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ABSTRACT 

One of the major issues with RNA sequencing is the lack of reproducibility between RNA and 

protein expression.  Transcriptomics offers a holistic view of the molecular landscape of a tissue 

at an RNA level.  However, RNA and protein expression are often at odds when measured in 

the same sample, raising the question whether or not changes in RNA expression translate to 

functional differences.  This problem creates a need to devise a way to approximate protein 

abundance from transcriptomics data, in order to create a more complete picture of the 

functional landscape of a tissue.  One additional measure that could be useful here is protein 

turnover or half-life.  Once RNA is transcribed into protein, that protein can either be quickly 

degraded or remain in the cell for an extended period of time.  The longer a protein’s half-life, 

the more influence it can have on its surroundings.  Recently, a study used stable isotope 

labeling in mammals (SILAM) in combination with mass spectrometry to determine the turnover 

ratio of ~2200 protein in mouse synaptosomes.  This data offers a valuable opportunity to 

integrate protein turnover with RNA expression to gain deeper insight into the functional 

meaning of RNA expression changes.  Here, we present the concept of this combination of 

protein turnover and RNA expression, which we coined as persistence.  We then demonstrate 

the application of persistence using schizophrenia (SCZ) transcriptomics datasets.  Calculating 

persistence for these datasets greatly improved our ability to predict protein expression from 

RNA expression.  Furthermore, this approach successfully identified persistent genes and 

pathways known to have impactful changes in SCZ.  These results suggest that persistence is a 

valuable metric for improving the functional insight that can be gained from transcriptomics data.   
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INTRODUCTION 

The use of RNA sequencing (RNAseq) to assess global changes in gene expression has grown 

rapidly in the last decade [1–3].  RNAseq allows researchers to collect transcriptomic signatures 

in their tissue and disease of study, yielding extensively more data than more traditional 

methods such as qPCR.  This comprehensive view of the molecular landscape has been pivotal 

to uncovering novel disease mechanisms and targets.  As the cost of RNAseq drops and the 

technology improves, it will be a central tool in biological studies moving forward [3–5]. 

 

While RNAseq is a powerful tool, it has one major caveat, in that RNA expression does not 

necessarily match protein expression.  RNA may be present in a cell, but we have no way of 

knowing the rate at which that RNA is translated into protein or if that protein is active in the cell.  

This disequilibrium between RNA and protein suggests that RNAseq results could be 

misleading and fail to reveal functional insights into cell function and disease mechanisms [5–8].  

While proteomics is an option, RNAseq is more commonly used and cost-effective, so finding a 

way to extend RNAseq applications to gain insight into protein expression would allow use of 

existing mRNA datasets to gain a deeper understanding of diseases or model systems [8].   

 

Here, we propose a novel method of using protein turnover ratios to infer protein expression 

from RNAseq and microarray data.  Every protein has a particular half-life, and therefore exists 

in a cell to exert its functions for a relatively predictable amount of time [9,10].  We propose that 

using this information about protein half-life in tandem with transcriptomics data could offer 

insights into protein expression.  Proteins that are degraded quickly may show low protein 

expression even if there is a large amount of RNA present, and proteins that last may show high 

protein expression even if there is lower RNA.  We coined the term “persistence” to define this 

relationship between RNA expression, protein half-life, and protein expression, and propose that 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.02.185462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185462
http://creativecommons.org/licenses/by-nc-nd/4.0/


analyzing persistence could offer greater functional insights into traditional RNAseq datasets 

[11,12].   

 

We utilized existing protein turnover data in combination with schizophrenia (SCZ) RNAseq and 

RNA microarrays to assess this concept and demonstrate its potential application in disease 

states.  In a 2018 paper, stable isotope labeling in mammals (SILAM) to assess protein turnover 

in mouse synaptosomes and turnover ratios were determined for ~2,200 proteins in the brain 

[13].  We used these data to establish persistence scores and applied these values to existing 

RNA datasets.  Three existing RNA datasets from our lab containing control (CTL) and SCZ 

subjects were examined.  Here we assessed (1) the relationship between RNA abundance and 

protein turnover ratios in CTL and SCZ; (2) whether or not there is a shift in persistence in SCZ; 

(3) the biological pathways associated with high and low persistence genes; and (4) the 

relationship between persistence and protein expression.   

