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Abstract 
Virtually all genome sequencing efforts in national biobanks, complex and Mendelian disease programs, and emerging 
clinical diagnostic approaches utilize short-reads (srWGS), which present constraints for genome-wide discovery of 
structural variants (SVs). Alternative long-read single molecule technologies (lrWGS) offer significant advantages for 
genome assembly and SV detection, while these technologies are currently cost prohibitive for large-scale disease 
studies and clinical diagnostics (~5-12X higher cost than comparable coverage srWGS). Moreover, only dozens of such 
genomes are currently publicly accessible by comparison to millions of srWGS genomes that have been commissioned 
for international initiatives. Given this ubiquitous reliance on srWGS in human genetics and genomics, we sought to 
characterize and quantify the properties of SVs accessible to both srWGS and lrWGS to establish benchmarks and 
expectations in ongoing medical and population genetic studies, and to project the added value of SVs uniquely 
accessible to each technology. In analyses of three trios with matched srWGS and lrWGS from the Human Genome 
Structural Variation Consortium (HGSVC), srWGS captured ~11,000 SVs per genome using reference-based 
algorithms, while haplotype-resolved assembly from lrWGS identified ~25,000 SVs per genome. Detection power and 
precision for SV discovery varied dramatically by genomic context and variant class: 9.7% of the current GRCh38 
reference is defined by segmental duplications (SD) and simple repeats (SR), yet 91.4% of deletions that were 
specifically discovered by lrWGS localized to these regions. Across the remaining 90.3% of the human reference, we 
observed extremely high concordance (93.8%) for deletions discovered by srWGS and lrWGS after error correction 
using the raw lrWGS reads. Conversely, lrWGS was superior for detection of insertions across all genomic contexts. 
Given that the non-SD/SR sequences span 90.3% of the GRCh38 reference, and encompass 95.9% of coding exons in 
currently annotated disease associated genes, improved sensitivity from lrWGS to discover novel and interpretable 
pathogenic deletions not already accessible to srWGS is likely to be incremental. However, these analyses highlight the 
added value of assembly-based lrWGS to create new catalogues of functional insertions and transposable elements, as 
well as disease associated repeat expansions in genomic regions previously recalcitrant to routine assessment.
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Main Text 
 
The field of genomics has seen remarkable advances in the 
accuracy and efficiency of massively parallel sequencing-by-
synthesis technology that generates pairs of short reads from the 
ends of small 400-800 base pair (bp) fragments (referred to herein 
as short-read WGS [srWGS]). This technical leap, and derivative 
approaches such as targeted exome capture sequencing (WES), 
have catalyzed a deluge of gene discoveries for rare diseases and 
insights into population genetics and genome biology. 
Correspondingly, srWGS has been adopted by all major human 
disease and biobank sequencing initiatives, including the NHGRI 
Centers for Common Disease Genomics (CCDG)1 and Centers for 
Mendelian Genetics (CMG),2 the Deciphering Developmental 
Disorders (DDD) project,3 the Trans-Omics for Precision 
Medicine (TOPMed),4 the All of Us Research Program,5 the 
NICHD Gabriella Miller Kids First (GMKF) initiative, the UK 
BioBank,6 and Genomics England,7 to name just a few. As such, a 
critical step for the field is to establish uniform methods for srWGS 
data processing and rational benchmarking standards to set 
expectations for variant detection. 
 
