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SUMMARY

Signaling networks balance the activities of many physically interacting proteins and perturbations to this
network influence downstream signaling, potentially leading to oncogenic states. Using affinity purification-
mass spectrometry we defined this network for all 90 human tyrosine kinases revealing 1,463 mostly novel
interactions between these key cancer proteins and diverse molecular complexes. Modulation of interactor
levels altered growth phenotypes associated with corresponding tyrosine kinase partners suggesting that
tumors may alter the stoichiometries of interactors to maximize oncogenic signaling. We show that the levels of
EGFR interactors delineates this form of network oncogenesis in 19% of EGFR wild-type lung cancer patients
which were mostly otherwise oncogene negative, predicting sensitivity to EGFR inhibitors in vitro and in vivo.
EGFR network oncogenesis occurs through mechanistically distinct network alleles often in cooperation with
weak oncogenes in the MAPK pathway. Network oncogenesis may be a common and targetable convergent

mechanism of oncogenic pathway activation in cancer.

HIGHLIGHTS

* A human tyrosine kinome protein interaction map reveals novel physical and functional associations.
* Dependence on oncogenic tyrosine kinases is modulated through perturbation of their interactors.
* EGFR network oncogenesis in up to 19% of EGFR wild-type lung cancers is targetable.

* EGFR network oncogenesis cooperates with weak oncogenes in the MAPK pathway.


https://doi.org/10.1101/2020.07.02.185173
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185173; this version posted July 3, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Tumors often exhibit mutations in functionally related genes suggesting a limited number of pathways are
sufficient to cause tumorigenesis (Sanchez-Vega et al., 2018). However, analysis of tumor genomes have
revealed that many tumors lack mutations in such pathways including most notably oncogene negative lung
and triple negative breast cancers (Cancer Genome Atlas Research Network, 2014; Shah et al., 2012; Koboldt
et al., 2012). In order to reconcile this apparent paradox it is useful to consider that there are multiple ways to
dysregulate oncogenic proteins with mutation being the simplest to measure with current technologies (Yaffe,
2013). Other mutation-independent routes of oncogenesis have been described (Bild et al., 2006; Popovici et
al., 2012) albeit through mechanisms that remain unclear but could include expression of ligands (Fujimoto et
al., 2005; Singh and Harris, 2005; Wu et al., 2007) or loss of factors involved in protein endocytosis and
degradation (Bache et al., 2004). While such regulation is multifactorial and an aggregate over largely
unknown inputs, proteins do not function in isolation but are rather constrained by physical association with
other proteins in its interaction network, i.e. its network context. Hence, elucidating the network context of an

oncogene may aid in understanding the pathogenesis of cancers with otherwise unknown disease drivers.

Tyrosine kinases are among the most frequently altered gene families in cancer. The human genome encodes
90 tyrosine kinases and despite their biological and therapeutic importance their unique functions in normal
development and diseases such as cancer remain poorly understood (Robinson et al., 2000; Gschwind et al.,
2004). They are the predominant class of cancer drug targets, although only roughly 5% of cancer patients
match to current indications for available targeted therapy (Marquart et al., 2018). For some drugs that have
been investigated broadly, the molecular basis for anti-tumor responses cannot be explained by the presence
of a mutation in the target or pathway as biomarker (Ferté et al., 2010; Hirai et al., 2017; Jazieh et al., 2013;
Krejci et al., 2011; Loboda et al., 2010; Mirza et al., 2016; Moroni et al., 2005; Shao et al., 2015; Swisher et al.,
2017; Tian et al., 2013). In addition, most patient responses to targeted therapies are not durable leading to
eventual drug resistance. Comprehensive knowledge of physical interactors for this important gene family
could aid in understanding mechanisms of oncogene regulation and consequently delineate new factors

important for mediating drug sensitivity and resistance.
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One approach to delineate pathway components is through the systematic assembly of protein-protein
interaction (PPI) maps (Krogan et al., 2006; Sowa et al., 2009; Breitkreutz et al., 2010; Behrends et al., 2010)
Many complementary technologies to map PPIls have been developed including yeast two-hybrid and
proteomic approaches (Rual et al., 2005; Hein et al., 2015; Huttlin et al., 2017, 2017; Yao et al., 2017a).
Coverage of tyrosine kinases using such experimental approaches has been minimal and is largely biased
towards a small number of tyrosine kinases that are most intensely studied. Physical interactions are often also
co-functional (Bandyopadhyay et al., 2010) and network maps can provide insights into associations with
distinct cellular complexes (Stuart et al., 2006; James et al., 2009), unexpected cellular localizations (Ni et al.,
2001; Carpenter, 2003; Carpenter and Liao, 2013) and transactivation partners (Paul and Hristova, 2019).

Therefore, a systematic map of interactions associated with this important class of proteins may reveal new

and previously unexplored biology outside of canonical signaling cascades.

We systematically mapped physical associations with all 90 human tyrosine kinases by experimentally
mapping protein-protein interaction networks using affinity-based proteomics. Analyses of this interactome
revealed novel associations of tyrosine kinases with distinct protein complexes reflective of broadly diverse
roles in cellular signaling. Mapping chemo-genetic interactions revealed that many of the interactors were also
functional and that their perturbation could modulate dependence on oncogenic tyrosine kinase partners. This
finding led us to test the hypothesis that measurement of the stoichiometries in protein interaction partners
could reveal oncogene dependence and activation state in cancer cells. Applied to the EGFR network, we
identified a network-mediated form of oncogenesis that occurs in many otherwise oncogene negative cancers
and also co-occurs specifically with weak oncogenic alleles of regulators of the MAPK pathway such as NF1
and BRAF class 3 mutations. This work provides a complete and unbiased interaction map for tyrosine kinases

and a new approach to leverage such data to elucidate mechanisms of oncogene addiction.

RESULTS

A physical interaction map of human tyrosine kinases

To identify physically associated proteins we performed affinity purification and mass spectrometry on all 90
human tyrosine kinases. Kinases were expressed with a c-terminal 3xFLAG tag by transient transfection into

HEK293T cells (Figure 1A). After confirmation of expression, each tyrosine kinase was immunoprecipitated
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using an anti-FLAG antibody and co-immunoprecipitated proteins were eluted, trypsinized and subjected to
mass spectrometry. We performed 419 such affinity purification — mass spectrometry (AP-MS) experiments
using at least three biological replicates for every tyrosine kinase (Figure S1A). Overall, we observed an

average correlation of 0.7 among replicate experiments (Figure S1B) and 50% average reproducibility in

proteins identified (Figure S1C).

We performed computational analysis to distinguish bonafide from non-specific interactions in the AP-MS data.
We evaluated two published methods for their ability to recapitulate known interactions from the raw mass
spectrometry data, Comparative Proteomics Analysis Software Suite (CompPASS) (Sowa et al., 2009) and
Significance Analysis of Interactomes (SAINT) (Breitkreutz et al., 2010). As the number of AP-MS experiments
carried out for every bait varied (Figure S1A), we modified the CompPASS algorithm by including a bait
specific normalization (CompPASS-Z, see Methods) then compared the performance of these methods in
recapitulating known interactions using two different reference protein-protein interaction (PPI) datasets,
HumanNet (Lee et al., 2011) and iRefWeb (Turner et al., 2010). Analysis over different AP-MS score
thresholds using Receiver Operating Curve (ROC) analysis indicated that ComPASS-Z distinguishes known
interactions with better sensitivity and specificity than other methods (Figure 1B, Figure S1D). We calculated
the enrichment of known interactions identified at different ComPASS-Z score cutoffs and found a significant
overlap with iRefWeb peaking in significance between scores of 2 and 3 (Figure 1C). Similarly, we found
significant enrichment of known kinase-substrate interactions, defined in the PhosphoSitePlus database
(Hornbeck et al., 2012), at cutoff of 2.5 (Figure 1D). Therefore, we defined the tyrosine kinase network
(TyKiNet) as 1,463 interactions with a score 22.5 as high confidence interactions and an additional 1,135

interactions with a score between 2 and 2.5 as lower confidence interactors (Supplementary Table 1).