 

Our results suggest that, while there is not a direct relationship between turnover and RNA 

expression or a shift in persistence in SCZ, genes identified as high and low persistence have 

previously been implicated in the functional deficits of SCZ.  Additionally, our current method 

improves the ability of RNA data to predict protein data, and further studies with larger datasets 

and machine learning could be used to further improve the persistence calculation.  If we can 

more closely identify the relationship between RNA, protein, and turnover, this method could 

expand the applications of transcriptomics by allowing it to offer insight into protein function. 

 

RESULTS 

There is not a relationship between protein turnover ratios and RNA abundance 

We started by simply looking for a relationship between protein turnover and RNA abundance 

with the idea that perhaps proteins that turnover faster are transcribed faster or vice versa.  
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Regression analysis revealed that there is no relationship between turnover and RNA in CTL or 

SCZ in any of our datasets (Deep CTL: Adj R2=0.000135, Deep SCZ: Adj R2=0.000267, DISC1 

CTL: Adj R2=0.000843, DISC1 SCZ: Adj R2=0.000672, Super CTL: Adj R2=0.000319, Super 

SCZ: Adj R2=-0.000231) (Fig 1).  This suggests that there is a more complex relationship 

between RNA and protein across the transcriptome.  We cannot simply assume that high 

turnover proteins are transcribed more, so a more complex calculation is needed to integrate 

these measurements in a way that is informative.    

 

SCZ does not shift RNA expression in high or low turnover proteins 

While no overall relationship was observed between turnover and RNA, it is possible that SCZ 

could enhance the enrichment of a certain family of turnover proteins.  For example, short-lived 

proteins could be expressed more in SCZ than long-lived proteins or vice versa.  In order to look 

for this specific enrichment, we broke the turnover ratio data into 5 bins ranging from very high 

turnover (quick half-life) to low turnover (long half-life).  We then examined how many genes in 

each bin were differentially expressed (DEGs) in SCZ and normalized this to the number of 

genes in the bin, yielding the % of DEGs in each bin (Fig 2).  A one-way ANOVA 

(F(4,10)=0.003; p>0.999) revealed that there was no particular enrichment in any one bin, 

suggesting that SCZ does not specifically enrich genes based on turnover ratio. 

 

High and low persistence genes correspond to pathways known to be impacted by SCZ 

Turnover ratios were available for 2272 genes [13].  Of these, 2101 were found in our 3 RNA 

expression datasets, so persistence scores were calculated for these genes (Supplemental 

Table 1).  The overall relationship between persistence and p value in our 3 SCZ datasets can 

be found in Fig 3.  Genes that were significantly differentially expressed between SCZ and CTL 

and had a persistence score >0.5 or <-0.5 were determined to have high or low persistence, 

respectively.  This 0.5 cutoff marked genes with good separation from the rest of the dataset, 
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and therefore suggests that these genes have especially meaningful persistence.  At this cutoff, 

we identified 30 high persistence genes (4 in Deep, 15 in DISC1, and 11 in Super) and 7 low 

persistence genes (0 in Deep, 5 in DISC1, and 2 in Super) (Table 1).  We did not find much 

direct overlap between datasets (3 shared high persistence and 0 shared low persistence). 

 

We then used EnrichR to run a pathway analysis on the high and low persistence genes 

identified in each dataset [14].  Each set of genes was analyzed for significant (p < 0.05) 

enrichment in the gene ontology biological pathway, molecular function, and cellular component 

categories.  Overall, we found 412 high persistence pathways (113 in Deep, 126 in DISC1, 149 

in Super) and 59 low persistence pathways (0 in Deep, 39 in DISC1, 20 in Super).  While these 

pathways were varied, there were a few themes that were common between datasets that are 

known to be impacted by SCZ [15,16].  The predominant theme in the high persistence genes 

was ion homeostasis, while the predominant low persistence theme was respiration.  Other high 

persistence themes include metabolic process, immune system process, and transport; while 

other low persistence themes included ion homeostasis, ATP, and protein modification (Fig 4; 

Supplemental Table 2). 

