

1 Simultaneous quantification of mRNA and protein in single cells

2 reveals post-transcriptional effects of genetic variation

3 Christian Brion, Sheila Lutz, and Frank W. Albert

4 Department of Genetics, Cell Biology and Development,

5 University of Minnesota

6 Minneapolis, MN, U.S.A.

7 Correspondence to: Frank W. Albert (falbert@umn.edu)

8 **Keywords:** eQTL, pQTL, yeast, *Saccharomyces cerevisiae*, proteomics, transcriptomics, gene
9 expression regulation, complex traits, CRISPR, trans, YAK1

10 **One sentence summary:** A CRISPR-based dual reporter assay enables genetic mapping of DNA
11 variants that specifically affect mRNA or protein levels in *trans*.

12 Running title: Genetics of mRNA & protein in single cells

13 Abstract

14 *Trans*-acting DNA variants may specifically affect mRNA or protein levels of genes located
15 throughout the genome. However, prior work compared *trans*-acting loci mapped in studies performed
16 separately or with limited statistical power. Here, we developed a CRISPR-based system for
17 simultaneous quantification of mRNA and protein of a given gene via dual fluorescent reporters in
18 single, live cells of the yeast *Saccharomyces cerevisiae*. In large populations of recombinant cells from
19 a cross between two genetically divergent strains, we mapped 86 *trans*-acting loci affecting the
20 expression of ten genes. Less than 20% of these loci had concordant effects on mRNA and protein of
21 the same gene. Most loci influenced protein but not mRNA of a given gene. One such locus harbored a
22 premature stop variant in the *YAK1* kinase gene that had specific effects on protein or mRNA of
23 dozens of genes. These results demonstrate complex, post-transcriptional genetic effects on gene
24 expression.

25 Introduction

26 Phenotypic variation in genetically complex traits is shaped by multiple DNA variants throughout the
27 genome. The small effects of most of these variants pose a challenge for understanding the
28 mechanisms through which individual variants act. Overcoming this challenge has the potential to
29 improve our ability to understand disease, study evolutionary change, and help apply biological
30 processes in industry and agriculture.

31 Many genetic variants that influence complex traits alter gene expression (Albert and Kruglyak, 2015;
32 Maurano et al., 2012). Some of these variants are located in *cis*-regulatory elements or alter sequence
33 features of the messenger RNA (mRNA) molecule itself. The proximity of such “*cis*-acting” variants
34 to the genes they affect has aided their identification in numerous species (Aguet et al., 2017; Albert et
35 al., 2018; Brem et al., 2002; Cheung et al., 2005; Clément-Ziza et al., 2014; Hasin-Brumshtein et al.,
36 2014; Higgins et al., 2018; Ka et al., 2013; Kita et al., 2017; Morley et al., 2004; West et al., 2007).

37 However, most genetic variation in gene expression arises from *trans*-acting variants that affect the
38 activity or abundance of diffusible factors that in turn alter the expression of other genes (Albert et al.,
39 2018; Grundberg et al., 2012; Wright et al., 2014). Compared to their target genes, *trans*-acting
40 variants can be located anywhere in the genome, greatly complicating their identification in human
41 association studies. In organisms such as yeast (Albert et al., 2018; Brem et al., 2002; Brion et al.,
42 2020; Clément-Ziza et al., 2014; Thompson and Cubillos, 2017), plants (Fu et al., 2013; West et al.,
43 2007; Zhang et al., 2011), worms (Snoek et al., 2017; Viñuela et al., 2010) and mouse (Gerrits et al.,
44 2009; Hasin-Brumshtein et al., 2016), linkage analysis in recombinant progeny from experimental
45 crosses has identified loci carrying variants affecting gene expression (expression quantitative trait
46 loci, eQTLs), including thousands of eQTLs that affect gene expression in *trans*.

47 Genetic effects on gene expression can be as complex as those on organismal phenotypes. The
48 expression of a gene can be affected by one or more *cis*-eQTLs and dozens of *trans*-eQTLs, each of
49 which changes the expression of the gene by a small amount (Albert et al., 2018). Detecting the loci
50 that give rise to this complex variation requires high statistical power resulting from the analysis of
51 large numbers of individuals (Albert et al., 2018, 2014b; Bloom et al., 2013; Ehrenreich et al., 2010).

52 Post-transcriptional regulation plays a major role in the control of gene expression (McCarthy, 1998),
53 and mRNA and protein levels across genes are often reported to be poorly correlated (Huh et al., 2003;
54 Lahtvee et al., 2017; Liu et al., 2016). Nonetheless, most studies of regulatory variation measure
55 mRNA instead of protein abundance, enabled by powerful quantification techniques such as RNA
56 sequencing. Variants that influence mRNA abundance can act at different molecular levels, including
57 transcription (Kilpinen et al., 2013) and mRNA degradation (Andrie et al., 2014; Pai et al., 2012). New
58 techniques have allowed the study of gene expression variation beyond mRNA, including ribosome
59 profiling to study mRNA translation (Albert et al., 2014a; Battle et al., 2015), and mass spectrometry
60 to study protein abundance (Battle et al., 2015; Chick et al., 2016; Foss et al., 2011, 2007; Ghazalpour
61 et al., 2011; Großbach et al., 2019; Picotti et al., 2013; Sun et al., 2018; Yao et al., 2018) and protein
62 modifications such as phosphorylation (Großbach et al., 2019).

63 Fluorescent gene tags enable quantification of the abundance of a given protein of interest in single
64 cells (Huh et al., 2003). In *S. cerevisiae*, fluorescence-activated cell sorting (FACS) of millions of
65 GFP-tagged recombinant cells from a cross between genetically different strains can be used to collect
66 populations of thousands of single cells with high or low protein expression (Albert et al., 2014b; Parts
67 et al., 2014). Pooled, genome-wide sequencing of these populations has provided high statistical
68 power to identify genetic loci that influence protein abundance (“protein-QTLs”) (Damerval et al.,
69 1994). This “bulk segregant” approach (Michelmore et al., 1991), which is designed to detect *trans-*
70 acting loci, led to a 10-fold increase in the number of detected protein-QTLs (to an average of 7.2
71 protein-QTLs per gene) compared to analyses of mass spectrometry-based proteomics in one hundred
72 segregants (Albert et al., 2014b).

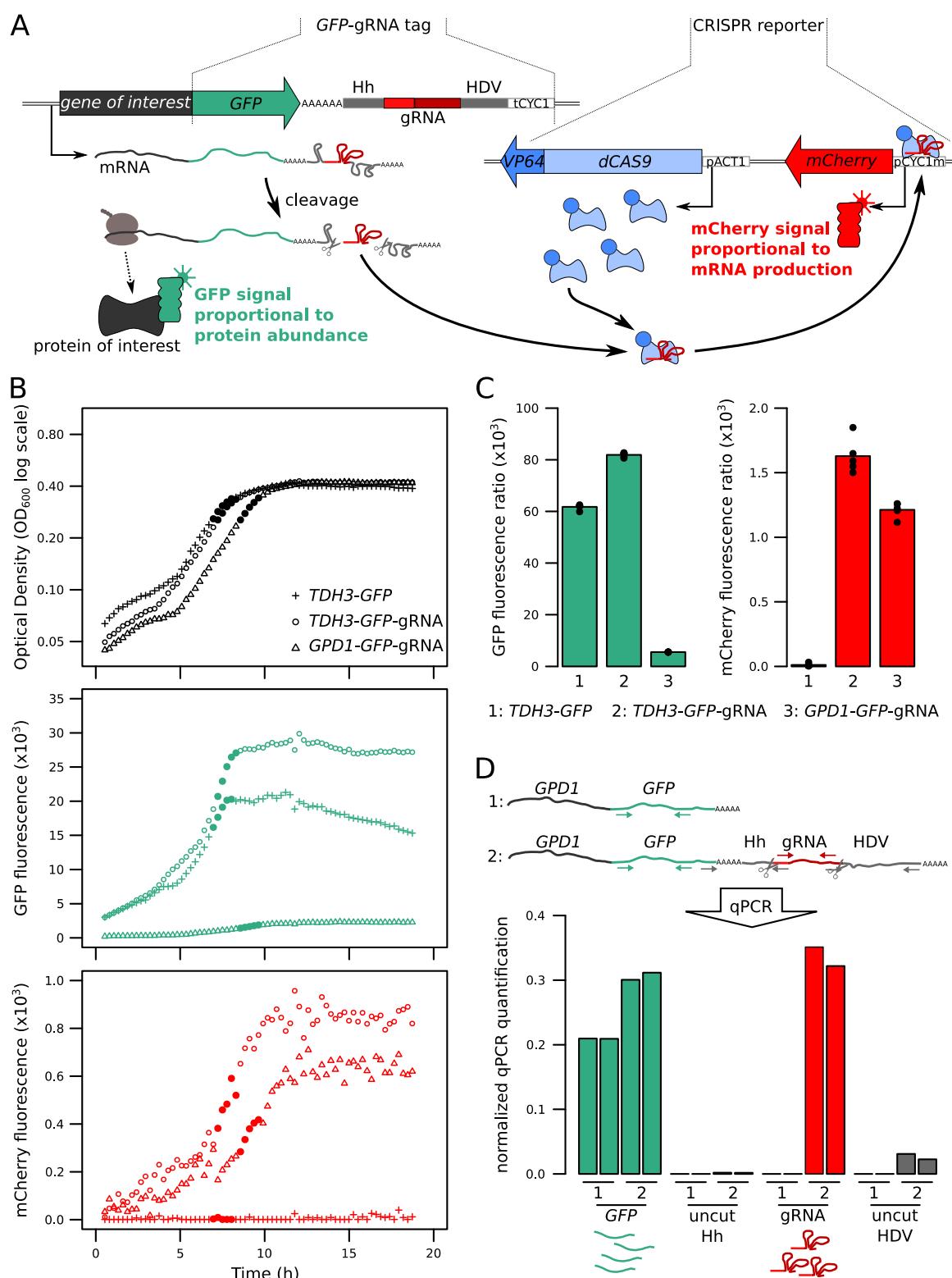
73 In comparisons among different studies, many protein-QTLs did not overlap with loci that affected
74 mRNA (“mRNA-QTLs”) of the same gene, and *vice versa* (Albert et al., 2018). Further, some loci
75 affected both mRNA and protein but in opposite directions. At such “discordant” loci, the same allele
76 increased mRNA abundance but decreased protein abundance of the same gene. These results suggest
77 that genetic variants can independently affect the different layers of gene expression regulation (Albert
78 et al., 2018, 2014b; Foss et al., 2011; Großbach et al., 2019).

79 However, there are potential caveats to this conclusion. The QTLs under comparison were identified in
80 experiments conducted at different times, in different laboratories, using different technologies with

81 unique sensitivities and biases, and often using small sample sizes that limited statistical power. These
82 comparisons are likely to be confounded by environmental differences among studies, which existed
83 either by design (for example, different culture media) or may have resulted from experimental
84 inconsistencies (for example, slight differences in the precise stage of cell growth, or in temperature).
85 These issues are especially problematic when comparing *trans*-acting QTLs with small effects, which
86 could be particularly sensitive to environmental influences (Smith and Kruglyak, 2008). While a
87 recent study used mRNA-sequencing and mass spectrometry of the same yeast cultures to enable a
88 direct comparison of mRNA-QTLs and protein-QTLs (Großbach et al., 2019), its sample size limited
89 detection of QTLs with small effects. As a result, the importance of genetic variation, especially *trans*-
90 acting variation, that specifically affects post-transcriptional processes remains unclear.

91 To address this challenge, we developed a system for quantifying mRNA and protein from the same
92 gene simultaneously, in the same, live, single cells using two fluorescent reporters. We reasoned that
93 such an approach would equalize all environmental confounders and most of the technical biases that
94 could obscure the relationship between mRNA-QTLs and protein-QTLs. Our assay is sensitive enough
95 to be used in FACS, permitting the use of well-powered bulk segregant mapping in a yeast cross.
96 Genetic mapping across ten genes revealed 86 *trans*-acting loci. The vast majority of the identified
97 mRNA-QTLs and protein-QTLs for a given gene did not overlap or had discordant effects on mRNA
98 and protein. These results demonstrate considerable discrepancies in the genetic basis of variation in
99 mRNA vs protein abundance.

100 Results


101 A reporter system for quantifying mRNA and protein in single, live cells

102 We designed a dual reporter system for the simultaneous quantification of mRNA production and
103 protein abundance of a given gene in single, live cells. In this system, protein abundance is measured
104 via a fluorescent GFP tag fused to the C-terminus of the given gene of interest (Huh et al., 2003). To
105 measure mRNA, we reasoned that a clustered regularly interspaced short palindromic repeats
106 (CRISPR) guide RNA (gRNA) (Doudna and Charpentier, 2014) produced in equal molarity with the
107 mRNA of interest would be able to drive proportional expression of a reporter gene via CRISPR-

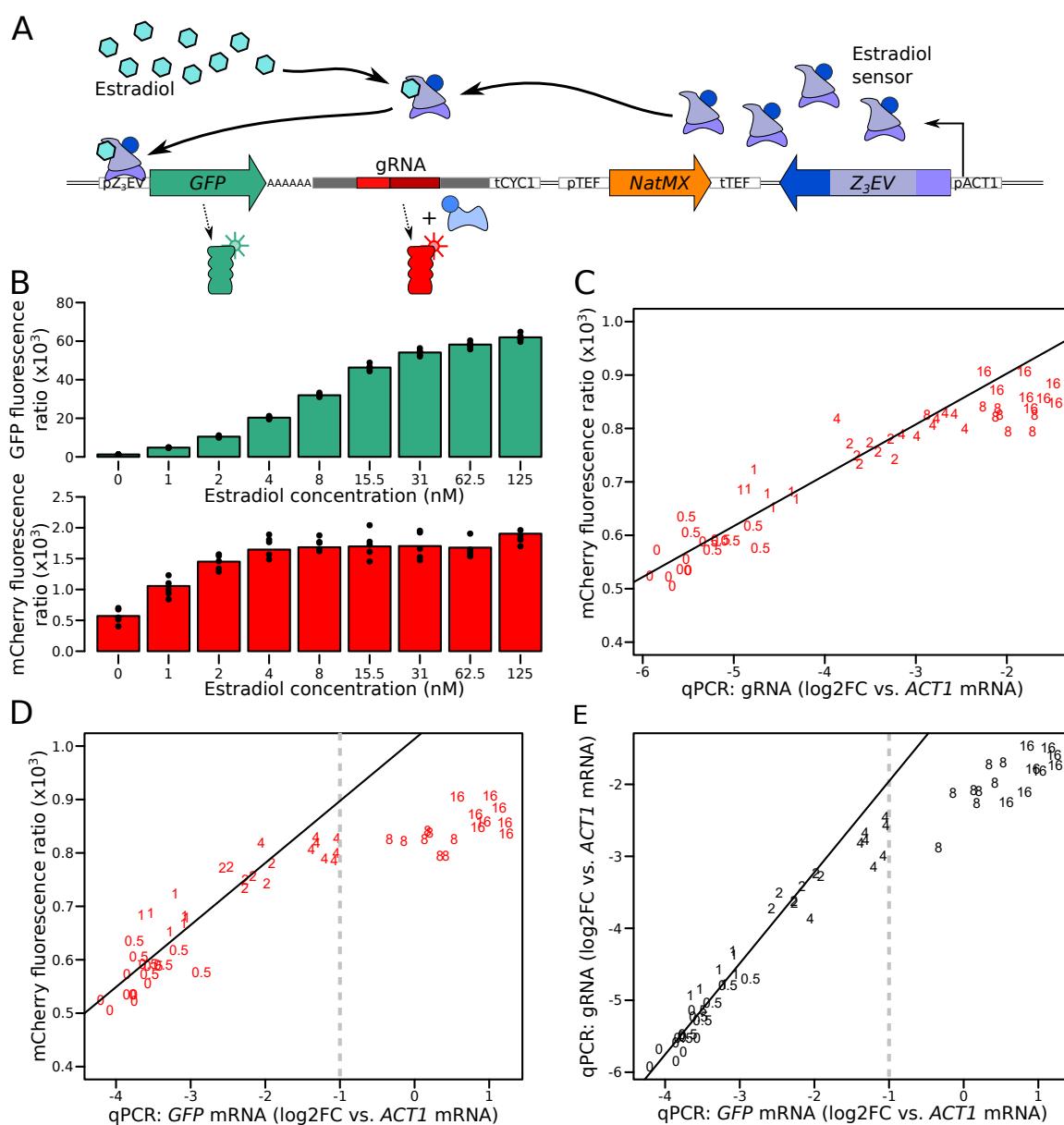
108 activation (Gilbert et al., 2014; Konermann et al., 2015). To implement this idea, we created a gRNA
109 tag located in the 3'UTR of the gene, downstream of the sequence encoding GFP (Figure 1A). After
110 transcription of the mRNA along with this tag, the gRNA is released from the mRNA by two flanking
111 self-cleaving ribozymes (Hammerhead, Hh; and Hepatitis Delta Virus, HDV) (Gao and Zhao, 2014).
112 Because gRNA cleavage separates the mRNA from its poly-adenylated (polyA) tail, we added a
113 synthetic polyA tail between the GFP tag and the Hh ribozyme (Gao and Zhao, 2014). Once released,
114 the gRNA directs a catalytically deactivated CRISPR associated enzyme (dCas9) fused to a VP64
115 activation domain (dCas9-VP64) to drive the expression of an mCherry gene integrated in the genome
116 (Farzadfar et al., 2013). After gRNA release, stability and half-life of the mRNA no longer affects
117 gRNA abundance, such that mCherry expression primarily reports on mRNA production.

