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Abstract

Virtually all genome sequencing efforts in national biobanks, complex and Mendelian disease programs, and emerging
clinical diagnostic approaches utilize short-reads (stWGS), which present constraints for genome-wide discovery of
structural variants (SVs). Alternative long-read single molecule technologies (IrWGS) offer significant advantages for
genome assembly and SV detection, while these technologies are currently cost prohibitive for large-scale disease
studies and clinical diagnostics (~5-12X higher cost than comparable coverage stWGS). Moreover, only dozens of such
genomes are currently publicly accessible by comparison to millions of stWGS genomes that have been commissioned
for international initiatives. Given this ubiquitous reliance on stWGS in human genetics and genomics, we sought to
characterize and quantify the properties of SVs accessible to both stWGS and IrWGS to establish benchmarks and
expectations in ongoing medical and population genetic studies, and to project the added value of SVs uniquely
accessible to each technology. In analyses of three trios with matched stWGS and IrWGS from the Human Genome
Structural Variation Consortium (HGSVC), stWGS captured ~11,000 SVs per genome using reference-based
algorithms, while haplotype-resolved assembly from IrWGS identified ~25,000 SVs per genome. Detection power and
precision for SV discovery varied dramatically by genomic context and variant class: 9.7% of the current GRCh38
reference is defined by segmental duplications (SD) and simple repeats (SR), yet 91.4% of deletions that were
specifically discovered by IrWGS localized to these regions. Across the remaining 90.3% of the human reference, we
observed extremely high concordance (93.8%) for deletions discovered by stWGS and IrWGS after error correction
using the raw IrWGS reads. Conversely, [rtWGS was superior for detection of insertions across all genomic contexts.
Given that the non-SD/SR sequences span 90.3% of the GRCh38 reference, and encompass 95.9% of coding exons in
currently annotated disease associated genes, improved sensitivity from IrWGS to discover novel and interpretable
pathogenic deletions not already accessible to stWGS is likely to be incremental. However, these analyses highlight the
added value of assembly-based IrWGS to create new catalogues of functional insertions and transposable elements, as
well as disease associated repeat expansions in genomic regions previously recalcitrant to routine assessment.
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Main Text

The field of genomics has seen remarkable advances in the
accuracy and efficiency of massively parallel sequencing-by-
synthesis technology that generates pairs of short reads from the
ends of small 400-800 base pair (bp) fragments (referred to herein
as short-read WGS [stWGS]). This technical leap, and derivative
approaches such as targeted exome capture sequencing (WES),
have catalyzed a deluge of gene discoveries for rare diseases and
insights into population genetics and genome Dbiology.
Correspondingly, srWGS has been adopted by all major human
disease and biobank sequencing initiatives, including the NHGRI
Centers for Common Disease Genomics (CCDG)' and Centers for
Mendelian Genetics (CMG),? the Deciphering Developmental
Disorders (DDD) project,® the Trans-Omics for Precision
Medicine (TOPMed),* the All of Us Research Program,’ the
NICHD Gabriella Miller Kids First (GMKF) initiative, the UK
BioBank,’ and Genomics England,’ to name just a few. As such, a
critical step for the field is to establish uniform methods for stWGS
data processing and rational benchmarking standards to set

expectations for variant detection.

The technical processes of genome alignment and single
nucleotide variant (SNV) detection have been an intensive focus
of genomics since the inception of the 1000 Genomes Project,® '
and more recently updated for cross-institute functional
equivalence as part of the NHGRI Genome Sequencing Program.!!
However, no standardized methods have been adopted for
structural variants (SVs), defined as genomic alterations greater
than 50 bp in size, and consequently no gold-standard
benchmarking approaches exist for SV discovery. This lack of
uniformity has introduced a barrier to the establishment of reliable
estimates of the SV counts and characteristics per genome that are
comparable to those established for short variants. Not surprisingly,
as shown in Figure 1A these estimates have varied considerably
across studies. The initial discovery effort from the 1000 Genomes
Project'>!® revealed that a diverse landscape of SVs could be
captured from stWGS with just 4-7X coverage (3,422 SVs per
genome), and more recent population genetic and human disease
studies using deeper (30X or higher) stWGS and diverse methods
have varied in estimates of SVs that can be captured using stWGS
from 401 — 10,884 per genome, with the highest end of this range
generated from the Human Genome Structural Variation
Consortium (HGSVC; Figure 1A) 11318