 

Persistence improves RNA prediction of protein fold change 

While the present persistence calculation appears to reveal meaningful insights into SCZ, we 

can compare our persistence scores to actual protein abundance measures to further 

demonstrate the value of this approach.  The DISC1 dataset contains information on both RNA 

and protein fold changes, allowing for this insightful comparison.  While persistence did not 

generate a perfect correlation with protein fold change (Pearson Correlation R2=0.65), it did 

generate a stronger correlation with protein fold change than mRNA fold change alone (Pearson 

Correlation R2=0.208) (Fig 5).  This comparison suggests that persistence does improve our 

ability to predict protein abundance from RNA abundance.  While there is still room for 
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improvement, the persistence calculation presented here represents a good starting point for 

improving our ability to estimate changes in protein from changes in RNA.   

 

DISCUSSION 

Persistence is a novel concept intended to expand the lens of transcriptomics to infer protein 

function by considering RNA expression and protein turnover together.  Our goal is to address a 

common problems with transcriptomics, in that it tries to gain functional insight into protein 

expression that is often missed by simply analyzing RNA expression [6–8].  We propose that 

one can approximate protein abundance by considering RNA expression in conjunction with 

how long the corresponding protein will last in the cell once it is translated (turnover ratio) 

[11,12].  While there is still room for improvement to make this link more complete between RNA 

and protein, we have shown that persistence is an insightful measure and that further work with 

the concept could be a valuable resource for computational biologists.  

 

The lack of relationship between protein turnover and RNA abundance suggests that a more 

complex metric is required to extract meaningful insights from the data (Fig 1).  For this reason, 

we developed the concept of persistence and demonstrated how it may be applied in 3 SCZ 

RNA datasets (1 RNAseq and 2 microarray).  We did not observe a particular enrichment of 

high or low turnover genes in SCZ relative to CTL (Fig 2).  This suggests that there is not one 

specific type of turnover impacted by SCZ, but does not rule out that enrichment of certain high 

or low persistence genes happens in the disease.   

 

Therefore, we identified high and low persistence genes by selecting significantly differentially 

expressed genes with a persistence score >0.5 or <-0.5, respectively (Fig 3; Table 1).  These 

criteria yielded a small number of genes that largely corresponded to pathways known to be 

altered in SCZ (Fig 4).  These results are encouraging that persistence is a meaningful measure 
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because these pathways have been implicated in SCZ in prior studies.  For example, ion 

homeostasis was the most commonly altered category in our high persistent pathways [17–22].  

Specifically, potassium and sodium metal ion activity and transport appear to be more persistent 

in SCZ.  Multiple studies in animals, iPSCs, and humans have noted increased potassium and 

sodium channel expression and activity in the prefrontal cortex.  These changes were 

associated with abnormal neuronal activity, diminished synaptic plasticity, and impaired white 

matter integrity, all of which are characteristic of SCZ [17–22].  Additionally, antipsychotics can 

reverse these ion channel alterations, suggesting that this is a key mechanism in SCZ pathology 

[23–25].  Beyond ions, we also saw increased persistence in inflammatory system processes, 

which is consistent with observations of increased cytokine expression and immune system 

responsivity in SCZ [20,26–28].      

 

In terms of low persistence, we observed a decrease in respiration in SCZ.  Specifically, there 

was low persistence in pathways associated with oxidative phosphorylation, suggesting that 

neurons in SCZ struggle to maintain sufficient levels of ATP production via aerobic respiration.  

Impaired oxidative phosphorylation and abnormal mitochondrial function has been noted in 

multiple SCZ studies [29–32].  This again indicates that there is a loss of efficiency in SCZ that 

puts more stress on the system and forces neurons to turn to alternate sources of energy.  

Indeed, postmortem samples from SCZ patients show an increase in lactate metabolism 

[29,33].  Interestingly, we also observed high persistence in metabolic processes, which further 

supports this concept of metabolic compensation for a loss of oxidative phosphorylation in SCZ.  

Overall, the genes and pathways identified by our persistence analysis are altered in SCZ, 

supporting the potential of this technique to extract important functional information from 

transcriptomics datasets.   
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Limitations and Future Directions 

The present persistence results did correlate fairly strongly with protein abundance (R2=0.68), 

which was a substantial improvement over RNA expression alone (R2=0.208).  However, 

continued efforts to improve the persistence calculation are warranted (Fig 5).  We were only 

able to do this comparison in one dataset, as matching postmortem or iPSC tissue RNAseq and 

proteomics is rare, but this suggests that there is room for improvement in our persistence 

calculation.  The present study was also limited by the narrow scope of the available turnover 

ratios.  We only had ratios for ~2200 proteins, and these ratios were specific to synaptosomes.  

