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Abstract

Trans-acting  DNA  variants  may  specifically  affect  mRNA  or  protein  levels  of  genes  located

throughout the genome. However, prior work compared trans-acting loci mapped in studies performed

separately  or  with  limited  statistical  power.  Here,  we  developed  a  CRISPR-based  system  for

simultaneous quantification of mRNA and protein of a given gene via dual fluorescent reporters in

single, live cells of the yeast Saccharomyces cerevisiae. In large populations of recombinant cells from

a  cross  between  two  genetically  divergent  strains,  we  mapped  86  trans-acting loci  affecting  the

expression of ten genes. Less than 20% of these loci had concordant effects on mRNA and protein of

the same gene. Most loci influenced protein but not mRNA of a given gene. One such locus harbored a

premature stop variant  in the  YAK1 kinase gene that  had specific effects on protein or mRNA of

dozens  of  genes.  These  results  demonstrate  complex,  post-transcriptional  genetic  effects  on  gene

expression.
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Introduction

Phenotypic variation in genetically complex traits is shaped by multiple DNA variants throughout the

genome.  The  small  effects  of  most  of  these  variants  pose  a  challenge  for  understanding  the

mechanisms through which individual variants act.  Overcoming this challenge has the potential to

improve  our  ability  to  understand  disease,  study  evolutionary  change,  and  help  apply  biological

processes in industry and agriculture.

Many genetic variants that influence complex traits alter gene expression (Albert and Kruglyak, 2015;

Maurano et al., 2012). Some of these variants are located in cis-regulatory elements or alter sequence

features of the messenger RNA (mRNA) molecule itself. The proximity of such “cis-acting” variants

to the genes they affect has aided their identication in numerous species (Aguet et al., 2017; Albert et

al., 2018; Brem et al., 2002; Cheung et al., 2005; Clément-Ziza et al., 2014; Hasin-Brumshtein et al.,

2014; Higgins et al., 2018; Ka et al., 2013; Kita et al., 2017; Morley et al., 2004; West et al., 2007).

However, most genetic variation in gene expression arises from trans-acting variants that affect the

activity or abundance of diffusible factors that in turn alter the expression of other genes (Albert et al.,

2018;  Grundberg  et  al.,  2012;  Wright  et  al.,  2014).  Compared  to  their  target  genes,  trans-acting

variants can be located anywhere in the genome, greatly complicating their identification in human

association studies. In organisms such as yeast (Albert et al., 2018; Brem et al., 2002; Brion et al.,

2020; Clément-Ziza et al., 2014; Thompson and Cubillos, 2017), plants (Fu et al., 2013; West et al.,

2007; Zhang et al., 2011), worms (Snoek et al., 2017; Viñuela et al., 2010) and mouse (Gerrits et al.,

2009;  Hasin-Brumshtein et al.,  2016),  linkage analysis in recombinant progeny from experimental

crosses has identified loci carrying variants affecting gene expression (expression quantitative trait

loci, eQTLs), including thousands of eQTLs that affect gene expression in trans.

Genetic  effects  on  gene  expression  can  be  as  complex  as  those  on  organismal  phenotypes.  The

expression of a gene can be affected by one or more cis-eQTLs and dozens of trans-eQTLs, each of

which changes the expression of the gene by a small amount (Albert et al., 2018). Detecting the loci

that give rise to this complex variation requires high statistical power resulting from the analysis of

large numbers of individuals (Albert et al., 2018, 2014b; Bloom et al., 2013; Ehrenreich et al., 2010).
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Post-transcriptional regulation plays a major role in the control of gene expression (McCarthy, 1998),

and mRNA and protein levels across genes are often reported to be poorly correlated (Huh et al., 2003;

Lahtvee et  al.,  2017;  Liu et  al.,  2016).  Nonetheless,  most  studies  of  regulatory variation measure

mRNA instead of protein abundance, enabled by powerful quantification techniques such as RNA

sequencing. Variants that influence mRNA abundance can act at different molecular levels, including

transcription (Kilpinen et al., 2013) and mRNA degradation (Andrie et al., 2014; Pai et al., 2012). New

techniques have allowed the study of gene expression variation beyond mRNA, including ribosome

profiling to study mRNA translation (Albert et al., 2014a; Battle et al., 2015), and mass spectrometry

to study protein abundance (Battle et al., 2015; Chick et al., 2016; Foss et al., 2011, 2007; Ghazalpour

et al., 2011; Großbach et al., 2019; Picotti et al., 2013; Sun et al., 2018; Yao et al., 2018)  and protein

modifications such as phosphorylation (Großbach et al., 2019).

Fluorescent gene tags enable quantification of the abundance of a given protein of interest in single

cells (Huh et al., 2003). In  S. cerevisiae,  fluorescence-activated cell  sorting (FACS) of millions of

GFP-tagged recombinant cells from a cross between genetically different strains can be used to collect

populations of thousands of single cells with high or low protein expression (Albert et al., 2014b; Parts

et  al.,  2014).  Pooled,  genome-wide  sequencing  of  these  populations  has  provided  high  statistical

power to identify genetic loci that influence protein abundance (“protein-QTLs”) (Damerval et al.,

1994). This “bulk segregant” approach (Michelmore et al., 1991), which is designed to detect trans-

acting loci, led to a 10-fold increase in the number of detected protein-QTLs (to an average of 7.2

protein-QTLs per gene) compared to analyses of mass spectrometry-based proteomics in one hundred

segregants (Albert et al., 2014b).

In comparisons among different studies, many protein-QTLs did not overlap with loci that affected

mRNA (“mRNA-QTLs”) of the same gene, and  vice versa (Albert et al., 2018). Further, some loci

affected both mRNA and protein but in opposite directions. At such “discordant” loci, the same allele

increased mRNA abundance but decreased protein abundance of the same gene. These results suggest

that genetic variants can independently affect the different layers of gene expression regulation (Albert

et al., 2018, 2014b; Foss et al., 2011; Großbach et al., 2019).

However, there are potential caveats to this conclusion. The QTLs under comparison were identified in

experiments conducted at different times, in different laboratories, using different technologies with
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unique sensitivities and biases, and often using small sample sizes that limited statistical power. These

comparisons are likely to be confounded by environmental differences among studies, which existed

either  by  design  (for  example,  different  culture  media)  or  may  have  resulted  from experimental

inconsistencies (for example, slight differences in the precise stage of cell growth, or in temperature).

These issues are especially problematic when comparing trans-acting QTLs with small effects, which

could  be  particularly  sensitive  to  environmental  influences  (Smith  and Kruglyak,  2008).  While  a

recent study used mRNA-sequencing and mass spectrometry of the same yeast cultures to enable a

direct comparison of mRNA-QTLs and protein-QTLs (Großbach et al., 2019), its sample size limited

detection of QTLs with small effects. As a result, the importance of genetic variation, especially trans-

acting variation, that specifically affects post-transcriptional processes remains unclear.

To address this challenge, we developed a system for quantifying mRNA and protein from the same

gene simultaneously, in the same, live, single cells using two fluorescent reporters. We reasoned that

such an approach would equalize all environmental confounders and most of the technical biases that

could obscure the relationship between mRNA-QTLs and protein-QTLs. Our assay is sensitive enough

to be used in FACS, permitting the use of well-powered bulk segregant mapping in a yeast cross.

Genetic mapping across ten genes revealed 86  trans-acting loci. The vast majority of the identified

mRNA-QTLs and protein-QTLs for a given gene did not overlap or had discordant effects on mRNA

and protein. These results demonstrate considerable discrepancies in the genetic basis of variation in

mRNA vs protein abundance.

Results

A reporter system for quantifying mRNA and protein in single, live cells

We designed a dual reporter  system for the simultaneous quantification of mRNA production and

protein abundance of a given gene in single, live cells. In this system, protein abundance is measured

via a fluorescent GFP tag fused to the C-terminus of the given gene of interest (Huh et al., 2003). To

measure  mRNA,  we  reasoned  that  a  clustered  regularly  interspaced  short  palindromic  repeats

(CRISPR) guide RNA (gRNA) (Doudna and Charpentier, 2014) produced in equal molarity with the

mRNA of interest would be able to drive proportional expression of a reporter gene via CRISPR-
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activation (Gilbert et al., 2014; Konermann et al., 2015). To implement this idea, we created a gRNA

tag located in the 3’UTR of the gene, downstream of the sequence encoding GFP (Figure 1A). After

transcription of the mRNA along with this tag, the gRNA is released from the mRNA by two flanking

self-cleaving ribozymes (Hammerhead, Hh; and Hepatitis Delta Virus, HDV) (Gao and Zhao, 2014).

Because  gRNA cleavage  separates  the  mRNA from its  poly-adenylated  (polyA)  tail,  we  added a

synthetic polyA tail between the GFP tag and the Hh ribozyme (Gao and Zhao, 2014). Once released,

the gRNA directs a catalytically deactivated CRISPR associated enzyme (dCas9) fused to a VP64

activation domain (dCas9-VP64) to drive the expression of an mCherry gene integrated in the genome

(Farzadfard et al., 2013). After gRNA release, stability and half-life of the mRNA no longer affects

gRNA abundance, such that mCherry expression primarily reports on mRNA production.

The reporter system is implemented as two cassettes (Figure 1A). The “GFP-gRNA tag” cassette is

added at the 3’ end of the gene of interest. A second cassette, which we call the “CRISPR reporter”,

comprises the remaining components:  dCAS9-VP64 and the  mCherry gene under the control of an

inactive  CYC1 promoter  fragment.  This  promoter  contains  one  recognition  sequence  that,  when

targeted by the gRNA and dCas9-VP64, drives mCherry expression (Farzadfard et al., 2013). The two

cassettes are stored on two plasmids that can be used to easily construct strains for quantification of

mRNA and protein of any gene of interest (Figure S1).

We tested the reporter system in diploid BY strains tagged at two genes with different expression

levels: the highly expressed  TDH3, and  GPD1, which has an average expression level compared to

other genes in the genome. Both genes gave green and red fluorescent signals in a plate-reader (Figure

1B). A strain carrying the CRISPR reporter and  TDH3 tagged with GFP but no gRNA produced no

mCherry  fluorescence,  demonstrating  that  the  gRNA is  required  for  driving  mCherry  expression

(Figure  1B).  Presence  of  the  gRNA tag  increased  Tdh3-GFP  levels  by  1.3-fold  (Figure  1C).