Analysis of resulting high-confidence interactions revealed that the majority (94%) of interactions were novel
and not previously reported in the literature (Figure 1E). This network was larger and had broader coverage of
tyrosine kinases than other AP-MS, yeast two-hybrid or experimentally determined interaction databases
(Figure 1F). TyKiNet contains a median of 15 interactors per kinase and is unbiased in comparison to our
existing knowledge of interactors that is heavily focused on more intensely studied kinases such as EGFR,

SRC and HER2 (Figure 1G).


https://doi.org/10.1101/2020.07.02.185173
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185173; this version posted July 3, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Tyrosine kinases interact with functionally diverse protein complexes

We sought to place kinase interactors into biological context by analyzing them with respect to known protein
complexes and pathways. This analysis identified both known and novel associations between 69 tyrosine
kinases and a diverse set of pathways and protein complexes (Figure 2). For example, we detected known
interactions between ABL1 and members of the WAVE2 complex (Stuart et al., 2006), and between BTK and
the PAF chromatin remodeling complex (Figure 2, Figure 3A,B) (James et al., 2009). A number of novel
interactions were also identified such as specific interactions between BMX and the COP9 signalosome, ephrin
receptors (EPHA2, EPHA4) and the MCM DNA replication complex, PDGFRB and the RNA exosome complex,
and SRC and the Ragulator complex and lysosomal v-ATPase (Figure 3A,B). 40 tyrosine kinases interacted
with multiple components of individual protein complexes encoded in the CORUM database in a statistically

significant manner (Figure 3A, Supplementary Table 2).

While receptor tyrosine kinases (RTKs) are primarily studied in the context of their localization to the plasma
membrane, we observed that many of the protein complexes they interact with are localized in other
organelles. Since physical interactions occur when proteins share spatial localization (Schwikowski et al.,
2000; Shin et al., 2009), we used the known subcellular localization of interactors encoded in the Gene
Ontology to predict the cellular localization of RTKs based on a guilt-by-association principle (Figure S2A). This
analysis predicted diverse cellular localizations for RTKs including associations with the nucleus, mitochondria
and actin cytoskeleton which we compared to endogenous protein localization determined by
immunofluorescence using primary antibodies from the Human Protein Atlas (Thul et al., 2017). We found a
localization consistent with our prediction in 19 out of 33 (57%) of cases (Figure S2A). For example, we
predicted cytoskeletal localization for DDR2 based on interactions with members of the actin cytoskeleton
(DOCK1, MYH11, DNAHS8) and which was confirmed by endogenous DDR2 staining in BJ cells (Figure S2B).
The majority of RTKs (32/58, 55%) have a predicted nuclear localization based on associations with
complexes known to reside in the nucleus (Figure S2A). For example, DDR1 interacts with members of the
transcription factor 2H complex (TFIIH) and EPHBG interacts with the P-TEFb transcription elongation and PAF
chromatin remodeling complexes (Figure 2B). Endogenous DDR1 and EPHBG6 were both nuclear in cancer cell
lines, confirming our prediction (Figure S2B). These data are consistent with previous reports of specific RTKs

signaling in the nucleus (Ni et al., 2001; Carpenter, 2003; Carpenter and Liao, 2013), and indicates that many
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members of this family may have functions in the nucleus. Our systematic analysis indicates that in pathogenic
contexts such as cancer where RTKs are often over-expressed (Du and Lovly, 2018) they can take on

alternative cellular localizations and associate with functionally distinct protein complexes.

We identified interactions between FLT3 and members of the P-TEFb transcription elongation complex in
TyKiNet (Figure 3C) including an interaction between FLT3 and CDK9 (CompPAS-Z score = 2.83), the
catalytic subunit of the P-TEFb that phosphorylates Serine 2 of carboxy-terminal domain (CTD) of RNA
polymerase Il (Marshall et al., 1996). We confirmed the interaction between FLT3 and CDK9 by co-
immunoprecipitation (Figure 3C). We next tested if this interaction was dependent on the activation state of
FLT3, CDKO or the entire P-TEFb complex using kinase inhibitors of FLT3 (AC220) or CDK9 (NVP-2) as well
as the bromodomain inhibitor JQ-1 which inactivates the P-TEFb by preventing it from binding chromatin via
BRD4 (Bartholomeeusen et al., 2012). The interaction between FLT3 and CDK9 was specifically disrupted by
JQ1, indicating that the association between FLT3 and CDK9 occurs only in the context of a chromatin-bound,
active P-TEFB complex and is not dependent on FLT3 or CDKS9 activity (Figure 3C). Further supporting a
functional role for this interaction, FLT3 ectopic expression specifically stimulated the activity of the P-TEFb by
increasing the phosphorylation of Ser2 of the CTD, which was not observed with expression of control RTKs
that do not interact with this complex, EGFR or PDGFRA (Figure 3D). These results indicate that FLT3
promotes the activity of P-TEFb complex when it is bound to chromatin (Figure 3E). We postulate that the
numerous novel associations delineated in this interaction map can guide the discovery of other similar

functional relationships between tyrosine kinases and protein complexes.

The tyrosine kinase interactome encodes functional interactions that regulate oncogenic tyrosine

kinase dependency in cancer

We next determined if physical interactors could modulate the function of their partner tyrosine kinases. To
capture functional interactions between a tyrosine kinase and its physical interaction partner, we systematically
measured chemical-genetic interactions using targeted tyrosine kinase inhibitors coupled with knockdown of
interactors to measure synthetic enhancement or suppression of drug sensitivity (Hu et al., 2018). We
assembled a panel of tyrosine kinase inhibitors that inhibit EGFR (osimertinib), ALK (crizotinib), MET

(crizotinib), or ERBB2 (lapatinib) and seven matched RTK driven cancer cell lines harboring EGFR mutation
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(H1975, H4006), MET (H1993) or ERBB2 amplification (SKBR3, H1954) or EML4-ALK fusion (H3122, H2228).
In total, knockdown of 80% of the tested EGFR interactors could significantly modulate sensitivity to the EGFR
inhibitor osimertinib in EGFR-mutant lung cancer cell lines (Figure 3E), indicating that loss of interactors can
impair (sensitivity) or substitute (resistance) for EGFR signaling. In the case of ERBB2, 66% of interactors
modified the response to lapatinib in HER2 amplified breast cancer cell lines. Similar results were also
observed when modulating the levels of interactors of ALK in EML4-ALK expressing lung cancer cell lines
(70%) as well as interactors of MET in MET amplified cells (33%, Figure 3E). Hence many of the physical

interactors defined in this study are also functionally relevant since levels of interactors are important for

mediating oncogene signaling.