This left us with a narrow window into RNA datasets that needed to be specifically from neurons 

[34].  Of our more than 30 SCZ datasets, only 3 matched these criteria.  With limited RNAseq / 

microarray datasets and turnover ratios, the present calculation is a good concept 

demonstration, but we would like to develop the concept of persistence further using expanded 

datasets and machine learning.   

 

Ideally, this expansion would feature well-powered studies that have RNAseq and proteomics 

run on the same samples.  This would allow us to use machine learning to integrate RNA 

expression and protein turnover ratios in the way that would most accurately predict protein 

expression in the same tissue [35,36].  A more complex relationship undoubtedly exists 

between these factors, so training a model to more accurately predict this relationship would be 

highly beneficial [10–12].  It would also be useful to expand the number and variety of protein 

turnover ratios to put into this model.  This would require more SILAM studies [37,38], but 

gathering this information from more animals in more tissues would greatly expand the context 

in which persistence could be applied.  For example, another tissue for which turnover data is 

currently available is the liver [13].  We could use RNAseq data and liver cell protein turnover 

ratios to create models to predict protein abundance in a normally functioning liver.  This model 

could then be used with RNAseq data from liver cancer to better identify the functional changes 
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that occur in that disease state.  While this would require time and money, it would add a new 

dimension to transcriptomics studies and improve our ability to understand mechanisms 

underlying various disorders.  Especially high or low persistence genes may also represent 

important therapeutic targets since they will likely have a magnified role in disease mechanisms 

[39–41]. 

 

Overall, we have demonstrated that applying protein turnover ratio data to RNA expression data 

represents a novel form of analysis that expands the amount of information that can be obtained 

from transcriptomics.  Persistence combines RNAseq with protein turnover ratios to infer protein 

abundance, which is a more accurate measure of function in a cell.  While the present study is 

limited by a lack of sufficient input data, it does identify high and low persistent genes and 

pathways that have been implicated in SCZ.  Further development of the concept of persistence 

with expanded studies and machine learning techniques could greatly improve our ability to 

understanding of the molecular landscape in disease with RNAseq alone. 

 

MATERIALS AND METHODS  

Dataset Selection 

Given that the turnover ratios were derived from synaptosomes, the present analysis was 

restricted to RNA datasets from neuronal populations alone.  While this concept could be 

applied to a variety of subjects, we selected SCZ as our present focus, as it is a particularly 

pervasive disorder known to have widespread effects throughout the brain.  With these criteria 

in mind, we selected three neuronal, SCZ RNA datasets:  Deep, DISC1, and Super [34].  The 

Deep and Super datasets were derived from pyramidal neurons cut from the dorsolateral 

prefrontal cortex of postmortem SCZ and CTL samples using laser capture microscopy.  

Specifically, the Deep dataset comes from the deep layers (IV-VI) of this region while the Super 

dataset comes from the superficial layers (I-III).  Both of these datasets were obtained from 
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RNA microarrays.  The DISC1 dataset was derived from RNAseq run on induced pluripotent 

stem cells (iPSCs) obtained from SCZ patients positive for a DISC1 mutation and CTL siblings 

lacking the mutation.  These iPSCs were differentiated into neurons and used for RNAseq 

analysis.  Additionally, the DISC1 dataset included parallel proteomic data (mass spectroscopy) 

which allowed us to compare mRNA and protein. 

   

Turnover vs RNA Abundance 

Scatterplots of protein turnover versus mRNA abundance we generated utilizing R base 

graphics for the Deep, DISC1, and Super datasets.  This was performed for both CTL and SCZ 

data.  A linear regression model was computed for both groups of data using the R base 

statistics lm function. 

