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ABSTRACT

One of the major issues with RNA sequencing is the lack of reproducibility between RNA and
protein expression. Transcriptomics offers a holistic view of the molecular landscape of a tissue
at an RNA level. However, RNA and protein expression are often at odds when measured in
the same sample, raising the question whether or not changes in RNA expression translate to
functional differences. This problem creates a need to devise a way to approximate protein
abundance from transcriptomics data, in order to create a more complete picture of the
functional landscape of a tissue. One additional measure that could be useful here is protein
turnover or half-life. Once RNA is transcribed into protein, that protein can either be quickly
degraded or remain in the cell for an extended period of time. The longer a protein’s half-life,
the more influence it can have on its surroundings. Recently, a study used stable isotope
labeling in mammals (SILAM) in combination with mass spectrometry to determine the turnover
ratio of ~2200 protein in mouse synaptosomes. This data offers a valuable opportunity to
integrate protein turnover with RNA expression to gain deeper insight into the functional
meaning of RNA expression changes. Here, we present the concept of this combination of
protein turnover and RNA expression, which we coined as persistence. We then demonstrate
the application of persistence using schizophrenia (SCZ) transcriptomics datasets. Calculating
persistence for these datasets greatly improved our ability to predict protein expression from
RNA expression. Furthermore, this approach successfully identified persistent genes and
pathways known to have impactful changes in SCZ. These results suggest that persistence is a

valuable metric for improving the functional insight that can be gained from transcriptomics data.
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INTRODUCTION

The use of RNA sequencing (RNAseq) to assess global changes in gene expression has grown
rapidly in the last decade [1-3]. RNAseq allows researchers to collect transcriptomic signatures
in their tissue and disease of study, yielding extensively more data than more traditional
methods such as gPCR. This comprehensive view of the molecular landscape has been pivotal
to uncovering novel disease mechanisms and targets. As the cost of RNAseq drops and the

technology improves, it will be a central tool in biological studies moving forward [3-5].

While RNAseq is a powerful tool, it has one major caveat, in that RNA expression does not
necessarily match protein expression. RNA may be present in a cell, but we have no way of
knowing the rate at which that RNA is translated into protein or if that protein is active in the cell.
This disequilibrium between RNA and protein suggests that RNAseq results could be
misleading and fail to reveal functional insights into cell function and disease mechanisms [5-8].
While proteomics is an option, RNAseq is more commonly used and cost-effective, so finding a
way to extend RNAseq applications to gain insight into protein expression would allow use of

existing MRNA datasets to gain a deeper understanding of diseases or model systems [8].

Here, we propose a novel method of using protein turnover ratios to infer protein expression
from RNAseq and microarray data. Every protein has a particular half-life, and therefore exists
in a cell to exert its functions for a relatively predictable amount of time [9,10]. We propose that
using this information about protein half-life in tandem with transcriptomics data could offer
insights into protein expression. Proteins that are degraded quickly may show low protein
expression even if there is a large amount of RNA present, and proteins that last may show high
protein expression even if there is lower RNA. We coined the term “persistence” to define this

relationship between RNA expression, protein half-life, and protein expression, and propose that
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analyzing persistence could offer greater functional insights into traditional RNAseq datasets

[11,12].

We utilized existing protein turnover data in combination with schizophrenia (SCZ) RNAseq and
RNA microarrays to assess this concept and demonstrate its potential application in disease
states. In a 2018 paper, stable isotope labeling in mammals (SILAM) to assess protein turnover
in mouse synaptosomes and turnover ratios were determined for ~2,200 proteins in the brain
[13]. We used these data to establish persistence scores and applied these values to existing
RNA datasets. Three existing RNA datasets from our lab containing control (CTL) and SCZ
subjects were examined. Here we assessed (1) the relationship between RNA abundance and
protein turnover ratios in CTL and SCZ; (2) whether or not there is a shift in persistence in SCZ;
(3) the biological pathways associated with high and low persistence genes; and (4) the

relationship between persistence and protein expression.

Our results suggest that, while there is not a direct relationship between turnover and RNA
expression or a shift in persistence in SCZ, genes identified as high and low persistence have
previously been implicated in the functional deficits of SCZ. Additionally, our current method
improves the ability of RNA data to predict protein data, and further studies with larger datasets
and machine learning could be used to further improve the persistence calculation. If we can
more closely identify the relationship between RNA, protein, and turnover, this method could

expand the applications of transcriptomics by allowing it to offer insight into protein function.