The technical processes of genome alignment and single 
nucleotide variant (SNV) detection have been an intensive focus 
of genomics since the inception of the 1000 Genomes Project,8–10 
and more recently updated for cross-institute functional 
equivalence as part of the NHGRI Genome Sequencing Program.11 
However, no standardized methods have been adopted for 
structural variants (SVs), defined as genomic alterations greater 
than 50 bp in size, and consequently no gold-standard 
benchmarking approaches exist for SV discovery. This lack of 
uniformity has introduced a barrier to the establishment of reliable 
estimates of the SV counts and characteristics per genome that are 
comparable to those established for short variants. Not surprisingly, 
as shown in Figure 1A these estimates have varied considerably 
across studies. The initial discovery effort from the 1000 Genomes 
Project12,13 revealed that a diverse landscape of SVs could be 
captured from srWGS with just 4-7X coverage (3,422 SVs per 
genome), and more recent population genetic and human disease 
studies using deeper (30X or higher) srWGS and diverse methods 
have varied in estimates of SVs that can be captured using srWGS 
from 401 – 10,884 per genome, with the highest end of this range 
generated from the Human Genome Structural Variation 
Consortium (HGSVC; Figure 1A) .1,13–18 

 
Emerging long-read WGS (lrWGS) technologies, which involve 
sequencing thousands to millions of contiguous nucleotides from 
a single strand of DNA, are better suited for SV discovery than 
srWGS. The most widely tested lrWGS technologies include 
single-molecule real-time (SMRT) sequencing from Pacific 
Biosciences (PacBio) and sequencing by ionic current through a 

nanopore channel (Oxford Nanopore Technologies [ONT]). A key 
advantage of lrWGS is the abundance of reads that span entire SVs, 
allowing for direct observation rather than detection by inference 
as required for srWGS. These unique properties of lrWGS are 
beginning to revolutionize de novo assembly approaches,19,20 with 
methods already maturing for telomere-to-telomere assembly of 
individual human chromosomes.21,22 The most recent lrWGS 
analyses have at least doubled the number of SVs able to be 
captured in each genome to ~25,000 as compared to srWGS14,22 
(Figure 1A). The impact of these studies has exceeded the sheer 
volume of variants detected: assembly-based long-read analyses 
have opened access to variants in the genome that have been 
traditionally refractory to delineation by short read sequencing or 
interpretation in disease association studies, such as repeat 
expansions and alterations within repetitive segmental 
duplications and centromeres.23 Unfortunately, the current cost of 
lrWGS is a significant premium over srWGS, depending on the 
technology used. By example, the current cost for generation of 
PacBio lrWGS over srWGS for equivalent coverage at leading 
academic platforms from the HGSVC ranges from 5.9-fold 
increase for continuous long read (CLR) technology to 12-fold 
increase for circular consensus sequencing (CCS) HiFi technology. 
Moreover, the low throughput of modern lrWGS platforms renders 
them impractical for adoption in most large-scale population 
studies. The largest published assembly-based PacBio study has 
analyzed just 15 genomes,22 while a recent study from Iceland 
analyzed 1,817 ONT genomes,24 by comparison to millions of 
genomes that have already been sequenced or commissioned using 
srWGS. Given this predominance of srWGS in the current 
landscape of genomics research, we present here a series of 
analyses from the HGSVC to: (i) define and quantify the 
limitations of SV detection from srWGS; (ii) benchmark 
expectations for the number and class of variants that can be 
reliably detected from srWGS; (iii) predict the genomic features 
that drive false positive and false negative discoveries for each 
technology; and (iv) establish the scientific and clinical advances 
offered by state-of-the-art lrWGS assembly as a complementary 
approach to srWGS. 
 