 

Turnover Distribution in SCZ 

Genes were sorted into bins of low to high turnover ratios.  Differentially expressed genes 

(DEGs) (p<0.05) in SCZ were overlaid with these bins to determine the number of genes in 

each turnover bin.  One-way ANOVA was used to determine if there was any significant 

difference between the numbers of DEGs in each bin, which would be suggestive of a particular 

bin being more strongly affected by SCZ.  This analysis was performed in GraphPad Prism 8. 

 

Persistence Calculation 

In order to identify genes with particular importance, we created the concept of persistence.  

Persistence utilizes the Huganir turnover ratios [13] and RNA fold change to generate a 

measurement of the potential functional impact of changes in RNA expression.  The persistence 

calculation was conducted as follows: 

����������� 	  
��
 ���2����������

�������� �����
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This equation is designed to generate a persistence score in which high values indicate high 

persistence, meaning that that particular gene is produced more in the disease state (high RNA 

fold change) and stays around longer to exert more activity (low turnover ratio [i.e. long half-

life]).  On the other hand, low persistence suggests that genes are produced less (low RNA fold 

change) and are quickly degraded (high turnover ratio [i.e. short half-life]), resulting in a lower 

overall impact in the synaptosome.  Theoretically, this combination of RNA fold change and 

turnover ratio should act as a proxy for protein fold change.   

 

Volcano Plots 

The persistence scores for the Deep, DISC1, and Super datasets were generated and quantile 

normalized using the preprocessCore library in R.  The negative log 10 of the p-value was 

computed for SCZ versus CTL.  A volcano plot was then generated using the ggplot2 R 

package with persistence on the x-axis and log10 p-value on the y-axis.  Significant genes were 

colored in red with the threshold of 0.05 for the p-value or 1.3 for -log10 of the p-value.  Those 

genes which were significant were further filtered for persistence.  The thresholds for 

persistence were greater than 0.5 or less than -0.5.  The genes that were selected were then 

used for downstream analysis.  

 

Pathway Enrichment Analysis  

After selecting significant, persistence genes, these genes were then used for enrichment 

analysis utilizing EnrichR [14].  The databases utilized were the three Gene Ontology 

databases: Cellular Component, Biological Process, and Molecular Function.  The analysis was 

performed for the set of genes with high and low persistence separately, yielding a set of 

enriched pathways.  A heatmap of -log10 p-values was generated using the library gplots for the 

Deep, DISC1, and Super datasets utilizing the union of significant pathways for the three 
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datasets.  The resulting pathway annotations were then categorized into supersets using a priori 

knowledge.   

 

DISC1 mRNA vs Protein Fold Change  

R base graphics were used to generate a mRNA log2 fold change versus protein log2 fold 

change scatterplot for the DISC1 dataset.  Correlation was computed using R base statistics 

and a linear regression model was fitted using R base statistics. 

 

DISC1 Persistence vs Protein Fold Change  

R base graphics were used to generate a QN persistence versus protein log2 fold change 

scatterplot.  As in previous method descriptions, correlation was computed using R base 

statistics and a linear regression model was fitted. 

 

AUTHOR CONTRIBUTIONS:  MAS, JKR, and REM developed the concept.  MAS and JKR 

conducted the analyses and wrote the manuscript.  REM reviewed and edited the manuscript. 

 

FUNDING:  This work was supported by NIMH MH107487 and MH121102. 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.02.185462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185462
http://creativecommons.org/licenses/by-nc-nd/4.0/


BIBLIOGRAPHY  

1.  Deelen P, Zhernakova D V., de Haan M, van der Sijde M, Bonder MJ, Karjalainen J, et al. 

Calling genotypes from public RNA-sequencing data enables identification of genetic 

variants that affect gene-expression levels. Genome Med. 2015;7. doi:10.1186/s13073-

015-0152-4 

2.  Jazayeri SM, Melgarejo Muñoz LM, Romero HM. RNA-Seq: Un vistazo sobre las 

tecnologías y metodologías. Acta Biol Colomb. 2015;20: 23–35. 

doi:10.15446/abc.v20n2.43639 

3.  Corney DC. RNA-seq Using Next Generation Sequencing. Mater Methods. 2013;3. 

doi:10.13070/mm.en.3.203 

4.  Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 

2019;20: 631–656. doi:10.1038/s41576-019-0150-2 

5.  Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, et al. Guidelines for 

Genome-Scale Analysis of Biological Rhythms. J Biol Rhythms. 2017;32: 380–393. 

doi:10.1177/0748730417728663 

6.  Williams AG, Thomas S, Wyman SK, Holloway AK. RNA-seq Data: Challenges in and 

Recommendations for Experimental Design and Analysis. Curr Protoc Hum Genet. 

