and broadly comparable to conventional sample
388 preparation methods. We note that each sample preparation method will have its own
389 specific biases. In the case of the in-cell digest, the increased abundance of membrane
390 proteins may more accurately reflect the abundance of these proteins in cells, as will be
391 detailed in the Discussion section.

392 *Averaged MS1 Precursors with Library matching (AMPL) improves feature detection*
393 To increase the sensitivity and detection speed of the Orbitrap Elite MS instrument
394 (release date in 2011), we utilised MS1-based identification and quantitation using
395 accurate mass and retention time matching, as proposed originally by the Smith lab [16].
396 This approach has been recently demonstrated to be highly sensitive in an
397 implementation called BoxCar [17]. The BoxCar method increases the dynamic range of

398 trap-based MS by collecting ions using segmented, spaced windows. Peptide
399 identification relies on MS1 feature matching to a reference library generated from a
400 fractionated reference sample using the MaxQuant function 'Match-between-runs'
401 (MBR). The library is analysed separately using data-dependent acquisition (DDA) and
402 peptides are identified by MS2 and database searches. Using BoxCar enabled
403 quantitation of ~7,775 on average in single shot analyses of 1 µg HeLa digest on
404 column using the Orbitrap HF.

405 As the BoxCar method cannot be directly implemented on the Orbitrap Elite, we
406 developed a different approach to increase the dynamic range of MS1 feature detection.
407 MS1 spectral averaging is frequently performed in direct infusion MS, but rarely
408 employed in LC-MS bottom-up proteomics. We surmised that averaging several MS1
409 scans would improve signal-to-noise (S/N) and would rapidly plateau as it is known that
410 averaging improves S/N by a factor of \sqrt{n} where n is the number of spectra
411 averaged. Features would then be matched between the single shot analyses to a
412 fractionated reference library (Fig. 3A). We call this method Averaged MS1 Precursors
413 with Library matching (AMPL), or AMP if no library is used. As shown schematically in
414 Fig. 3B, like BoxCar, AMP(L) prioritises MS1 scans over MS2 scans as compared with
415 DDA and includes top-5 DDA MS/MS scans to ensure identification of features for
416 accurate retention time alignment throughout the chromatographic separation.

417 We therefore tested AMPL by analysing high on-column loads of tryptic digests
418 of MCF10A (1 µg peptide). Fig. 3C shows the number of chromatographic features
419 ('peaks') detected using DDA (triangle) versus AMP with variable number of MS1 scans
420 to average (circles). AMP with 1 MS1 scan already increases the number of features
421 detected (228,724) versus DDA (188,928), with further gains up to 5 averages
422 (285,049). We then generated a 12-fraction reference library using high pH reverse
423 phase fractionation for MBR. Fig. 3D and E shows a comparison of AMPL and DDA on
424 peptide and protein quantitation, respectively. Increasing the frequency of MS1 scans
425 with no averaging (i.e. AMPL with 1 MS1) performs similarly to DDA with matching to a
426 library (DDA-L) (Fig. 3D, 47,496 vs 46,455 peptides quantitated, respectively). As
427 shown in Fig. 3D, Increasing the number of MS1 scans averaged to 3 and 4 increases
428 the number of peptides quantitated to 51,812 and 54,169 peptides, respectively,

429 corresponding to ~17% increase in peptides relative to DDA. AMPL with 4 averages
430 also increases proteins quantitated by ~12.5% (Fig. 3E, 5,970 DDA versus 6,724
431 AMPL).

432 We reasoned that the additional peptides detected by AMPL originate from low-
433 abundance features detected by virtue of the S/N increase due to averaging. Fig. 3F
434 compares the peptide intensity distributions between DDA-L and AMPL. The
435 distributions are bimodal, with MS/MS-dependent identification biased towards higher
436 intensity features (cyan). Consistent with the idea that AMPL improves S/N, AMPL
437 detects a higher number of matched features (pink) in the low abundance regime.

438 MS1-based matching approaches have been previously shown to improve
439 dataset completeness by reducing missing values. Ten technical replicates were
440 analysed by DDA, DDA-L and AMPL. Fig. 3G shows a histogram of proteins binned by
441 the number of replicates where an intensity was measured. AMPL shows the highest
442 data completeness (4,500 proteins with intensities measured in all 10 replicates) as
443 compared with DDA-L (3,500 proteins) and DDA (2,900 proteins). Compared to DDA-L,
444 AMPL consistently quantitates more proteins (Supplementary Figure 2) and shows
445 slightly improved reproducibility as indicated by higher pairwise Pearson's correlation
446 scores (Supplementary Figure 2).

447 The improvements in detecting low abundance features suggested that AMPL
448 may be well suited to analysis of low sample loads. AMP (i.e. no library) consistently
449 detects more features than DDA (Fig. 4A), which leads to significant improvements in
450 the peptide and protein coverage (Figs. 4B and C, respectively). For example, at 10 ng
451 loading, 21,483 unique peptides are quantitated by AMPL versus 14,702 by DDA-L,
452 representing a 46% increase in coverage. AMPL provides 150-535% improvement
453 relative to conventional DDA with no library and 24-46% improvement relative to DDA-L
454 for protein coverage at all tested column loads with greatest gains observed at low
455 column load. At 10 ng, 832 proteins are detected by DDA versus 2,891 proteins by
456 DDA-L and 3,629 proteins by AMPL.

457 MS1-based matching significantly increases the sensitivity, coverage and data
458 completeness of MS-based proteomics, as previously reported and shown here [18].
459 However, the lack of MS2-based identification for these matched sequences could lead

460 to an increased false discovery rate (FDR). We estimated that the matching FDR is ~4.5%
461 using an empirical target-decoy approach where decoy proteomes created by chemical
462 modification (demethylation and isopropylation) are matched against an unmodified
463 library (Supplementary Figure 2A). By applying more stringent thresholds for match time,
464 match m/z and match m/z error (Supplementary Figure 2B-D), we reduced the
465 estimated FDR to 2.2% while retaining 96% of the matches in the target dataset
466 (Supplementary Figure 2E and Supplementary Table 3).

467 We conclude the library matching approach dramatically increases sensitivity,
468 particularly for low column loads, with AMPL providing the highest peptide and protein
469 coverages overall with relatively low estimated match FDR (<3%).

470 *An improved PRIMMUS for proteomic analysis of low cell number populations*
471 As shown in Fig. 4C, AMPL detects a slightly higher number of proteins in 10 ng on-
472 column load as DDA with 1 µg load, demonstrating a 100x increase in sensitivity. A 10
473 ng on-column load is equivalent to the protein content of ~67 cells based on the protein
474 per cell measured in bulk assays. However, the effective number of cells required for
475 proteome analysis is usually much higher. This is due to losses during sample
476 preparation. We reasoned that these losses are significantly reduced using the
477 streamlined in-cell digest.

478 We combined in-cell digest with AMPL to analyse FACS collected TK6 cells, a
479 human lymphoblastoid cell line with a stable near-diploid karyotype. Notably, TK6 cells
480 are smaller than typical adherent human cell lines, such as HeLa and MCF10A. Being
481 cultured in suspension, TK6 cells are amenable towards cell separation techniques,
482 including fluorescence-activated cell sorting (FACS) and centrifugal elutriation, without
483 requiring cell dissociation, which can induce physiological perturbations.

484 Fig. 4D shows the result of a cell titration analysis of S-phase cells performed in
485 duplicate whereby two aliquots at each indicated cell number (2,000 cells to 0 cells)
486 were collected by FACS from the same starting cell population (Supplementary Table 4).
487 Over 4,500 proteins were quantitated with 2,000 cells, with 4,480 proteins reproducibly
488 quantitated in two technical repeats. At the lower end of the cell titration (shown in Fig.
489 4E), over 300 proteins on average were quantitated from 10 cells with 259 reproducibly
490 quantitated in two cell aliquots that were separately collected by FACS. While approx.

491 30 proteins were detected in single cells, with 17 reproducibly detected, nearly all of
492 these proteins were also detected in the background samples ('0 cells').

493 We conclude that combining in-cell digest and AMPL enables characterization of
494 proteomes of 2,000 cells to a protein depth comparable to conventional single shot DDA
495 analysis of 1 μ g on-column loads. The advanced PRIMMUS method presented here
496 significantly reduces the number of cells required, i.e. $\sim 10^3$ versus $\sim 10^5$.

497 *High temporal resolution analysis of an unperturbed cell cycle using PRIMMUS*
498 Scheduled degradation during mitosis is a key regulatory mechanism to control mitotic
499 progression. Here, we characterised the proteome variation across 16 cell cycle
500 subpopulations, including 8 interphase and 8 mitotic phases, using the advanced
501 PRIMMUS workflow that combines the in-cell digest and AMPL (Fig. 5A). TK6 cells
502 were immunostained for DNA content, cyclin B, cyclin A and histone H3 phosphorylation
503 (Ser28), which are all markers of cell cycle progression, and separated into cell cycle
504 populations (P1 – P16). Fig. 5B summarises the populations collected by FACS with
505 respect to the markers used (Supplementary Figure 3 shows the full gating strategy).
506 The marker combinations were chosen to produce a pseudo-timecourse. Biochemical
507 differences are used as a surrogate for time and cell cycle progression. Based on past
508 literature [18][19] and our previous data [5], we have correlated these biochemical
509 changes with specific cell cycle states (as illustrated in Fig. 5B, bottom). While a full
510 description of the gating strategy can be found in the Experimental Procedures, as an
511 example, cyclin A and cyclin B levels are used to discriminate mitotic subphases, as
512 they are degraded during prometaphase and the metaphase-to-anaphase transition,
513 respectively.

514 The rarest target cells, in late anaphase of mitosis, are 0.01% of a typical
515 asynchronous TK6 culture. Proteome characterisation of these cells, previously
516 challenging due to lack of sensitivity, is now possible with the latest developments to
517 PRIMMUS. Four separate cultures of TK6 cells were independently FACS separated
518 into 16 populations. For each population, 5,000 cells were collected and processed
519 using the in-cell digest. Collection of 5,000 cells provided sufficient material for duplicate
520 injections for LC-MS/MS analysis by AMPL with DDA feature libraries generated from

521 interphase, mitotic and asynchronous cells. The data were then processed by
522 MaxQuant with MBR and filtered by match parameters as discussed above.

523 Of the 7,757 proteins quantitated overall (Supplementary Table 5), 4,918 proteins
524 were quantitated in all 8 replicates (4 biological x 2 technical repeats) in at least one
525 population (Fig. 5C). Next, to identify cell cycle regulated proteins, we treated each set
526 of 16 populations as an ordered series of related biochemical states. We have called
527 each set a pseudotimecourse. While these states can be projected onto a temporal axis
528 (i.e. cell cycle progression), the link with time is indirect as the duration of each phase
529 has been shown to vary substantially on a per-cell basis. We then performed a Fisher's
530 periodicity test to identify proteins abundance patterns that showed periodic behavior. In
531 order to increase robustness, the periodicity test was separately performed on each
532 technical repeat. Only those proteins showing a p-value ≤ 0.10 and a periodic
533 frequency of 0.0625 or 0.125 (i.e. one cycle every 8 or 16 pseudo-timepoints) in both
534 tests were considered further as periodic. Fig. 5D shows the abundance profiles for heat
535 shock protein HSP90AA1 and ATPase AAA domain-containing protein ATAD2 as
536 example non-periodic and periodic proteins, respectively. ATAD2 shows highly
537 reproducible abundance variation in all 8 pseudotimecourses, with peak abundance in
538 S-phase populations (P5-P6). We note proteins meeting the significance cutoffs are
539 highly enriched in cell cycle GO terms (Supplementary Table 6) and contain many
540 proteins previously reported as cell cycle regulated [5][20][21][22][23], suggesting that
541 the cutoff criteria achieved a final set of proteins with high functional specificity.