In this study, we performed a detailed comparison of SV detection 
from alignment-based srWGS and assembly-based lrWGS 
methods on matched samples. In the HGSVC, we recently 
generated SV callsets from srWGS and lrWGS of three parent-
child trios from the 1000 Genomes Project.14 For srWGS, this 
initial HGSVC study applied a highly sensitive ensemble approach, 
involving 13 SV detection algorithms (Supplemental Methods), 
and discovered 10,884 SVs per genome. The emphasis on 
sensitivity suggests that ~11,000 SVs per genome likely reflects an 
upper bound on the total number of SVs that can be captured from 
srWGS with alignment-based algorithms applied by the HGSVC, 
as demonstrated in Figure 1A by comparison to other 
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contemporary studies. However, this sensitivity came at the 
significant cost of specificity, with 685 de novo SVs 
observed per genome, or >1,000-fold more than expected 
from srWGS based on family studies, population genetic 
estimators, and molecular validation, therefore representing 
many variant predictions that are likely false 
positives.15,16,25 The lrWGS-derived SV callset combined 
whole genome phasing with two state-of-the-art genome 
assembly approaches (Phase-SV and MS-PAC19,20,26) and 
was supplemented by additional technologies (HiC and 
StrandSeq, see Chaisson et al.14). These methods 
discovered an average of 24,825 haplotype-resolved SVs 
per genome, or over two-fold more than the most sensitive 
srWGS approaches. Surprisingly, although the srWGS and 
lrWGS callsets were generated on identical samples, only a 
limited subset of SVs (66.7% of srWGS and 33.5% of 
lrWGS) overlapped between technologies. Moreover, the 
mutational class of SVs dramatically impacted 
concordance: 60.5% of srWGS and 48.7% of lrWGS 
deletions demonstrated overlap as compared to 81.5% of 
srWGS and 24.1% of lrWGS insertions (Figure 1B). 
 
We sought to define and quantify the factors contributing 
to the poor concordance between SVs derived from each 
technology on matched samples, as these factors might be 
used to improve SV discovery, filtering, and prioritization 
in medical and population genetic initiatives. We first 
explored the role of genomic features such as repetitive 
sequences that are enriched for SVs due to repeat-mediated 
mechanisms,22,27,28 as short-read alignment has well-
documented limitations within these genomic regions.29,30 
We annotated all SVs with sequence context based on 
RepeatMasker31 and segmental duplication32,33 tracks from 
the UCSC genome browser.34,35 For simplicity, we 
consolidated all repetitive sequence annotations into three 
categories: segmental duplication (SD; 5.1% of the 
genome), simple repeat (SR; 4.6%), and referred to all other 
repetitive sequence not overlapping SD/SR elements as 
‘repeat masked’ (RM; 42.9%). The remaining 47.4% of the 
genome not overlapping any of these repeat categories was 
labeled as ‘Unique’ sequence, which is a term used for 
simplicity here but these regions are not completely devoid 
of some duplicated sequences. The Unique and RM 
categories collectively encompass 90.3% of the annotated 
human reference sequence, 90.9% of all currently annotated 
protein-coding sequence, 95.8% of all currently annotated 
coding sequence from evolutionarily constrained genes, 
and 95.9% of genes currently associated with human disease from 
the Online Mendelian Inheritance in Man (OMIM; Figure 1C).36–

39 

 

As expected, the distribution of SVs was non-uniform and varied 
by sequence context for each technology (Figure 1D). Most 
prominently, the enrichment of SV breakpoints in highly repetitive 
genomic sequences (SD/SR regions) was dramatic and their 

Figure 1. Comparison of SV callsets from srWGS and lrWGS. 
  

(A) The substantially increased yield of lrWGS in SV detection is displayed 
from the HGSVC (Chaisson et al 2019)14 and the largest Pacific Biosciences 
(PacBio) lrWGS study published to date (Audano et al 2019)22 by comparison 
to contemporary srWGS studies. As shown, there is wide variability of SV 
detection across srWGS studies to date that report SVs detected per individual 
in more than 100 genomes. Parentheses next to each study label indicate the 
number of genomes analyzed, and bold numbers next to each bar represent 
the number of SVs per genome reported by each study. (B) Overlap of SVs 
from the HGSVC srWGS and lrWGS callsets across children of the three trio 
families, partitioned by SV class. (C) Distribution of repetitive sequences 
across the genome, genes, and exons. Constrained refers to genes and exons 
with pLI > 0.9,36 and OMIM Genes include a curated list of autosomal 
dominant genes that were defined in both Berg et al.43 and Blekhman et al.44 
GB = gigabase, MB = megabase. Percentage listed within each bar is the 
fraction of each group composed of Unique + RM sequences. (D) Distribution 
of SVs from srWGS and lrWGS split by repetitive sequence context. 
Formatting conventions are the same as panel C. (E-F) Concordance of (E) 
deletions and (F) insertions and duplications between srWGS and lrWGS split 
by repetitive sequence context. 
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distribution differed significantly between technologies: 
despite representing just 9.7% of the reference genome, 
SD/SR annotated sequences contained at least one 
breakpoint from 49.8% of all SVs from srWGS and 70.4% 
of all SVs from lrWGS (P < 2.2e-16 for both technologies, 
chi-square test, Table S2, see Supplemental Methods for 
details). This enrichment of SVs in repetitive sequence was 
also strongly correlated with concordance between srWGS 
and lrWGS, as SVs located in repetitive SD/SR sequences 
displayed 57.0% concordance among srWGS variants and 
22.5% in lrWGS variants, whereas those ratios improved 
considerably in less repetitive sequences (Unique + RM) to 
76.5% in srWGS and 59.9% in lrWGS (Figure 1E-F).  
 