Quantitative real time reverse-transcription PCR (qPCR) confirmed expression of the gRNA and the

mRNA (Figure 1D). Absence of qPCR signal from primers that spanned the ribozyme cut sites in

cDNA confirmed that the ribozymes properly cleaved the gRNA (Figure 1D & S2).
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Figure 1. Fluorescence-based quantification of mRNA and protein levels. (A) Schematic of

the  dual  quantification  reporter.  Hh:  Hammerhead  ribozyme,  HDV:  Hepatitis  Delta  Virus

ribozyme,  tCYC1:  terminator  sequence  from  the  CYC1 gene,  VP64:  four  consecutive

sequences encoding viral protein transcription activators VP16, pACT1: promoter sequence

from the  ACT1 gene, pCYC1m: modified promoter sequence from the  CYC1 gene without

baseline  transcriptional  activity.  (B)  Time courses  of  cell  density  and  fluorescence

measurements for three tagged strains during 20 h growth on a plate reader. Filled symbols

correspond to five measurements at the end of the exponential growth phase that were used for
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calculating fluorescence ratios for strain comparisons in the same physiological context as

shown in panel C. (C) Fluorescence ratios (fluorescence / OD600) for the three strains shown

in panel B. (D) RNA Quantification of the individual components of the tag, for TDH3-GFP

and  TDH3-GFP-gRNA by  RT-qPCR.  The  two  bars  per  strain  show biological  replicates.

Normalized qPCR quantifications were calculated separately for each primer pair based on

calibration  with  known  template  DNA amounts  (Figure  S2).  Cells  were  grown  in  YNB

glutamate medium.

mCherry fluorescence provides a quantitative readout of mRNA production

To characterize the quantitative response of our reporter system to a range of gene expression levels,

we used the synthetic Z3EV system, which allows quantitative regulation of transcription via  the

concentration of estradiol in the culture medium (McIsaac et al., 2013). We cloned the Z3EV promoter

upstream of a GFP-gRNA sequence (Figure 2A) in a strain that also contained the CRISPR reporter

and grew this strain in a range of estradiol concentrations. Along with the expected increase in green

fluorescence (McIsaac et al., 2013), red fluorescence increased as a monotonic function of estradiol

concentration (Figure 2B). Similar results were observed in the RM11-1a strain, which has a different

genetic  background  than  BY (Figure  S3).  Thus,  mCherry  provides  a  quantitative  readout  of  the

expression of the tagged gene. 

While green fluorescence continued to increase throughout the tested estradiol range, red fluorescence

ceased to increase at concentrations of more than 4 nM estradiol (Figure 2B). qPCR quantification of

the gRNA showed that mCherry fluorescence followed gRNA abundance (Figure 2C), confirming that

the mCherry reporter gene is quantitatively regulated by gRNA abundance. gRNA abundance was

linearly  related  to  GFP mRNA and  GFP fluorescence  at  lower  doses  of  estradiol  but  stopped

increasing at  higher doses (Figure 2D & E).  This suggests that mCherry production is limited by

gRNA availability at high expression levels. Increasing the concentration of dCas9 proteins or binding

sites for the gRNA had no effect on the mCherry expression plateau (Figure S4 & S5).

The linear relationship between mCherry fluorescence and mRNA abundance of the tagged gene was

present up to an expression level that corresponded to half of the abundance of ACT1 mRNA, which

we had used as a reference gene in qPCR (Figure 2D). Based on previous RNAseq data (Albert et al.,

2018),  we  estimated  that  95%  of S.  cerevisiae genes  fall  below  this  threshold  and  can  thus  be
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quantified by our mRNA reporter (Figure S6, Table S1). For lowly expressed genes, the GFP tag does

not provide a strong enough signal to enable protein quantification (Huh et al., 2003) (Figure S6).

Based on these results,  we concluded that our dual reporter system can be used to simultaneously

measure mRNA and protein of more than half the genes in the S. cerevisiae genome.

Figure 2.  Characterization of  the  quantitative response of  the reporter  using an inducible

transcriptional activator system to tune the expression of a GFP gene tagged with the gRNA.

(A) Schematic of the Z3EV system used in this experiment. (B) Fluorescence as a function of

increasing  estradiol  concentrations.  (C)  Comparison  of  gRNA  abundance  (qPCR)  and

mCherry  fluorescence  in  increasing  estradiol  concentrations.  qPCR  quantifications  were

normalised across samples using ACT1 cDNA as a reference. log2FC: log2 of fold-change (D)

Comparison of mRNA abundance (qPCR) and mCherry fluorescence in increasing estradiol

concentrations.  (E)  Comparison  of  mRNA abundance  to  gRNA abundance  in  increasing
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estradiol concentrations. The numbers in C to E show the concentration of estradiol in mM,

with 7 to 8 biological replicates per concentration.  Solid lines represent linear regressions

calculated on measurements taken at up to 2 mM estradiol. Dashed vertical lines correspond to

the mRNA abundance threshold, below which we deemed the reporter to be quantitative. Cells

were grown in SC medium.

Simultaneous mapping of genetic variation affecting mRNA and protein levels

Our reporter system quantifies mRNA production and protein abundance at the same time, in the same

live cells, exposed to the same environment. These features enable mapping of the genetic basis for

variation in  mRNA and protein levels,  free  from environmental  or  experimental  confounders.  We

selected  ten genes  for  genetic  mapping (Table  S2),  based  on  several  criteria.  Five genes  (ARO8,

BMH2,  GPD1,  MTD1, UGP1) had previously been reported to have discrepant sets of mRNA-QTLs

(Albert et al., 2018) and protein-QTLs (Albert et al., 2014b). Three genes (CYC1, OLE1, TPO1) had

shown high agreement between their respective mRNA-QTLs and protein-QTLs. The remaining two

genes (CTS1 and RPS10A) had low protein abundance based on GFP-tag quantification (Huh et al.,

2003) compared to their mRNA levels (Albert et al., 2018).

To  identify  genetic  loci  affecting  mRNA production  and  protein  abundance,  we  used  the  strains

BY4741 (BY), a reference strain frequently used in laboratory experiments, and RM11-1a (RM), a

vineyard isolate closely related to European strains used in wine making. These two strains differ at

47,754 variants in the yeast genome. We engineered RM to carry the CRISPR reporter inserted at the

NPR2 gene and a synthetic genetic array (SGA) marker for selection of MATa haploid strains (Tong

and Boone, 2007) at the neighboring CAN1 gene. We engineered a series of BY strains, each carrying

one gene tagged with the GFP-gRNA tag (Figure 3). We crossed these BY strains to the RM strain and

obtained populations of recombinant haploid progeny carrying both the tagged gene and the CRISPR

reporter. Flow cytometry detected a range of GFP and mCherry signals from single cells (Figure 3).
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Figure 3. Schematic of the workflow for the identification of RNA-QTLs and protein-QTLs.

The SGA marker allows for the selection of haploid MATa strains after sporulation (Methods).

To study the relationship between mRNA and protein among single cells, we examined the cell-to-cell

correlation  between  mCherry  and  GFP fluorescence  in  our  genetically  heterogeneous  populations

(Figure S7A). After correcting for cell size (Figure S8), mCherry and GFP were positively correlated

for all tested genes (Figure S7B). The strength of the correlation varied from gene to gene. Lower

correlations between mCherry and GFP were observed for the genes with high published discrepancies

between mRNA-QTLs and protein-QTLs compared to those with more concordant mRNA-QTLs and

protein-QTLs. Thus, different genes are influenced by mRNA-specific or protein-specific variation to

different degrees.

Fluorescence-based readouts of mRNA and protein quantification in single cells enabled the use of

bulk segregant analysis, a genetic mapping paradigm that gains statistical power from the analysis of

millions of cells (Albert et al., 2014b; Ehrenreich et al., 2010). In each of the segregating populations,

we used FACS to collect  four subpopulations  of 10,000 cells  with high or low GFP or  mCherry

fluorescence,  respectively,  at  a  cutoff  of  3% –  5% (Figure  3).  In  prior  work,  similarly  stringent
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selection provided high power for QTL mapping (Albert et al., 2014b; Ehrenreich et al., 2010; Parts et

al., 2014).

To gauge the heritability of gene expression among single cells, we measured fluorescence between

the high and low populations after 13 generations of growth. In almost all cases, the sorted populations

showed significant (T-test, p < 10-5) differences in fluorescence, confirming the presence of genetic

variants affecting mRNA and protein levels (Figure S9).

To map QTLs, we performed pooled whole-genome sequencing of all collected populations, computed

the allele frequency of each DNA variant in each population, and calculated the difference in allele

frequency (∆AF) between high and low populations along the genome. A significant ∆AF at a locus

indicated the presence of one or more genetic variants affecting protein abundance (GFP) or mRNA

production (mCherry, Table S3). QTL mapping was performed in two to six biological replicates for

all  but  one gene (RPS10A).  Because any allele frequency differences among replicate populations

sorted on the same parameters (e.g. two high GFP populations for the same gene) represent  false

positives,  we  used  the  replicate  data  to  estimate  false  discovery  rates.  We  chose  a  significance

threshold (logarithms of the odds; “LOD” = 4.5) corresponding to a false discovery rate of 7% (Figure

S10). Between replicates, 76% of the protein-QTLs and 78% of the mRNA-QTLs were reproducible at

genome-wide significance (Figure 4A).

Across the ten genes, we detected 78 protein-QTLs and 44 mRNA-QTLs (Tables S4 & S5). By design,

all detected loci were trans-acting, and most were located on a different chromosome than the tagged

gene. One locus located at ~450 kb on chromosome XIV affected mCherry levels in the same direction

in  all  ten genes.  This  region  was  also observed in  a  control  experiment,  in  which mCherry was

expressed constitutively using an  ACT1 promoter,  and without a gRNA present (Figure S11). This

region harbors the MKT1 gene, which carries a variant affecting a variety of traits (Deutschbauer and

Davis, 2005; Fay, 2013). While the highly pleiotropic MKT1 locus may truly affect all ten genes we

tested,  it  could  also  affect  mCherry  fluorescence  via  mCherry  maturation  or  degradation,

independently of any tagged gene. We excluded this region from further analyses.

The number of protein-QTLs per gene identified here (median = 7) agrees well with results from a

previous study using the  same mapping strategy (median  = 8  for  the  same genes;  (Albert  et  al.,

2014b)), confirming that individual proteins are influenced by multiple, trans-acting loci. The effects
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of individual protein-QTLs showed a positive correlation across studies (Pearson r = 0.73, p-value <

10-15, Figure 4B). The number of mRNA-QTLs per gene in our study (median = 3 after removing the

MKT1 locus) was lower than those from a previous study using RNA sequencing in 1,012 segregants

(median = 8 for the same genes; Albert et al. 2018). This difference could be due to using our reporter

in single cells with high stochastic variation compared to RNA-Seq in individually grown segregant

cultures in Albert  et al. (2018) (see Discussion). However, while the mRNA-QTLs detected by our

reporter primarily reflect influences on mRNA production, the eQTLs from Albert et al. (2018) may

reflect effects on transcription as well as mRNA degradation, which our system was not designed to

capture. The effects of mRNA-QTLs were significantly correlated between studies (r = 0.44, p-value =

5×10-6,  Figure  4C).  Some of  the  QTLs we  detected  harbored  genes  known to  affect  expression

variation.  For  example,  a  region  at  ~650 kb  on  chromosome XII  that  contained  the  gene  HAP1

affected protein abundance and / or mRNA production of  GPD1,  CYC1,  OLE1, and  TPO1  (Figure

4A). In the BY strain, the HAP1 coding sequence is interrupted by a transposon insertion, which alters

the expression of thousands of mRNAs in trans (Albert et al., 2018; Brem et al., 2002). Overall, these

agreements  with  previous  analyses  confirmed  the  reliability  of  our  new reporter  as  a  means  for

mapping the genetic basis of gene expression variation.