Interactor expression defines an EGFR network oncogene in NSCLC

Since knockdown of its interacting partner often modulates kinase signaling we hypothesized that the
abundance of interactors in a sample is reflective of the baseline signaling state of a kinase. In this scenario,
physical interactors can be considered as allosteric regulators wherein total signaling output is a function of
their stoichiometries. Importantly, not all physical interactors are functionally important in this manner and
interactors could either positively or negatively influence signaling activity. Together, the levels and activity of
proteins in this functional network constitute a form of network mediated protein regulation which we term
network activity. Approximating the level of each interactor using gene expression data from a sample, we
developed a computational framework to integrate physical interactors of a kinase with tumor transcriptome
data in order to determine network activity. Tumors where signaling is known to be maximized were used to
train the network activity model by identifying a subset of interactors of a kinase that are differentially
expressed, positively or negatively, in cases where the kinase is known to be activated by mutation or
amplification. Next, a signed sum of the levels of this subset of interactors is used to quantify the network
activity of this kinase in patients (Figure 4A, see Methods). As our initial test case for this approach we
interrogated the network of EGFR, an oncogene that is altered by mutation in approximately 12% of lung
adenocarcinomas (LUAD) and when mutated is associated with sensitivity to EGFR tyrosine kinase inhibitors
(Pao et al., 2004; Lynch et al., 2004; Cancer Genome Atlas Research Network, 2014). We identified physical
interactors of EGFR derived from both TyKiNet and literature sources and integrated them with RNA-seq data

from 576 TCGA LUAD patient samples. 26 EGFR physical interactors were differentially expressed (FDR<5%)
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in samples harboring known activating mutations in EGFR (L858R and exon 19 deletion) (Figure 4B).
Expression of interactors in each sample was used to calculate EGFR network activity (NA) and permutation
analysis and information maximization criteria were used to define tumors that were EGFR network activity

positive (EGFR"™, NA>5) (Figure S3A, Supplementary Table 3). At this cutoff, 95% of tumors with canonical

EGFR activating mutations were classified EGFR"" (Figure 4B).

Non-canonical mutations in EGFR are not as recurrent and it is unclear which of these mutations are functional
versus non-functional (Berger et al., 2016; Kohsaka et al., 2017; Ng et al., 2018). Over half (54%) of tumors
harboring non-canonical EGFR mutations were also EGFR" which was more likely than background indicating
that many non-hotspot mutations in EGFR may also be activating (Fisher Exact test p=0.002, Figure 4C). Non-
canonical EGFR mutations in the kinase domain (Wilcoxon rank-sum test p=5.3e-23), receptor L domain (RL)
(p=0.007) and growth factor receptor domain IV (GFIV) (p=0.004) domains had significantly higher network
activity than EGFR wild-type samples (Figure S3B). Tumors with oncogenic driver events downstream of
EGFR such as mutations in KRAS had lower NA scores and generally were classified as network negative

(EGFR™) (KRAS mutant vs. wild-type, Wilcoxon rank-sum test p=5e-09, Figure 4D).

We observed that 19% of EGFR mutation wild-type samples were network positive (EGFR"""") with network
activity scores near that of canonical EGFR-mutant samples and higher than that of those with non-canonical
EGFR mutations (Figure 4C,E). When active, EGFR is auto-phosphorylated at Y1068, a docking site for GRB2
that links EGFR and RAS signaling (Batzer et al., 1994; Rojas et al., 1996). EGFR network activity scores in
tumors were significantly correlated with phospho-EGFR Y1068 levels in tumors (spearman r=0.31, p=2e-9),
which was also true when the analysis was restricted to only EGFR wild-type samples (spearman r=0.15,
p=4e-4, Figure 4F). Hence, EGFR"™ tumors are prevalent in EGFR wild-type NSCLC where they display

evidence of EGFR hyper-activity.

We next determined if EGFR network activity was predictive of response to EGFR inhibition. First, we
evaluated 40 NSCLC cell lines and found that network activity scored from baseline gene expression was
significantly correlated with phospho-EGFR levels (spearman r=0.48, p=4e-4) and proliferation in response to
the EGFR inhibitor erlotinib (spearman r=0.3, p=0.05) and the dual EGFR/HER2 inhibitor lapatinib (spearman

r=0.45, p=0.003) (Figure S3C-E). Second, we investigated the in vivo response of 25 NSCLC patient derived
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xenograft (PDX) models treated with erlotinib in an n-of-1 mouse clinical trial format (Gao et al., 2015). PDX
transcriptome data at baseline was used to score EGFR NA in each model. The only EGFR-mutant model in
this cohort expresses a non-canonical EGFR S895I mutation, which also had the highest network activity and
demonstrated tumor regression with erlotinib treatment (Figure 5A, Supplementary Table 4). In this cohort
10/25 tumors (40%) demonstrated stable disease and 3/25 (12%) displayed a partial response according to
RECIST criteria. EGFR network activity was strongly correlated with the percentage of tumor growth inhibition
of each PDX model treated with erlotinib (spearman r=-0.52, p=0.007) and models with responses had a
significantly higher network activity than those that had stable disease or progressive disease (p=0.003,
Wilcoxon rank-sum test, Figure 5B). There was no correlation between EGFR expression and response in this
cohort (Figure 5C). Overall the PDX models with the highest network activity (NA>5) had a significantly longer
time to progression defined as days taken for tumor doubling in the presence of erlotinib (25.0 versus 13.1
months, p=0.038 log-rank test, Figure 5D). In a prospective analysis, we analyzed a cohort of 17 NSCLC PDX
models and scored them for EGFR NA. This cohort had only one EGFR mutant model (CTG-2535, exon19 del)
which had the highest EGFR NA as expected (Figure 5E). We selected the PDX with second highest EGFR
NA (NA=6.6, CTG-0165), which was classified EGFR"""™. Erlotinib treatment in this PDX model resulted in

significant reduction in tumor volume in comparison to vehicle (p=0.006, two-tailed t-test, Figure 5E).

We conclude that in EGFR""™ tumors, EGFR network activation and resulting dependency is distinct from
mutation or changes in expression of the receptor itself (an effect in cis), but rather caused by an activation
induced by changes in the balance of proteins interacting with it (trans effects). The fact that the EGFR network
includes genes that are physically associated with EGFR is critical to the approach, as applying the same
methods to generate a signature using a non-EGFR centric network was not as predictive of EGFR
phosphorylation in tumor samples, responses to erlotinib in PDX models and EGFR inhibitors in cell lines
(Figure S3F). Also compared to expression signatures derived using unbiased machine learning methods the
EGFR network approach was more robust in prediction across the same datasets (Figure S3G,H). We
conclude that EGFR network activation can occur independent of mutations in EGFR often activating the

receptor and driving the growth and proliferation of NSCLCs, a hallmark of oncogenic activity.

Distinct states reflect alleles of the EGFR network oncogene in NSCLC
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The expression patterns of EGFR interactors were largely opposing between EGFR mutant and wild-type
samples. Interestingly, the expression level of EGFR interactors among EGFR"" samples was considerably
heterogeneous, suggesting the presence of distinct mechanisms of network activation (Figure 6A). To
elucidate if there were predominant mechanisms of network activation we applied a data compression
technique to condense the profiles of EGFR"" tumors into distinct states using non-negative matrix factorization
(NMF) (Figure 6B, S4A) (Kim et al., 2017). EGFR™ tumors could be represented using seven transcriptional
components (Figure 6B, Figure S4B-D), which can then be used to hierarchically cluster samples into six
distinct network states (Figure 6C, Supplementary Table 5). Each state could be characterized by differential
activation or repression of distinct genes in the network. For example, state 4 tumors (12% of EGFR"
samples) often display high levels of EGFR expression as well as the EGFR ligand EGF (Figure S4E). State 5
tumors (13% of EGFR™ samples) harbored highest expression of PIK3R3 an effector bridging EGFR with the
downstream PI3K pathway. State 1 tumors had the lowest levels of ABL2, a protein which promotes EGFR
internalization by endocytosis (Tanos and Pendergast, 2006). Hence, similar to the concept of distinct

oncogenic mutant alleles, we identified six recurrent oncogenic network alleles of EGFR promoting trans

activation of EGFR through distinct mechanisms.
The EGFR network oncogene co-occurs with weak oncogenes in the MAPK pathway