RESULTS
There is not a relationship between protein turnover ratios and RNA abundance
We started by simply looking for a relationship between protein turnover and RNA abundance

with the idea that perhaps proteins that turnover faster are transcribed faster or vice versa.
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Regression analysis revealed that there is no relationship between turnover and RNA in CTL or
SCZ in any of our datasets (Deep CTL: Adj R?=0.000135, Deep SCZ: Adj R?=0.000267, DISC1
CTL: Adj R?=0.000843, DISC1 SCZ: Adj R?=0.000672, Super CTL: Adj R?=0.000319, Super
SCZ: Adj R?=-0.000231) (Fig 1). This suggests that there is a more complex relationship
between RNA and protein across the transcriptome. We cannot simply assume that high
turnover proteins are transcribed more, so a more complex calculation is needed to integrate

these measurements in a way that is informative.

SCZ does not shift RNA expression in high or low turnover proteins

While no overall relationship was observed between turnover and RNA, it is possible that SCZ
could enhance the enrichment of a certain family of turnover proteins. For example, short-lived
proteins could be expressed more in SCZ than long-lived proteins or vice versa. In order to look
for this specific enrichment, we broke the turnover ratio data into 5 bins ranging from very high
turnover (quick half-life) to low turnover (long half-life). We then examined how many genes in
each bin were differentially expressed (DEGSs) in SCZ and normalized this to the number of
genes in the bin, yielding the % of DEGs in each bin (Fig 2). A one-way ANOVA
(F(4,10)=0.003; p>0.999) revealed that there was no particular enrichment in any one bin,

suggesting that SCZ does not specifically enrich genes based on turnover ratio.

High and low persistence genes correspond to pathways known to be impacted by SCZ
Turnover ratios were available for 2272 genes [13]. Of these, 2101 were found in our 3 RNA
expression datasets, so persistence scores were calculated for these genes (Supplemental
Table 1). The overall relationship between persistence and p value in our 3 SCZ datasets can
be found in Fig 3. Genes that were significantly differentially expressed between SCZ and CTL
and had a persistence score >0.5 or <-0.5 were determined to have high or low persistence,

respectively. This 0.5 cutoff marked genes with good separation from the rest of the dataset,
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and therefore suggests that these genes have especially meaningful persistence. At this cutoff,
we identified 30 high persistence genes (4 in Deep, 15 in DISC1, and 11 in Super) and 7 low
persistence genes (0 in Deep, 5in DISC1, and 2 in Super) (Table 1). We did not find much

direct overlap between datasets (3 shared high persistence and 0 shared low persistence).

We then used EnrichR to run a pathway analysis on the high and low persistence genes
identified in each dataset [14]. Each set of genes was analyzed for significant (p < 0.05)
enrichment in the gene ontology biological pathway, molecular function, and cellular component
categories. Overall, we found 412 high persistence pathways (113 in Deep, 126 in DISC1, 149
in Super) and 59 low persistence pathways (0 in Deep, 39 in DISC1, 20 in Super). While these
pathways were varied, there were a few themes that were common between datasets that are
known to be impacted by SCZ [15,16]. The predominant theme in the high persistence genes
was ion homeostasis, while the predominant low persistence theme was respiration. Other high
persistence themes include metabolic process, immune system process, and transport; while
other low persistence themes included ion homeostasis, ATP, and protein modification (Fig 4;

Supplemental Table 2).

Persistence improves RNA prediction of protein fold change

While the present persistence calculation appears to reveal meaningful insights into SCZ, we
can compare our persistence scores to actual protein abundance measures to further
demonstrate the value of this approach. The DISC1 dataset contains information on both RNA
and protein fold changes, allowing for this insightful comparison. While persistence did not
generate a perfect correlation with protein fold change (Pearson Correlation R?=0.65), it did
generate a stronger correlation with protein fold change than mRNA fold change alone (Pearson
Correlation R?=0.208) (Fig 5). This comparison suggests that persistence does improve our

ability to predict protein abundance from RNA abundance. While there is still room for
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improvement, the persistence calculation presented here represents a good starting point for

improving our ability to estimate changes in protein from changes in RNA.