2015;83. doi:10.1038/jid.2014.371 

7.  Fang Z, Cui X. Design and validation issues in RNA-seq experiments. Brief Bioinform. 

2011;12: 280–287. doi:10.1093/bib/bbr004 

8.  Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, et al. Genome, 

transcriptome and proteome: The rise of omics data and their integration in biomedical 

sciences. Brief Bioinform. 2018;19: 286–302. doi:10.1093/BIB/BBW114 

9.  Zhou P. Determining protein half-lives. Methods Mol Biol. 2004;284: 67–77. 

doi:10.1385/1-59259-816-1:067 

10.  Rahman M, Sadygov RG. Predicting the protein half-life in tissue from its cellular 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.02.185462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185462
http://creativecommons.org/licenses/by-nc-nd/4.0/


properties. PLoS One. 2017;12. doi:10.1371/journal.pone.0180428 

11.  Doherty MK, Beynon RJ. Protein turnover on the scale of the proteome. Expert Rev 

Proteomics. 2006;3: 97–110. doi:10.1586/14789450.3.1.97 

12.  Pratt JM, Petty J, Riba-Garcia I, Robertson DHL, Gaskell SJ, Oliver SG, et al. Dynamics 

of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics. 2002;1: 

579–591. doi:10.1074/mcp.M200046-MCP200 

13.  Heo S, Diering GH, Na CH, Nirujogi RS, Bachman JL, Pandey A, et al. Identification of 

long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc 

Natl Acad Sci U S A. 2018;115: E3827–E3836. doi:10.1073/pnas.1720956115 

14.  Ma’ayan Lab. Enrichr. 2019. Available: https://amp.pharm.mssm.edu/Enrichr/ 

15.  Maurer I, Zierz S, Möller HJ. Evidence for a mitochondrial oxidative phosphorylation 

defect in brains from patients with schizophrenia. Schizophr Res. 2001;48: 125–136. 

doi:10.1016/S0920-9964(00)00075-X 

16.  Potassium Channel Linked to Schizophrenia | National Institutes of Health (NIH). [cited 

27 Nov 2019]. Available: https://www.nih.gov/news-events/nih-research-

matters/potassium-channel-linked-schizophrenia 

17.  Mäki-Marttunen T, Krull F, Bettella F, Hagen E, Naess S, Ness T V, et al. Alterations in 

Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. 

Cereb Cortex. 2019;29: 875–891. doi:10.1093/cercor/bhy291 

18.  Bruce HA, Kochunov P, Paciga SA, Hyde CL, Chen X, Xie Z, et al. Potassium Channel 

Gene Associations with Joint Processing Speed and White Matter Impairments in 

Schizophrenia HHS Public Access Author manuscript. Genes Brain Behav. 2017;16: 

515–521. doi:10.1111/gbb.12372 

19.  Ruderfer DM, Ripke S, McQuillin A, Boocock J, Stahl EA, Pavlides JMW, et al. Genomic 

Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell. 

2018;173: 1705-1715.e16. doi:10.1016/j.cell.2018.05.046 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.02.185462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185462
http://creativecommons.org/licenses/by-nc-nd/4.0/


20.  Datta D, Arnsten AFT. Unique Molecular Regulation of Higher-Order Prefrontal Cortical 

Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci. 2018;9: 

2127–2145. doi:10.1021/acschemneuro.7b00505 

21.  Rees E, Carrera N, Morgan J, Hambridge K, Escott-Price V, Pocklington AJ, et al. 

Targeted Sequencing of 10,198 Samples Confirms Abnormalities in Neuronal Activity and 

Implicates Voltage-Gated Sodium Channels in Schizophrenia Pathogenesis. Biol 

Psychiatry. 2019;85: 554–562. doi:10.1016/j.biopsych.2018.08.022 

22.  Mi Z, Yang J, He Q, Zhang X, Xiao Y, Shu Y. Alterations of Electrophysiological 

Properties and Ion Channel Expression in Prefrontal Cortex of a Mouse Model of 

Schizophrenia. Front Cell Neurosci. 2019;13. doi:10.3389/fncel.2019.00554 

23.  Duncan CE, Chetcuti AF, Schofield PR. Coregulation of genes in the mouse brain 

following treatment with clozapine, haloperidol, or olanzapine implicates altered 

potassium channel subunit expression in the mechanism of antipsychotic drug action. 