We detected several QTLs that were not shared with prior work and vice versa (Figure 4B – C). Most

of these QTLs tended to have small effect sizes, suggesting that they could have been missed due to

incomplete  power  in  either  study.  Alternatively,  these  QTLs may reflect  experimental  differences

between studies. For example, we observed a new, strong protein-QTL affecting Aro8 on chromosome

XIV. The regulation of Aro8 expression by amino acid levels (Iraqui et al., 1998)  suggests that this

QTL could be due to the synthetic complete medium used here vs. YNB medium in earlier work.
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Figure 4. RNA-QTLs and protein-QTLs. (A) Allele frequency difference along the genome

between the high and low population for each of the ten tagged genes, with 1 – 6 replicates per

gene.  Green  and  red  curves  correspond  to  the  populations  sorted  on  GFP and  mCherry

fluorescence, respectively. The colored plot borders indicate the reason for which the gene was

chosen for study. Pink: high discrepancy between reported eQTLs and pQTLs, yellow: high

similarity  between  reported  eQTLs  and  pQTLs,  blue:  high  mRNA level  and  low  GFP
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fluorescence.  Purple vertical  lines indicate the position of the tagged gene in the genome.

Points  indicate  the  location of  significant  QTLs,  color  coded based on protein or  mRNA

specificity (black: shared effect in same direction, green: protein specific, red: mRNA specific,

blue: discordant). (B) Comparison between the effect size (ΔAF) of protein-QTLs identified inAF) of protein-QTLs identified in

this study and pQTLs from previous work.  (C) Same as (B) but comparing mRNA-QTLs

identified in this study (ΔAF) of protein-QTLs identified inAF) to  trans-eQTLs from previous work (eQTL effect sizes from

Albert et al., 2018 are shown as a Pearson correlation coefficient between mRNA abundance

and genotype  at  the  QTL marker).  Filled  circles  correspond to  QTLs  significant  in  both

datasets.  Empty  circles  correspond  to  QTLs  significant  in  only  one  dataset.  Grey  circles

correspond to  QTLs  located  on  chromosome XIV between 350 and 550 kb,  which  were

excluded from analysis. Circle size is proportional to the LOD score of the QTL. The Venn

diagrams show the total number and overlap of QTLs detected across the 10 genes between

studies.

Differences between mRNA-QTLs and protein-QTLs

Genetic mapping using our reporter enabled us to compare mRNA-QTLs and protein-QTLs, free from

environmental or experimental confounders. We classified 86 loci based on the presence and effect

direction of their respective mRNA-QTLs and / or protein-QTLs (Figure 5A & S12, Table S6).

Of these 86 loci, 16 affected mRNA and protein of a given gene in the same direction. Such loci are

expected for variants that alter a gene’s mRNA production such that, in the absence of other effects,

they also result in a concordant effect on protein abundance.

A majority of the loci corresponded to protein-QTLs that did not overlap an mRNA-QTL. These 52

protein-specific QTLs may arise from variants that affect translation or protein degradation, without an

effect on mRNA production.

There  were  eleven  mRNA-QTLs  that  did  not  overlap  with  a  protein-QTL and  seven loci  where

mRNA-QTLs and protein-QTLs overlapped but  had discordant  effects.  These two categories  may

occur  when protein abundance and mRNA production of  the  same gene are  regulated separately,

through two different trans-acting pathways. These two pathways could be affected by two distinct but

genetically linked causal variants at the same locus, or by a single variant with distinct pleiotropic

effects on the two pathways. Alternatively, buffering mechanisms (Battle et al., 2015; Großbach et al.,
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2019) may compensate for changes in mRNA production perfectly (resulting in an mRNA-specific

QTL) or may overcompensate (resulting in a discordant QTL pair) (Figure S12).

Figure  5.  Comparison  of  RNA-QTLs  and  protein-QTLs.  (A)  Number  of  QTLs  for  each

tagged gene, color coded according to type of effect on RNA and / or protein. (B) Comparison

of  QTL effect  sizes  between mRNA-QTLs and protein-QTLs.  Grey  circles  correspond to

QTLs located on chromosome XIV 350 – 550 kb, which were excluded from analysis. Circle

size is proportional to the LOD score of the QTL.

Genes differed widely  in  the  complexity  and specificity  of  trans-acting loci  that  influenced their

expression.  For  example,  four  genes  (BMH2,  GPD1,  UGP1,  and  CTS1)  were  each influenced by

multiple loci, none of which affected mRNA and protein levels in the same direction. By contrast,

most of the loci influencing CYC1 had concordant effects on mRNA and protein (Figure 5A).

While more than 73% of loci were specific for mRNA or protein, this difference might be inflated by

loci that are truly concordant, but at which either the mRNA or the protein QTL narrowly failed to

meet  the  significance  threshold.  To  bypass  this  potential  limitation,  we  compared  effect  sizes,

expressed as ∆AF, at significant mRNA-QTLs or protein-QTLs, irrespective of the significance of the

locus in the other data (Figure 5B). When considering all  loci,  we observed a significant, positive
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correlation between mRNA and protein effect sizes (r = 0.41, p-value = 8.4×10-5, Figure 5B). This

overall  correlation was almost exclusively driven by the concordant QTL pairs, whose effect sizes

showed a strong correlation (r = 0.88 p-value = 9×10-6). In sharp contrast, neither protein-specific

QTLs (r = 0.2, p-value = 0.23) nor mRNA-specific QTLs (r = -0.05, p-value = 0.9) had correlated

effects across the two data types, as expected if these loci specifically affected only mRNA or only

protein. Considerable differences between mRNA-QTLs and protein-QTLs were also observed when

simply considering effect directions. Overall, only 64% of QTLs affected mRNA and protein in the

same direction. While this was more than the 50% expected by chance (binomial test p-value = 0.006),

it left 36% of loci with discordant effects. Protein-specific QTLs showed similar directional agreement

(63%) at lower significance (p-value = 0.04), while only 55% of mRNA-specific QTLs had an effect

in the same direction in the protein data, which was not significantly different from chance (p-value =

0.5). Together, these results are consistent with the existence of many QTLs that specifically affect

mRNA production or protein abundance.

Several loci were shared across the ten genes. Even these shared loci differed in the specificity of their

effects on mRNA or protein. For example, the locus containing the HAP1 gene had strong, concordant

effects on both mRNA and protein for CYC1 and OLE1, affected only the protein abundance of UGP1,

and had significant but discordant effects on mRNA and protein for  GPD1.  Overall,  these results

revealed  complex  trans-acting  influences  on  gene  expression,  in  which  genes  were  affected  by

different sets of multiple loci, with different degrees of mRNA or protein specificity.

A premature stop mutation in YAK1 affects gene expression post-transcriptionally

The  causal  variants  in  most  trans-acting  loci  are  unknown,  limiting  our  understanding  of  the

underlying mechanisms. In particular, very few causal variants with specific trans effects on protein

abundance are known (Chick et al., 2016; Hause et al., 2014). We noticed a region at ~155 kb on

chromosome X that affected the protein abundance but not mRNA production of ARO8,  BMH2, and

especially  GPD1 (Figure  4A).  This  region  spanned about  20  kb  and contained  15  genes  and 99

sequence variants. To identify the causal variant, we systematically divided this region into four tiles,

swapped alleles in  each tile  using double  cut  CRISPR-swap, an efficient  scarless genome editing
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strategy (Lutz  et  al.,  2019),  and  quantified  the  effect  of  these  swaps  on  Gpd1-GFP fluorescence

(Figure 6A – D).

Figure  6.  Identification of  a  causal  variant  influencing Gpd1-GFP protein but  not  GPD1

mRNA. (A) Schematic of the investigated region and the strategy for generating tiled allele

swaps across the region.  Grey dots on the RM genome (yellow) indicate the positions of

known BY / RM variants.  (B) Boxplots comparing Gpd1-GFP fluorescence between allele

swaps  (6  –  8  replicates  per  swap).  While  none  of  the  swaps  resulted  in  a  difference  in

fluorescence  between  BY and  RM  alleles,  replacement  with  both  backgrounds  in  tile  A

generated a significant increase in green fluorescence. Based on this result, we suspected that

the BY GPD1-GFP strain carried a new mutation that was absent from the RM as well as BY

genomic DNA used for the replacement. (C) Schematic of using BY GPD1-GFP DNA as a

repair template for the allelic swap of tile A. (D) Boxplots comparing Gpd1-GFP fluorescence

between the three swaps of tile A. The DNA repair template from the BY GPD1-GFP strain
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resulted in low Gpd1-GFP fluorescence, suggesting a new mutation in the BY GPD1-GFP

strain. (E) Identification of the YAK1Q578* mutation using sequencing data from the segregant

population, and location of  YAK1Q578* in the Yak1 kinase protein sequence. Selected known

protein phosphorylation targets of Yak1 and downstream processes are indicated. (F) Effect of

YAK1Q578* and  YAK1 knockout  on Gpd1-GFP expression.  Top:  fluorescence,  bottom:  RNA

quantified by qPCR. Numbers atop the boxplots correspond to log2(fold change). log2FC: log2

of fold-change. Stars indicate the significance of a t-test: ns: not significant (p > 0.05); :✸:

0.005 < p < 0.05; : 0.0005 < p < 0.005; : p < 0.0005. Cells were grown in SC medium.✸:✸: ✸:✸:✸:

This strategy, followed by analysis of our segregant population sequencing data, pinpointed a single

G→A variant at 148,659 bp in the  YAK1 gene as the causal variant. While this variant is present in

neither the BY nor RM reference genomes (Figure 6E & S13), our sequence data showed it to be

present in all BY derivatives we used from the GFP collection (specifically, strains tagged at ARO8,

BMH2,  GPD1,  MTD1, and  UGP1; Figure S13) (Huh et al., 2003). We observed this variant in two

additional strains we genotyped from the GFP collection (FAA4 and YMR315W) and all four strains

we genotyped from the tandem affinity purification (TAP)-tagged collection (PGM1, NOT5, EMI2 and

TUB1)  (Ghaemmaghami  et  al.,  2003).  This  variant  was  not  present  in  a  BY4741  strain  that  we

obtained from the ATCC stock center (#201388), suggesting that the YAK1 variant arose very recently

in the  specific  BY4741 strain used to  construct  both the GFP and TAP-tagged collections.  YAK1

encodes a protein kinase involved in signal transduction in response to starvation and stress, indirectly

regulating the transcription of genes involved in various pathways (Figure 6E). The causal variant

changes the 578th codon (glutamine) to a premature stop codon that is predicted to disrupt translation

of the Yak1 kinase domain (Figure 6E).