DISCUSSION

Persistence is a novel concept intended to expand the lens of transcriptomics to infer protein
function by considering RNA expression and protein turnover together. Our goal is to address a
common problems with transcriptomics, in that it tries to gain functional insight into protein
expression that is often missed by simply analyzing RNA expression [6—8]. We propose that
one can approximate protein abundance by considering RNA expression in conjunction with
how long the corresponding protein will last in the cell once it is translated (turnover ratio)
[11,12]. While there is still room for improvement to make this link more complete between RNA
and protein, we have shown that persistence is an insightful measure and that further work with

the concept could be a valuable resource for computational biologists.

The lack of relationship between protein turnover and RNA abundance suggests that a more
complex metric is required to extract meaningful insights from the data (Fig 1). For this reason,
we developed the concept of persistence and demonstrated how it may be applied in 3 SCZ
RNA datasets (1 RNAseqg and 2 microarray). We did not observe a particular enrichment of
high or low turnover genes in SCZ relative to CTL (Fig 2). This suggests that there is not one
specific type of turnover impacted by SCZ, but does not rule out that enrichment of certain high

or low persistence genes happens in the disease.

Therefore, we identified high and low persistence genes by selecting significantly differentially
expressed genes with a persistence score >0.5 or <-0.5, respectively (Fig 3; Table 1). These
criteria yielded a small number of genes that largely corresponded to pathways known to be

altered in SCZ (Fig 4). These results are encouraging that persistence is a meaningful measure
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because these pathways have been implicated in SCZ in prior studies. For example, ion
homeostasis was the most commonly altered category in our high persistent pathways [17-22].
Specifically, potassium and sodium metal ion activity and transport appear to be more persistent
in SCZ. Multiple studies in animals, iPSCs, and humans have noted increased potassium and
sodium channel expression and activity in the prefrontal cortex. These changes were
associated with abnormal neuronal activity, diminished synaptic plasticity, and impaired white
matter integrity, all of which are characteristic of SCZ [17-22]. Additionally, antipsychotics can
reverse these ion channel alterations, suggesting that this is a key mechanism in SCZ pathology
[23—-25]. Beyond ions, we also saw increased persistence in inflammatory system processes,
which is consistent with observations of increased cytokine expression and immune system

responsivity in SCZ [20,26-28].

In terms of low persistence, we observed a decrease in respiration in SCZ. Specifically, there
was low persistence in pathways associated with oxidative phosphorylation, suggesting that
neurons in SCZ struggle to maintain sufficient levels of ATP production via aerobic respiration.
Impaired oxidative phosphorylation and abnormal mitochondrial function has been noted in
multiple SCZ studies [29-32]. This again indicates that there is a loss of efficiency in SCZ that
puts more stress on the system and forces neurons to turn to alternate sources of energy.
Indeed, postmortem samples from SCZ patients show an increase in lactate metabolism
[29,33]. Interestingly, we also observed high persistence in metabolic processes, which further
supports this concept of metabolic compensation for a loss of oxidative phosphorylation in SCZ.
Overall, the genes and pathways identified by our persistence analysis are altered in SCZ,
supporting the potential of this technique to extract important functional information from

transcriptomics datasets.
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Limitations and Future Directions

The present persistence results did correlate fairly strongly with protein abundance (R?=0.68),
which was a substantial improvement over RNA expression alone (R?=0.208). However,
continued efforts to improve the persistence calculation are warranted (Fig 5). We were only
able to do this comparison in one dataset, as matching postmortem or iPSC tissue RNAseq and
proteomics is rare, but this suggests that there is room for improvement in our persistence
calculation. The present study was also limited by the narrow scope of the available turnover
ratios. We only had ratios for ~2200 proteins, and these ratios were specific to synaptosomes.
This left us with a narrow window into RNA datasets that needed to be specifically from neurons
[34]. Of our more than 30 SCZ datasets, only 3 matched these criteria. With limited RNAseq /
microarray datasets and turnover ratios, the present calculation is a good concept
demonstration, but we would like to develop the concept of persistence further using expanded

datasets and machine learning.