Emerging long-read WGS (IrWGS) technologies, which involve
sequencing thousands to millions of contiguous nucleotides from
a single strand of DNA, are better suited for SV discovery than
stWGS. The most widely tested IrWGS technologies include
single-molecule real-time (SMRT) sequencing from Pacific
Biosciences (PacBio) and sequencing by ionic current through a

nanopore channel (Oxford Nanopore Technologies [ONT]). A key
advantage of IrWGS is the abundance of reads that span entire SVs,
allowing for direct observation rather than detection by inference
as required for srtWGS. These unique properties of IrWGS are
beginning to revolutionize de novo assembly approaches,'*?* with
methods already maturing for telomere-to-telomere assembly of
individual human chromosomes.?'> The most recent IrWGS
analyses have at least doubled the number of SVs able to be
captured in each genome to ~25,000 as compared to stWGS'+?2
(Figure 1A). The impact of these studies has exceeded the sheer
volume of variants detected: assembly-based long-read analyses
have opened access to variants in the genome that have been
traditionally refractory to delineation by short read sequencing or
interpretation in disease association studies, such as repeat
expansions and alterations within repetitive segmental
duplications and centromeres.?® Unfortunately, the current cost of
IrWGS is a significant premium over stWGS, depending on the
technology used. By example, the current cost for generation of
PacBio IrWGS over stWGS for equivalent coverage at leading
academic platforms from the HGSVC ranges from 5.9-fold
increase for continuous long read (CLR) technology to 12-fold
increase for circular consensus sequencing (CCS) HiFi technology.
Moreover, the low throughput of modern IrWGS platforms renders
them impractical for adoption in most large-scale population
studies. The largest published assembly-based PacBio study has
analyzed just 15 genomes,”? while a recent study from Iceland
analyzed 1,817 ONT genomes,?* by comparison to millions of
genomes that have already been sequenced or commissioned using
stWGS. Given this predominance of srWGS in the current
landscape of genomics research, we present here a series of
analyses from the HGSVC to: (i) define and quantify the
limitations of SV detection from srWGS; (ii) benchmark
expectations for the number and class of variants that can be
reliably detected from srWGS; (iii) predict the genomic features
that drive false positive and false negative discoveries for each
technology; and (iv) establish the scientific and clinical advances
offered by state-of-the-art I'WGS assembly as a complementary

approach to stWGS.

In this study, we performed a detailed comparison of SV detection
from alignment-based srWGS and assembly-based IrWGS
methods on matched samples. In the HGSVC, we recently
generated SV callsets from stWGS and IrWGS of three parent-
child trios from the 1000 Genomes Project.!* For srtWGS, this
initial HGSVC study applied a highly sensitive ensemble approach,
involving 13 SV detection algorithms (Supplemental Methods),
and discovered 10,884 SVs per genome. The emphasis on
sensitivity suggests that ~11,000 SVs per genome likely reflects an
upper bound on the total number of SVs that can be captured from
stWGS with alignment-based algorithms applied by the HGSVC,

as demonstrated in Figure 1A by comparison to other
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contemporary studies. However, this sensitivity came at the
significant cost of specificity, with 685 de novo SVs
observed per genome, or >1,000-fold more than expected
from srWGS based on family studies, population genetic
estimators, and molecular validation, therefore representing
many variant predictions that are likely false
positives.!>!%25 The IrWGS-derived SV callset combined
whole genome phasing with two state-of-the-art genome
assembly approaches (Phase-SV and MS-PAC!*26) and
was supplemented by additional technologies (HiC and
StrandSeq, see Chaisson et al.'*). These methods
discovered an average of 24,825 haplotype-resolved SVs
per genome, or over two-fold more than the most sensitive
stWGS approaches. Surprisingly, although the srWGS and
IrWGS callsets were generated on identical samples, only a
limited subset of SVs (66.7% of srtWGS and 33.5% of
IrWGS) overlapped between technologies. Moreover, the
mutational class of SVs dramatically impacted
concordance: 60.5% of srWGS and 48.7% of Ir'WGS
deletions demonstrated overlap as compared to 81.5% of
stWGS and 24.1% of IrWGS insertions (Figure 1B).

