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Abstract (175 words max)

Proteomic analysis of rare cell states is a major challenge. We report an advance to our
PRoteomics of Intracellular iIMMUnostained cell Subsets (PRIMMUS) workflow whereby
fixed cells are directly digested by proteases in cellulo for mass spectrometry-based
proteomics. This decreased the cell number requirement by two orders of magnitude to
<2,000 human lymphoblasts. We quantitatively measured the proteomes of 8 interphase
and 8 mitotic states, avoiding synchronization. From 8 replicate pseudo-timecourses,
we identify a core set of 119 cell cycle-regulated proteins that segregated into five
clusters. These clusters varied in mitotic abundance patterns and regulatory short linear
sequence motifs controlling their localisation and interaction with E3 ubiquitin ligases.
We identified protein signatures that allowed accurate cell cycle state classification. We
use this classification to stage an unexpected cell population as similar in proteome to
early GO/G1 and telophase cells. Our data indicate DNA damage responses and
premature APC/C activation in these cells, consistent with a DNA damage-induced
senescent state. The advanced PRIMMUS approach is readily and broadly applicable to

characterise rare and abundant cell states.
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Introduction

The proteome is a functional readout of cellular phenotype, which includes dynamic and
persistent molecular features that reflect cell state and cell type, respectively. Rare cell
phenotypes play key physiological roles. Quiescent stem cells, while often rare relative
to differentiated cell types in a tissue, are essential for tissue homeostasis. Similarly,
mitosis is critical for the accurate propagation of genetic material and a phase during
which cellular commitment to proliferation is made [1][2] . Mitotic states are generally
short-lived and thus rare in an asynchronous population. Proteomic analysis of these
critically important cell phenotypes is a major challenge because typical proteomic
workflows require >10° cells as input.

Recent advances have been made in methods for low cell number proteome
analysis. For example, ~2,700 proteins were identified from 6,250 CD34+ hematopoietic
progenitor cells using optimized in-solution digests combined with data-independent
acquisition (DIA) [3]. ~3,000 proteins were identified from 10 HelLa cells using
‘nanodroplet processing in one pot for trace samples’ (nanoPOTS) [4]. Single cell
proteomic analysis using nanoPOTS with tandem mass tag (TMT) booster channels has
been recently described [5]. NanoPOTS requires microfabricated glass chips, robotics
that can handle picoliter volumes and sample storage in prepacked nano-LC columns.
These requirements are challenging to satisfy in most labs and limit widespread
adoption of the technique.

We previously developed an approach called ‘PRIMMUS’ or ‘Proteomics of
Intracellular Immunostained Subsets” to analyse abundant and rare cell cycle states [6].
Formaldehyde-fixed cells are fractionated into specific cell states by staining cells for
intracellular markers and separating them using Fluorescence-Activated Cell Sorting
(FACS). Cells grown in asynchronous culture are immediately fixed, thereby minimizing
perturbation to physiological processes. This step is critical, as small molecule-based
synchronsation can lead to effects on the proteome that are associated with stress
responses arising from arrest rather than cell cycle regulation per se [7]. The application
of PRIMMUS was limited to abundant subpopulations where >10° cells can be collected
by FACS within a reasonable time [6]. A more sensitive PRIMMUS approach would

enable high resolution mapping of proteomic changes during an unperturbed cell cycle,
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89 including the analysis of mitotic states, where major changes in organellar structures,
90 protein abundances and protein post-translational modifications are highly dynamic on
91 the minute timescale.
92 Here, we report a major advance in the PRIMMUS method that increases
93  sensitivity and enables detailed proteomic analysis of rare cell populations. The new
94  approach makes use of the discovery that formaldehyde-fixed cells are suitable
95 substrates for tryptic digestion without prior crosslinking removal, which greatly
96 simplifies sample preparation. We combined this streamlined workflow with MS1-based
97 library matching and an MS acquisition method that prioritizes quantitative MS1 quality,
98 called AMPL (Averaged MS1 Precursor with Library matching). These improvements
99 together enabled reproducible quantitation of ~4,500 proteins from 2,000 human
100 lymphoblastoid cells with a low data dropout frequency.
101 We applied the advanced PRIMMUS workflow to analyze the proteomes of 16
102  cell cycle subsets, including 8 interphase and 8 mitotic subphases. We identified a core
103 set of 119 cell cycle regulated proteins. Many of these proteins are well-characterized
104  as having key functions in cell cycle regulation. We now provide detailed resolution on
105 their variations in protein abundance across an unperturbed cell cycle. Novel cell cycle
106  regulated proteins include FAM111B, which by sequence similarity to FAM111A, has
107 putative roles in regulating DNA replication. We showed that the cell cycle regulated
108 proteome is predictive of cell cycle state. PCA analysis correctly assigns the expected
109 order of the subsets according to their temporal relationships in the cell cycle. We use
110 this classification system to group an unexpected, rare subpopulation with 4N DNA
111  content as more closely resembling GO/early G1 cells, but with an additional DNA
112 damage response signature. Our data suggest that these cells are G2 cells entering
113  senescence after DNA damage, consistent with previous reports [8]. The enhanced
114  resolution in mitosis allowed us to identify two groups of proteins that are characterized
115 by early versus late decreases in abundance. These two groups likely reflect a switch
116  from early mitotic E3 ligases, including the APC/C-Cdc20 and SCF(Cyclin-F), to late
117  mitotic E3 ligases, including APC/C-Cdh1.
118 Experimental Procedures

119 Reagents and antibodies
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120 A description of reagents, including cell lines and antibodies, can be found in the Key
121  Resources Table (Supplementary Table 1).

122 Cell culture

123 TK6 human lymphoblasts [9] were obtained from the Earnshaw laboratory (University of
124  Edinburgh). Cells were cultured at 37 °C in the presence of 5% CO, as a suspension in
125 RPMI-1640 + GlutaMAX (Thermo Scientific) supplemented with 10% v/v fetal bovine
126  serum (FBS, Thermo Scientific). Cell cultures were maintained at densities no higher
127  than 2 x 10° cells per ml. MCF10A cells (ATCC) were cultured in phenol red-free

128 F12/DMEM media (Thermo Scientific) supplemented with 5% horse serum, 10 pg/ml
129 insulin (Sigma), 100 ng/ml cholera toxin (Sigma), 20 ng/ml EGF (Sigma), 0.5 pg/mi

130 hydrocortisone (Sigma), 100 units/ml penicillin and 100 pg/ml streptomycin (Thermo
131  Scientific) at 37 °C in the presence of 5% CO,. Cells were maintained at less than 100%
132  confluency and were discarded when passage number exceed 20 passages. U20S
133  cells (ATCC) were cultured in DMEM media high glucose + GlutaMAX (Thermo

134  Scientific) supplemented with 10% v/v FBS (Thermo Scientific). Cells were checked for
135 mycoplasma at the point of cryo-storage using a luminescence-based assay (Lonza).
136  Cell fixation and immunostaining

137  Cells were washed with Dulbecco’s phosphate-buffered saline (DPBS, Lonza) and

138 resuspended in freshly prepared 1% formaldehyde solution (w/v) from a 16% stock (w/v,
139  Thermo Scientific) in DPBS, fixed for 10 min at room temperature with gentle rotation,
140 pelleted, washed with DPBS and permeabilized with cold 90% methanol. Cells were
141  stored at -20°C prior to staining.

142 Cells stored in methanol were washed with DPBS and resuspended in blocking
143  buffer, which is composed of 5% bovine serum albumin (BSA) in 0.1 M Tris-buffered
144  saline, pH 7.4 (TBS). Cells were blocked for 10 min at room temperature, pelleted, and
145 resuspended in primary antibody solution (1:200 in blocking buffer). Cells were stained
146  with primary antibody overnight at 4°C. Stained cells were then washed twice with wash
147  buffer (DPBS + 0.5% BSA) and stained with dye-conjugated secondary antibodies

148  (1:200 in blocking buffer) for 1 hour at room temperature. Stained cells were washed
149 twice with DPBS, pelleted, and stained in DAPI solution (20 pg/ml in DPBS + 0.1% BSA)
150 for at least 1 hour prior to FACS.
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151 FACS and gating strategy

152  Cells were collected using a BD FACSAria Fusion Cell Sorter equipped with 355nm UV,
153  405nm Violet, 488nm Blue, 561nm YG and 640nm Red lasers, and controlled by BD
154 FACS Diva V8.0.1 software. Cells were first gated into ‘narrow’ (P1 — P8) and ‘wide’ (P9
155 — P16) populations based on DAPI fluorescence signal width. The narrow population
156  contains single cells either in interphase, or in mitosis up to late anaphase. These single
157 cells were then separated based on cyclin B into 8 different stages of interphase.

158 Population P1 has low to no cyclin B protein and 2N DNA content, consistent with low to
159 no E2F activity and a GO/early G1 cell state. Cyclin B rises monotonically from P2 to P6
160 and then rises more steeply from P6 to P8. Like cyclin B, cyclin A also increases during
161 interphase, but at a faster rate from P1 to P6 as compared to P6 to P8. P9 to P13 are
162  positive for histone H3 phosphorylation at Ser28 (pH3+). Highest levels of pH3+ are

163  present in prometaphase and metaphase. Rising and declining H3 phosphorylation in
164 early and late mitosis, respectively, result in low to medium levels of pH3+. Cyclin A and
165 cyclin B levels are used to further discriminate mitotic subphases, as they are degraded
166  during prometaphase and the metaphase-to-anaphase transition, respectively.