The  YAK1Q578* variant led to a diminution of Gpd1-GFP fluorescence, suggesting a decrease of

Gpd1-GFP protein abundance (Figure 6D).  While  YAK1  may control  transcription of genes in the

glycerol biosynthesis pathway (Lee et al., 2008; Rep et al., 2000), which includes  GPD1, our QTL

results suggested no link between the variant and GPD1-GFP mRNA level. Consistent with a protein-

specific  trans-effect on  GPD1, deletion of  YAK1 in a strain in which  GPD1 was tagged with GFP-

gRNA caused a reduction of green fluorescence but had no detectable effect on mCherry fluorescence

(Figure 6F). Further, qPCR indicated no difference in the level of GPD1-GFP mRNA in YAK1Q578*

or yak1Δ compared to matched YAK1wt (Figure 6F).
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We explored the genome wide effects of the YAK1 variant with a differential analysis of mRNA and

protein abundance, using RNA sequencing and mass spectrometry, respectively (Figure 7A, Tables S7,

S8 & S9). Among 5,755 quantified mRNA transcripts, 262 were up-regulated and 310 down-regulated

in the presence of  YAK1Q578* (Benjamini-Hochberg (BH) adjusted p-value < 0.05) (Benjamini and

Hochberg, 1995). The variant reduced the abundance of 82 of 2,590 quantified proteins, and increased

another  82  proteins  (BH  adjusted  p-value  <  0.05).  By  comparing  mass  spectrometry  and  RNA

sequencing results, we classified genes as affected only at the mRNA level (58 genes up, and 118

genes down-regulated), only at the protein level (60 genes up, and 50 genes down-regulated), or at

both mRNA and protein (15 genes up, and 27 genes down-regulated). There was a strong enrichment

for genes involved in cytoplasmic translation (q-value < 10-10) among genes with reduced mRNA

abundance, which is consistent with the role of Yak1 as a regulator of transcription of ribosomal genes

through Crf1 phosphorylation (Martin et al., 2004) (Figure S14, Table S10). Genes up-regulated at the

mRNA level  showed  an  enrichment  in  amino  acid  biosynthesis  (q-value  =  0.001).  The  most

differentially expressed genes included known targets of the  YAK1 pathway (Figure 7A – B). Gpd1

protein was strongly reduced (BH adjusted p-value < 0.004), with a non-significant effect on GPD1

mRNA (adjusted p-value = 0.10) (Figure 7A).

Finally, we investigated if the YAK1Q578* mutation affects other phenotypes. As YAK1 and GPD1 are

involved  in  osmotic  stress  resistance  (Lee  et  al.,  2008),  we  grew  strains  carrying  YAK1wt,

YAK1Q578*, and  yak1Δ,  in a range of sodium chloride concentrations (Figure S15A).  While  this

osmotic stress reduced growth, strains with  YAK1Q578* and  yak1Δ had a higher growth rate than

wild-type, consistent with the role of Yak1 in triggering cell cycle arrest in response to stress. Gpd1-

GFP abundance increased with stronger osmotic stress in YAK1wt and yak1Δ, with consistently lower

expression of Gpd1-GFP in yak1Δ (Figure S15B-C).
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Figure 7.  Effect of  YAK1Q578* on gene expression. (A) Effect on mRNA levels and protein

levels quantified by RNA sequencing and mass spectrometry, respectively. Genes are colored

according to their function as indicated in B). GPD1 is highlighted in blue. (B) Examples of

differentially  expressed  genes  related  to  processes  downstream  of  Yak1  phosphorylation

regulation.  The two numbers following gene names correspond to the log2 of fold-change

(log2FC)  of  differential  expression  for  mRNA and  protein  abundance,  respectively.  Stars

indicate the significance of differential expression (Benjamini-Hochberg adjusted p-values).

ns: not significant, p > 0.05; : 0.005 < p < 0.05; : 0.0005 < p < 0.005; : p < 0.0005.✸ ✸✸ ✸✸✸

Cells were grown in SC medium.

Discussion

We developed a fluorescence-based dual reporter system for the simultaneous quantification of mRNA

and protein from a given gene in single,  live cells.  This system enabled the use of a statistically

powerful  mapping  strategy  to  identify  genetic  loci  that  affected  mRNA production  or  protein

abundance in trans. Because mRNA and protein were quantified in the same exact condition, we were

able to compare mRNA-QTLs and protein-QTLs without environmental  confounding.  Most  trans-

eQTLs have smaller effects that are more sensitive to environmental changes than cis-eQTLs (Smith

and Kruglyak, 2008). Therefore, the high level of environmental control afforded by our method is

particularly important for studying trans-acting variation.
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We identified 86 trans-acting loci that contributed to variation in the expression of ten genes. The fact

that 84% of these loci did not have concordant effects on mRNA production and protein abundance

demonstrated the importance of variants that act on specific layers of gene expression.

The genes  ARO8,  BMH2,  GPD1,  MTD1,  and  UGP1,  which we had selected for high discrepancy

between previous mRNA-QTLs and protein-QTLs, showed many QTLs (89%) that were not shared

between mRNA and protein in our data. In contrast, CYC1, OLE1, and TPO1, which we had selected

for higher agreement between published QTLs, showed fewer discrepant QTLs in our data, although

even for these genes the majority of QTLs was not shared between mRNA and protein (58%). These

three genes showed fewer QTLs overall and all had one locus with strong effect size (Figure 4A; the

HAP1 locus for CYC1 and OLE1, and the IRA2 locus (Brem et al., 2002; Smith and Kruglyak, 2008)

for  TPO1). Based on these results, strong  trans-acting loci may be more likely to cause concordant

effects on mRNA and protein, while loci with smaller effects could be more likely to be specific to

mRNA or protein.

While half of the mRNA-QTLs we detected had concordant effects on protein (16 out of 34), most

protein-QTLs had no effects on mRNA (52 out of 75), in line with observations from prior work

(Albert et al., 2018, 2014b; Foss et al., 2011). That 70% of our protein-QTLs had protein-specific

effects  suggests  that  the  causal  variants  underlying  many of  these  loci  affect  post-transcriptional

processes. The indirect nature of our mCherry reporter and its lower signal intensity compared to GFP

fluorescence are potential sources of measurement noise, which could have reduced detection power

for mRNA-QTLs compared to protein-QTLs. However, our analyses of the magnitudes and directions

of effects on mRNA and protein, which did not require loci in the other data to meet a significance

threshold, also suggested that many protein-QTLs specifically influence protein.

We found seven loci that had discordant effects on mRNA production and protein abundance of the

same gene. For example, at the  HAP1 locus, the BY allele increased Gpd1 protein abundance but

decreased GPD1 mRNA production, as had been seen when comparing QTLs across different studies

(Albert et al., 2018). The highly pleiotropic effects of  HAP1 on mRNA and protein levels of many

genes (Albert et al., 2018, 2014b; Smith and Kruglyak, 2008) reinforces the hypothesis that  HAP1

alleles  influence  Gpd1  protein  abundance  and  mRNA production  via  two  separate  trans-acting

mechanisms.
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QTLs with discordant effects on mRNA and protein, as well as mRNA-specific QTLs, may be caused

by buffering of mRNA variation at the protein level. A well studied example of this phenomenon is the

regulation of expression of genes that encode members of a protein complex, in which excess protein

molecules that  cannot  be incorporated in the complex are rapidly degraded (Taggart et  al.,  2020).

Among the genes we investigated,  RPS10A encodes a part of the ribosome small subunit complex.

RPS10A showed the highest number of mRNA-specific QTLs, possibly because Rps10a is subject to

buffering mechanisms.

The nonsense mutation (Q578*) we identified in the YAK1 gene provides an informative example of

the  complexity  with  which  trans-acting  variants  can  shape  the  transcriptome  and  the  proteome.

YAK1Q578* changed protein abundance for many genes more strongly than mRNA abundance, but

also affected mRNA but not protein for many other genes. Thus, the consequences of this mutation

span mechanisms that affect mRNA as well as protein-specific processes. A reduction of ribosomal

gene transcription may account for some of these observations by reducing the translation of multiple

genes.

The YAK1Q578* variant likely arose as a new mutation in the BY4741 ancestor of the GFP and TAP-

tagged collections. Its relatively large effect and rarity in the global yeast population are consistent

with population genetic expectations (Eyre-Walker, 2010; Gibson, 2012) and observations (Bloom et

al.,  2019;  Fournier  et  al.,  2019) for a deleterious variant  that  may have drifted to fixation in this

specific  background,  as  has  been  suggested  for  many  causal  variants  in  natural  yeast  isolates

(Warringer et al., 2011). Alternatively, faster growth of a strain carrying the YAK1Q578* variant during

osmotic stress (Figure S15) may have contributed to adaptive fixation of this variant in this specific

copy of BY4741. While the large effect of  YAK1Q578* aided our ability to fine-map it (Rockman,

2012),  we  suspect  that  its  diverse,  mRNA-specific  as  well  as  protein-specific  mechanistic

consequences may be representative of more common trans-acting variants with smaller effects.

To simultaneously quantify mRNA and protein and eliminate potential environmental confounders in

expression QTL mapping, we developed a system in which a gRNA drives CRISPR activation of a

fluorescent reporter gene in proportion to a given mRNA of interest. Standard methods for mRNA

quantification require lysis of cell cultures or tissues, constraining sample throughput and statistical

power for mapping regulatory variation. Single-cell RNA sequencing (Picelli, 2017; Tang et al., 2009)
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or  in situ fluorescent hybridization (Buxbaum et al.,  2014; Player et al.,  2001; Rouhanifard et al.,

2018) are improving rapidly,  including in yeast  (Gasch et  al.,  2017;  Li  and Neuert,  2019;  Nadal-

Ribelles et al., 2019; Wadsworth et al., 2017). However, these approaches still have throughput that is

orders  of  magnitude  below  that  available  in  FACS.  Further,  they  involve  cell  lysis  or  fixation,

precluding bulk segregant approaches that rely on growing cells after sorting. By contrast, our reporter

allows quantification of mRNA production of a given gene within millions of single, live cells by flow

cytometry. Because mCherry production in our system amplifies mRNA abundance signals, it is able

to  quantify  genes  with  mRNA levels  that  would  likely  be hard  to  detect  by FACS using  in  situ

hybridization methods. The readout of our system is driven by a gRNA after it  detaches from its

mRNA. Therefore, the resulting signal is independent of the fate of the mRNA after gRNA release.