542 Amongst these 119 proteins are cyclins A2 and B1. The MS-measured
543 abundance patterns (Fig. 5E) show similarity with those measured by immunostaining
544 (Fig. 6B) with accumulation in interphase and decreased abundance in mitosis. We also
545 detect cyclin B2, an isoform of cyclin B that is localized to the Golgi apparatus. Cyclins
546 B2 and B1 show a nearly identical abundance pattern in interphase. However, at
547 anaphase and late mitosis (P13 – P16), cyclin B2 abundance does not decrease to
548 background levels, which suggests that unlike cyclin B1, there is a pool of cyclin B2 that
549 is stable towards degradation (Fig. 5E, right).

550 Hierarchical clustering of the 119 proteins (Fig. 6A) identified five major classes of
551 protein abundance patterns (Fig. 6B). Cluster 1 proteins show high abundance in

552 interphase, which decreases in early mitosis (P8-P10) and recovers slightly in late
553 mitotic populations (P15-P16), as illustrated by the example protein hepatoma-derived
554 growth factor, SRSF6 (Fig. 6C). Like SRSF6, most proteins in this cluster are either
555 RNA- or DNA-binding (26 / 33). For example, several mRNA splicing factors are in this
556 group, including serine/arginine-rich proteins (SRRM2, SRSF2, SRSF3, SRSF5,
557 SRSF6). These proteins decrease in abundance in mitosis with a small fold change (≤ 2)
558 compared with, for example, cyclin B1 (Fig. 5E). The remaining proteins with no known
559 or anticipated oligonucleotide-binding properties are enriched in cytoskeleton-binding
560 factors, e.g. the actin-binding proteins MARCKS and ZYX.

561 Cluster 2 contained proteins that had peak abundances in late G1/S populations.
562 Included in this cluster is the protein SLBP, a histone gene expression factor that peaks
563 in P4-P5 (Fig. 6D). Indeed, nearly all proteins in this cluster are directly involved in DNA
564 replication or associated with the DNA damage response, including members of the
565 MCM helicase (MCM2, MCM5, MCM6), DNA damage checkpoint factors (ATM, RBBP8)
566 and a replication-dependent histone chaperone (CHAF1B).

567 These protein clusters vary in their enrichment in short linear (sequence) motifs
568 (SLIMs). SLIMs mediate protein-protein interactions that lead to changes in post-
569 translational modification, stability and/or subcellular localization of a protein. Using the
570 eukaryotic linear motif (ELM) database [24], we identified SLIMs that are enriched in
571 each cluster ($p < 0.01$, Fisher's exact test, Supplementary Table 7). In particular,
572 enriched SLIMs that modulate protein stability (i.e. degrons) could help identify relevant
573 degradation pathways for each protein cluster. Clusters 1 and 2 show an enrichment in
574 Skp1-Cullin-F box (SCF)-Fbxw7 motifs (Fig. 6I). Targeted degradation by SCF-Fbxw7
575 generally requires priming phosphorylation [25], which links the stability of a protein with
576 kinase activity, e.g. CDK. Cluster 1 is most enriched in the T-P-X-X-[ST] motif (2' motif),
577 which requires two priming phosphorylations for recognition by SCF-Fbxw7 and
578 targeted degradation. Cluster 2 is most enriched in the T-P-X-X-E motif, which requires
579 only one phosphorylation for substrate recognition. Interestingly, Cluster 1 is also more
580 highly enriched in CDK consensus sites. We conclude that multisite phosphorylation by
581 CDK may play a role in directing these proteins for degradation by SCF-Fbxw7.

582 Cluster 3 shows peak abundance in G2 and early mitosis (P6 to P9). This cluster
583 contains several proteins associated with DNA replication and DNA damage repair,
584 including the dsDNA exonuclease EXO1, PCNA-associated factor (PAF/KIAA0101) and
585 ribonucleotide reductase M2 (RRM2, Fig. 6E). The abundance pattern of RRM2 is
586 consistent with previous proteomic studies and targeted degradation of RRM2 in late
587 G2/early mitosis by the cyclin F-SCF complex [5][26].

588 Clusters 4 and 5 show peak abundance during mitosis and contain the largest
589 proportion of proteins with either known roles in mitotic progression or targeted for
590 degradation in mitosis (9/12 for cluster 4, 38/46 for cluster 5). The distinguishing feature
591 that separates cluster 4 and 5 is the mitotic abundance pattern. Cluster 4 proteins show
592 decreased abundance in earlier mitotic populations, particularly in P11 – P12,
593 coincident with the onset of cyclin A2 and cyclin B1 degradation (c.f. Fig. 5B). The three
594 mitotic cyclins detected (A2, B1 and B2), the spindle assembly checkpoint kinases
595 BUB1 (Fig. 6F) and BUB1B (BubR1), the kinesin-8 family member KIF18B, securin
596 (PTTG1) and shugoshin (SGO2) are in this cluster. Functionally, this cluster is
597 characterized by proteins that maintain sister chromatid cohesion (securing, shugoshin)
598 and constitute a checkpoint that prevents anaphase (cyclins, Bub kinases) while proper
599 microtubule attachment and biorientation of chromosomes takes place. Consistent with
600 the MS-based proteomics data for KIF18B, the fluorescence of GFP-KIF18B begins to
601 decrease 10 minutes prior to anaphase onset and is at 20% relative fluorescence by 20
602 minutes after anaphase onset [27].

603 By contrast, cluster 5 proteins show a significant increase in abundance at the
604 end of interphase (P7 – P8) with peak abundance throughout mitosis (P9 – P15) and a
605 significant decrease only in the last population (P16), i.e. cells undergoing mitotic exit.
606 Example proteins from this cluster include TPX2 and Aurora A kinase (Fig. 6G). TPX2 is
607 the activator of Aurora A kinase whose activity is important in centrosome separation in
608 prophase and mitotic progression. Other proteins in cluster 5 with regulatory roles in
609 mitotic progression include the catalytic E2 subunits of the APC/C (UBE2C, UBE2S),
610 the chromosome passenger complex (AURKB, INCENP, BIRC5 – Survivin, CDCA8 –
611 Borealin) and the spindle-associated protein FAM83D.

612 SLIM analysis of these clusters identified differences in the enrichment in nuclear
613 import and export signals. As shown in Fig. 6I, clusters 1 and 2 are enriched in nuclear
614 localisation signals (mono- and bi-partite). By contrast, cluster 4 shows a strong
615 enrichment for the Crm1-mediated nuclear export signal (NES). Eight proteins in cluster
616 4 matched the NES consensus. Some predicted NES located in globular domains will
617 likely be constitutively inaccessible to Crm1 but may be recognized upon conformational
618 change. Notably, cluster 4 includes cyclins B1 and B2, whose constitutive export from
619 the nucleus is thought to be important in preventing premature mitotic entry. Crm1-
620 binding and/or exclusion from the nucleus of the remaining six proteins (e.g. Bub1,
621 BubR1, cyclin A2, CLEC16A, MVP, and ARMC1) may also be important in the proper
622 timing of cell cycle events.

623 We identified strongly pseudoperiodic proteins that have no reported function in
624 cell cycle control. These novel cell cycle regulated proteins may, like many of the other
625 proteins identified in this manner, have significant roles in cell cycle progression. These
626 candidates include EXO1, the DNA helicase PIF1, the guanine-exchange factor NET1
627 and the uncharacterized protein FAM111B (Fig. 6H). Potential functional roles for
628 FAM111B in cell cycle regulation are discussed further below.

629 *Analysis of mitotic protein abundance dynamics in unperturbed cells*

630 A major regulator of protein abundance during the cell cycle is the anaphase promoting
631 complex/cyclosome (APC/C). The APC/C is an E3 ubiquitin ligase and is active during
632 the mitotic and G0/G1 phases of the cell cycle [28][29]. Its substrates include key
633 regulators of the cell cycle, including cyclin A2 and cyclin B1 [18][19]. However,
634 ubiquitination of APC/C substrates is tightly temporally controlled, with APC/C substrate
635 specificity changing during the cell cycle. This is mediated through changes in the
636 APC/C co-activators and substrate recognition factors, Cdc20 and Cdh1. While APC/C-
637 Cdc20 is active in early mitosis, the substrate receptor changes to Cdh1 in late mitosis,
638 thereby conferring a temporal order to substrate degradation. Cdc20 is itself a substrate
639 of the APC/C-Cdh1, allowing for switch-like handover in substrate receptor control.

640 Interestingly, 25 of the 119 core pseudoperiodic proteins are experimentally
641 validated APC/C substrates and the vast majority (24) are found in clusters 3, 4 and 5.
642 Substrate recognition by APC/C-Cdc20 and APC/C-Cdh1 is mediated by the interaction

643 between WD40 domains on the APC/C-(Cdc20/Cdh1) and SLIMs found on substrates.
644 The KEN and D-box (RxxL) degrons are well documented SLIMs that bind both APC/C-
645 Cdc20 and APC/C-Cdh1, with APC/C-Cdh1 having a preference for the KEN degron.
646 More recently, a third SLIM called the ABBA motif was shown to be important in
647 substrate recognition by APC/C-Cdc20 [30]. Its name comes from the four proteins in
648 which it is found: Cyclin A, *Bub1*, *BubR1* and the yeast-specific protein *Acm1*.

649 Fig. 6J shows the enrichment profile of these SLIMs across the six clusters. The
650 KEN motif is comparably enriched in 4 out of the 5 clusters (Fig. 6J), with highest
651 enrichments for the mitotic phase-peaking clusters (clusters 4 and 5). The frequencies
652 range from 25% of the proteins in a cluster having the KEN motif (cluster 2) to 43%
653 (cluster 5), representing a 3-5-fold enrichment over the background frequency (8%). All
654 four clusters show low to non-detectable abundance in P16, P1 and P2, i.e. mitotic exit
655 and G0/early G1 when APC/C-Cdh1 is active. In total, 35 cell cycle regulated proteins
656 contain a KEN SLIM, approximately 50% (18 proteins) that have been experimentally
657 characterized as APC/C substrates. The remaining uncharacterized 17 proteins are
658 excellent candidates to be APC/C-Cdh1 substrates. Consistent with this prediction,
659 cluster 1, which is the only cluster showing no enrichment for the KEN motif, contains
660 proteins that have on average, higher abundance in G0/early G1.