167 Finally, late mitotic subphases are enriched in the wide population, but so too are
168 doublets. We reasoned that most doublets will have cyclin B signal, as single cells with
169 the exception of P1 are cyclin B positive. Thus, we can further enrich late mitotic stages
170 by selecting wide, 4N, cyclin B negative cells (P14-P16). P14-P16 are then

171  discriminated further by pH3+ levels, which decrease during mitotic exit. We note that
172 P16 may contain doublets of GO/early G1 cells (P1), but P14 and P15 should not as

173 P14 and P15 are pH3+ and GO/early G1 cells are negative for pH3.

174 5000 cells for each gated population were collected using 4-way purity using

175 either a 85 or 100 um nozzle, into 1.5 ml Eppendorf Protein Lo-Bind tubes. Four

176  biological replicates were collected. An interphase library sample were collected by

177  combining 300,000 cells of GO/G1, S, and G2 populations. A mitotic library sample was
178 composed of 800,000 mitotic cells gated by high DNA content and high Histone H3

179  Ser28 phosphorylation. Samples were centrifuged and supernatant removed before

180  storing at -20 °C.
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181  In-cell digest

182  Cell sorted library samples, and unstained unsorted TK6 cells, were resuspended in

183 DPBS at 2 - 5 million cells per ml and incubated with 1 ul (25 - 29 U) benzonase

184  (Millipore) at 37 °C for a minimum of 1 hr. Trypsin was added to approximately 1:25 w/w
185 and in-cell digested at 37 °C for ~16 hrs. Digests were acidified with TFA and desalted
186 over Sep-Pak C18 cartridges (Waters) and dried.

187 Individual populations of 5,000 cells were diluted with 40 ul PBS and incubated
188  with 0.25 pl [6 — 7 U] benzonase at 37 °C for a minimum of 1 hr, then digested with 50
189  ng trypsin (~1:10 w/w) at 37 °C for ~16 hrs. Samples were acidified with TFA and

190 desalted over self-made C18 columns with 3 Empore C18 disks [10] and eluted directly
191 into Axygen™ 96-well PCR Microplates (Fisher Scientific) and dried.

192  High pH reverse phase fractionation

193 Approximately 100 pg interphase, mitotic, and unsorted TK6 cell digests were
194 fractionated by high-pH reverse phase chromatography using an Ultimate 3000 HPLC
195 (ThermoFisher Scientific) and a 1 x 100 mm 1.7 um Acquity UPLC BEH C18 column
196 (Waters). Peptides were separated using a constant 10 mM ammonium formate (pH 10)
197 and a gradient of water and 100% acetonitrile. Peptides were loaded at 1% acetonitrile
198 followed by separation by a 48 min multistep gradient of acetonitrile from 3% to 6%,

199 25%, 45% and 80% acetonitrile at 4, 34, 44, 45 minutes, respectively, followed by an 80%
200 wash and re-equilibration. Fractions were collected at 30 sec intervals resulting in 96
201 fractions which were concatenated into 12, and 1 pg aliquots dried.

202 LC-MS/MS

203  Peptide samples were resuspended in 0.1% TFA. Approximately 0.5 pg of library

204  fractions were injected for DDA LCMS analysis. A volume equal to half the cell

205 population (equivalent to ~2,500 cells) was injected and analysed twice by AMPL to

206  produce two technical replicates for each of the four biological replicates. An Ultimate
207 3000 RSLCnano HPLC (Dionex, Thermo Fisher Scientific) was coupled via electrospray
208 ionisation to an Orbitrap Elite Hybrid lon Trap-Orbitrap (Thermo Fisher Scientific).

209 Peptides were loaded directly onto a 75 pm x 50 cm PepMap-C18 EASY-Spray LC

210  Column (Thermo Fisher Scientific) and eluted at 250 nl/min using 0.1% formic acid

211  (Solvent A) and 80% acetonitrile/0.1% formic acid (Solvent B). Samples were eluted


https://doi.org/10.1101/2020.07.03.186023
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.03.186023; this version posted July 3, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

212 over 90 min stepped linear gradient from 1% to 30% B over 72 min, then to 45% B over
213 18 min. AMPL analyses included up to 5 MS1 microscans of 1E6 ions in the Orbitrap at
214 120k resolution and with a 250 ms maximum injection time. MS1 scans were acquired
215 over 350-1700 m/z and a ‘lock mass’ of 445.120025 m/z was used. This was followed
216 by 5 data-dependent MS2 CID events (5E3 target ion accumulation) in the ion trap at
217  rapid resolution with a 2 Da isolation width, a normalised collision energy of 35, 50 ms
218  maximum fill time, a requirement of a 10k precursor intensity, and a charge of 2+ or
219  more. Precursors within 5 ppm were dynamically excluded for 40 sec. DDA analyses
220 were as for AMPL but with a single MS1 microscan with a 75 ms maximum injection
221  time, followed by 20 CID events in the ion trap.

222 Libraries were acquired as for DDA analyses or acquired with 10 data-dependent
223 MS2 HCD events at 30 NCE of 5E4 ions in the Orbitrap at 15k resolution and a

224  maximum fill time of 100 ms, with a precursor intensity required to be at least 50k. For
225 the sample preparation comparisons shown in Fig. 2, a 240 min gradient was used (1%
226  to 30% B for 210 min, then to 42% B over 30 min). MS data was acquired as for DDA
227 analysis described above with the exception that MS1 spectra were acquired at 60k
228 resolution and MS2 events were acquired only on 2+ and 3+ precursors.

229 MS/MS data analysis

230 Data was processed using MaxQuant version 1.6.2.6 [11]. LC-MS/MS data was

231 searched against the "Human Ref Proteome _ALL_2017-10-23.fasta" database allowing
232 for variable methionine oxidation and protein N-terminal acetylation. Carbamidomethyl
233  cysteine modification was allowed only for samples that were alkylated by

234  iodoacetemide. A target-decoy threshold of 1% was set for both PSM and protein false
235 discovery rate. Match-between-runs was enabled with identification transfer within 0.5
236 mins and a retention time alignment within 20 min window. Matching was permitted from
237  the library parameter group, and ‘from and to' the unfractionated parameter group.

238 "Require MS/MS for LFQ comparisons” was deselected, and second peptide search
239 was enabled. Both modified and unmodified unique and razor peptides were used for
240 quantification. ‘Evidence’ and ‘proteinGroups’ output files were used for subsequent
241  analysisin R.

242  Match-between-runs FDR filtering
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243  Areference sample was generated by lysing TK6 cells in DPBS with 2% SDS and

244  cOMPLETE protease inhibitors without EDTA (Roche, 1x concentration) at 70 °C,

245 homogenised with a probe sonicator and treated with benzonase. Protein was reduced
246 with 20 mM TCEP for 2 hr before alkylation with 20 mM iodoacetamide at ambient

247  temperature in the dark for 1 hr. Protein was precipitated with 4 volumes cold acetone at
248  -20 °C overnight, washed with 100% cold acetone and 90% cold ethanol. Protein pellet
249 was air dried before resuspending in DPBS and digesting with 1:50 w/w trypsin for

250 ~16hrs. Peptides were acidified, desalted, aliquoted, and fractionated as previously

251 described. For isopropylation, 50 pg peptides were resuspended in 200 pl 90%

252  acetonitrile containing 0.1% formic acid before addition of 50 pl acetone containing 36
253  ug/ul NaBH3CN. The reaction was conducted at ambient temperature for ~16 hrs before
254  quenching with ammonium bicarbonate, drying off solvent and desalting peptides over
255 C18. For dimethylation, 50 pg peptide was resuspended in 200 yul DPBS before addition
256  of 0.32% formaldehyde and 50 mM NaBH3CN. The reaction was conducted at ambient
257 temperature for ~16 hrs before quenching with ammonium bicarbonate and desalting
258 peptides over C18. 200 ng of unmodified, dimethylated, and isopropylated peptides

259 were analysed by AMPL and DDA, and unmodified fractionated peptide samples were
260 analysis by DDA, as previously described. LCMS data were searched using MaxQuant,
261 as previously described. Note that dimethylation and isopropylation modifications were
262  not specified in in the search parameters.

263 Cell cycle proteomic data analysis

264 All subsequent data analysis on the protein intensity table, including the analysis
265  of pseudoperiodicity, was performed using R (v. 3.5.0) within the RStudio integrated
266 development environment. The R script will be made available on http://dynamic-

267  proteomes.squarespace.com. The list of validated APC/C substrates was obtained from
268 the APC/C degron repository (http://slim.icr.ac.uk/apc/). Proteins that contain D box,

269 KEN and ABBA SLIMs in the human proteome were found using SLiMsearch with

270 default settings (Disorder score cut-off: 0.30, Flank length: 5). In order to remove slight
271  variations in total protein amount in each sample, protein intensities were divided by
272  total intensities per sample and multiplied by 10° to obtain intensities in parts per million

273 (ppm). There are four biological replicates analysed in technical duplicate. As described
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274  above, sample analysis was completely randomized in the second technical repeat.