While the divergent distributions and diminished 
concordance of SV detection by technology aligned with 
expectations for SD/SR regions, the paucity of overlap 
between technologies in Unique + RM regions was 
unexpected as breakpoints localized to these regions should 
not suffer from the technical confounds that profoundly 
impact SV discovery in highly repetitive sequences. We next 
sought to decouple and quantify the discordance driven by 
underlying biological features of the genome from technical 
noise driven by false positive SVs present in the underlying 
HGSVC callsets, which were optimized for sensitivity as 
described above. We also reasoned that determining the 
covariates that have the greatest influence on false positive 
calls would be of high value. To accomplish this, we 
developed an in silico SV assessment procedure to improve 
the precision of srWGS and lrWGS callsets in non-repetitive 
regions. This procedure re-evaluated the following three 
pieces of orthogonal information from both lrWGS and 
srWGS for each SV: (1) supporting evidence from an 
algorithm that surveys the raw lrWGS reads for the presence 
of an SV (VaPoR;40 Figure 2A); (2) copy states based on 
srWGS normalized read depth (RD) within SVs (Figure 2B, 
S1); (3) discordant paired-end (PE) and split reads (SR) at 
the breakpoint of each predicted SV (Figure 2C-D, S2, Table 
S1). We considered the SVs with one or more modes of 
supporting evidence as “high confidence” and explored their 
overlap based on repeat context for SV calls from different 
technologies (see Supplemental Methods for further details).  
 
We initially applied this in silico SV refinement procedure 
to deletions, which represent the most interpretable class of 
SVs for genomics applications (Figure S3). As expected, the 
in silico confirmation rate—i.e., the proportion of SVs 
supported by one or more of the evidence classes described 
above—was high (93.5%) for deletions concordant between 
technologies in Unique + RM regions, compared to just 13.5% and 
33.1% for those that were only discovered by a single technology 

for srWGS or lrWGS, respectively (Figure S4). After restricting to 
high confidence deletions with supportive information, just 6.2% 
of the deletions in Unique + RM regions were specific to either 

Figure 2. Error correction methods for SVs in Unique + RM region and 
the updated concordance. 
 

(A) In silico evaluation results from VaPoR on deletions (left), insertions 
(middle) and duplications (right). Deletions and insertions were reported 
in both srWGS and lrWGS callsets; duplications were only reported in the 
srWGS callset. (B) Distribution of normalized read depth of srWGS across 
deletions (left), insertions (middle) and duplications (right) that were 
supported by VaPoR (red), and the 1Kb genomic regions that flank each 
SV (grey). (C-D) Distribution of (C) aberrant srWGS read pairs and (D) 
split reads around deletions (left), insertions (middle) and duplications 
(right) that were either homozygous (red), heterozygous (green) or false 
positives (blue). The homozygous, heterozygous and likely false positive SV 
sets were selected using the criteria described in supplemental methods. 
(E-F) Concordance of (E) deletions and (F) insertions and duplications in 
Unique + RM sequences that were supported by the in silico SV refinement 
procedure. Percentages represent the fraction of total variants shared 
between srWGS and lrWGS. 
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srWGS or lrWGS (Figure 2E). Although we cannot rule out 
explanations such as somatic SVs or sub-clonal mutations arising 
in cell culture, these results imply that the most of the discordance 
reported between srWGS and lrWGS for deletion discovery in the 
90.3% of the genome not encompassed by SD/SR sequence was 
likely technical and driven by false positive SV calls that can be 
pruned by post hoc heuristic filtering. 
 