We sought to define and quantify the factors contributing
to the poor concordance between SVs derived from each
technology on matched samples, as these factors might be
used to improve SV discovery, filtering, and prioritization
in medical and population genetic initiatives. We first
explored the role of genomic features such as repetitive
sequences that are enriched for SVs due to repeat-mediated

22,2728

mechanisms, as short-read alignment has well-

documented limitations within these genomic regions.?*-*°
We annotated all SVs with sequence context based on
RepeatMasker®! and segmental duplication’>* tracks from
the UCSC genome browser.**** For simplicity, we
consolidated all repetitive sequence annotations into three
categories: segmental duplication (SD; 5.1% of the
genome), simple repeat (SR; 4.6%), and referred to all other
repetitive sequence not overlapping SD/SR elements as
‘repeat masked’ (RM; 42.9%). The remaining 47.4% of the
genome not overlapping any of these repeat categories was
labeled as ‘Unique’ sequence, which is a term used for
simplicity here but these regions are not completely devoid
of some duplicated sequences. The Unique and RM
categories collectively encompass 90.3% of the annotated
human reference sequence, 90.9% of all currently annotated
protein-coding sequence, 95.8% of all currently annotated

coding sequence from evolutionarily constrained genes,

and 95.9% of genes currently associated with human disease from
the Online Mendelian Inheritance in Man (OMIM; Figure 1C).3¢

39

. Specific ICaptured PZCaptured pSpecific
= —110,884
A oS on Sb20 oo a3 17,439 B m¥reics .by IrWGs .by Pos B oGS
el o s e
. n=. "
] Su;m:‘natneteal.azm (n(=2 504) 14,405 M Deletion ALL
£ sie L T S Bowea
randier et al. = =5 M CNV (DEL+DUP)
Ch tal. 2017 (n=147 3,651 J
¢ e of al. 2016 (n=160 2,42 Insertion DE
Hehir-Kwa et al. 2016 (=769 = 369 Inversion
ien et al. n=.
o\ Yuenetal 3017 (ne5,205) | w407 BNB/Unknown INS
© ___Chaisson et al. 2019 (n=3) 124,825 +
2 7 Audano etal. 2019 (n=15] 122,755  DUP
= T T T T T T T 1 —
0 2 4 6 8 10 12 24 26 100% 80% 60% 40% 20% O 20% 40% 60% 80% 100%
Count of SVs per Genome (x 1000) SVs from srWGS SVs from I'WGS
C W Simple Repeats (SR) M Repeat Masked (RM)
™ Segmental Duplications (SD) M Unique Sequences (Unique) srTWGS I'WGS
©100% 100%
1S n
9 0% 5) 80%
5 s
O 6o, 60%-|
Y= c
o S
é 40% §-40%f
Q 20% 09_ 20%
o
=
o gy 0%~
T T T T T T ,
Genome Genes Constrained OMIM Exons Constrained OMIM
Genes Genes Exons Exons
E Deletion F Insertion + Duplication

Specific ICaptured Captured Specific Specific Captured Captured Specific
!to srWGS .by Ir'wGs .by srIWGS .to Ir'WGS .to sTWGS .by Ir'WGs .by srIWGS .to Ir'wGS
SR+ SR+
— —
c c
Q [
€ € sp
o SD- o
o (&]
2 Q2
£ IS
o [ -
e RM 8 RM
[0} [0
O] O]
Unique-{ Unique-

€ T T T T T T T T T T T T T T T T T T T T —>
100% 80% 60% 40% 20% O 20% 40% 60% 80% 100% 100% 80% 60% 40% 20% O 20% 40% 60% 80% 100%

SVs from sTWGS SVs from I'WGS

SVs from srWGS

SVs from I'WGS

Figure 1. Comparison of SV callsets from srWGS and lrWGS.