118 The reporter system is implemented as two cassettes (Figure 1A). The “GFP-gRNA tag” cassette is
119 added at the 3' end of the gene of interest. A second cassette, which we call the “CRISPR reporter”,
120 comprises the remaining components: *dCAS9-VP64* and the *mCherry* gene under the control of an
121 inactive *CYC1* promoter fragment. This promoter contains one recognition sequence that, when
122 targeted by the gRNA and dCas9-VP64, drives mCherry expression (Farzadfar et al., 2013). The two
123 cassettes are stored on two plasmids that can be used to easily construct strains for quantification of
124 mRNA and protein of any gene of interest (Figure S1).

125 We tested the reporter system in diploid BY strains tagged at two genes with different expression
126 levels: the highly expressed *TDH3*, and *GPDI*, which has an average expression level compared to
127 other genes in the genome. Both genes gave green and red fluorescent signals in a plate-reader (Figure
128 1B). A strain carrying the CRISPR reporter and *TDH3* tagged with GFP but no gRNA produced no
129 mCherry fluorescence, demonstrating that the gRNA is required for driving mCherry expression
130 (Figure 1B). Presence of the gRNA tag increased Tdh3-GFP levels by 1.3-fold (Figure 1C).
131 Quantitative real time reverse-transcription PCR (qPCR) confirmed expression of the gRNA and the
132 mRNA (Figure 1D). Absence of qPCR signal from primers that spanned the ribozyme cut sites in
133 cDNA confirmed that the ribozymes properly cleaved the gRNA (Figure 1D & S2).

134 **Figure 1.** Fluorescence-based quantification of mRNA and protein levels. (A) Schematic of
135 the dual quantification reporter. Hh: Hammerhead ribozyme, HDV: Hepatitis Delta Virus
136 ribozyme, tCYC1: terminator sequence from the *CYCI* gene, VP64: four consecutive
137 sequences encoding viral protein transcription activators VP16, pACT1: promoter sequence
138 from the *ACT1* gene, pCYC1m: modified promoter sequence from the *CYCI* gene without
139 baseline transcriptional activity. (B) Time courses of cell density and fluorescence
140 measurements for three tagged strains during 20 h growth on a plate reader. Filled symbols
141 correspond to five measurements at the end of the exponential growth phase that were used for

138 calculating fluorescence ratios for strain comparisons in the same physiological context as
139 shown in panel C. (C) Fluorescence ratios (fluorescence / OD600) for the three strains shown
140 in panel B. (D) RNA Quantification of the individual components of the tag, for *TDH3-GFP*
141 and *TDH3-GFP-gRNA* by RT-qPCR. The two bars per strain show biological replicates.
142 Normalized qPCR quantifications were calculated separately for each primer pair based on
143 calibration with known template DNA amounts (Figure S2). Cells were grown in YNB
144 glutamate medium.

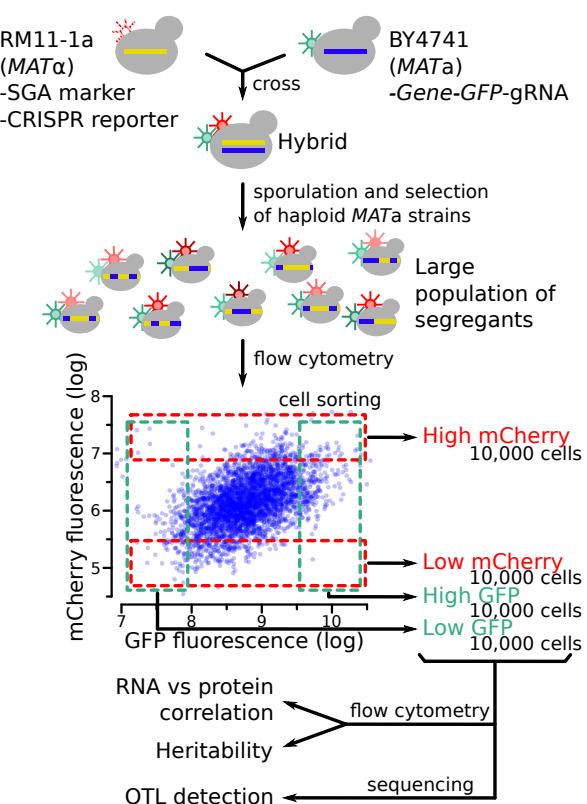

145 **mCherry fluorescence provides a quantitative readout of mRNA production**

146 To characterize the quantitative response of our reporter system to a range of gene expression levels,
147 we used the synthetic Z3EV system, which allows quantitative regulation of transcription via the
148 concentration of estradiol in the culture medium (McIsaac et al., 2013). We cloned the Z3EV promoter
149 upstream of a *GFP-gRNA* sequence (Figure 2A) in a strain that also contained the CRISPR reporter
150 and grew this strain in a range of estradiol concentrations. Along with the expected increase in green
151 fluorescence (McIsaac et al., 2013), red fluorescence increased as a monotonic function of estradiol
152 concentration (Figure 2B). Similar results were observed in the RM11-1a strain, which has a different
153 genetic background than BY (Figure S3). Thus, mCherry provides a quantitative readout of the
154 expression of the tagged gene.

155 While green fluorescence continued to increase throughout the tested estradiol range, red fluorescence
156 ceased to increase at concentrations of more than 4 nM estradiol (Figure 2B). qPCR quantification of
157 the gRNA showed that mCherry fluorescence followed gRNA abundance (Figure 2C), confirming that
158 the mCherry reporter gene is quantitatively regulated by gRNA abundance. gRNA abundance was
159 linearly related to *GFP* mRNA and GFP fluorescence at lower doses of estradiol but stopped
160 increasing at higher doses (Figure 2D & E). This suggests that mCherry production is limited by
161 gRNA availability at high expression levels. Increasing the concentration of dCas9 proteins or binding
162 sites for the gRNA had no effect on the mCherry expression plateau (Figure S4 & S5).

163 The linear relationship between mCherry fluorescence and mRNA abundance of the tagged gene was
164 present up to an expression level that corresponded to half of the abundance of *ACT1* mRNA, which
165 we had used as a reference gene in qPCR (Figure 2D). Based on previous RNAseq data (Albert et al.,
166 2018), we estimated that 95% of *S. cerevisiae* genes fall below this threshold and can thus be

167 quantified by our mRNA reporter (Figure S6, Table S1). For lowly expressed genes, the GFP tag does
 168 not provide a strong enough signal to enable protein quantification (Huh et al., 2003) (Figure S6).
 169 Based on these results, we concluded that our dual reporter system can be used to simultaneously
 170 measure mRNA and protein of more than half the genes in the *S. cerevisiae* genome.



179 estradiol concentrations. The numbers in C to E show the concentration of estradiol in mM,
180 with 7 to 8 biological replicates per concentration. Solid lines represent linear regressions
181 calculated on measurements taken at up to 2 mM estradiol. Dashed vertical lines correspond to
182 the mRNA abundance threshold, below which we deemed the reporter to be quantitative. Cells
183 were grown in SC medium.

184 **Simultaneous mapping of genetic variation affecting mRNA and protein levels**

185 Our reporter system quantifies mRNA production and protein abundance at the same time, in the same
186 live cells, exposed to the same environment. These features enable mapping of the genetic basis for
187 variation in mRNA and protein levels, free from environmental or experimental confounders. We
188 selected ten genes for genetic mapping (Table S2), based on several criteria. Five genes (*ARO8*,
189 *BMH2*, *GPDI*, *MTD1*, *UGPI*) had previously been reported to have discrepant sets of mRNA-QTLs
190 (Albert et al., 2018) and protein-QTLs (Albert et al., 2014b). Three genes (*CYC1*, *OLE1*, *TPO1*) had
191 shown high agreement between their respective mRNA-QTLs and protein-QTLs. The remaining two
192 genes (*CTS1* and *RPS10A*) had low protein abundance based on GFP-tag quantification (Huh et al.,
193 2003) compared to their mRNA levels (Albert et al., 2018).

194 To identify genetic loci affecting mRNA production and protein abundance, we used the strains
195 BY4741 (BY), a reference strain frequently used in laboratory experiments, and RM11-1a (RM), a
196 vineyard isolate closely related to European strains used in wine making. These two strains differ at
197 47,754 variants in the yeast genome. We engineered RM to carry the CRISPR reporter inserted at the
198 *NPR2* gene and a synthetic genetic array (SGA) marker for selection of *MATa* haploid strains (Tong
199 and Boone, 2007) at the neighboring *CAN1* gene. We engineered a series of BY strains, each carrying
200 one gene tagged with the GFP-gRNA tag (Figure 3). We crossed these BY strains to the RM strain and
201 obtained populations of recombinant haploid progeny carrying both the tagged gene and the CRISPR
202 reporter. Flow cytometry detected a range of GFP and mCherry signals from single cells (Figure 3).

203 **Figure 3.** Schematic of the workflow for the identification of RNA-QTLs and protein-QTLs.
204 The SGA marker allows for the selection of haploid *MAT α* strains after sporulation (Methods).

205 To study the relationship between mRNA and protein among single cells, we examined the cell-to-cell
206 correlation between mCherry and GFP fluorescence in our genetically heterogeneous populations
207 (Figure S7A). After correcting for cell size (Figure S8), mCherry and GFP were positively correlated
208 for all tested genes (Figure S7B). The strength of the correlation varied from gene to gene. Lower
209 correlations between mCherry and GFP were observed for the genes with high published discrepancies
210 between mRNA-QTLs and protein-QTLs compared to those with more concordant mRNA-QTLs and
211 protein-QTLs. Thus, different genes are influenced by mRNA-specific or protein-specific variation to
212 different degrees.

213 Fluorescence-based readouts of mRNA and protein quantification in single cells enabled the use of
214 bulk segregant analysis, a genetic mapping paradigm that gains statistical power from the analysis of
215 millions of cells (Albert et al., 2014b; Ehrenreich et al., 2010). In each of the segregating populations,
216 we used FACS to collect four subpopulations of 10,000 cells with high or low GFP or mCherry
217 fluorescence, respectively, at a cutoff of 3% – 5% (Figure 3). In prior work, similarly stringent

218 selection provided high power for QTL mapping (Albert et al., 2014b; Ehrenreich et al., 2010; Parts et
219 al., 2014).

220 To gauge the heritability of gene expression among single cells, we measured fluorescence between
221 the high and low populations after 13 generations of growth. In almost all cases, the sorted populations
222 showed significant (T-test, $p < 10^{-5}$) differences in fluorescence, confirming the presence of genetic
223 variants affecting mRNA and protein levels (Figure S9).


224 To map QTLs, we performed pooled whole-genome sequencing of all collected populations, computed
225 the allele frequency of each DNA variant in each population, and calculated the difference in allele
226 frequency (ΔAF) between high and low populations along the genome. A significant ΔAF at a locus
227 indicated the presence of one or more genetic variants affecting protein abundance (GFP) or mRNA
228 production (mCherry, Table S3). QTL mapping was performed in two to six biological replicates for
229 all but one gene (*RPS10A*). Because any allele frequency differences among replicate populations
230 sorted on the same parameters (e.g. two high GFP populations for the same gene) represent false
231 positives, we used the replicate data to estimate false discovery rates. We chose a significance
232 threshold (logarithms of the odds; “LOD” = 4.5) corresponding to a false discovery rate of 7% (Figure
233 S10). Between replicates, 76% of the protein-QTLs and 78% of the mRNA-QTLs were reproducible at
234 genome-wide significance (Figure 4A).

235 Across the ten genes, we detected 78 protein-QTLs and 44 mRNA-QTLs (Tables S4 & S5). By design,
236 all detected loci were *trans*-acting, and most were located on a different chromosome than the tagged
237 gene. One locus located at ~450 kb on chromosome XIV affected mCherry levels in the same direction
238 in all ten genes. This region was also observed in a control experiment, in which mCherry was
239 expressed constitutively using an *ACT1* promoter, and without a gRNA present (Figure S11). This
240 region harbors the *MKT1* gene, which carries a variant affecting a variety of traits (Deutschbauer and
241 Davis, 2005; Fay, 2013). While the highly pleiotropic *MKT1* locus may truly affect all ten genes we
242 tested, it could also affect mCherry fluorescence via mCherry maturation or degradation,
243 independently of any tagged gene. We excluded this region from further analyses.

244 The number of protein-QTLs per gene identified here (median = 7) agrees well with results from a
245 previous study using the same mapping strategy (median = 8 for the same genes; (Albert et al.,
246 2014b)), confirming that individual proteins are influenced by multiple, *trans*-acting loci. The effects

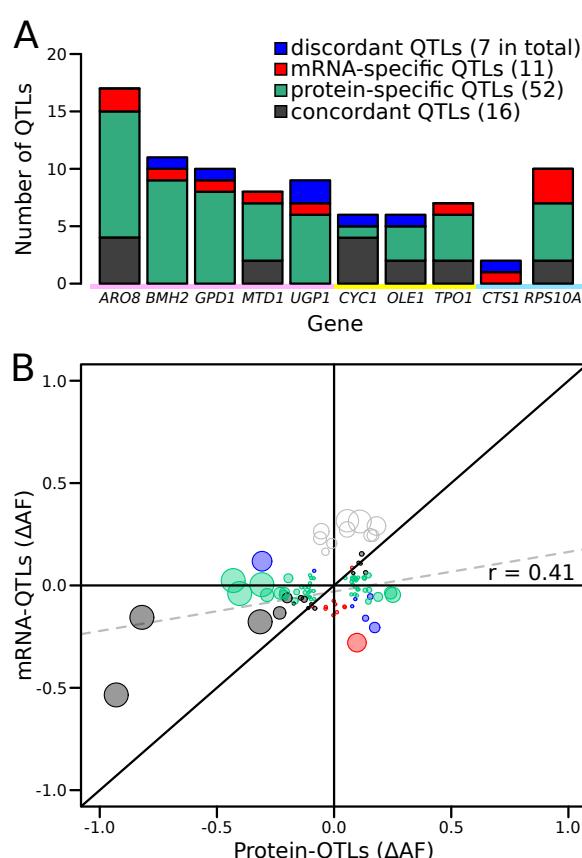
247 of individual protein-QTLs showed a positive correlation across studies (Pearson $r = 0.73$, p -value <
248 10-15, Figure 4B). The number of mRNA-QTLs per gene in our study (median = 3 after removing the
249 *MKT1* locus) was lower than those from a previous study using RNA sequencing in 1,012 segregants
250 (median = 8 for the same genes; Albert *et al.* 2018). This difference could be due to using our reporter
251 in single cells with high stochastic variation compared to RNA-Seq in individually grown segregant
252 cultures in Albert *et al.* (2018) (see Discussion). However, while the mRNA-QTLs detected by our
253 reporter primarily reflect influences on mRNA production, the eQTLs from Albert *et al.* (2018) may
254 reflect effects on transcription as well as mRNA degradation, which our system was not designed to
255 capture. The effects of mRNA-QTLs were significantly correlated between studies ($r = 0.44$, p -value =
256 5×10^{-6} , Figure 4C). Some of the QTLs we detected harbored genes known to affect expression
257 variation. For example, a region at \sim 650 kb on chromosome XII that contained the gene *HAPI*
258 affected protein abundance and / or mRNA production of *GPDI*, *CYC1*, *OLE1*, and *TPO1* (Figure
259 4A). In the BY strain, the *HAPI* coding sequence is interrupted by a transposon insertion, which alters
260 the expression of thousands of mRNAs in *trans* (Albert *et al.*, 2018; Brem *et al.*, 2002). Overall, these
261 agreements with previous analyses confirmed the reliability of our new reporter as a means for
262 mapping the genetic basis of gene expression variation.