Psychiatr Genet. 2008;18: 226–239. doi:10.1097/YPG.0b013e3283053019 

24.  Paulsen B da S, Cardoso SC, Stelling MP, Cadilhe DV, Rehen SK. Valproate reverts zinc 

and potassium imbalance in schizophrenia-derived reprogrammed cells. Schizophr Res. 

2014;154: 30–35. doi:10.1016/j.schres.2014.02.007 

25.  Brauner JM, Hessler S, Groemer TW, Alzheimer C, Huth T. Risperidone inhibits voltage-

gated sodium channels. Eur J Pharmacol. 2014;728: 100–106. 

doi:10.1016/j.ejphar.2014.01.062 

26.  Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. 

Frontiers in Neuroscience. Frontiers Media S.A.; 2015. doi:10.3389/fnins.2015.00372 

27.  Müller N. THEMED ISSUE Inflammation in Schizophrenia: Pathogenetic Aspects and 

Therapeutic Considerations. Schizophr Bull. 2018;44: 973–982. 

doi:10.1093/schbul/sby024 

28.  Momtazmanesh S, Zare-Shahabadi A, Rezaei N. Cytokine Alterations in Schizophrenia: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.02.185462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185462
http://creativecommons.org/licenses/by-nc-nd/4.0/


An Updated Review. Frontiers in Psychiatry. Frontiers Media S.A.; 2019. 

doi:10.3389/fpsyt.2019.00892 

29.  Dogan AE, Yuksel C, Du F, Chouinard VA, Öngür D. Brain lactate and pH in 

schizophrenia and bipolar disorder: A systematic review of findings from magnetic 

resonance studies. Neuropsychopharmacology. 2018;43: 1681–1690. 

doi:10.1038/s41386-018-0041-9 

30.  Bergman O, Ben-Shachar D. Mitochondrial oxidative phosphorylation system (OXPHOS) 

deficits in schizophrenia: Possible interactions with cellular processes. Can J Psychiatry. 

2016;61: 457–469. doi:10.1177/0706743716648290 

31.  Cassoli JS, Guest PC, Santana AG, Martins-de-Souza D. Employing proteomics to 

unravel the molecular effects of antipsychotics and their role in schizophrenia. Proteomics 

- Clin Appl. 2016;10: 442–455. doi:10.1002/prca.201500109 

32.  Mistry M, Gillis J, Pavlidis P. Meta-analysis of gene coexpression networks in the post-

mortem prefrontal cortex of patients with schizophrenia and unaffected controls. BMC 

Neurosci. 2013. doi:10.1186/1471-2202-14-105 

33.  Sullivan CR, Mielnik CA, Funk A, O’Donovan SM, Bentea E, Pletnikov M, et al. 

Measurement of lactate levels in postmortem brain, iPSCs, and animal models of 

schizophrenia. Sci Rep. 2019;9. doi:10.1038/s41598-019-41572-9 

34.  Toledo U of. Kaleidoscope: Brain RNA-Seq. 2019. Available: 

https://kalganem.shinyapps.io/BrainDatabases/ 

35.  Veronese E, Castellani U, Peruzzo D, Bellani M, Brambilla P. Machine Learning 

Approaches: From Theory to Application in Schizophrenia. Comput Math Methods Med. 