(A) The substantially increased yield of rWGS in SV detection is displayed
from the HGSVC (Chaisson et al 2019)!* and the largest Pacific Biosciences
(PacBio) IrWGS study published to date (Audano et al 2019)% by comparison
to contemporary srWGS studies. As shown, there is wide variability of SV
detection across srWGS studies to date that report SVs detected per individual
in more than 100 genomes. Parentheses next to each study label indicate the
number of genomes analyzed, and bold numbers next to each bar represent
the number of SVs per genome reported by each study. (B) Overlap of SVs
from the HGSVC srWGS and lrWGS callsets across children of the three trio
families, partitioned by SV class. (C) Distribution of repetitive sequences
across the genome, genes, and exons. Constrained refers to genes and exons
with pLI > 0.9 and OMIM Genes include a curated list of autosomal
dominant genes that were defined in both Berg et al.*’ and Blekhman et al.*
GB = gigabase, MB = megabase. Percentage listed within each bar is the
fraction of each group composed of Unique + RM sequences. (D) Distribution
of SVs from srWGS and IrWGS split by repetitive sequence context.
Formatting conventions are the same as panel C. (E-F) Concordance of (E)
deletions and (F) insertions and duplications between srWGS and lrWGS split
by repetitive sequence context.

As expected, the distribution of SVs was non-uniform and varied
by sequence context for each technology (Figure 1D). Most
prominently, the enrichment of SV breakpoints in highly repetitive
genomic sequences (SD/SR regions) was dramatic and their

2


https://doi.org/10.1101/2020.07.03.168831
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.03.168831,; this version posted July 4, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

distribution differed significantly between technologies:
despite representing just 9.7% of the reference genome,
SD/SR annotated sequences contained at least one
breakpoint from 49.8% of all SVs from stWGS and 70.4%
of all SVs from IrWGS (P < 2.2e-16 for both technologies,
chi-square test, Table S2, see Supplemental Methods for
details). This enrichment of SVs in repetitive sequence was
also strongly correlated with concordance between stWGS
and IrWGS, as SVs located in repetitive SD/SR sequences
displayed 57.0% concordance among srWGS variants and
22.5% in IrWGS variants, whereas those ratios improved
considerably in less repetitive sequences (Unique + RM) to
76.5% in stWGS and 59.9% in IrWGS (Figure 1E-F).

While the
concordance of SV detection by technology aligned with

divergent distributions and diminished
expectations for SD/SR regions, the paucity of overlap
between technologies in Unique + RM regions was
unexpected as breakpoints localized to these regions should
not suffer from the technical confounds that profoundly
impact SV discovery in highly repetitive sequences. We next
sought to decouple and quantify the discordance driven by
underlying biological features of the genome from technical
noise driven by false positive SVs present in the underlying
HGSVC callsets, which were optimized for sensitivity as
described above. We also reasoned that determining the
covariates that have the greatest influence on false positive
calls would be of high value. To accomplish this, we
developed an in silico SV assessment procedure to improve
the precision of srtWGS and IrWGS callsets in non-repetitive
regions. This procedure re-evaluated the following three
pieces of orthogonal information from both IrWGS and
stWGS for each SV: (1) supporting evidence from an
algorithm that surveys the raw IrWGS reads for the presence
of an SV (VaPoR;* Figure 2A); (2) copy states based on
stWGS normalized read depth (RD) within SVs (Figure 2B,
S1); (3) discordant paired-end (PE) and split reads (SR) at
the breakpoint of each predicted SV (Figure 2C-D, S2, Table
S1). We considered the SVs with one or more modes of
supporting evidence as “high confidence” and explored their
overlap based on repeat context for SV calls from different
technologies (see Supplemental Methods for further details).

We initially applied this in silico SV refinement procedure
to deletions, which represent the most interpretable class of
SVs for genomics applications (Figure S3). As expected, the
in silico confirmation rate—i.e., the proportion of SVs
supported by one or more of the evidence classes described

above—was high (93.5%) for deletions concordant between
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Figure 2. Error correction methods for SVs in Unique + RM region and
the updated concordance.