263 We detected several QTLs that were not shared with prior work and *vice versa* (Figure 4B – C). Most
264 of these QTLs tended to have small effect sizes, suggesting that they could have been missed due to
265 incomplete power in either study. Alternatively, these QTLs may reflect experimental differences
266 between studies. For example, we observed a new, strong protein-QTL affecting Aro8 on chromosome
267 XIV. The regulation of Aro8 expression by amino acid levels (Iraqui *et al.*, 1998) suggests that this
268 QTL could be due to the synthetic complete medium used here vs. YNB medium in earlier work.

269 **Figure 4.** RNA-QTLs and protein-QTLs. (A) Allele frequency difference along the genome
270 between the high and low population for each of the ten tagged genes, with 1 – 6 replicates per
271 gene. Green and red curves correspond to the populations sorted on GFP and mCherry
272 fluorescence, respectively. The colored plot borders indicate the reason for which the gene was
273 chosen for study. Pink: high discrepancy between reported eQTLs and pQTLs, yellow: high
274 similarity between reported eQTLs and pQTLs, blue: high mRNA level and low GFP

275 fluorescence. Purple vertical lines indicate the position of the tagged gene in the genome.
276 Points indicate the location of significant QTLs, color coded based on protein or mRNA
277 specificity (black: shared effect in same direction, green: protein specific, red: mRNA specific,
278 blue: discordant). (B) Comparison between the effect size (ΔAF) of protein-QTLs identified in
279 this study and pQTLs from previous work. (C) Same as (B) but comparing mRNA-QTLs
280 identified in this study (ΔAF) to *trans*-eQTLs from previous work (eQTL effect sizes from
281 Albert et al., 2018 are shown as a Pearson correlation coefficient between mRNA abundance
282 and genotype at the QTL marker). Filled circles correspond to QTLs significant in both
283 datasets. Empty circles correspond to QTLs significant in only one dataset. Grey circles
284 correspond to QTLs located on chromosome XIV between 350 and 550 kb, which were
285 excluded from analysis. Circle size is proportional to the LOD score of the QTL. The Venn
286 diagrams show the total number and overlap of QTLs detected across the 10 genes between
287 studies.

288 **Differences between mRNA-QTLs and protein-QTLs**


289 Genetic mapping using our reporter enabled us to compare mRNA-QTLs and protein-QTLs, free from
290 environmental or experimental confounders. We classified 86 loci based on the presence and effect
291 direction of their respective mRNA-QTLs and / or protein-QTLs (Figure 5A & S12, Table S6).

292 Of these 86 loci, 16 affected mRNA and protein of a given gene in the same direction. Such loci are
293 expected for variants that alter a gene's mRNA production such that, in the absence of other effects,
294 they also result in a concordant effect on protein abundance.

295 A majority of the loci corresponded to protein-QTLs that did not overlap an mRNA-QTL. These 52
296 protein-specific QTLs may arise from variants that affect translation or protein degradation, without an
297 effect on mRNA production.

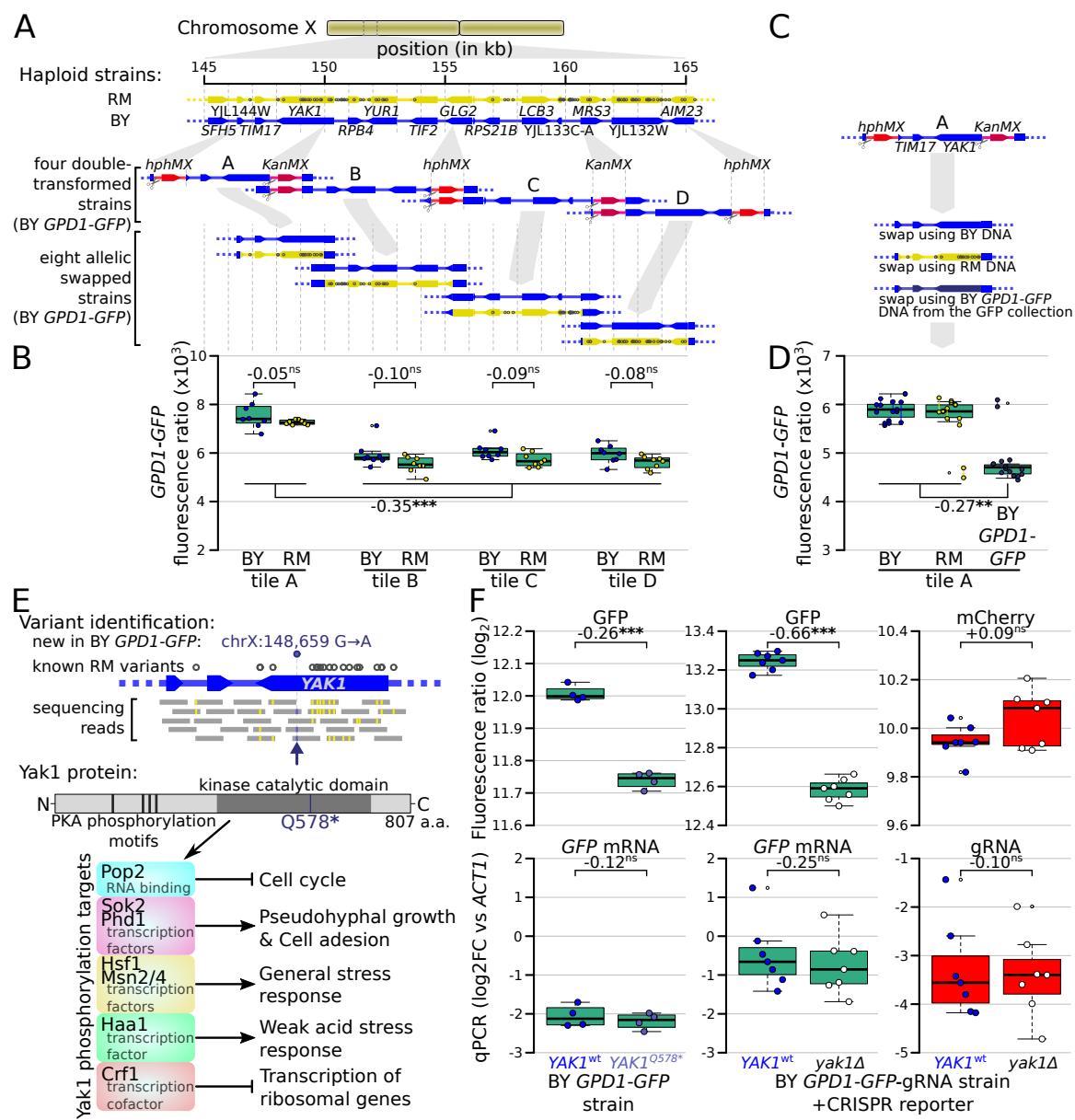
298 There were eleven mRNA-QTLs that did not overlap with a protein-QTL and seven loci where
299 mRNA-QTLs and protein-QTLs overlapped but had discordant effects. These two categories may
300 occur when protein abundance and mRNA production of the same gene are regulated separately,
301 through two different *trans*-acting pathways. These two pathways could be affected by two distinct but
302 genetically linked causal variants at the same locus, or by a single variant with distinct pleiotropic
303 effects on the two pathways. Alternatively, buffering mechanisms (Battle et al., 2015; Großbach et al.,

304 2019) may compensate for changes in mRNA production perfectly (resulting in an mRNA-specific
305 QTL) or may overcompensate (resulting in a discordant QTL pair) (Figure S12).

306 **Figure 5.** Comparison of RNA-QTLs and protein-QTLs. (A) Number of QTLs for each
307 tagged gene, color coded according to type of effect on RNA and / or protein. (B) Comparison
308 of QTL effect sizes between mRNA-QTLs and protein-QTLs. Grey circles correspond to
309 QTLs located on chromosome XIV 350 – 550 kb, which were excluded from analysis. Circle
310 size is proportional to the LOD score of the QTL.

311 Genes differed widely in the complexity and specificity of *trans*-acting loci that influenced their
312 expression. For example, four genes (*BMH2*, *GPD1*, *UGP1*, and *CTSI*) were each influenced by
313 multiple loci, none of which affected mRNA and protein levels in the same direction. By contrast,
314 most of the loci influencing *CYC1* had concordant effects on mRNA and protein (Figure 5A).

315 While more than 73% of loci were specific for mRNA or protein, this difference might be inflated by
316 loci that are truly concordant, but at which either the mRNA or the protein QTL narrowly failed to
317 meet the significance threshold. To bypass this potential limitation, we compared effect sizes,
318 expressed as ΔAF , at significant mRNA-QTLs or protein-QTLs, irrespective of the significance of the
319 locus in the other data (Figure 5B). When considering all loci, we observed a significant, positive


320 correlation between mRNA and protein effect sizes ($r = 0.41$, p -value = 8.4×10^{-5} , Figure 5B). This
321 overall correlation was almost exclusively driven by the concordant QTL pairs, whose effect sizes
322 showed a strong correlation ($r = 0.88$ p -value = 9×10^{-6}). In sharp contrast, neither protein-specific
323 QTLs ($r = 0.2$, p -value = 0.23) nor mRNA-specific QTLs ($r = -0.05$, p -value = 0.9) had correlated
324 effects across the two data types, as expected if these loci specifically affected only mRNA or only
325 protein. Considerable differences between mRNA-QTLs and protein-QTLs were also observed when
326 simply considering effect directions. Overall, only 64% of QTLs affected mRNA and protein in the
327 same direction. While this was more than the 50% expected by chance (binomial test p -value = 0.006),
328 it left 36% of loci with discordant effects. Protein-specific QTLs showed similar directional agreement
329 (63%) at lower significance (p -value = 0.04), while only 55% of mRNA-specific QTLs had an effect
330 in the same direction in the protein data, which was not significantly different from chance (p -value =
331 0.5). Together, these results are consistent with the existence of many QTLs that specifically affect
332 mRNA production or protein abundance.

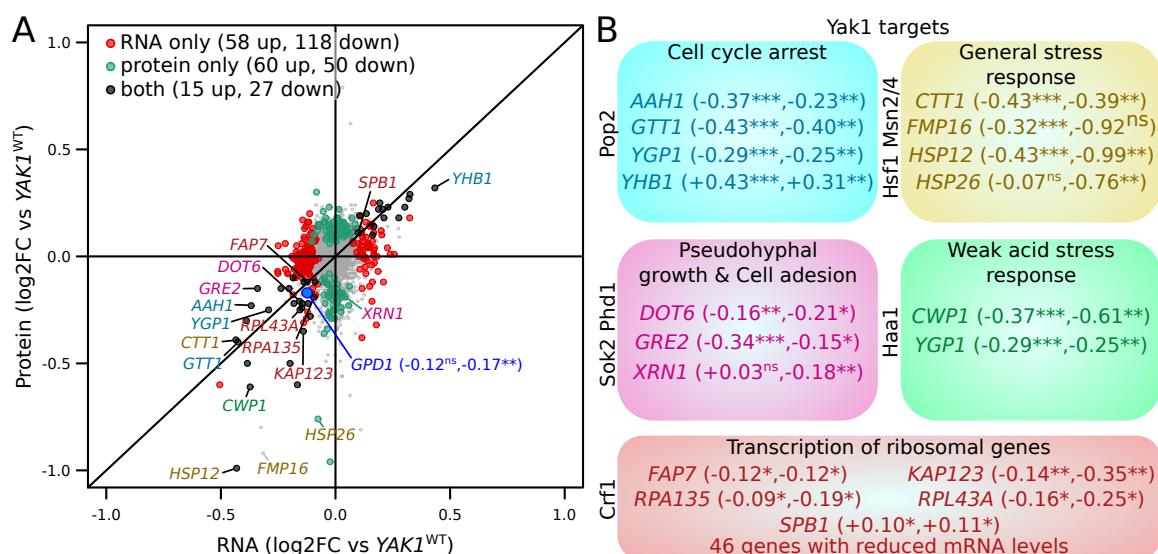
333 Several loci were shared across the ten genes. Even these shared loci differed in the specificity of their
334 effects on mRNA or protein. For example, the locus containing the *HAPI* gene had strong, concordant
335 effects on both mRNA and protein for *CYCI* and *OLE1*, affected only the protein abundance of *UGPI*,
336 and had significant but discordant effects on mRNA and protein for *GPD1*. Overall, these results
337 revealed complex *trans*-acting influences on gene expression, in which genes were affected by
338 different sets of multiple loci, with different degrees of mRNA or protein specificity.

339 **A premature stop mutation in *YAK1* affects gene expression post-transcriptionally**

340 The causal variants in most *trans*-acting loci are unknown, limiting our understanding of the
341 underlying mechanisms. In particular, very few causal variants with specific *trans* effects on protein
342 abundance are known (Chick et al., 2016; Hause et al., 2014). We noticed a region at \sim 155 kb on
343 chromosome X that affected the protein abundance but not mRNA production of *ARO8*, *BMH2*, and
344 especially *GPD1* (Figure 4A). This region spanned about 20 kb and contained 15 genes and 99
345 sequence variants. To identify the causal variant, we systematically divided this region into four tiles,
346 swapped alleles in each tile using double cut CRISPR-swap, an efficient scarless genome editing

347 strategy (Lutz et al., 2019), and quantified the effect of these swaps on Gpd1-GFP fluorescence
 348 (Figure 6A – D).

349 **Figure 6.** Identification of a causal variant influencing Gpd1-GFP protein but not *GPD1*
 350 mRNA. (A) Schematic of the investigated region and the strategy for generating tiled allele
 351 swaps across the region. Grey dots on the RM genome (yellow) indicate the positions of
 352 known BY / RM variants. (B) Boxplots comparing Gpd1-GFP fluorescence between allele
 353 swaps (6 – 8 replicates per swap). While none of the swaps resulted in a difference in
 354 fluorescence between BY and RM alleles, replacement with both backgrounds in tile A
 355 generated a significant increase in green fluorescence. Based on this result, we suspected that
 356 the BY *GPD1-GFP* strain carried a new mutation that was absent from the RM as well as BY
 357 genomic DNA used for the replacement. (C) Schematic of using BY *GPD1-GFP* DNA as a
 358 repair template for the allelic swap of tile A. (D) Boxplots comparing Gpd1-GFP fluorescence
 359 between the three swaps of tile A. The DNA repair template from the BY *GPD1-GFP* strain


360 resulted in low Gpd1-GFP fluorescence, suggesting a new mutation in the BY *GPDI-GFP*
361 strain. (E) Identification of the *YAK1*^{Q578*} mutation using sequencing data from the segregant
362 population, and location of *YAK1*^{Q578*} in the Yak1 kinase protein sequence. Selected known
363 protein phosphorylation targets of Yak1 and downstream processes are indicated. (F) Effect of
364 *YAK1*^{Q578*} and *YAK1* knockout on Gpd1-GFP expression. Top: fluorescence, bottom: RNA
365 quantified by qPCR. Numbers atop the boxplots correspond to log2(fold change). log2FC: log₂
366 of fold-change. Stars indicate the significance of a t-test: ns: not significant ($p > 0.05$); *:
367 $0.005 < p < 0.05$; **: $0.0005 < p < 0.005$; ***: $p < 0.0005$. Cells were grown in SC medium.

368 This strategy, followed by analysis of our segregant population sequencing data, pinpointed a single
369 G→A variant at 148,659 bp in the *YAK1* gene as the causal variant. While this variant is present in
370 neither the BY nor RM reference genomes (Figure 6E & S13), our sequence data showed it to be
371 present in all BY derivatives we used from the GFP collection (specifically, strains tagged at *ARO8*,
372 *BMH2*, *GPDI*, *MTD1*, and *UGPI*; Figure S13) (Huh et al., 2003). We observed this variant in two
373 additional strains we genotyped from the GFP collection (*FAA4* and *YMR315W*) and all four strains
374 we genotyped from the tandem affinity purification (TAP)-tagged collection (*PGM1*, *NOT5*, *EMI2* and
375 *TUB1*) (Ghaemmaghami et al., 2003). This variant was not present in a BY4741 strain that we
376 obtained from the ATCC stock center (#201388), suggesting that the *YAK1* variant arose very recently
377 in the specific BY4741 strain used to construct both the GFP and TAP-tagged collections. *YAK1*
378 encodes a protein kinase involved in signal transduction in response to starvation and stress, indirectly
379 regulating the transcription of genes involved in various pathways (Figure 6E). The causal variant
380 changes the 578th codon (glutamine) to a premature stop codon that is predicted to disrupt translation
381 of the Yak1 kinase domain (Figure 6E).