In contrast to this strong concordance between srWGS and lrWGS 
observed for deletions, nearly half (46.3%) of high confidence 
lrWGS insertions in Unique + RM regions had no matching SV 
call from srWGS, while the majority (94.7%) of srWGS insertions 
and duplications were captured by lrWGS SV calls (Figure 2F, S5). 
To further investigate the properties of insertions specifically 
captured by lrWGS in Unique + RM sequences, we aligned the 
assembled sequences of high-confidence insertions against a 
catalog of known repeat elements.31 Most of these insertions 
aligned to specific types of repeat elements (61.8%, N = 2,485 / 
genome), such as short and long interspersed nuclear elements 
(SINEs, N = 1,494 / genome; LINEs, N = 312 / genome) and long 
terminal repeat (LTR, N = 139 / genome) retrotransposons (Figure 
3A,D). Yet another 19.0% of the insertions exhibited partial 
alignments to multiple different repeat types (Figure 3A, C). 
Notably, most (70.1%) of the lrWGS insertions that were shared 
by srWGS aligned to a specific type of repeat element, whereas 
nearly one-third (31.7%) of the insertions specifically discovered 
by lrWGS were partially aligned to multiple different repeats types 
(Figure 3B, C), indicating that the complexity of chimeric repeat 
structures is a major determinant of srWGS sensitivity for insertion 
SVs, as has been previously demonstrated in certain classes of 
nested insertions.41 We further observed high variability in the 
current capabilities of srWGS detection depending on the type of 
transposable element insertions when comparing with lrWGS as 
74.4%, 44.2% and 50.7% of lrWGS insertions were discovered by 
srWGS for SINEs, LINEs and LTRs, respectively (Figure 3D). 
Intriguingly, 95.8% of the high confidence lrWGS insertions in 
Unique + RM regions that did not overlap an srWGS insertion 
nevertheless had some detectable support in the raw srWGS data, 
indicating that continued development of detection algorithms 
could improve sensitivity for these missed insertion SVs (Figure 
3E). Taken together, these analyses indicate that lrWGS and 
assembly-based approaches provide substantial improvements 
over srWGS for insertion discovery, particularly for those events 
with complex repeat structures.  
 
Finally, we examined SVs in highly repetitive SD/SR regions 
using the same in silico evaluation framework (Figure S6A-D) as 
described above with the caveat that the orthogonal evaluation of 
variants within these regions is much more challenging and our 
results are certainly less accurate than in the less repetitive regions 
of the genome. In contrast to the high concordance for deletions in 

Unique + RM sequences, 30.2% and 59.3% of high confidence 
deletions from srWGS and lrWGS, respectively, were not shared 
by the other technology (Figure S6E). The distinct patterns of 
concordance were more dramatic for insertions: only 17.4% of 
insertions from lrWGS were overlapped with an srWGS variant, 
whereas 74.4% of srWGS insertions were captured by lrWGS 
(Figure S6F). These results highlighted that a major source of 
added value from lrWGS over srWGS is found in increased SV 
sensitivity within highly repetitive regions of the genome. 

Figure 3. Alignment of assembled lrWGS insertion sequences 
against known repeat elements.  
 