Given the hammerhead ribozyme has a rate constant for self cleavage of 1.5 per minute (Wurmthaler

et  al.,  2018),  gRNA abundance is  not  expected to reflect  the  half-life  and stability  of most  yeast

mRNAs, which have a median half  life of  3.6 minutes (Chan et  al.,  2018).  By contrast,  standard

methods usually used in eQTL mapping quantify mRNA at steady state, which may explain some of

the  differences  we  observed  between  our  mRNA-QTLs  and  known  eQTLs  identified  by  RNA

sequencing.

Future versions of our reporter could be improved in several ways. The mCherry used here has a

maturation time of about 40 minutes (Merzlyak et al., 2007), which limits the temporal resolution at

which we can observe dynamic expression changes. Fluorescent proteins with faster maturation times

could enable  precise investigation of rapid temporal  change in  mRNA production.  Using brighter

fluorescent proteins or multiple copies of mCherry and its gRNA-targeted promoter could increase

fluorescence and increase mRNA detection further. Finally, we observed that beyond a certain mRNA

level, the abundance of gRNA no longer follows that of the tagged mRNA. Nevertheless, we estimated

that our CRISPR based reporter can be used to quantify the mRNA production of most S. cerevisiae

genes.  Because CRISPR activation has been demonstrated in many organisms (Long et  al.,  2015;

Maeder et al., 2013; Park et al., 2017), similar reporters for RNA production could be developed in

other species.

Our reporter system for quantifying mRNA and protein of a given gene in the same live, single cells

combined with a mapping strategy with high statistical power was deliberately designed to minimize

technical or environmental confounders that may inflate differences between the genetics of mRNA
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and protein levels. Yet, fewer than 20% of the detected loci had concordant effects on mRNA and

protein levels, providing strong support for the existence of discrepancies between genetic effects on

mRNA vs proteins. The fact that the majority of QTLs identified here were protein-specific suggests

that protein abundance is under more complex genetic control than mRNA abundance.

Materials and methods

Yeast strains

We used 160 yeast strains, 12 of which were obtained from other laboratories, including 6 from the

GFP collection, and 148 that were built for this study (complete list in Table S11). All strains are based

on two distinct genetic backgrounds: BY4741 (BY), which is closely related to the commonly used

laboratory strain S288c, and RM11-1a (RM), a haploid offspring of a wild isolate from a vineyard,

which is closely related to European strains used in wine-making. Both strains carried auxotrophic

markers,  and  RM had  been  engineered  earlier  to  facilitate  laboratory  usage  (BY:  his3∆1  leu2∆0

met15∆0 ura3∆0; RM: can1Δ::STE2pr-URA3 leu2Δ0 HIS3(S288C allele) ura3Δ ho::HYG AMN1(BY

allele);  Table  S11).  Most  strains  were  built  using  conventional  yeast  transformation  (Gietz  and

Schiestl, 2007) and DNA integration based on homologous recombination. Integrated DNA fragments

were produced by PCR (Phusion Hot  Start  Flex NEB M0535L,  following manufacturer  protocol,

annealing temperature: 57°C, 36 cycles, final volume: 50 µl) and gel purified (Monarch DNA Gel

Extraction Kit, NEB T1020L), with primers carrying 40 to 60 bp overhanging homologous sequence

as required. All primers are available in Table S12. For transformation, fresh cells from colonies on

agar plates were grown in YPD media (10 g/l yeast extract, 20 g/l peptone, 20 g/l glucose) overnight at

30°C. The next day, 1 ml of the culture was inoculated in an Erlenmeyer flask containing 50 ml of

YPD and grown under shaking at 30°C for 3 hours to reach the late log phase. Cells were harvested by

centrifugation and washed once with pure sterile water and twice with transformation buffer 1 (10 mM

TrisHCl  at  pH8,  1  mM  EDTA,  0.1  M  lithium  acetate).  We  resuspended  the  cells  in  100  µl  of

transformation buffer 1, added 50 µg of denatured salmon sperm carrier DNA (Sigma #D7656) and 1

µg of the DNA fragment to be integrated, and incubated for 30 minutes at 30°C. Alternatively, when

transforming a replicative plasmid, we used 0.1 µg of plasmid DNA and skipped this first incubation.

We added 700 µl of transformation buffer 2 (10 mM TrisHCl at pH8, 1 mM EDTA, 0.1 M lithium
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acetate, 40% PEG 3350) and performed a second incubation for 30 minutes at 30°C. A heat shock was

induced by incubating the cells at 42°C for 15 minutes. The transformed cells were then washed twice

with sterile water. If the selective marker for the transformation was an antibiotic resistance gene, the

cells were resuspended in 1 ml of YPD, allowed to recover for 2 hours at 30°C, and spread on a YPD

plate (2% agar) containing the antibiotic (200 ng/l G418, 100 ng/l nourseothricin sulfate/CloNAT, or

300 ng/l hygromycin B). Alternatively, if  the transformation was based on complementation of an

auxotrophy,  the  cells  were resuspended in 1 ml  of  sterile water and spread on a plate containing

minimal media lacking the corresponding amino acid or nucleotide (YNB or Synthetic Complete (SC):

6.7 g/l yeast nitrogen base (VWR 97064-162), 20 g/l glucose, with or without 1.56 g/l SC -arginine -

histidine -uracil -leucine (Sunrise science 1342-030), complemented as needed with amino acids: 50

mg/l histidine, 100 mg/l leucine, 200 mg/l uracil,  80 mg/l tryptophan). After two to three days of

incubation at 30°C, colonies were streaked on a fresh plate containing the same selection media to

purify clones  arising  from single,  transformed cells.  DNA integration  in  the  correct  location  was

confirmed by PCR (Taq DNA Polymerase NEB M0267L, following manufacturer protocol, annealing

temperature: 50°C, 35 cycles, final volume: 25 µl, primers in Table S12). To store the constructed

strains, we regrew the validated colony on a new selection media plate overnight at 30°C, scraped

multiple colonies, resuspended the cells in 1.4 ml of YPD containing 20% glycerol in a 2 ml screw cap

cryo tube and froze them at -80°C.

Plasmids

We constructed seven plasmids: three plasmids that do not replicate in yeast and that carry the GFP-

gRNA tag,  the  CRISPR  reporter,  and  Z3EV  system,  respectively  (Figure  S1),  and  four  yeast-

replicating  plasmids  to  investigate  the  quantitative  properties  of  our  reporter  (Figure  S5).  These

plasmids were constructed through multiple rounds of cloning using DNA fragments from yeast DNA

or  plasmids  acquired  from Addgene  (kind  gifts  from John McCusker:  Addgene  #35121-22,  from

Michael Nick Boddy: Addgene #41030, from Benjamin Glick: Addgene #25444, from Timothy Lu:

Addgene #64381, #64389, #49013; complete list of plasmids in Table S13). Plasmids were assembled

using Gibson assembly (NEBuilder HiFi DNA Assembly Cloning Kit, NEB E5520S). Fragments were

either PCR amplified with a least 15 bp overlap at each end (Phusion Hot Start Flex NEB M0535L,
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manufacturer protocol, annealing temperature: 57°C, 36 cycles, final volume: 50 µl, primers in Table

S12) or obtained by restriction digestion of already existing plasmids (also shown in Table S12).

The fragment encoding the gRNA tag, containing the two ribozymes and the gRNA sequence itself,

was purchased as a 212-bp double-stranded DNA oligo from IDT (we used the “C3” gRNA from

(Farzadfard et al.,  2013),  as it  was reported to provide the highest reporter gene expression).  The

synthetic polyA tail following the GFP sequence (Figure 1A) was introduced by using a PCR primer

containing 45 thymines in  its  overhang sequence (primer OFA0038 in Table S12).  Fragments for

assembly  were  purified  using  agarose  electrophoresis  and  gel  extraction  (Monarch  DNA  Gel

Extraction Kit, NEB T1020L). For assembly, the given fragments were mixed at equi-molar amounts

of 0.2 – 0.5 pM in 10 µl. Assembly was done by addition of 10 µl of NEBuilder HiFi DNA Assembly

Master Mix and incubation at 50°C for 60 minutes. From this reaction, 2 µl of the final products were

transformed  into  E.  coli competent  cells  (10-beta  Competent  E.coli,  NEB  C3019I)  through  an

incubation of 30 minutes on ice and a heat shock of 30 seconds at 42°C. Transformed cells were

spread on LB plates (10 g/l peptone, 5 g/l yeast extract, 10 g/l sodium chloride, 2% agar) containing

100 mg/l ampicillin and grown overnight at 37°C. After cloning, the final plasmids were extracted

(Plasmid Miniprep Kit, Zymo Research D4036) and verified by restriction enzyme digestion or PCR

(Taq DNA Polymerase NEB M0267L, 30 cycles, 25 µl final volume, primers in Table S12). We also

verified  by  Sanger  sequencing  that  the  gRNA tag  in  the  plasmid  had  no  mutation.  To store  the

plasmids, the host bacteria were grown in LB with ampicillin overnight at 37°C and 1 ml of the culture

was mixed with 0.4 ml of a sterile solution containing 60% water and 40% glycerol. The cells were

stored at  -80°C. The three plasmids containing the different  parts  of  the reporter are available on

Addgene (ID #157656, #157658, and #157659) along with their full DNA sequence.

Plate reader-based fluorescence measurements

Yeast  fluorescence  was  measured  in  24-hour  time  courses  during  overnight  growth  in  a  BioTek

Synergy H1 plate-reader (BioTek Instruments). Fresh cells from agar plates were inoculated in 100 µl

of minimal YNB media containing any complements necessary for growth of auxotrophic strains, at an

initial optical density at wavelength 600 nm (OD600) of 0.05 in a 96-well flat bottom plate (Costar

#3370).  The plates were sealed with a Breathe Easy membrane (Diversified Biotech).  Cells  were
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grown in the plate reader at 30°C and with circular agitation in between fluorescence acquisition.

During each acquisition, performed every 15 minutes, we recorded OD600, GFP fluorescence (read

from  bottom,  excitation  488  nm,  emission  520  nm,  10  consecutive  reads  averaged,  gain  set  to

“extended”) and mCherry fluorescence (read from bottom, excitation 502 nm, emission 532 nm, 50

consecutive reads averaged, gain set to a value of 150). We took 97 measurements during 24 hours of

growth, unless individual runs were manually terminated early.