382 The *YAK1*^{Q578*} variant led to a diminution of Gpd1-GFP fluorescence, suggesting a decrease of
383 Gpd1-GFP protein abundance (Figure 6D). While *YAK1* may control transcription of genes in the
384 glycerol biosynthesis pathway (Lee et al., 2008; Rep et al., 2000), which includes *GPDI*, our QTL
385 results suggested no link between the variant and *GPDI-GFP* mRNA level. Consistent with a protein-
386 specific *trans*-effect on *GPDI*, deletion of *YAK1* in a strain in which *GPDI* was tagged with GFP-
387 gRNA caused a reduction of green fluorescence but had no detectable effect on mCherry fluorescence
388 (Figure 6F). Further, qPCR indicated no difference in the level of *GPDI-GFP* mRNA in *YAK1*^{Q578*}
389 or *yak1Δ* compared to matched *YAK1*wt (Figure 6F).

390 We explored the genome wide effects of the *YAK1* variant with a differential analysis of mRNA and
391 protein abundance, using RNA sequencing and mass spectrometry, respectively (Figure 7A, Tables S7,
392 S8 & S9). Among 5,755 quantified mRNA transcripts, 262 were up-regulated and 310 down-regulated
393 in the presence of *YAK1Q578** (Benjamini-Hochberg (BH) adjusted p-value < 0.05) (Benjamini and
394 Hochberg, 1995). The variant reduced the abundance of 82 of 2,590 quantified proteins, and increased
395 another 82 proteins (BH adjusted p-value < 0.05). By comparing mass spectrometry and RNA
396 sequencing results, we classified genes as affected only at the mRNA level (58 genes up, and 118
397 genes down-regulated), only at the protein level (60 genes up, and 50 genes down-regulated), or at
398 both mRNA and protein (15 genes up, and 27 genes down-regulated). There was a strong enrichment
399 for genes involved in cytoplasmic translation (q-value < 10-10) among genes with reduced mRNA
400 abundance, which is consistent with the role of Yak1 as a regulator of transcription of ribosomal genes
401 through Crf1 phosphorylation (Martin et al., 2004) (Figure S14, Table S10). Genes up-regulated at the
402 mRNA level showed an enrichment in amino acid biosynthesis (q-value = 0.001). The most
403 differentially expressed genes included known targets of the *YAK1* pathway (Figure 7A – B). Gpd1
404 protein was strongly reduced (BH adjusted p-value < 0.004), with a non-significant effect on *GPD1*
405 mRNA (adjusted p-value = 0.10) (Figure 7A).

406 Finally, we investigated if the *YAK1Q578** mutation affects other phenotypes. As *YAK1* and *GPD1* are
407 involved in osmotic stress resistance (Lee et al., 2008), we grew strains carrying *YAK1*wt,
408 *YAK1Q578**, and *yak1Δ*, in a range of sodium chloride concentrations (Figure S15A). While this
409 osmotic stress reduced growth, strains with *YAK1Q578** and *yak1Δ* had a higher growth rate than
410 wild-type, consistent with the role of Yak1 in triggering cell cycle arrest in response to stress. Gpd1-
411 GFP abundance increased with stronger osmotic stress in *YAK1*wt and *yak1Δ*, with consistently lower
412 expression of Gpd1-GFP in *yak1Δ* (Figure S15B-C).

413 **Figure 7.** Effect of *YAK1*^{Q578*} on gene expression. (A) Effect on mRNA levels and protein
414 levels quantified by RNA sequencing and mass spectrometry, respectively. Genes are colored
415 according to their function as indicated in B). *GPD1* is highlighted in blue. (B) Examples of
416 differentially expressed genes related to processes downstream of Yak1 phosphorylation
417 regulation. The two numbers following gene names correspond to the \log_2 of fold-change
418 (log2FC) of differential expression for mRNA and protein abundance, respectively. Stars
419 indicate the significance of differential expression (Benjamini-Hochberg adjusted p-values).
420 ns: not significant, $p > 0.05$; *: $0.005 < p < 0.05$; **: $0.0005 < p < 0.005$; ***: $p < 0.0005$.
421 Cells were grown in SC medium.

422 Discussion

423 We developed a fluorescence-based dual reporter system for the simultaneous quantification of mRNA
424 and protein from a given gene in single, live cells. This system enabled the use of a statistically
425 powerful mapping strategy to identify genetic loci that affected mRNA production or protein
426 abundance in *trans*. Because mRNA and protein were quantified in the same exact condition, we were
427 able to compare mRNA-QTLs and protein-QTLs without environmental confounding. Most *trans*-
428 eQTLs have smaller effects that are more sensitive to environmental changes than *cis*-eQTLs (Smith
429 and Kruglyak, 2008). Therefore, the high level of environmental control afforded by our method is
430 particularly important for studying *trans*-acting variation.

431 We identified 86 *trans*-acting loci that contributed to variation in the expression of ten genes. The fact
432 that 84% of these loci did not have concordant effects on mRNA production and protein abundance
433 demonstrated the importance of variants that act on specific layers of gene expression.

434 The genes *ARO8*, *BMH2*, *GPD1*, *MTD1*, and *UGP1*, which we had selected for high discrepancy
435 between previous mRNA-QTLs and protein-QTLs, showed many QTLs (89%) that were not shared
436 between mRNA and protein in our data. In contrast, *CYC1*, *OLE1*, and *TPO1*, which we had selected
437 for higher agreement between published QTLs, showed fewer discrepant QTLs in our data, although
438 even for these genes the majority of QTLs was not shared between mRNA and protein (58%). These
439 three genes showed fewer QTLs overall and all had one locus with strong effect size (Figure 4A; the
440 *HAPI* locus for *CYC1* and *OLE1*, and the *IRA2* locus (Brem et al., 2002; Smith and Kruglyak, 2008)
441 for *TPO1*). Based on these results, strong *trans*-acting loci may be more likely to cause concordant
442 effects on mRNA and protein, while loci with smaller effects could be more likely to be specific to
443 mRNA or protein.

444 While half of the mRNA-QTLs we detected had concordant effects on protein (16 out of 34), most
445 protein-QTLs had no effects on mRNA (52 out of 75), in line with observations from prior work
446 (Albert et al., 2018, 2014b; Foss et al., 2011). That 70% of our protein-QTLs had protein-specific
447 effects suggests that the causal variants underlying many of these loci affect post-transcriptional
448 processes. The indirect nature of our mCherry reporter and its lower signal intensity compared to GFP
449 fluorescence are potential sources of measurement noise, which could have reduced detection power
450 for mRNA-QTLs compared to protein-QTLs. However, our analyses of the magnitudes and directions
451 of effects on mRNA and protein, which did not require loci in the other data to meet a significance
452 threshold, also suggested that many protein-QTLs specifically influence protein.

453 We found seven loci that had discordant effects on mRNA production and protein abundance of the
454 same gene. For example, at the *HAPI* locus, the BY allele increased Gpd1 protein abundance but
455 decreased *GPD1* mRNA production, as had been seen when comparing QTLs across different studies
456 (Albert et al., 2018). The highly pleiotropic effects of *HAPI* on mRNA and protein levels of many
457 genes (Albert et al., 2018, 2014b; Smith and Kruglyak, 2008) reinforces the hypothesis that *HAPI*
458 alleles influence Gpd1 protein abundance and mRNA production via two separate *trans*-acting
459 mechanisms.

460 QTLs with discordant effects on mRNA and protein, as well as mRNA-specific QTLs, may be caused
461 by buffering of mRNA variation at the protein level. A well studied example of this phenomenon is the
462 regulation of expression of genes that encode members of a protein complex, in which excess protein
463 molecules that cannot be incorporated in the complex are rapidly degraded (Taggart et al., 2020).
464 Among the genes we investigated, *RPS10A* encodes a part of the ribosome small subunit complex.
465 *RPS10A* showed the highest number of mRNA-specific QTLs, possibly because Rps10a is subject to
466 buffering mechanisms.

467 The nonsense mutation (Q578*) we identified in the *YAK1* gene provides an informative example of
468 the complexity with which *trans*-acting variants can shape the transcriptome and the proteome.
469 *YAK1*Q578* changed protein abundance for many genes more strongly than mRNA abundance, but
470 also affected mRNA but not protein for many other genes. Thus, the consequences of this mutation
471 span mechanisms that affect mRNA as well as protein-specific processes. A reduction of ribosomal
472 gene transcription may account for some of these observations by reducing the translation of multiple
473 genes.

474 The *YAK1*Q578* variant likely arose as a new mutation in the BY4741 ancestor of the GFP and TAP-
475 tagged collections. Its relatively large effect and rarity in the global yeast population are consistent
476 with population genetic expectations (Eyre-Walker, 2010; Gibson, 2012) and observations (Bloom et
477 al., 2019; Fournier et al., 2019) for a deleterious variant that may have drifted to fixation in this
478 specific background, as has been suggested for many causal variants in natural yeast isolates
479 (Warringer et al., 2011). Alternatively, faster growth of a strain carrying the *YAK1*Q578* variant during
480 osmotic stress (Figure S15) may have contributed to adaptive fixation of this variant in this specific
481 copy of BY4741. While the large effect of *YAK1*Q578* aided our ability to fine-map it (Rockman,
482 2012), we suspect that its diverse, mRNA-specific as well as protein-specific mechanistic
483 consequences may be representative of more common *trans*-acting variants with smaller effects.

484 To simultaneously quantify mRNA and protein and eliminate potential environmental confounders in
485 expression QTL mapping, we developed a system in which a gRNA drives CRISPR activation of a
486 fluorescent reporter gene in proportion to a given mRNA of interest. Standard methods for mRNA
487 quantification require lysis of cell cultures or tissues, constraining sample throughput and statistical
488 power for mapping regulatory variation. Single-cell RNA sequencing (Picelli, 2017; Tang et al., 2009)

489 or *in situ* fluorescent hybridization (Buxbaum et al., 2014; Player et al., 2001; Rouhanifard et al.,
490 2018) are improving rapidly, including in yeast (Gasch et al., 2017; Li and Neuert, 2019; Nadal-
491 Ribelles et al., 2019; Wadsworth et al., 2017). However, these approaches still have throughput that is
492 orders of magnitude below that available in FACS. Further, they involve cell lysis or fixation,
493 precluding bulk segregant approaches that rely on growing cells after sorting. By contrast, our reporter
494 allows quantification of mRNA production of a given gene within millions of single, live cells by flow
495 cytometry. Because mCherry production in our system amplifies mRNA abundance signals, it is able
496 to quantify genes with mRNA levels that would likely be hard to detect by FACS using *in situ*
497 hybridization methods. The readout of our system is driven by a gRNA after it detaches from its
498 mRNA. Therefore, the resulting signal is independent of the fate of the mRNA after gRNA release.
499 Given the hammerhead ribozyme has a rate constant for self cleavage of 1.5 per minute (Wurmthaler
500 et al., 2018), gRNA abundance is not expected to reflect the half-life and stability of most yeast
501 mRNAs, which have a median half life of 3.6 minutes (Chan et al., 2018). By contrast, standard
502 methods usually used in eQTL mapping quantify mRNA at steady state, which may explain some of
503 the differences we observed between our mRNA-QTLs and known eQTLs identified by RNA
504 sequencing.

505 Future versions of our reporter could be improved in several ways. The mCherry used here has a
506 maturation time of about 40 minutes (Merzlyak et al., 2007), which limits the temporal resolution at
507 which we can observe dynamic expression changes. Fluorescent proteins with faster maturation times
508 could enable precise investigation of rapid temporal change in mRNA production. Using brighter
509 fluorescent proteins or multiple copies of mCherry and its gRNA-targeted promoter could increase
510 fluorescence and increase mRNA detection further. Finally, we observed that beyond a certain mRNA
511 level, the abundance of gRNA no longer follows that of the tagged mRNA. Nevertheless, we estimated
512 that our CRISPR based reporter can be used to quantify the mRNA production of most *S. cerevisiae*
513 genes. Because CRISPR activation has been demonstrated in many organisms (Long et al., 2015;
514 Maeder et al., 2013; Park et al., 2017), similar reporters for RNA production could be developed in
515 other species.

516 Our reporter system for quantifying mRNA and protein of a given gene in the same live, single cells
517 combined with a mapping strategy with high statistical power was deliberately designed to minimize
518 technical or environmental confounders that may inflate differences between the genetics of mRNA

519 and protein levels. Yet, fewer than 20% of the detected loci had concordant effects on mRNA and
520 protein levels, providing strong support for the existence of discrepancies between genetic effects on
521 mRNA vs proteins. The fact that the majority of QTLs identified here were protein-specific suggests
522 that protein abundance is under more complex genetic control than mRNA abundance.

523 **Materials and methods**

524 **Yeast strains**

525 We used 160 yeast strains, 12 of which were obtained from other laboratories, including 6 from the
526 GFP collection, and 148 that were built for this study (complete list in Table S11). All strains are based
527 on two distinct genetic backgrounds: BY4741 (BY), which is closely related to the commonly used
528 laboratory strain S288c, and RM11-1a (RM), a haploid offspring of a wild isolate from a vineyard,
529 which is closely related to European strains used in wine-making. Both strains carried auxotrophic
530 markers, and RM had been engineered earlier to facilitate laboratory usage (BY: *his3Δ1 leu2Δ0*
531 *met15Δ0 ura3Δ0*; RM: *can1Δ::STE2pr-URA3 leu2Δ0 HIS3(S288C allele) ura3Δ ho::HYG AMNI(BY*
532 *allele*); Table S11). Most strains were built using conventional yeast transformation (Gietz and
533 Schiestl, 2007) and DNA integration based on homologous recombination. Integrated DNA fragments
534 were produced by PCR (Phusion Hot Start Flex NEB M0535L, following manufacturer protocol,
535 annealing temperature: 57°C, 36 cycles, final volume: 50 µl) and gel purified (Monarch DNA Gel
536 Extraction Kit, NEB T1020L), with primers carrying 40 to 60 bp overhanging homologous sequence
537 as required. All primers are available in Table S12. For transformation, fresh cells from colonies on
538 agar plates were grown in YPD media (10 g/l yeast extract, 20 g/l peptone, 20 g/l glucose) overnight at
539 30°C. The next day, 1 ml of the culture was inoculated in an Erlenmeyer flask containing 50 ml of
540 YPD and grown under shaking at 30°C for 3 hours to reach the late log phase. Cells were harvested by
541 centrifugation and washed once with pure sterile water and twice with transformation buffer 1 (10 mM
542 TrisHCl at pH8, 1 mM EDTA, 0.1 M lithium acetate). We resuspended the cells in 100 µl of
543 transformation buffer 1, added 50 µg of denatured salmon sperm carrier DNA (Sigma #D7656) and 1
544 µg of the DNA fragment to be integrated, and incubated for 30 minutes at 30°C. Alternatively, when
545 transforming a replicative plasmid, we used 0.1 µg of plasmid DNA and skipped this first incubation.
546 We added 700 µl of transformation buffer 2 (10 mM TrisHCl at pH8, 1 mM EDTA, 0.1 M lithium

547 acetate, 40% PEG 3350) and performed a second incubation for 30 minutes at 30°C. A heat shock was
548 induced by incubating the cells at 42°C for 15 minutes. The transformed cells were then washed twice
549 with sterile water. If the selective marker for the transformation was an antibiotic resistance gene, the
550 cells were resuspended in 1 ml of YPD, allowed to recover for 2 hours at 30°C, and spread on a YPD
551 plate (2% agar) containing the antibiotic (200 ng/l G418, 100 ng/l nourseothricin sulfate/CloNAT, or
552 300 ng/l hygromycin B). Alternatively, if the transformation was based on complementation of an
553 auxotrophy, the cells were resuspended in 1 ml of sterile water and spread on a plate containing
554 minimal media lacking the corresponding amino acid or nucleotide (YNB or Synthetic Complete (SC):
555 6.7 g/l yeast nitrogen base (VWR 97064-162), 20 g/l glucose, with or without 1.56 g/l SC -arginine -
556 histidine -uracil -leucine (Sunrise science 1342-030), complemented as needed with amino acids: 50
557 mg/l histidine, 100 mg/l leucine, 200 mg/l uracil, 80 mg/l tryptophan). After two to three days of
558 incubation at 30°C, colonies were streaked on a fresh plate containing the same selection media to
559 purify clones arising from single, transformed cells. DNA integration in the correct location was
560 confirmed by PCR (Taq DNA Polymerase NEB M0267L, following manufacturer protocol, annealing
561 temperature: 50°C, 35 cycles, final volume: 25 µl, primers in Table S12). To store the constructed
562 strains, we regrew the validated colony on a new selection media plate overnight at 30°C, scraped
563 multiple colonies, resuspended the cells in 1.4 ml of YPD containing 20% glycerol in a 2 ml screw cap
564 cryo tube and froze them at -80°C.