275 Each technical repeat (i.e. set of four biological replicates) are considered as one

276  ‘pseudotimecourse’ with samples in each biological replicate arranged in order from P1
277  to P16. Each of the two pseudotimecourse was then independently subjected to a

278  Fisher’s test for periodicity, as implemented in the ptest R library (v. 1.0-8). Fisher’s

279  periodicity test p-values were corrected for multiple hypothesis testing using the g value
280 method as implemented in the gvalue R library (2.15.0). Those proteins that showed g
281 values <0.10 in both sets of biological replicates and oscillation frequencies of either
282  0.0625 (1/16) or 0.125 (1/8) were classified as pseudoperiodic.

283 For clustering, protein ppm values were averaged (mean) to produce a single
284  pseudotimecourse for each protein. These average abundance profiles were scaled

285 using the base R function scale and subjected to hierarchal clustering using the Ward
286  minimum variance algorithm. The appropriate range for cluster number was identified as
287 3 - 6 clusters using the ‘elbow method’, which involves plotting within-cluster sum of

288  squares versus number of clusters. Bifurcating leaves of the subsequent dendrogram
289  were swapped in order to produce a heatmap that follows a logical, sequential order of
290 peak abundance, i.e. cluster 1 with highest abundance in PO-P8 and cluster 5 with peak
291 abundance in P3-P7, etc.

292 For PCA and cell cycle state classification, scaled pseudotimecourses were used.
293  Cell cycle states were classified using the k-NN model as implemented in the class R
294  library (v. 7.3-15) using k = 6, with k being the number of nearest neighbours for

295 classification. Three biological replicates were used as the training set and the

296 remaining replicate was used as a test set.

297 For the pairwise comparison of the proteomes of P17 with P1 and P16, t-tests
298 were performed on ppm intensities. Uncorrected p-values were plotted against mean
299 fold change in order to identify candidate proteins that were specifically changed in

300 abundance in P17.

301 Results

302 Impact of formaldehyde crosslinking on whole proteome analysis

303 Heat treatment at 95 °C is sufficient to reverse most formaldehyde crosslinks, as shown

304 previously [9]. However, a pool of crosslinked, multimeric species remained in a protein-

10
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305 dependent manner. Therefore, we aimed to optimize the PRIMMUS approach by first
306 focusing on improving the decrosslinking efficiency (Fig. 1A).

307 Previous reports have suggested that the reversal step is accelerated by co-
308 treatment with a nucleophilic quenching agent [12]. We tested addition of Tris and

309 hydroxylamine on crosslink removal (Fig. 1B). Banding patterns of extracts from fixed
310 cells heat treated for 15 and 45 mins (lanes 4 & 5) were similar to cells heated at the
311 same temperatures in the presence of either 0.5 M Tris (lanes 6 & 7), or 1.25%

312  hydroxylamine (lanes 8 & 9). Addition of both Tris and hydroxylamine led to a significant
313  reduction in high MW crosslinked species with 15 min heat treatment (lane 10). A 45
314  min incubation led to a diffuse banding pattern (lane 11), indicative of protein

315 degradation as previously reported for hydroxylamine [13]. Indeed, although not as
316  obvious as with 0.5M Tris and hydroxylamine combined (lane 11), several bands were
317 less sharp or absent for the 45 min incubation with 1.25% hydroxylamine (lane 9) as
318 compared with a shorter 15 min incubation (lane 8). We conclude that the combination
319 of Tris and hydroxylamine treatment shows decreased crosslinked proteins relative to
320 control, or to either treatment alone.

321 These samples were then subjected to MS-based proteome characterization.
322 The extracts from all 11 samples shown in Fig. 1B were trypsin digested, C18 cleaned
323 and analysed by single-shot LC-MS/MS (Orbitrap Elite). Formaldehyde treatment

324  produces chemically modified and methylene-bridged peptides [14], which are not

325 identified with typical MS database search parameters. We were thus surprised to

326 observe no significant differences observed in protein and peptide coverage between
327 fixed and fixed+decrosslinked samples (Supplementary Table 2). We then hypothesized
328 that formaldehyde-induced modifications were present in exceptionally low

329 stoichiometry and therefore any differences between the samples were masked by the
330 relatively low peptide coverage in the single-shot analyses. We therefore chose three
331 samples for HPLC pre-fractionation and deeper proteome analysis: control protein

332  extract from non-fixed cells, protein extract from fixed cells, and fixed and heat-treated
333  protein extract from fixed cells (95 °C for 45 min). For reference, these samples

334 correspond to lanes 1, 2, and 5, respectively, in Fig. 1B. Fig. 1C shows that the

335 numbers of peptides identified are similar among all three samples; in total, 73,885,

11
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336 72,785, and 72,779 peptides for control, decrosslinked and fixed samples, respectively.
337 The numbers of proteins detected are similarly comparable (Fig. 1D), indicating that

338 formaldehyde fixation has no measurable impact on proteome coverage.

339 We next used error-tolerant MS searches (MSFragger [15] and Data-dependent
340 search in MaxQuant) to seek for peptides chemically modified by formaldehyde.

341 Previous reports on short peptides have shown that formaldehyde produces +30 and
342 +12 mass shifts, corresponding to methyloyl and imine modifications, respectively. We
343  saw no appreciable increase in these mass shifts, which is consistent with the instability
344  of these modifications in acid. Indeed, the pattern and frequency of detected mass shifts
345 are remarkably similar between control and fixed samples (results for MaxQuant are
346 shown in Fig. 1E; MSFragger results are shown in Supplementary Figure 1).

347 From these observations, we concluded that under our reaction conditions, the
348  stoichiometry of crosslinking and chemical modification by formaldehyde is sufficiently
349 low such that the non-detection of modified and crosslinked peptides is not detrimental
350 for characterization of proteomes to a depth of at least 8,000 proteins.

351  The ‘in-cell digest’: direct protease digestion of fixed cells

352  Our observation of little to no significant impact of formaldehyde crosslinking on the MS-
353 based proteomic analysis of fixed cell extracts led us to test whether fixed cells

354 themselves would make suitable substrates for direct protease digestion. Digestion of
355 fixed cells would significantly simplify the sample processing workflow by making

356 several steps, including detergent homogenization and heat treatment, unnecessary.
357  We therefore treated fixed, permeabilized cells suspended in DPBS with either mock
358 treatment (DPBS), or trypsin, and monitored cell morphology by brightfield microscopy.
359 As shown in Fig. 2B, prominent structural features visible in control cells, such as

360 plasma membranes, nuclei and nucleoli, are degraded in a time-dependent manner with
361 trypsin treatment (see Supplementary Video 1). For LC-MS/MS analysis, fixed cells

362  were also pre-incubated with benzonase to digest RNA and DNA oligonucleotides,

363  which may interfere with downstream sample processing. The peptide-containing

364  supernatant from the digest was then subjected to C18 purification prior to analysis by
365 LC-MS/MS. As the digestion occurs within the fixed cells, we have called this approach

366 an ‘in-cell digest’. As shown in Fig. 2C, the proteome coverages are similar for fixed
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367 cells processed by the in-cell digest method (~4,678 proteins, n = 3), fixed samples that
368 were subjected to the previously published PRIMMUS protocol (~4,446 proteins, n = 3)
369 and extracts from non-fixed cells processed by precipitation (see Methods, ~4,561

370 proteins, n = 3). We conclude that the proteome coverage from the in-cell digest is

371  similar, or higher, than the other protocols tested.

372 We did not observe a broad bias in quantitation, as label free intensities

373 measured in fixed cells prepared by the in-cell digest and by decrosslinking followed by
374 an in-solution digest showed high correlation (Fig. 2D, p = 0.96). Similarly, a high

375 correlation was observed between fixed cells prepared by the in-cell digest and non-
376 fixed cells (Fig. 2E, p = 0.97). However, some points lie off-diagonal (Figs. 2D and 2E),
377  suggesting that a small proportion of proteins show a difference in intensity between
378 methods. We next asked whether the sample preparation method systematically

379 affected the abundance of specific proteins, and if so, whether these proteins reflect
380 particular protein classes. Volcano plots comparing in-cell versus in solution methods of
381 preparing fixed cells are shown in Figs. 2F and 2G, which highlight proteins with

382 reproducibly decreased and increased abundance, respectively. Interestingly, RNA-
383  binding proteins, such as proteins involved in mRNA processing, are enriched amongst
384 proteins showing decreased abundance with the in-cell digest. In contrast, membrane-
385 associated proteins are enriched amongst proteins showing increased abundance.

386 We conclude that the measurements of protein abundance from the in-cell digest
387 are quantitative, reproducible and broadly comparable to conventional sample

388 preparation methods. We note that each sample preparation method will have its own
389  specific biases. In the case of the in-cell digest, the increased abundance of membrane
390 proteins may more accurately reflect the abundance of these proteins in cells, as will be
391 detailed in the Discussion section.