(4) In silico evaluation results from VaPoR on deletions (left), insertions
(middle) and duplications (right). Deletions and insertions were reported
in both srWGS and IrWGS callsets; duplications were only reported in the
srWGS callset. (B) Distribution of normalized read depth of srWGS across
deletions (left), insertions (middle) and duplications (right) that were
supported by VaPoR (red), and the 1Kb genomic regions that flank each
SV (grey). (C-D) Distribution of (C) aberrant srWGS read pairs and (D)
split reads around deletions (left), insertions (middle) and duplications
(right) that were either homozygous (red), heterozygous (green) or false
positives (blue). The homozygous, heterozygous and likely false positive SV
sets were selected using the criteria described in supplemental methods.
(E-F) Concordance of (E) deletions and (F) insertions and duplications in
Unique + RM sequences that were supported by the in silico SV refinement
procedure. Percentages represent the fraction of total variants shared
between srWGS and lrWGS.

for stWGS or IrWGS, respectively (Figure S4). After restricting to

technologies in Unique + RM regions, compared to just 13.5% and  high confidence deletions with supportive information, just 6.2%

33.1% for those that were only discovered by a single technology

of the deletions in Unique + RM regions were specific to either
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stWGS or IrWGS (Figure 2E). Although we cannot rule out
explanations such as somatic SVs or sub-clonal mutations arising
in cell culture, these results imply that the most of the discordance
reported between stWGS and IrWGS for deletion discovery in the
90.3% of the genome not encompassed by SD/SR sequence was
likely technical and driven by false positive SV calls that can be
pruned by post hoc heuristic filtering.

In contrast to this strong concordance between stWGS and IrWGS
observed for deletions, nearly half (46.3%) of high confidence
IrWGS insertions in Unique + RM regions had no matching SV
call from stWGS, while the majority (94.7%) of stWGS insertions

and duplications were captured by IrWGS SV calls (Figure 2F, S5).

To further investigate the properties of insertions specifically
captured by IrWGS in Unique + RM sequences, we aligned the
assembled sequences of high-confidence insertions against a
catalog of known repeat elements.’’ Most of these insertions
aligned to specific types of repeat elements (61.8%, N = 2,485 /
genome), such as short and long interspersed nuclear elements
(SINEs, N = 1,494 / genome; LINEs, N = 312 / genome) and long
terminal repeat (LTR, N = 139 / genome) retrotransposons (Figure
3A,D). Yet another 19.0% of the insertions exhibited partial
alignments to multiple different repeat types (Figure 3A, C).
Notably, most (70.1%) of the IrWGS insertions that were shared
by stWGS aligned to a specific type of repeat element, whereas
nearly one-third (31.7%) of the insertions specifically discovered
by IrtWGS were partially aligned to multiple different repeats types
(Figure 3B, C), indicating that the complexity of chimeric repeat
structures is a major determinant of srWGS sensitivity for insertion
SVs, as has been previously demonstrated in certain classes of
nested insertions.*! We further observed high variability in the
current capabilities of stWGS detection depending on the type of
transposable element insertions when comparing with IrWGS as
74.4%, 44.2% and 50.7% of IrWGS insertions were discovered by
stWGS for SINEs, LINEs and LTRs, respectively (Figure 3D).
Intriguingly, 95.8% of the high confidence IrWGS insertions in
Unique + RM regions that did not overlap an srWGS insertion
nevertheless had some detectable support in the raw stWGS data,
indicating that continued development of detection algorithms
could improve sensitivity for these missed insertion SVs (Figure
3E). Taken together, these analyses indicate that Ir'WGS and
assembly-based approaches provide substantial improvements
over stWGS for insertion discovery, particularly for those events
with complex repeat structures.

Finally, we examined SVs in highly repetitive SD/SR regions
using the same in silico evaluation framework (Figure S6A-D) as
described above with the caveat that the orthogonal evaluation of
variants within these regions is much more challenging and our
results are certainly less accurate than in the less repetitive regions
of the genome. In contrast to the high concordance for deletions in

Unique + RM sequences, 30.2% and 59.3% of high confidence
deletions from stWGS and IrWGS, respectively, were not shared
by the other technology (Figure S6E). The distinct patterns of
concordance were more dramatic for insertions: only 17.4% of
insertions from IrWGS were overlapped with an stWGS variant,
whereas 74.4% of stWGS insertions were captured by Ir'WGS
(Figure S6F). These results highlighted that a major source of
added value from IrWGS over stWGS is found in increased SV
sensitivity within highly repetitive regions of the genome.
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Figure 3. Alignment of assembled IrWGS insertion sequences
against known repeat elements.