Raw measurements of OD600 and fluorescence were processed using R version 3.5.1 (https://www.r-

project.org/,  scripts  and  raw  data  available  at  the  github  repository  at

https://github.com/BrionChristian/Simultaneous_RNA_protein_QTLs).  “Blank”  values  from  wells

with no cells were subtracted from OD600 and fluorescence measurements of wells that had been

inoculated with cells.  OD600 was log-transformed and manually inspected to identify the late log

phase,  i.e. a  time  point  about  3/4  into  the  exponential  growth  phase.  This  stage  was  identified

separately for each well, and usually corresponded to an OD600  of 0.1 – 0.3. We extracted the OD600

and fluorescence  measurements  at  the  five  time  points  centered  on  our  selected  time  point.  The

mCherry and GFP fluorescence ratios were calculated as the ratio between the fluorescence and the

OD600 at these five time points (example in Figure 1B – C), allowing us to estimate fluorescence

while correcting for culture density. Focusing on the late log phase allowed measurements at higher

cell density to provide more robust fluorescence reads. Growth rates were estimated as the slope of a

linear fit of the log of OD600 over time.

RNA quantification by qPCR 

Cell harvest

We quantified mRNA and gRNA abundance by quantitative real-time reverse-transcription PCR of

RNA extracted from exponentially growing cells. Cells were grown in either 50 ml of medium (YNB

with auxotrophic complements, results shown in Figure 1D) in shaking Erlenmeyer flasks or in 1.2 ml

of media (SC with auxotrophic complements and estradiol, Figure 2C – E & 6F) in a shaking 2-ml 96-

deep-well plate.  The OD600 was monitored to identify the second half of  the exponential growth

phase (corresponding to an OD600 of 0.35 – 0.45 OD600 in flasks, and 0.20 – 0.30 in the deep-well
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plates). At this point, GFP and mCherry fluorescence ratios were recorded in a BioTek Synergy H1

plate reader (BioTek Instruments). Cells were then harvested immediately. Cells were washed with

sterile water through either short centrifugation using 5 ml of culture from flasks, or vacuum-filtration

through a 96-well filter plate (Analytical Sales 96110-10) using the entire remaining 1 ml of culture

from the deep-well plate. Cells were then immediately flash-frozen in either isopropanol at -80°C

(pellet from flask) or liquid nitrogen (filter plate) and stored at -80°C until RNA extraction.

RNA extraction from flasks

To extract the RNA from cells grown in flasks, we used the ZR Quick-RNA Kit (Zymo Research

R1054).  Frozen  cell  pellets  were  resuspended  in  800  μl RNA Lysis Buffer 1 from the kit andl  RNA Lysis  Buffer  1  from  the  kit  and

transferred to a ZR BashingBead Lysis Tube. The cells were shaken in a mini-bead beater (BioSpec

Products) for ten cycles of one minute in the beater, one minute on ice. Cell debris and beads were

centrifuged for one minute at full speed and 400 µl of supernatants were transferred into Zymo-Spin

IIIC Columns. The columns were centrifuged for one minute, and 400 µl 100% ethanol was added to

the flow-through. After mixing, the flow-throughs were transferred into Zymo-Spin IIC Columns and

centrifuged for one minute to bind the RNA and DNA to the columns. The columns were washed with

400 μl RNA Lysis Buffer 1 from the kit andl RNA Wash Buffer from the kit. DNA was digested in columns by adding a mixture of 5 μl RNA Lysis Buffer 1 from the kit andl

DNase I and 75 μl RNA Lysis Buffer 1 from the kit andl DNA Digestion Buffer from DNase I Set kit (Zymo Research E1010) followed by a

15-minute incubation at room temperature. The columns were then washed three times with 400 μl RNA Lysis Buffer 1 from the kit andl

RNA Prep Buffer, 700 μl RNA Lysis Buffer 1 from the kit andl RNA Wash Buffer, and 400 μl RNA Lysis Buffer 1 from the kit andl RNA Wash Buffer. RNA was eluted in 50 µl

DNase/RNase-free water, quantified using Qubit RNA BR or HS Assay Kit (ThermoFisher Scientist

Q10210 or Q52852), and stored at -20°C.

RNA extraction from 96-well plates

To extract the RNA from cells grown in 96-well plates, we used the ZR RNA in-plate extraction kit

(ZR-96 Quick-RNA Kit, Zymo Research R1052), which followed the same protocol as the flask RNA

extraction above, with a few minor differences. Bead-beating was done in an Axygen 1.1 ml plate (P-

DW-11-C-S) with 250 µl of acid washed 425–600 µm beads (Sigma G8722) per well, sealed with an

Axymat rubber plate seal (AM-2ML-RD-S). RNA purified from 200 µl of the resulting supernatant.

DNA digestion and washing steps were done on Silicon-A 96-well plates from the kit. The RNA was

eluted in 30 µl of DNase/RNase-free water, quantified, and stored at -20°C.
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Reverse transcription and qPCR

RNA was reverse-transcribed using the GoScript RT kit (Promega A5000) following the kit protocol.

We  performed  negative  controls,  no-enzyme  and  no-primer,  which  generated  no  qPCR  signals.

Quantitative PCRs were done in a 96-well plate (Bio-Rad HSP9645) using GoTaq qPCR kit (Promega

A6001). Plates were sealed using a microseal 'B' Adhesive Seal (Bio-Rad MSB1001) and the reaction

progress was recorded during 40 cycles using a C1000Touch plate reader (Bio-Rad). We quantified

four  different  parts  of  the  tag  cDNA (GFP,  Hh  ribozyme  cleavage,  gRNA,  and  HDV ribozyme

cleavage, Figure 1D), as well as ACT1 cDNA as a reference gene. Primer sequences are in Table S12.

The primers were tested and calibrated by running qPCR measurements on nuclear DNA extracts at a

range of known input concentrations (Figure S2).

Segregant populations

BY strains (BY4741 background) carrying a given GFP-gRNA-tag and RM (YFA0198) carrying the

CRISPR-reporter and the SGA marker were mixed for crossing on a plate with medium that allows

only hybrids to grow (SC agar -leucine -histidine). Growing cells were streaked on the same medium,

and a single hybrid colony was kept  for storage and for generating the segregant  population.  For

sporulation, hybrid strains were incubated in sporulation medium (2.5 g/l yeast extract, 2.5 g/l glucose,

15 g/l potassium acetate, 200 mg/l uracil, 100 mg/l methionine) at room temperature under vertical

rotation in a glass tube for seven days. After verifying sporulation under a light microscope, 1 ml of

medium containing the tetrads was pelleted (13,000 rpm for 5 minutes) and resuspended in 300 µl of

sterile water containing about 15 µg of zymolyase. The resulting ascii were digested at 30°C for 30

minutes with agitation. Spores were separated by vortexing for about 15 seconds, and 700 µl of pure

sterile water was added to the tube. We spread 250 µl of this spore suspension on a plate containing

segregant selection media (SC agar, 50 mg/l canavanine, -uracil -leucine) allowing growth of haploid

segregants carrying the following three alleles:  (1)  cells  with mating type  MATa,  selected via the

SGA-marker with URA3 under control of the STE2 promoter, which resulted in a ura+ phenotype only

in MATa cells, (2) the SGA-marker integrated at the CAN1 gene (whose deletion conferred canavanine

resistance), which also selected for the CRISPR reporter that we had integrated at NPR2, the gene next

to CAN1, (3) the given gene of interest tagged with the GFP-gRNA tag and LEU2 selectable marker.
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After three days of incubation at 30°C, segregants were harvested by scraping the entire plate in 10 ml

of  sterile  water.  Cells  were  centrifuged,  resuspended  in  3  ml  of  segregant  selection  media,  and

incubated at 30°C for 1.5 hours. To store these genetically diverse segregant populations, 1 ml of the

culture was mixed with 0.4 ml of a sterile solution containing 60% water and 40% glycerol in a 2 ml

screw-cap cryo tube and frozen at -80°C.

Cell sorting for QTL mapping

One day before cell sorting, the segregant population was thawed from the -80°C stock, mixed well,

and  8  µl  of  culture  were  used  to  inoculate  5  ml  of  segregant  selection  media.  The  cells  were

reactivated with an overnight growth at 30°C under shaking. The next day, 1 ml of the growing culture

was  transferred  to  a  new tube  containing  4  ml  of  segregant  selection  media  and  grown  for  an

additional  two hours  before  cell  sorting,  roughly  corresponding to  the  middle  of  the  exponential

growth phase.

Cell  sorting was performed on a BD FACSAria II P0287 (BSL2) instrument at  the University of

Minnesota  Flow Cytometry  Resource  (UFCR).  Cells  were  gated  to  exclude  doublet  and  cellular

fragments. To focus on cells in approximately the same stage of the cell  cycle, an additional gate

selected cells in a narrow range of cell size as gauged by the area of the forward scatter signal (FSC).

From the cells within this gate, we sorted five populations per experiment, each comprising 10,000

cells: (1) a control population from the entire gate without fluorescence selection, (2) the 3% of cells

with the lowest GFP fluorescence, (3) the 3% of cells with the highest GFP fluorescence, (4) the 3% of

cells  with  the  lowest  mCherry  fluorescence,  and  (5)  the  3%  of  cells  with  the  highest  mCherry

fluorescence. Each population was collected into 1 ml of segregant selection medium. After overnight

growth at 30°C, 0.9 ml of culture was mixed with 0.4 ml of a sterile solution containing 60% water

and 40% glycerol, and frozen at -80°C until sequencing. The remaining 0.1 ml were inoculated into

0.9 ml of segregant selection medium and grown for 3 hours before analyzing the population using

flow cytometry (see below). In total, we obtained 125 sorted populations from 25 experiments across

the ten tagged genes, with 1 to 6 biological replicates per gene, as well as the untagged population

(Table S2). Sorting was done in four batches on different dates. Biological replicates were performed
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as independent sporulations of the stored diploid hybrids, and thus represent independent populations

sorted in separate experiments.

Flow cytometry

Single cell fluorescence analysis was performed using cultures in the late log growth phase. We used a

BD Fortessa X-30 H0081 flow cytometer at UFCR equipped with blue and yellow lasers and 505LP

and 595LP filters to  measure green (GFP) and red (mCherry) fluorescence,  respectively.  Forward

scatter (FSC), side scatter  (SSC),  GFP, and mCherry fluorescence were recorded for 50,000 cells,

excluding doublets and cellular debris. The voltaic gains were set as follows: 490 for FSC, 280 for

SSC, 500 for GFP, and 600 for mCherry. We monitored for possible cross-contamination from cells

retained in the instrument using strains expressing either only GFP or mCherry, and observed no cross-

contamination. Recorded data on .fsc files were analysed using R and the flowCore package (Hahne et

al.,  2009).  Raw  data  and  scripts  are  accessible  on  github

(https://github.com/BrionChristian/Simultaneous_RNA_protein_QTLs).  The  data  were  filtered  to

discard outlier cells based on unusual FSC and SSC signals. We used the fluorescence data from the

sorted populations to determine correlations between red and green fluorescence, as well as heritability

(Figure  S7 & S8).  For  these analyses,  fluorescence values  were corrected for  cell  size  (FSC) by

calculating the residuals of a loess regression of fluorescence on FSC. Loess regression avoided the

need to assume a specific mathematical relationship between the two parameters (Figure S9).