392 Averaged MS1 Precursors with Library matching (AMPL) improves feature detection
393 To increase the sensitivity and detection speed of the Orbitrap Elite MS instrument

394 (release date in 2011), we utilised MS1-based identification and quantitation using

395 accurate mass and retention time matching, as proposed originally by the Smith lab [16].
396 This approach has been recently demonstrated to be highly sensitive in an

397 implementation called BoxCar [17]. The BoxCar method increases the dynamic range of

13


https://doi.org/10.1101/2020.07.03.186023
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.03.186023; this version posted July 3, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

398 trap-based MS by collecting ions using segmented, spaced windows. Peptide

399 identification relies on MS1 feature matching to a reference library generated from a
400 fractionated reference sample using the MaxQuant function ‘Match-between-runs’

401 (MBR). The library is analysed separately using data-dependent acquisition (DDA) and
402  peptides are identified by MS2 and database searches. Using BoxCar enabled

403 quantitation of ~7,775 on average in single shot analyses of 1 ug HelLa digest on

404  column using the Orbitrap HF.

405 As the BoxCar method cannot be directly implemented on the Orbitrap Elite, we
406 developed a different approach to increase the dynamic range of MS1 feature detection.
407 MSL1 spectral averaging is frequently performed in direct infusion MS, but rarely

408 employed in LC-MS bottom-up proteomics. We surmised that averaging several MS1
409 scans would improve signal-to-noise (S/N) and would rapidly plateau as it is known that
410 averaging improves S/N by a factor of sqrt(n) where n is the number of spectra

411 averaged. Features would then be matched between the single shot analyses to a

412 fractionated reference library (Fig. 3A). We call this method Averaged MS1 Precursors
413  with Library matching (AMPL), or AMP if no library is used. As shown schematically in
414  Fig. 3B, like BoxCar, AMP(L) prioritises MS1 scans over MS2 scans as compared with
415 DDA and includes top-5 DDA MS/MS scans to ensure identification of features for

416  accurate retention time alignment throughout the chromatographic separation.

417 We therefore tested AMPL by analysing high on-column loads of tryptic digests
418 of MCF10A (1 ug peptide). Fig. 3C shows the number of chromatographic features

419 (‘peaks’) detected using DDA (triangle) versus AMP with variable number of MS1 scans
420 to average (circles). AMP with 1 MS1 scan already increases the number of features
421 detected (228,724) versus DDA (188,928), with further gains up to 5 averages

422  (285,049). We then generated a 12-fraction reference library using high pH reverse

423  phase fractionation for MBR. Fig. 3D and E shows a comparison of AMPL and DDA on
424  peptide and protein quantitation, respectively. Increasing the frequency of MS1 scans
425  with no averaging (i.e. AMPL with 1 MS1) performs similarly to DDA with matching to a
426 library (DDA-L) (Fig. 3D, 47,496 vs 46,455 peptides quantitated, respectively). As

427  shown in Fig. 3D, Increasing the number of MS1 scans averaged to 3 and 4 increases

428 the number of peptides quantitated to 51,812 and 54,169 peptides, respectively,
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429 corresponding to ~17% increase in peptides relative to DDA. AMPL with 4 averages
430 also increases proteins quantitated by ~12.5% (Fig. 3E, 5,970 DDA versus 6,724

431 AMPL).

432 We reasoned that the additional peptides detected by AMPL originate from low-
433  abundance features detected by virtue of the S/N increase due to averaging. Fig. 3F
434  compares the peptide intensity distributions between DDA-L and AMPL. The

435  distributions are bimodal, with MS/MS-dependent identification biased towards higher
436  intensity features (cyan). Consistent with the idea that AMPL improves S/N, AMPL

437  detects a higher number of matched features (pink) in the low abundance regime.

438 MS1-based matching approaches have been previously shown to improve

439  dataset completeness by reducing missing values. Ten technical replicates were

440 analysed by DDA, DDA-L and AMPL. Fig. 3G shows a histogram of proteins binned by
441  the number of replicates where an intensity was measured. AMPL shows the highest
442  data completeness (4,500 proteins with intensities measured in all 10 replicates) as
443  compared with DDA-L (3,500 proteins) and DDA (2,900 proteins). Compared to DDA-L,
444  AMPL consistently quantitates more proteins (Supplementary Figure 2) and shows
445  slightly improved reproducibility as indicated by higher pairwise Pearson’s correlation
446  scores (Supplementary Figure 2).

447 The improvements in detecting low abundance features suggested that AMPL
448  may be well suited to analysis of low sample loads. AMP (i.e. no library) consistently
449  detects more features than DDA (Fig. 4A), which leads to significant improvements in
450 the peptide and protein coverage (Figs. 4B and C, respectively). For example, at 10 ng
451 loading, 21,483 unique peptides are quantitated by AMPL versus 14,702 by DDA-L,
452  representing a 46% increase in coverage. AMPL provides 150-535% improvement
453  relative to conventional DDA with no library and 24-46% improvement relative to DDA-L
454  for protein coverage at all tested column loads with greatest gains observed at low

455  column load. At 10 ng, 832 proteins are detected by DDA versus 2,891 proteins by
456 DDA-L and 3,629 proteins by AMPL.

457 MS1-based matching significantly increases the sensitivity, coverage and data
458 completeness of MS-based proteomics, as previously reported and shown here [18].

459  However, the lack of MS2-based identification for these matched sequences could lead
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460 to an increased false discovery rate (FDR). We estimated that the matching FDR is ~4.5%
461 using an empirical target-decoy approach where decoy proteomes created by chemical
462 modification (demethylation and isopropylation) are matched against an unmodified

463 library (Supplementary Figure 2A). By applying more stringent thresholds for match time,
464  match m/z and match m/z error (Supplementary Figure 2B-D), we reduced the

465 estimated FDR to 2.2% while retaining 96% of the matches in the target dataset

466  (Supplementary Figure 2E and Supplementary Table 3).

467 We conclude the library matching approach dramatically increases sensitivity,

468  particularly for low column loads, with AMPL providing the highest peptide and protein
469  coverages overall with relatively low estimated match FDR (<3%).

470  Animproved PRIMMUS for proteomic analysis of low cell number populations

471  As shown in Fig. 4C, AMPL detects a slightly higher number of proteins in 10 ng on-

472  column load as DDA with 1 pg load, demonstrating a 100x increase in sensitivity. A 10
473  ng on-column load is equivalent to the protein content of ~67 cells based on the protein
474  per cell measured in bulk assays. However, the effective number of cells required for
475 proteome analysis is usually much higher. This is due to losses during sample

476  preparation. We reasoned that these losses are significantly reduced using the

477  streamlined in-cell digest.

478 We combined in-cell digest with AMPL to analyse FACS collected TK6 cells, a
479  human lymphoblastoid cell line with a stable near-diploid karyotype. Notably, TK6 cells
480 are smaller than typical adherent human cell lines, such as HeLa and MCF10A. Being
481 cultured in suspension, TK6 cells are amenable towards cell separation techniques,

482 including fluorescence-activated cell sorting (FACS) and centrifugal elutriation, without
483  requiring cell dissociation, which can induce physiological perturbations.

484 Fig. 4D shows the result of a cell titration analysis of S-phase cells performed in
485 duplicate whereby two aliquots at each indicated cell number (2,000 cells to 0 cells)

486  were collected by FACS from the same starting cell population (Supplementary Table 4).
487  Over 4,500 proteins were quantitated with 2,000 cells, with 4,480 proteins reproducibly
488 quantitated in two technical repeats. At the lower end of the cell titration (shown in Fig.
489  4E), over 300 proteins on average were quantitated from 10 cells with 259 reproducibly

490 quantitated in two cell aliquots that were separately collected by FACS. While approx.
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491 30 proteins were detected in single cells, with 17 reproducibly detected, nearly all of

492 these proteins were also detected in the background samples (‘0 cells’).

493 We conclude that combining in-cell digest and AMPL enables characterization of
494  proteomes of 2,000 cells to a protein depth comparable to conventional single shot DDA
495  analysis of 1 pg on-column loads. The advanced PRIMMUS method presented here
496  significantly reduces the number of cells required, i.e. ~10° versus ~10°.

497  High temporal resolution analysis of an unperturbed cell cycle using PRIMMUS

498  Scheduled degradation during mitosis is a key regulatory mechanism to control mitotic
499  progression. Here, we characterised the proteome variation across 16 cell cycle

500 subpopulations, including 8 interphase and 8 mitotic phases, using the advanced

501 PRIMMUS workflow that combines the in-cell digest and AMPL (Fig. 5A). TK6 cells

502 were immunostained for DNA content, cyclin B, cyclin A and histone H3 phosphorylation
503 (Ser28), which are all markers of cell cycle progression, and separated into cell cycle
504 populations (P1 — P16). Fig. 5B summarises the populations collected by FACS with
505 respect to the markers used (Supplementary Figure 3 shows the full gating strategy).
506 The marker combinations were chosen to produce a pseudo-timecourse. Biochemical
507 differences are used as a surrogate for time and cell cycle progression. Based on past
508 literature [18][19] and our previous data [5], we have correlated these biochemical

509 changes with specific cell cycle states (as illustrated in Fig. 5B, bottom). While a full

510 description of the gating strategy can be found in the Experimental Procedures, as an
511 example, cyclin A and cyclin B levels are used to discriminate mitotic subphases, as

512 they are degraded during prometaphase and the metaphase-to-anaphase transition,
513  respectively.