661 Six out of 12 proteins that peak in mid-mitosis (cluster 4) contain the RxxL D-box
662 sequence. The 50% frequency is ~8-fold higher than the background frequency (6%).
663 By contrast, the fold-enrichment is considerably lower in the other clusters (Fig. 6I).
664 Similarly, 5 out of 12 proteins contain the ABBA motif (42%, Fig. 6I), representing a ~9-
665 fold enrichment over the background frequency (5%). D-box and ABBA motif-containing
666 proteins in this cluster are mostly mutually exclusive: only two proteins contain both
667 SLIMs: *BubR1* (BUB1B) and shugoshin-2 (SGOL2). Of the D-box and ABBA motif
668 containing proteins, three have not been previously experimentally characterized as
669 APC/C substrates: SGOL2, MVP and CLEC16A.

670 This high-resolution analysis of mitotic proteomes identified three clusters that
671 differed significantly in their protein abundance patterns and enriched degrons. ~50% of
672 these APC/C-degron containing proteins are experimentally validated APC/C substrates.
673 This is now accompanied with measurement of their protein abundance variation in an

674 unperturbed mitosis in human cells without fluorescent protein tags. We identify ~20
675 protein candidates as novel APC/C substrates. As shugoshin-2 (SGOL2) plays key
676 roles in protecting sister chromatid cohesion [31], direct degradation by APC/C-Cdc20
677 during prometaphase could have major implications on how cohesion is lost at
678 chromosome arms during early mitosis.

679 *Proteomic assignment of cell cycle states*

680 MS-based single cell proteome analysis is an emerging area. Recent advances in
681 sample preparation, including NanoPOTS [4][5] and the in-cell digest described here,
682 suggest that routine proteome analysis of single somatic mammalian cells will be
683 possible in the near future. In comparison, single cell transcriptomics as a mature field
684 with commercial kits now available. In single cell RNA-seq (sc-RNAseq) analysis [32],
685 the deconvolution of cell cycle state has been critical [33][34]. This is because cell cycle
686 variation contributes significantly to the variation observed in a cell population. For
687 example, to identify cell fate trajectories during differentiation, researchers relied on
688 reference cell cycle regulated genes in order to identify the effect of cell cycle variation
689 in the gene expression differences observed [35]. A highly validated reference set of cell
690 cycle regulated proteins will be important for the biological interpretation of single cell
691 proteomic datasets.

692 We tested whether the abundances of the core 119 cell cycle regulated proteins
693 determined in this study were sufficient to assign specific cell cycle states to cellular
694 proteomes. The abundance patterns for the 119 proteins for each sample (16 timepoints
695 x 8 replicates = 128 samples) were subjected to principal component analysis (PCA).
696 The two major principal components, PC1 and PC2, explain 53% and 20.5% of the
697 variance, respectively, as shown in Fig. 7A. Interphase (circles) and mitotic (triangle)
698 are separated predominantly along PC1. To a lesser extent, subphases within each (for
699 example, see arrows indicating P1 and P2) are separated along both principal
700 components. Moving counterclockwise, starting from the top right for P1, the samples
701 clearly follow a trajectory that reflects the position of each sample in the cell cycle,
702 starting from early G1 (P1 and P2) to mitosis (left side, triangles). Telophase/cytokinesis
703 populations (P16, pink triangles) are situated between the other mitotic populations and
704 P1. Detection of relevant features is essential as PCA analysis of the entire proteome

705 dataset does not result in cell cycle separation. Repeating the PCA analysis with cyclin
706 A2 and cyclin B1 removed essentially produces identical results, which indicates that
707 the relationships produced by using ~119 cell cycle marker proteins are robust towards
708 the absence of individual proteins, including key proteins that drive cell cycle
709 progression.

710 A simple kNN-model was used to classify cell cycle states using these data.
711 Replicates 1 - 3 were used as a training set and replicate 4 was used as the test set. Fig.
712 7B shows the performance of the classification by plotting predicted versus actual
713 populations. There is a linear correlation with some minor deviations. We then repeated
714 this kNN analysis for each combination of the four replicates using 3 replicates as the
715 training set and the remaining replicate as the test set. We treated the populations as a
716 circular, progressive series of cell states whereby P1 is the next state after P16. We
717 then calculated the distance between predicted and actual populations for each
718 replicate combination (Supplementary Figure 4A). The average distance is 0 in all four
719 cases with a standard deviation ~1. This indicates that the kNN models are broadly
720 accurate in predicting the cell cycle state with a precision of ± 1 cell state.

721 We then asked whether the PCA classification could be used to identify
722 uncharacterised populations. During the FACS separation to collect the 16 populations
723 described above, we noticed the presence of an unexpected, rare population (P17) in
724 two out of the four biological replicates. As shown in Fig. 7C, these cells are similar to
725 G2-phase cells in DNA content (i.e. 4N DNA content) but significantly differ from most
726 G2-phase cells by having low cyclin B1 levels. P17 cells were analysed alongside the
727 other 16 populations using the in-cell digest and AMPL. As shown in the simplified PCA
728 where replicate data were averaged (Fig. 7D), the PCA places P17 between P16 and
729 P1. Indeed, using the kNN model described above classifies two replicates of P17 as
730 P16 and two other replicates as P1. From these observations, we conclude that P17,
731 while having DNA content consistent with a G2-phase cell, has a cell cycle protein
732 profile that is more consistent with an early G1/G0-phase cell.

733 This population may reflect a senescent state consistent with previous reports
734 where the APC/C is re-activated in G2 phase cells in response to DNA damage, leading
735 to premature degradation of cyclin B1. Our data suggest that numerous APC/C targets

736 are decreased relative to a typical G2 state (Fig. 7E), effectively resetting the cell cycle
737 state of these cells to an early G1/G0-like state. We then performed pairwise
738 comparisons proteome-wide between P1, P16 and P17 to identify proteins showing
739 reproducible changed abundance in P17 cells. Of the top candidates (Supplementary
740 Figure 4B), three are regulators of the DNA damage response (Fig. 7F): BMI1, HINT1
741 and PPP6R2. BMI1 and HINT1 show increased abundance in P17 compared to P1 and
742 P16. Both proteins are recruited to sites of DNA damage and loss of either protein leads
743 to defective repair [36][37]. PPP6R2 is a regulatory subunit of the protein phosphatase
744 PP6. PP6 is involved in silencing the DNA damage response by dephosphorylation of γ -
745 H2AX [38]. These results support the idea that P17 is a DNA damage-induced
746 senescent state.

747 We conclude that we have found a core set of 119 proteins that can be used to
748 robustly assign cell cycle states with high resolution and to phenotypically characterise
749 cell populations whose position in the cell cycle is unknown.

750 **Discussion**

751 A major challenge with the comprehensive analysis of proteomes from low cell number
752 samples is sample preparation. An on-column load of 200 ng peptide, the equivalent to
753 the protein content of approximately 2,000 TK6 cells, is sufficient material to obtain
754 proteome coverage of >4,000 proteins with current instrumentation. Removal of
755 detergents used to produce soluble cell extracts by use of membrane filters, organic
756 precipitation (with or without the aid of magnetic beads) or SDS-PAGE gel extraction
757 are protocols involving many steps and repeated exposure to new plastic surfaces that
758 introduce opportunities for non-specific peptide and protein adsorption. Here, we have
759 presented a minimalistic approach for preparing cells for proteomics called the ‘in-cell
760 digest’. Cells are fixed with formaldehyde and methanol to effectively trap them in
761 biochemical states, then directly digested with trypsin and desalting prior to LC-MS/MS
762 analysis.

763 We show that the in-cell digest enables reproducible and quantitative analysis of
764 proteomes from 2,000 TK6 and MCF10A cells using AMPL analysis. The AMPL
765 approach overcomes the low duty cycle of the Orbitrap Elite to enable proteome
766 analysis with a sensitivity comparable with current instruments. Newer instrumentation

767 with higher duty cycles, including the TIMS-TOF Pro and Exploris 480, is expected to
768 enable conventional DDA analysis of proteomes at a similar depth with 2,000 TK6 cells,
769 or alternatively, improve proteome depth further using MS1-based matching methods.

770 The in-cell digest is compatible with other approaches of low cell number sample
771 preparation for MS-based proteomics. In-cell digested samples can be efficiently
772 labelled by isobaric tags, e.g. TMT and iTRAQ, and therefore compatible with use of
773 carrier channels to boost the signal of rare or single cell channels (e.g. iBASIL). The
774 protocol requires no specialized humidified sample handling chambers or direct loading
775 onto premade, single-use analytical nanoLC columns, such as those described in the
776 nanoPOTS workflow. While the proteome coverages obtained by nanoPOTS is higher
777 than reported here, it is possible that a new workflow combining aspects of the in-cell
778 digest and nanoPOTS could improve both generalizability and performance compared
779 to either method as originally described.

780 Each sample preparation method will have its unique advantages and potential
781 biases, which we evaluated by quantitatively comparing the in-cell digest with a more
782 conventional in-solution digest. This analysis revealed an overrepresentation of
783 membrane proteins amongst those proteins with higher abundance measured in the in-
784 cell digest samples. These proteins include mitochondrial membrane proteins (e.g.
785 TOMM7) and proteins that are known to be localized to the cell surface (ADAM15).
786 Membrane proteins have been shown to irreversibly aggregate in soluble extracts when
787 heat-treated and precipitated. Delipidation by methanol, which is used to increase cell
788 permeability, could also play an important role in increasing digestion efficiency by
789 trypsin. We suggest that the higher abundances measured for membrane proteins is
790 unlikely to be an artefact of the in-cell digest; in contrast, the measurements are likely to
791 more accurately reflect the abundances of these proteins in cells.

792 By contrast, RNA-binding proteins, including snRNP proteins, were
793 overrepresented amongst those proteins with lower abundance in the in-cell digest
794 samples. The lower abundances measured could represent on the one hand, a specific
795 loss of peptide-RNA crosslinks, or on the other hand, non-specific loss of the RNA-
796 binding proteins into the supernatant. Studies are ongoing examining the RNA-binding
797 protein bias observed in more detail, and we have preliminary evidence suggesting the

798 latter. Interestingly, proteins in cluster 2 (Fig. 6A), which show a robust, pseudoperiodic
799 change in abundance are nearly all known to interact with either DNA or RNA. Few of
800 these proteins have been shown to be cell cycle regulated previously. It may be the
801 changes in MS-measured abundance reflect differences in RNA- and/or DNA-
802 interactions by these proteins rather than a change in the protein abundance in cells.