565 **Plasmids**

566 We constructed seven plasmids: three plasmids that do not replicate in yeast and that carry the GFP-
567 gRNA tag, the CRISPR reporter, and Z3EV system, respectively (Figure S1), and four yeast-
568 replicating plasmids to investigate the quantitative properties of our reporter (Figure S5). These
569 plasmids were constructed through multiple rounds of cloning using DNA fragments from yeast DNA
570 or plasmids acquired from Addgene (kind gifts from John McCusker: Addgene #35121-22, from
571 Michael Nick Boddy: Addgene #41030, from Benjamin Glick: Addgene #25444, from Timothy Lu:
572 Addgene #64381, #64389, #49013; complete list of plasmids in Table S13). Plasmids were assembled
573 using Gibson assembly (NEBuilder HiFi DNA Assembly Cloning Kit, NEB E5520S). Fragments were
574 either PCR amplified with a least 15 bp overlap at each end (Phusion Hot Start Flex NEB M0535L,

575 manufacturer protocol, annealing temperature: 57°C, 36 cycles, final volume: 50 µl, primers in Table
576 S12) or obtained by restriction digestion of already existing plasmids (also shown in Table S12).

577 The fragment encoding the gRNA tag, containing the two ribozymes and the gRNA sequence itself,
578 was purchased as a 212-bp double-stranded DNA oligo from IDT (we used the “C3” gRNA from
579 (Farzadfar et al., 2013), as it was reported to provide the highest reporter gene expression). The
580 synthetic polyA tail following the GFP sequence (Figure 1A) was introduced by using a PCR primer
581 containing 45 thymines in its overhang sequence (primer OFA0038 in Table S12). Fragments for
582 assembly were purified using agarose electrophoresis and gel extraction (Monarch DNA Gel
583 Extraction Kit, NEB T1020L). For assembly, the given fragments were mixed at equi-molar amounts
584 of 0.2 – 0.5 pM in 10 µl. Assembly was done by addition of 10 µl of NEBuilder HiFi DNA Assembly
585 Master Mix and incubation at 50°C for 60 minutes. From this reaction, 2 µl of the final products were
586 transformed into *E. coli* competent cells (10-beta Competent E.coli, NEB C3019I) through an
587 incubation of 30 minutes on ice and a heat shock of 30 seconds at 42°C. Transformed cells were
588 spread on LB plates (10 g/l peptone, 5 g/l yeast extract, 10 g/l sodium chloride, 2% agar) containing
589 100 mg/l ampicillin and grown overnight at 37°C. After cloning, the final plasmids were extracted
590 (Plasmid Miniprep Kit, Zymo Research D4036) and verified by restriction enzyme digestion or PCR
591 (Taq DNA Polymerase NEB M0267L, 30 cycles, 25 µl final volume, primers in Table S12). We also
592 verified by Sanger sequencing that the gRNA tag in the plasmid had no mutation. To store the
593 plasmids, the host bacteria were grown in LB with ampicillin overnight at 37°C and 1 ml of the culture
594 was mixed with 0.4 ml of a sterile solution containing 60% water and 40% glycerol. The cells were
595 stored at -80°C. The three plasmids containing the different parts of the reporter are available on
596 Addgene (ID #157656, #157658, and #157659) along with their full DNA sequence.

597 **Plate reader-based fluorescence measurements**

598 Yeast fluorescence was measured in 24-hour time courses during overnight growth in a BioTek
599 Synergy H1 plate-reader (BioTek Instruments). Fresh cells from agar plates were inoculated in 100 µl
600 of minimal YNB media containing any complements necessary for growth of auxotrophic strains, at an
601 initial optical density at wavelength 600 nm (OD600) of 0.05 in a 96-well flat bottom plate (Costar
602 #3370). The plates were sealed with a Breathe Easy membrane (Diversified Biotech). Cells were

603 grown in the plate reader at 30°C and with circular agitation in between fluorescence acquisition.
604 During each acquisition, performed every 15 minutes, we recorded OD600, GFP fluorescence (read
605 from bottom, excitation 488 nm, emission 520 nm, 10 consecutive reads averaged, gain set to
606 “extended”) and mCherry fluorescence (read from bottom, excitation 502 nm, emission 532 nm, 50
607 consecutive reads averaged, gain set to a value of 150). We took 97 measurements during 24 hours of
608 growth, unless individual runs were manually terminated early.

609 Raw measurements of OD600 and fluorescence were processed using R version 3.5.1 (<https://www.r-project.org/>, scripts and raw data available at the github repository at
610 https://github.com/BrionChristian/Simultaneous_RNA_protein_QTLs). “Blank” values from wells
611 with no cells were subtracted from OD600 and fluorescence measurements of wells that had been
612 inoculated with cells. OD600 was log-transformed and manually inspected to identify the late log
613 phase, *i.e.* a time point about 3/4 into the exponential growth phase. This stage was identified
614 separately for each well, and usually corresponded to an OD600 of 0.1 – 0.3. We extracted the OD600
615 and fluorescence measurements at the five time points centered on our selected time point. The
616 mCherry and GFP fluorescence ratios were calculated as the ratio between the fluorescence and the
617 OD600 at these five time points (example in Figure 1B – C), allowing us to estimate fluorescence
618 while correcting for culture density. Focusing on the late log phase allowed measurements at higher
619 cell density to provide more robust fluorescence reads. Growth rates were estimated as the slope of a
620 linear fit of the log of OD600 over time.
621

622 RNA quantification by qPCR

623 Cell harvest

624 We quantified mRNA and gRNA abundance by quantitative real-time reverse-transcription PCR of
625 RNA extracted from exponentially growing cells. Cells were grown in either 50 ml of medium (YNB
626 with auxotrophic complements, results shown in Figure 1D) in shaking Erlenmeyer flasks or in 1.2 ml
627 of media (SC with auxotrophic complements and estradiol, Figure 2C – E & 6F) in a shaking 2-ml 96-
628 deep-well plate. The OD600 was monitored to identify the second half of the exponential growth
629 phase (corresponding to an OD600 of 0.35 – 0.45 OD600 in flasks, and 0.20 – 0.30 in the deep-well

630 plates). At this point, GFP and mCherry fluorescence ratios were recorded in a BioTek Synergy H1
631 plate reader (BioTek Instruments). Cells were then harvested immediately. Cells were washed with
632 sterile water through either short centrifugation using 5 ml of culture from flasks, or vacuum-filtration
633 through a 96-well filter plate (Analytical Sales 96110-10) using the entire remaining 1 ml of culture
634 from the deep-well plate. Cells were then immediately flash-frozen in either isopropanol at -80°C
635 (pellet from flask) or liquid nitrogen (filter plate) and stored at -80°C until RNA extraction.

636 *RNA extraction from flasks*

637 To extract the RNA from cells grown in flasks, we used the ZR Quick-RNA Kit (Zymo Research
638 R1054). Frozen cell pellets were resuspended in 800 µl RNA Lysis Buffer 1 from the kit and
639 transferred to a ZR BashingBead Lysis Tube. The cells were shaken in a mini-bead beater (BioSpec
640 Products) for ten cycles of one minute in the beater, one minute on ice. Cell debris and beads were
641 centrifuged for one minute at full speed and 400 µl of supernatants were transferred into Zymo-Spin
642 IIC Columns. The columns were centrifuged for one minute, and 400 µl 100% ethanol was added to
643 the flow-through. After mixing, the flow-throughs were transferred into Zymo-Spin IIC Columns and
644 centrifuged for one minute to bind the RNA and DNA to the columns. The columns were washed with
645 400 µl RNA Wash Buffer from the kit. DNA was digested in columns by adding a mixture of 5 µl
646 DNase I and 75 µl DNA Digestion Buffer from DNase I Set kit (Zymo Research E1010) followed by a
647 15-minute incubation at room temperature. The columns were then washed three times with 400 µl
648 RNA Prep Buffer, 700 µl RNA Wash Buffer, and 400 µl RNA Wash Buffer. RNA was eluted in 50 µl
649 DNase/RNase-free water, quantified using Qubit RNA BR or HS Assay Kit (ThermoFisher Scientist
650 Q10210 or Q52852), and stored at -20°C.

651 *RNA extraction from 96-well plates*

652 To extract the RNA from cells grown in 96-well plates, we used the ZR RNA in-plate extraction kit
653 (ZR-96 Quick-RNA Kit, Zymo Research R1052), which followed the same protocol as the flask RNA
654 extraction above, with a few minor differences. Bead-beating was done in an Axygen 1.1 ml plate (P-
655 DW-11-C-S) with 250 µl of acid washed 425–600 µm beads (Sigma G8722) per well, sealed with an
656 Axymat rubber plate seal (AM-2ML-RD-S). RNA purified from 200 µl of the resulting supernatant.
657 DNA digestion and washing steps were done on Silicon-A 96-well plates from the kit. The RNA was
658 eluted in 30 µl of DNase/RNase-free water, quantified, and stored at -20°C.

659 *Reverse transcription and qPCR*

660 RNA was reverse-transcribed using the GoScript RT kit (Promega A5000) following the kit protocol.
661 We performed negative controls, no-enzyme and no-primer, which generated no qPCR signals.
662 Quantitative PCRs were done in a 96-well plate (Bio-Rad HSP9645) using GoTaq qPCR kit (Promega
663 A6001). Plates were sealed using a microseal 'B' Adhesive Seal (Bio-Rad MSB1001) and the reaction
664 progress was recorded during 40 cycles using a C1000Touch plate reader (Bio-Rad). We quantified
665 four different parts of the tag cDNA (GFP, Hh ribozyme cleavage, gRNA, and HDV ribozyme
666 cleavage, Figure 1D), as well as *ACT1* cDNA as a reference gene. Primer sequences are in Table S12.
667 The primers were tested and calibrated by running qPCR measurements on nuclear DNA extracts at a
668 range of known input concentrations (Figure S2).

669 **Segregant populations**

670 BY strains (BY4741 background) carrying a given GFP-gRNA-tag and RM (YFA0198) carrying the
671 CRISPR-reporter and the SGA marker were mixed for crossing on a plate with medium that allows
672 only hybrids to grow (SC agar -leucine -histidine). Growing cells were streaked on the same medium,
673 and a single hybrid colony was kept for storage and for generating the segregant population. For
674 sporulation, hybrid strains were incubated in sporulation medium (2.5 g/l yeast extract, 2.5 g/l glucose,
675 15 g/l potassium acetate, 200 mg/l uracil, 100 mg/l methionine) at room temperature under vertical
676 rotation in a glass tube for seven days. After verifying sporulation under a light microscope, 1 ml of
677 medium containing the tetrads was pelleted (13,000 rpm for 5 minutes) and resuspended in 300 µl of
678 sterile water containing about 15 µg of zymolyase. The resulting ascii were digested at 30°C for 30
679 minutes with agitation. Spores were separated by vortexing for about 15 seconds, and 700 µl of pure
680 sterile water was added to the tube. We spread 250 µl of this spore suspension on a plate containing
681 segregant selection media (SC agar, 50 mg/l canavanine, -uracil -leucine) allowing growth of haploid
682 segregants carrying the following three alleles: (1) cells with mating type *MATa*, selected via the
683 SGA-marker with *URA3* under control of the *STE2* promoter, which resulted in a *ura*⁺ phenotype only
684 in *MATa* cells, (2) the SGA-marker integrated at the *CAN1* gene (whose deletion conferred canavanine
685 resistance), which also selected for the CRISPR reporter that we had integrated at *NPR2*, the gene next
686 to *CAN1*, (3) the given gene of interest tagged with the GFP-gRNA tag and *LEU2* selectable marker.

687 After three days of incubation at 30°C, segregants were harvested by scraping the entire plate in 10 ml
688 of sterile water. Cells were centrifuged, resuspended in 3 ml of segregant selection media, and
689 incubated at 30°C for 1.5 hours. To store these genetically diverse segregant populations, 1 ml of the
690 culture was mixed with 0.4 ml of a sterile solution containing 60% water and 40% glycerol in a 2 ml
691 screw-cap cryo tube and frozen at -80°C.

692 **Cell sorting for QTL mapping**

693 One day before cell sorting, the segregant population was thawed from the -80°C stock, mixed well,
694 and 8 µl of culture were used to inoculate 5 ml of segregant selection media. The cells were
695 reactivated with an overnight growth at 30°C under shaking. The next day, 1 ml of the growing culture
696 was transferred to a new tube containing 4 ml of segregant selection media and grown for an
697 additional two hours before cell sorting, roughly corresponding to the middle of the exponential
698 growth phase.

699 Cell sorting was performed on a BD FACSAria II P0287 (BSL2) instrument at the University of
700 Minnesota Flow Cytometry Resource (UFCR). Cells were gated to exclude doublet and cellular
701 fragments. To focus on cells in approximately the same stage of the cell cycle, an additional gate
702 selected cells in a narrow range of cell size as gauged by the area of the forward scatter signal (FSC).
703 From the cells within this gate, we sorted five populations per experiment, each comprising 10,000
704 cells: (1) a control population from the entire gate without fluorescence selection, (2) the 3% of cells
705 with the lowest GFP fluorescence, (3) the 3% of cells with the highest GFP fluorescence, (4) the 3% of
706 cells with the lowest mCherry fluorescence, and (5) the 3% of cells with the highest mCherry
707 fluorescence. Each population was collected into 1 ml of segregant selection medium. After overnight
708 growth at 30°C, 0.9 ml of culture was mixed with 0.4 ml of a sterile solution containing 60% water
709 and 40% glycerol, and frozen at -80°C until sequencing. The remaining 0.1 ml were inoculated into
710 0.9 ml of segregant selection medium and grown for 3 hours before analyzing the population using
711 flow cytometry (see below). In total, we obtained 125 sorted populations from 25 experiments across
712 the ten tagged genes, with 1 to 6 biological replicates per gene, as well as the untagged population
713 (Table S2). Sorting was done in four batches on different dates. Biological replicates were performed

714 as independent sporulations of the stored diploid hybrids, and thus represent independent populations
715 sorted in separate experiments.

716 **Flow cytometry**

717 Single cell fluorescence analysis was performed using cultures in the late log growth phase. We used a
718 BD Fortessa X-30 H0081 flow cytometer at UFCR equipped with blue and yellow lasers and 505LP
719 and 595LP filters to measure green (GFP) and red (mCherry) fluorescence, respectively. Forward
720 scatter (FSC), side scatter (SSC), GFP, and mCherry fluorescence were recorded for 50,000 cells,
721 excluding doublets and cellular debris. The voltaic gains were set as follows: 490 for FSC, 280 for
722 SSC, 500 for GFP, and 600 for mCherry. We monitored for possible cross-contamination from cells
723 retained in the instrument using strains expressing either only GFP or mCherry, and observed no cross-
724 contamination. Recorded data on .fsc files were analysed using R and the flowCore package (Hahne et
725 al., 2009). Raw data and scripts are accessible on github
726 (https://github.com/BrionChristian/Simultaneous_RNA_protein_QTLs). The data were filtered to
727 discard outlier cells based on unusual FSC and SSC signals. We used the fluorescence data from the
728 sorted populations to determine correlations between red and green fluorescence, as well as heritability
729 (Figure S7 & S8). For these analyses, fluorescence values were corrected for cell size (FSC) by
730 calculating the residuals of a loess regression of fluorescence on FSC. Loess regression avoided the
731 need to assume a specific mathematical relationship between the two parameters (Figure S9).