Since co-occurring events in cancer cells may collaborate to promote tumorigenesis, we wondered if mutations
that present in EGFR NA high tumors might reflect the tumor selective pressures that result in a requirement
for EGFR network oncogenesis. Of all EGFR""™ samples, the most common mutation in cancer genes in
these tumors was NF1 mutation (18%), followed by KRAS (10%) and BRAF mutations (6%) (Figure 6D). Fifty-
six percent were otherwise oncogene negative (Cancer Genome Atlas Research Network, 2014). Although
16% of all LUADs were EGFR"*™, they constitute 31% of all NF1 mutant cases in this cohort indicating a
significant enrichment (p=0.01 by hypergeometric test) (Figure 6E). Inactivating mutations in the RAS-GAP
NF1 promote GTP-bound active RAS to activate the MAPK pathway but are generally not sufficient for
tumorigenesis (Largaespada et al., 1996; Bollag et al., 1996; Bajenaru et al., 2002). Since different mutant
alleles of KRAS and BRAF also variably activate the MAPK pathway (Hunter et al., 2015; Haigis, 2017; Yao et
al., 2017b), we tested for selection of distinct oncogene alleles in EGFR™ cases. Codons 12 and 13 encode

the major hotspot mutations in KRAS of which G12A and G12C mutations had the highest network activity
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(p=0.01 one-way anova; Figure S5A). Overall 19% of KRAS G12A and 11% of G12C samples were EGFR™
(Figure 6E). These two alleles of KRAS are among the weakest at this codon due to reduced RAF binding and
increased rate of intrinsic hydrolysis (Hunter et al., 2015; Haigis, 2017). BRAF mutant alleles can be
categorized into three major classes ranging from strong and monomeric (class 1) to weak and dimeric (class
3) kinase activity (Yao et al., 2017b). 46% of all BRAF class 3 mutant tumors were also EGFR™ compared to
12.5% and 20% for class 2 and class 1 tumors respectively. Hence, mutations that weakly activate MAPK
signaling such as in NF1, KRAS G12A/C or BRAF class3 more commonly co-occur with EGFR network
oncogenesis in LUAD. While other known cancer associated mutations were not significantly enriched to co-
occur across all EGFR™ samples, we observed that mutations in several tumor suppressors were associated
with the presence of distinct network alleles of EGFR. For example, although RB1 mutant samples were not
enriched in this cohort, 35% of EGFR™ state 5 samples were RB1 mutant (Figure S4F). Similar findings were

observed for NOTCH1 (state 1) and RBM10 (state 3) suggesting that EGFR network activation may be fine-

tuned based on the nature of the co-occurring secondary mutation.

Tumors with NF1, KRAS G12A/C, and BRAF class 3 mutations leverage the EGFR network

oncogenesis

Although KRAS mutant tumors are currently contraindicated from receiving EGFR targeted therapy our results
suggest that some KRAS mutant tumors identified through EGFR network activity may respond to EGFR
inhibitors. In the 16 KRAS-mutant NSCLC cell lines available in the Cancer Cell Line Encyclopedia (Barretina
et al., 2012), network activity was predictive of response to erlotinib (r=0.62, p=0.01) (Figure 7A). To tested if
this trend extended to other EGFR inhibitors we experimentally determined ICsy of response to the covalent
EGFR inhibitor dacomitinib in a panel of 9 KRAS mutant NSCLC lines and found response was significantly
correlated with EGFR network activity (r=-0.79, p=0.012, Figure 7B, Supplementary Table 6). Three cell lines
which harbored KRAS mutation (G12A, G12C and G13C) had ICsys below 60nM, a clinically relevant dose
given average total plasma exposure of dacomitinib in patients is 161nM (Bello et al., 2013). Since oncogenic
mutations in the MAPK pathway cause constitutive signaling, cells harboring such mutations are often thought
to be non-responsive to upstream RTK signaling. To test if this was the case we investigated whether EGFR
signals to ERK in NF1, KRAS G12A/C and BRAF class 3 mutant tumors. In 6 candidate lung cell lines

harboring these genotypes, EGFR suppression with erlotinib led to a reduction of pERK levels similar to that in
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EGFR-mutant lines and in contrast to that in class1 BRAF (V600E) or ALK-rearranged NSCLC lines whose
pERK levels were unresponsive to EGFR inhibition (Figure 7C). Cell lines were sensitive to EGFR inhibition in
long term colony formation assays (Figure 7D, Figure S5B). To validate these findings in vivo we treated H358
KRAS G12C xenografted mice with erlotinib and observed significant reduction in tumor volume as compared
to vehicle (Figure 7E). These data indicate that EGFR signaling to ERK is functional in tumor cells with high

EGFR network activity, including tumor cells harboring mutations in the MAPK pathway, leading to sensitivity to

inhibitors of wild-type EGFR.

Activation of the MAPK pathway by RAS and RAF mutations suppresses EGFR activity and signaling, via
negative feedback (Li et al., 2008; van Houdt et al., 2010; Sunaga et al., 2011). Hence it is unlikely that the
RAS/MAPK mutations we identified here directly cause EGFR network activation and suggest that EGFR
network activation is an independent tumor-promoting event selected for during tumorigenesis. To disprove the
null model that mutant KRAS causes EGFR network activation we used H358 NSCLC cells that are KRAS
G12C mutant, have high EGFR network activity, respond to erlotinib with an 1C5, below 1uM and respond to
dacomitinib at 9nM indicating that they are EGFR dependent (Figure 7A,B). KRAS G12C inhibitor treatment for
24 hours in H358 cells (Janes et al., 2018; Lou et al., 2019) results in an increase in EGFR network and
pathway activity measured by RNAseq (Figure S5C-E) indicating that mutant KRAS does not cause network
activation, but rather works to suppress EGFR in these cells. We conclude that the EGFR network
oncogenesis is an independent tumor-promoting event (Figure 7F) that is unique from other oncogenic events

in the cell that is likely the result of finely tuned selection during tumor development.

DISCUSSION

The network defined in this study facilitates exploration of the functions of human tyrosine kinases through their
protein-protein interactions. In our affinity purification and mass spectrometry approach we used multiple
biological replicates and a new metric for scoring which accounts for bait specific variability in contrast to
related high throughput approaches (Huttlin et al., 2015, 2017). This resource delineates many new
interactions between tyrosine kinases and diverse cellular machinery. Surprisingly, many RTKs interact with
proteins that localize most notably in the nucleus suggesting that many RTKs may become aberrantly localized

there when overexpressed in pathologic contexts. These data are consistent with reports of nuclear localization
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of various RTKs (Ni et al., 2001; Carpenter, 2003; Carpenter and Liao, 2013) and indicate that this may be a
feature of most members of this family. Furthermore, through interactor focused genetic screens we identified
that many of the physical interactors of tyrosine kinases were also functionally important, since the proliferative
response of a cell to inhibition of a tyrosine kinase was often modified through the loss of its interaction partner,

constituting genetic interaction (Zhang et al., 2016). Practically, interactors may help select drug combinations

that may deepen initial tyrosine kinase inhibitor responses or overcome drug resistance.

Tumors often exhibit mutations in distinct but functionally related genes suggesting a limited number of core
pathways are sufficient to cause tumorigenesis (Cancer Genome Atlas Research Network, 2014). As a result
of this selective pressure we propose that another mechanism to activate a core tumorigenic pathway is
through perturbation in the levels of regulators of proteins with oncogenic potential, which we term network
oncogenesis. 21% of oncogene-negative lung cancers were EGFR network positive, indicating that network
oncogenesis provides a conceptual framework for understanding the pathogenesis of currently untargetable

tumors.