803 We identify novel proteins whose cell cycle function has not been previously
804 characterized. FAM111B is a pseudoperiodic protein in cluster 1 (Fig. 6B, right, Fisher's
805 $p_1 < 0.001$, $p_2 = 0.06$), showing peak levels in S-phase populations (P4 – P6), followed
806 by a decrease in G2 populations (P7 – P8). FAM111B is poorly characterized despite its
807 expression being associated with poor prognosis in pancreatic and liver cancers
808 (Human Protein Atlas [39]) and mutation causative for a rare inherited genetic syndrome
809 (hereditary fibrosing poikiloderma with tendon contracture, myopathy, and pulmonary
810 fibrosis) [40]. Interestingly, FAM111A, the only other member of the FAM111 gene
811 family, localizes to newly synthesized chromatin during S-phase, interacts with PCNA
812 via its PCNA-interacting protein (PIP) box and its depletion reduces base incorporation
813 during DNA replication [41]. FAM111B also contains a PIP box (residues 607 – 616).
814 Data from HeLa S3 cells also suggest that FAM111B is a cell cycle regulated protein
815 with peak levels in S-phase [22]. Interestingly, the mRNA abundance and translation
816 rate of FAM111B peaks in G1-phase [22], suggesting that the protein abundance is
817 subject to significant post-translational control. Consistent with this idea, FAM111B
818 contains D-box and KEN-box motifs that are recognized by the APC/C E3 ligase to
819 ubiquitinate targets for proteasomal degradation. Due to the similarity with FAM111A in
820 sequence, predicted interactions with PCNA and peak protein abundance in S-phase,
821 we propose that FAM111B also is likely to play a key role in DNA replication.

822 We present an unbiased pseudotemporal analysis of protein abundance changes
823 during 8 biochemically resolved mitotic states (P9 to P16 in Fig. 5B) with a resolution
824 extremely challenging to obtain with high precision using arrest and release
825 methodologies. The protein clusters are functionally related. For example, clusters 4
826 and 5 both contain proteins essential for mitotic progression but differ in when during
827 mitosis the functions are required. Cluster 4 contains proteins directly involved in or
828 directly downstream of the spindle assembly checkpoint that are degraded upon

829 checkpoint satisfaction. These regulatory pathways ensure that proper spindle
830 microtubule-chromatid attachments are formed prior to loss of sister-chromatid cohesion
831 and separation of the sister chromatids. By contrast, cluster 5 contains proteins that are
832 functional throughout mitosis, such as chromosome passenger complex (CPC), or
833 primarily in cytokinesis, such as ECT2, PRC1, RACGAP1 and ARHGAP11A.
834 Interestingly, several core subunits of the APC/C E3 ligase are also present in cluster 4.
835 Their degradation at the end of mitosis is expected to significantly decrease APC/C-
836 mediated substrate degradation promote accumulation of substrates and facilitate rapid
837 progression into the next cell cycle.

838 A high proportion of proteins in clusters 4 and 5 (24/69, 35%) are experimentally
839 validated APC/C substrates, which represents a 70-fold overrepresentation in these two
840 clusters compared to non-pseudoperiodic proteins (0.5%). Previous studies have
841 identified APC/C-Cdh1 and APC/C-Cdc20 substrates by bioinformatic analysis of co-
842 regulation, stabilization by siRNA depletion of Cdc20 or Cdh1, and immunoprecipitation
843 of APC/C at different timepoints during mitosis. Interestingly, the high mitotic phase
844 resolution and purity obtained in this study enabled unbiased identification and
845 separation of APC/C substrates. As discussed above, clusters 4 and 5 differ in the
846 representation of ABBA and D-box short linear motifs, key degrons that are recognized
847 by APC/C-Cdc20. Note that there are an additional 44 proteins in these two clusters that
848 have not been previously experimentally validated as APC/C substrates and are
849 candidates for future follow-up analysis as novel, uncharacterized substrates.

850 High resolution classification of cell cycle state is an important prerequisite to
851 obtaining meaningful biological insights into single cell 'omics' data. However, datasets
852 on the cell cycle regulated transcriptome and proteome generally provide low time
853 resolution, particularly in mitosis. This is more important with single cell proteomics.
854 Whereas transcriptional and translational activity are damped during mitosis, there
855 are tremendous changes in protein phosphorylation and protein abundances, which will
856 contribute towards single cell proteome variation.

857 Here we have identified a cell cycle signature composed of the abundances from
858 119 pseudoperiodic proteins that can be used to classify the cell cycle state of a cell
859 population by virtue of the proteome. By using a split train/test strategy, we showed a

860 kNN model predicted cell cycle state with relatively high accuracy and can provide clues
861 into the phenotype of uncharacterised, rare populations. We anticipate that the high-
862 resolution cell cycle dataset here will be important to understand the biological
863 implications of single cell proteomics data, particularly in systems where cell cycle
864 phase differences are an underlying source of variation but not the primary biological
865 feature of interest.

866 Formaldehyde fixation is used frequently as a precursor to intracellular
867 immunostaining for cellular analysis and for inactivating cells that potentially harbor
868 infectious agents, e.g. viruses. We have shown that mild formaldehyde treatment is
869 compatible with comprehensive and quantitative proteomics with low cell numbers. We
870 anticipate that the in-cell digest will be broadly applicable to characterise the proteomes
871 of formaldehyde fixed cells. Recently published data suggest that formaldehyde
872 crosslinks can be directly detected from MS data [42]. We anticipate the in-cell digest
873 would enhance the sensitivity of crosslink detection and lead to an increase in identified
874 protein-protein interactions.

875 **Acknowledgements**

876 This work was supported by a Sir Henry Dale Fellowship to TL (Wellcome Trust & Royal
877 Society 206211/Z/17/Z), a Darwin Trust PhD Studentship to ASA, an EASTBIO PhD
878 Studentship to DAL, the Wellcome Centre for Cell Biology (WCB) core facilities
879 (Wellcome Trust 203149), and funding for instrumentation, including equipment grants
880 to the WCB Proteomics Core (091020) and the flow facilities. We thank valuable
881 feedback and discussions with colleagues in the WCB and the University of Edinburgh,
882 including Fiona Rossi (Scottish Centre for Regenerative Medicine), Christos Spanos
883 (WCB) and Shaun Webb (WCB).

884 **Data Availability**

885 Raw MS data and processed MaxQuant output files are available on
886 ProteomeXchange/PRIDE. These data can be accessed using the project accession
887 number PXD020006

888 **References**

- 889 1. Spencer SL, Cappell SD, Tsai F-C, Overton KW, Wang CL, Meyer T (2013) The
890 proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at
891 mitotic exit. *Cell* **155**: 369–383.

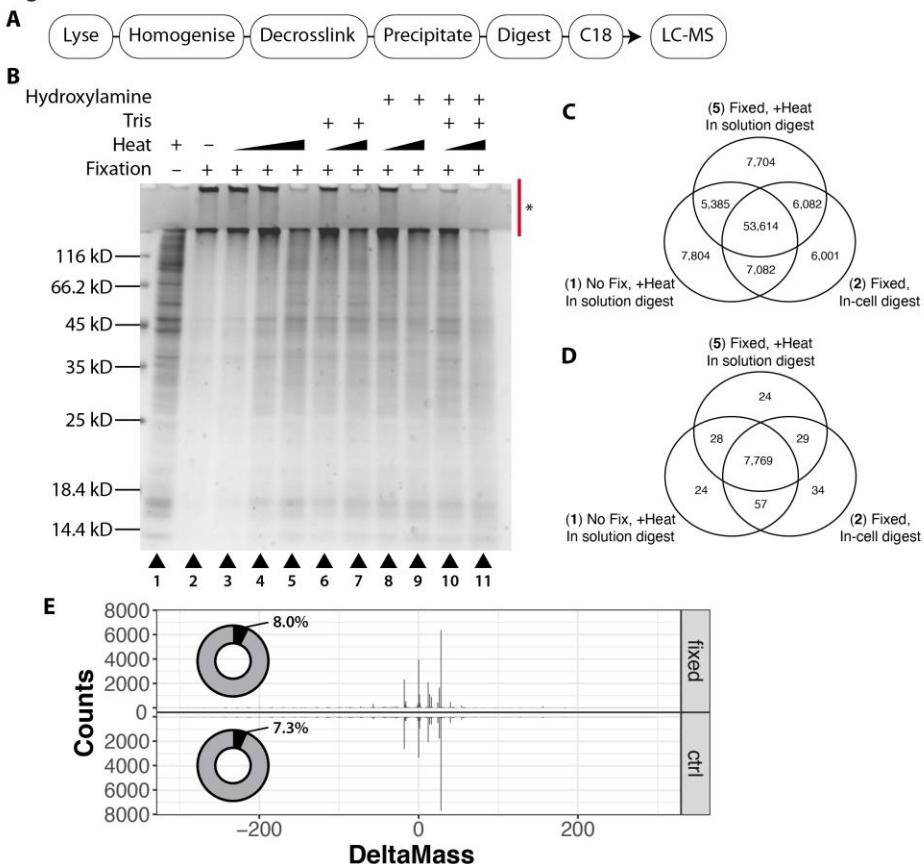
- 892 2. Barr, A. R., Cooper, S., Heldt, F. S., Butera, F., Stoy, H., Mansfeld, J., et al.
893 (2017). DNA damage during S-phase mediates the proliferation-quiescence
894 decision in the subsequent G1 via p21 expression. *Nature Communications*, **8**(1),
895 14728.
- 896 3. Amon S, Meier-Abt F, Gillet LC, Dimitrieva S, Theocharides APA, Manz MG,
897 Aebersold R (2019) Sensitive Quantitative Proteomics of Human Hematopoietic
898 Stem and Progenitor Cells by Data-independent Acquisition Mass Spectrometry.
899 *Mol Cell Proteomics* **18**: 1454.
- 900 4. Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, Moore RJ, Shukla AK, Petyuk VA,
901 Campbell-Thompson M, Mathews CE, et al. (2018) Nanodroplet processing
902 platform for deep and quantitative proteome profiling of 10–100 mammalian cells.
903 *Nat Comms* **9**: 882.
- 904 5. Tsai C-F, Zhao R, Williams SM, Moore RJ, Schultz K, Chrisler WB, Pasa-Tolic L,
905 Rodland KD, Smith RD, Shi T, et al. (2020) An Improved Boosting to Amplify
906 Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell
907 Proteomics. *Mol Cell Proteomics* **19**: 828.
- 908 6. Ly T, Whigham A, Clarke R, Brenes-Murillo AJ, Estes B, Wadsworth P, Lamond
909 AI (2017) Proteomic analysis of cell cycle progression in asynchronous cultures,
910 including mitotic subphases, using PRIMMUS. *bioRxiv* 125831.
- 911 7. Ly T, Endo A, Lamond AI (2015) Proteomic analysis of the response to cell cycle
912 arrests in human myeloid leukemia cells. *eLife* **4**:
- 913 8. Müllers E, Silva Cascales H, Burdova K, Macurek L, Lindqvist A (2017) Residual
914 Cdk1/2 activity after DNA damage promotes senescence. *Aging Cell* **16**: 575–584.
- 915 9. Skopek TR, Liber HL, Penman BW, Thilly WG (1978) Isolation of a human
916 lymphoblastoid line heterozygous at the thymidine kinase locus: Possibility for a
917 rapid human cell mutation assay. *Biochemical and Biophysical Research
918 Communications* **84**: 411–416.
- 919 10. Rappaport J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-
920 assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample
921 pretreatment in proteomics. *Anal Chem* **75**: 663–670.
- 922 11. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates,
923 individualized p.p.b.-range mass accuracies and proteome-wide protein
924 quantification. *Nat Biotechnol* **26**: 1367–1372.
- 925 12. Hoffman EA, Frey BL, Smith LM, Auble DT (2015) Formaldehyde Crosslinking: A
926 Tool for the Study of Chromatin Complexes. *Journal of Biological Chemistry* **290**:
927 26404–26411.
- 928 13. Bornstein P, Balian G (1977) [14] Cleavage at AsnGly bonds with hydroxylamine.
929 In, *Enzyme Structure Part E* pp 132–145. Academic Press.
- 930 14. Metz B, Kersten GFA, Hoogerhout P, Brugghe HF, Timmermans HAM, de Jong A,
931 Meiring H, Hove ten J, Hennink WE, Crommelin DJA, et al. (2004) Identification of
932 Formaldehyde-induced Modifications in Proteins REACTIONS WITH MODEL
933 PEPTIDES. *Journal of Biological Chemistry* **279**: 6235–6243.
- 934 15. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI (2017)
935 MSFragger: ultrafast and comprehensive peptide identification in mass
936 spectrometry-based proteomics. *Nat Meth* **14**: 513–520.