Ideally, this expansion would feature well-powered studies that have RNAseq and proteomics
run on the same samples. This would allow us to use machine learning to integrate RNA
expression and protein turnover ratios in the way that would most accurately predict protein
expression in the same tissue [35,36]. A more complex relationship undoubtedly exists
between these factors, so training a model to more accurately predict this relationship would be
highly beneficial [10-12]. It would also be useful to expand the number and variety of protein
turnover ratios to put into this model. This would require more SILAM studies [37,38], but
gathering this information from more animals in more tissues would greatly expand the context
in which persistence could be applied. For example, another tissue for which turnover data is
currently available is the liver [13]. We could use RNAseq data and liver cell protein turnover
ratios to create models to predict protein abundance in a normally functioning liver. This model

could then be used with RNAseq data from liver cancer to better identify the functional changes
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that occur in that disease state. While this would require time and money, it would add a new
dimension to transcriptomics studies and improve our ability to understand mechanisms
underlying various disorders. Especially high or low persistence genes may also represent
important therapeutic targets since they will likely have a magnified role in disease mechanisms

[39-41].

Overall, we have demonstrated that applying protein turnover ratio data to RNA expression data
represents a novel form of analysis that expands the amount of information that can be obtained
from transcriptomics. Persistence combines RNAseq with protein turnover ratios to infer protein
abundance, which is a more accurate measure of function in a cell. While the present study is
limited by a lack of sufficient input data, it does identify high and low persistent genes and
pathways that have been implicated in SCZ. Further development of the concept of persistence
with expanded studies and machine learning techniques could greatly improve our ability to

understanding of the molecular landscape in disease with RNAseq alone.

MATERIALS AND METHODS

Dataset Selection

Given that the turnover ratios were derived from synaptosomes, the present analysis was
restricted to RNA datasets from neuronal populations alone. While this concept could be
applied to a variety of subjects, we selected SCZ as our present focus, as it is a particularly
pervasive disorder known to have widespread effects throughout the brain. With these criteria
in mind, we selected three neuronal, SCZ RNA datasets: Deep, DISC1, and Super [34]. The
Deep and Super datasets were derived from pyramidal neurons cut from the dorsolateral
prefrontal cortex of postmortem SCZ and CTL samples using laser capture microscopy.
Specifically, the Deep dataset comes from the deep layers (IV-VI) of this region while the Super

dataset comes from the superficial layers (I-1ll). Both of these datasets were obtained from
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RNA microarrays. The DISC1 dataset was derived from RNAseq run on induced pluripotent
stem cells (iPSCs) obtained from SCZ patients positive for a DISC1 mutation and CTL siblings
lacking the mutation. These iPSCs were differentiated into neurons and used for RNAseq
analysis. Additionally, the DISC1 dataset included parallel proteomic data (mass spectroscopy)

which allowed us to compare mRNA and protein.

Turnover vs RNA Abundance

Scatterplots of protein turnover versus mRNA abundance we generated utilizing R base
graphics for the Deep, DISC1, and Super datasets. This was performed for both CTL and SCZ
data. A linear regression model was computed for both groups of data using the R base

statistics Im function.

Turnover Distribution in SCZ

Genes were sorted into bins of low to high turnover ratios. Differentially expressed genes
(DEGS) (p<0.05) in SCZ were overlaid with these bins to determine the number of genes in
each turnover bin. One-way ANOVA was used to determine if there was any significant
difference between the numbers of DEGs in each bin, which would be suggestive of a particular

bin being more strongly affected by SCZ. This analysis was performed in GraphPad Prism 8.

Persistence Calculation

In order to identify genes with particular importance, we created the concept of persistence.
Persistence utilizes the Huganir turnover ratios [13] and RNA fold change to generate a
measurement of the potential functional impact of changes in RNA expression. The persistence

calculation was conducted as follows:

RNA log2FoldChange
Turnover Ratio

Persistence =
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This equation is designed to generate a persistence score in which high values indicate high
persistence, meaning that that particular gene is produced more in the disease state (high RNA
fold change) and stays around longer to exert more activity (low turnover ratio [i.e. long half-
life]). On the other hand, low persistence suggests that genes are produced less (low RNA fold
change) and are quickly degraded (high turnover ratio [i.e. short half-life]), resulting in a lower
overall impact in the synaptosome. Theoretically, this combination of RNA fold change and

turnover ratio should act as a proxy for protein fold change.

Volcano Plots

The persistence scores for the Deep, DISC1, and Super datasets were generated and quantile
normalized using the preprocessCore library in R. The negative log 10 of the p-value was
computed for SCZ versus CTL. A volcano plot was then generated using the ggplot2 R
package with persistence on the x-axis and log10 p-value on the y-axis. Significant genes were
colored in red with the threshold of 0.05 for the p-value or 1.3 for -log10 of the p-value. Those
genes which were significant were further filtered for persistence. The thresholds for
persistence were greater than 0.5 or less than -0.5. The genes that were selected were then

used for downstream analysis.