(A) Count of lrWGS insertions in Unique + RM sequences per genome 
by alignment of inserted sequence to known repeat elements. Number 
on top of bar represents the averaged count of high confidence 
insertions in Unique + RM sequences per genome. (B) Count of lrWGS 
insertions that are specifically discovered by lrWGS and shared by 
srWGS, by alignment of inserted sequences to known repeat elements. 
Formatting conventions used are the same as panel A. (C) Example of 
an insertion SV assembled by lrWGS, annotated with sequences that 
align to known repeat element classes. (D) Counts of lrWGS insertions 
in Unique + RM sequences per genome by the class of inserted 
sequence and the proportion of variants that overlap with srWGS. 
“OTH*” represents insertions aligned to multiple known repeat 
elements, as the example shown in panel (B). “OTH#” 
represents insertions not aligned to any repeat elements. Number in 
parentheses represents the proportion of insertions that overlap 
with srWGS. (E) Count of split reads around the lrWGS high 
confidence insertions displayed in the histogram. 
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In conclusion, we demonstrate the influence of genomic context 
on setting expectations for SV detection from srWGS in genomic 
studies, as well as estimating the anticipated yields of emerging 
lrWGS technologies. Initial genome-wide surveys have implied 
highly variable outcomes and limited overall concordance in SV 
detection between the two technologies; however, in-depth 
analyses of these variants emphasize that genome organization, 
variant type, and high type I error rates in SV detection from each 
technology were the three predominant features driving 
discordance. After applying post hoc filters to correct for the 
relatively high type I error rates for SV detection from this 
ensemble srWGS approach optimized for sensitivity and the 
assembly based lrWGS approach that was optimized with 
orthogonal data types, we were able to extrapolate the informative 
biological factors that influenced differences in SV distributions 
between technologies. The concordance between srWGS and 
lrWGS was remarkably high (93.8%) for deletions localized to the 
least-repetitive regions of the genome, while almost all lrWGS-
specific deletions were localized to repetitive SD/SR regions. 
 
The value added for long-read assembly to discover new disease 
associated SVs, or provide resolution to ‘unsolved’ cases in 
Mendelian genetics, is thus a complex calculus. As we note above, 
srWGS captures virtually all high-quality deletions derived from 
lrWGS assembly in the regions of the genome that encompass 
more than 95% of currently annotated coding sequence in genes 
with existing evidence for dominant-acting pathogenic mutations 
from OMIM, so we anticipate that a minority of ‘unsolved’ cases 
will be explained by cryptic lrWGS SVs from this readily 
interpretable class of heterozygous deletions in currently known 
disease-associated genes. However, given that the most highly 
repetitive regions of the genome have been traditionally 
inaccessible for genomics studies of disease, it is anticipated that 
new disease-associated genes and sequences will emerge from 
these existing blind spots in the human genome. Indeed, germline 
and somatic repeat expansions and contractions are already well 
established mechanisms of human disease, particularly 
neurodegenerative disorders,42 and this is an exciting area for 
future discoveries from lrWGS. As telomere-to-telomere assembly 
methods continue to mature and eventually reach into centromeres, 
telomeres, and segmental duplications, the catalogue of disease 
associated variants will certainly expand beyond what is applied to 
current clinical interpretation. Similarly, lrWGS was superior for 
the detection of insertions, irrespective of genomic context, and the 
near-term value of lrWGS to better delineate coding and 
noncoding insertions and mobile elements across all genomic 
contexts is high. 
 
Collectively, we estimate from these analyses that genomic studies 
and clinical initiatives using srWGS can expect to capture upwards 
of 10,000 SVs in each human genome, and current large-scale 

international initiatives are poised to provide exciting new insights 
into the 90% of the annotated reference genome that encompasses 
almost all known genic sequence. We also confirm that assembly-
based lrWGS methods will access regions of the genome that are 
intractable to srWGS, and advancements in lrWGS technologies, 
as well as computational annotation and interpretation tools, will 
provide significant long-term value in expanding the catalogue of 
functional variation associated with insertions and mobile 
elements, as well as variation localized to the most challenging 
sequence features in the human genome. 
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