- 937 16. Pasa-Tolic L, Masselon C, Barry RC, Shen Y, Smith RD (2004) Proteomic
938 analyses using an accurate mass and time tag strategy. *BioTechniques* **37**: 621–
939 639.
- 940 17. Meier F, Geyer PE, Winter SV, Cox J, Mann M (2018) BoxCar acquisition method
941 enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. *Nat
942 Meth* **15**: 440–448.
- 943 18. Pines J, Clute P (1999) Temporal and spatial control of cyclin B1 destruction in
944 metaphase. *Nat Cell Biol* **1**: 82–87.
- 945 19. Elzen den N, Pines J (2001) Cyclin a Is Destroyed in Prometaphase and Can
946 Delay Chromosome Alignment and Anaphase. *The Journal of Cell Biology* **153**:
947 121–136.
- 948 20. Ly T, Ahmad Y, Shlien A, Soroka D, Mills A, Emanuele MJ, Stratton MR, Lamond
949 AI (2014) A proteomic chronology of gene expression through the cell cycle in
950 human myeloid leukemia cells. *eLife* **3**: e01630.
- 951 21. Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L.
952 J., et al. (2010). Quantitative Phosphoproteomics Reveals Widespread Full
953 Phosphorylation Site Occupancy During Mitosis. *Science Signaling*, 3(104), ra3–
954 ra3. <http://doi.org/10.1126/scisignal.2000475>
- 955 22. Aviner R, Shenoy A, Elroy-Stein O, Geiger T (2015) Uncovering Hidden Layers of
956 Cell Cycle Regulation through Integrative Multi-omic Analysis. *PLoS Genet* **11**:
957 e1005554.
- 958 23. Herr, P., Boström, J., Rullman, E., Rudd, S. G., Vesterlund, M., Lehtio, J., et al.
959 (2020). Cell cycle profiling reveals protein oscillation, phosphorylation, and
960 localization dynamics. *Molecular & Cellular Proteomics : MCP*,
961 mcp.RA120.001938.
- 962 24. Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J,
963 Diakogianni A, Valverde JA, Bukirova D, Čalyševa J, et al. (2019) ELM—the
964 eukaryotic linear motif resource in 2020. *Nucleic Acids Res* **48**: D296–D306.
- 965 25. Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP (2007) Structure of a
966 Fbw7-Skp1-Cyclin E Complex: Multisite-Phosphorylated Substrate Recognition by
967 SCF Ubiquitin Ligases. *Molecular Cell* **26**: 131–143.
- 968 26. D'Angiolella V, Donato V, Forrester FM, Jeong Y-T, Pellacani C, Kudo Y, Saraf A,
969 Florens L, Washburn MP, Pagano M (2012) Cyclin F-mediated degradation of
970 ribonucleotide reductase M2 controls genome integrity and DNA repair. *Cell* **149**:
971 1023–1034.
- 972 27. Tanenbaum ME, Macurek L, van der Vaart B, Galli M, Akhmanova A, Medema
973 RH (2011) A Complex of Kif18b and MCAK Promotes Microtubule
974 Depolymerization and Is Negatively Regulated by Aurora Kinases. *Current
975 Biology* **21**: 1356–1365.
- 976 28. Kernan J, Bonacci T, Emanuele MJ (2018) Who guards the guardian?
977 Mechanisms that restrain APC/C during the cell cycle. *Biochimica et Biophysica
978 Acta (BBA) - Molecular Cell Research* **1865**: 1924–1933.
- 979 29. Chang L, Barford D (2014) Insights into the anaphase-promoting complex: a
980 molecular machine that regulates mitosis. *Current Opinion in Structural Biology* **29**:
981 1–9.

- 982 30. Di Fiore B, Davey NE, Hagting A, Izawa D, Mansfeld J, Gibson TJ, Pines J (2015)
983 The ABBA Motif Binds APC/C Activators and Is Shared by APC/C Substrates and
984 Regulators. *Developmental Cell* **32**: 358–372.
- 985 31. Hellmuth S, Gómez-H L, Pendás AM, Stemmann O (2020) Securin-independent
986 regulation of separase by checkpoint-induced shugoshin–MAD2. *Nature* **580**:
987 536–541.
- 988 32. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical
989 challenges in single-cell transcriptomics. *Nat Rev Genet* **16**: 133–145.
- 990 33. Scialdone A, Natarajan KN, Saraiva LR, Proserpio V, Teichmann SA, Stegle O,
991 Marioni JC, Buettner F (2015) Computational assignment of cell-cycle stage from
992 single-cell transcriptome data. *Human Pluripotent Stem Cells* **85**: 54–61.
- 993 34. Liu Z, Lou H, Xie K, Wang H, Chen N, Aparicio OM, Zhang MQ, Jiang R, Chen T
994 (2017) Reconstructing cell cycle pseudo time-series via single-cell transcriptome
995 data. *Nat Comms* **8**: 22.
- 996 35. Cuomo ASE, Seaton DD, McCarthy DJ, Martinez I, Bonder MJ, Garcia-Bernardo
997 J, Amatya S, Madrigal P, Isaacson A, Buettner F, et al. (2020) Single-cell RNA-
998 sequencing of differentiating iPS cells reveals dynamic genetic effects on gene
999 expression. *Nat Comms* **11**: 810.
- 1000 36. Li H, Balajee AS, Su T, Cen B, Hei TK, Weinstein IB (2008) The HINT1 tumor
1001 suppressor regulates both γ-H2AX and ATM in response to DNA damage. *J Cell
1002 Biol* **183**: 253–265.
- 1003 37. Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ, Yao M, Citterio E, van
1004 Lohuizen M, Ganesan S (2011) BMI1 Is Recruited to DNA Breaks and
1005 Contributes to DNA Damage-Induced H2A Ubiquitination and Repair. *Mol Cell
1006 Biol* **31**: 1972.
- 1007 38. Douglas P, Zhong J, Ye R, Moorhead GBG, Xu X, Lees-Miller SP (2010) Protein
1008 Phosphatase 6 Interacts with the DNA-Dependent Protein Kinase Catalytic
1009 Subunit and Dephosphorylates γ-H2AX. *Mol Cell Biol* **30**: 1368.
- 1010 39. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhorri G, Benfeitas R, Arif
1011 M, Liu Z, Edfors F, et al. (2017) A pathology atlas of the human cancer
1012 transcriptome. *Science* **357**: eaan2507.
- 1013 40. Mercier S, Küry S, Shaboodien G, Houniet DT, Khumalo NP, Bou-Hanna C,
1014 Bodak N, Cormier-Daire V, David A, Faivre L, et al. (2013) Mutations in FAM111B
1015 Cause Hereditary Fibrosing Poikiloderma with Tendon Contracture, Myopathy,
1016 and Pulmonary Fibrosis. *The American Journal of Human Genetics* **93**: 1100–
1017 1107.
- 1018 41. Alabert C, Bukowski-Wills J-C, Lee S-B, Kustatscher G, Nakamura K, de Lima
1019 Alves F, Menard P, Mejlvang J, Rappsilber J, Groth A (2014) Nascent chromatin
1020 capture proteomics determines chromatin dynamics during DNA replication and
1021 identifies unknown fork components. *Nat Cell Biol* **16**: 281–291.
- 1022 42. Tayri-Wilk T, Slavin M, Zamel J, Blass A, Cohen S, Motzik A, Sun X, Shalev DE,
1023 Ram O, Kalisman N (2020) Mass spectrometry reveals the chemistry of
1024 formaldehyde cross-linking in structured proteins. *Nat Comms* **11**: 3128.
- 1025
- 1026

1027 **Figures and Figure Legends**

Figure 1



1028

1029 **Figure 1. Low level formaldehyde crosslinking has negligible impact on proteome**
1030 **coverage and quantitation.** A) Schematic of the sample processing workflow for

1031 PRIMMUS. B) Impact of heat, hydroxylamine and/or Tris on decrosslinking efficiency of

1032 cells fixed with 2% formaldehyde and 90% methanol as measured by total protein stain

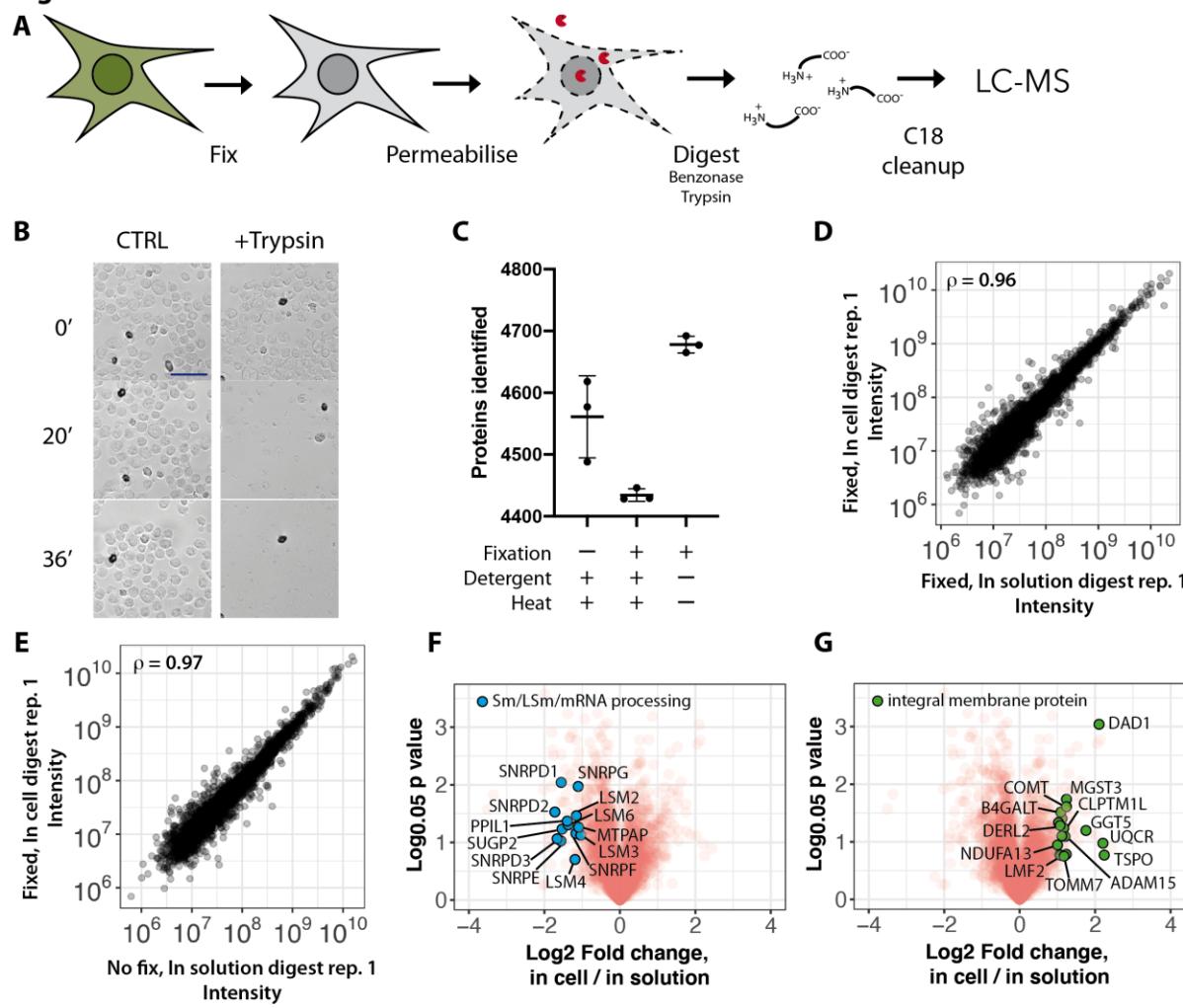
1033 and SDS-PAGE. The red bar indicates bands corresponding to high molecular weight,