(4) Count of IrWGS insertions in Unique + RM sequences per genome
by alignment of inserted sequence to known repeat elements. Number
on top of bar represents the averaged count of high confidence
insertions in Unique + RM sequences per genome. (B) Count of rWGS
insertions that are specifically discovered by [rWGS and shared by
srWGS, by alignment of inserted sequences to known repeat elements.
Formatting conventions used are the same as panel A. (C) Example of
an insertion SV assembled by I[rWGS, annotated with sequences that
align to known repeat element classes. (D) Counts of [rWGS insertions
in Unique + RM sequences per genome by the class of inserted
sequence and the proportion of variants that overlap with srWGS.
“OTH*” represents insertions aligned to multiple known repeat
elements, as the example shown in panel (B). “OTH#”
represents insertions not aligned to any repeat elements. Number in
parentheses represents the proportion of insertions that overlap
with srWGS. (E) Count of split reads around the IrWGS high
confidence insertions displayed in the histogram.
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In conclusion, we demonstrate the influence of genomic context
on setting expectations for SV detection from stWGS in genomic
studies, as well as estimating the anticipated yields of emerging
IrWGS technologies. Initial genome-wide surveys have implied
highly variable outcomes and limited overall concordance in SV
detection between the two technologies; however, in-depth
analyses of these variants emphasize that genome organization,
variant type, and high type I error rates in SV detection from each
technology were the three predominant features driving
discordance. After applying post hoc filters to correct for the
relatively high type I error rates for SV detection from this
ensemble srtWGS approach optimized for sensitivity and the
assembly based IrWGS approach that was optimized with
orthogonal data types, we were able to extrapolate the informative
biological factors that influenced differences in SV distributions
between technologies. The concordance between srWGS and
IrWGS was remarkably high (93.8%) for deletions localized to the
least-repetitive regions of the genome, while almost all IrWGS-

specific deletions were localized to repetitive SD/SR regions.

The value added for long-read assembly to discover new disease
associated SVs, or provide resolution to ‘unsolved’ cases in
Mendelian genetics, is thus a complex calculus. As we note above,
stWGS captures virtually all high-quality deletions derived from
IrWGS assembly in the regions of the genome that encompass
more than 95% of currently annotated coding sequence in genes
with existing evidence for dominant-acting pathogenic mutations
from OMIM, so we anticipate that a minority of “unsolved’ cases
will be explained by cryptic Ir'WGS SVs from this readily
interpretable class of heterozygous deletions in currently known
disease-associated genes. However, given that the most highly
repetitive regions of the genome have been traditionally
inaccessible for genomics studies of disease, it is anticipated that
new disease-associated genes and sequences will emerge from
these existing blind spots in the human genome. Indeed, germline
and somatic repeat expansions and contractions are already well
established mechanisms of human disease, particularly
neurodegenerative disorders,*> and this is an exciting area for
future discoveries from IrWGS. As telomere-to-telomere assembly
methods continue to mature and eventually reach into centromeres,
telomeres, and segmental duplications, the catalogue of disease
associated variants will certainly expand beyond what is applied to
current clinical interpretation. Similarly, Ir'WGS was superior for
the detection of insertions, irrespective of genomic context, and the
near-term value of IrWGS to better delineate coding and
noncoding insertions and mobile elements across all genomic
contexts is high.

Collectively, we estimate from these analyses that genomic studies
and clinical initiatives using stWGS can expect to capture upwards
of 10,000 SVs in each human genome, and current large-scale

international initiatives are poised to provide exciting new insights
into the 90% of the annotated reference genome that encompasses
almost all known genic sequence. We also confirm that assembly-
based IrWGS methods will access regions of the genome that are
intractable to stWGS, and advancements in IrWGS technologies,
as well as computational annotation and interpretation tools, will
provide significant long-term value in expanding the catalogue of
functional variation associated with insertions and mobile
elements, as well as variation localized to the most challenging
sequence features in the human genome.
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