We chose EGFR in lung cancer because of the availability of enough patient samples with mutations to train
our models and sufficient cell line and PDX models to qualify our approach. As more tumor —omics datasets
and models become available, we anticipate this approach will be more broadly applicable. We estimate that
the EGFR network oncogenesis occurs in approximately 19% of EGFR wild-type tumors. Historical clinical
trials with EGFR TKIls have observed a 6-10% objective response rate in EGFR wild-type tumors (Popovici et
al., 2012; Osarogiagbon et al., 2015; Hirai et al., 2017) providing a starting point for patient selection. At
present, KRAS mutant tumors are contra-indicated from receiving EGFR TKIls. Surprisingly, many EGFR
network positive tumors harbored specific alleles of KRAS, BRAF and mutations in NF1 thus calling for a more
nuanced approach to target EGFR in tumors with mutations that activate the MAPK pathway. In support,
previous work has shown the importance of pan-ERBB signaling in KRAS-mediated tumorigenesis in mouse
models (Kruspig et al., 2018; Moll et al., 2018), exceptional responses to EGFR TKils have been observed in
KRAS G12C mutant lung cancers (Ferté et al., 2010; Krejci et al., 2011) and SHP2 inhibitors which impair
RTK signaling to RAS are reported to have activity in many of the same MAPK-related genotypes as in our
study (Nichols et al., 2018). We predict that in many cases both network and mutant oncogenes cooperate as

the tumor driver. While in these cases single agent EGFR TKIs may inhibit tumor growth, one might anticipate
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a stronger anti-tumor response in combination with an inhibitor that also targets the mutant oncoprotein directly
or downstream such as with KRAS®'?° or MEK inhibitors. Our results call for clinical trials testing EGFR TKls in
select NSCLC patients harboring the EGFR network oncogenesis and demonstrate the utility of protein-protein

interaction approaches toward realizing network medicine.
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FIGURE LEGENDS
Figure 1: Generation of unbiased tyrosine kinase interactome map. (A) Pipeline of Affinity-Purification and
Mass Spectrometry (AP-MS) experiments to generate tyrosine kinase interactome in HEK293T cells. (B) ROC
analysis of enrichment of known tyrosine kinase interactions from HumanNet with AP-MS data scored using
CompPASS, CompPASS-Z and SAINT scoring methods. Gray line depicts random prediction. (C) Enrichment
of known interactions from the iRefWeb database at different CompPASS-Z cutoffs. P-values of enrichment
were calculated using hypergeometric test. Black dashed line indicates cutoff used to include high (>2.5)
confidence interactors. (D) Enrichment of known substrates of tyrosine kinases from the PhosphoSitePlus
database at various CompPASS-Z scores. Dashed line indicates a score of 2.5. P-value of enrichment was
calculated using hypergeometric test. (E) Fraction of novel and known interactions (iRefWeb, Bioplex, MINT
database) of tyrosine kinases found in this study. (F) Comparison of number of tyrosine kinase interactors
found in different datasets. Red, green and black bubbles indicate AP-MS studies, experimentally identified
and yeast two-hybrid studies respectively. (G) Number of known and new interactions overlaid onto a tyrosine
kinase sequence similarity tree. Size of the bubble represents the number of interactors identified for every

tyrosine kinases in TyKiNet. Color represents the number of associated interactions found in the iRefWeb

database.

Figure 2: Tyrosine kinases are associated with diverse protein complexes. Network representation of
physical interactions in TyKiNet between tyrosine kinases and known protein complexes and functional groups
mapped using CORUM and iRefWeb databases. Network connections were identifyed by searching for
triangular relationships among tyrosine kinases and multiple members of the complex or pathway (see
Methods). Orange and green rectangles indicate receptor and non-receptor tyrosine kinases, respectively. Red
interaction edges represent interactions observed in TyKiNet while blue edges indicates known interactions

mapped from CORUM or iRefWeb database. Members of the same complex or pathway are grouped in grey.

Figure 3: Tyrosine kinase interactome reveals functional relationships in cancer cells. (A) Heatmap
representation of enrichment of tyrosine kinase interactors with known protein complexes from the CORUM
database. Statistical significance of the overlap of interactors of tyrosine kinase with a known protein complex
was calculated using hypergeometric test at a 5% FDR cutoff. (B) Network representation of protein complex

coverage achieved in TyKiNet for selected CORUM complexes. Dark and light blue shades represent bait and
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prey proteins respectively, while grey circles indicates proteins that were not captured in this study. Black
edges from TyKiNet and gray edges from CORUM. P-values of complex coverage based on each tyrosine
kinase were calculated as in (A). (C) Co-immunoprecipitation of FLT3 tyrosine kinase with CDK9. Cells were
exposed to vehicle, 10nM ACC220, 300nM JQ1 or 300nM NVP-2 for 24 hours before harvest. (D) Immunoblot
of phosphorylation of Ser2 of CTD of the RNA polymerase |l after transfection with the indicated empty or flag
tagged constructs and untreated or treated with various inhibitors at the indicated dose for 24hours before
harvest. Quantification of relative p-Ser2 level relative to untreated empty vector is shown. (E) Model of role of
FLT3 binding and promotion of the activity of the P-TEFb complex. (F) Heatmap representing chemical-genetic
interactions involving EGFR, ALK, ERBB2 and MET in cancer cell lines. Interactors of the selected tyrosine
kinase oncogene were knocked down using siRNAs in the indicated cell lines. Proliferation after knockdown in
the presence and absence of the indicated inhibitor was normalized and compared to determine a P-value of

significance (see Methods). Knockdowns were scored for their ability to impart drug resistance (blue) or drug

sensitivity (red).

Figure 4: Tyrosine kinase interactome enables identification of EGFR network activity in lung
adenocarcinoma. (A) Algorithm to map network activity by integration of physical interactors and gene
expression data from TCGA. For a given kinase, expression of its interactors was compared between mutant
and wild-type samples to identify positively or negatively differentially expressed interactors (5% FDR). In a
single sample the network activity is calculated by a signed sum of all such interactors (see methods). (B)
Heatmap of network activity and constituent EGFR interactors in lung adenocarcinoma patients (LUAD).
Columns represent LUAD patients (n=576) and rows represent expression of interactors of EGFR that are
either positively or negatively associated with EGFR activity. Samples are sorted from network activity low to
high. The mutation status of EGFR and KRAS in each sample is shown above. EGFR interactors from TyKiNet
are in bold. (C) The fraction of samples with EGFR canonical (L858R or Ex19del) or non-canonical mutation or
otherwise EGFR wild-type and EGFR network positive (EGFR™). (D) Comparison of EGFR network activity
between EGFR and KRAS wild-type versus mutant samples. (E) Comparison of EGFR network activity
between various groups based on EGFR or KRAS mutation and network activity scores. * = p<0.001 by rank
sum test. (F) Comparison of EGFR network activity with pEGFR Y1068 levels in LUAD samples. EGFR mutant

samples are shown in red. Correlation and p-value are based on Spearman rank correlation. P-values
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calculated using two-tailed Wilcoxon rank-sum test in (D) and (E). Boxes represent the inter quartile range, and

whiskers indicate 1.5 times the interquartile range.

Figure 5. Tyrosine kinase network state predicts targeted therapy response. (A) Comparison of baseline
EGFR network activity with percent change in tumor volume from the beginning of treatment across 25
different NSCLC PDX models treated with erlotinib in a n-of-1 study from Gao et al. (Gao et al., 2015). P-
values are calculated using Spearman correlation coefficient. EGFR and KRAS mutant models are shown in
red and blue circles, respectively. Shading corresponds to different response groups. Partial or complete
response (PR/CR) corresponds reduction of <-20%, stable disease (SD) corresponds to <30% growth,
progressive disease (PD) corresponds to >30% tumor growth compared to initial tumor volume over treatment.
(B) EGFR network activity in tumors separated by response group. P-value based on two-tailed Wilcoxon rank-
sum test. (C) EGFR expression in tumors separated by response group. P-values were calculated using two-
tailed Wilcoxon rank-sum test. (D) Kaplan-Meier plot of progression free survival of erlotinib treated PDX with
EGFR NA>5 (n=5) compared with EGFR NA<5 (n=20). P-value was calculated using log-rank test. (E)
RNAseq data from an untreated NSCLC PDX cohort was used to score EGFR network activity (n=17). Model
with second highest EGFR network activity was EGFR wild-type and network positive (EGFR"""*) and treated

with erlotinib (50 mg/kg/d) and tumor volumes compared to vehicle treatment *p<0.001 two-tailed t-test.