1034 crosslinked proteins. C, D) Comparison of peptides (C) and proteins (D) identified from

1035 in-solution and in-cell digests. E) Error-tolerant search for formaldehyde-induced

1036 chemical modifications to peptides using 'Data-dependent mode' in MaxQuant.

Figure 2



1037

1038 **Figure 2. Direct tryptic digestion of fixed and permeabilized cells outperforms**
1039 **protein precipitation and in solution digest of cellular extracts.** A) Schematic of the
1040 in-cell digest workflow. B) Fixed and permeabilized cells treated either with DPBS (left)
1041 or with trypsin (right) were imaged at the indicated times in minutes. Scale bar is 50 μ m.
1042 C) Comparison of the proteome coverage reproducibility between in-solution and in-cell
1043 digests. D, E) Comparison of the intensities measured by in-cell digests and either (D)
1044 in-solution digest of fixed cells, or (E) in-solution digest of cells with no fixative. F, G)
1045 Volcano plots comparing an in-cell versus in solution digest of fixed cells. Two protein
1046 classes enriched amongst proteins reproducibly changing in abundance are RNA
1047 processing proteins (F) and integral membrane proteins (G).

1048

Figure 3

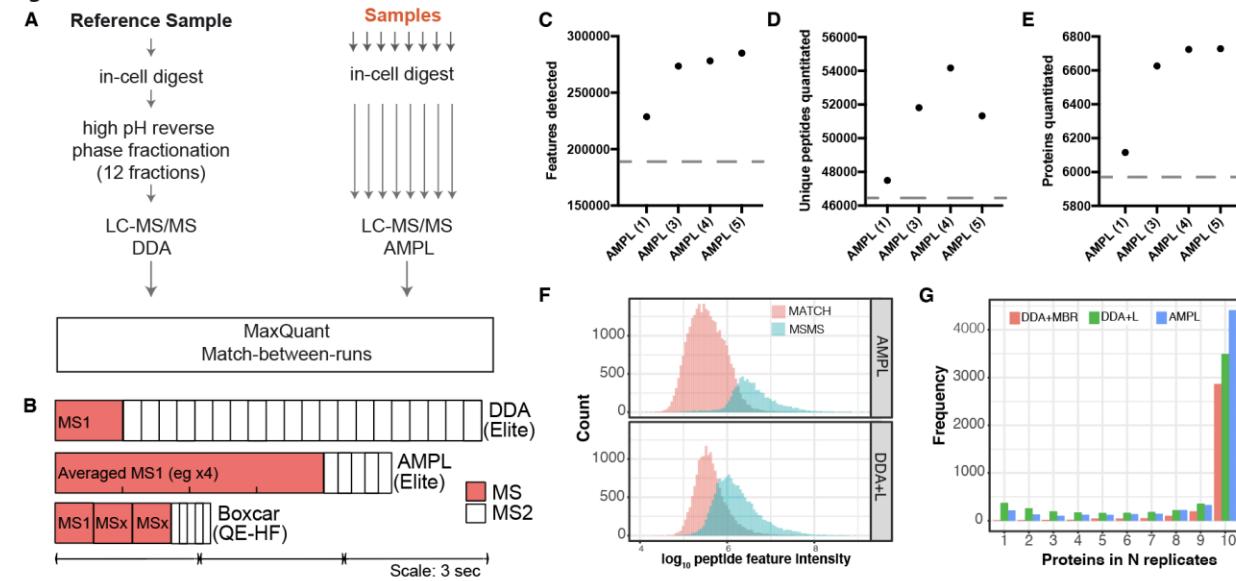


Figure 3. Averaged MS1 precursors with library matching (AMPL) increases

peptide detection sensitivity. A) Schematic outlining the AMPL experimental design. B) Both the AMPL and BoxCar acquisition methods prioritise MS time to enhance MS1 scan quality. Schematic comparing duty cycles for DDA, AMPL and Boxcar acquisition methods on the indicated MS instruments (Orbitrap Elite, Orbitrap HF). C-E) The effect of increasing MS1 averages on the number of features (C), the number of unique peptides (D) and protein groups quantitated (E). Results from DDA acquisition with a library (DDA+L) are shown as dashed line. DDA and AMPL select the top 20 and 5 precursors, respectively, for MS/MS. F) A comparison between AMPL and DDA+L, showing intensity distributions of peptide features identified by MS/MS (blue) and matching to identified library features (red). G) A bar plot indicating the data completeness across 10 replicates either by DDA matching only between replicates, DDA+L and AMPL.

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

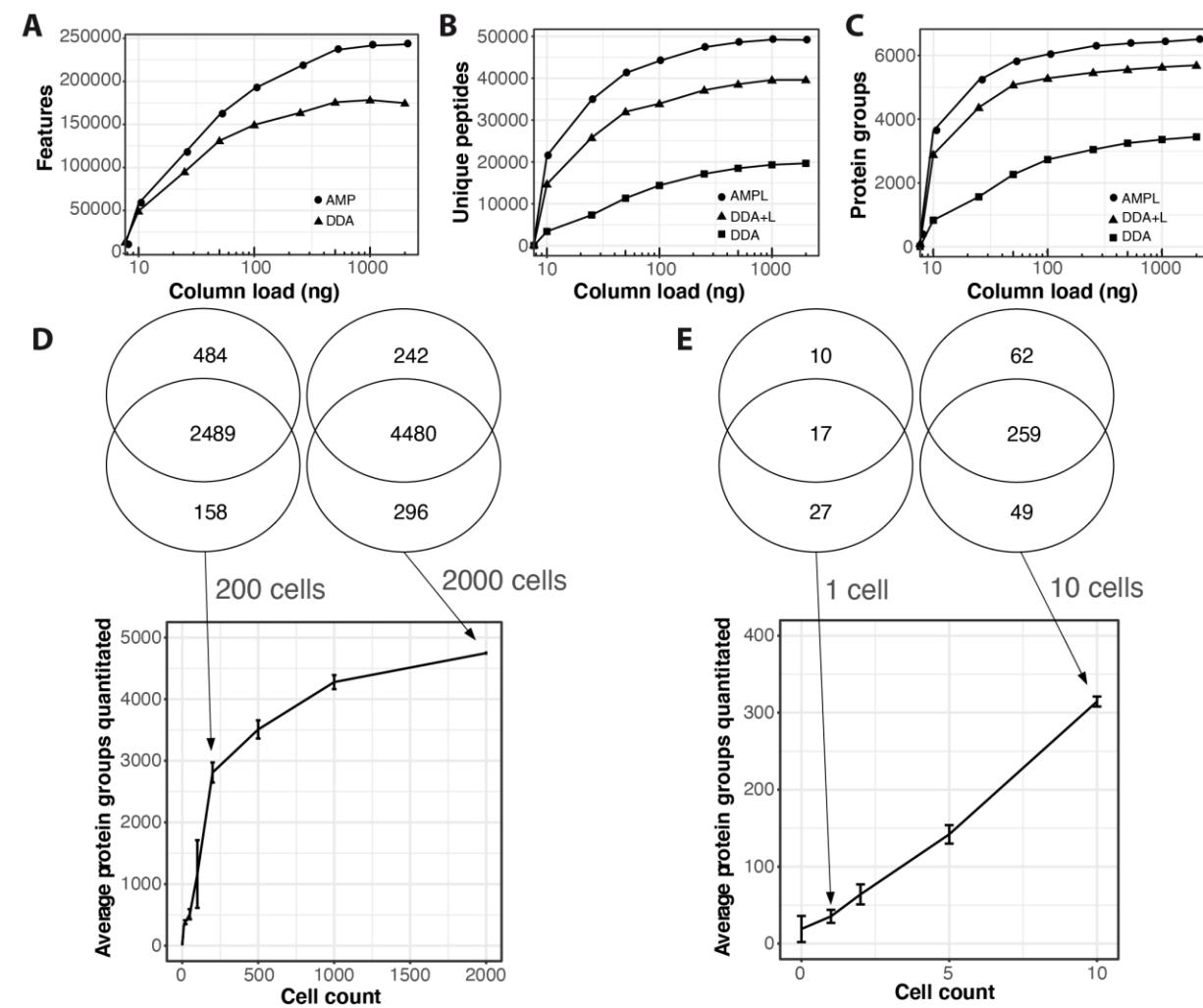
1060

1061

1062

1063

Figure 4

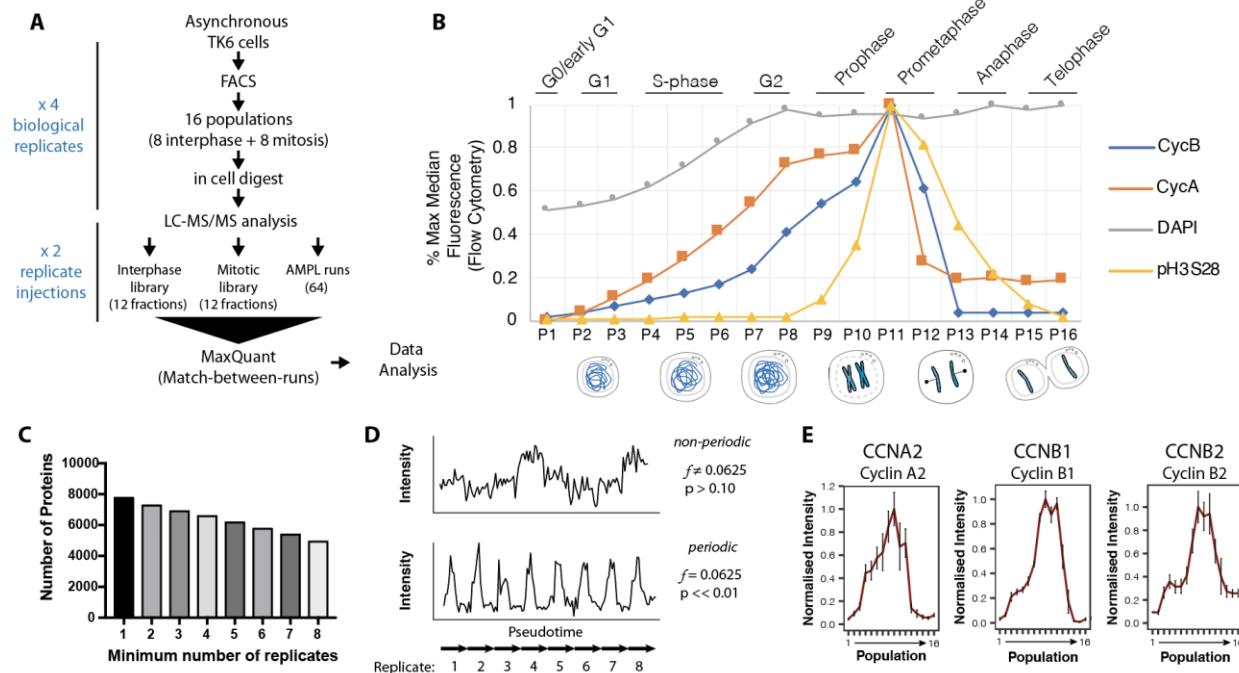


1064
1065

Figure 4. In-cell digest and AMPL enable proteomic analysis with 500-2000 cells.