732 **DNA extraction and sequencing**

733 DNA extraction for whole genome sequencing was performed in 96-well plate format using E-Z-96
734 Tissue DNA kits (Omega D1196-01). The stored, sorted populations were thawed, mixed, and 450 µl
735 transferred into a 2-ml 96-deep-well plate containing 1 ml of segregant selection medium for an
736 overnight growth at 30°C. The plate was centrifuged for 5 minutes at 3700 rpm, and the supernatant
737 was removed by quick inversion of the plate. Then, 800 µl of Buffer Y1 (182 g/l sorbitol, 0.5 M
738 EDTA, pH 8, 14.3 mM β-mercaptoethanol, 50 mg/l zymolyase 100T) were added to the pellets, and
739 the cells were resuspended and incubated for 2 hours at 37°C. The spheroplasts were centrifuged and

740 the supernatant discarded. The pellets were resuspended in 200 μ l of TL buffer and 25 μ l of OB
741 Protease Solution from the kit and incubated overnight at 56°C. The next day, RNA was denatured by
742 addition of 5 μ l of RNase A (20 mg/ml) and incubated at room temperature for 5 minutes. After
743 addition of 450 μ l of BL Buffer from the kit, the mixture was transferred onto a E-Z 96 column DNA
744 plate and centrifuged at 3700 rpm for 3 minutes. The columns were washed once with 500 μ l of HBC
745 Buffer and three times with 600 μ l of DNA Wash Buffer from the kit. After an additional
746 centrifugation to dry the column, the DNA was eluted in 100 μ l of pure sterile water, quantified using
747 Qubit dsDNA HS Assay Kit (ThermoFisher Scientist Q32854) and stored at 4°C for library
748 preparation the next day.

749 Library preparation for Illumina sequencing was performed using Nextera DNA Library Prep kit
750 (Illumina) with modifications. The tagmentation was done on 5 ng of DNA using 4 μ l of Tagment
751 DNA buffer (“TD” in the kit) and 0.25 μ l of Tagment DNA enzyme (corresponding to a 20-fold
752 dilution of “TDE1” from the kit) and incubating for 10 minutes at 55°C. Fragments were amplified
753 with index primers (8 Nextera primers i5 and 12 Nextera primers i7, for up to 96 possible multiplex
754 combinations) on 10 μ l tagmented DNA by adding 1 μ l of each primer solution (10 μ M), 5 μ l of 10X
755 ExTaq buffer and 0.375 μ l of ExTaq polymerase (Takara) and water to a final volume of 50 μ l. The
756 amplification was run for 17 PCR cycles (95°C denaturation, 62°C annealing, 72°C elongation). 10 μ l
757 of each reaction were pooled for multiplexing and run on a 2% agarose gel. DNA that migrated
758 between the 400 and 600 bp was extracted using Monarch DNA Gel Extraction Kit (NEB T1020L).
759 The pooled library DNA concentration was determined using Qubit dsDNA BR Assay Kit
760 (ThermoFisher Scientist Q32853), and submitted for sequencing. Sequencing was performed at the
761 University of Minnesota Genomics Core (UMGC). Our 125 populations were processed in four
762 batches extracted and sequenced at different times. Two were sequenced using an Illumina HiSeq 2500
763 (high-output mode; 50-bp paired-end) and two were sequenced using an Illumina NextSeq 500 (mid-
764 output mode, 75-bp paired-end). Read coverage ranged from 5-fold to 24-fold coverage of the genome
765 (median: 13-fold). The reads will be made available on NCBI SRA.

766 **QTL Mapping**

767 For each sorted and sequenced population, reads were filtered ($\text{MAPQ} \geq 30$) and aligned to the *S.*
768 *cerevisiae* reference genome (version sacCer3, corresponding to BY strain) using BWA ((Li and
769 Durbin, 2009), command: *mem -t*). We used samtools ((Li et al., 2009), command: *view -q 30*) to
770 generate bam files and collapse PCR duplicates using the *rmdup* command. We used 18,871 variants
771 previously identified as polymorphic and reliable between RM and BY (Bloom et al., 2013;
772 Ehrenreich et al., 2010) (list available on github:
773 https://github.com/BrionChristian/Simultaneous_RNA_protein_QTLs, samtools: *mpileup -vu -t INFO/*
774 *AD -l*), generating vcf files with coverage and allelic read counts at each position for each population.

775 The vcf files were processed in R to identify bulk segregant analysis QTLs using code adapted from
776 Albert et al. 2014 (Albert et al., 2014b) (available on github:
777 https://github.com/BrionChristian/Simultaneous_RNA_protein_QTLs). Briefly, for plotting the
778 results, the allele frequency of the reference (that is, BY) allele was calculated at each position in each
779 population. Random counting noise was smoothed using loess regression, and the allele frequency of a
780 given “low” fluorescence population subtracted from its matched “high” fluorescence population to
781 generate ΔAF . A deflection from zero indicated the presence of a QTL. To identify significant QTLs,
782 we used an R script that implemented the MULTIPOOL algorithm (Edwards and Gifford, 2012),
783 which calculates LOD score based on ΔAF and depth of read coverage in bins along the genome. We
784 used MULTIPOOL output to call QTLs as peaks exceeding a given significance threshold (see below),
785 along with confidence intervals for the peak location corresponding to a 2-LOD drop from the peak
786 LOD value. We applied the MULTIPOOL algorithm using the following parameters: bp per
787 centiMorgan: 2,200; bin size: 100 bp, effective pool size: 1,000. We excluded variants with extreme
788 allele frequencies of > 0.9 or < 0.1 . We initially set a permissive detection threshold of $\text{LOD} > 3.0$ to
789 identify a set of candidate QTLs, which we then integrated across replicates (507 QTLs, Table S3). A
790 second, more stringent, threshold of $\text{LOD} > 4.5$ was then applied to retain only significant QTLs based
791 on our estimated false discovery rate (FDR).

792 To estimate FDR, we applied the multipool QTL detection algorithm to pairs of populations sorted into
793 the same gates in different replicates. Any “QTLs” in such comparisons must be due to technical or
794 biological noise. We restricted these analyses to replicates sequenced on the same instrument, resulting
795 in 80 inter-replicate comparisons. From these data, we calculated the FDR as a function of the
796 significance threshold (*thr*): $\text{FDR}_{\text{thr}} = (N_{\text{rep}}\text{QTL}_{\text{thr}} / N_{\text{rep}}) / (N_{\text{fluo}}\text{QTL}_{\text{thr}} / N_{\text{fluo}})$, where

797 N_{repQTL}^{thr} is the number of false “QTLs” from comparing the same gate across replicate populations
798 at a LOD score threshold of thr , N_{rep} is the number of such inter-replicate comparisons ($N_{rep} = 80$),
799 N_{fluQTL}^{thr} is the number of fluorescence-QTLs at a LOD threshold of thr , and N_{flu} is the number
800 of high vs. low fluorescence comparisons ($N_{flu} = 48$; the untagged experiment was excluded). At a
801 significance threshold of LOD = 4.5, the estimated FDR was 7.3% (Figure S10), which we used to call
802 significant QTLs. For some overlap analyses (see below), we used a threshold of LOD = 3.0, which
803 corresponded to an FDR of 13%.

804 To call significant QTLs across replicates, we first scanned each replicate for QTLs at a permissive
805 threshold of LOD > 3.0. Second, at each resulting QTL peak position, we averaged ΔAF and LOD
806 scores across all available replicates without applying a LOD filter to each replicate. Third, we
807 collapsed groups of overlapping QTLs, which we defined as QTLs whose peaks were within 75,000
808 bp of each other in the different replicates. For each group of these overlapping QTLs, we averaged
809 the LOD scores, the ΔAF s, the peak positions, and the location confidence intervals to form one
810 merged QTL. Of the resulting merged QTLs, we retained those that exceeded our stringent
811 significance threshold of LOD ≥ 4.5 .

812 To gauge reproducibility of these significant QTLs, we counted the number of replicates in which a
813 given QTL had been detected at the permissive LOD > 3.0, using the same definition of positional
814 overlap as above. The majority (74%) of significant QTLs were shared across all the corresponding
815 replicates. Two tagged genes had more than two replicates (*GPD1* and *UGP1*). For these genes,
816 requiring *all* replicates to be significant is conservative. Therefore, we also estimated the average
817 reproducibility of all mRNA-QTLs or all protein-QTLs by calculating the average fraction of
818 replicates that had a QTL at a given merged QTL:

819 $fraction_overlap = mean[(N_{shareQTL}^{ij} - 1) / (N_{repj} - 1)]$

820 Here, $N_{shareQTL}^{ij}$ is the number of replicates for which the QTL i is detected for the tagged gene j at
821 LOD > 3, and N_{repj} is the number of replicates performed for the tagged gene j . Note that if only a
822 single replicate has a QTL at a given merged QTL, this fraction takes on a value of zero because in
823 such a case, there is no overlap among replicates at this QTL. The observed *fraction_overlap* was 0.76
824 for the protein-QTLs and 0.78 for the mRNA-QTLs.

825 Comparison of mRNA-QTLs and protein-QTLs

826 To compare mRNA-QTLs and protein-QTLs of the same gene, we first considered all merged QTLs
827 that exceeded a permissive threshold of $LOD > 3.0$ (after merging replicates as described above). We
828 considered an mRNA-QTL and a protein-QTL for the same gene with overlapping confidence
829 intervals as a QTL pair across mRNA and protein. We manually curated the result of this overlap
830 analysis for six cases; after curation, QTLs on chromosomes XV (*ARO8*), VIII (*MTDI*), XIII (*CYCI*)
831 and XIII (*RPS10A*) were considered to be pairs, and QTLs on chromosome V (*GPDI*) and XIV
832 (*MTDI*) were considered to be mRNA-specific.

833 From this initial set, we retained those QTL pairs at which the given mRNA and / or protein QTL met
834 a more stringent LOD score of > 4.5 (FDR = 7.2%). Applying this higher threshold only after the more
835 permissive overlap analysis allowed us to consider QTL pairs even if one of the paired QTLs did not
836 pass the strong significance threshold of $LOD > 4.5$. As an example, we considered overlapping QTLs
837 on chromosome XI that affected *OLE1* expression (mRNA-QTL $LOD = 4.4$, protein-QTL $LOD =$
838 15.5) to be a pair even if the mRNA LOD score was below the stringent significance threshold. In such
839 cases, we deemed it more conservative to assume that the weaker QTL exists but narrowly failed to
840 reach significance than to declare the stronger QTL as specific for mRNA or protein. We discarded all
841 QTLs located between 350 – 550 kb on chromosome XIV, as this region may affect mCherry
842 fluorescence independently of the tagged gene.

843 We distinguished four types of QTLs (Figure 5A & S12). The shared QTL pairs either had similar
844 effects on mRNA and protein abundance (16 QTL pairs, defined as having the same sign of ΔAF), or
845 discordant effects on mRNA and protein (7 QTL pairs, different sign of ΔAF). All QTLs that were not
846 part of a pair were considered to be specific (11 mRNA-specific QTLs, 52 protein-specific QTLs).

847 Finally, we conducted an analysis of mRNA or protein QTL effect sizes and directions that avoided
848 having to define potentially paired QTLs as significant or not. For each mRNA-QTL (or protein-QTL),
849 we extracted the ΔAF from the protein-QTL (or mRNA-QTL) data at the same exact position,
850 irrespective of significance in the other data. We used these values to compute correlations of effects

851 and to examine shared directionality of effects between mRNA-QTLs and protein-QTLs (Figure 5B,
852 Table S6).

853 **Allelic engineering for *YAK1* fine-mapping**

854 To obtain strains with scarless allelic swaps in haploids, we used a strategy based on double-cut
855 CRISPR swap (Lutz et al., 2019). We flanked each of the four tiles to be switched by two resistance
856 markers (*hphMX* and *KanMX*) using our regular yeast transformation protocol (see above). The yeast
857 were then transformed with 100 ng of CRISPR-Swap plasmid (pFA0055-gCASS5a , Addgene plasmid
858 # 131774) and 1 µg of DNA repair template amplified either from BY, BY *GPDI-GFP*, or RM. The
859 transformed cells were spread on SC -leucine plates, selecting for the presence of the plasmid
860 expressing *CAS9* and a gRNA targeting and cleaving a sequence present in both of the two resistance
861 cassettes. We used strains in which *GPDI* was tagged with *GFP* but not the gRNA tag, as the gRNA in
862 our tag would likely have directed *CAS9* to cleave the mCherry promoter. Cleavage of both cassettes
863 resulted in the region in between the resistance cassettes to be replaced by the repair template.
864 Transformed clones were screened for the double loss of antibiotic resistance to identify those with
865 successful editing.

866 We introduced the 148,659 G→A variant, which we had detected through sequence analysis (see
867 below), in *YAK1* by single-cut CRISPR swap (Lutz et al., 2019). We replaced the *YAK1* sequence with
868 a *hphMX* resistance cassette insertion to create *yak1Δ::hphMX*. We then delivered the CRISPR-Swap
869 plasmid along with a repair template DNA produced by fusion PCR to carry either the G or A allele at
870 the variant position (primers OFA0874 to OFA0881 in Table S12). Five clones of each allele, (*YAK1*wt
871 and *YAK1*Q578*) were confirmed by Sanger sequencing (primers OFA0883 and OFA0882 in Table
872 S12).

873 **Sequence analyses to identify the *YAK1* and other new DNA variants**

874 To search for new variants in our populations that were not known to be present in the BY and RM
875 strains, we used the sequencing reads from each selected segregant population. In each of 125
876 populations, we analyzed bam files after collapsing PCR duplicates. We applied samtools *mpileup* (–

877 *min-BQ 0*) and bcftools *call* (-vc), either locally in the region affecting *Gpd1*-GFP (-r *chrX:146000-150000*) or on the whole genome to generate vcf files containing variant information. The vcf files 878 were merged in R to generate matrices of polymorphic positions along with their allele frequency and 879 coverage. The allele frequencies of the *YAK1* polymorphisms were plotted along the genome for each 880 population (Figure S13). We excluded all 47,754 previously known BY / RM variants from the whole- 881 genome polymorphism matrices, and also removed variants with a bcftools quality score below 30. 882 Among the 7,624 remaining variants sites, 5,822 were identified in only one or two populations and 883 were deemed to be sequencing errors. Only one variant was shared across most (71 out of 75) of the 884 populations created from strains from the GFP collection (strains tagged at *ARO8*, *BMH2*, *GPD1*, 885 *MTD1*, and *UGP1*; Table S2) and absent in all other populations. This variant was the 148,659 G-to-A 886 SNV in *YAK1*.
887

888 ***YAK1* genotyping**

889 The region containing the *YAK1*Q578* variant was PCR-amplified from genomic DNA isolated from 890 strains carrying *FAA4*-GFP and *YMR315W*-GFP (GFP collection), *PGM1*-TAP, *NOT5*-TAP, *EMI2*- 891 TAP, *TUB1*-TAP (TAP-tag collection), BY4741 (ATCC 201388), YLK1879 (a BY strain from the 892 Kruglyak lab) and YLK1950 (an RM strain from the Kruglyak lab) using primers OFA0883 and 893 OFA0882 (Table S12). The resulting PCR product was Sanger sequenced using OFA0883 to genotype 894 the *YAK1* variant. The *YAK1*Q578* variant was observed only in the strains obtained from the GFP and 895 TAP-tag collections (Ghaemmaghami et al., 2003; Huh et al., 2003).

896 **Differential expression analysis by RNA sequencing and mass spectrometry**

897 *Cell harvest*

898 We quantified RNA and protein from five biological replicates (different clones obtained after 899 CRISPR-Swap) of *YAK1*wt and *YAK1*Q578*. For each of these 10 strains, fresh colonies were used to 900 inoculate 5 ml of SC medium (completed with uracil, arginine, histidine, and leucine) and the culture 901 was grown overnight at 30°C. The next day, 50 ml of SC media in an Erlenmeyer flask was inoculated 902 with the overnight culture to an initial OD600 of 0.05 and were grown under shaking at 30°C. When

903 the OD600 reached 0.35 – 0.45 (late log phase), four aliquots of 7 ml of the culture was transferred to
904 a falcon tube, centrifuged, and washed with 1 ml of sterile PBS buffer at 30°C (Phosphate Buffered
905 Saline, pH 7.5). The pellets were immediately frozen in liquid nitrogen. For each strain, one cell pellet
906 was used for RNA sequencing and another for protein mass spectrometry.