Pathway Enrichment Analysis

After selecting significant, persistence genes, these genes were then used for enrichment
analysis utilizing EnrichR [14]. The databases utilized were the three Gene Ontology
databases: Cellular Component, Biological Process, and Molecular Function. The analysis was
performed for the set of genes with high and low persistence separately, yielding a set of
enriched pathways. A heatmap of -log10 p-values was generated using the library gplots for the

Deep, DISC1, and Super datasets utilizing the union of significant pathways for the three
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datasets. The resulting pathway annotations were then categorized into supersets using a priori

knowledge.

DISC1 mRNA vs Protein Fold Change
R base graphics were used to generate a mRNA log?2 fold change versus protein log2 fold
change scatterplot for the DISC1 dataset. Correlation was computed using R base statistics

and a linear regression model was fitted using R base statistics.

DISC1 Persistence vs Protein Fold Change
R base graphics were used to generate a QN persistence versus protein log2 fold change
scatterplot. As in previous method descriptions, correlation was computed using R base

statistics and a linear regression model was fitted.
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FIGURE LEGENDS

Figure 1. Lack of relationship between protein turnover ratio and RNA abundance.
Correlation plots between protein turnover ratios and RNA abundance in (A) Deep, (B) DISC1,
and (C) Super datasets. No relationships were identified in CTL (black dots) or SCZ (red dots)

subjects.

Figure 2: No shift in gene fold change in SCZ as a function of turnover ratio. Genes in
different turnover ratio bins showed similar degrees of expression changes between SCZ and
CTL samples across all 3 datasets, suggesting that no particular bin was especially sensitive to

SCZ disease effects.

Figure 3: Persistent, significant genes in SCZ. Volcano plots of persistence scores and —
log10 p values from (A) Deep, (B) DISC1, and (C) Super datasets. Red dots signify significant
(p<0.05) genes, and labels signify genes that also surpassed the persistence cutoff of 0.5.
These genes were assigned as having low (<-0.5) or high (>0.5) persistence and used in

subsequent analyses.

Figure 4. Persistent pathways in SCZ. Heatmaps of significant (p<0.05) pathways
associated with (A) high and (B) low persistence genes. Pathways have been assigned to

categories summarizing their major functions.

Figure 5: Persistence better predicts protein fold change in SCZ than mRNA fold change
alone in the DISC1 dataset. (A) Correlation between protein and mRNA fold change
(R?=0.208). (B) Correlation between protein fold change and persistence scores (R?=0.68).
This improved correlation suggests that persistence can be predictive of protein expression but

that room for improvement exists in the present calculation.


https://doi.org/10.1101/2020.07.02.185462
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: “Persistent” genes in SCZ datasets. Genes that are significantly differentially expressed in SCZ vs CTL and have high

(>0.5) or low (<-0.5) persistence scores.

Deep

DISC1

Super

High Persistence

Low Persistence

High Persistence

Low Persistence

High Persistence

Low Persistence

Gene Score Gene Score Gene Score Gene Score Gene Score Gene Score
TNR 0.663 CRYM 0.870 | ALDH1A1 -0.567 NEFM 0.870 UQCRB -0.594
ME3 0.625 GPD1 0.791 CLYBL -0.594 MBP 0.791 | CORO2A -0.631
HIBADH 0.600 MBP 0.750 CHL1 -0.631 TUBB2A 0.750
CAPZAL 0.574 TNR 0.698 NRN1 -0.875 NEFL 0.698

SYNPR 0.670 ATP1A4 -0.960 ATP1B1 0.631

NCAN 0.663 INA 0.625

SLC32A1 0.631 HSPD1 0.600

KCNA1 0.625 GNAO1 0.592

SLC13A5 0.609 SH3BGRL2 0.574

NRGN 0.600 ATP6VOAl1 0.561

BDH1 0.592 SEPT7 0.512

ME3 0.574

ACTN2 0.561

PLCXD3 0.525

GNG4 0.512
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SUPPORTING INFORMATION LEGENDS
Supplemental Table 1. Persistence information for full SCZ datasets. Persistence scores,
-log 10 p values, and significance information for 2101 genes in Deep, DISC1, and Super

dataset.

Supplemental Table 2: Full pathway information from Figure 4 heatmaps. Details

regarding pathways associated with (A) high and (B) low persistence genes.
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