1066 A-C) The sensitivity of AMPL was tested by measuring the number of features detected
1067 (A), unique peptides quantitated (B) and protein groups quantitated (C) at the indicated
1068 on-column peptide loads, ranging from ~2,000 ng (representing the protein content of ~
1069 12,000 MCF10A cells) to 10 ng (~ 60 cells). D) The combined in-cell digest and AMPL
1070 approach was tested by measuring proteins quantitated at the indicated number of
1071 FACS-isolated TK6 cells. The cell number ranged from 2,000 cells to 1 cell. The cell
1072 isolation was performed in duplicate. Venn diagrams above the plots show the overlap
1073 in proteins between the duplicate analyses. Error bars show the range. E) The same
1074 data as in (D) with the x-axis rescaled to show the low cell number measurements.
1075

Figure 5

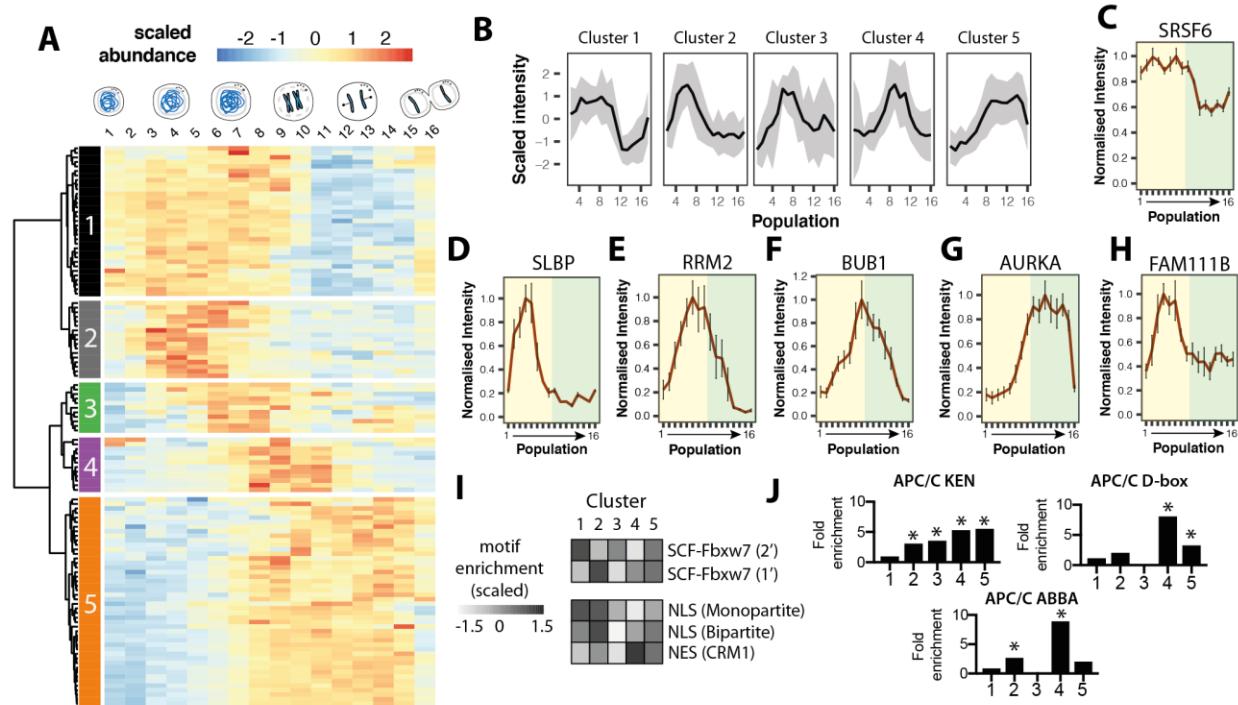


1076

1077 **Figure 5. Identification of proteins regulated in abundance across sixteen cell**
 1078 **cycle cell populations, comprising eight interphase and eight mitotic states. A)**
 1079 Schematic describing the experimental design and workflow. B) The normalized median
 1080 fluorescence signal from DAPI (DNA content) and indirect immunofluorescence of cyclin
 1081 A2, cyclin B1 an H3S28ph. These four markers and DAPI fluorescence width were used
 1082 to identify and collect the 16 cell cycle populations by FACS. Representative cartoons of
 1083 the cell cycle phases of these populations are shown below the graph. C) The number
 1084 of proteins where that protein was detected in at least n number of replicates is shown.
 1085 For 4,918 proteins, eight replicate intensities were measured in one or more cell cycle
 1086 populations. D) Identification of cell cycle regulated proteins by pseudoperiodicity
 1087 analysis. Each pseudotimecourse, representing one set of P1-P16 is arranged in
 1088 sequence and intensities analysed using a Fisher's periodicity test. Example
 1089 pseudotimecourses are shown for a non-periodic (HSP90AB1) and periodic (ATAD2)
 1090 protein, respectively. E) Averaged intensities normalised to maximum are shown for
 1091 cyclin A2, cyclin B1 and cyclin B2 across the sixteen cell cycle states. Error bars show
 1092 s.e.m.

1093

Figure 6



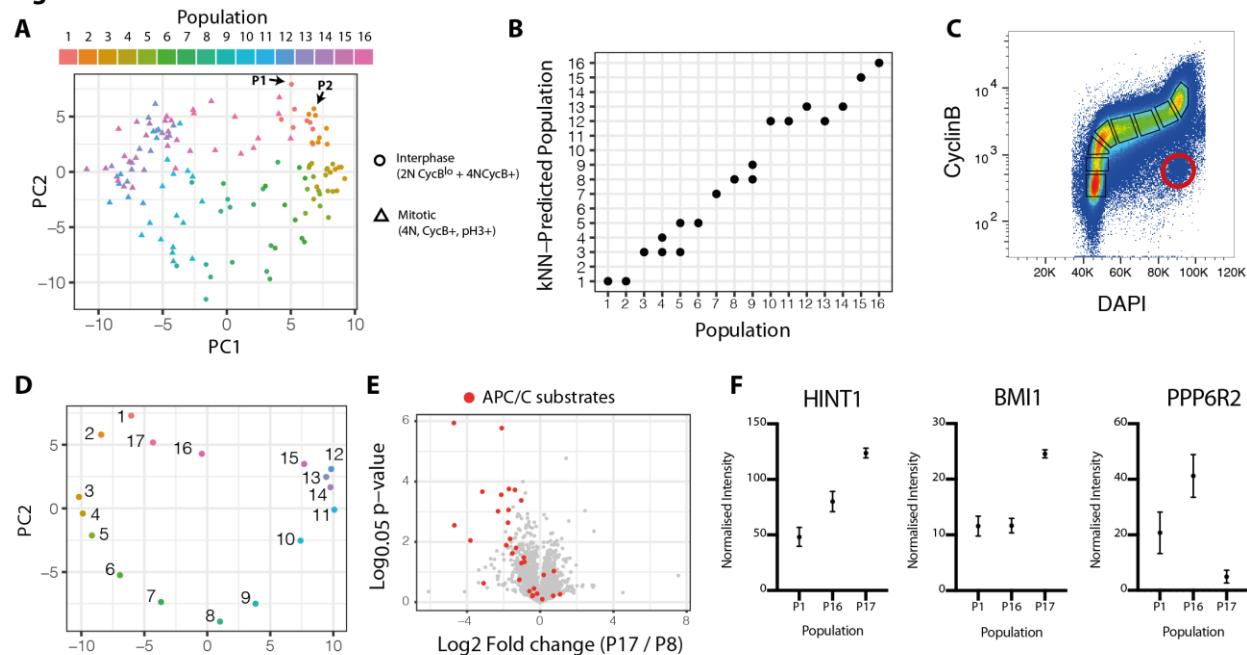
1094

1095 **Figure 6. Hierarchical clustering of cell cycle regulated proteins shows**
 1096 **classification by biological functions and differential degron enrichment. A)** A heatmap of the 119 identified cell cycle regulated proteins organized by cluster. B) Average normalized intensity profiles for the five clusters. C-H) Normalized intensity profiles for example proteins from each cluster (C-G) and a poorly characterized protein, FAM111B (H). I) Enrichment analysis by cluster of SLIMs that mediate interaction with SCF-Fbxw7 (top) and are associated with nuclear import/export (bottom) J) Enrichment analysis by cluster of APC/C degrons. * indicate $p < 0.01$ (Fisher's exact test).

1103

1104

Figure 7



1105

1106 **Figure 7. Unbiased classification of proteomes into cell cycle states.** A) Principal
1107 component analysis of the cell cycle populations using the 119 cell cycle regulated
1108 proteins as features. P1 and P2 are highlighted by arrows. B) A kNN model was used to
1109 predict the cell population from the abundances of the 119 cell cycle regulated proteins.
1110 The performance of the kNN model was assessed using one replicate as the test set.
1111 Predicted versus actual cell populations are shown. C) A pseudocolour plot showing a
1112 population (P17) that contains 4N DNA content and low cyclin B1 staining. D) PCA
1113 analysis, as in (A), but using abundances averaged across the replicates (mean) and
1114 including P17. E) Volcano plot showing that characterized APC/C substrates generally
1115 show lower abundance in P17 relative to 4N DNA content cells with high cyclin B1
1116 staining (P8). F) In addition to low abundance for APC/C substrates, P17 cells also
1117 show high levels of HINT1, BMI1 and low levels of PPP6R2. These proteins have been
1118 shown to be important in the DNA damage response. Error bars show s.e.m.