Figure 6: EGFR network state defines distinct mechanism of EGFR activation and is associated with
weak oncogenes. (A) Representation of EGFR network components in EGFR mutant (L858R), wild-type and
EGFR wild-type but network positive (EGFR"*"™") LUAD samples from the TCGA. Node color corresponds to
relative mMRNA expression of an interactor in a sample. Interactors are separated by positive (left side, red
background) and negative (right side, blue background) components. NA = network activity. (B) NMF of EGFR
network positive samples (EGFR™) indicates seven transcriptional components that cluster into six distinct
states. (C) Heatmap of the mean expression of interactors of EGFR in six distinct states of EGFR"" patients.
Difference in mean expression between samples in each state is shown (color) and significance (size of circle)
was calculated using Wilcoxon rank-sum test. (D) Occurrence of mutations in known oncogenes and NF1
(Cancer Genome Atlas Research Network, 2014) in EGFR mutation wild-type, network positive (EGFR"*"™)
samples (n=94). (E) Enrichment of frequency of mutations for specific genes in EGFR"*"" samples compared

to EGFR™ samples. P-value of mutation enrichment was derived from hypergeometric distribution. * = p<0.05.
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Right barplot represents fraction of all samples with mutation in NF1, or listed alleles of KRAS and BRAF that
are also EGFR™. Dashed line indicates the background proportion of all KRAS or BRAF mutants that are

EGFR™. X=any amino acid substitution.

Figure 7: Tumors harboring weak oncogenes are dependent on EGFR signaling. (A) Comparison of
EGFR network activity (NA) in KRAS mutant NSCLC cell lines with published erlotinib sensitivity (defined as
activity area in the CCLE dataset). (B) Comparison of dacomitinib sensitivity (ICso, determined in this study)
with EGFR NA in nine KRAS mutant NSCLC lines. For (A) and (B) colors represent the type of KRAS mutation
and correlation, p-value determined using spearman correlation. (C) Immunoblot of pPEGFR and ERK levels in
lysates from NF1, BRAF-class3 and KRAS G12C and G12A mutant cell lines before and after treatment with
erlotinib (1 um) or 72 hours. PC9 (EGFR del), HCC827 (EGFR del), HCC364 (class1 BRAF) and STE-1 (ALK
fusion) cell lines were used as a control. (D) Colony formation assay of NF1, BRAF and KRAS mutant lung
cancer cell lines grown in the presence or absence of erlotinib for 7 days. (E) Growth of H358 (KRAS ©'%)
mouse xenograft treated with erlotinib (80-100mg/kg/d). * p <0,05, t- statistics. (F) A model showing the
mutation frequency of NF1, weak oncogenes (class3 BRAF, KRAS G12C, G12A) in patients with EGFR

mutant oncogenes and EGFR""™ LUAD patients.
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EXPERIMENTAL PROCEDURES

Cell culture and reagents

All cell lines were cultured in RPMI supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin.
Erlotinib, Lapatinib, AZD9291, TAE684, JQ1, AC220, and Crizotinib was purchased from Selleck Chemicals,.
Dacomitinib is available from Sigma. Primary antibodies against phospho-EGFR (#3777, Tyr1068, 1:1000),
EGFR (#4267, 1:1000), phospho-ERK (#9101, Thr202, Tyr204, 1:1000), beta-actin (#A2228, 1:2000) and ERK
(#9102, 1:1000) were obtained from Cell Signaling Technologies. The antibody against V5 (#SC-
81594,1:1000) was purchased from Santa Cruz, Flag (#F1804,1:1000) from Sigma and Phospho-Poll (#5095,
Ser2,1:5000) from Abcam.

Affinity purification

All ORFs were cloned as Gateway entry clones in the pPDONR223 vector and subsequently transferred into c-
terminal 3xFLAG expression vectors (pcDNA4/TO 3x FLAG). Each vector was confirmed via western blot in
HEK293T cells and relative expression levels were determined. All constructs were verified by sequencing. For
affinity purification, cells were grown in 15 cm plates and next day transfected with between 3-10 pg of plasmid
depending on relative expression levels using calcium phosphate. Each clone was transiently transfected into
HEK293T cells. 42 h after transfection, cells were detached and washed with PBS. For Affinity Purification
(AP), 2.5x108 cells were induced with 1 pg/ml doxycyclin for 16 h. Cells were lysed in 1 ml cold lysis buffer (50
mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% Nonidet P40, complete protease inhibitor (Roche) and
phosphostop (Roche). Cells were dounced 20x on ice and spun at 2800xg for 20 min. The supernatant was
incubated with 60 ul preclearing beads (mouse IgG agarose, SIGMA or Sepharose 4FF, GE Healthcare) for 2
h. The precleared lysate was incubated with 30 ul IP beads over night. FLAG APs were performed with anti-
FLAG M2 Affinity Gel (SIGMA) and Strep APs with StrepTactin Sepharose (IBA). The beads were washed 5x
with lysis buffer containing 0.05% Nonidet P40 followed by one wash with lysis buffer without detergent.
Proteins were eluted with 40 yl 50 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA containing either 100ug/ml
3XxFLAG peptide (ELIM) and 0.1% RapiGest (Waters), or 2.5 mM Desthiobiotin (IBA). 4 pl of the eluate was
analyzed by 4-20% SDS PAGE (Biorad) and silver staining. For co-immunoprecipitations the same procedure
was performed on 10° cells and samples were boiled in sample buffer prior to immunoblot.

Sample preparation for mass spectrometry

For gel-free Mass Spectrometry (MS) analysis 10 ul of the IP eluate were reduced with 2.5 mM DTT at 60°C
for 30 minutes followed by alkylation with 2.5 mM iodoacetamide for 40 minutes at room temperature. 100 ng
sequencing grade modified trypsin (Promega) was then added to the sample and incubated overnight at 37°C.
The resulting peptides were concentrated on ZipTip C18 pipette tips (Millipore) and eluted in a final 20 ul
solution of 0.1% formic acid. For gel-based analysis, 20 ul IP eluate was separated by 4-20% SDS-PAGE and
stained with GelCode Blue (Thermo Scientific). Each lane was cut into 15 pieces. Each gel piece was diced
into small (1 mm?) pieces and washed 3x with 25 mM NH4HCO3/50% ACN. Gel pieces were dehydrated and
incubated with 10 mM DTT in 25 mM NH4HCO3 and incubated for 1 hour at 56°C. The supernatant was
removed and the gel pieces were incubated with 55 mM iodoacetamide and incubated for 40 minutes. Gel
pieces were washed with 25 mM NH4HCO3, then 25 mM NH4HCO3/50% can and were then dehydrated. 10
ng/pl trypsin in 25 mM NH4HCO3 was then added to the gel pieces and incubated overnight at 37°C. Finally,
peptides were extracted from the gel pieces with 50% ACN/5% formic acid and the solvent evaporated. The
final peptide sample was resuspended in 20 ul 0.1% formic acid.