514 The rarest target cells, in late anaphase of mitosis, are 0.01% of a typical

515 asynchronous TK6 culture. Proteome characterisation of these cells, previously

516 challenging due to lack of sensitivity, is now possible with the latest developments to
517 PRIMMUS. Four separate cultures of TK6 cells were independently FACS separated
518 into 16 populations. For each population, 5,000 cells were collected and processed

519 using the in-cell digest. Collection of 5,000 cells provided sufficient material for duplicate
520 injections for LC-MS/MS analysis by AMPL with DDA feature libraries generated from
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521 interphase, mitotic and asynchronous cells. The data were then processed by

522 MaxQuant with MBR and filtered by match parameters as discussed above.

523 Of the 7,757 proteins quantitated overall (Supplementary Table 5), 4,918 proteins
524  were quantitated in all 8 replicates (4 biological x 2 technical repeats) in at least one

525 population (Fig. 5C). Next, to identify cell cycle regulated proteins, we treated each set
526  of 16 populations as an ordered series of related biochemical states. We have called
527 each set a pseudotimecourse. While these states can be projected onto a temporal axis
528 (i.e. cell cycle progression), the link with time is indirect as the duration of each phase
529 has been shown to vary substantially on a per-cell basis. We then performed a Fisher’'s
530 periodicity test to identify proteins abundance patterns that showed periodic behavior. In
531 order to increase robustness, the periodicity test was separately performed on each

532 technical repeat. Only those proteins showing a p-value <= 0.10 and a periodic

533  frequency of 0.0625 or 0.125 (i.e. one cycle every 8 or 16 pseudo-timepoints) in both
534 tests were considered further as periodic. Fig. 5D shows the abundance profiles for heat
535 shock protein HSP90AAL and ATPase AAA domain-containing protein ATAD2 as

536 example non-periodic and periodic proteins, respectively. ATAD2 shows highly

537 reproducible abundance variation in all 8 pseudotimecourses, with peak abundance in
538 S-phase populations (P5-P6). We note proteins meeting the significance cutoffs are

539 highly enriched in cell cycle GO terms (Supplementary Table 6) and contain many

540 proteins previously reported as cell cycle regulated [5][20][21][22][23], suggesting that
541 the cutoff criteria achieved a final set of proteins with high functional specificity.

542 Amongst these 119 proteins are cyclins A2 and B1. The MS-measured

543  abundance patterns (Fig. 5E) show similarity with those measured by immunostaining
544  (Fig. 6B) with accumulation in interphase and decreased abundance in mitosis. We also
545 detect cyclin B2, an isoform of cyclin B that is localized to the Golgi apparatus. Cyclins
546 B2 and B1 show a nearly identical abundance pattern in interphase. However, at

547 anaphase and late mitosis (P13 — P16), cyclin B2 abundance does not decrease to

548 background levels, which suggests that unlike cyclin B1, there is a pool of cyclin B2 that
549 s stable towards degradation (Fig. 5E, right).

550 Hierarchal clustering of the 119 proteins (Fig. 6A) identified five major classes of

551 protein abundance patterns (Fig. 6B). Cluster 1 proteins show high abundance in
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552 interphase, which decreases in early mitosis (P8-P10) and recovers slightly in late

553  mitotic populations (P15-P16), as illustrated by the example protein hepatoma-derived
554  growth factor, SRSF6 (Fig. 6C). Like SRSF6, most proteins in this cluster are either

555 RNA- or DNA-binding (26 / 33). For example, several mRNA splicing factors are in this
556  group, including serine/arginine-rich proteins (SRRM2, SRSF2, SRSF3, SRSF5,

557 SRSF6). These proteins decrease in abundance in mitosis with a small fold change (< 2)
558 compared with, for example, cyclin B1 (Fig. 5E). The remaining proteins with no known
559  or anticipated oligonucleotide-binding properties are enriched in cytoskeleton-binding
560 factors, e.g. the actin-binding proteins MARCKS and ZYX.

561 Cluster 2 contained proteins that had peak abundances in late G1/S populations.
562 Included in this cluster is the protein SLBP, a histone gene expression factor that peaks
563 in P4-P5 (Fig. 6D). Indeed, nearly all proteins in this cluster are directly involved in DNA
564  replication or associated with the DNA damage response, including members of the
565 MCM helicase (MCM2, MCM5, MCM6), DNA damage checkpoint factors (ATM, RBBP8)
566  and a replication-dependent histone chaperone (CHAF1B).

567 These protein clusters vary in their enrichment in short linear (sequence) motifs
568 (SLIMs). SLIMs mediate protein-protein interactions that lead to changes in post-

569 translational modification, stability and/or subcellular localization of a protein. Using the
570 eukaryotic linear motif (ELM) database [24], we identified SLIMs that are enriched in
571 each cluster (p < 0.01, Fisher’s exact test, Supplementary Table 7). In particular,

572  enriched SLIMs that modulate protein stability (i.e. degrons) could help identify relevant
573 degradation pathways for each protein cluster. Clusters 1 and 2 show an enrichment in
574  Skpl-Cullin-F box (SCF)-Fbxw7 motifs (Fig. 61). Targeted degradation by SCF-Fbxw?7
575 generally requires priming phosphorylation [25], which links the stability of a protein with
576  kinase activity, e.g. CDK. Cluster 1 is most enriched in the T-P-X-X-[ST] motif (2’ motif),
577  which requires two priming phosphorylations for recognition by SCF-Fbxw7 and

578 targeted degradation. Cluster 2 is most enriched in the T-P-X-X-E motif, which requires
579 only one phosphorylation for substrate recognition. Interestingly, Cluster 1 is also more
580 highly enriched in CDK consensus sites. We conclude that multisite phosphorylation by

581 CDK may play a role in directing these proteins for degradation by SCF-Fbxw7.
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582 Cluster 3 shows peak abundance in G2 and early mitosis (P6 to P9). This cluster
583  contains several proteins associated with DNA replication and DNA damage repair,

584 including the dsDNA exonuclease EXO1, PCNA-associated factor (PAF/KIAA0101) and
585 ribonucleotide reductase M2 (RRM2, Fig. 6E). The abundance pattern of RRM2 is

586 consistent with previous proteomic studies and targeted degradation of RRM2 in late
587  G2/early mitosis by the cyclin F-SCF complex [5][26].

588 Clusters 4 and 5 show peak abundance during mitosis and contain the largest
589  proportion of proteins with either known roles in mitotic progression or targeted for

590 degradation in mitosis (9/12 for cluster 4, 38/46 for cluster 5). The distinguishing feature
591 that separates cluster 4 and 5 is the mitotic abundance pattern. Cluster 4 proteins show
592 decreased abundance in earlier mitotic populations, particularly in P11 — P12,

593  coincident with the onset of cyclin A2 and cyclin B1 degradation (c.f. Fig. 5B). The three
594  mitotic cyclins detected (A2, B1 and B2), the spindle assembly checkpoint kinases

595 BUBI (Fig. 6F) and BUB1B (BubR1), the kinesin-8 family member KIF18B, securin

596 (PTTGL1) and shugoshin (SGO2) are in this cluster. Functionally, this cluster is

597 characterized by proteins that maintain sister chromatid cohesion (securing, shugoshin)
598 and constitute a checkpoint that prevents anaphase (cyclins, Bub kinases) while proper
599  microtubule attachment and biorientation of chromosomes takes place. Consistent with
600 the MS-based proteomics data for KIF18B, the fluorescence of GFP-KIF18B begins to
601 decrease 10 minutes prior to anaphase onset and is at 20% relative fluorescence by 20
602 minutes after anaphase onset [27].

603 By contrast, cluster 5 proteins show a significant increase in abundance at the
604 end of interphase (P7 — P8) with peak abundance throughout mitosis (P9 — P15) and a
605  significant decrease only in the last population (P16), i.e. cells undergoing mitotic exit.
606  Example proteins from this cluster include TPX2 and Aurora A kinase (Fig. 6G). TPX2 is
607 the activator of Aurora A kinase whose activity is important in centrosome separation in
608 prophase and mitotic progression. Other proteins in cluster 5 with regulatory roles in
609  mitotic progression include the catalytic E2 subunits of the APC/C (UBE2C, UBE2S),
610 the chromosome passenger complex (AURKB, INCENP, BIRC5 — Survivin, CDCAS8 —
611 Borealin) and the spindle-associated protein FAM83D.
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612 SLIM analysis of these clusters identified differences in the enrichment in nuclear
613 import and export signals. As shown in Fig. 61, clusters 1 and 2 are enriched in nuclear
614 localisation signals (mono- and bi-partite). By contrast, cluster 4 shows a strong

615 enrichment for the Crm1-mediated nuclear export signal (NES). Eight proteins in cluster
616 4 matched the NES consensus. Some predicted NES located in globular domains will
617 likely be constitutively inaccessible to Crm1 but may be recognized upon conformational
618 change. Notably, cluster 4 includes cyclins B1 and B2, whose constitutive export from
619 the nucleus is thought to be important in preventing premature mitotic entry. Crm1-

620  binding and/or exclusion from the nucleus of the remaining six proteins (e.g. Bub1,

621 BubR1, cyclin A2, CLEC16A, MVP, and ARMC1) may also be important in the proper
622  timing of cell cycle events.

623 We identified strongly pseudoperiodic proteins that have no reported function in
624  cell cycle control. These novel cell cycle regulated proteins may, like many of the other
625  proteins identified in this manner, have significant roles in cell cycle progression. These
626 candidates include EXO1, the DNA helicase PIF1, the guanine-exchange factor NET1
627 and the uncharacterized protein FAM111B (Fig. 6H). Potential functional roles for

628 FAML111B in cell cycle regulation are discussed further below.

629  Analysis of mitotic protein abundance dynamics in unperturbed cells

630 A major regulator of protein abundance during the cell cycle is the anaphase promoting
631 complex/cyclosome (APC/C). The APC/C is an E3 ubiquitin ligase and is active during
632  the mitotic and GO/G1 phases of the cell cycle [28][29]. Its substrates include key

633  regulators of the cell cycle, including cyclin A2 and cyclin B1 [18][19]. However,

634  ubiquitination of APC/C substrates is tightly temporally controlled, with APC/C substrate
635  specificity changing during the cell cycle. This is mediated through changes in the

636 APC/C co-activators and substrate recognition factors, Cdc20 and Cdhl1. While APC/C-
637 Cdc20 is active in early mitosis, the substrate receptor changes to Cdhl in late mitosis,
638 thereby conferring a temporal order to substrate degradation. Cdc20 is itself a substrate
639 of the APC/C-Cdhl, allowing for switch-like handover in substrate receptor control.