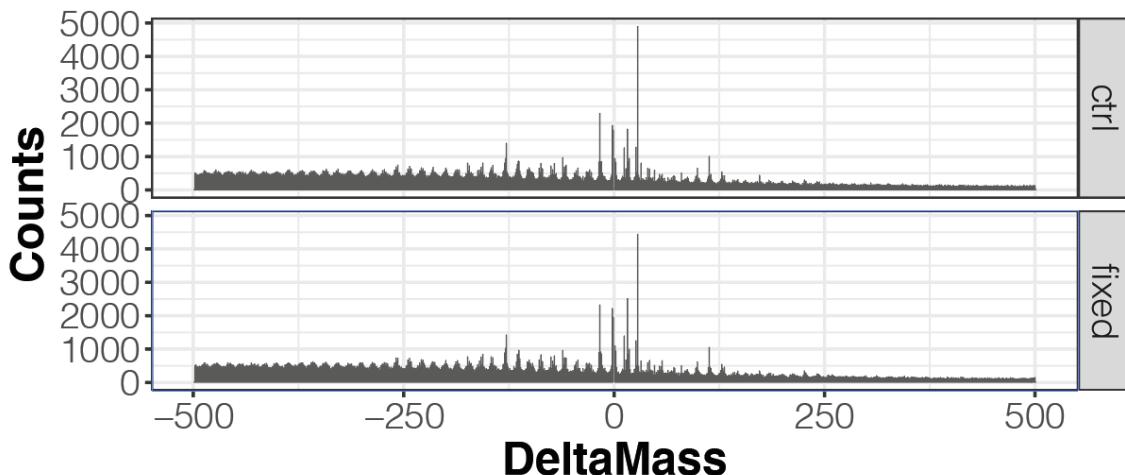
1119

1120 **Supplementary Tables**

1121 Supplementary Table 1. Key resources
1122 Supplementary Table 1. Impact of formaldehyde fixation on protein coverage.
1123 Supplementary Table 2. Matching FDR empirical estimation.
1124 Supplementary Table 3. Summary of cell titration proteome analysis
1125 Supplementary Table 4. Quantitative data and confidence metrics for protein groups
1126 identified in the 16 cell cycle populations
1127 Supplementary Table 5. GO terms and keywords enriched in the group of cell cycle
1128 regulated proteins
1129 Supplementary Table 6. Enrichment of short linear sequence motifs (SLIMs) by protein
1130 cluster
1131
1132

1133 **Supplementary Figures**

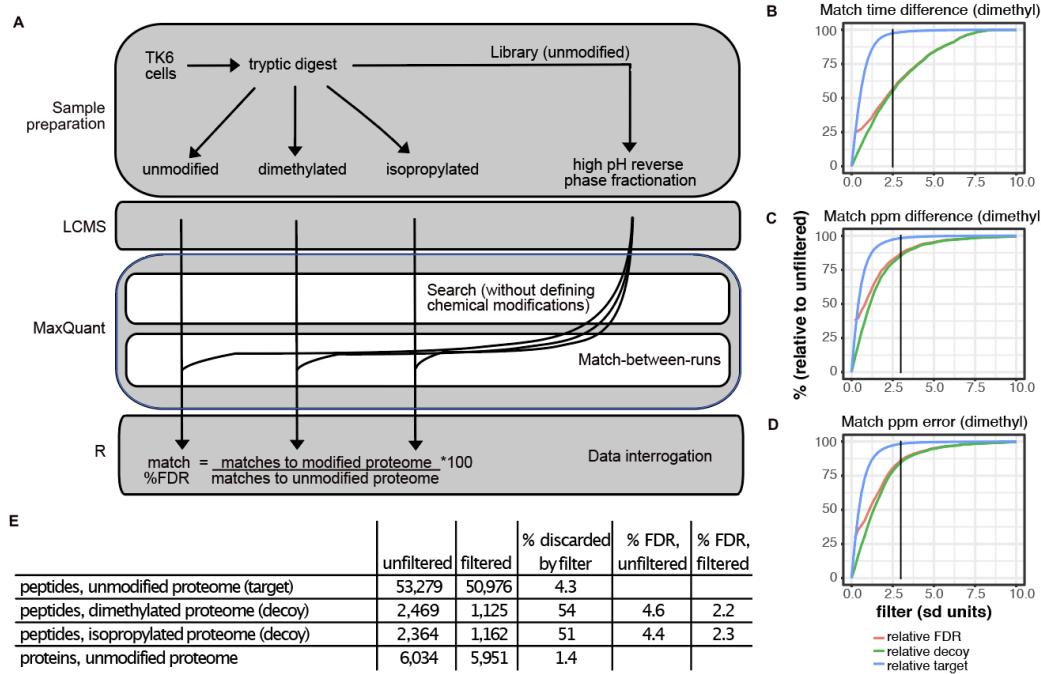
1134



1135

1136 **Supplementary Figure 1. Results from an error-tolerant MS-Fragger search**
1137 **comparing control (cells without fixative) and fixed cells.**

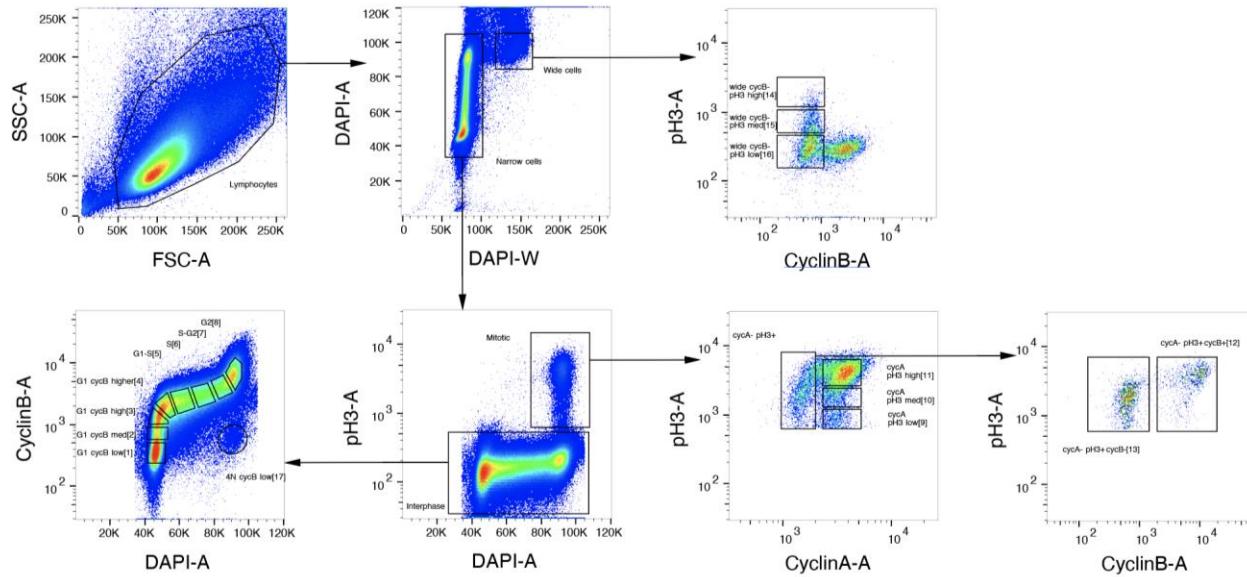
1138



1139

1140 **Supplementary Figure 2. Experimental estimation of match-between-runs FDR**
 1141 **using decoy proteome samples.** A) Schematic outlining experimental workflow for
 1142 assessing match-between-runs FDR. For decoy proteomes, TK6 tryptic digests were
 1143 chemically modified. Unmodified tryptic digests were fractionated for the library. Data
 1144 was analyzed by MaxQuant with match-between-runs. Matching occurred from the
 1145 library to unfractionated samples. Chemical modifications were not added to the
 1146 database search. B-D) The impact of filtering based on match time difference (B), match
 1147 ppm difference (C), match ppm error (D) at varying levels of stringency. Shown are
 1148 relative cumulative frequency distributions of the matched peptide features retained in
 1149 the unmodified proteome (blue), matched peptide features retained in the dimethylated
 1150 proteome (green), and relative change in FDR (red) at the indicated filtering thresholds
 1151 (x-axis). E) The number of unmodified peptide and protein quantitations, including both
 1152 MS/MS and matched peptides, and the number of the match decoy matches, which
 1153 contribute to estimated match FDR, in modified proteomes. Data are shown before and
 1154 after filtering at the final thresholds chosen indicated by vertical lines in B-D. F) The
 1155 analysis in (E) was repeated for a sample acquired by DDA, showing comparable
 1156 estimated match FDRs between DDA and AMPL.

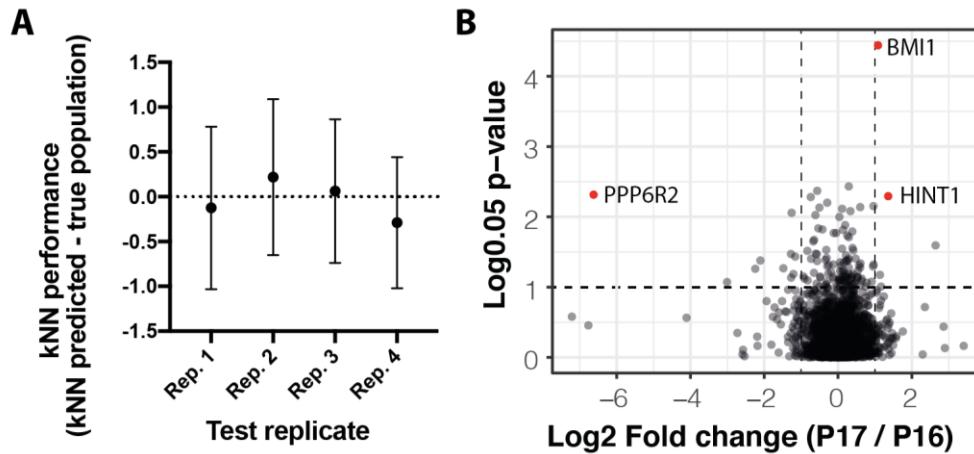
1157



1158

1159 **Supplementary Figure 3. Pseudocolour plots showing the gating strategy to**
1160 **isolate the 16 cell cycle populations by FACS.** The red circle indicates P17.

1161



1162

1163 **Supplementary Figure 4. Cell state classification and proteomic characterization**
1164 **of P17, a G2-like cell with a DNA damage response protein signature.** A) PCA of
1165 averaged normalized abundances from the 119 cell cycle regulated proteins as in Fig.
1166 7D but with data from cyclin A and cyclin B2 removed. B) The performance of the kNN
1167 classification model was evaluated by using three replicates for the training set and one
1168 replicate for the test set. The difference between the predicted and true populations in
1169 integer values was calculated for each test set. Because the overall relationship
1170 between the populations is cyclic, i.e. P1 is the next assumed state after P16, the
1171 difference between P16 and P1 is considered to be 1. The mean and the standard
1172 deviation of this difference is shown for all four possible permutations of test and
1173 training sets. C) Volcano plot comparing P17 and P16. Proteins of interest are
1174 highlighted with red points (BMI1, HINT1, PPP6R2).

1175