Mass spectrometry primary data analysis

All samples were analyzed by LC-MS/MS on a Velos Pro dual linear ion trap mass spectrometer (Thermo)
equipped with a nanoACQUITY UPLC (Waters) chromatography system and a nanoelectrospray source. 5 pl
of each sample was injected onto a a nanoACQUITY Symmetry C18 trap (5 um particle size, 180 pym x 20 mm)
in buffer A (0.1% formic acid in water) at a flow rate of 4 pl/min and then separated over a nanoACQUITY BEH
C18 analytical column (1.7 ym particle size, 100 um x 100 mm) over one hour with a gradient from 2% to 25%
buffer B (99.9% ACN/0.1% formic acid) at a flow rate of 0.4 pl/min. Raw mass spectrometric data were
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converted into peak lists using Bioworks 3.3.1 SP1. The spectra were searched using Prospector v.5.3
(http://prospector.ucsf.edu) against a human-restricted UniProt database. Protein Prospector results were
filtered by applying a minimum Protein Score of 22.0, a minimum Peptide Score of 15.0, a maximum Protein E-
Value of 0.01 and a maximum Peptide E-Value of 0.05. A total of 419 AP-MS experiments were performed
using each of the 90-tyrosine kinases as affinity-tagged bait. Preprocessing of IPs was carried out by mapping
protein count obtained in individual replicate experiments corresponding to a bait. Based on the distribution of
protein counts of all experiments we removed the samples where protein counts were less than 30. 19 AP-MS
experiments fall under this category and they were removed from further analysis. Pull-down experiments
where tyrosine kinase was not seen as bait in the mass spectra were discarded. Reproducibility of interactions
of tyrosine kinases was defined as total number of preys picked by a kinase in at least two biological replicate
experiments by the total number of preys picked by bait in experiments.

Mass spectrometry data scoring

To distinguish true from non-specific interactions MS data was scored using two available scoring methods -
Comparative Proteomics Analysis Software Suite (CompPASS) (Sowa et al., 2009) and Significance Analysis
of Interactome (SAINT) (Choi et al., 2011). CompPASS scoring was performed as described by (Sowa et al.
2009). As the number of biological replicate experiments carried out for tyrosine kinases varied we modified
the current CompPASS WD scores by adding the bait specific Z-normalization (CompPASS-Z). For every bait
CompPASS WD scores were Z-scored to obtain modified CompPASS-Z scores as follows:

wdp; — u_wd,
CompPASSZy; = B a—
o_wap

where wdy; represents the comPASS WD score for interaction between bait (b) and prey (i) and wd,,
represents all WD scores associated with bait b.

SAINT was also used to identify interactors from AP-MS data using SAINTexpress software (version 3, Teo et
al). Performance of CompPASS, CompPASS-Z and SAINT scored AP-MS data was compared in scoring
known interactions of HumanNet (Lee et al., 2011) and iRefWeb (Turner et al., 2010) databases as reference.
The HumanNet v1 network was downloaded (10/27/2015) from http://www.functionalnet.org/humannet,
iRefWeb v13.0 network was downloaded (7/23/2014) from http://www.irefindex.org, Bioplex was downloaded
from http://bioplex.hms.harvard.edu/downloadInteractions.php (BioPlex_ 2.3 interactionList.tsv, 5/3/2018)
(Huttlin et al., 2015, 2017), MINT database (Licata et al., 2012) was downloaded (8/11/2015) from
https://mint.bio.uniroma2.it/ and had 1457 tyrosine kinase interactions. Statistical significance of overlap was
obtained using hypergeometric test where background distribution was based on a random interaction network
of uniquely identified preys in entire AP-MS with all 90 tyrosine kinases as baits. Similarly, we compared the
overlap of CompPASS-Z scored AP-MS data with known kinase-substrate information downloaded from
PhosphoSitePlus (Hornbeck et al., 2012) (downloaded on 8/5/2016, 699 tyrosine kinase substrates) at different
CompPASS-Z cutoffs. A cutoff of CompPASS-Z scores was derived using a highest peak of enrichment using
known interactors and substrates (Figure 1C). The number of high confidence interactors per kinase was not
correlated with the number of replicates carried out per kinase (Pearson r = 0.05).

Western blotting

Cell lysates were subjected to SDS-PAGE and transferred to nitrocellulose membranes. For signaling analysis
by immunoblot in lung cancer cell lines, 2x10° cells were seeded per 10cm dish for 24 hours after which cells
were serum-starved for 18 hours and treated with either vehicle (DMSO) or Erlotinib (1uM) for one hour and
stimulated with 100 ng/mL human recombinant EGF for five minutes prior to lysis.

Cellular localization prediction

Protein subcellular localization were examined using the GO cellular components downloaded from Ensembl
using R BioMart package (Durinck et al., 2005). To predict the cellular localization of a tyrosine kinase first
degree (direct) interactors were used for enrichment analysis using Fisher's Exact test. All the cellular
localization terms were manually condensed to thirteen core localizations: Nucleus, Cytoplasm, Vesicles,
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Plasma membrane, ECM, Golgi, Endosomes, Cell junctions, Vacuoles, Cytoskeleton, Endoplasmic reticulum
and exosomes. A tyrosine kinase was considered associated with a cellular localization when its interactors
were significantly more likely to be annotated with the same cellular term as compared to human proteome
(background). To focus on the most significant results, we used only cellular terms where enrichment scores
were significant with an adjusted FDR of 10%.

Network mapping of tyrosine kinases with protein complexes

To map the association of tyrosine kinases with known protein complexes we used known protein complex
information from CORUM and iRefWeb databases. CORUM database (Giurgiu et al., 2019) was downloaded
(3/18/2019) from http://mips.helmholtz-muenchen.de/corum/ with 6859 core complexes. Network
representation was generated using Cytoscape version 3.2 (Shannon et al., 2003). Interaction coverage was
defined as the number of interactors of a kinase which are a part of a protein complex over the total number of
members of a protein complex. Statistical significance of the interaction overlap of a protein complexes was
calculated using hypergeometric test and represents the enrichment of tyrosine kinase interactors to form a
protein complex. All P values were FDR adjusted and a cutoff of 5% was used to identify tyrosine kinase-
protein complex associations.

Cell viability assay

Cells were seeded in 12-well format at 5,000 cells/well and treated with vehicle (DMSO) or erlotinib (1uM) on
the following day. Media containing vehicle or drug, respectively, was replaced every 3-4 days and cells were
maintained until full confluency of vehicle-treated control wells. Cells were fixed with 10% formalin for 30
minutes at room temperature and stained with 0.05% crystal violet solution. Pictures were taken using an
ImageQuant LAS 4000 (GE Healthcare Life Sciences). For quantification, stained cells were dissolved with 1%
SDS solution, and absorbance at 470 nm was measured using a Spectramax spectrophotometer (Molecular
Devices). Values were normalized to vehicle-treated controls. For dacomitinib cell viability experiments a total
of 2500-5000 cells were seeded per well, depending on their growth rates. After overnight incubation at 37°C,
drugs were added to the culture wells to achieve a final drug concentration from 10 uM to 152 pM. After drug
addition, the cells were incubated for an additional 3 days to allow cells to reach 70-90% confluency. Readout
of cell viability was determined with 20 puL of 1 mg/mL resazurin salt (Sigma) using an Envision multi-reader.
Cell counts were first adjusted by subtracting the average of the baseline cell counts from untreated cells
assessed 1 day after cell seeding. A four-parameter logistic model was used to fit the dose response curves
and infer the 1Cs, slope, and upper and lower limits.

RNAIi screening

Top high confidence interactors were selected for EGFR, ERBB2, ALK and MET tyrosine kinases based on the
CompPASS-Z scores of the interactions. Cells were reverse transfected in quadruplicate in 384-well plates
with 20nM of siRNA (Sigma) using RNAiMax as transfection reagent. Cells were transfected for 24 hr, and then
the entire plate was treated with either one drug at a half maximal inhibitory concentration (IC.;) concentration
or DMSO for 72 hr, after which cells were stained with Hoescht 33342 and counted using a Thermo Celllnsight
high-content microscope. Both drug and DMSO plates for every cell line were median centered to normalize
the proliferation rates. Next, four normalized replicate values in the DMSO plate were compared to the same
gene in the drug plate and P value of the significance of this difference in medians were calculated using t-
statistics. A P value of 0.05 was considered significant. The genetic interactions was defined by the negative
log10 of the P value of t-test and signed with either positive (knockdown causes drug sensitivity) or negative
(knockdown causes drug resistance).