640 Interestingly, 25 of the 119 core pseudoperiodic proteins are experimentally

641 validated APC/C substrates and the vast majority (24) are found in clusters 3, 4 and 5.
642  Substrate recognition by APC/C-Cdc20 and APC/C-Cdh1 is mediated by the interaction
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643  between WD40 domains on the APC/C-(Cdc20/Cdh1) and SLIMs found on substrates.
644 The KEN and D-box (RxxL) degrons are well documented SLIMs that bind both APC/C-
645 Cdc20 and APC/C-Cdh1, with APC/C-Cdh1 having a preference for the KEN degron.
646  More recently, a third SLIM called the ABBA motif was shown to be important in

647  substrate recognition by APC/C-Cdc20 [30]. Its name comes from the four proteins in
648 which it is found: Cyclin A, Bubl, BubR1 and the yeast-specific protein Acm1.

649 Fig. 6J shows the enrichment profile of these SLIMs across the six clusters. The
650 KEN motif is comparably enriched in 4 out of the 5 clusters (Fig. 6J), with highest

651 enrichments for the mitotic phase-peaking clusters (clusters 4 and 5). The frequencies
652 range from 25% of the proteins in a cluster having the KEN motif (cluster 2) to 43%

653 (cluster 5), representing a 3-5-fold enrichment over the background frequency (8%). Al
654  four clusters show low to non-detectable abundance in P16, P1 and P2, i.e. mitotic exit
655 and GO/early G1 when APC/C-Cdh1 is active. In total, 35 cell cycle regulated proteins
656 contain a KEN SLIM, approximately 50% (18 proteins) that have been experimentally
657 characterized as APC/C substrates. The remaining uncharacterized 17 proteins are

658 excellent candidates to be APC/C-Cdhl substrates. Consistent with this prediction,

659 cluster 1, which is the only cluster showing no enrichment for the KEN motif, contains
660 proteins that have on average, higher abundance in GO/early G1.

661 Six out of 12 proteins that peak in mid-mitosis (cluster 4) contain the RxxL D-box
662 sequence. The 50% frequency is ~8-fold higher than the background frequency (6%).
663 By contrast, the fold-enrichment is considerably lower in the other clusters (Fig. 6l).

664  Similarly, 5 out of 12 proteins contain the ABBA motif (42%, Fig. 6l), representing a ~9-
665 fold enrichment over the background frequency (5%). D-box and ABBA motif-containing
666  proteins in this cluster are mostly mutually exclusive: only two proteins contain both

667  SLIMs: BubR1 (BUB1B) and shugoshin-2 (SGOLZ2). Of the D-box and ABBA motif

668  containing proteins, three have not been previously experimentally characterized as
669 APC/C substrates: SGOL2, MVP and CLEC16A.

670 This high-resolution analysis of mitotic proteomes identified three clusters that
671 differed significantly in their protein abundance patterns and enriched degrons. ~50% of
672 these APC/C-degron containing proteins are experimentally validated APC/C substrates.

673  This is now accompanied with measurement of their protein abundance variation in an
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674  unperturbed mitosis in human cells without fluorescent protein tags. We identify ~20
675  protein candidates as novel APC/C substrates. As shugoshin-2 (SGOL2) plays key

676  roles in protecting sister chromatid cohesion [31], direct degradation by APC/C-Cdc20
677  during prometaphase could have major implications on how cohesion is lost at

678 chromosome arms during early mitosis.

679  Proteomic assignment of cell cycle states

680 MS-based single cell proteome analysis is an emerging area. Recent advances in

681 sample preparation, including NanoPOTS [4][5] and the in-cell digest described here,
682  suggest that routine proteome analysis of single somatic mammalian cells will be

683  possible in the near future. In comparison, single cell transcriptomics as a mature field
684  with commercial kits now available. In single cell RNA-seq (sc-RNAseq) analysis [32],
685 the deconvolution of cell cycle state has been critical [33][34]. This is because cell cycle
686  variation contributes significantly to the variation observed in a cell population. For

687 example, to identify cell fate trajectories during differentiation, researchers relied on

688 reference cell cycle regulated genes in order to identify the effect of cell cycle variation
689 in the gene expression differences observed [35]. A highly validated reference set of cell
690 cycle regulated proteins will be important for the biological interpretation of single cell
691 proteomic datasets.

692 We tested whether the abundances of the core 119 cell cycle regulated proteins
693 determined in this study were sufficient to assign specific cell cycle states to cellular

694  proteomes. The abundance patterns for the 119 proteins for each sample (16 timepoints
695 X 8 replicates = 128 samples) were subjected to principal component analysis (PCA).
696 The two major principal components, PC1 and PC2, explain 53% and 20.5% of the

697  variance, respectively, as shown in Fig. 7A. Interphase (circles) and mitotic (triangle)
698 are separated predominantly along PC1. To a lesser extent, subphases within each (for
699 example, see arrows indicating P1 and P2) are separated along both principal

700 components. Moving counterclockwise, starting from the top right for P1, the samples
701 clearly follow a trajectory that reflects the position of each sample in the cell cycle,

702  starting from early G1 (P1 and P2) to mitosis (left side, triangles). Telophase/cytokinesis
703  populations (P16, pink triangles) are situated between the other mitotic populations and

704  P1. Detection of relevant features is essential as PCA analysis of the entire proteome
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705 dataset does not result in cell cycle separation. Repeating the PCA analysis with cyclin
706 A2 and cyclin B1 removed essentially produces identical results, which indicates that
707  the relationships produced by using ~119 cell cycle marker proteins are robust towards
708 the absence of individual proteins, including key proteins that drive cell cycle

709  progression.

710 A simple kNN-model was used to classify cell cycle states using these data.

711 Replicates 1 - 3 were used as a training set and replicate 4 was used as the test set. Fig.
712 7B shows the performance of the classification by plotting predicted versus actual

713  populations. There is a linear correlation with some minor deviations. We then repeated
714  this KNN analysis for each combination of the four replicates using 3 replicates as the
715 training set and the remaining replicate as the test set. We treated the populations as a
716  circular, progressive series of cell states whereby P1 is the next state after P16. We
717  then calculated the distance between predicted and actual populations for each

718 replicate combination (Supplementary Figure 4A). The average distance is 0 in all four
719 cases with a standard deviation ~1. This indicates that the KNN models are broadly

720 accurate in predicting the cell cycle state with a precision of £ 1 cell state.

721 We then asked whether the PCA classification could be used to identify

722 uncharacterised populations. During the FACS separation to collect the 16 populations
723  described above, we noticed the presence of an unexpected, rare population (P17) in
724  two out of the four biological replicates. As shown in Fig. 7C, these cells are similar to
725 G2-phase cells in DNA content (i.e. 4N DNA content) but significantly differ from most
726  G2-phase cells by having low cyclin B1 levels. P17 cells were analysed alongside the
727  other 16 populations using the in-cell digest and AMPL. As shown in the simplified PCA
728 where replicate data were averaged (Fig. 7D), the PCA places P17 between P16 and
729  P1. Indeed, using the kKNN model described above classifies two replicates of P17 as
730 P16 and two other replicates as P1. From these observations, we conclude that P17,
731  while having DNA content consistent with a G2-phase cell, has a cell cycle protein

732 profile that is more consistent with an early G1/G0O-phase cell.

733 This population may reflect a senescent state consistent with previous reports
734  where the APC/C is re-activated in G2 phase cells in response to DNA damage, leading

735 to premature degradation of cyclin B1. Our data suggest that numerous APC/C targets
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736 are decreased relative to a typical G2 state (Fig. 7E), effectively resetting the cell cycle
737  state of these cells to an early G1/GO0-like state. We then performed pairwise

738 comparisons proteome-wide between P1, P16 and P17 to identify proteins showing

739 reproducible changed abundance in P17 cells. Of the top candidates (Supplementary
740  Figure 4B), three are regulators of the DNA damage response (Fig. 7F): BMI1, HINT1
741 and PPP6R2. BMI1 and HINT1 show increased abundance in P17 compared to P1 and
742  P16. Both proteins are recruited to sites of DNA damage and loss of either protein leads
743  to defective repair [36][37]. PPP6R2 is a regulatory subunit of the protein phosphatase
744  PP6. PP6 is involved in silencing the DNA damage response by dephosphorylation of y-
745  H2AX[38]. These results support the idea that P17 is a DNA damage-induced

746  senescent state.