907 *RNA extraction and sequencing*

908 RNA extraction and library preparation were conducted as described in Lutz *et al.* 2019 (Lutz *et al.*,
909 2019). Briefly, RNA extraction was done in two batches that each contained equal numbers of clones
910 from the two groups (first batch: clones 1 and 2 of BY *YAK1*wt and clones 1 and 2 of BY *YAK1*Q578*,
911 second batch: clones 3, 4 and 5 of BY *YAK1*wt and clones 3, 4 and 5 of BY *YAK1*Q578*). We used ZR
912 Fungal/Bacterial RNA mini-prep kit with DNase I digestion (Zymo Research R2014), following the
913 kit manual. RNA was eluted in 50 µl of RNase/DNase free water, quantified, and checked for integrity
914 on an Agilent 2200 TapeStation. All RNA Integrity Numbers were higher than 9.5 and all
915 concentrations were above 120 ng/µl. The RNA samples were stored at -20°C until use. Poly-A RNA
916 selection was done using 550 ng of total RNA using NEBNext Poly(A) mRNA Magnetic Isolation
917 Module (NEB E7490L), processing all samples in one batch. We prepared the library using NEB Ultra
918 II Directional RNA library kit for Illumina (NEB E7760) used dual index primers (from NEBNext
919 Multiplex Oligos for Illumina, NEB E7600S) for multiplexing, and amplified the library for ten
920 cycles. The libraries were quantified using Qubit dsDNA HS Assay Kit (ThermoFisher Scientist
921 Q32854) and pooled at equal mass for sequencing using 75-bp single-end reads on Illumina NextSeq
922 550 at UMGC. The sequencing reads will be made available on NCBI GEO. Using the trimmomatic
923 software (Bolger *et al.*, 2014), reads were trimmed of adapters and low quality bases and filtered to be
924 at least 36 bp long. Reads were then pseudo-aligned to the *S. cerevisiae* transcriptome (Ensembl build
925 93) and counted using kallisto (Bray *et al.*, 2016). We used RSeQC to calculate Transcript Integrity
926 Numbers (TIN) which provided an estimation of alignment quality for each gene of each sample. We
927 excluded any gene with at least one read count of zero or at least one TIN of zero across the ten
928 samples. After filtering, 5,755 genes remained for analysis. Differential expression analysis was
929 performed using the DESeq2 R package (Love *et al.*, 2014), using the extraction batch information as
930 covariate. DESeq2 provided, for each gene, the log2-fold change (*YAK1*Q578* vs. *YAK1*wt) and the p-
931 value adjusted for multiple-testing using the Benjamini-Hochberg method (Benjamini and Hochberg,
932 1995) (Table S7).

933 *Protein extraction and mass spectrometry*

934 Protein extraction and quantification using mass spectrometry was performed by the Center for Mass
935 Spectrometry and Proteomics at the University of Minnesota. Briefly, cells from the pellets were lysed
936 by sonication (30%, 7 seconds in Branson Digital Sonifier 250) in protein extraction buffer (7 M urea,
937 2 M thiourea, 0.4 M triethylammonium bicarbonate pH 8.5, 20% acetonitrile and 4 mM tris(2-
938 carboxyethyl)phosphine). The proteins were extracted using pressure cycling (Barocycler Pressure
939 Biosciences NEP2320, 60 cycles of 20 seconds at 20 kpsi and 10 seconds at 0 kpsi), purified by
940 centrifugation in 8 mM iodoacetamide (10 minutes at 12000 rpm), and quantify by Bradford assay. For
941 each sample, 40 µg of extracted proteins were fragmented by trypsin digestion (Promega Sequencing
942 Grade Modified Trypsin V5111), and labeled by tandem mass tag isotopes (TMT10plex Isobaric Label
943 Reagent Set, Thermo Scientific 90110). All the tagged samples were pooled. Peptides were separated
944 first based on hydrophobicity through two consecutive liquid chromatographies, followed by
945 separation based on mass per charge after ionisation in the first mass spectrometry step. The second
946 mass spectrometry step after high-energy collision-induced dissociation allowed for the identification
947 of the peptide and the quantification of the TMTs. MS-MS analysis was conducted on an Orbitrap
948 Fusion Tribrid instrument (Thermo Scientific). Database searches were performed using Proteome
949 Discoverer software, and post-processing and differential expression analysis was done using Scaffold
950 4.9. Differential expression statistics per protein were computed on mean peptide abundances after
951 inter-sample normalisation. Normalised abundances for each of the 2,590 detected proteins are
952 provided in Table S8. We adjusted p-values provided by Scaffold using the Benjamini-Hochberg
953 method.

954 *Protein and mRNA data comparison*

955 To compare the effect of the *YAK1* variant on mRNA and protein abundance, we examined the log2
956 fold-change of the mRNA abundance (from DESeq2) and protein abundance (from Scaffold) for the
957 2,577 genes present in both datasets. We considered genes that were differentially expressed in mRNA
958 or protein (adjusted p-value < 0.05) and that showed no evidence of difference in the other quantity
959 (raw p-value > 0.05), to be specifically affected at the mRNA or protein level (Figure 7A, Table S9). In
960 various categories of differentially expressed genes, we looked for gene ontology enrichment using

961 GOrilla (Eden et al., 2009) with the list of 2,577 genes detected in both mass spectrometry and
962 RNAseq as the background set (Table S10).

963 **Acknowledgments**

964 We thank Scott McIsaac and Leonid Kruglyak for yeast strains, Joshua Bloom for implementing the
965 MULTIPOOL algorithm in R, and Mahlon Collins for the mCherry/GFP protein fusion flow cytometry
966 data. We thank the University of Minnesota Genomics Center, the University of Minnesota's Center
967 for Mass Spectrometry and Proteomics, and the University of Minnesota's Flow Cytometry Resource.
968 We thank members of the Albert lab for critical feedback on the manuscript.

969 **Competing interests**

970 The authors declare that they have no competing interests.

971 **Funding**

972 This work was supported by NIH grant R35-GM124676 and a Sloan Research Fellowship (FG-2018-
973 10408) to FWA.

974 **Supplementary Material**

975 Supplementary_Table.xlsx

976 Supplementary_Figures.pdf

977 **References**

978 Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, Mohammadi P, Park YoSon, Parsana P, Segré
979 AV, *et al.* 2017. Genetic effects on gene expression across human tissues. *Nature* **550**:204–
980 213. doi:10.1038/nature24277

981 Albert FW, Bloom JS, Siegel J, Day L, Kruglyak L. 2018. Genetics of trans-regulatory variation in
982 gene expression. *eLife* **7**:e35471. doi:10.7554/eLife.35471

983 Albert FW, Kruglyak L. 2015. The role of regulatory variation in complex traits and disease. *Nat Rev
984 Genet* **16**:197–212. doi:10.1038/nrg3891

985 Albert FW, Muzzey D, Weissman JS, Kruglyak L. 2014a. Genetic influences on translation in yeast.
986 *PLoS Genet* **10**:e1004692. doi:10.1371/journal.pgen.1004692

987 Albert FW, Treusch S, Shockley AH, Bloom JS, Kruglyak L. 2014b. Genetics of single-cell protein
988 abundance variation in large yeast populations. *Nature* **506**:494–497. doi:10.1038/nature12904

989 Andrie JM, Wakefield J, Akey JM. 2014. Heritable variation of mRNA decay rates in yeast. *Genome
990 Res* **24**:2000–2010. doi:10.1101/gr.175802.114

991 Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y. 2015. Impact of regulatory
992 variation from RNA to protein. *Science* **347**:664–667. doi:10.1126/science.1260793

993 Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and Powerful
994 Approach to Multiple Testing. *J R Stat Soc Ser B Methodol* **57**:289–300.

995 Bloom JS, Boocock J, Treusch S, Sadhu MJ, Day L, Oates-Barker H, Kruglyak L. 2019. Rare variants
996 contribute disproportionately to quantitative trait variation in yeast. *eLife* **8**:e49212.
997 doi:10.7554/eLife.49212

998 Bloom JS, Ehrenreich IM, Loo WT, Lite T-LV, Kruglyak L. 2013. Finding the sources of missing
999 heritability in a yeast cross. *Nature* **494**:234–237. doi:10.1038/nature11867

1000 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data.
1001 *Bioinformatics* **30**:2114–2120. doi:10.1093/bioinformatics/btu170

1002 Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification.
1003 *Nat Biotechnol* **34**:525–527. doi:10.1038/nbt.3519

1004 Brem RB, Yvert G, Clinton R, Kruglyak L. 2002. Genetic dissection of transcriptional regulation in
1005 budding yeast. *Science* **296**:752–755. doi:10.1126/science.1069516

1006 Brion C, Caradec C, Pflieger D, Friedrich A, Schacherer J. 2020. Pervasive Phenotypic Impact of a
1007 Large Nonrecombinant Introgressed Region in Yeast. *Mol Biol Evol* **msaa101**.
1008 doi:10.1093/molbev/msaa101

1009 Buxbaum AR, Wu B, Singer RH. 2014. Single β-Actin mRNA Detection in Neurons Reveals a
1010 Mechanism for Regulating Its Translatability. *Science* **343**:419–422.
1011 doi:10.1126/science.1242939

1012 Chan LY, Mugler CF, Heinrich S, Vallotton P, Weis K. 2018. Non-invasive measurement of mRNA
1013 decay reveals translation initiation as the major determinant of mRNA stability. *eLife*
1014 **7**:e32536. doi:10.7554/eLife.32536

1015 Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT. 2005. Mapping
1016 determinants of human gene expression by regional and genome-wide association. *Nature*
1017 **437**:1365–1369. doi:10.1038/nature04244

1018 Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K, Gatti DM, Raghupathy N, Svenson KL,
1019 Churchill GA, Gygi SP. 2016. Defining the consequences of genetic variation on a proteome-
1020 wide scale. *Nature* **534**:500–505. doi:10.1038/nature18270

1021 Clément-Ziza M, Marsellach FX, Codlin S, Papadakis MA, Reinhardt S, Rodríguez-López M, Martin
1022 S, Marguerat S, Schmidt A, Lee E, Workman CT, Bähler J, Beyer A. 2014. Natural genetic

1023 variation impacts expression levels of coding, non-coding, and antisense transcripts in fission
1024 yeast. *Mol Syst Biol* **10**:764.

1025 Damerval C, Maurice A, Josse JM, de Vienne D. 1994. Quantitative trait loci underlying gene product
1026 variation: a novel perspective for analyzing regulation of genome expression. *Genetics*
1027 **137**:289–301.

1028 Deutschbauer AM, Davis RW. 2005. Quantitative trait loci mapped to single-nucleotide resolution in
1029 yeast. *Nat Genet* **37**:1333–1340. doi:10.1038/ng1674

1030 Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9.
1031 *Science* **346**. doi:10.1126/science.1258096

1032 Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. 2009. GOrilla: a tool for discovery and
1033 visualization of enriched GO terms in ranked gene lists. *BMC Bioinformatics* **10**:48.
1034 doi:10.1186/1471-2105-10-48

1035 Edwards MD, Gifford DK. 2012. High-resolution genetic mapping with pooled sequencing. *BMC*
1036 *Bioinformatics* **13 Suppl 6**:S8. doi:10.1186/1471-2105-13-S6-S8

1037 Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L.
1038 2010. Dissection of genetically complex traits with extremely large pools of yeast segregants.
1039 *Nature* **464**:1039–1042. doi:10.1038/nature08923

1040 Eyre-Walker A. 2010. Genetic architecture of a complex trait and its implications for fitness and
1041 genome-wide association studies. *Proc Natl Acad Sci* **107**:1752–1756.
1042 doi:10.1073/pnas.0906182107

1043 Farzadfard F, Perli SD, Lu TK. 2013. Tunable and Multifunctional Eukaryotic Transcription Factors
1044 Based on CRISPR/Cas. *ACS Synth Biol* **2**:604–613. doi:10.1021/sb400081r

1045 Fay JC. 2013. The molecular basis of phenotypic variation in yeast. *Curr Opin Genet Dev* **23**:672–677.
1046 doi:10.1016/j.gde.2013.10.005

1047 Foss EJ, Radulovic D, Shaffer SA, Goodlett DR, Kruglyak L, Bedalov A. 2011. Genetic Variation
1048 Shapes Protein Networks Mainly through Non-transcriptional Mechanisms. *PLOS Biol*
1049 **9**:e1001144. doi:10.1371/journal.pbio.1001144

1050 Foss EJ, Radulovic D, Shaffer SA, Ruderfer DM, Bedalov A, Goodlett DR, Kruglyak L. 2007. Genetic
1051 basis of proteome variation in yeast. *Nat Genet* **39**:1369–1375. doi:10.1038/ng.2007.22

1052 Fournier T, Abou Saada O, Hou J, Peter J, Caudal E, Schacherer J. 2019. Extensive impact of low-
1053 frequency variants on the phenotypic landscape at population-scale. *eLife* **8**:e49258.
1054 doi:10.7554/eLife.49258

1055 Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L,
1056 Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, Qian X, Yan J, Wang J, Wang G.
1057 2013. RNA sequencing reveals the complex regulatory network in the maize kernel. *Nat Commun* **4**:2832. doi:10.1038/ncomms3832

1058 Gao Y, Zhao Y. 2014. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo
1059 for CRISPR-mediated genome editing. *J Integr Plant Biol* **56**:343–349.
1060 doi:10.1111/jipb.12152

1061 Gasch AP, Yu FB, Hose J, Escalante LE, Place M, Bacher R, Kanbar J, Ciobanu D, Sandor L,
1062 Grigoriev IV, Kendziora C, Quake SR, McClean MN. 2017. Single-cell RNA sequencing
1063 reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. *PLOS*
1064 *Biol* **15**:e2004050. doi:10.1371/journal.pbio.2004050

1065 Gerrits A, Li Y, Tesson BM, Bystrykh LV, Weersing E, Ausema A, Dontje B, Wang X, Breitling R,
1066 Jansen RC, Haan G de. 2009. Expression Quantitative Trait Loci Are Highly Sensitive to
1067 Cellular Differentiation State. *PLOS Genet* **5**:e1000692. doi:10.1371/journal.pgen.1000692

1069 Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman
1070 JS. 2003. Global analysis of protein expression in yeast. *Nature* **425**:737–741.
1071 doi:10.1038/nature02046

1072 Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, Farber CR, Sinsheimer J,
1073 Kang HM, Furlotte N, Park CC, Wen P-Z, Brewer H, Weitz K, Ii DGC, Pan C, Yordanova R,
1074 Neuhaus I, Tilford C, Siemers N, Gargalovic P, Eskin E, Kirchgessner T, Smith DJ, Smith RD,
1075 Lusis AJ. 2011. Comparative Analysis of Proteome and Transcriptome Variation in Mouse.
1076 *PLOS Genet* **7**:e1001393. doi:10.1371/journal.pgen.1001393

1077 Gibson G. 2012. Rare and common variants: twenty arguments. *Nat Rev Genet* **13**:135–145.
1078 doi:10.1038/nrg3118

1079 Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier
1080 DNA/PEG method. *Nat Protoc* **2**:31–34. doi:10.1038/nprot.2007.13

1081 Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B,
1082 Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. 2014. Genome-Scale CRISPR-
1083 Mediated Control of Gene Repression and Activation. *Cell* **159**:647–661.
1084 doi:10.1016/j.cell.2014.09.029

1085 Großbach J, Gillet L, Clément-Ziza M, Schmalohr CL, Schubert OT, Barnes CA, Bludau I, Aebersold
1086 R, Beyer A. 2019. Integration of transcriptome, proteome and phosphoproteome data
1087 elucidates the genetic control of molecular networks. *bioRxiv* 703140. doi:10.1101/703140

1088 Grundberg E, Small KS, Hedman ÅK, Nica AC, Buil A, Keildson S, Bell JT, Yang T-P, Meduri E,
1089 Barrett A, Nisbett J, Sekowska M, Wilk A, Shin S-Y, Glass D, Travers M, Min JL, Ring S, Ho
1090 K, Thorleifsson G, Kong A, Thorsteindottir U, Ainali C, Dimas AS, Hassanali N, Ingle C,
1091 Knowles D, Krestyaninova M, Lowe CE, Di Meglio P, Montgomery SB, Parts L, Potter S,
1092 Surdulescu G, Tsaprouni L, Tsoka S, Bataille V, Durbin R, Nestle FO, O'Rahilly S, Soranzo
1093 N, Lindgren CM, Zondervan KT, Ahmadi KR, Schadt EE, Stefansson K, Smith GD,
1094 McCarthy MI, Deloukas P, Dermitzakis ET, Spector TD, Multiple Tissue Human Expression
1095 Resource (MuTHER) Consortium. 2012. Mapping cis- and trans-regulatory effects across
1096 multiple tissues in twins. *Nat Genet* **44**:1084–1089. doi:10.1038/ng.2394