TCGA, cancer cell line and PDX datasets

Following datasets from TCGA and cancer cell lines (CCLE) were used to analyze the network activity of
EGFR.
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Table 1
TCGA datasets
Tumor type Data type # of samples
LUAD mRNA Expression 575
Mutation (EGFR) 66
Reverse Phase Protein Array 360
(EGFR)
Table 2
CCLE datasets
Tissue type Data type # of cell lines
NSCLC mRNA Expression 51
Mutation (EGFR) 5
Reverse Phase Protein Array 51
(EGFR)
Drug response (Erlotinib/Lapatinib) 29

LUAD patients mRNA, RPPA, CNV and mutation datasets were downloaded from TCGA data portal
(https://portal.gdc.cancer.gov/). CCLE datasets were downloaded from
(https://www.synapse.org/#!Synapse:syn10463688/wiki/463140). Gene expression datasets were log
transformed and z-normalized across the NSCLC cell lines and patient samples. RPPA data of protein
expression of EGFR in NSCLC cell lines was obtained from (https://bicinformatics.mdanderson.org/public-
software/mclp/). PDX data was obtained from (Gao et al., 2015) and included baseline gene expression and
tumor responses to erlotinib. Gene expression data was log transformed and normalized across all 25 NSCLC
PDX models.

Description of network activity scoring

To map the network activity of tyrosine kinases we developed a computational algorithm to integrate
proteomics data (protein-protein interactors) of a tyrosine kinase with mRNA expression of tumor samples.
This algorithm is based on the hypothesis that cellular activity of a kinase is dependent on its neighboring
protein interactors and the levels of direct interactors of a kinase can influence the activity of the kinase itself.
We refer to this interactome-based mapping of transcriptional levels as network activity and used this to
classify tumors as network positive or negative.

To calculate network activity we first used MRNA expression of interactors of a tyrosine kinase in a specific
tumor type. Here we focused on lung cancer where EGFR is a common mutational driver (~12% frequency).
To identify the key interactors on which kinase activity is highly dependent, patients were separated into
mutationally altered vs. non altered groups and mRNA expression of interactors was compared to identify
interactors whose mean expression was significantly different between groups. Statistical significance of
expression of interactors was achieved using a two-sided t-test with a FDR cutoff of 5%. Positive component
(pc) comprises interactors whose expression was elevated when the tyrosine kinase is altered, while negative
component (nc) includes interactors whose expression was reduced when the kinase was altered (i.e higher in
wild type samples). To generate the network activity score for sample k (NA,) we sum up the expression of
interactors of positive and negative components and calculate the difference in combined expression of two
components as follows:
l m

NA, = Z PC; — Z NC;

i=1 i=1

i

where, PC and NC represent the expression of interactors in pc and nc respectively. / and m represents the
number of interactors in positive and negative components respectively.

Interactors of EGFR obtained through our AP-MS study at CompPASS-Z cutoff of 2 and other experimentally
known interactors of EGFR from iRefWeb database (total n = 181) were used to calculate network activity. Out
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of 181 direct interactors of EGFR, 27 interactors passed the FDR threshold of 5% and were used for NA
calculations of EGFR in LUAD. A cutoff for NA score was calculated by precision-recall analysis by considering
canonical mutations of EGFR as true positives and KRAS mutations as false positives. A recall of 95% was
considered to derive a NA cutoff in LUAD patients

Comparison of EGFR network activity with other methods

Performance of EGFR NA was compared to either random gene networks or other gene expression signature
approaches. To compare to random gene networks we selected 27 genes at random whose expression was
differentially expressed in samples with an EGFR mutation, as above. This process was performed 10,000
times and the predictive capacity of each trial was compared to the real EGFR NA. The percent of random
trials where the prediction was stronger than the real EGFR NA was used to calculate a P value.

To compare to other gene expression signatures approaches we first identified which of all 20,000 genes were
differentially expressed genes (n =3299) between EGFR wild-type and mutant samples at a 5% FDR
threshold. The gene expression signature (GES) was calculated by a signed sum of differentially expressed
genes. LASSO, ElasticNet and Random Forest classifier models were generated by applying these methods to
the 20,000 gene set trained on EGFR mutant versus wild-type samples. LASSO was run with « =0.01 and
maximum iterations = 10e5 where o« was chosen by gridsearch during training. ElasticNet was run with I1_ratio
=0.5 and «x =0.01, which was chosen based on internal cross validation. Random Forest model was built with
100 estimators and gini criterion. For Random Forest average expression of the most predictive genes was
used to calculate EGFR gene expression signature. EGFR activity using these methods was compared to
pEGFR and drug response data from CCLE and PDX models.

NMF and mutation enrichment analysis of EGFR"""™ patients

Mutations enrichment in patients with high activity of EGFR was calculated by measuring the fraction of
mutations in samples with high NA as compared to background (total mutant samples of a gene) mutation
frequency of a gene in all LUAD samples. Significance of the mutation enrichment was calculated using
Hypergeometric test. Mutation enrichment analysis for genes except EGFR was performed in EGFR null sa-
mples. Similarly, mutation frequency of specific alleles of KRAS and BRAF was calculated in EGFR*"*"™
patients. Background mutation frequency represents total KRAS and BRAF mutation frequency in patients with
high EGFR NA over background. EGFR NA high patient samples (n=148) were decomposed using Non-
Negative Matrix Factorization (NMF) (Brunet et al., 2004; Kim et al., 2017; Tamayo et al., 2007). Matrix (A)
contains n rows (expression of EGFR interactors which are part of NA, n=27) and m samples (EGFR mutant
and EGFR"™ samples, n=148) and is represented as A”™™. NMF was implemented as in (Kim et al., 2017).
The optimal number of components was defined using cophenetic correlation (Brunet et al. 2004). Mutation
enrichment analysis was performed in every state to identify correspondence between the present of a somatic
mutation and EGFR network state. Enrichment analysis was performed in every state by considering other
states as background and genes which are significantly mutated were identified using Fischer’'s Exact test (p
<0.01).

Mouse xenograft study

Six- to seven-week-old female nude mice were purchased from the Jackson Laboratory and housed with ad
libitum food and water on a 12-hour light cycle at the UCSF Preclinical Therapeutics Core vivarium. All animal
studies were performed in full accordance with UCSF Institutional Animal Care and Use Committee. H358
xenografts were established by subcutaneous injection into the left and right flanks of mice with H358 cells (5 x
10° cells in 100 pl of serum-free medium mixed 1:1 with Matrigel). Tumor xenografts were allowed to establish
until they reached about 700 to 900 mm? in donor mice and then reimplanted into receiver mice to achieve
higher engraftment rate. Briefly, established H538 tumor xenografts from donor mice were resected, cut into
even-size fragments (15 mm x 15 mm), embedded in Matrigel, and reimplanted via subcutaneous implantation
into receiver mice. H538 tumor-bearing mice were randomized into control and treatment groups when tumors
reached a size range of 100 to 120 mm?, and single or dual dosing of erlotinib (80-100 mg/kg in 0.5%
(hydroxypropyl) methyl cellulose, 0.2% Tween 80 (HPMT)] or vehicle control (Labrasol) was administered daily
by oral gavage. Tumor volume and body weight were assessed biweekly for the duration of the study. The
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percentage change in tumor growth was based on volumes calculated from the size on day 1 at the beginning
of treatment. For PDX studies, patient-derived tumor cells were engrafted subcutaneously into the flank of
C.B-17 SCID mice. Tumors were allowed to grow until they reached a minimum volume of 200 mm?; then,
animals were randomly placed into control or treatment groups. Animals were treated daily for 30 d via oral
gavage, and tumor volume was calculated daily using caliper measurements.

Data availability

Network data is deposited in Biogrid (Accession Code XXXXX). Source code for Compass-Z, Non-negative
matrix factorization and Network Activity analysis are available at
https://github.com/BandyopadhyayLab/Tyrosine kinase interactome
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