747 We conclude that we have found a core set of 119 proteins that can be used to
748  robustly assign cell cycle states with high resolution and to phenotypically characterise
749  cell populations whose position in the cell cycle is unknown.

750 Discussion

751 A major challenge with the comprehensive analysis of proteomes from low cell number
752  samples is sample preparation. An on-column load of 200 ng peptide, the equivalent to
753  the protein content of approximately 2,000 TK6 cells, is sufficient material to obtain

754  proteome coverage of >4,000 proteins with current instrumentation. Removal of

755 detergents used to produce soluble cell extracts by use of membrane filters, organic
756  precipitation (with or without the aid of magnetic beads) or SDS-PAGE gel extraction
757  are protocols involving many steps and repeated exposure to new plastic surfaces that
758 introduce opportunities for non-specific peptide and protein adsorption. Here, we have
759 presented a minimalistic approach for preparing cells for proteomics called the ‘in-cell
760 digest’. Cells are fixed with formaldehyde and methanol to effectively trap them in

761  biochemical states, then directly digested with trypsin and desalted prior to LC-MS/MS
762  analysis.

763 We show that the in-cell digest enables reproducible and quantitative analysis of
764  proteomes from 2,000 TK6 and MCF10A cells using AMPL analysis. The AMPL

765  approach overcomes the low duty cycle of the Orbitrap Elite to enable proteome

766  analysis with a sensitivity comparable with current instruments. Newer instrumentation

25


https://doi.org/10.1101/2020.07.03.186023
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.03.186023; this version posted July 3, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

767  with higher duty cycles, including the TIMS-TOF Pro and Exploris 480, is expected to
768  enable conventional DDA analysis of proteomes at a similar depth with 2,000 TK6 cells,
769  or alternatively, improve proteome depth further using MS1-based matching methods.
770 The in-cell digest is compatible with other approaches of low cell number sample
771  preparation for MS-based proteomics. In-cell digested samples can be efficiently

772  labelled by isobaric tags, e.g. TMT and iTRAQ, and therefore compatible with use of
773  carrier channels to boost the signal of rare or single cell channels (e.g. iIBASIL). The
774  protocol requires no specialized humidified sample handling chambers or direct loading
775 onto premade, single-use analytical nanoLC columns, such as those described in the
776  nanoPOTS workflow. While the proteome coverages obtained by nanoPOTS is higher
777  than reported here, it is possible that a new workflow combining aspects of the in-cell
778 digest and nanoPOTS could improve both generalizability and performance compared
779  to either method as originally described.

780 Each sample preparation method will have its unique advantages and potential
781 biases, which we evaluated by quantitatively comparing the in-cell digest with a more
782  conventional in-solution digest. This analysis revealed an overrepresentation of

783  membrane proteins amongst those proteins with higher abundance measured in the in-
784  cell digest samples. These proteins include mitochondrial membrane proteins (e.g.

785 TOMMY7) and proteins that are known to be localized to the cell surface (ADAM15).

786  Membrane proteins have been shown to irreversibly aggregate in soluble extracts when
787 heat-treated and precipitated. Delipidation by methanol, which is used to increase cell
788  permeability, could also play an important role in increasing digestion efficiency by

789  trypsin. We suggest that the higher abundances measured for membrane proteins is
790 unlikely to be an artefact of the in-cell digest; in contrast, the measurements are likely to
791 more accurately reflect the abundances of these proteins in cells.

792 By contrast, RNA-binding proteins, including snRNP proteins, were

793  overrepresented amongst those proteins with lower abundance in the in-cell digest

794  samples. The lower abundances measured could represent on the one hand, a specific
795 loss of peptide-RNA crosslinks, or on the other hand, non-specific loss of the RNA-

796  binding proteins into the supernatant. Studies are ongoing examining the RNA-binding

797  protein bias observed in more detail, and we have preliminary evidence suggesting the
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798 latter. Interestingly, proteins in cluster 2 (Fig. 6A), which show a robust, pseudoperiodic
799 change in abundance are nearly all known to interact with either DNA or RNA. Few of
800 these proteins have been shown to be cell cycle regulated previously. It may be the

801 changes in MS-measured abundance reflect differences in RNA- and/or DNA-

802 interactions by these proteins rather than a change in the protein abundance in cells.
803 We identify novel proteins whose cell cycle function has not been previously

804 characterized. FAM111B is a pseudoperiodic protein in cluster 1 (Fig. 6B, right, Fisher’s
805 p;<0.001, p2 =0.06), showing peak levels in S-phase populations (P4 — P6), followed
806 by a decrease in G2 populations (P7 — P8). FAM111B is poorly characterized despite its
807 expression being associated with poor prognosis in pancreatic and liver cancers

808 (Human Protein Atlas [39]) and mutation causative for a rare inherited genetic syndrome
809 (hereditary fibrosing poikiloderma with tendon contracture, myopathy, and pulmonary
810 fibrosis) [40]. Interestingly, FAM111A, the only other member of the FAM111 gene

811 family, localizes to newly synthesized chromatin during S-phase, interacts with PCNA
812 viaits PCNA-interacting protein (PIP) box and its depletion reduces base incorporation
813  during DNA replication [41]. FAM111B also contains a PIP box (residues 607 — 616).
814  Data from HelLa S3 cells also suggest that FAM111B is a cell cycle regulated protein
815  with peak levels in S-phase [22]. Interestingly, the mMRNA abundance and translation
816 rate of FAM111B peaks in G1-phase [22], suggesting that the protein abundance is

817  subject to significant post-translational control. Consistent with this idea, FAM111B

818 contains D-box and KEN-box motifs that are recognized by the APC/C E3 ligase to

819 ubiquitinate targets for proteasomal degradation. Due to the similarity with FAM111A in
820 sequence, predicted interactions with PCNA and peak protein abundance in S-phase,
821 we propose that FAM111B also is likely to play a key role in DNA replication.

822 We present an unbiased pseudotemporal analysis of protein abundance changes
823  during 8 biochemically resolved mitotic states (P9 to P16 in Fig. 5B) with a resolution
824  extremely challenging to obtain with high precision using arrest and release

825 methodologies. The protein clusters are functionally related. For example, clusters 4
826 and 5 both contain proteins essential for mitotic progression but differ in when during
827  mitosis the functions are required. Cluster 4 contains proteins directly involved in or

828 directly downstream of the spindle assembly checkpoint that are degraded upon
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829 checkpoint satisfaction. These regulatory pathways ensure that proper spindle

830 microtubule-chromatid attachments are formed prior to loss of sister-chromatid cohesion
831 and separation of the sister chromatids. By contrast, cluster 5 contains proteins that are
832  functional throughout mitosis, such as chromosome passenger complex (CPC), or

833  primarily in cytokinesis, such as ECT2, PRC1, RACGAP1 and ARHGAP11A.

834 Interestingly, several core subunits of the APC/C E3 ligase are also present in cluster 4.
835 Their degradation at the end of mitosis is expected to significantly decrease APC/C-
836 mediated substrate degradation promote accumulation of substrates and facilitate rapid
837  progression into the next cell cycle.

838 A high proportion of proteins in clusters 4 and 5 (24/69, 35%) are experimentally
839 validated APC/C substrates, which represents a 70-fold overrepresentation in these two
840 clusters compared to non-pseudoperiodic proteins (0.5%). Previous studies have

841 identified APC/C-Cdhl and APC/C-Cdc20 substrates by bioinformatic analysis of co-
842  regulation, stabilization by siRNA depletion of Cdc20 or Cdh1, and immunoprecipitation
843 of APC/C at different timepoints during mitosis. Interestingly, the high mitotic phase

844  resolution and purity obtained in this study enabled unbiased identification and

845 separation of APC/C substrates. As discussed above, clusters 4 and 5 differ in the

846 representation of ABBA and D-box short linear motifs, key degrons that are recognized
847 by APC/C-Cdc20. Note that there are an additional 44 proteins in these two clusters that
848 have not been previously experimentally validated as APC/C substrates and are

849 candidates for future follow-up analysis as novel, uncharacterized substrates.

850 High resolution classification of cell cycle state is an important prerequisite to
851 obtaining meaningful biological insights into single cell ‘omics’ data. However, datasets
852 on the cell cycle regulated transcriptome and proteome generally provide low time

853  resolution, particularly in mitosis. This is more important with single cell proteomics.

854  Whereas transcriptional and translational activity are dampened during mitosis, there
855 are tremendous changes in protein phosphorylation and protein abundances, which will
856  contribute towards single cell proteome variation.

857 Here we have identified a cell cycle signature composed of the abundances from
858 119 pseudoperiodic proteins that can be used to classify the cell cycle state of a cell

859  population by virtue of the proteome. By using a split train/test strategy, we showed a
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860 kNN model predicted cell cycle state with relatively high accuracy and can provide clues
861 into the phenotype of uncharacterised, rare populations. We anticipate that the high-
862  resolution cell cycle dataset here will be important to understand the biological

863 implications of single cell proteomics data, particularly in systems where cell cycle

864 phase differences are an underlying source of variation but not the primary biological
865 feature of interest.