DNA extraction and sequencing

DNA extraction for whole genome sequencing was performed in 96-well plate format using E-Z-96

Tissue DNA kits (Omega D1196-01). The stored, sorted populations were thawed, mixed, and 450 µl

transferred into a 2-ml 96-deep-well  plate  containing 1 ml  of  segregant  selection medium for  an

overnight growth at 30°C. The plate was centrifuged for 5 minutes at 3700 rpm, and the supernatant

was removed by quick inversion of the plate. Then, 800 µl of Buffer Y1 (182 g/l sorbitol,  0.5 M

EDTA, pH 8, 14.3 mM β-mercaptoethanol, 50 mg/l zymolyase 100T) were added to the pellets, and

the cells were resuspended and incubated for 2 hours at 37°C. The spheroplasts were centrifuged and
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the supernatant discarded.  The pellets were resuspended in 200 µl  of TL buffer and 25 µl of  OB

Protease Solution from the kit and incubated overnight at 56°C. The next day, RNA was denatured by

addition of 5 µl of RNAse A (20 mg/ml) and incubated at room temperature for 5 minutes. After

addition of 450 µl of BL Buffer from the kit, the mixture was transferred onto a E-Z 96 column DNA

plate and centrifuged at 3700 rpm for 3 minutes. The columns were washed once with 500 µl of HBC

Buffer  and  three  times  with  600  µl  of  DNA Wash  Buffer  from  the  kit.  After  an  additional

centrifugation to dry the column, the DNA was eluted in 100 µl of pure sterile water, quantified using

Qubit  dsDNA  HS  Assay  Kit  (ThermoFisher  Scientist  Q32854)  and  stored  at  4°C  for  library

preparation the next day.

Library preparation for  Illumina sequencing was performed using Nextera  DNA Library Prep  kit

(Illumina) with modifications. The tagmentation was done on 5 ng of DNA using 4 µl of Tagment

DNA buffer (“TD” in the kit)  and 0.25 µl  of  Tagment DNA enzyme (corresponding to a 20-fold

dilution of “TDE1” from the kit) and incubating for 10 minutes at 55°C. Fragments were amplified

with index primers (8 Nextera primers i5 and 12 Nextera primers i7, for up to 96 possible multiplex

combinations) on 10 µl tagmented DNA by adding 1 µl of each primer solution (10 µM), 5 µl of 10X

ExTaq buffer and 0.375 µl of ExTaq polymerase (Takara) and water to a final volume of 50 µl. The

amplification was run for 17 PCR cycles (95°C denaturation, 62°C annealing, 72°C elongation). 10 µl

of  each reaction were pooled for multiplexing and run on a 2% agarose gel.  DNA that  migrated

between the 400 and 600 bp was extracted using Monarch DNA Gel Extraction Kit (NEB T1020L).

The  pooled  library  DNA  concentration  was  determined  using  Qubit  dsDNA  BR  Assay  Kit

(ThermoFisher Scientist Q32853), and submitted for sequencing. Sequencing was performed at the

University  of  Minnesota  Genomics  Core  (UMGC).  Our  125  populations  were  processed  in  four

batches extracted and sequenced at different times. Two were sequenced using an Illumina HiSeq 2500

(high-output mode; 50-bp paired-end) and two were sequenced using an Illumina NextSeq 500 (mid-

output mode, 75-bp paired-end). Read coverage ranged from 5-fold to 24-fold coverage of the genome

(median: 13-fold). The reads will be made available on NCBI SRA.

QTL Mapping
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For each sorted and sequenced population, reads were filtered (MAPQ ≥ 30) and aligned to the  S.

cerevisiae reference  genome  (version  sacCer3,  corresponding  to  BY strain)  using  BWA ((Li  and

Durbin, 2009), command:  mem -t). We used samtools ((Li et al.,  2009), command:  view -q 30) to

generate bam files and collapse PCR duplicates using the rmdup command. We used 18,871 variants

previously  identified  as  polymorphic  and  reliable  between  RM  and  BY  (Bloom  et  al.,  2013;

Ehrenreich  et  al.,  2010) (list  available  on  github:

https://github.com/BrionChristian/Simultaneous_RNA_protein_QTLs, samtools: mpileup -vu -t INFO/

AD -l), generating vcf files with coverage and allelic read counts at each position for each population.

The vcf files were processed in R to identify bulk segregant analysis QTLs using code adapted from

Albert  et  al. 2014  (Albert  et  al.,  2014b) (available  on  github:

https://github.com/BrionChristian/Simultaneous_RNA_protein_QTLs).  Briefly,  for  plotting  the

results, the allele frequency of the reference (that is, BY) allele was calculated at each position in each

population. Random counting noise was smoothed using loess regression, and the allele frequency of a

given “low” fluorescence population subtracted from its matched “high” fluorescence population to

generate ΔAF) of protein-QTLs identified inAF. A deflection from zero indicated the presence of a QTL. To identify significant QTLs,

we used an R script  that  implemented the MULTIPOOL algorithm (Edwards and Gifford,  2012),

which calculates LOD score based on ΔAF) of protein-QTLs identified inAF and depth of read coverage in bins along the genome. We

used MULTIPOOL output to call QTLs as peaks exceeding a given significance threshold (see below),

along with confidence intervals for the peak location corresponding to a 2-LOD drop from the peak

LOD  value.  We  applied  the  MULTIPOOL  algorithm  using  the  following  parameters:  bp  per

centiMorgan: 2,200; bin size: 100 bp, effective pool size: 1,000. We excluded variants with extreme

allele frequencies of > 0.9 or < 0.1. We initially set a permissive detection threshold of LOD > 3.0 to

identify a set of candidate QTLs, which we then integrated across replicates (507 QTLs, Table S3). A

second, more stringent, threshold of LOD > 4.5 was then applied to retain only significant QTLs based

on our estimated false discovery rate (FDR).

To estimate FDR, we applied the multipool QTL detection algorithm to pairs of populations sorted into

the same gates in different replicates. Any “QTLs” in such comparisons must be due to technical or

biological noise. We restricted these analyses to replicates sequenced on the same instrument, resulting

in  80  inter-replicate  comparisons.  From these  data,  we  calculated  the  FDR as  a  function  of  the

significance  threshold  (thr):  FDRthr =  (NrepQTLthr /  Nrep)  /  (NfluoQTLthr /  Nfluo),  where
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NrepQTLthr is the number of false “QTLs” from comparing the same gate across replicate populations

at a LOD score threshold of thr, Nrep is the number of such inter-replicate comparisons (Nrep = 80),

NfluoQTLthr is the number of fluorescence-QTLs at a LOD threshold of thr, and Nfluo is the number

of high vs. low fluorescence comparisons (Nfluo = 48; the untagged experiment was excluded). At a

significance threshold of LOD = 4.5, the estimated FDR was 7.3% (Figure S10), which we used to call

significant QTLs. For some overlap analyses (see below), we used a threshold of LOD = 3.0, which

corresponded to an FDR of 13%.

To call significant QTLs across replicates, we first scanned each replicate for QTLs at a permissive

threshold of LOD > 3.0. Second, at each resulting QTL peak position, we averaged ΔAF) of protein-QTLs identified inAF and LOD

scores  across  all  available  replicates  without  applying  a  LOD filter  to  each  replicate.  Third,  we

collapsed groups of overlapping QTLs, which we defined as QTLs whose peaks were within 75,000

bp of each other in the different replicates. For each group of these overlapping QTLs, we averaged

the LOD scores,  the ΔAF) of protein-QTLs identified inAFs,  the peak positions,  and the location confidence intervals to form one

merged  QTL.  Of  the  resulting  merged  QTLs,  we  retained  those  that  exceeded  our  stringent

significance threshold of LOD ≥ 4.5.

To gauge reproducibility of these significant QTLs, we counted the number of replicates in which a

given QTL had been detected at the permissive LOD > 3.0, using the same definition of positional

overlap as above. The majority (74%) of significant QTLs were shared across all the corresponding

replicates.  Two tagged genes  had  more than two replicates  (GPD1 and  UGP1).  For  these  genes,

requiring  all replicates to be significant  is  conservative.  Therefore,  we also estimated the average

reproducibility  of  all  mRNA-QTLs  or  all  protein-QTLs  by  calculating  the  average  fraction  of

replicates that had a QTL at a given merged QTL:

fraction_overlap = mean[ (NshareQTLij - 1) / (Nrepj - 1) ]

Here, NshareQTLij is the number of replicates for which the QTL i is detected for the tagged gene j at

LOD > 3, and Nrepj is the number of replicates performed for the tagged gene j. Note that if only a

single replicate has a QTL at a given merged QTL, this fraction takes on a value of zero because in

such a case, there is no overlap among replicates at this QTL. The observed fraction_overlap was 0.76

for the protein-QTLs and 0.78 for the mRNA-QTLs.
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Comparison of mRNA-QTLs and protein-QTLs

To compare mRNA-QTLs and protein-QTLs of the same gene, we first considered all merged QTLs

that exceeded a permissive threshold of LOD > 3.0 (after merging replicates as described above). We

considered  an  mRNA-QTL and  a  protein-QTL for  the  same  gene  with  overlapping  confidence

intervals as a QTL pair across mRNA and protein. We manually curated the result  of this overlap

analysis for six cases; after curation, QTLs on chromosomes XV (ARO8), VIII (MTD1), XIII (CYC1)

and XIII  (RPS10A)  were considered to  be pairs,  and QTLs on chromosome V (GPD1)  and XIV

(MTD1) were considered to be mRNA-specific.

From this initial set, we retained those QTL pairs at which the given mRNA and / or protein QTL met

a more stringent LOD score of > 4.5 (FDR = 7.2%). Applying this higher threshold only after the more

permissive overlap analysis allowed us to consider QTL pairs even if one of the paired QTLs did not

pass the strong significance threshold of LOD > 4.5. As an example, we considered overlapping QTLs

on chromosome XI that affected  OLE1 expression (mRNA-QTL LOD = 4.4, protein-QTL LOD =

15.5) to be a pair even if the mRNA LOD score was below the stringent significance threshold. In such

cases, we deemed it more conservative to assume that the weaker QTL exists but narrowly failed to

reach significance than to declare the stronger QTL as specific for mRNA or protein. We discarded all

QTLs  located  between  350  –  550  kb  on  chromosome  XIV,  as  this  region  may  affect  mCherry

fluorescence independently of the tagged gene.