2013;2013. doi:10.1155/2013/867924 

36.  Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2017;18: 851–

869. doi:10.1093/bib/bbw068 

37.  Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR. Metabolic labeling of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.02.185462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185462
http://creativecommons.org/licenses/by-nc-nd/4.0/


mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal 

Chem. 2004;76: 4951–4959. doi:10.1021/ac049208j 

38.  McClatchy DB, Dong MQ, Wu CC, Venable JD, Yates JR. 15N metabolic labeling of 

mammalian tissue with slow protein turnover. J Proteome Res. 2007;6: 2005–2010. 

doi:10.1021/pr060599n 

39.  Biolo G, Antonione R, Barazzoni R, Zanetti M, Guarnieri G. Mechanisms of altered 

protein turnover in chronic diseases: a review of human kinetic studies. Curr Opin Clin 

Nutr Metab Care. 2003;6: 55–63. doi:10.1097/00075197-200301000-00009 

40.  Dörrbaum AR, Kochen L, Langer JD, Schuman EM. Local and global influences on 

protein turnover in neurons and glia. Elife. 2018;7. doi:10.7554/eLife.34202 

41.  Toyama BH, Hetzer MW. Protein homeostasis: live long, won’t prosper. Nat Rev Mol Cell 

Biol. 2013;14: 55–61. doi:10.1038/nrm3496 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.02.185462doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.185462
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURE LEGENDS 

Figure 1:  Lack of relationship between protein turnover ratio and RNA abundance.  

Correlation plots between protein turnover ratios and RNA abundance in (A) Deep, (B) DISC1, 

and (C) Super datasets. No relationships were identified in CTL (black dots) or SCZ (red dots) 

subjects. 

 

Figure 2:  No shift in gene fold change in SCZ as a function of turnover ratio.  Genes in 

different turnover ratio bins showed similar degrees of expression changes between SCZ and 

CTL samples across all 3 datasets, suggesting that no particular bin was especially sensitive to 

SCZ disease effects. 

 

Figure 3:  Persistent, significant genes in SCZ.  Volcano plots of persistence scores and –

log10 p values from (A) Deep, (B) DISC1, and (C) Super datasets.  Red dots signify significant 

(p<0.05) genes, and labels signify genes that also surpassed the persistence cutoff of 0.5.  

These genes were assigned as having low (<-0.5) or high (>0.5) persistence and used in 

subsequent analyses. 

 

Figure 4:  Persistent pathways in SCZ.  Heatmaps of significant (p<0.05) pathways 

associated with (A) high and (B) low persistence genes.  Pathways have been assigned to 

categories summarizing their major functions. 

 

Figure 5:  Persistence better predicts protein fold change in SCZ than mRNA fold change 

alone in the DISC1 dataset.  (A) Correlation between protein and mRNA fold change 

(R2=0.208).  (B) Correlation between protein fold change and persistence scores (R2=0.68).  

This improved correlation suggests that persistence can be predictive of protein expression but 

that room for improvement exists in the present calculation. 
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Table 1: “Persistent” genes in SCZ datasets.  Genes that are significantly differentially expressed in SCZ vs CTL and have high 

(>0.5) or low (<-0.5) persistence scores. 

Deep DISC1 Super 
High Persistence Low Persistence High Persistence Low Persistence High Persistence Low Persistence 
Gene Score Gene Score Gene Score Gene Score Gene Score Gene Score 
TNR 0.663     CRYM 0.870 ALDH1A1 -0.567 NEFM 0.870 UQCRB -0.594 
ME3 0.625     GPD1 0.791 CLYBL -0.594 MBP 0.791 CORO2A -0.631 

HIBADH 0.600     MBP 0.750 CHL1 -0.631 TUBB2A 0.750     
CAPZA1 0.574     TNR 0.698 NRN1 -0.875 NEFL 0.698     

        SYNPR 0.670 ATP1A4 -0.960 ATP1B1 0.631     
        NCAN 0.663     INA 0.625     
        SLC32A1 0.631     HSPD1 0.600     
        KCNA1 0.625     GNAO1 0.592     
        SLC13A5 0.609     SH3BGRL2 0.574     
        NRGN 0.600     ATP6V0A1 0.561     
        BDH1 0.592     SEPT7 0.512     
        ME3 0.574           
        ACTN2 0.561           
        PLCXD3 0.525           
        GNG4 0.512             
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SUPPORTING INFORMATION LEGENDS 

Supplemental Table 1:  Persistence information for full SCZ datasets.  Persistence scores, 

-log 10 p values, and significance information for 2101 genes in Deep, DISC1, and Super 

dataset.  

 

Supplemental Table 2:  Full pathway information from Figure 4 heatmaps.  Details 

regarding pathways associated with (A) high and (B) low persistence genes. 
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