866 Formaldehyde fixation is used frequently as a precursor to intracellular

867 immunostaining for cellular analysis and for inactivating cells that potentially harbor

868 infectious agents, e.g. viruses. We have shown that mild formaldehyde treatment is

869 compatible with comprehensive and quantitative proteomics with low cell numbers. We
870 anticipate that the in-cell digest will be broadly applicable to characterise the proteomes
871 of formaldehyde fixed cells. Recently published data suggest that formaldehyde

872  crosslinks can be directly detected from MS data [42]. We anticipate the in-cell digest
873  would enhance the sensitivity of crosslink detection and lead to an increase in identified
874  protein-protein interactions.
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1028
1029 Figure 1. Low level formaldehyde crosslinking has negligible impact on proteome

1030 coverage and quantitation. A) Schematic of the sample processing workflow for

1031 PRIMMUS. B) Impact of heat, hydroxylamine and/or Tris on decrosslinking efficiency of
1032 cells fixed with 2% formaldehyde and 90% methanol as measured by total protein stain
1033 and SDS-PAGE. The red bar indicates bands corresponding to high molecular weight,

1034  crosslinked proteins. C, D) Comparison of peptides (C) and proteins (D) identified from
1035 in-solution and in-cell digests. E) Error-tolerant search for formaldehyde-induced

1036  chemical modifications to peptides using ‘Data-dependent mode’ in MaxQuant.
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1037
1038 Figure 2. Direct tryptic digestion of fixed and permeabilized cells outperforms

1039 protein precipitation and in solution digest of cellular extracts. A) Schematic of the
1040 in-cell digest workflow. B) Fixed and permeabilized cells treated either with DPBS (left)
1041  or with trypsin (right) were imaged at the indicated times in minutes. Scale bar is 50 pum.
1042 C) Comparison of the proteome coverage reproducibility between in-solution and in-cell
1043  digests. D, E) Comparison of the intensities measured by in-cell digests and either (D)
1044 in-solution digest of fixed cells, or (E) in-solution digest of cells with no fixative. F, G)
1045 Volcano plots comparing an in-cell versus in solution digest of fixed cells. Two protein
1046  classes enriched amongst proteins reproducibly changing in abundance are RNA

1047  processing proteins (F) and integral membrane proteins (G).
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Figure 3. Averaged MS1 precursors with library matching (AMPL) increases

peptide detection sensitivity. A) Schematic outlining the AMPL experimental design.

B) Both the AMPL and BoxCar acquisition methods prioritise MS time to enhance MS1

scan quality. Schematic comparing duty cycles for DDA, AMPL amd Boxcar acquisition
methods on the indicated MS instruments (Orbitrap Elite, Orbitrap HF). C-E) The effect

of increasing MS1 averages on the number of features (C), the number of unique

peptides (D) and protein groups quantitated (E). Results from DDA acquisition with a
library (DDA+L) are shown as dashed line. DDA and AMPL select the top 20 and 5

precursors, respectively, for MS/MS. F) A comparison between AMPL and DDA+L,

showing intensity distributions of peptide features identified by MS/MS (blue) and

matching to identified library features (red). G) A bar plot indicating the data

completeness across 10 replicates either by DDA matching only between replicates,

DDA+L and AMPL.
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iggg Figure 4. In-cell digest and AMPL enable proteomic analysis with 500-2000 cells.
1066  A-C) The sensitivity of AMPL was tested by measuring the number of features detected
1067  (A), unique peptides quantitated (B) and protein groups quantitated (C) at the indicated
1068 on-column peptide loads, ranging from ~2,000 ng (representing the protein content of ~
1069 12,000 MCF10A cells) to 10 ng (~ 60 cells). D) The combined in-cell digest and AMPL
1070 approach was tested by measuring proteins quantitated at the indicated number of
1071 FACS-isolated TK6 cells. The cell number ranged from 2,000 cells to 1 cell. The cell
1072  isolation was performed in duplicate. Venn diagrams above the plots show the overlap
1073  in proteins between the duplicate analyses. Error bars show the range. E) The same
1074 data as in (D) with the x-axis rescaled to show the low cell number measurements.
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1077  Figure 5. Identification of proteins regulated in abundance across sixteen cell
1078 cycle cell populations, comprising eight interphase and eight mitotic states. A)
1079  Schematic describing the experimental design and workflow. B) The normalized median
1080 fluorescence signal from DAPI (DNA content) and indirect immunofluorescence of cyclin
1081 A2, cyclin B1 an H3S28ph. These four markers and DAPI fluorescence width were used
1082 to identify and collect the 16 cell cycle populations by FACS. Representative cartoons of
1083 the cell cycle phases of these populations are shown below the graph. C) The number
1084  of proteins where that protein was detected in at least n number of replicates is shown.
1085  For 4,918 proteins, eight replicate intensities were measured in one or more cell cycle
1086  populations. D) Identification of cell cycle regulated proteins by pseudoperiodicity

1087 analysis. Each pseudotimecourse, representing one set of P1-P16 is arranged in

1088 sequence and intensities analysed using a Fisher’'s periodicity test. Example

1089  pseudotimecourses are shown for a non-periodic (HSP90AB1) and periodic (ATAD2)
1090 protein, respectively. E) Averaged intensities normalised to maximum are shown for
1091 cyclin A2, cyclin B1 and cyclin B2 across the sixteen cell cycle states. Error bars show
1092 s.e.m.
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1094
1095 Figure 6. Hierarchal clustering of cell cycle regulated proteins shows

1096 classification by biological functions and differential degron enrichment. A)

1097 Heatmap of the 119 identified cell cycle regulated proteins organized by cluster. B)

1098 Average normalized intensity profiles for the five clusters. C-H) Normalized intensity
1099 profiles for example proteins from each cluster (C-G) and a poorly characterized protein,
1100 FAM111B (H). I) Enrichment analysis by cluster of SLIMs that mediate interaction with
1101  SCF-Fbxw7 (top) and are associated with nuclear import/export (bottom) J) Enrichment
1102  analysis by cluster of APC/C degrons. * indicate p < 0.01 (Fisher’s exact test).
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1106  Figure 7. Unbiased classification of proteomes into cell cycle states. A) Principal
1107 component analysis of the cell cycle populations using the 119 cell cycle regulated
1108 proteins as features. P1 and P2 are highlighted by arrows. B) A kNN model was used to
1109 predict the cell population from the abundances of the 119 cell cycle regulated proteins.
1110 The performance of the kNN model was assessed using one replicate as the test set.
1111  Predicted versus actual cell populations are shown. C) A pseudocolour plot showing a
1112 population (P17) that contains 4N DNA content and low cyclin B1 staining. D) PCA
1113  analysis, as in (A), but using abundances averaged across the replicates (mean) and
1114 including P17. E) Volcano plot showing that characterized APC/C substrates generally
1115 show lower abundance in P17 relative to 4N DNA content cells with high cyclin B1

1116  staining (P8). F) In addition to low abundance for APC/C substrates, P17 cells also
1117  show high levels of HINT1, BMI1 and low levels of PPP6R2. These proteins have been
1118 shown to be important in the DNA damage response. Error bars show s.e.m.
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1140 Supplementary Figure 2. Experimental estimation of match-between-runs FDR
1141 using decoy proteome samples. A) Schematic outlining experimental workflow for
1142  assessing match-between-runs FDR. For decoy proteomes, TK6 tryptic digests were
1143  chemically modified. Unmodified tryptic digests were fractionated for the library. Data
1144  was analyzed by MaxQuant with match-between-runs. Matching occurred from the
1145 library to unfractionated samples. Chemical modifications were not added to the

1146 database search. B-D) The impact of filtering based on match time difference (B), match
1147  ppm difference (C), match ppm error (D) at varying levels of stringency. Shown are
1148 relative cumulative frequency distributions of the matched peptide features retained in
1149 the unmodified proteome (blue), matched peptide features retained in the dimethylated
1150 proteome (green), and relative change in FDR (red) at the indicated filtering thresholds
1151  (x-axis). E) The number of unmodified peptide and protein quantitations, including both
1152 MS/MS and matched peptides, and the number of the match decoy matches, which
1153  contribute to estimated match FDR, in modified proteomes. Data are shown before and
1154  after filtering at the final thresholds chosen indicated by vertical lines in B-D. F) The
1155 analysis in (E) was repeated for a sample acquired by DDA, showing comparable

1156  estimated match FDRs between DDA and AMPL.
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Supplementary Figure 3. Pseudocolour plots showing the gating strategy to
isolate the 16 cell cycle populations by FACS. The red circle indicates P17.
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1162
1163  Supplementary Figure 4. Cell state classification and proteomic characterization

1164 of P17, a G2-like cell with a DNA damage response protein signature. A) PCA of
1165 averaged normalized abundances from the 119 cell cycle regulated proteins as in Fig.
1166 7D but with data from cyclin A and cyclin B2 removed. B) The performance of the kNN
1167 classification model was evaluated by using three replicates for the training set and one
1168 replicate for the test set. The difference between the predicted and true populations in
1169 integer values was calculated for each test set. Because the overall relationship

1170 between the populations is cyclic, i.e. P1 is the next assumed state after P16, the
1171  difference between P16 and P1 is considered to be 1. The mean and the standard
1172 deviation of this difference is shown for all four possible permutations of test and

1173  training sets. C) Volcano plot comparing P17 and P16. Proteins of interest are

1174  highlighted with red points (BMI1, HINT1, PPP6R2).
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