We distinguished four types of QTLs (Figure 5A & S12). The shared QTL pairs either had similar

effects on mRNA and protein abundance (16 QTL pairs, defined as having the same sign of ΔAF) of protein-QTLs identified inAF), or

discordant effects on mRNA and protein (7 QTL pairs, different sign of ΔAF) of protein-QTLs identified inAF). All QTLs that were not

part of a pair were considered to be specific (11 mRNA-specific QTLs, 52 protein-specific QTLs).

Finally, we conducted an analysis of mRNA or protein QTL effect sizes and directions that avoided

having to define potentially paired QTLs as significant or not. For each mRNA-QTL (or protein-QTL),

we  extracted  the  ΔAF) of protein-QTLs identified inAF  from  the  protein-QTL (or  mRNA-QTL)  data  at  the  same  exact  position,

irrespective of significance in the other data. We used these values to compute correlations of effects
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and to examine shared directionality of effects between mRNA-QTLs and protein-QTLs (Figure 5B,

Table S6).

Allelic engineering for YAK1 fine-mapping

To obtain strains with scarless  allelic  swaps in haploids,  we used a strategy based on double-cut

CRISPR swap (Lutz et al., 2019). We flanked each of the four tiles to be switched by two resistance

markers (hphMX and KanMX) using our regular yeast transformation protocol (see above). The yeast

were then transformed with 100 ng of CRISPR-Swap plasmid (pFA0055-gCASS5a , Addgene plasmid

# 131774) and 1 µg of DNA repair template amplified either from BY, BY GPD1-GFP, or RM. The

transformed  cells  were  spread  on  SC  -leucine  plates,  selecting  for  the  presence  of  the  plasmid

expressing CAS9 and a gRNA targeting and cleaving a sequence present in both of the two resistance

cassettes. We used strains in which GPD1 was tagged with GFP but not the gRNA tag, as the gRNA in

our tag would likely have directed CAS9 to cleave the mCherry promoter. Cleavage of both cassettes

resulted  in  the  region  in  between  the  resistance  cassettes  to  be  replaced  by  the  repair  template.

Transformed clones were screened for the double loss of antibiotic resistance to identify those with

successful editing.

We introduced the 148,659 G→A variant,  which we had detected through sequence analysis  (see

below), in YAK1 by single-cut CRISPR swap (Lutz et al., 2019). We replaced the YAK1 sequence with

a hphMX resistance cassette insertion to create yak1Δ::hphMX. We then delivered the CRISPR-Swap

plasmid along with a repair template DNA produced by fusion PCR to carry either the G or A allele at

the variant position (primers OFA0874 to OFA0881 in Table S12). Five clones of each allele, (YAK1wt

and  YAK1Q578*) were confirmed by Sanger sequencing (primers OFA0883 and OFA0882 in Table

S12).

Sequence analyses to identify the YAK1 and other new DNA variants

To search for new variants in our populations that were not known to be present in the BY and RM

strains,  we  used  the  sequencing  reads  from  each  selected  segregant  population.  In  each  of  125

populations, we analyzed bam files after collapsing PCR duplicates. We applied samtools mpileup (--
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min-BQ 0) and bcftools call (-vc), either locally in the region affecting Gpd1-GFP (-r chrX:146000-

150000) or on the whole genome to generate vcf files containing variant information. The vcf files

were merged in R to generate matrices of polymorphic positions along with their allele frequency and

coverage. The allele frequencies of the YAK1 polymorphisms were plotted along the genome for each

population (Figure S13). We excluded all 47,754 previously known BY / RM variants from the whole-

genome polymorphism matrices, and also removed variants with a bcftools quality score below 30.

Among the 7,624 remaining variants sites, 5,822 were identified in only one or two populations and

were deemed to be sequencing errors. Only one variant was shared across most (71 out of 75) of the

populations created from strains from the GFP collection (strains tagged at  ARO8,  BMH2,  GPD1,

MTD1, and UGP1; Table S2) and absent in all other populations. This variant was the 148,659 G-to-A

SNV in YAK1.

YAK1 genotyping

The region containing the YAK1Q578* variant was PCR-amplified from genomic DNA isolated from

strains carrying  FAA4-GFP and YMR315W-GFP (GFP collection),  PGM1-TAP,  NOT5-TAP,  EMI2-

TAP,  TUB1-TAP (TAP-tag collection), BY4741 (ATCC 201388),  YLK1879 (a BY strain from the

Kruglyak lab)  and YLK1950 (an RM strain from the Kruglyak lab)  using primers  OFA0883 and

OFA0882 (Table S12). The resulting PCR product was Sanger sequenced using OFA0883 to genotype

the YAK1 variant. The YAK1Q578* variant was observed only in the strains obtained from the GFP and

TAP-tag collections (Ghaemmaghami et al., 2003; Huh et al., 2003).

Differential expression analysis by RNA sequencing and mass spectrometry

Cell harvest

We  quantified  RNA and  protein  from  five  biological  replicates  (different  clones  obtained  after

CRISPR-Swap) of YAK1wt and YAK1Q578*. For each of these 10 strains, fresh colonies were used to

inoculate 5 ml of SC medium (completed with uracil, arginine, histidine, and leucine) and the culture

was grown overnight at 30°C. The next day, 50 ml of SC media in an Erlenmeyer flask was inoculated

with the overnight culture to an initial OD600 of 0.05 and were grown under shaking at 30°C. When
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the OD600 reached 0.35 – 0.45 (late log phase), four aliquots of 7 ml of the culture was transferred to

a falcon tube, centrifuged, and washed with 1 ml of sterile PBS buffer at 30°C (Phosphate Buffered

Saline, pH 7.5). The pellets were immediately frozen in liquid nitrogen. For each strain, one cell pellet

was used for RNA sequencing and another for protein mass spectrometry.

RNA extraction and sequencing

RNA extraction and library preparation were conducted as described in Lutz et al. 2019 (Lutz et al.,

2019). Briefly, RNA extraction was done in two batches that each contained equal numbers of clones

from the two groups (first batch: clones 1 and 2 of BY YAK1wt and clones 1 and 2 of BY YAK1Q578*,

second batch: clones 3, 4 and 5 of BY YAK1wt and clones 3, 4 and 5 of BY YAK1Q578*). We used ZR

Fungal/Bacterial RNA mini-prep kit with DNase I digestion (Zymo Research R2014), following the

kit manual. RNA was eluted in 50 µl of RNase/DNase free water, quantified, and checked for integrity

on  an  Agilent  2200  TapeStation.  All  RNA  Integrity  Numbers  were  higher  than  9.5  and  all

concentrations were above 120 ng/µl. The RNA samples were stored at -20°C until use. Poly-A RNA

selection was done using 550 ng of total RNA using NEBNext Poly(A) mRNA Magnetic Isolation

Module (NEB E7490L), processing all samples in one batch. We prepared the library using NEB Ultra

II Directional RNA library kit for Illumina (NEB E7760) used dual index primers (from NEBNext

Multiplex  Oligos  for  Illumina,  NEB E7600S)  for  multiplexing,  and  amplified  the  library  for  ten

cycles.  The  libraries  were  quantified  using  Qubit  dsDNA HS Assay  Kit  (ThermoFisher  Scientist

Q32854) and pooled at equal mass for sequencing using 75-bp single-end reads on Illumina NextSeq

550 at UMGC. The sequencing reads will be made available on NCBI GEO. Using the trimmomatic

software (Bolger et al., 2014), reads were trimmed of adapters and low quality bases and filtered to be

at least 36 bp long. Reads were then pseudo-aligned to the S. cerevisiae transcriptome (Ensembl build

93) and counted using kallisto (Bray et al., 2016). We used RSeQC to calculate Transcript Integrity

Numbers (TIN) which provided an estimation of alignment quality for each gene of each sample. We

excluded any gene with at least one read count of zero or at least one TIN of zero across the ten

samples.  After  filtering,  5,755  genes  remained  for  analysis.  Differential  expression  analysis  was

performed using the DESeq2 R package (Love et al., 2014), using the extraction batch information as

covariate. DESeq2 provided, for each gene, the log2-fold change (YAK1Q578* vs. YAK1wt) and the p-

value adjusted for multiple-testing using the Benjamini-Hochberg method (Benjamini and Hochberg,

1995) (Table S7).
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Protein extraction and mass spectrometry

Protein extraction and quantification using mass spectrometry was performed by the Center for Mass

Spectrometry and Proteomics at the University of Minnesota. Briefly, cells from the pellets were lysed

by sonication (30%, 7 seconds in Branson Digital Sonifier 250) in protein extraction buffer (7 M urea,

2  M  thiourea,  0.4  M triethylammonium  bicarbonate  pH 8.5,  20% acetonitrile  and  4  mM tris(2-

carboxyethyl)phosphine).  The proteins  were extracted using pressure  cycling (Barocycler  Pressure

Biosciences NEP2320, 60 cycles of 20 seconds at  20 kpsi and 10 seconds at  0 kpsi),  purified by

centrifugation in 8 mM iodoacetamide (10 minutes at 12000 rpm), and quantify by Bradford assay. For

each sample, 40 µg of extracted proteins were fragmented by trypsin digestion (Promega Sequencing

Grade Modified Trypsin V5111), and labeled by tandem mass tag isotopes (TMT10plex Isobaric Label

Reagent Set, Thermo Scientific 90110). All the tagged samples were pooled. Peptides were separated

first  based  on  hydrophobicity  through  two  consecutive  liquid  chromatographies,  followed  by

separation based on mass per charge after ionisation in the first mass spectrometry step. The second

mass spectrometry step after high-energy collision-induced dissociation allowed for the identification

of the peptide and the quantification of the TMTs. MS-MS analysis was conducted on an Orbitrap

Fusion Tribrid instrument (Thermo Scientific).  Database searches were performed using Proteome

Discoverer software, and post-processing and differential expression analysis was done using Scaffold

4.9. Differential expression statistics per protein were computed on mean peptide abundances after

inter-sample  normalisation.  Normalised  abundances  for  each  of  the  2,590  detected  proteins  are

provided in  Table  S8.  We adjusted  p-values  provided  by  Scaffold  using  the  Benjamini-Hochberg

method.

Protein and mRNA data comparison

To compare the effect of the YAK1 variant on mRNA and protein abundance, we examined the log2

fold-change of the mRNA abundance (from DESeq2) and protein abundance (from Scaffold) for the

2,577 genes present in both datasets. We considered genes that were differentially expressed in mRNA

or protein (adjusted p-value < 0.05) and that showed no evidence of difference in the other quantity

(raw p-value > 0.05), to be specifically affected at the mRNA or protein level (Figure 7A, Table S9). In

various categories of differentially expressed genes, we looked for gene ontology enrichment using
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GOrilla  (Eden et  al.,  2009) with  the  list  of  2,577 genes  detected in  both mass  spectrometry  and

RNAseq as the background set (Table S10).
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