1097 Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, Spidlen J, Strain E, Gentleman R.
1098 2009. flowCore: a Bioconductor package for high throughput flow cytometry. *BMC
1099 Bioinformatics* **10**:106. doi:10.1186/1471-2105-10-106

1100 Hasin-Brumshtain Y, Hormozdiari F, Martin L, van Nas A, Eskin E, Lusis AJ, Drake TA. 2014. Allele-
1101 specific expression and eQTL analysis in mouse adipose tissue. *BMC Genomics* **15**:471.
1102 doi:10.1186/1471-2164-15-471

1103 Hasin-Brumshtain Y, Khan AH, Hormozdiari F, Pan C, Parks BW, Petyuk VA, Piehowski PD,
1104 Brümmer A, Pellegrini M, Xiao X, Eskin E, Smith RD, Lusis AJ, Smith DJ. 2016.
1105 Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs
1106 and novel non-coding genes. *eLife* **5**:e15614. doi:10.7554/eLife.15614

1107 Hause RJ, Stark AL, Antao NN, Gorsic LK, Chung SH, Brown CD, Wong SS, Gill DF, Myers JL, To
1108 LA, White KP, Dolan ME, Jones RB. 2014. Identification and Validation of Genetic Variants
1109 that Influence Transcription Factor and Cell Signaling Protein Levels. *Am J Hum Genet*
1110 **95**:194–208. doi:10.1016/j.ajhg.2014.07.005

1111 Higgins MG, Fitzsimons C, McClure MC, McKenna C, Conroy S, Kenny DA, McGee M, Waters SM,
1112 Morris DW. 2018. GWAS and eQTL analysis identifies a SNP associated with both residual
1113 feed intake and GFRA2 expression in beef cattle. *Sci Rep* **8**:14301. doi:10.1038/s41598-018-
1114 32374-6

1115 Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK. 2003. Global
1116 analysis of protein localization in budding yeast. *Nature* **425**:686–691.
1117 doi:10.1038/nature02026

1118 Iraqui I, Vissers S, Cartiaux M, Urrestarazu A. 1998. Characterisation of *Saccharomyces cerevisiae*
1119 ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new
1120 aminotransferase subfamily. *Mol Gen Genet MGG* **257**:238–248. doi:10.1007/s004380050644

1121 Ka S, Markljung E, Ring H, Albert FW, Harun-Or-Rashid M, Wahlberg P, Garcia-Roves PM, Zierath
1122 JR, Denbow DM, Pääbo S, Siegel PB, Andersson L, Hallböök F. 2013. Expression of carnitine
1123 palmitoyl-CoA transferase-1B is influenced by a cis-acting eQTL in two chicken lines selected
1124 for high and low body weight. *Physiol Genomics* **45**:367–376.
1125 doi:10.1152/physiolgenomics.00078.2012

1126 Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A, Migliavacca E,
1127 Wiederkehr M, Gutierrez-Arcelus M, Panousis NI, Yurovsky A, Lappalainen T, Romano-
1128 Palumbo L, Planchon A, Bielser D, Bryois J, Padioleau I, Udin G, Thurnheer S, Hacker D,
1129 Core LJ, Lis JT, Hernandez N, Reymond A, Deplancke B, Dermitzakis ET. 2013. Coordinated
1130 Effects of Sequence Variation on DNA Binding, Chromatin Structure, and Transcription.
1131 *Science* **342**:744–747. doi:10.1126/science.1242463

1132 Kita R, Venkataram S, Zhou Y, Fraser HB. 2017. High-resolution mapping of cis-regulatory variation
1133 in budding yeast. *Proc Natl Acad Sci* **114**:E10736–E10744. doi:10.1073/pnas.1717421114

1134 Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N,
1135 Gootenberg JS, Nishimasu H, Nureki O, Zhang F. 2015. Genome-scale transcriptional
1136 activation by an engineered CRISPR-Cas9 complex. *Nature* **517**:583–588.
1137 doi:10.1038/nature14136

1138 Lahtvee P-J, Sánchez BJ, Smialowska A, Kasvandik S, Elsemman IE, Gatto F, Nielsen J. 2017.
1139 Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-
1140 Specific Translation Efficiency in Yeast. *Cell Syst* **4**:495–504.e5.
1141 doi:10.1016/j.cels.2017.03.003

1142 Lee P, Cho B-R, Joo H-S, Hahn J-S. 2008. Yeast Yak1 kinase, a bridge between PKA and stress-
1143 responsive transcription factors, Hsf1 and Msn2/Msn4. *Mol Microbiol* **70**:882–895.
1144 doi:10.1111/j.1365-2958.2008.06450.x

1145 Li G, Neuert G. 2019. Multiplex RNA single molecule FISH of inducible mRNAs in single yeast cells.
1146 *Sci Data* **6**:94. doi:10.1038/s41597-019-0106-6

1147 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform.
1148 *Bioinformatics* **25**:1754–1760. doi:10.1093/bioinformatics/btp324

1149 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000
1150 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and
1151 SAMtools. *Bioinforma Oxf Engl* **25**:2078–2079. doi:10.1093/bioinformatics/btp352

1152 Liu Y, Beyer A, Aebersold R. 2016. On the Dependency of Cellular Protein Levels on mRNA
1153 Abundance. *Cell* **165**:535–550. doi:10.1016/j.cell.2016.03.014

1154 Long L, Guo H, Yao D, Xiong K, Li Y, Liu P, Zhu Z, Liu D. 2015. Regulation of transcriptionally
1155 active genes via the catalytically inactive Cas9 in *C. elegans* and *D. rerio*. *Cell Res* **25**:638–
1156 641. doi:10.1038/cr.2015.35

1157 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq
1158 data with DESeq2. *Genome Biol* **15**:550. doi:10.1186/s13059-014-0550-8

1159 Lutz S, Brion C, Kliebhan M, Albert FW. 2019. DNA variants affecting the expression of numerous
1160 genes in trans have diverse mechanisms of action and evolutionary histories. *PLOS Genet*
1161 **15**:e1008375. doi:10.1371/journal.pgen.1008375

1162 Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 2013. CRISPR RNA–guided activation
1163 of endogenous human genes. *Nat Methods* **10**:977–979. doi:10.1038/nmeth.2598

1164 Martin DE, Soulard A, Hall MN. 2004. TOR Regulates Ribosomal Protein Gene Expression via PKA
1165 and the Forkhead Transcription Factor FHL1. *Cell* **119**:969–979.
1166 doi:10.1016/j.cell.2004.11.047

1167 Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu
1168 H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK,
1169 Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler
1170 S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA. 2012.
1171 Systematic Localization of Common Disease-Associated Variation in Regulatory DNA.
1172 *Science* **337**:1190–1195. doi:10.1126/science.1222794

1173 McCarthy JEG. 1998. Posttranscriptional Control of Gene Expression in Yeast. *Microbiol Mol Biol
1174 Rev* **62**:1492–1553.

1175 McIsaac RS, Oakes BL, Wang X, Dummit KA, Botstein D, Noyes MB. 2013. Synthetic gene
1176 expression perturbation systems with rapid, tunable, single-gene specificity in yeast. *Nucleic
1177 Acids Res* **41**:e57. doi:10.1093/nar/gks1313

1178 Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A,
1179 Lukyanov KA, Lukyanov S, Gadella TWJ, Chudakov DM. 2007. Bright monomeric red
1180 fluorescent protein with an extended fluorescence lifetime. *Nat Methods* **4**:555–557.
1181 doi:10.1038/nmeth1062

1182 Michelmore RW, Paran I, Kesseli RV. 1991. Identification of markers linked to disease-resistance
1183 genes by bulked segregant analysis: a rapid method to detect markers in specific genomic
1184 regions by using segregating populations. *Proc Natl Acad Sci* **88**:9828–9832.
1185 doi:10.1073/pnas.88.21.9828

1186 Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG. 2004. Genetic
1187 analysis of genome-wide variation in human gene expression. *Nature* **430**:743–747.
1188 doi:10.1038/nature02797

1189 Nadal-Ribelles M, Islam S, Wei W, Latorre P, Nguyen M, de Nadal E, Posas F, Steinmetz LM. 2019.
1190 Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in
1191 yeast populations. *Nat Microbiol* **4**:683–692. doi:10.1038/s41564-018-0346-9

1192 Pai AA, Cain CE, Mizrahi-Man O, Leon SD, Lewellen N, Veyrieras J-B, Degner JF, Gaffney DJ,
1193 Pickrell JK, Stephens M, Pritchard JK, Gilad Y. 2012. The Contribution of RNA Decay
1194 Quantitative Trait Loci to Inter-Individual Variation in Steady-State Gene Expression Levels.
1195 *PLOS Genet* **8**:e1003000. doi:10.1371/journal.pgen.1003000

1196 Park J-J, Dempewolf E, Zhang W, Wang Z-Y. 2017. RNA-guided transcriptional activation via
1197 CRISPR/dCas9 mimics overexpression phenotypes in *Arabidopsis*. *PLOS ONE* **12**:e0179410.
1198 doi:10.1371/journal.pone.0179410

1199 Parts L, Liu Y-C, Tekkedil MM, Steinmetz LM, Caudy AA, Fraser AG, Boone C, Andrews BJ,
1200 Rosebrock AP. 2014. Heritability and genetic basis of protein level variation in an outbred
1201 population. *Genome Res* **24**:1363–1370. doi:10.1101/gr.170506.113

1202 Picelli S. 2017. Single-cell RNA-sequencing: The future of genome biology is now. *RNA Biol* **14**:637–
1203 650. doi:10.1080/15476286.2016.1201618

1204 Picotti P, Clement-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Röst H, Sun Z, Rinner O,
1205 Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz R,
1206 Beyer A, Aebersold R. 2013. A complete mass spectrometric map for the analysis of the yeast
1207 proteome and its application to quantitative trait analysis. *Nature* **494**:266–270.
1208 doi:10.1038/nature11835

1209 Player AN, Shen L-P, Kenny D, Antao VP, Kolberg JA. 2001. Single-copy Gene Detection Using
1210 Branched DNA (bDNA) In Situ Hybridization. *J Histochem Cytochem* **49**:603–611.
1211 doi:10.1177/002215540104900507

1212 Rep M, Krantz M, Thevelein JM, Hohmann S. 2000. The Transcriptional Response of *Saccharomyces*
1213 *cerevisiae* to Osmotic Shock Hot1p and Msn2p/Msn4p are Required for the Induction of
1214 Subsets of High Osmolarity Glycerol Pathway-Dependent Genes. *J Biol Chem* **275**:8290–
1215 8300. doi:10.1074/jbc.275.12.8290

1216 Rockman MV. 2012. The QTN Program and the Alleles That Matter for Evolution: All That's Gold
1217 Does Not Glitter. *Evol Int J Org Evol* **66**:1–17. doi:10.1111/j.1558-5646.2011.01486.x

1218 Rouhanifard SH, Mellis IA, Dunagin M, Bayatpour S, Jiang CL, Dardani I, Symmons O, Emert B,
1219 Torre E, Cote A, Sullivan A, Stamatoyannopoulos JA, Raj A. 2018. ClampFISH detects
1220 individual nucleic-acid molecules using click chemistry based amplification. *Nat Biotechnol.*
1221 doi:10.1038/nbt.4286

1222 Smith EN, Kruglyak L. 2008. Gene–Environment Interaction in Yeast Gene Expression. *PLoS Biol* **6**.
1223 doi:10.1371/journal.pbio.0060083

1224 Snoek BL, Sterken MG, Bevers RPJ, Volkers RJM, van't Hof A, Brenchley R, Riksen JAG, Cossins A,
1225 Kammenga JE. 2017. Contribution of trans regulatory eQTL to cryptic genetic variation in *C.*
1226 *elegans*. *BMC Genomics* **18**:500. doi:10.1186/s12864-017-3899-8

1227 Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E,
1228 Surendran P, Oliver-Williams C, Kamat MA, Prins BP, Wilcox SK, Zimmerman ES, Chi A,
1229 Bansal N, Spain SL, Wood AM, Morrell NW, Bradley JR, Janjic N, Roberts DJ, Ouwehand
1230 WH, Todd JA, Soranzo N, Suhre K, Paul DS, Fox CS, Plenge RM, Danesh J, Runz H,
1231 Butterworth AS. 2018. Genomic atlas of the human plasma proteome. *Nature* **558**:73–79.
1232 doi:10.1038/s41586-018-0175-2

1233 Taggart JC, Zauber H, Selbach M, Li G-W, McShane E. 2020. Keeping the Proportions of Protein
1234 Complex Components in Check. *Cell Syst* **10**:125–132. doi:10.1016/j.cels.2020.01.004

1235 Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A,
1236 Lao K, Surani MA. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. *Nat
1237 Methods* **6**:377–382. doi:10.1038/nmeth.1315

1238 Thompson DA, Cubillos FA. 2017. Natural gene expression variation studies in yeast. *Yeast* **34**:3–17.
1239 doi:10.1002/yea.3210

1240 Tong AHY, Boone C. 2007. High-Throughput Strain Construction and Systematic Synthetic Lethal
1241 Screening in *Saccharomyces cerevisiae* In: Stansfield I, Stark MJ, editors. *Methods in
1242 Microbiology, Yeast Gene Analysis*. Academic Press. pp. 369–707. doi:10.1016/S0580-
1243 9517(06)36016-3

1244 Viñuela A, Snoek LB, Riksen JAG, Kammenga JE. 2010. Genome-wide gene expression regulation as
1245 a function of genotype and age in *C. elegans*. *Genome Res* **20**:929–937.
1246 doi:10.1101/gr.102160.109

1247 Wadsworth GM, Parikh RY, Choy JS, Kim HD. 2017. mRNA detection in budding yeast with single
1248 fluorophores. *Nucleic Acids Res* **45**:e141. doi:10.1093/nar/gkx568

1249 Warringer J, Zörgö E, Cubillos FA, Zia A, Gjuvsland A, Simpson JT, Forsmark A, Durbin R, Omholt
1250 SW, Louis EJ, Liti G, Moses A, Blomberg A. 2011. Trait Variation in Yeast Is Defined by
1251 Population History. *PLOS Genet* 7:e1002111. doi:10.1371/journal.pgen.1002111

1252 West MAL, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St. Clair DA.
1253 2007. Global eQTL Mapping Reveals the Complex Genetic Architecture of Transcript-Level
1254 Variation in *Arabidopsis*. *Genetics* 175:1441–1450. doi:10.1534/genetics.106.064972

1255 Wright FA, Sullivan PF, Brooks AI, Zou F, Sun W, Xia K, Madar V, Jansen R, Chung W, Zhou Y-H,
1256 Abdellaoui A, Batista S, Butler C, Chen G, Chen T-H, D'Ambrosio D, Gallins P, Ha MJ,
1257 Hottenga JJ, Huang S, Kattenberg M, Kocher J, Middeldorp CM, Qu A, Shabalin A, Tischfield
1258 J, Todd L, Tzeng J-Y, van Grootenhuis G, Vink JM, Wang Q, Wang Wei, Wang Weibo,
1259 Willemsen G, Smit JH, de Geus EJ, Yin Z, Penninx BWJH, Boomsma DI. 2014. Heritability
1260 and genomics of gene expression in peripheral blood. *Nat Genet* 46:430–437.
1261 doi:10.1038/ng.2951

1262 Wurmthaler LA, Klauser B, Hartig JS. 2018. Highly motif- and organism-dependent effects of
1263 naturally occurring hammerhead ribozyme sequences on gene expression. *RNA Biol* 15:231–
1264 241. doi:10.1080/15476286.2017.1397870

1265 Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, Sun BB, Laser A, Maranville JC, Wu H, Ho
1266 JE, Courchesne P, Lyass A, Larson MG, Gieger C, Graumann J, Johnson AD, Danesh J, Runz
1267 H, Hwang S-J, Liu C, Butterworth AS, Suhre K, Levy D. 2018. Genome-wide mapping of
1268 plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular
1269 disease. *Nat Commun* 9. doi:10.1038/s41467-018-05512-x

1270 Zhang X, Cal AJ, Borevitz JO. 2011. Genetic architecture of regulatory variation in *Arabidopsis*
1271 *thaliana*. *Genome Res* 21:725–733. doi:10.1101/gr.115337.110